| File: | build/source/clang/lib/Sema/SemaExprCXX.cpp |
| Warning: | line 627, column 7 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | /// | |||
| 9 | /// \file | |||
| 10 | /// Implements semantic analysis for C++ expressions. | |||
| 11 | /// | |||
| 12 | //===----------------------------------------------------------------------===// | |||
| 13 | ||||
| 14 | #include "TreeTransform.h" | |||
| 15 | #include "TypeLocBuilder.h" | |||
| 16 | #include "clang/AST/ASTContext.h" | |||
| 17 | #include "clang/AST/ASTLambda.h" | |||
| 18 | #include "clang/AST/CXXInheritance.h" | |||
| 19 | #include "clang/AST/CharUnits.h" | |||
| 20 | #include "clang/AST/DeclObjC.h" | |||
| 21 | #include "clang/AST/ExprCXX.h" | |||
| 22 | #include "clang/AST/ExprObjC.h" | |||
| 23 | #include "clang/AST/RecursiveASTVisitor.h" | |||
| 24 | #include "clang/AST/Type.h" | |||
| 25 | #include "clang/AST/TypeLoc.h" | |||
| 26 | #include "clang/Basic/AlignedAllocation.h" | |||
| 27 | #include "clang/Basic/DiagnosticSema.h" | |||
| 28 | #include "clang/Basic/PartialDiagnostic.h" | |||
| 29 | #include "clang/Basic/TargetInfo.h" | |||
| 30 | #include "clang/Basic/TokenKinds.h" | |||
| 31 | #include "clang/Basic/TypeTraits.h" | |||
| 32 | #include "clang/Lex/Preprocessor.h" | |||
| 33 | #include "clang/Sema/DeclSpec.h" | |||
| 34 | #include "clang/Sema/EnterExpressionEvaluationContext.h" | |||
| 35 | #include "clang/Sema/Initialization.h" | |||
| 36 | #include "clang/Sema/Lookup.h" | |||
| 37 | #include "clang/Sema/ParsedTemplate.h" | |||
| 38 | #include "clang/Sema/Scope.h" | |||
| 39 | #include "clang/Sema/ScopeInfo.h" | |||
| 40 | #include "clang/Sema/SemaInternal.h" | |||
| 41 | #include "clang/Sema/SemaLambda.h" | |||
| 42 | #include "clang/Sema/Template.h" | |||
| 43 | #include "clang/Sema/TemplateDeduction.h" | |||
| 44 | #include "llvm/ADT/APInt.h" | |||
| 45 | #include "llvm/ADT/STLExtras.h" | |||
| 46 | #include "llvm/Support/ErrorHandling.h" | |||
| 47 | #include "llvm/Support/TypeSize.h" | |||
| 48 | #include <optional> | |||
| 49 | using namespace clang; | |||
| 50 | using namespace sema; | |||
| 51 | ||||
| 52 | /// Handle the result of the special case name lookup for inheriting | |||
| 53 | /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as | |||
| 54 | /// constructor names in member using declarations, even if 'X' is not the | |||
| 55 | /// name of the corresponding type. | |||
| 56 | ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, | |||
| 57 | SourceLocation NameLoc, | |||
| 58 | IdentifierInfo &Name) { | |||
| 59 | NestedNameSpecifier *NNS = SS.getScopeRep(); | |||
| 60 | ||||
| 61 | // Convert the nested-name-specifier into a type. | |||
| 62 | QualType Type; | |||
| 63 | switch (NNS->getKind()) { | |||
| 64 | case NestedNameSpecifier::TypeSpec: | |||
| 65 | case NestedNameSpecifier::TypeSpecWithTemplate: | |||
| 66 | Type = QualType(NNS->getAsType(), 0); | |||
| 67 | break; | |||
| 68 | ||||
| 69 | case NestedNameSpecifier::Identifier: | |||
| 70 | // Strip off the last layer of the nested-name-specifier and build a | |||
| 71 | // typename type for it. | |||
| 72 | assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == & Name && "not a constructor name") ? void (0) : __assert_fail ("NNS->getAsIdentifier() == &Name && \"not a constructor name\"" , "clang/lib/Sema/SemaExprCXX.cpp", 72, __extension__ __PRETTY_FUNCTION__ )); | |||
| 73 | Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), | |||
| 74 | NNS->getAsIdentifier()); | |||
| 75 | break; | |||
| 76 | ||||
| 77 | case NestedNameSpecifier::Global: | |||
| 78 | case NestedNameSpecifier::Super: | |||
| 79 | case NestedNameSpecifier::Namespace: | |||
| 80 | case NestedNameSpecifier::NamespaceAlias: | |||
| 81 | llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor" , "clang/lib/Sema/SemaExprCXX.cpp", 81); | |||
| 82 | } | |||
| 83 | ||||
| 84 | // This reference to the type is located entirely at the location of the | |||
| 85 | // final identifier in the qualified-id. | |||
| 86 | return CreateParsedType(Type, | |||
| 87 | Context.getTrivialTypeSourceInfo(Type, NameLoc)); | |||
| 88 | } | |||
| 89 | ||||
| 90 | ParsedType Sema::getConstructorName(IdentifierInfo &II, | |||
| 91 | SourceLocation NameLoc, | |||
| 92 | Scope *S, CXXScopeSpec &SS, | |||
| 93 | bool EnteringContext) { | |||
| 94 | CXXRecordDecl *CurClass = getCurrentClass(S, &SS); | |||
| 95 | assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass ->getIdentifier() && "not a constructor name") ? void (0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\"" , "clang/lib/Sema/SemaExprCXX.cpp", 96, __extension__ __PRETTY_FUNCTION__ )) | |||
| 96 | "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass ->getIdentifier() && "not a constructor name") ? void (0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\"" , "clang/lib/Sema/SemaExprCXX.cpp", 96, __extension__ __PRETTY_FUNCTION__ )); | |||
| 97 | ||||
| 98 | // When naming a constructor as a member of a dependent context (eg, in a | |||
| 99 | // friend declaration or an inherited constructor declaration), form an | |||
| 100 | // unresolved "typename" type. | |||
| 101 | if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { | |||
| 102 | QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); | |||
| 103 | return ParsedType::make(T); | |||
| 104 | } | |||
| 105 | ||||
| 106 | if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) | |||
| 107 | return ParsedType(); | |||
| 108 | ||||
| 109 | // Find the injected-class-name declaration. Note that we make no attempt to | |||
| 110 | // diagnose cases where the injected-class-name is shadowed: the only | |||
| 111 | // declaration that can validly shadow the injected-class-name is a | |||
| 112 | // non-static data member, and if the class contains both a non-static data | |||
| 113 | // member and a constructor then it is ill-formed (we check that in | |||
| 114 | // CheckCompletedCXXClass). | |||
| 115 | CXXRecordDecl *InjectedClassName = nullptr; | |||
| 116 | for (NamedDecl *ND : CurClass->lookup(&II)) { | |||
| 117 | auto *RD = dyn_cast<CXXRecordDecl>(ND); | |||
| 118 | if (RD && RD->isInjectedClassName()) { | |||
| 119 | InjectedClassName = RD; | |||
| 120 | break; | |||
| 121 | } | |||
| 122 | } | |||
| 123 | if (!InjectedClassName) { | |||
| 124 | if (!CurClass->isInvalidDecl()) { | |||
| 125 | // FIXME: RequireCompleteDeclContext doesn't check dependent contexts | |||
| 126 | // properly. Work around it here for now. | |||
| 127 | Diag(SS.getLastQualifierNameLoc(), | |||
| 128 | diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); | |||
| 129 | } | |||
| 130 | return ParsedType(); | |||
| 131 | } | |||
| 132 | ||||
| 133 | QualType T = Context.getTypeDeclType(InjectedClassName); | |||
| 134 | DiagnoseUseOfDecl(InjectedClassName, NameLoc); | |||
| 135 | MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); | |||
| 136 | ||||
| 137 | return ParsedType::make(T); | |||
| 138 | } | |||
| 139 | ||||
| 140 | ParsedType Sema::getDestructorName(SourceLocation TildeLoc, | |||
| 141 | IdentifierInfo &II, | |||
| 142 | SourceLocation NameLoc, | |||
| 143 | Scope *S, CXXScopeSpec &SS, | |||
| 144 | ParsedType ObjectTypePtr, | |||
| 145 | bool EnteringContext) { | |||
| 146 | // Determine where to perform name lookup. | |||
| 147 | ||||
| 148 | // FIXME: This area of the standard is very messy, and the current | |||
| 149 | // wording is rather unclear about which scopes we search for the | |||
| 150 | // destructor name; see core issues 399 and 555. Issue 399 in | |||
| 151 | // particular shows where the current description of destructor name | |||
| 152 | // lookup is completely out of line with existing practice, e.g., | |||
| 153 | // this appears to be ill-formed: | |||
| 154 | // | |||
| 155 | // namespace N { | |||
| 156 | // template <typename T> struct S { | |||
| 157 | // ~S(); | |||
| 158 | // }; | |||
| 159 | // } | |||
| 160 | // | |||
| 161 | // void f(N::S<int>* s) { | |||
| 162 | // s->N::S<int>::~S(); | |||
| 163 | // } | |||
| 164 | // | |||
| 165 | // See also PR6358 and PR6359. | |||
| 166 | // | |||
| 167 | // For now, we accept all the cases in which the name given could plausibly | |||
| 168 | // be interpreted as a correct destructor name, issuing off-by-default | |||
| 169 | // extension diagnostics on the cases that don't strictly conform to the | |||
| 170 | // C++20 rules. This basically means we always consider looking in the | |||
| 171 | // nested-name-specifier prefix, the complete nested-name-specifier, and | |||
| 172 | // the scope, and accept if we find the expected type in any of the three | |||
| 173 | // places. | |||
| 174 | ||||
| 175 | if (SS.isInvalid()) | |||
| 176 | return nullptr; | |||
| 177 | ||||
| 178 | // Whether we've failed with a diagnostic already. | |||
| 179 | bool Failed = false; | |||
| 180 | ||||
| 181 | llvm::SmallVector<NamedDecl*, 8> FoundDecls; | |||
| 182 | llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; | |||
| 183 | ||||
| 184 | // If we have an object type, it's because we are in a | |||
| 185 | // pseudo-destructor-expression or a member access expression, and | |||
| 186 | // we know what type we're looking for. | |||
| 187 | QualType SearchType = | |||
| 188 | ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); | |||
| 189 | ||||
| 190 | auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { | |||
| 191 | auto IsAcceptableResult = [&](NamedDecl *D) -> bool { | |||
| 192 | auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); | |||
| 193 | if (!Type) | |||
| 194 | return false; | |||
| 195 | ||||
| 196 | if (SearchType.isNull() || SearchType->isDependentType()) | |||
| 197 | return true; | |||
| 198 | ||||
| 199 | QualType T = Context.getTypeDeclType(Type); | |||
| 200 | return Context.hasSameUnqualifiedType(T, SearchType); | |||
| 201 | }; | |||
| 202 | ||||
| 203 | unsigned NumAcceptableResults = 0; | |||
| 204 | for (NamedDecl *D : Found) { | |||
| 205 | if (IsAcceptableResult(D)) | |||
| 206 | ++NumAcceptableResults; | |||
| 207 | ||||
| 208 | // Don't list a class twice in the lookup failure diagnostic if it's | |||
| 209 | // found by both its injected-class-name and by the name in the enclosing | |||
| 210 | // scope. | |||
| 211 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) | |||
| 212 | if (RD->isInjectedClassName()) | |||
| 213 | D = cast<NamedDecl>(RD->getParent()); | |||
| 214 | ||||
| 215 | if (FoundDeclSet.insert(D).second) | |||
| 216 | FoundDecls.push_back(D); | |||
| 217 | } | |||
| 218 | ||||
| 219 | // As an extension, attempt to "fix" an ambiguity by erasing all non-type | |||
| 220 | // results, and all non-matching results if we have a search type. It's not | |||
| 221 | // clear what the right behavior is if destructor lookup hits an ambiguity, | |||
| 222 | // but other compilers do generally accept at least some kinds of | |||
| 223 | // ambiguity. | |||
| 224 | if (Found.isAmbiguous() && NumAcceptableResults == 1) { | |||
| 225 | Diag(NameLoc, diag::ext_dtor_name_ambiguous); | |||
| 226 | LookupResult::Filter F = Found.makeFilter(); | |||
| 227 | while (F.hasNext()) { | |||
| 228 | NamedDecl *D = F.next(); | |||
| 229 | if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) | |||
| 230 | Diag(D->getLocation(), diag::note_destructor_type_here) | |||
| 231 | << Context.getTypeDeclType(TD); | |||
| 232 | else | |||
| 233 | Diag(D->getLocation(), diag::note_destructor_nontype_here); | |||
| 234 | ||||
| 235 | if (!IsAcceptableResult(D)) | |||
| 236 | F.erase(); | |||
| 237 | } | |||
| 238 | F.done(); | |||
| 239 | } | |||
| 240 | ||||
| 241 | if (Found.isAmbiguous()) | |||
| 242 | Failed = true; | |||
| 243 | ||||
| 244 | if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { | |||
| 245 | if (IsAcceptableResult(Type)) { | |||
| 246 | QualType T = Context.getTypeDeclType(Type); | |||
| 247 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | |||
| 248 | return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T), | |||
| 249 | Context.getTrivialTypeSourceInfo(T, NameLoc)); | |||
| 250 | } | |||
| 251 | } | |||
| 252 | ||||
| 253 | return nullptr; | |||
| 254 | }; | |||
| 255 | ||||
| 256 | bool IsDependent = false; | |||
| 257 | ||||
| 258 | auto LookupInObjectType = [&]() -> ParsedType { | |||
| 259 | if (Failed || SearchType.isNull()) | |||
| 260 | return nullptr; | |||
| 261 | ||||
| 262 | IsDependent |= SearchType->isDependentType(); | |||
| 263 | ||||
| 264 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); | |||
| 265 | DeclContext *LookupCtx = computeDeclContext(SearchType); | |||
| 266 | if (!LookupCtx) | |||
| 267 | return nullptr; | |||
| 268 | LookupQualifiedName(Found, LookupCtx); | |||
| 269 | return CheckLookupResult(Found); | |||
| 270 | }; | |||
| 271 | ||||
| 272 | auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { | |||
| 273 | if (Failed) | |||
| 274 | return nullptr; | |||
| 275 | ||||
| 276 | IsDependent |= isDependentScopeSpecifier(LookupSS); | |||
| 277 | DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); | |||
| 278 | if (!LookupCtx) | |||
| 279 | return nullptr; | |||
| 280 | ||||
| 281 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); | |||
| 282 | if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { | |||
| 283 | Failed = true; | |||
| 284 | return nullptr; | |||
| 285 | } | |||
| 286 | LookupQualifiedName(Found, LookupCtx); | |||
| 287 | return CheckLookupResult(Found); | |||
| 288 | }; | |||
| 289 | ||||
| 290 | auto LookupInScope = [&]() -> ParsedType { | |||
| 291 | if (Failed || !S) | |||
| 292 | return nullptr; | |||
| 293 | ||||
| 294 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); | |||
| 295 | LookupName(Found, S); | |||
| 296 | return CheckLookupResult(Found); | |||
| 297 | }; | |||
| 298 | ||||
| 299 | // C++2a [basic.lookup.qual]p6: | |||
| 300 | // In a qualified-id of the form | |||
| 301 | // | |||
| 302 | // nested-name-specifier[opt] type-name :: ~ type-name | |||
| 303 | // | |||
| 304 | // the second type-name is looked up in the same scope as the first. | |||
| 305 | // | |||
| 306 | // We interpret this as meaning that if you do a dual-scope lookup for the | |||
| 307 | // first name, you also do a dual-scope lookup for the second name, per | |||
| 308 | // C++ [basic.lookup.classref]p4: | |||
| 309 | // | |||
| 310 | // If the id-expression in a class member access is a qualified-id of the | |||
| 311 | // form | |||
| 312 | // | |||
| 313 | // class-name-or-namespace-name :: ... | |||
| 314 | // | |||
| 315 | // the class-name-or-namespace-name following the . or -> is first looked | |||
| 316 | // up in the class of the object expression and the name, if found, is used. | |||
| 317 | // Otherwise, it is looked up in the context of the entire | |||
| 318 | // postfix-expression. | |||
| 319 | // | |||
| 320 | // This looks in the same scopes as for an unqualified destructor name: | |||
| 321 | // | |||
| 322 | // C++ [basic.lookup.classref]p3: | |||
| 323 | // If the unqualified-id is ~ type-name, the type-name is looked up | |||
| 324 | // in the context of the entire postfix-expression. If the type T | |||
| 325 | // of the object expression is of a class type C, the type-name is | |||
| 326 | // also looked up in the scope of class C. At least one of the | |||
| 327 | // lookups shall find a name that refers to cv T. | |||
| 328 | // | |||
| 329 | // FIXME: The intent is unclear here. Should type-name::~type-name look in | |||
| 330 | // the scope anyway if it finds a non-matching name declared in the class? | |||
| 331 | // If both lookups succeed and find a dependent result, which result should | |||
| 332 | // we retain? (Same question for p->~type-name().) | |||
| 333 | ||||
| 334 | if (NestedNameSpecifier *Prefix = | |||
| 335 | SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { | |||
| 336 | // This is | |||
| 337 | // | |||
| 338 | // nested-name-specifier type-name :: ~ type-name | |||
| 339 | // | |||
| 340 | // Look for the second type-name in the nested-name-specifier. | |||
| 341 | CXXScopeSpec PrefixSS; | |||
| 342 | PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); | |||
| 343 | if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) | |||
| 344 | return T; | |||
| 345 | } else { | |||
| 346 | // This is one of | |||
| 347 | // | |||
| 348 | // type-name :: ~ type-name | |||
| 349 | // ~ type-name | |||
| 350 | // | |||
| 351 | // Look in the scope and (if any) the object type. | |||
| 352 | if (ParsedType T = LookupInScope()) | |||
| 353 | return T; | |||
| 354 | if (ParsedType T = LookupInObjectType()) | |||
| 355 | return T; | |||
| 356 | } | |||
| 357 | ||||
| 358 | if (Failed) | |||
| 359 | return nullptr; | |||
| 360 | ||||
| 361 | if (IsDependent) { | |||
| 362 | // We didn't find our type, but that's OK: it's dependent anyway. | |||
| 363 | ||||
| 364 | // FIXME: What if we have no nested-name-specifier? | |||
| 365 | QualType T = CheckTypenameType(ETK_None, SourceLocation(), | |||
| 366 | SS.getWithLocInContext(Context), | |||
| 367 | II, NameLoc); | |||
| 368 | return ParsedType::make(T); | |||
| 369 | } | |||
| 370 | ||||
| 371 | // The remaining cases are all non-standard extensions imitating the behavior | |||
| 372 | // of various other compilers. | |||
| 373 | unsigned NumNonExtensionDecls = FoundDecls.size(); | |||
| 374 | ||||
| 375 | if (SS.isSet()) { | |||
| 376 | // For compatibility with older broken C++ rules and existing code, | |||
| 377 | // | |||
| 378 | // nested-name-specifier :: ~ type-name | |||
| 379 | // | |||
| 380 | // also looks for type-name within the nested-name-specifier. | |||
| 381 | if (ParsedType T = LookupInNestedNameSpec(SS)) { | |||
| 382 | Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) | |||
| 383 | << SS.getRange() | |||
| 384 | << FixItHint::CreateInsertion(SS.getEndLoc(), | |||
| 385 | ("::" + II.getName()).str()); | |||
| 386 | return T; | |||
| 387 | } | |||
| 388 | ||||
| 389 | // For compatibility with other compilers and older versions of Clang, | |||
| 390 | // | |||
| 391 | // nested-name-specifier type-name :: ~ type-name | |||
| 392 | // | |||
| 393 | // also looks for type-name in the scope. Unfortunately, we can't | |||
| 394 | // reasonably apply this fallback for dependent nested-name-specifiers. | |||
| 395 | if (SS.isValid() && SS.getScopeRep()->getPrefix()) { | |||
| 396 | if (ParsedType T = LookupInScope()) { | |||
| 397 | Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) | |||
| 398 | << FixItHint::CreateRemoval(SS.getRange()); | |||
| 399 | Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) | |||
| 400 | << GetTypeFromParser(T); | |||
| 401 | return T; | |||
| 402 | } | |||
| 403 | } | |||
| 404 | } | |||
| 405 | ||||
| 406 | // We didn't find anything matching; tell the user what we did find (if | |||
| 407 | // anything). | |||
| 408 | ||||
| 409 | // Don't tell the user about declarations we shouldn't have found. | |||
| 410 | FoundDecls.resize(NumNonExtensionDecls); | |||
| 411 | ||||
| 412 | // List types before non-types. | |||
| 413 | std::stable_sort(FoundDecls.begin(), FoundDecls.end(), | |||
| 414 | [](NamedDecl *A, NamedDecl *B) { | |||
| 415 | return isa<TypeDecl>(A->getUnderlyingDecl()) > | |||
| 416 | isa<TypeDecl>(B->getUnderlyingDecl()); | |||
| 417 | }); | |||
| 418 | ||||
| 419 | // Suggest a fixit to properly name the destroyed type. | |||
| 420 | auto MakeFixItHint = [&]{ | |||
| 421 | const CXXRecordDecl *Destroyed = nullptr; | |||
| 422 | // FIXME: If we have a scope specifier, suggest its last component? | |||
| 423 | if (!SearchType.isNull()) | |||
| 424 | Destroyed = SearchType->getAsCXXRecordDecl(); | |||
| 425 | else if (S) | |||
| 426 | Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); | |||
| 427 | if (Destroyed) | |||
| 428 | return FixItHint::CreateReplacement(SourceRange(NameLoc), | |||
| 429 | Destroyed->getNameAsString()); | |||
| 430 | return FixItHint(); | |||
| 431 | }; | |||
| 432 | ||||
| 433 | if (FoundDecls.empty()) { | |||
| 434 | // FIXME: Attempt typo-correction? | |||
| 435 | Diag(NameLoc, diag::err_undeclared_destructor_name) | |||
| 436 | << &II << MakeFixItHint(); | |||
| 437 | } else if (!SearchType.isNull() && FoundDecls.size() == 1) { | |||
| 438 | if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { | |||
| 439 | assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type" ) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 440, __extension__ __PRETTY_FUNCTION__ )) | |||
| 440 | "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type" ) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 440, __extension__ __PRETTY_FUNCTION__ )); | |||
| 441 | QualType T = Context.getTypeDeclType(TD); | |||
| 442 | Diag(NameLoc, diag::err_destructor_expr_type_mismatch) | |||
| 443 | << T << SearchType << MakeFixItHint(); | |||
| 444 | } else { | |||
| 445 | Diag(NameLoc, diag::err_destructor_expr_nontype) | |||
| 446 | << &II << MakeFixItHint(); | |||
| 447 | } | |||
| 448 | } else { | |||
| 449 | Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype | |||
| 450 | : diag::err_destructor_expr_mismatch) | |||
| 451 | << &II << SearchType << MakeFixItHint(); | |||
| 452 | } | |||
| 453 | ||||
| 454 | for (NamedDecl *FoundD : FoundDecls) { | |||
| 455 | if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) | |||
| 456 | Diag(FoundD->getLocation(), diag::note_destructor_type_here) | |||
| 457 | << Context.getTypeDeclType(TD); | |||
| 458 | else | |||
| 459 | Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) | |||
| 460 | << FoundD; | |||
| 461 | } | |||
| 462 | ||||
| 463 | return nullptr; | |||
| 464 | } | |||
| 465 | ||||
| 466 | ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, | |||
| 467 | ParsedType ObjectType) { | |||
| 468 | if (DS.getTypeSpecType() == DeclSpec::TST_error) | |||
| 469 | return nullptr; | |||
| 470 | ||||
| 471 | if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { | |||
| 472 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); | |||
| 473 | return nullptr; | |||
| 474 | } | |||
| 475 | ||||
| 476 | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec:: TST_decltype && "unexpected type in getDestructorType" ) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\"" , "clang/lib/Sema/SemaExprCXX.cpp", 477, __extension__ __PRETTY_FUNCTION__ )) | |||
| 477 | "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec:: TST_decltype && "unexpected type in getDestructorType" ) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\"" , "clang/lib/Sema/SemaExprCXX.cpp", 477, __extension__ __PRETTY_FUNCTION__ )); | |||
| 478 | QualType T = BuildDecltypeType(DS.getRepAsExpr()); | |||
| 479 | ||||
| 480 | // If we know the type of the object, check that the correct destructor | |||
| 481 | // type was named now; we can give better diagnostics this way. | |||
| 482 | QualType SearchType = GetTypeFromParser(ObjectType); | |||
| 483 | if (!SearchType.isNull() && !SearchType->isDependentType() && | |||
| 484 | !Context.hasSameUnqualifiedType(T, SearchType)) { | |||
| 485 | Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) | |||
| 486 | << T << SearchType; | |||
| 487 | return nullptr; | |||
| 488 | } | |||
| 489 | ||||
| 490 | return ParsedType::make(T); | |||
| 491 | } | |||
| 492 | ||||
| 493 | bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, | |||
| 494 | const UnqualifiedId &Name, bool IsUDSuffix) { | |||
| 495 | assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind ::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId" , "clang/lib/Sema/SemaExprCXX.cpp", 495, __extension__ __PRETTY_FUNCTION__ )); | |||
| 496 | if (!IsUDSuffix) { | |||
| 497 | // [over.literal] p8 | |||
| 498 | // | |||
| 499 | // double operator""_Bq(long double); // OK: not a reserved identifier | |||
| 500 | // double operator"" _Bq(long double); // ill-formed, no diagnostic required | |||
| 501 | IdentifierInfo *II = Name.Identifier; | |||
| 502 | ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); | |||
| 503 | SourceLocation Loc = Name.getEndLoc(); | |||
| 504 | if (isReservedInAllContexts(Status) && | |||
| 505 | !PP.getSourceManager().isInSystemHeader(Loc)) { | |||
| 506 | Diag(Loc, diag::warn_reserved_extern_symbol) | |||
| 507 | << II << static_cast<int>(Status) | |||
| 508 | << FixItHint::CreateReplacement( | |||
| 509 | Name.getSourceRange(), | |||
| 510 | (StringRef("operator\"\"") + II->getName()).str()); | |||
| 511 | } | |||
| 512 | } | |||
| 513 | ||||
| 514 | if (!SS.isValid()) | |||
| 515 | return false; | |||
| 516 | ||||
| 517 | switch (SS.getScopeRep()->getKind()) { | |||
| 518 | case NestedNameSpecifier::Identifier: | |||
| 519 | case NestedNameSpecifier::TypeSpec: | |||
| 520 | case NestedNameSpecifier::TypeSpecWithTemplate: | |||
| 521 | // Per C++11 [over.literal]p2, literal operators can only be declared at | |||
| 522 | // namespace scope. Therefore, this unqualified-id cannot name anything. | |||
| 523 | // Reject it early, because we have no AST representation for this in the | |||
| 524 | // case where the scope is dependent. | |||
| 525 | Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) | |||
| 526 | << SS.getScopeRep(); | |||
| 527 | return true; | |||
| 528 | ||||
| 529 | case NestedNameSpecifier::Global: | |||
| 530 | case NestedNameSpecifier::Super: | |||
| 531 | case NestedNameSpecifier::Namespace: | |||
| 532 | case NestedNameSpecifier::NamespaceAlias: | |||
| 533 | return false; | |||
| 534 | } | |||
| 535 | ||||
| 536 | llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind" , "clang/lib/Sema/SemaExprCXX.cpp", 536); | |||
| 537 | } | |||
| 538 | ||||
| 539 | /// Build a C++ typeid expression with a type operand. | |||
| 540 | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | |||
| 541 | SourceLocation TypeidLoc, | |||
| 542 | TypeSourceInfo *Operand, | |||
| 543 | SourceLocation RParenLoc) { | |||
| 544 | // C++ [expr.typeid]p4: | |||
| 545 | // The top-level cv-qualifiers of the lvalue expression or the type-id | |||
| 546 | // that is the operand of typeid are always ignored. | |||
| 547 | // If the type of the type-id is a class type or a reference to a class | |||
| 548 | // type, the class shall be completely-defined. | |||
| 549 | Qualifiers Quals; | |||
| 550 | QualType T | |||
| 551 | = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), | |||
| 552 | Quals); | |||
| 553 | if (T->getAs<RecordType>() && | |||
| 554 | RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | |||
| 555 | return ExprError(); | |||
| 556 | ||||
| 557 | if (T->isVariablyModifiedType()) | |||
| 558 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); | |||
| 559 | ||||
| 560 | if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) | |||
| 561 | return ExprError(); | |||
| 562 | ||||
| 563 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, | |||
| 564 | SourceRange(TypeidLoc, RParenLoc)); | |||
| 565 | } | |||
| 566 | ||||
| 567 | /// Build a C++ typeid expression with an expression operand. | |||
| 568 | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | |||
| 569 | SourceLocation TypeidLoc, | |||
| 570 | Expr *E, | |||
| 571 | SourceLocation RParenLoc) { | |||
| 572 | bool WasEvaluated = false; | |||
| 573 | if (E && !E->isTypeDependent()) { | |||
| 574 | if (E->hasPlaceholderType()) { | |||
| 575 | ExprResult result = CheckPlaceholderExpr(E); | |||
| 576 | if (result.isInvalid()) return ExprError(); | |||
| 577 | E = result.get(); | |||
| 578 | } | |||
| 579 | ||||
| 580 | QualType T = E->getType(); | |||
| 581 | if (const RecordType *RecordT = T->getAs<RecordType>()) { | |||
| 582 | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); | |||
| 583 | // C++ [expr.typeid]p3: | |||
| 584 | // [...] If the type of the expression is a class type, the class | |||
| 585 | // shall be completely-defined. | |||
| 586 | if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | |||
| 587 | return ExprError(); | |||
| 588 | ||||
| 589 | // C++ [expr.typeid]p3: | |||
| 590 | // When typeid is applied to an expression other than an glvalue of a | |||
| 591 | // polymorphic class type [...] [the] expression is an unevaluated | |||
| 592 | // operand. [...] | |||
| 593 | if (RecordD->isPolymorphic() && E->isGLValue()) { | |||
| 594 | if (isUnevaluatedContext()) { | |||
| 595 | // The operand was processed in unevaluated context, switch the | |||
| 596 | // context and recheck the subexpression. | |||
| 597 | ExprResult Result = TransformToPotentiallyEvaluated(E); | |||
| 598 | if (Result.isInvalid()) | |||
| 599 | return ExprError(); | |||
| 600 | E = Result.get(); | |||
| 601 | } | |||
| 602 | ||||
| 603 | // We require a vtable to query the type at run time. | |||
| 604 | MarkVTableUsed(TypeidLoc, RecordD); | |||
| 605 | WasEvaluated = true; | |||
| 606 | } | |||
| 607 | } | |||
| 608 | ||||
| 609 | ExprResult Result = CheckUnevaluatedOperand(E); | |||
| 610 | if (Result.isInvalid()) | |||
| 611 | return ExprError(); | |||
| 612 | E = Result.get(); | |||
| 613 | ||||
| 614 | // C++ [expr.typeid]p4: | |||
| 615 | // [...] If the type of the type-id is a reference to a possibly | |||
| 616 | // cv-qualified type, the result of the typeid expression refers to a | |||
| 617 | // std::type_info object representing the cv-unqualified referenced | |||
| 618 | // type. | |||
| 619 | Qualifiers Quals; | |||
| 620 | QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); | |||
| 621 | if (!Context.hasSameType(T, UnqualT)) { | |||
| 622 | T = UnqualT; | |||
| 623 | E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); | |||
| 624 | } | |||
| 625 | } | |||
| 626 | ||||
| 627 | if (E->getType()->isVariablyModifiedType()) | |||
| ||||
| 628 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) | |||
| 629 | << E->getType()); | |||
| 630 | else if (!inTemplateInstantiation() && | |||
| 631 | E->HasSideEffects(Context, WasEvaluated)) { | |||
| 632 | // The expression operand for typeid is in an unevaluated expression | |||
| 633 | // context, so side effects could result in unintended consequences. | |||
| 634 | Diag(E->getExprLoc(), WasEvaluated | |||
| 635 | ? diag::warn_side_effects_typeid | |||
| 636 | : diag::warn_side_effects_unevaluated_context); | |||
| 637 | } | |||
| 638 | ||||
| 639 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, | |||
| 640 | SourceRange(TypeidLoc, RParenLoc)); | |||
| 641 | } | |||
| 642 | ||||
| 643 | /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); | |||
| 644 | ExprResult | |||
| 645 | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, | |||
| 646 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | |||
| 647 | // typeid is not supported in OpenCL. | |||
| 648 | if (getLangOpts().OpenCLCPlusPlus) { | |||
| ||||
| 649 | return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) | |||
| 650 | << "typeid"); | |||
| 651 | } | |||
| 652 | ||||
| 653 | // Find the std::type_info type. | |||
| 654 | if (!getStdNamespace()) | |||
| 655 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | |||
| 656 | ||||
| 657 | if (!CXXTypeInfoDecl) { | |||
| 658 | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); | |||
| 659 | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); | |||
| 660 | LookupQualifiedName(R, getStdNamespace()); | |||
| 661 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); | |||
| 662 | // Microsoft's typeinfo doesn't have type_info in std but in the global | |||
| 663 | // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. | |||
| 664 | if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { | |||
| 665 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); | |||
| 666 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); | |||
| 667 | } | |||
| 668 | if (!CXXTypeInfoDecl) | |||
| 669 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | |||
| 670 | } | |||
| 671 | ||||
| 672 | if (!getLangOpts().RTTI) { | |||
| 673 | return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); | |||
| 674 | } | |||
| 675 | ||||
| 676 | QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); | |||
| 677 | ||||
| 678 | if (isType) { | |||
| 679 | // The operand is a type; handle it as such. | |||
| 680 | TypeSourceInfo *TInfo = nullptr; | |||
| 681 | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | |||
| 682 | &TInfo); | |||
| 683 | if (T.isNull()) | |||
| 684 | return ExprError(); | |||
| 685 | ||||
| 686 | if (!TInfo) | |||
| 687 | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | |||
| 688 | ||||
| 689 | return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); | |||
| 690 | } | |||
| 691 | ||||
| 692 | // The operand is an expression. | |||
| 693 | ExprResult Result = | |||
| 694 | BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); | |||
| 695 | ||||
| 696 | if (!getLangOpts().RTTIData && !Result.isInvalid()) | |||
| 697 | if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) | |||
| 698 | if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) | |||
| 699 | Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) | |||
| 700 | << (getDiagnostics().getDiagnosticOptions().getFormat() == | |||
| 701 | DiagnosticOptions::MSVC); | |||
| 702 | return Result; | |||
| 703 | } | |||
| 704 | ||||
| 705 | /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to | |||
| 706 | /// a single GUID. | |||
| 707 | static void | |||
| 708 | getUuidAttrOfType(Sema &SemaRef, QualType QT, | |||
| 709 | llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { | |||
| 710 | // Optionally remove one level of pointer, reference or array indirection. | |||
| 711 | const Type *Ty = QT.getTypePtr(); | |||
| 712 | if (QT->isPointerType() || QT->isReferenceType()) | |||
| 713 | Ty = QT->getPointeeType().getTypePtr(); | |||
| 714 | else if (QT->isArrayType()) | |||
| 715 | Ty = Ty->getBaseElementTypeUnsafe(); | |||
| 716 | ||||
| 717 | const auto *TD = Ty->getAsTagDecl(); | |||
| 718 | if (!TD) | |||
| 719 | return; | |||
| 720 | ||||
| 721 | if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { | |||
| 722 | UuidAttrs.insert(Uuid); | |||
| 723 | return; | |||
| 724 | } | |||
| 725 | ||||
| 726 | // __uuidof can grab UUIDs from template arguments. | |||
| 727 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { | |||
| 728 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); | |||
| 729 | for (const TemplateArgument &TA : TAL.asArray()) { | |||
| 730 | const UuidAttr *UuidForTA = nullptr; | |||
| 731 | if (TA.getKind() == TemplateArgument::Type) | |||
| 732 | getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); | |||
| 733 | else if (TA.getKind() == TemplateArgument::Declaration) | |||
| 734 | getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); | |||
| 735 | ||||
| 736 | if (UuidForTA) | |||
| 737 | UuidAttrs.insert(UuidForTA); | |||
| 738 | } | |||
| 739 | } | |||
| 740 | } | |||
| 741 | ||||
| 742 | /// Build a Microsoft __uuidof expression with a type operand. | |||
| 743 | ExprResult Sema::BuildCXXUuidof(QualType Type, | |||
| 744 | SourceLocation TypeidLoc, | |||
| 745 | TypeSourceInfo *Operand, | |||
| 746 | SourceLocation RParenLoc) { | |||
| 747 | MSGuidDecl *Guid = nullptr; | |||
| 748 | if (!Operand->getType()->isDependentType()) { | |||
| 749 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; | |||
| 750 | getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); | |||
| 751 | if (UuidAttrs.empty()) | |||
| 752 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | |||
| 753 | if (UuidAttrs.size() > 1) | |||
| 754 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); | |||
| 755 | Guid = UuidAttrs.back()->getGuidDecl(); | |||
| 756 | } | |||
| 757 | ||||
| 758 | return new (Context) | |||
| 759 | CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); | |||
| 760 | } | |||
| 761 | ||||
| 762 | /// Build a Microsoft __uuidof expression with an expression operand. | |||
| 763 | ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, | |||
| 764 | Expr *E, SourceLocation RParenLoc) { | |||
| 765 | MSGuidDecl *Guid = nullptr; | |||
| 766 | if (!E->getType()->isDependentType()) { | |||
| 767 | if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | |||
| 768 | // A null pointer results in {00000000-0000-0000-0000-000000000000}. | |||
| 769 | Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); | |||
| 770 | } else { | |||
| 771 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; | |||
| 772 | getUuidAttrOfType(*this, E->getType(), UuidAttrs); | |||
| 773 | if (UuidAttrs.empty()) | |||
| 774 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | |||
| 775 | if (UuidAttrs.size() > 1) | |||
| 776 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); | |||
| 777 | Guid = UuidAttrs.back()->getGuidDecl(); | |||
| 778 | } | |||
| 779 | } | |||
| 780 | ||||
| 781 | return new (Context) | |||
| 782 | CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); | |||
| 783 | } | |||
| 784 | ||||
| 785 | /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); | |||
| 786 | ExprResult | |||
| 787 | Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, | |||
| 788 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | |||
| 789 | QualType GuidType = Context.getMSGuidType(); | |||
| 790 | GuidType.addConst(); | |||
| 791 | ||||
| 792 | if (isType) { | |||
| 793 | // The operand is a type; handle it as such. | |||
| 794 | TypeSourceInfo *TInfo = nullptr; | |||
| 795 | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | |||
| 796 | &TInfo); | |||
| 797 | if (T.isNull()) | |||
| 798 | return ExprError(); | |||
| 799 | ||||
| 800 | if (!TInfo) | |||
| 801 | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | |||
| 802 | ||||
| 803 | return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); | |||
| 804 | } | |||
| 805 | ||||
| 806 | // The operand is an expression. | |||
| 807 | return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); | |||
| 808 | } | |||
| 809 | ||||
| 810 | /// ActOnCXXBoolLiteral - Parse {true,false} literals. | |||
| 811 | ExprResult | |||
| 812 | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | |||
| 813 | assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok ::kw_false) && "Unknown C++ Boolean value!") ? void ( 0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 814, __extension__ __PRETTY_FUNCTION__ )) | |||
| 814 | "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok ::kw_false) && "Unknown C++ Boolean value!") ? void ( 0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 814, __extension__ __PRETTY_FUNCTION__ )); | |||
| 815 | return new (Context) | |||
| 816 | CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); | |||
| 817 | } | |||
| 818 | ||||
| 819 | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. | |||
| 820 | ExprResult | |||
| 821 | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { | |||
| 822 | return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); | |||
| 823 | } | |||
| 824 | ||||
| 825 | /// ActOnCXXThrow - Parse throw expressions. | |||
| 826 | ExprResult | |||
| 827 | Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { | |||
| 828 | bool IsThrownVarInScope = false; | |||
| 829 | if (Ex) { | |||
| 830 | // C++0x [class.copymove]p31: | |||
| 831 | // When certain criteria are met, an implementation is allowed to omit the | |||
| 832 | // copy/move construction of a class object [...] | |||
| 833 | // | |||
| 834 | // - in a throw-expression, when the operand is the name of a | |||
| 835 | // non-volatile automatic object (other than a function or catch- | |||
| 836 | // clause parameter) whose scope does not extend beyond the end of the | |||
| 837 | // innermost enclosing try-block (if there is one), the copy/move | |||
| 838 | // operation from the operand to the exception object (15.1) can be | |||
| 839 | // omitted by constructing the automatic object directly into the | |||
| 840 | // exception object | |||
| 841 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) | |||
| 842 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | |||
| 843 | if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { | |||
| 844 | for( ; S; S = S->getParent()) { | |||
| 845 | if (S->isDeclScope(Var)) { | |||
| 846 | IsThrownVarInScope = true; | |||
| 847 | break; | |||
| 848 | } | |||
| 849 | ||||
| 850 | // FIXME: Many of the scope checks here seem incorrect. | |||
| 851 | if (S->getFlags() & | |||
| 852 | (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | | |||
| 853 | Scope::ObjCMethodScope | Scope::TryScope)) | |||
| 854 | break; | |||
| 855 | } | |||
| 856 | } | |||
| 857 | } | |||
| 858 | } | |||
| 859 | ||||
| 860 | return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); | |||
| 861 | } | |||
| 862 | ||||
| 863 | ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, | |||
| 864 | bool IsThrownVarInScope) { | |||
| 865 | // Don't report an error if 'throw' is used in system headers. | |||
| 866 | if (!getLangOpts().CXXExceptions && | |||
| 867 | !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { | |||
| 868 | // Delay error emission for the OpenMP device code. | |||
| 869 | targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; | |||
| 870 | } | |||
| 871 | ||||
| 872 | // Exceptions aren't allowed in CUDA device code. | |||
| 873 | if (getLangOpts().CUDA) | |||
| 874 | CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) | |||
| 875 | << "throw" << CurrentCUDATarget(); | |||
| 876 | ||||
| 877 | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) | |||
| 878 | Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; | |||
| 879 | ||||
| 880 | if (Ex && !Ex->isTypeDependent()) { | |||
| 881 | // Initialize the exception result. This implicitly weeds out | |||
| 882 | // abstract types or types with inaccessible copy constructors. | |||
| 883 | ||||
| 884 | // C++0x [class.copymove]p31: | |||
| 885 | // When certain criteria are met, an implementation is allowed to omit the | |||
| 886 | // copy/move construction of a class object [...] | |||
| 887 | // | |||
| 888 | // - in a throw-expression, when the operand is the name of a | |||
| 889 | // non-volatile automatic object (other than a function or | |||
| 890 | // catch-clause | |||
| 891 | // parameter) whose scope does not extend beyond the end of the | |||
| 892 | // innermost enclosing try-block (if there is one), the copy/move | |||
| 893 | // operation from the operand to the exception object (15.1) can be | |||
| 894 | // omitted by constructing the automatic object directly into the | |||
| 895 | // exception object | |||
| 896 | NamedReturnInfo NRInfo = | |||
| 897 | IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); | |||
| 898 | ||||
| 899 | QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); | |||
| 900 | if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) | |||
| 901 | return ExprError(); | |||
| 902 | ||||
| 903 | InitializedEntity Entity = | |||
| 904 | InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); | |||
| 905 | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); | |||
| 906 | if (Res.isInvalid()) | |||
| 907 | return ExprError(); | |||
| 908 | Ex = Res.get(); | |||
| 909 | } | |||
| 910 | ||||
| 911 | // PPC MMA non-pointer types are not allowed as throw expr types. | |||
| 912 | if (Ex && Context.getTargetInfo().getTriple().isPPC64()) | |||
| 913 | CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); | |||
| 914 | ||||
| 915 | return new (Context) | |||
| 916 | CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); | |||
| 917 | } | |||
| 918 | ||||
| 919 | static void | |||
| 920 | collectPublicBases(CXXRecordDecl *RD, | |||
| 921 | llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, | |||
| 922 | llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, | |||
| 923 | llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, | |||
| 924 | bool ParentIsPublic) { | |||
| 925 | for (const CXXBaseSpecifier &BS : RD->bases()) { | |||
| 926 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); | |||
| 927 | bool NewSubobject; | |||
| 928 | // Virtual bases constitute the same subobject. Non-virtual bases are | |||
| 929 | // always distinct subobjects. | |||
| 930 | if (BS.isVirtual()) | |||
| 931 | NewSubobject = VBases.insert(BaseDecl).second; | |||
| 932 | else | |||
| 933 | NewSubobject = true; | |||
| 934 | ||||
| 935 | if (NewSubobject) | |||
| 936 | ++SubobjectsSeen[BaseDecl]; | |||
| 937 | ||||
| 938 | // Only add subobjects which have public access throughout the entire chain. | |||
| 939 | bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; | |||
| 940 | if (PublicPath) | |||
| 941 | PublicSubobjectsSeen.insert(BaseDecl); | |||
| 942 | ||||
| 943 | // Recurse on to each base subobject. | |||
| 944 | collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, | |||
| 945 | PublicPath); | |||
| 946 | } | |||
| 947 | } | |||
| 948 | ||||
| 949 | static void getUnambiguousPublicSubobjects( | |||
| 950 | CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { | |||
| 951 | llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; | |||
| 952 | llvm::SmallSet<CXXRecordDecl *, 2> VBases; | |||
| 953 | llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; | |||
| 954 | SubobjectsSeen[RD] = 1; | |||
| 955 | PublicSubobjectsSeen.insert(RD); | |||
| 956 | collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, | |||
| 957 | /*ParentIsPublic=*/true); | |||
| 958 | ||||
| 959 | for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { | |||
| 960 | // Skip ambiguous objects. | |||
| 961 | if (SubobjectsSeen[PublicSubobject] > 1) | |||
| 962 | continue; | |||
| 963 | ||||
| 964 | Objects.push_back(PublicSubobject); | |||
| 965 | } | |||
| 966 | } | |||
| 967 | ||||
| 968 | /// CheckCXXThrowOperand - Validate the operand of a throw. | |||
| 969 | bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, | |||
| 970 | QualType ExceptionObjectTy, Expr *E) { | |||
| 971 | // If the type of the exception would be an incomplete type or a pointer | |||
| 972 | // to an incomplete type other than (cv) void the program is ill-formed. | |||
| 973 | QualType Ty = ExceptionObjectTy; | |||
| 974 | bool isPointer = false; | |||
| 975 | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { | |||
| 976 | Ty = Ptr->getPointeeType(); | |||
| 977 | isPointer = true; | |||
| 978 | } | |||
| 979 | if (!isPointer || !Ty->isVoidType()) { | |||
| 980 | if (RequireCompleteType(ThrowLoc, Ty, | |||
| 981 | isPointer ? diag::err_throw_incomplete_ptr | |||
| 982 | : diag::err_throw_incomplete, | |||
| 983 | E->getSourceRange())) | |||
| 984 | return true; | |||
| 985 | ||||
| 986 | if (!isPointer && Ty->isSizelessType()) { | |||
| 987 | Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); | |||
| 988 | return true; | |||
| 989 | } | |||
| 990 | ||||
| 991 | if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, | |||
| 992 | diag::err_throw_abstract_type, E)) | |||
| 993 | return true; | |||
| 994 | } | |||
| 995 | ||||
| 996 | // If the exception has class type, we need additional handling. | |||
| 997 | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); | |||
| 998 | if (!RD) | |||
| 999 | return false; | |||
| 1000 | ||||
| 1001 | // If we are throwing a polymorphic class type or pointer thereof, | |||
| 1002 | // exception handling will make use of the vtable. | |||
| 1003 | MarkVTableUsed(ThrowLoc, RD); | |||
| 1004 | ||||
| 1005 | // If a pointer is thrown, the referenced object will not be destroyed. | |||
| 1006 | if (isPointer) | |||
| 1007 | return false; | |||
| 1008 | ||||
| 1009 | // If the class has a destructor, we must be able to call it. | |||
| 1010 | if (!RD->hasIrrelevantDestructor()) { | |||
| 1011 | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | |||
| 1012 | MarkFunctionReferenced(E->getExprLoc(), Destructor); | |||
| 1013 | CheckDestructorAccess(E->getExprLoc(), Destructor, | |||
| 1014 | PDiag(diag::err_access_dtor_exception) << Ty); | |||
| 1015 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) | |||
| 1016 | return true; | |||
| 1017 | } | |||
| 1018 | } | |||
| 1019 | ||||
| 1020 | // The MSVC ABI creates a list of all types which can catch the exception | |||
| 1021 | // object. This list also references the appropriate copy constructor to call | |||
| 1022 | // if the object is caught by value and has a non-trivial copy constructor. | |||
| 1023 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
| 1024 | // We are only interested in the public, unambiguous bases contained within | |||
| 1025 | // the exception object. Bases which are ambiguous or otherwise | |||
| 1026 | // inaccessible are not catchable types. | |||
| 1027 | llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; | |||
| 1028 | getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); | |||
| 1029 | ||||
| 1030 | for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { | |||
| 1031 | // Attempt to lookup the copy constructor. Various pieces of machinery | |||
| 1032 | // will spring into action, like template instantiation, which means this | |||
| 1033 | // cannot be a simple walk of the class's decls. Instead, we must perform | |||
| 1034 | // lookup and overload resolution. | |||
| 1035 | CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); | |||
| 1036 | if (!CD || CD->isDeleted()) | |||
| 1037 | continue; | |||
| 1038 | ||||
| 1039 | // Mark the constructor referenced as it is used by this throw expression. | |||
| 1040 | MarkFunctionReferenced(E->getExprLoc(), CD); | |||
| 1041 | ||||
| 1042 | // Skip this copy constructor if it is trivial, we don't need to record it | |||
| 1043 | // in the catchable type data. | |||
| 1044 | if (CD->isTrivial()) | |||
| 1045 | continue; | |||
| 1046 | ||||
| 1047 | // The copy constructor is non-trivial, create a mapping from this class | |||
| 1048 | // type to this constructor. | |||
| 1049 | // N.B. The selection of copy constructor is not sensitive to this | |||
| 1050 | // particular throw-site. Lookup will be performed at the catch-site to | |||
| 1051 | // ensure that the copy constructor is, in fact, accessible (via | |||
| 1052 | // friendship or any other means). | |||
| 1053 | Context.addCopyConstructorForExceptionObject(Subobject, CD); | |||
| 1054 | ||||
| 1055 | // We don't keep the instantiated default argument expressions around so | |||
| 1056 | // we must rebuild them here. | |||
| 1057 | for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { | |||
| 1058 | if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) | |||
| 1059 | return true; | |||
| 1060 | } | |||
| 1061 | } | |||
| 1062 | } | |||
| 1063 | ||||
| 1064 | // Under the Itanium C++ ABI, memory for the exception object is allocated by | |||
| 1065 | // the runtime with no ability for the compiler to request additional | |||
| 1066 | // alignment. Warn if the exception type requires alignment beyond the minimum | |||
| 1067 | // guaranteed by the target C++ runtime. | |||
| 1068 | if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { | |||
| 1069 | CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); | |||
| 1070 | CharUnits ExnObjAlign = Context.getExnObjectAlignment(); | |||
| 1071 | if (ExnObjAlign < TypeAlign) { | |||
| 1072 | Diag(ThrowLoc, diag::warn_throw_underaligned_obj); | |||
| 1073 | Diag(ThrowLoc, diag::note_throw_underaligned_obj) | |||
| 1074 | << Ty << (unsigned)TypeAlign.getQuantity() | |||
| 1075 | << (unsigned)ExnObjAlign.getQuantity(); | |||
| 1076 | } | |||
| 1077 | } | |||
| 1078 | ||||
| 1079 | return false; | |||
| 1080 | } | |||
| 1081 | ||||
| 1082 | static QualType adjustCVQualifiersForCXXThisWithinLambda( | |||
| 1083 | ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, | |||
| 1084 | DeclContext *CurSemaContext, ASTContext &ASTCtx) { | |||
| 1085 | ||||
| 1086 | QualType ClassType = ThisTy->getPointeeType(); | |||
| 1087 | LambdaScopeInfo *CurLSI = nullptr; | |||
| 1088 | DeclContext *CurDC = CurSemaContext; | |||
| 1089 | ||||
| 1090 | // Iterate through the stack of lambdas starting from the innermost lambda to | |||
| 1091 | // the outermost lambda, checking if '*this' is ever captured by copy - since | |||
| 1092 | // that could change the cv-qualifiers of the '*this' object. | |||
| 1093 | // The object referred to by '*this' starts out with the cv-qualifiers of its | |||
| 1094 | // member function. We then start with the innermost lambda and iterate | |||
| 1095 | // outward checking to see if any lambda performs a by-copy capture of '*this' | |||
| 1096 | // - and if so, any nested lambda must respect the 'constness' of that | |||
| 1097 | // capturing lamdbda's call operator. | |||
| 1098 | // | |||
| 1099 | ||||
| 1100 | // Since the FunctionScopeInfo stack is representative of the lexical | |||
| 1101 | // nesting of the lambda expressions during initial parsing (and is the best | |||
| 1102 | // place for querying information about captures about lambdas that are | |||
| 1103 | // partially processed) and perhaps during instantiation of function templates | |||
| 1104 | // that contain lambda expressions that need to be transformed BUT not | |||
| 1105 | // necessarily during instantiation of a nested generic lambda's function call | |||
| 1106 | // operator (which might even be instantiated at the end of the TU) - at which | |||
| 1107 | // time the DeclContext tree is mature enough to query capture information | |||
| 1108 | // reliably - we use a two pronged approach to walk through all the lexically | |||
| 1109 | // enclosing lambda expressions: | |||
| 1110 | // | |||
| 1111 | // 1) Climb down the FunctionScopeInfo stack as long as each item represents | |||
| 1112 | // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically | |||
| 1113 | // enclosed by the call-operator of the LSI below it on the stack (while | |||
| 1114 | // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on | |||
| 1115 | // the stack represents the innermost lambda. | |||
| 1116 | // | |||
| 1117 | // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext | |||
| 1118 | // represents a lambda's call operator. If it does, we must be instantiating | |||
| 1119 | // a generic lambda's call operator (represented by the Current LSI, and | |||
| 1120 | // should be the only scenario where an inconsistency between the LSI and the | |||
| 1121 | // DeclContext should occur), so climb out the DeclContexts if they | |||
| 1122 | // represent lambdas, while querying the corresponding closure types | |||
| 1123 | // regarding capture information. | |||
| 1124 | ||||
| 1125 | // 1) Climb down the function scope info stack. | |||
| 1126 | for (int I = FunctionScopes.size(); | |||
| 1127 | I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && | |||
| 1128 | (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == | |||
| 1129 | cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); | |||
| 1130 | CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { | |||
| 1131 | CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); | |||
| 1132 | ||||
| 1133 | if (!CurLSI->isCXXThisCaptured()) | |||
| 1134 | continue; | |||
| 1135 | ||||
| 1136 | auto C = CurLSI->getCXXThisCapture(); | |||
| 1137 | ||||
| 1138 | if (C.isCopyCapture()) { | |||
| 1139 | if (!CurLSI->Mutable) | |||
| 1140 | ClassType.addConst(); | |||
| 1141 | return ASTCtx.getPointerType(ClassType); | |||
| 1142 | } | |||
| 1143 | } | |||
| 1144 | ||||
| 1145 | // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which | |||
| 1146 | // can happen during instantiation of its nested generic lambda call | |||
| 1147 | // operator); 2. if we're in a lambda scope (lambda body). | |||
| 1148 | if (CurLSI && isLambdaCallOperator(CurDC)) { | |||
| 1149 | assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization (CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we " "run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic " "lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1150 | "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization (CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we " "run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic " "lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1151 | "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization (CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we " "run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic " "lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1152 | "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization (CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we " "run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic " "lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1153 | "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization (CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we " "run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic " "lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1154 | assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext (CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)" , "clang/lib/Sema/SemaExprCXX.cpp", 1154, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1155 | ||||
| 1156 | auto IsThisCaptured = | |||
| 1157 | [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { | |||
| 1158 | IsConst = false; | |||
| 1159 | IsByCopy = false; | |||
| 1160 | for (auto &&C : Closure->captures()) { | |||
| 1161 | if (C.capturesThis()) { | |||
| 1162 | if (C.getCaptureKind() == LCK_StarThis) | |||
| 1163 | IsByCopy = true; | |||
| 1164 | if (Closure->getLambdaCallOperator()->isConst()) | |||
| 1165 | IsConst = true; | |||
| 1166 | return true; | |||
| 1167 | } | |||
| 1168 | } | |||
| 1169 | return false; | |||
| 1170 | }; | |||
| 1171 | ||||
| 1172 | bool IsByCopyCapture = false; | |||
| 1173 | bool IsConstCapture = false; | |||
| 1174 | CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); | |||
| 1175 | while (Closure && | |||
| 1176 | IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { | |||
| 1177 | if (IsByCopyCapture) { | |||
| 1178 | if (IsConstCapture) | |||
| 1179 | ClassType.addConst(); | |||
| 1180 | return ASTCtx.getPointerType(ClassType); | |||
| 1181 | } | |||
| 1182 | Closure = isLambdaCallOperator(Closure->getParent()) | |||
| 1183 | ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) | |||
| 1184 | : nullptr; | |||
| 1185 | } | |||
| 1186 | } | |||
| 1187 | return ASTCtx.getPointerType(ClassType); | |||
| 1188 | } | |||
| 1189 | ||||
| 1190 | QualType Sema::getCurrentThisType() { | |||
| 1191 | DeclContext *DC = getFunctionLevelDeclContext(); | |||
| 1192 | QualType ThisTy = CXXThisTypeOverride; | |||
| 1193 | ||||
| 1194 | if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { | |||
| 1195 | if (method && method->isInstance()) | |||
| 1196 | ThisTy = method->getThisType(); | |||
| 1197 | } | |||
| 1198 | ||||
| 1199 | if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && | |||
| 1200 | inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { | |||
| 1201 | ||||
| 1202 | // This is a lambda call operator that is being instantiated as a default | |||
| 1203 | // initializer. DC must point to the enclosing class type, so we can recover | |||
| 1204 | // the 'this' type from it. | |||
| 1205 | QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); | |||
| 1206 | // There are no cv-qualifiers for 'this' within default initializers, | |||
| 1207 | // per [expr.prim.general]p4. | |||
| 1208 | ThisTy = Context.getPointerType(ClassTy); | |||
| 1209 | } | |||
| 1210 | ||||
| 1211 | // If we are within a lambda's call operator, the cv-qualifiers of 'this' | |||
| 1212 | // might need to be adjusted if the lambda or any of its enclosing lambda's | |||
| 1213 | // captures '*this' by copy. | |||
| 1214 | if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) | |||
| 1215 | return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, | |||
| 1216 | CurContext, Context); | |||
| 1217 | return ThisTy; | |||
| 1218 | } | |||
| 1219 | ||||
| 1220 | Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, | |||
| 1221 | Decl *ContextDecl, | |||
| 1222 | Qualifiers CXXThisTypeQuals, | |||
| 1223 | bool Enabled) | |||
| 1224 | : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) | |||
| 1225 | { | |||
| 1226 | if (!Enabled || !ContextDecl) | |||
| 1227 | return; | |||
| 1228 | ||||
| 1229 | CXXRecordDecl *Record = nullptr; | |||
| 1230 | if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) | |||
| 1231 | Record = Template->getTemplatedDecl(); | |||
| 1232 | else | |||
| 1233 | Record = cast<CXXRecordDecl>(ContextDecl); | |||
| 1234 | ||||
| 1235 | QualType T = S.Context.getRecordType(Record); | |||
| 1236 | T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); | |||
| 1237 | ||||
| 1238 | S.CXXThisTypeOverride = S.Context.getPointerType(T); | |||
| 1239 | ||||
| 1240 | this->Enabled = true; | |||
| 1241 | } | |||
| 1242 | ||||
| 1243 | ||||
| 1244 | Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { | |||
| 1245 | if (Enabled) { | |||
| 1246 | S.CXXThisTypeOverride = OldCXXThisTypeOverride; | |||
| 1247 | } | |||
| 1248 | } | |||
| 1249 | ||||
| 1250 | static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { | |||
| 1251 | SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); | |||
| 1252 | assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void (0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp" , 1252, __extension__ __PRETTY_FUNCTION__)); | |||
| 1253 | // [=, this] {}; // until C++20: Error: this when = is the default | |||
| 1254 | if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && | |||
| 1255 | !Sema.getLangOpts().CPlusPlus20) | |||
| 1256 | return; | |||
| 1257 | Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) | |||
| 1258 | << FixItHint::CreateInsertion( | |||
| 1259 | DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); | |||
| 1260 | } | |||
| 1261 | ||||
| 1262 | bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, | |||
| 1263 | bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, | |||
| 1264 | const bool ByCopy) { | |||
| 1265 | // We don't need to capture this in an unevaluated context. | |||
| 1266 | if (isUnevaluatedContext() && !Explicit) | |||
| 1267 | return true; | |||
| 1268 | ||||
| 1269 | assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value" ) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1269, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1270 | ||||
| 1271 | const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt | |||
| 1272 | ? *FunctionScopeIndexToStopAt | |||
| 1273 | : FunctionScopes.size() - 1; | |||
| 1274 | ||||
| 1275 | // Check that we can capture the *enclosing object* (referred to by '*this') | |||
| 1276 | // by the capturing-entity/closure (lambda/block/etc) at | |||
| 1277 | // MaxFunctionScopesIndex-deep on the FunctionScopes stack. | |||
| 1278 | ||||
| 1279 | // Note: The *enclosing object* can only be captured by-value by a | |||
| 1280 | // closure that is a lambda, using the explicit notation: | |||
| 1281 | // [*this] { ... }. | |||
| 1282 | // Every other capture of the *enclosing object* results in its by-reference | |||
| 1283 | // capture. | |||
| 1284 | ||||
| 1285 | // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes | |||
| 1286 | // stack), we can capture the *enclosing object* only if: | |||
| 1287 | // - 'L' has an explicit byref or byval capture of the *enclosing object* | |||
| 1288 | // - or, 'L' has an implicit capture. | |||
| 1289 | // AND | |||
| 1290 | // -- there is no enclosing closure | |||
| 1291 | // -- or, there is some enclosing closure 'E' that has already captured the | |||
| 1292 | // *enclosing object*, and every intervening closure (if any) between 'E' | |||
| 1293 | // and 'L' can implicitly capture the *enclosing object*. | |||
| 1294 | // -- or, every enclosing closure can implicitly capture the | |||
| 1295 | // *enclosing object* | |||
| 1296 | ||||
| 1297 | ||||
| 1298 | unsigned NumCapturingClosures = 0; | |||
| 1299 | for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { | |||
| 1300 | if (CapturingScopeInfo *CSI = | |||
| 1301 | dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { | |||
| 1302 | if (CSI->CXXThisCaptureIndex != 0) { | |||
| 1303 | // 'this' is already being captured; there isn't anything more to do. | |||
| 1304 | CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); | |||
| 1305 | break; | |||
| 1306 | } | |||
| 1307 | LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); | |||
| 1308 | if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { | |||
| 1309 | // This context can't implicitly capture 'this'; fail out. | |||
| 1310 | if (BuildAndDiagnose) { | |||
| 1311 | Diag(Loc, diag::err_this_capture) | |||
| 1312 | << (Explicit && idx == MaxFunctionScopesIndex); | |||
| 1313 | if (!Explicit) | |||
| 1314 | buildLambdaThisCaptureFixit(*this, LSI); | |||
| 1315 | } | |||
| 1316 | return true; | |||
| 1317 | } | |||
| 1318 | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || | |||
| 1319 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || | |||
| 1320 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || | |||
| 1321 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || | |||
| 1322 | (Explicit && idx == MaxFunctionScopesIndex)) { | |||
| 1323 | // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first | |||
| 1324 | // iteration through can be an explicit capture, all enclosing closures, | |||
| 1325 | // if any, must perform implicit captures. | |||
| 1326 | ||||
| 1327 | // This closure can capture 'this'; continue looking upwards. | |||
| 1328 | NumCapturingClosures++; | |||
| 1329 | continue; | |||
| 1330 | } | |||
| 1331 | // This context can't implicitly capture 'this'; fail out. | |||
| 1332 | if (BuildAndDiagnose) | |||
| 1333 | Diag(Loc, diag::err_this_capture) | |||
| 1334 | << (Explicit && idx == MaxFunctionScopesIndex); | |||
| 1335 | ||||
| 1336 | if (!Explicit) | |||
| 1337 | buildLambdaThisCaptureFixit(*this, LSI); | |||
| 1338 | return true; | |||
| 1339 | } | |||
| 1340 | break; | |||
| 1341 | } | |||
| 1342 | if (!BuildAndDiagnose) return false; | |||
| 1343 | ||||
| 1344 | // If we got here, then the closure at MaxFunctionScopesIndex on the | |||
| 1345 | // FunctionScopes stack, can capture the *enclosing object*, so capture it | |||
| 1346 | // (including implicit by-reference captures in any enclosing closures). | |||
| 1347 | ||||
| 1348 | // In the loop below, respect the ByCopy flag only for the closure requesting | |||
| 1349 | // the capture (i.e. first iteration through the loop below). Ignore it for | |||
| 1350 | // all enclosing closure's up to NumCapturingClosures (since they must be | |||
| 1351 | // implicitly capturing the *enclosing object* by reference (see loop | |||
| 1352 | // above)). | |||
| 1353 | assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo >(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by " "*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1354 | isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo >(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by " "*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1355 | "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo >(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by " "*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1356 | "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo >(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by " "*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1357 | QualType ThisTy = getCurrentThisType(); | |||
| 1358 | for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; | |||
| 1359 | --idx, --NumCapturingClosures) { | |||
| 1360 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); | |||
| 1361 | ||||
| 1362 | // The type of the corresponding data member (not a 'this' pointer if 'by | |||
| 1363 | // copy'). | |||
| 1364 | QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy; | |||
| 1365 | ||||
| 1366 | bool isNested = NumCapturingClosures > 1; | |||
| 1367 | CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); | |||
| 1368 | } | |||
| 1369 | return false; | |||
| 1370 | } | |||
| 1371 | ||||
| 1372 | ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { | |||
| 1373 | /// C++ 9.3.2: In the body of a non-static member function, the keyword this | |||
| 1374 | /// is a non-lvalue expression whose value is the address of the object for | |||
| 1375 | /// which the function is called. | |||
| 1376 | ||||
| 1377 | QualType ThisTy = getCurrentThisType(); | |||
| 1378 | if (ThisTy.isNull()) | |||
| 1379 | return Diag(Loc, diag::err_invalid_this_use); | |||
| 1380 | return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); | |||
| 1381 | } | |||
| 1382 | ||||
| 1383 | Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, | |||
| 1384 | bool IsImplicit) { | |||
| 1385 | if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) { | |||
| 1386 | auto *This = new (Context) | |||
| 1387 | CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit); | |||
| 1388 | This->setValueKind(ExprValueKind::VK_LValue); | |||
| 1389 | MarkThisReferenced(This); | |||
| 1390 | return This; | |||
| 1391 | } | |||
| 1392 | auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); | |||
| 1393 | MarkThisReferenced(This); | |||
| 1394 | return This; | |||
| 1395 | } | |||
| 1396 | ||||
| 1397 | void Sema::MarkThisReferenced(CXXThisExpr *This) { | |||
| 1398 | CheckCXXThisCapture(This->getExprLoc()); | |||
| 1399 | } | |||
| 1400 | ||||
| 1401 | bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { | |||
| 1402 | // If we're outside the body of a member function, then we'll have a specified | |||
| 1403 | // type for 'this'. | |||
| 1404 | if (CXXThisTypeOverride.isNull()) | |||
| 1405 | return false; | |||
| 1406 | ||||
| 1407 | // Determine whether we're looking into a class that's currently being | |||
| 1408 | // defined. | |||
| 1409 | CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); | |||
| 1410 | return Class && Class->isBeingDefined(); | |||
| 1411 | } | |||
| 1412 | ||||
| 1413 | /// Parse construction of a specified type. | |||
| 1414 | /// Can be interpreted either as function-style casting ("int(x)") | |||
| 1415 | /// or class type construction ("ClassType(x,y,z)") | |||
| 1416 | /// or creation of a value-initialized type ("int()"). | |||
| 1417 | ExprResult | |||
| 1418 | Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, | |||
| 1419 | SourceLocation LParenOrBraceLoc, | |||
| 1420 | MultiExprArg exprs, | |||
| 1421 | SourceLocation RParenOrBraceLoc, | |||
| 1422 | bool ListInitialization) { | |||
| 1423 | if (!TypeRep) | |||
| 1424 | return ExprError(); | |||
| 1425 | ||||
| 1426 | TypeSourceInfo *TInfo; | |||
| 1427 | QualType Ty = GetTypeFromParser(TypeRep, &TInfo); | |||
| 1428 | if (!TInfo) | |||
| 1429 | TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); | |||
| 1430 | ||||
| 1431 | auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, | |||
| 1432 | RParenOrBraceLoc, ListInitialization); | |||
| 1433 | // Avoid creating a non-type-dependent expression that contains typos. | |||
| 1434 | // Non-type-dependent expressions are liable to be discarded without | |||
| 1435 | // checking for embedded typos. | |||
| 1436 | if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && | |||
| 1437 | !Result.get()->isTypeDependent()) | |||
| 1438 | Result = CorrectDelayedTyposInExpr(Result.get()); | |||
| 1439 | else if (Result.isInvalid()) | |||
| 1440 | Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), | |||
| 1441 | RParenOrBraceLoc, exprs, Ty); | |||
| 1442 | return Result; | |||
| 1443 | } | |||
| 1444 | ||||
| 1445 | ExprResult | |||
| 1446 | Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, | |||
| 1447 | SourceLocation LParenOrBraceLoc, | |||
| 1448 | MultiExprArg Exprs, | |||
| 1449 | SourceLocation RParenOrBraceLoc, | |||
| 1450 | bool ListInitialization) { | |||
| 1451 | QualType Ty = TInfo->getType(); | |||
| 1452 | SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); | |||
| 1453 | ||||
| 1454 | assert((!ListInitialization || Exprs.size() == 1) &&(static_cast <bool> ((!ListInitialization || Exprs.size () == 1) && "List initialization must have exactly one expression." ) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1455 | "List initialization must have exactly one expression.")(static_cast <bool> ((!ListInitialization || Exprs.size () == 1) && "List initialization must have exactly one expression." ) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1456 | SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); | |||
| 1457 | ||||
| 1458 | InitializedEntity Entity = | |||
| 1459 | InitializedEntity::InitializeTemporary(Context, TInfo); | |||
| 1460 | InitializationKind Kind = | |||
| 1461 | Exprs.size() | |||
| 1462 | ? ListInitialization | |||
| 1463 | ? InitializationKind::CreateDirectList( | |||
| 1464 | TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) | |||
| 1465 | : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, | |||
| 1466 | RParenOrBraceLoc) | |||
| 1467 | : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, | |||
| 1468 | RParenOrBraceLoc); | |||
| 1469 | ||||
| 1470 | // C++17 [expr.type.conv]p1: | |||
| 1471 | // If the type is a placeholder for a deduced class type, [...perform class | |||
| 1472 | // template argument deduction...] | |||
| 1473 | // C++23: | |||
| 1474 | // Otherwise, if the type contains a placeholder type, it is replaced by the | |||
| 1475 | // type determined by placeholder type deduction. | |||
| 1476 | DeducedType *Deduced = Ty->getContainedDeducedType(); | |||
| 1477 | if (Deduced && !Deduced->isDeduced() && | |||
| 1478 | isa<DeducedTemplateSpecializationType>(Deduced)) { | |||
| 1479 | Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, | |||
| 1480 | Kind, Exprs); | |||
| 1481 | if (Ty.isNull()) | |||
| 1482 | return ExprError(); | |||
| 1483 | Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); | |||
| 1484 | } else if (Deduced && !Deduced->isDeduced()) { | |||
| 1485 | MultiExprArg Inits = Exprs; | |||
| 1486 | if (ListInitialization) { | |||
| 1487 | auto *ILE = cast<InitListExpr>(Exprs[0]); | |||
| 1488 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); | |||
| 1489 | } | |||
| 1490 | ||||
| 1491 | if (Inits.empty()) | |||
| 1492 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) | |||
| 1493 | << Ty << FullRange); | |||
| 1494 | if (Inits.size() > 1) { | |||
| 1495 | Expr *FirstBad = Inits[1]; | |||
| 1496 | return ExprError(Diag(FirstBad->getBeginLoc(), | |||
| 1497 | diag::err_auto_expr_init_multiple_expressions) | |||
| 1498 | << Ty << FullRange); | |||
| 1499 | } | |||
| 1500 | if (getLangOpts().CPlusPlus23) { | |||
| 1501 | if (Ty->getAs<AutoType>()) | |||
| 1502 | Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; | |||
| 1503 | } | |||
| 1504 | Expr *Deduce = Inits[0]; | |||
| 1505 | if (isa<InitListExpr>(Deduce)) | |||
| 1506 | return ExprError( | |||
| 1507 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) | |||
| 1508 | << ListInitialization << Ty << FullRange); | |||
| 1509 | QualType DeducedType; | |||
| 1510 | TemplateDeductionInfo Info(Deduce->getExprLoc()); | |||
| 1511 | TemplateDeductionResult Result = | |||
| 1512 | DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); | |||
| 1513 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) | |||
| 1514 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) | |||
| 1515 | << Ty << Deduce->getType() << FullRange | |||
| 1516 | << Deduce->getSourceRange()); | |||
| 1517 | if (DeducedType.isNull()) { | |||
| 1518 | assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void (0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp" , 1518, __extension__ __PRETTY_FUNCTION__)); | |||
| 1519 | return ExprError(); | |||
| 1520 | } | |||
| 1521 | ||||
| 1522 | Ty = DeducedType; | |||
| 1523 | Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); | |||
| 1524 | } | |||
| 1525 | ||||
| 1526 | if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) | |||
| 1527 | return CXXUnresolvedConstructExpr::Create( | |||
| 1528 | Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs, | |||
| 1529 | RParenOrBraceLoc, ListInitialization); | |||
| 1530 | ||||
| 1531 | // C++ [expr.type.conv]p1: | |||
| 1532 | // If the expression list is a parenthesized single expression, the type | |||
| 1533 | // conversion expression is equivalent (in definedness, and if defined in | |||
| 1534 | // meaning) to the corresponding cast expression. | |||
| 1535 | if (Exprs.size() == 1 && !ListInitialization && | |||
| 1536 | !isa<InitListExpr>(Exprs[0])) { | |||
| 1537 | Expr *Arg = Exprs[0]; | |||
| 1538 | return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, | |||
| 1539 | RParenOrBraceLoc); | |||
| 1540 | } | |||
| 1541 | ||||
| 1542 | // For an expression of the form T(), T shall not be an array type. | |||
| 1543 | QualType ElemTy = Ty; | |||
| 1544 | if (Ty->isArrayType()) { | |||
| 1545 | if (!ListInitialization) | |||
| 1546 | return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) | |||
| 1547 | << FullRange); | |||
| 1548 | ElemTy = Context.getBaseElementType(Ty); | |||
| 1549 | } | |||
| 1550 | ||||
| 1551 | // Only construct objects with object types. | |||
| 1552 | // The standard doesn't explicitly forbid function types here, but that's an | |||
| 1553 | // obvious oversight, as there's no way to dynamically construct a function | |||
| 1554 | // in general. | |||
| 1555 | if (Ty->isFunctionType()) | |||
| 1556 | return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) | |||
| 1557 | << Ty << FullRange); | |||
| 1558 | ||||
| 1559 | // C++17 [expr.type.conv]p2: | |||
| 1560 | // If the type is cv void and the initializer is (), the expression is a | |||
| 1561 | // prvalue of the specified type that performs no initialization. | |||
| 1562 | if (!Ty->isVoidType() && | |||
| 1563 | RequireCompleteType(TyBeginLoc, ElemTy, | |||
| 1564 | diag::err_invalid_incomplete_type_use, FullRange)) | |||
| 1565 | return ExprError(); | |||
| 1566 | ||||
| 1567 | // Otherwise, the expression is a prvalue of the specified type whose | |||
| 1568 | // result object is direct-initialized (11.6) with the initializer. | |||
| 1569 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); | |||
| 1570 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); | |||
| 1571 | ||||
| 1572 | if (Result.isInvalid()) | |||
| 1573 | return Result; | |||
| 1574 | ||||
| 1575 | Expr *Inner = Result.get(); | |||
| 1576 | if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) | |||
| 1577 | Inner = BTE->getSubExpr(); | |||
| 1578 | if (auto *CE = dyn_cast<ConstantExpr>(Inner); | |||
| 1579 | CE && CE->isImmediateInvocation()) | |||
| 1580 | Inner = CE->getSubExpr(); | |||
| 1581 | if (!isa<CXXTemporaryObjectExpr>(Inner) && | |||
| 1582 | !isa<CXXScalarValueInitExpr>(Inner)) { | |||
| 1583 | // If we created a CXXTemporaryObjectExpr, that node also represents the | |||
| 1584 | // functional cast. Otherwise, create an explicit cast to represent | |||
| 1585 | // the syntactic form of a functional-style cast that was used here. | |||
| 1586 | // | |||
| 1587 | // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr | |||
| 1588 | // would give a more consistent AST representation than using a | |||
| 1589 | // CXXTemporaryObjectExpr. It's also weird that the functional cast | |||
| 1590 | // is sometimes handled by initialization and sometimes not. | |||
| 1591 | QualType ResultType = Result.get()->getType(); | |||
| 1592 | SourceRange Locs = ListInitialization | |||
| 1593 | ? SourceRange() | |||
| 1594 | : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); | |||
| 1595 | Result = CXXFunctionalCastExpr::Create( | |||
| 1596 | Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, | |||
| 1597 | Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), | |||
| 1598 | Locs.getBegin(), Locs.getEnd()); | |||
| 1599 | } | |||
| 1600 | ||||
| 1601 | return Result; | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { | |||
| 1605 | // [CUDA] Ignore this function, if we can't call it. | |||
| 1606 | const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); | |||
| 1607 | if (getLangOpts().CUDA) { | |||
| 1608 | auto CallPreference = IdentifyCUDAPreference(Caller, Method); | |||
| 1609 | // If it's not callable at all, it's not the right function. | |||
| 1610 | if (CallPreference < CFP_WrongSide) | |||
| 1611 | return false; | |||
| 1612 | if (CallPreference == CFP_WrongSide) { | |||
| 1613 | // Maybe. We have to check if there are better alternatives. | |||
| 1614 | DeclContext::lookup_result R = | |||
| 1615 | Method->getDeclContext()->lookup(Method->getDeclName()); | |||
| 1616 | for (const auto *D : R) { | |||
| 1617 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 1618 | if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) | |||
| 1619 | return false; | |||
| 1620 | } | |||
| 1621 | } | |||
| 1622 | // We've found no better variants. | |||
| 1623 | } | |||
| 1624 | } | |||
| 1625 | ||||
| 1626 | SmallVector<const FunctionDecl*, 4> PreventedBy; | |||
| 1627 | bool Result = Method->isUsualDeallocationFunction(PreventedBy); | |||
| 1628 | ||||
| 1629 | if (Result || !getLangOpts().CUDA || PreventedBy.empty()) | |||
| 1630 | return Result; | |||
| 1631 | ||||
| 1632 | // In case of CUDA, return true if none of the 1-argument deallocator | |||
| 1633 | // functions are actually callable. | |||
| 1634 | return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { | |||
| 1635 | assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy") ? void (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1636, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1636 | "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy") ? void (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1636, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1637 | return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; | |||
| 1638 | }); | |||
| 1639 | } | |||
| 1640 | ||||
| 1641 | /// Determine whether the given function is a non-placement | |||
| 1642 | /// deallocation function. | |||
| 1643 | static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { | |||
| 1644 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) | |||
| 1645 | return S.isUsualDeallocationFunction(Method); | |||
| 1646 | ||||
| 1647 | if (FD->getOverloadedOperator() != OO_Delete && | |||
| 1648 | FD->getOverloadedOperator() != OO_Array_Delete) | |||
| 1649 | return false; | |||
| 1650 | ||||
| 1651 | unsigned UsualParams = 1; | |||
| 1652 | ||||
| 1653 | if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && | |||
| 1654 | S.Context.hasSameUnqualifiedType( | |||
| 1655 | FD->getParamDecl(UsualParams)->getType(), | |||
| 1656 | S.Context.getSizeType())) | |||
| 1657 | ++UsualParams; | |||
| 1658 | ||||
| 1659 | if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && | |||
| 1660 | S.Context.hasSameUnqualifiedType( | |||
| 1661 | FD->getParamDecl(UsualParams)->getType(), | |||
| 1662 | S.Context.getTypeDeclType(S.getStdAlignValT()))) | |||
| 1663 | ++UsualParams; | |||
| 1664 | ||||
| 1665 | return UsualParams == FD->getNumParams(); | |||
| 1666 | } | |||
| 1667 | ||||
| 1668 | namespace { | |||
| 1669 | struct UsualDeallocFnInfo { | |||
| 1670 | UsualDeallocFnInfo() : Found(), FD(nullptr) {} | |||
| 1671 | UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) | |||
| 1672 | : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), | |||
| 1673 | Destroying(false), HasSizeT(false), HasAlignValT(false), | |||
| 1674 | CUDAPref(Sema::CFP_Native) { | |||
| 1675 | // A function template declaration is never a usual deallocation function. | |||
| 1676 | if (!FD) | |||
| 1677 | return; | |||
| 1678 | unsigned NumBaseParams = 1; | |||
| 1679 | if (FD->isDestroyingOperatorDelete()) { | |||
| 1680 | Destroying = true; | |||
| 1681 | ++NumBaseParams; | |||
| 1682 | } | |||
| 1683 | ||||
| 1684 | if (NumBaseParams < FD->getNumParams() && | |||
| 1685 | S.Context.hasSameUnqualifiedType( | |||
| 1686 | FD->getParamDecl(NumBaseParams)->getType(), | |||
| 1687 | S.Context.getSizeType())) { | |||
| 1688 | ++NumBaseParams; | |||
| 1689 | HasSizeT = true; | |||
| 1690 | } | |||
| 1691 | ||||
| 1692 | if (NumBaseParams < FD->getNumParams() && | |||
| 1693 | FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { | |||
| 1694 | ++NumBaseParams; | |||
| 1695 | HasAlignValT = true; | |||
| 1696 | } | |||
| 1697 | ||||
| 1698 | // In CUDA, determine how much we'd like / dislike to call this. | |||
| 1699 | if (S.getLangOpts().CUDA) | |||
| 1700 | if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) | |||
| 1701 | CUDAPref = S.IdentifyCUDAPreference(Caller, FD); | |||
| 1702 | } | |||
| 1703 | ||||
| 1704 | explicit operator bool() const { return FD; } | |||
| 1705 | ||||
| 1706 | bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, | |||
| 1707 | bool WantAlign) const { | |||
| 1708 | // C++ P0722: | |||
| 1709 | // A destroying operator delete is preferred over a non-destroying | |||
| 1710 | // operator delete. | |||
| 1711 | if (Destroying != Other.Destroying) | |||
| 1712 | return Destroying; | |||
| 1713 | ||||
| 1714 | // C++17 [expr.delete]p10: | |||
| 1715 | // If the type has new-extended alignment, a function with a parameter | |||
| 1716 | // of type std::align_val_t is preferred; otherwise a function without | |||
| 1717 | // such a parameter is preferred | |||
| 1718 | if (HasAlignValT != Other.HasAlignValT) | |||
| 1719 | return HasAlignValT == WantAlign; | |||
| 1720 | ||||
| 1721 | if (HasSizeT != Other.HasSizeT) | |||
| 1722 | return HasSizeT == WantSize; | |||
| 1723 | ||||
| 1724 | // Use CUDA call preference as a tiebreaker. | |||
| 1725 | return CUDAPref > Other.CUDAPref; | |||
| 1726 | } | |||
| 1727 | ||||
| 1728 | DeclAccessPair Found; | |||
| 1729 | FunctionDecl *FD; | |||
| 1730 | bool Destroying, HasSizeT, HasAlignValT; | |||
| 1731 | Sema::CUDAFunctionPreference CUDAPref; | |||
| 1732 | }; | |||
| 1733 | } | |||
| 1734 | ||||
| 1735 | /// Determine whether a type has new-extended alignment. This may be called when | |||
| 1736 | /// the type is incomplete (for a delete-expression with an incomplete pointee | |||
| 1737 | /// type), in which case it will conservatively return false if the alignment is | |||
| 1738 | /// not known. | |||
| 1739 | static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { | |||
| 1740 | return S.getLangOpts().AlignedAllocation && | |||
| 1741 | S.getASTContext().getTypeAlignIfKnown(AllocType) > | |||
| 1742 | S.getASTContext().getTargetInfo().getNewAlign(); | |||
| 1743 | } | |||
| 1744 | ||||
| 1745 | /// Select the correct "usual" deallocation function to use from a selection of | |||
| 1746 | /// deallocation functions (either global or class-scope). | |||
| 1747 | static UsualDeallocFnInfo resolveDeallocationOverload( | |||
| 1748 | Sema &S, LookupResult &R, bool WantSize, bool WantAlign, | |||
| 1749 | llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { | |||
| 1750 | UsualDeallocFnInfo Best; | |||
| 1751 | ||||
| 1752 | for (auto I = R.begin(), E = R.end(); I != E; ++I) { | |||
| 1753 | UsualDeallocFnInfo Info(S, I.getPair()); | |||
| 1754 | if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || | |||
| 1755 | Info.CUDAPref == Sema::CFP_Never) | |||
| 1756 | continue; | |||
| 1757 | ||||
| 1758 | if (!Best) { | |||
| 1759 | Best = Info; | |||
| 1760 | if (BestFns) | |||
| 1761 | BestFns->push_back(Info); | |||
| 1762 | continue; | |||
| 1763 | } | |||
| 1764 | ||||
| 1765 | if (Best.isBetterThan(Info, WantSize, WantAlign)) | |||
| 1766 | continue; | |||
| 1767 | ||||
| 1768 | // If more than one preferred function is found, all non-preferred | |||
| 1769 | // functions are eliminated from further consideration. | |||
| 1770 | if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) | |||
| 1771 | BestFns->clear(); | |||
| 1772 | ||||
| 1773 | Best = Info; | |||
| 1774 | if (BestFns) | |||
| 1775 | BestFns->push_back(Info); | |||
| 1776 | } | |||
| 1777 | ||||
| 1778 | return Best; | |||
| 1779 | } | |||
| 1780 | ||||
| 1781 | /// Determine whether a given type is a class for which 'delete[]' would call | |||
| 1782 | /// a member 'operator delete[]' with a 'size_t' parameter. This implies that | |||
| 1783 | /// we need to store the array size (even if the type is | |||
| 1784 | /// trivially-destructible). | |||
| 1785 | static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, | |||
| 1786 | QualType allocType) { | |||
| 1787 | const RecordType *record = | |||
| 1788 | allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); | |||
| 1789 | if (!record) return false; | |||
| 1790 | ||||
| 1791 | // Try to find an operator delete[] in class scope. | |||
| 1792 | ||||
| 1793 | DeclarationName deleteName = | |||
| 1794 | S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); | |||
| 1795 | LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); | |||
| 1796 | S.LookupQualifiedName(ops, record->getDecl()); | |||
| 1797 | ||||
| 1798 | // We're just doing this for information. | |||
| 1799 | ops.suppressDiagnostics(); | |||
| 1800 | ||||
| 1801 | // Very likely: there's no operator delete[]. | |||
| 1802 | if (ops.empty()) return false; | |||
| 1803 | ||||
| 1804 | // If it's ambiguous, it should be illegal to call operator delete[] | |||
| 1805 | // on this thing, so it doesn't matter if we allocate extra space or not. | |||
| 1806 | if (ops.isAmbiguous()) return false; | |||
| 1807 | ||||
| 1808 | // C++17 [expr.delete]p10: | |||
| 1809 | // If the deallocation functions have class scope, the one without a | |||
| 1810 | // parameter of type std::size_t is selected. | |||
| 1811 | auto Best = resolveDeallocationOverload( | |||
| 1812 | S, ops, /*WantSize*/false, | |||
| 1813 | /*WantAlign*/hasNewExtendedAlignment(S, allocType)); | |||
| 1814 | return Best && Best.HasSizeT; | |||
| 1815 | } | |||
| 1816 | ||||
| 1817 | /// Parsed a C++ 'new' expression (C++ 5.3.4). | |||
| 1818 | /// | |||
| 1819 | /// E.g.: | |||
| 1820 | /// @code new (memory) int[size][4] @endcode | |||
| 1821 | /// or | |||
| 1822 | /// @code ::new Foo(23, "hello") @endcode | |||
| 1823 | /// | |||
| 1824 | /// \param StartLoc The first location of the expression. | |||
| 1825 | /// \param UseGlobal True if 'new' was prefixed with '::'. | |||
| 1826 | /// \param PlacementLParen Opening paren of the placement arguments. | |||
| 1827 | /// \param PlacementArgs Placement new arguments. | |||
| 1828 | /// \param PlacementRParen Closing paren of the placement arguments. | |||
| 1829 | /// \param TypeIdParens If the type is in parens, the source range. | |||
| 1830 | /// \param D The type to be allocated, as well as array dimensions. | |||
| 1831 | /// \param Initializer The initializing expression or initializer-list, or null | |||
| 1832 | /// if there is none. | |||
| 1833 | ExprResult | |||
| 1834 | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, | |||
| 1835 | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, | |||
| 1836 | SourceLocation PlacementRParen, SourceRange TypeIdParens, | |||
| 1837 | Declarator &D, Expr *Initializer) { | |||
| 1838 | std::optional<Expr *> ArraySize; | |||
| 1839 | // If the specified type is an array, unwrap it and save the expression. | |||
| 1840 | if (D.getNumTypeObjects() > 0 && | |||
| 1841 | D.getTypeObject(0).Kind == DeclaratorChunk::Array) { | |||
| 1842 | DeclaratorChunk &Chunk = D.getTypeObject(0); | |||
| 1843 | if (D.getDeclSpec().hasAutoTypeSpec()) | |||
| 1844 | return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) | |||
| 1845 | << D.getSourceRange()); | |||
| 1846 | if (Chunk.Arr.hasStatic) | |||
| 1847 | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) | |||
| 1848 | << D.getSourceRange()); | |||
| 1849 | if (!Chunk.Arr.NumElts && !Initializer) | |||
| 1850 | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) | |||
| 1851 | << D.getSourceRange()); | |||
| 1852 | ||||
| 1853 | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); | |||
| 1854 | D.DropFirstTypeObject(); | |||
| 1855 | } | |||
| 1856 | ||||
| 1857 | // Every dimension shall be of constant size. | |||
| 1858 | if (ArraySize) { | |||
| 1859 | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { | |||
| 1860 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) | |||
| 1861 | break; | |||
| 1862 | ||||
| 1863 | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; | |||
| 1864 | if (Expr *NumElts = (Expr *)Array.NumElts) { | |||
| 1865 | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { | |||
| 1866 | // FIXME: GCC permits constant folding here. We should either do so consistently | |||
| 1867 | // or not do so at all, rather than changing behavior in C++14 onwards. | |||
| 1868 | if (getLangOpts().CPlusPlus14) { | |||
| 1869 | // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator | |||
| 1870 | // shall be a converted constant expression (5.19) of type std::size_t | |||
| 1871 | // and shall evaluate to a strictly positive value. | |||
| 1872 | llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); | |||
| 1873 | Array.NumElts | |||
| 1874 | = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, | |||
| 1875 | CCEK_ArrayBound) | |||
| 1876 | .get(); | |||
| 1877 | } else { | |||
| 1878 | Array.NumElts = | |||
| 1879 | VerifyIntegerConstantExpression( | |||
| 1880 | NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) | |||
| 1881 | .get(); | |||
| 1882 | } | |||
| 1883 | if (!Array.NumElts) | |||
| 1884 | return ExprError(); | |||
| 1885 | } | |||
| 1886 | } | |||
| 1887 | } | |||
| 1888 | } | |||
| 1889 | ||||
| 1890 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); | |||
| 1891 | QualType AllocType = TInfo->getType(); | |||
| 1892 | if (D.isInvalidType()) | |||
| 1893 | return ExprError(); | |||
| 1894 | ||||
| 1895 | SourceRange DirectInitRange; | |||
| 1896 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) | |||
| 1897 | DirectInitRange = List->getSourceRange(); | |||
| 1898 | ||||
| 1899 | return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, | |||
| 1900 | PlacementLParen, PlacementArgs, PlacementRParen, | |||
| 1901 | TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, | |||
| 1902 | Initializer); | |||
| 1903 | } | |||
| 1904 | ||||
| 1905 | static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, | |||
| 1906 | Expr *Init) { | |||
| 1907 | if (!Init) | |||
| 1908 | return true; | |||
| 1909 | if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) | |||
| 1910 | return PLE->getNumExprs() == 0; | |||
| 1911 | if (isa<ImplicitValueInitExpr>(Init)) | |||
| 1912 | return true; | |||
| 1913 | else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) | |||
| 1914 | return !CCE->isListInitialization() && | |||
| 1915 | CCE->getConstructor()->isDefaultConstructor(); | |||
| 1916 | else if (Style == CXXNewExpr::ListInit) { | |||
| 1917 | assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays.") ? void (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1918, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1918 | "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays.") ? void (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1918, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1919 | return true; | |||
| 1920 | } | |||
| 1921 | return false; | |||
| 1922 | } | |||
| 1923 | ||||
| 1924 | bool | |||
| 1925 | Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { | |||
| 1926 | if (!getLangOpts().AlignedAllocationUnavailable) | |||
| 1927 | return false; | |||
| 1928 | if (FD.isDefined()) | |||
| 1929 | return false; | |||
| 1930 | std::optional<unsigned> AlignmentParam; | |||
| 1931 | if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && | |||
| 1932 | AlignmentParam) | |||
| 1933 | return true; | |||
| 1934 | return false; | |||
| 1935 | } | |||
| 1936 | ||||
| 1937 | // Emit a diagnostic if an aligned allocation/deallocation function that is not | |||
| 1938 | // implemented in the standard library is selected. | |||
| 1939 | void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, | |||
| 1940 | SourceLocation Loc) { | |||
| 1941 | if (isUnavailableAlignedAllocationFunction(FD)) { | |||
| 1942 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); | |||
| 1943 | StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( | |||
| 1944 | getASTContext().getTargetInfo().getPlatformName()); | |||
| 1945 | VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); | |||
| 1946 | ||||
| 1947 | OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); | |||
| 1948 | bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; | |||
| 1949 | Diag(Loc, diag::err_aligned_allocation_unavailable) | |||
| 1950 | << IsDelete << FD.getType().getAsString() << OSName | |||
| 1951 | << OSVersion.getAsString() << OSVersion.empty(); | |||
| 1952 | Diag(Loc, diag::note_silence_aligned_allocation_unavailable); | |||
| 1953 | } | |||
| 1954 | } | |||
| 1955 | ||||
| 1956 | ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, | |||
| 1957 | SourceLocation PlacementLParen, | |||
| 1958 | MultiExprArg PlacementArgs, | |||
| 1959 | SourceLocation PlacementRParen, | |||
| 1960 | SourceRange TypeIdParens, QualType AllocType, | |||
| 1961 | TypeSourceInfo *AllocTypeInfo, | |||
| 1962 | std::optional<Expr *> ArraySize, | |||
| 1963 | SourceRange DirectInitRange, Expr *Initializer) { | |||
| 1964 | SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); | |||
| 1965 | SourceLocation StartLoc = Range.getBegin(); | |||
| 1966 | ||||
| 1967 | CXXNewExpr::InitializationStyle initStyle; | |||
| 1968 | if (DirectInitRange.isValid()) { | |||
| 1969 | assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer." ) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1969, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1970 | initStyle = CXXNewExpr::CallInit; | |||
| 1971 | } else if (Initializer && isa<InitListExpr>(Initializer)) | |||
| 1972 | initStyle = CXXNewExpr::ListInit; | |||
| 1973 | else { | |||
| 1974 | assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr >(Initializer) || isa<CXXConstructExpr>(Initializer) ) && "Initializer expression that cannot have been implicitly created." ) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1975 | isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr >(Initializer) || isa<CXXConstructExpr>(Initializer) ) && "Initializer expression that cannot have been implicitly created." ) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1976 | "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr >(Initializer) || isa<CXXConstructExpr>(Initializer) ) && "Initializer expression that cannot have been implicitly created." ) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1977 | initStyle = CXXNewExpr::NoInit; | |||
| 1978 | } | |||
| 1979 | ||||
| 1980 | MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); | |||
| 1981 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { | |||
| 1982 | assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit && "paren init for non-call init") ? void (0) : __assert_fail ( "initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\"" , "clang/lib/Sema/SemaExprCXX.cpp", 1982, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1983 | Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); | |||
| 1984 | } | |||
| 1985 | ||||
| 1986 | // C++11 [expr.new]p15: | |||
| 1987 | // A new-expression that creates an object of type T initializes that | |||
| 1988 | // object as follows: | |||
| 1989 | InitializationKind Kind | |||
| 1990 | // - If the new-initializer is omitted, the object is default- | |||
| 1991 | // initialized (8.5); if no initialization is performed, | |||
| 1992 | // the object has indeterminate value | |||
| 1993 | = initStyle == CXXNewExpr::NoInit | |||
| 1994 | ? InitializationKind::CreateDefault(TypeRange.getBegin()) | |||
| 1995 | // - Otherwise, the new-initializer is interpreted according to | |||
| 1996 | // the | |||
| 1997 | // initialization rules of 8.5 for direct-initialization. | |||
| 1998 | : initStyle == CXXNewExpr::ListInit | |||
| 1999 | ? InitializationKind::CreateDirectList( | |||
| 2000 | TypeRange.getBegin(), Initializer->getBeginLoc(), | |||
| 2001 | Initializer->getEndLoc()) | |||
| 2002 | : InitializationKind::CreateDirect(TypeRange.getBegin(), | |||
| 2003 | DirectInitRange.getBegin(), | |||
| 2004 | DirectInitRange.getEnd()); | |||
| 2005 | ||||
| 2006 | // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. | |||
| 2007 | auto *Deduced = AllocType->getContainedDeducedType(); | |||
| 2008 | if (Deduced && !Deduced->isDeduced() && | |||
| 2009 | isa<DeducedTemplateSpecializationType>(Deduced)) { | |||
| 2010 | if (ArraySize) | |||
| 2011 | return ExprError( | |||
| 2012 | Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), | |||
| 2013 | diag::err_deduced_class_template_compound_type) | |||
| 2014 | << /*array*/ 2 | |||
| 2015 | << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); | |||
| 2016 | ||||
| 2017 | InitializedEntity Entity | |||
| 2018 | = InitializedEntity::InitializeNew(StartLoc, AllocType); | |||
| 2019 | AllocType = DeduceTemplateSpecializationFromInitializer( | |||
| 2020 | AllocTypeInfo, Entity, Kind, Exprs); | |||
| 2021 | if (AllocType.isNull()) | |||
| 2022 | return ExprError(); | |||
| 2023 | } else if (Deduced && !Deduced->isDeduced()) { | |||
| 2024 | MultiExprArg Inits = Exprs; | |||
| 2025 | bool Braced = (initStyle == CXXNewExpr::ListInit); | |||
| 2026 | if (Braced) { | |||
| 2027 | auto *ILE = cast<InitListExpr>(Exprs[0]); | |||
| 2028 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); | |||
| 2029 | } | |||
| 2030 | ||||
| 2031 | if (initStyle == CXXNewExpr::NoInit || Inits.empty()) | |||
| 2032 | return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) | |||
| 2033 | << AllocType << TypeRange); | |||
| 2034 | if (Inits.size() > 1) { | |||
| 2035 | Expr *FirstBad = Inits[1]; | |||
| 2036 | return ExprError(Diag(FirstBad->getBeginLoc(), | |||
| 2037 | diag::err_auto_new_ctor_multiple_expressions) | |||
| 2038 | << AllocType << TypeRange); | |||
| 2039 | } | |||
| 2040 | if (Braced && !getLangOpts().CPlusPlus17) | |||
| 2041 | Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) | |||
| 2042 | << AllocType << TypeRange; | |||
| 2043 | Expr *Deduce = Inits[0]; | |||
| 2044 | if (isa<InitListExpr>(Deduce)) | |||
| 2045 | return ExprError( | |||
| 2046 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) | |||
| 2047 | << Braced << AllocType << TypeRange); | |||
| 2048 | QualType DeducedType; | |||
| 2049 | TemplateDeductionInfo Info(Deduce->getExprLoc()); | |||
| 2050 | TemplateDeductionResult Result = | |||
| 2051 | DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); | |||
| 2052 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) | |||
| 2053 | return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) | |||
| 2054 | << AllocType << Deduce->getType() << TypeRange | |||
| 2055 | << Deduce->getSourceRange()); | |||
| 2056 | if (DeducedType.isNull()) { | |||
| 2057 | assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void (0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp" , 2057, __extension__ __PRETTY_FUNCTION__)); | |||
| 2058 | return ExprError(); | |||
| 2059 | } | |||
| 2060 | AllocType = DeducedType; | |||
| 2061 | } | |||
| 2062 | ||||
| 2063 | // Per C++0x [expr.new]p5, the type being constructed may be a | |||
| 2064 | // typedef of an array type. | |||
| 2065 | if (!ArraySize) { | |||
| 2066 | if (const ConstantArrayType *Array | |||
| 2067 | = Context.getAsConstantArrayType(AllocType)) { | |||
| 2068 | ArraySize = IntegerLiteral::Create(Context, Array->getSize(), | |||
| 2069 | Context.getSizeType(), | |||
| 2070 | TypeRange.getEnd()); | |||
| 2071 | AllocType = Array->getElementType(); | |||
| 2072 | } | |||
| 2073 | } | |||
| 2074 | ||||
| 2075 | if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) | |||
| 2076 | return ExprError(); | |||
| 2077 | ||||
| 2078 | if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) | |||
| 2079 | return ExprError(); | |||
| 2080 | ||||
| 2081 | // In ARC, infer 'retaining' for the allocated | |||
| 2082 | if (getLangOpts().ObjCAutoRefCount && | |||
| 2083 | AllocType.getObjCLifetime() == Qualifiers::OCL_None && | |||
| 2084 | AllocType->isObjCLifetimeType()) { | |||
| 2085 | AllocType = Context.getLifetimeQualifiedType(AllocType, | |||
| 2086 | AllocType->getObjCARCImplicitLifetime()); | |||
| 2087 | } | |||
| 2088 | ||||
| 2089 | QualType ResultType = Context.getPointerType(AllocType); | |||
| 2090 | ||||
| 2091 | if (ArraySize && *ArraySize && | |||
| 2092 | (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { | |||
| 2093 | ExprResult result = CheckPlaceholderExpr(*ArraySize); | |||
| 2094 | if (result.isInvalid()) return ExprError(); | |||
| 2095 | ArraySize = result.get(); | |||
| 2096 | } | |||
| 2097 | // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have | |||
| 2098 | // integral or enumeration type with a non-negative value." | |||
| 2099 | // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped | |||
| 2100 | // enumeration type, or a class type for which a single non-explicit | |||
| 2101 | // conversion function to integral or unscoped enumeration type exists. | |||
| 2102 | // C++1y [expr.new]p6: The expression [...] is implicitly converted to | |||
| 2103 | // std::size_t. | |||
| 2104 | std::optional<uint64_t> KnownArraySize; | |||
| 2105 | if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { | |||
| 2106 | ExprResult ConvertedSize; | |||
| 2107 | if (getLangOpts().CPlusPlus14) { | |||
| 2108 | assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth () && "Builtin type of size 0?") ? void (0) : __assert_fail ("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2108, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2109 | ||||
| 2110 | ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), | |||
| 2111 | AA_Converting); | |||
| 2112 | ||||
| 2113 | if (!ConvertedSize.isInvalid() && | |||
| 2114 | (*ArraySize)->getType()->getAs<RecordType>()) | |||
| 2115 | // Diagnose the compatibility of this conversion. | |||
| 2116 | Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) | |||
| 2117 | << (*ArraySize)->getType() << 0 << "'size_t'"; | |||
| 2118 | } else { | |||
| 2119 | class SizeConvertDiagnoser : public ICEConvertDiagnoser { | |||
| 2120 | protected: | |||
| 2121 | Expr *ArraySize; | |||
| 2122 | ||||
| 2123 | public: | |||
| 2124 | SizeConvertDiagnoser(Expr *ArraySize) | |||
| 2125 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), | |||
| 2126 | ArraySize(ArraySize) {} | |||
| 2127 | ||||
| 2128 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | |||
| 2129 | QualType T) override { | |||
| 2130 | return S.Diag(Loc, diag::err_array_size_not_integral) | |||
| 2131 | << S.getLangOpts().CPlusPlus11 << T; | |||
| 2132 | } | |||
| 2133 | ||||
| 2134 | SemaDiagnosticBuilder diagnoseIncomplete( | |||
| 2135 | Sema &S, SourceLocation Loc, QualType T) override { | |||
| 2136 | return S.Diag(Loc, diag::err_array_size_incomplete_type) | |||
| 2137 | << T << ArraySize->getSourceRange(); | |||
| 2138 | } | |||
| 2139 | ||||
| 2140 | SemaDiagnosticBuilder diagnoseExplicitConv( | |||
| 2141 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | |||
| 2142 | return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; | |||
| 2143 | } | |||
| 2144 | ||||
| 2145 | SemaDiagnosticBuilder noteExplicitConv( | |||
| 2146 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |||
| 2147 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) | |||
| 2148 | << ConvTy->isEnumeralType() << ConvTy; | |||
| 2149 | } | |||
| 2150 | ||||
| 2151 | SemaDiagnosticBuilder diagnoseAmbiguous( | |||
| 2152 | Sema &S, SourceLocation Loc, QualType T) override { | |||
| 2153 | return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; | |||
| 2154 | } | |||
| 2155 | ||||
| 2156 | SemaDiagnosticBuilder noteAmbiguous( | |||
| 2157 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |||
| 2158 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) | |||
| 2159 | << ConvTy->isEnumeralType() << ConvTy; | |||
| 2160 | } | |||
| 2161 | ||||
| 2162 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, | |||
| 2163 | QualType T, | |||
| 2164 | QualType ConvTy) override { | |||
| 2165 | return S.Diag(Loc, | |||
| 2166 | S.getLangOpts().CPlusPlus11 | |||
| 2167 | ? diag::warn_cxx98_compat_array_size_conversion | |||
| 2168 | : diag::ext_array_size_conversion) | |||
| 2169 | << T << ConvTy->isEnumeralType() << ConvTy; | |||
| 2170 | } | |||
| 2171 | } SizeDiagnoser(*ArraySize); | |||
| 2172 | ||||
| 2173 | ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, | |||
| 2174 | SizeDiagnoser); | |||
| 2175 | } | |||
| 2176 | if (ConvertedSize.isInvalid()) | |||
| 2177 | return ExprError(); | |||
| 2178 | ||||
| 2179 | ArraySize = ConvertedSize.get(); | |||
| 2180 | QualType SizeType = (*ArraySize)->getType(); | |||
| 2181 | ||||
| 2182 | if (!SizeType->isIntegralOrUnscopedEnumerationType()) | |||
| 2183 | return ExprError(); | |||
| 2184 | ||||
| 2185 | // C++98 [expr.new]p7: | |||
| 2186 | // The expression in a direct-new-declarator shall have integral type | |||
| 2187 | // with a non-negative value. | |||
| 2188 | // | |||
| 2189 | // Let's see if this is a constant < 0. If so, we reject it out of hand, | |||
| 2190 | // per CWG1464. Otherwise, if it's not a constant, we must have an | |||
| 2191 | // unparenthesized array type. | |||
| 2192 | ||||
| 2193 | // We've already performed any required implicit conversion to integer or | |||
| 2194 | // unscoped enumeration type. | |||
| 2195 | // FIXME: Per CWG1464, we are required to check the value prior to | |||
| 2196 | // converting to size_t. This will never find a negative array size in | |||
| 2197 | // C++14 onwards, because Value is always unsigned here! | |||
| 2198 | if (std::optional<llvm::APSInt> Value = | |||
| 2199 | (*ArraySize)->getIntegerConstantExpr(Context)) { | |||
| 2200 | if (Value->isSigned() && Value->isNegative()) { | |||
| 2201 | return ExprError(Diag((*ArraySize)->getBeginLoc(), | |||
| 2202 | diag::err_typecheck_negative_array_size) | |||
| 2203 | << (*ArraySize)->getSourceRange()); | |||
| 2204 | } | |||
| 2205 | ||||
| 2206 | if (!AllocType->isDependentType()) { | |||
| 2207 | unsigned ActiveSizeBits = | |||
| 2208 | ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); | |||
| 2209 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) | |||
| 2210 | return ExprError( | |||
| 2211 | Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) | |||
| 2212 | << toString(*Value, 10) << (*ArraySize)->getSourceRange()); | |||
| 2213 | } | |||
| 2214 | ||||
| 2215 | KnownArraySize = Value->getZExtValue(); | |||
| 2216 | } else if (TypeIdParens.isValid()) { | |||
| 2217 | // Can't have dynamic array size when the type-id is in parentheses. | |||
| 2218 | Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) | |||
| 2219 | << (*ArraySize)->getSourceRange() | |||
| 2220 | << FixItHint::CreateRemoval(TypeIdParens.getBegin()) | |||
| 2221 | << FixItHint::CreateRemoval(TypeIdParens.getEnd()); | |||
| 2222 | ||||
| 2223 | TypeIdParens = SourceRange(); | |||
| 2224 | } | |||
| 2225 | ||||
| 2226 | // Note that we do *not* convert the argument in any way. It can | |||
| 2227 | // be signed, larger than size_t, whatever. | |||
| 2228 | } | |||
| 2229 | ||||
| 2230 | FunctionDecl *OperatorNew = nullptr; | |||
| 2231 | FunctionDecl *OperatorDelete = nullptr; | |||
| 2232 | unsigned Alignment = | |||
| 2233 | AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); | |||
| 2234 | unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); | |||
| 2235 | bool PassAlignment = getLangOpts().AlignedAllocation && | |||
| 2236 | Alignment > NewAlignment; | |||
| 2237 | ||||
| 2238 | AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; | |||
| 2239 | if (!AllocType->isDependentType() && | |||
| 2240 | !Expr::hasAnyTypeDependentArguments(PlacementArgs) && | |||
| 2241 | FindAllocationFunctions( | |||
| 2242 | StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, | |||
| 2243 | AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, | |||
| 2244 | OperatorNew, OperatorDelete)) | |||
| 2245 | return ExprError(); | |||
| 2246 | ||||
| 2247 | // If this is an array allocation, compute whether the usual array | |||
| 2248 | // deallocation function for the type has a size_t parameter. | |||
| 2249 | bool UsualArrayDeleteWantsSize = false; | |||
| 2250 | if (ArraySize && !AllocType->isDependentType()) | |||
| 2251 | UsualArrayDeleteWantsSize = | |||
| 2252 | doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); | |||
| 2253 | ||||
| 2254 | SmallVector<Expr *, 8> AllPlaceArgs; | |||
| 2255 | if (OperatorNew) { | |||
| 2256 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); | |||
| 2257 | VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction | |||
| 2258 | : VariadicDoesNotApply; | |||
| 2259 | ||||
| 2260 | // We've already converted the placement args, just fill in any default | |||
| 2261 | // arguments. Skip the first parameter because we don't have a corresponding | |||
| 2262 | // argument. Skip the second parameter too if we're passing in the | |||
| 2263 | // alignment; we've already filled it in. | |||
| 2264 | unsigned NumImplicitArgs = PassAlignment ? 2 : 1; | |||
| 2265 | if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, | |||
| 2266 | NumImplicitArgs, PlacementArgs, AllPlaceArgs, | |||
| 2267 | CallType)) | |||
| 2268 | return ExprError(); | |||
| 2269 | ||||
| 2270 | if (!AllPlaceArgs.empty()) | |||
| 2271 | PlacementArgs = AllPlaceArgs; | |||
| 2272 | ||||
| 2273 | // We would like to perform some checking on the given `operator new` call, | |||
| 2274 | // but the PlacementArgs does not contain the implicit arguments, | |||
| 2275 | // namely allocation size and maybe allocation alignment, | |||
| 2276 | // so we need to conjure them. | |||
| 2277 | ||||
| 2278 | QualType SizeTy = Context.getSizeType(); | |||
| 2279 | unsigned SizeTyWidth = Context.getTypeSize(SizeTy); | |||
| 2280 | ||||
| 2281 | llvm::APInt SingleEltSize( | |||
| 2282 | SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); | |||
| 2283 | ||||
| 2284 | // How many bytes do we want to allocate here? | |||
| 2285 | std::optional<llvm::APInt> AllocationSize; | |||
| 2286 | if (!ArraySize && !AllocType->isDependentType()) { | |||
| 2287 | // For non-array operator new, we only want to allocate one element. | |||
| 2288 | AllocationSize = SingleEltSize; | |||
| 2289 | } else if (KnownArraySize && !AllocType->isDependentType()) { | |||
| 2290 | // For array operator new, only deal with static array size case. | |||
| 2291 | bool Overflow; | |||
| 2292 | AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) | |||
| 2293 | .umul_ov(SingleEltSize, Overflow); | |||
| 2294 | (void)Overflow; | |||
| 2295 | assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already." ) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2297, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2296 | !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already." ) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2297, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2297 | "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already." ) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2297, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2298 | } | |||
| 2299 | ||||
| 2300 | IntegerLiteral AllocationSizeLiteral( | |||
| 2301 | Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), | |||
| 2302 | SizeTy, SourceLocation()); | |||
| 2303 | // Otherwise, if we failed to constant-fold the allocation size, we'll | |||
| 2304 | // just give up and pass-in something opaque, that isn't a null pointer. | |||
| 2305 | OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, | |||
| 2306 | OK_Ordinary, /*SourceExpr=*/nullptr); | |||
| 2307 | ||||
| 2308 | // Let's synthesize the alignment argument in case we will need it. | |||
| 2309 | // Since we *really* want to allocate these on stack, this is slightly ugly | |||
| 2310 | // because there might not be a `std::align_val_t` type. | |||
| 2311 | EnumDecl *StdAlignValT = getStdAlignValT(); | |||
| 2312 | QualType AlignValT = | |||
| 2313 | StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; | |||
| 2314 | IntegerLiteral AlignmentLiteral( | |||
| 2315 | Context, | |||
| 2316 | llvm::APInt(Context.getTypeSize(SizeTy), | |||
| 2317 | Alignment / Context.getCharWidth()), | |||
| 2318 | SizeTy, SourceLocation()); | |||
| 2319 | ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, | |||
| 2320 | CK_IntegralCast, &AlignmentLiteral, | |||
| 2321 | VK_PRValue, FPOptionsOverride()); | |||
| 2322 | ||||
| 2323 | // Adjust placement args by prepending conjured size and alignment exprs. | |||
| 2324 | llvm::SmallVector<Expr *, 8> CallArgs; | |||
| 2325 | CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); | |||
| 2326 | CallArgs.emplace_back(AllocationSize | |||
| 2327 | ? static_cast<Expr *>(&AllocationSizeLiteral) | |||
| 2328 | : &OpaqueAllocationSize); | |||
| 2329 | if (PassAlignment) | |||
| 2330 | CallArgs.emplace_back(&DesiredAlignment); | |||
| 2331 | CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); | |||
| 2332 | ||||
| 2333 | DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); | |||
| 2334 | ||||
| 2335 | checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, | |||
| 2336 | /*IsMemberFunction=*/false, StartLoc, Range, CallType); | |||
| 2337 | ||||
| 2338 | // Warn if the type is over-aligned and is being allocated by (unaligned) | |||
| 2339 | // global operator new. | |||
| 2340 | if (PlacementArgs.empty() && !PassAlignment && | |||
| 2341 | (OperatorNew->isImplicit() || | |||
| 2342 | (OperatorNew->getBeginLoc().isValid() && | |||
| 2343 | getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { | |||
| 2344 | if (Alignment > NewAlignment) | |||
| 2345 | Diag(StartLoc, diag::warn_overaligned_type) | |||
| 2346 | << AllocType | |||
| 2347 | << unsigned(Alignment / Context.getCharWidth()) | |||
| 2348 | << unsigned(NewAlignment / Context.getCharWidth()); | |||
| 2349 | } | |||
| 2350 | } | |||
| 2351 | ||||
| 2352 | // Array 'new' can't have any initializers except empty parentheses. | |||
| 2353 | // Initializer lists are also allowed, in C++11. Rely on the parser for the | |||
| 2354 | // dialect distinction. | |||
| 2355 | if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { | |||
| 2356 | SourceRange InitRange(Exprs.front()->getBeginLoc(), | |||
| 2357 | Exprs.back()->getEndLoc()); | |||
| 2358 | Diag(StartLoc, diag::err_new_array_init_args) << InitRange; | |||
| 2359 | return ExprError(); | |||
| 2360 | } | |||
| 2361 | ||||
| 2362 | // If we can perform the initialization, and we've not already done so, | |||
| 2363 | // do it now. | |||
| 2364 | if (!AllocType->isDependentType() && | |||
| 2365 | !Expr::hasAnyTypeDependentArguments(Exprs)) { | |||
| 2366 | // The type we initialize is the complete type, including the array bound. | |||
| 2367 | QualType InitType; | |||
| 2368 | if (KnownArraySize) | |||
| 2369 | InitType = Context.getConstantArrayType( | |||
| 2370 | AllocType, | |||
| 2371 | llvm::APInt(Context.getTypeSize(Context.getSizeType()), | |||
| 2372 | *KnownArraySize), | |||
| 2373 | *ArraySize, ArrayType::Normal, 0); | |||
| 2374 | else if (ArraySize) | |||
| 2375 | InitType = | |||
| 2376 | Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); | |||
| 2377 | else | |||
| 2378 | InitType = AllocType; | |||
| 2379 | ||||
| 2380 | InitializedEntity Entity | |||
| 2381 | = InitializedEntity::InitializeNew(StartLoc, InitType); | |||
| 2382 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); | |||
| 2383 | ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); | |||
| 2384 | if (FullInit.isInvalid()) | |||
| 2385 | return ExprError(); | |||
| 2386 | ||||
| 2387 | // FullInit is our initializer; strip off CXXBindTemporaryExprs, because | |||
| 2388 | // we don't want the initialized object to be destructed. | |||
| 2389 | // FIXME: We should not create these in the first place. | |||
| 2390 | if (CXXBindTemporaryExpr *Binder = | |||
| 2391 | dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) | |||
| 2392 | FullInit = Binder->getSubExpr(); | |||
| 2393 | ||||
| 2394 | Initializer = FullInit.get(); | |||
| 2395 | ||||
| 2396 | // FIXME: If we have a KnownArraySize, check that the array bound of the | |||
| 2397 | // initializer is no greater than that constant value. | |||
| 2398 | ||||
| 2399 | if (ArraySize && !*ArraySize) { | |||
| 2400 | auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); | |||
| 2401 | if (CAT) { | |||
| 2402 | // FIXME: Track that the array size was inferred rather than explicitly | |||
| 2403 | // specified. | |||
| 2404 | ArraySize = IntegerLiteral::Create( | |||
| 2405 | Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); | |||
| 2406 | } else { | |||
| 2407 | Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) | |||
| 2408 | << Initializer->getSourceRange(); | |||
| 2409 | } | |||
| 2410 | } | |||
| 2411 | } | |||
| 2412 | ||||
| 2413 | // Mark the new and delete operators as referenced. | |||
| 2414 | if (OperatorNew) { | |||
| 2415 | if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) | |||
| 2416 | return ExprError(); | |||
| 2417 | MarkFunctionReferenced(StartLoc, OperatorNew); | |||
| 2418 | } | |||
| 2419 | if (OperatorDelete) { | |||
| 2420 | if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) | |||
| 2421 | return ExprError(); | |||
| 2422 | MarkFunctionReferenced(StartLoc, OperatorDelete); | |||
| 2423 | } | |||
| 2424 | ||||
| 2425 | return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, | |||
| 2426 | PassAlignment, UsualArrayDeleteWantsSize, | |||
| 2427 | PlacementArgs, TypeIdParens, ArraySize, initStyle, | |||
| 2428 | Initializer, ResultType, AllocTypeInfo, Range, | |||
| 2429 | DirectInitRange); | |||
| 2430 | } | |||
| 2431 | ||||
| 2432 | /// Checks that a type is suitable as the allocated type | |||
| 2433 | /// in a new-expression. | |||
| 2434 | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, | |||
| 2435 | SourceRange R) { | |||
| 2436 | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an | |||
| 2437 | // abstract class type or array thereof. | |||
| 2438 | if (AllocType->isFunctionType()) | |||
| 2439 | return Diag(Loc, diag::err_bad_new_type) | |||
| 2440 | << AllocType << 0 << R; | |||
| 2441 | else if (AllocType->isReferenceType()) | |||
| 2442 | return Diag(Loc, diag::err_bad_new_type) | |||
| 2443 | << AllocType << 1 << R; | |||
| 2444 | else if (!AllocType->isDependentType() && | |||
| 2445 | RequireCompleteSizedType( | |||
| 2446 | Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) | |||
| 2447 | return true; | |||
| 2448 | else if (RequireNonAbstractType(Loc, AllocType, | |||
| 2449 | diag::err_allocation_of_abstract_type)) | |||
| 2450 | return true; | |||
| 2451 | else if (AllocType->isVariablyModifiedType()) | |||
| 2452 | return Diag(Loc, diag::err_variably_modified_new_type) | |||
| 2453 | << AllocType; | |||
| 2454 | else if (AllocType.getAddressSpace() != LangAS::Default && | |||
| 2455 | !getLangOpts().OpenCLCPlusPlus) | |||
| 2456 | return Diag(Loc, diag::err_address_space_qualified_new) | |||
| 2457 | << AllocType.getUnqualifiedType() | |||
| 2458 | << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); | |||
| 2459 | else if (getLangOpts().ObjCAutoRefCount) { | |||
| 2460 | if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { | |||
| 2461 | QualType BaseAllocType = Context.getBaseElementType(AT); | |||
| 2462 | if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && | |||
| 2463 | BaseAllocType->isObjCLifetimeType()) | |||
| 2464 | return Diag(Loc, diag::err_arc_new_array_without_ownership) | |||
| 2465 | << BaseAllocType; | |||
| 2466 | } | |||
| 2467 | } | |||
| 2468 | ||||
| 2469 | return false; | |||
| 2470 | } | |||
| 2471 | ||||
| 2472 | static bool resolveAllocationOverload( | |||
| 2473 | Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, | |||
| 2474 | bool &PassAlignment, FunctionDecl *&Operator, | |||
| 2475 | OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { | |||
| 2476 | OverloadCandidateSet Candidates(R.getNameLoc(), | |||
| 2477 | OverloadCandidateSet::CSK_Normal); | |||
| 2478 | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); | |||
| 2479 | Alloc != AllocEnd; ++Alloc) { | |||
| 2480 | // Even member operator new/delete are implicitly treated as | |||
| 2481 | // static, so don't use AddMemberCandidate. | |||
| 2482 | NamedDecl *D = (*Alloc)->getUnderlyingDecl(); | |||
| 2483 | ||||
| 2484 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { | |||
| 2485 | S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), | |||
| 2486 | /*ExplicitTemplateArgs=*/nullptr, Args, | |||
| 2487 | Candidates, | |||
| 2488 | /*SuppressUserConversions=*/false); | |||
| 2489 | continue; | |||
| 2490 | } | |||
| 2491 | ||||
| 2492 | FunctionDecl *Fn = cast<FunctionDecl>(D); | |||
| 2493 | S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, | |||
| 2494 | /*SuppressUserConversions=*/false); | |||
| 2495 | } | |||
| 2496 | ||||
| 2497 | // Do the resolution. | |||
| 2498 | OverloadCandidateSet::iterator Best; | |||
| 2499 | switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { | |||
| 2500 | case OR_Success: { | |||
| 2501 | // Got one! | |||
| 2502 | FunctionDecl *FnDecl = Best->Function; | |||
| 2503 | if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), | |||
| 2504 | Best->FoundDecl) == Sema::AR_inaccessible) | |||
| 2505 | return true; | |||
| 2506 | ||||
| 2507 | Operator = FnDecl; | |||
| 2508 | return false; | |||
| 2509 | } | |||
| 2510 | ||||
| 2511 | case OR_No_Viable_Function: | |||
| 2512 | // C++17 [expr.new]p13: | |||
| 2513 | // If no matching function is found and the allocated object type has | |||
| 2514 | // new-extended alignment, the alignment argument is removed from the | |||
| 2515 | // argument list, and overload resolution is performed again. | |||
| 2516 | if (PassAlignment) { | |||
| 2517 | PassAlignment = false; | |||
| 2518 | AlignArg = Args[1]; | |||
| 2519 | Args.erase(Args.begin() + 1); | |||
| 2520 | return resolveAllocationOverload(S, R, Range, Args, PassAlignment, | |||
| 2521 | Operator, &Candidates, AlignArg, | |||
| 2522 | Diagnose); | |||
| 2523 | } | |||
| 2524 | ||||
| 2525 | // MSVC will fall back on trying to find a matching global operator new | |||
| 2526 | // if operator new[] cannot be found. Also, MSVC will leak by not | |||
| 2527 | // generating a call to operator delete or operator delete[], but we | |||
| 2528 | // will not replicate that bug. | |||
| 2529 | // FIXME: Find out how this interacts with the std::align_val_t fallback | |||
| 2530 | // once MSVC implements it. | |||
| 2531 | if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && | |||
| 2532 | S.Context.getLangOpts().MSVCCompat) { | |||
| 2533 | R.clear(); | |||
| 2534 | R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); | |||
| 2535 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); | |||
| 2536 | // FIXME: This will give bad diagnostics pointing at the wrong functions. | |||
| 2537 | return resolveAllocationOverload(S, R, Range, Args, PassAlignment, | |||
| 2538 | Operator, /*Candidates=*/nullptr, | |||
| 2539 | /*AlignArg=*/nullptr, Diagnose); | |||
| 2540 | } | |||
| 2541 | ||||
| 2542 | if (Diagnose) { | |||
| 2543 | // If this is an allocation of the form 'new (p) X' for some object | |||
| 2544 | // pointer p (or an expression that will decay to such a pointer), | |||
| 2545 | // diagnose the missing inclusion of <new>. | |||
| 2546 | if (!R.isClassLookup() && Args.size() == 2 && | |||
| 2547 | (Args[1]->getType()->isObjectPointerType() || | |||
| 2548 | Args[1]->getType()->isArrayType())) { | |||
| 2549 | S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) | |||
| 2550 | << R.getLookupName() << Range; | |||
| 2551 | // Listing the candidates is unlikely to be useful; skip it. | |||
| 2552 | return true; | |||
| 2553 | } | |||
| 2554 | ||||
| 2555 | // Finish checking all candidates before we note any. This checking can | |||
| 2556 | // produce additional diagnostics so can't be interleaved with our | |||
| 2557 | // emission of notes. | |||
| 2558 | // | |||
| 2559 | // For an aligned allocation, separately check the aligned and unaligned | |||
| 2560 | // candidates with their respective argument lists. | |||
| 2561 | SmallVector<OverloadCandidate*, 32> Cands; | |||
| 2562 | SmallVector<OverloadCandidate*, 32> AlignedCands; | |||
| 2563 | llvm::SmallVector<Expr*, 4> AlignedArgs; | |||
| 2564 | if (AlignedCandidates) { | |||
| 2565 | auto IsAligned = [](OverloadCandidate &C) { | |||
| 2566 | return C.Function->getNumParams() > 1 && | |||
| 2567 | C.Function->getParamDecl(1)->getType()->isAlignValT(); | |||
| 2568 | }; | |||
| 2569 | auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; | |||
| 2570 | ||||
| 2571 | AlignedArgs.reserve(Args.size() + 1); | |||
| 2572 | AlignedArgs.push_back(Args[0]); | |||
| 2573 | AlignedArgs.push_back(AlignArg); | |||
| 2574 | AlignedArgs.append(Args.begin() + 1, Args.end()); | |||
| 2575 | AlignedCands = AlignedCandidates->CompleteCandidates( | |||
| 2576 | S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); | |||
| 2577 | ||||
| 2578 | Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, | |||
| 2579 | R.getNameLoc(), IsUnaligned); | |||
| 2580 | } else { | |||
| 2581 | Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, | |||
| 2582 | R.getNameLoc()); | |||
| 2583 | } | |||
| 2584 | ||||
| 2585 | S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) | |||
| 2586 | << R.getLookupName() << Range; | |||
| 2587 | if (AlignedCandidates) | |||
| 2588 | AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", | |||
| 2589 | R.getNameLoc()); | |||
| 2590 | Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); | |||
| 2591 | } | |||
| 2592 | return true; | |||
| 2593 | ||||
| 2594 | case OR_Ambiguous: | |||
| 2595 | if (Diagnose) { | |||
| 2596 | Candidates.NoteCandidates( | |||
| 2597 | PartialDiagnosticAt(R.getNameLoc(), | |||
| 2598 | S.PDiag(diag::err_ovl_ambiguous_call) | |||
| 2599 | << R.getLookupName() << Range), | |||
| 2600 | S, OCD_AmbiguousCandidates, Args); | |||
| 2601 | } | |||
| 2602 | return true; | |||
| 2603 | ||||
| 2604 | case OR_Deleted: { | |||
| 2605 | if (Diagnose) { | |||
| 2606 | Candidates.NoteCandidates( | |||
| 2607 | PartialDiagnosticAt(R.getNameLoc(), | |||
| 2608 | S.PDiag(diag::err_ovl_deleted_call) | |||
| 2609 | << R.getLookupName() << Range), | |||
| 2610 | S, OCD_AllCandidates, Args); | |||
| 2611 | } | |||
| 2612 | return true; | |||
| 2613 | } | |||
| 2614 | } | |||
| 2615 | llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction" , "clang/lib/Sema/SemaExprCXX.cpp", 2615); | |||
| 2616 | } | |||
| 2617 | ||||
| 2618 | bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, | |||
| 2619 | AllocationFunctionScope NewScope, | |||
| 2620 | AllocationFunctionScope DeleteScope, | |||
| 2621 | QualType AllocType, bool IsArray, | |||
| 2622 | bool &PassAlignment, MultiExprArg PlaceArgs, | |||
| 2623 | FunctionDecl *&OperatorNew, | |||
| 2624 | FunctionDecl *&OperatorDelete, | |||
| 2625 | bool Diagnose) { | |||
| 2626 | // --- Choosing an allocation function --- | |||
| 2627 | // C++ 5.3.4p8 - 14 & 18 | |||
| 2628 | // 1) If looking in AFS_Global scope for allocation functions, only look in | |||
| 2629 | // the global scope. Else, if AFS_Class, only look in the scope of the | |||
| 2630 | // allocated class. If AFS_Both, look in both. | |||
| 2631 | // 2) If an array size is given, look for operator new[], else look for | |||
| 2632 | // operator new. | |||
| 2633 | // 3) The first argument is always size_t. Append the arguments from the | |||
| 2634 | // placement form. | |||
| 2635 | ||||
| 2636 | SmallVector<Expr*, 8> AllocArgs; | |||
| 2637 | AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); | |||
| 2638 | ||||
| 2639 | // We don't care about the actual value of these arguments. | |||
| 2640 | // FIXME: Should the Sema create the expression and embed it in the syntax | |||
| 2641 | // tree? Or should the consumer just recalculate the value? | |||
| 2642 | // FIXME: Using a dummy value will interact poorly with attribute enable_if. | |||
| 2643 | IntegerLiteral Size( | |||
| 2644 | Context, | |||
| 2645 | llvm::APInt::getZero( | |||
| 2646 | Context.getTargetInfo().getPointerWidth(LangAS::Default)), | |||
| 2647 | Context.getSizeType(), SourceLocation()); | |||
| 2648 | AllocArgs.push_back(&Size); | |||
| 2649 | ||||
| 2650 | QualType AlignValT = Context.VoidTy; | |||
| 2651 | if (PassAlignment) { | |||
| 2652 | DeclareGlobalNewDelete(); | |||
| 2653 | AlignValT = Context.getTypeDeclType(getStdAlignValT()); | |||
| 2654 | } | |||
| 2655 | CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); | |||
| 2656 | if (PassAlignment) | |||
| 2657 | AllocArgs.push_back(&Align); | |||
| 2658 | ||||
| 2659 | AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); | |||
| 2660 | ||||
| 2661 | // C++ [expr.new]p8: | |||
| 2662 | // If the allocated type is a non-array type, the allocation | |||
| 2663 | // function's name is operator new and the deallocation function's | |||
| 2664 | // name is operator delete. If the allocated type is an array | |||
| 2665 | // type, the allocation function's name is operator new[] and the | |||
| 2666 | // deallocation function's name is operator delete[]. | |||
| 2667 | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( | |||
| 2668 | IsArray ? OO_Array_New : OO_New); | |||
| 2669 | ||||
| 2670 | QualType AllocElemType = Context.getBaseElementType(AllocType); | |||
| 2671 | ||||
| 2672 | // Find the allocation function. | |||
| 2673 | { | |||
| 2674 | LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); | |||
| 2675 | ||||
| 2676 | // C++1z [expr.new]p9: | |||
| 2677 | // If the new-expression begins with a unary :: operator, the allocation | |||
| 2678 | // function's name is looked up in the global scope. Otherwise, if the | |||
| 2679 | // allocated type is a class type T or array thereof, the allocation | |||
| 2680 | // function's name is looked up in the scope of T. | |||
| 2681 | if (AllocElemType->isRecordType() && NewScope != AFS_Global) | |||
| 2682 | LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); | |||
| 2683 | ||||
| 2684 | // We can see ambiguity here if the allocation function is found in | |||
| 2685 | // multiple base classes. | |||
| 2686 | if (R.isAmbiguous()) | |||
| 2687 | return true; | |||
| 2688 | ||||
| 2689 | // If this lookup fails to find the name, or if the allocated type is not | |||
| 2690 | // a class type, the allocation function's name is looked up in the | |||
| 2691 | // global scope. | |||
| 2692 | if (R.empty()) { | |||
| 2693 | if (NewScope == AFS_Class) | |||
| 2694 | return true; | |||
| 2695 | ||||
| 2696 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); | |||
| 2697 | } | |||
| 2698 | ||||
| 2699 | if (getLangOpts().OpenCLCPlusPlus && R.empty()) { | |||
| 2700 | if (PlaceArgs.empty()) { | |||
| 2701 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; | |||
| 2702 | } else { | |||
| 2703 | Diag(StartLoc, diag::err_openclcxx_placement_new); | |||
| 2704 | } | |||
| 2705 | return true; | |||
| 2706 | } | |||
| 2707 | ||||
| 2708 | assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found" ) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2708, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2709 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous" ) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\"" , "clang/lib/Sema/SemaExprCXX.cpp", 2709, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2710 | ||||
| 2711 | // We do our own custom access checks below. | |||
| 2712 | R.suppressDiagnostics(); | |||
| 2713 | ||||
| 2714 | if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, | |||
| 2715 | OperatorNew, /*Candidates=*/nullptr, | |||
| 2716 | /*AlignArg=*/nullptr, Diagnose)) | |||
| 2717 | return true; | |||
| 2718 | } | |||
| 2719 | ||||
| 2720 | // We don't need an operator delete if we're running under -fno-exceptions. | |||
| 2721 | if (!getLangOpts().Exceptions) { | |||
| 2722 | OperatorDelete = nullptr; | |||
| 2723 | return false; | |||
| 2724 | } | |||
| 2725 | ||||
| 2726 | // Note, the name of OperatorNew might have been changed from array to | |||
| 2727 | // non-array by resolveAllocationOverload. | |||
| 2728 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | |||
| 2729 | OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New | |||
| 2730 | ? OO_Array_Delete | |||
| 2731 | : OO_Delete); | |||
| 2732 | ||||
| 2733 | // C++ [expr.new]p19: | |||
| 2734 | // | |||
| 2735 | // If the new-expression begins with a unary :: operator, the | |||
| 2736 | // deallocation function's name is looked up in the global | |||
| 2737 | // scope. Otherwise, if the allocated type is a class type T or an | |||
| 2738 | // array thereof, the deallocation function's name is looked up in | |||
| 2739 | // the scope of T. If this lookup fails to find the name, or if | |||
| 2740 | // the allocated type is not a class type or array thereof, the | |||
| 2741 | // deallocation function's name is looked up in the global scope. | |||
| 2742 | LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); | |||
| 2743 | if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { | |||
| 2744 | auto *RD = | |||
| 2745 | cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); | |||
| 2746 | LookupQualifiedName(FoundDelete, RD); | |||
| 2747 | } | |||
| 2748 | if (FoundDelete.isAmbiguous()) | |||
| 2749 | return true; // FIXME: clean up expressions? | |||
| 2750 | ||||
| 2751 | // Filter out any destroying operator deletes. We can't possibly call such a | |||
| 2752 | // function in this context, because we're handling the case where the object | |||
| 2753 | // was not successfully constructed. | |||
| 2754 | // FIXME: This is not covered by the language rules yet. | |||
| 2755 | { | |||
| 2756 | LookupResult::Filter Filter = FoundDelete.makeFilter(); | |||
| 2757 | while (Filter.hasNext()) { | |||
| 2758 | auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); | |||
| 2759 | if (FD && FD->isDestroyingOperatorDelete()) | |||
| 2760 | Filter.erase(); | |||
| 2761 | } | |||
| 2762 | Filter.done(); | |||
| 2763 | } | |||
| 2764 | ||||
| 2765 | bool FoundGlobalDelete = FoundDelete.empty(); | |||
| 2766 | if (FoundDelete.empty()) { | |||
| 2767 | FoundDelete.clear(LookupOrdinaryName); | |||
| 2768 | ||||
| 2769 | if (DeleteScope == AFS_Class) | |||
| 2770 | return true; | |||
| 2771 | ||||
| 2772 | DeclareGlobalNewDelete(); | |||
| 2773 | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); | |||
| 2774 | } | |||
| 2775 | ||||
| 2776 | FoundDelete.suppressDiagnostics(); | |||
| 2777 | ||||
| 2778 | SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; | |||
| 2779 | ||||
| 2780 | // Whether we're looking for a placement operator delete is dictated | |||
| 2781 | // by whether we selected a placement operator new, not by whether | |||
| 2782 | // we had explicit placement arguments. This matters for things like | |||
| 2783 | // struct A { void *operator new(size_t, int = 0); ... }; | |||
| 2784 | // A *a = new A() | |||
| 2785 | // | |||
| 2786 | // We don't have any definition for what a "placement allocation function" | |||
| 2787 | // is, but we assume it's any allocation function whose | |||
| 2788 | // parameter-declaration-clause is anything other than (size_t). | |||
| 2789 | // | |||
| 2790 | // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? | |||
| 2791 | // This affects whether an exception from the constructor of an overaligned | |||
| 2792 | // type uses the sized or non-sized form of aligned operator delete. | |||
| 2793 | bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || | |||
| 2794 | OperatorNew->isVariadic(); | |||
| 2795 | ||||
| 2796 | if (isPlacementNew) { | |||
| 2797 | // C++ [expr.new]p20: | |||
| 2798 | // A declaration of a placement deallocation function matches the | |||
| 2799 | // declaration of a placement allocation function if it has the | |||
| 2800 | // same number of parameters and, after parameter transformations | |||
| 2801 | // (8.3.5), all parameter types except the first are | |||
| 2802 | // identical. [...] | |||
| 2803 | // | |||
| 2804 | // To perform this comparison, we compute the function type that | |||
| 2805 | // the deallocation function should have, and use that type both | |||
| 2806 | // for template argument deduction and for comparison purposes. | |||
| 2807 | QualType ExpectedFunctionType; | |||
| 2808 | { | |||
| 2809 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); | |||
| 2810 | ||||
| 2811 | SmallVector<QualType, 4> ArgTypes; | |||
| 2812 | ArgTypes.push_back(Context.VoidPtrTy); | |||
| 2813 | for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) | |||
| 2814 | ArgTypes.push_back(Proto->getParamType(I)); | |||
| 2815 | ||||
| 2816 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 2817 | // FIXME: This is not part of the standard's rule. | |||
| 2818 | EPI.Variadic = Proto->isVariadic(); | |||
| 2819 | ||||
| 2820 | ExpectedFunctionType | |||
| 2821 | = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); | |||
| 2822 | } | |||
| 2823 | ||||
| 2824 | for (LookupResult::iterator D = FoundDelete.begin(), | |||
| 2825 | DEnd = FoundDelete.end(); | |||
| 2826 | D != DEnd; ++D) { | |||
| 2827 | FunctionDecl *Fn = nullptr; | |||
| 2828 | if (FunctionTemplateDecl *FnTmpl = | |||
| 2829 | dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { | |||
| 2830 | // Perform template argument deduction to try to match the | |||
| 2831 | // expected function type. | |||
| 2832 | TemplateDeductionInfo Info(StartLoc); | |||
| 2833 | if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, | |||
| 2834 | Info)) | |||
| 2835 | continue; | |||
| 2836 | } else | |||
| 2837 | Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); | |||
| 2838 | ||||
| 2839 | if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), | |||
| 2840 | ExpectedFunctionType, | |||
| 2841 | /*AdjustExcpetionSpec*/true), | |||
| 2842 | ExpectedFunctionType)) | |||
| 2843 | Matches.push_back(std::make_pair(D.getPair(), Fn)); | |||
| 2844 | } | |||
| 2845 | ||||
| 2846 | if (getLangOpts().CUDA) | |||
| 2847 | EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), | |||
| 2848 | Matches); | |||
| 2849 | } else { | |||
| 2850 | // C++1y [expr.new]p22: | |||
| 2851 | // For a non-placement allocation function, the normal deallocation | |||
| 2852 | // function lookup is used | |||
| 2853 | // | |||
| 2854 | // Per [expr.delete]p10, this lookup prefers a member operator delete | |||
| 2855 | // without a size_t argument, but prefers a non-member operator delete | |||
| 2856 | // with a size_t where possible (which it always is in this case). | |||
| 2857 | llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; | |||
| 2858 | UsualDeallocFnInfo Selected = resolveDeallocationOverload( | |||
| 2859 | *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, | |||
| 2860 | /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), | |||
| 2861 | &BestDeallocFns); | |||
| 2862 | if (Selected) | |||
| 2863 | Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); | |||
| 2864 | else { | |||
| 2865 | // If we failed to select an operator, all remaining functions are viable | |||
| 2866 | // but ambiguous. | |||
| 2867 | for (auto Fn : BestDeallocFns) | |||
| 2868 | Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); | |||
| 2869 | } | |||
| 2870 | } | |||
| 2871 | ||||
| 2872 | // C++ [expr.new]p20: | |||
| 2873 | // [...] If the lookup finds a single matching deallocation | |||
| 2874 | // function, that function will be called; otherwise, no | |||
| 2875 | // deallocation function will be called. | |||
| 2876 | if (Matches.size() == 1) { | |||
| 2877 | OperatorDelete = Matches[0].second; | |||
| 2878 | ||||
| 2879 | // C++1z [expr.new]p23: | |||
| 2880 | // If the lookup finds a usual deallocation function (3.7.4.2) | |||
| 2881 | // with a parameter of type std::size_t and that function, considered | |||
| 2882 | // as a placement deallocation function, would have been | |||
| 2883 | // selected as a match for the allocation function, the program | |||
| 2884 | // is ill-formed. | |||
| 2885 | if (getLangOpts().CPlusPlus11 && isPlacementNew && | |||
| 2886 | isNonPlacementDeallocationFunction(*this, OperatorDelete)) { | |||
| 2887 | UsualDeallocFnInfo Info(*this, | |||
| 2888 | DeclAccessPair::make(OperatorDelete, AS_public)); | |||
| 2889 | // Core issue, per mail to core reflector, 2016-10-09: | |||
| 2890 | // If this is a member operator delete, and there is a corresponding | |||
| 2891 | // non-sized member operator delete, this isn't /really/ a sized | |||
| 2892 | // deallocation function, it just happens to have a size_t parameter. | |||
| 2893 | bool IsSizedDelete = Info.HasSizeT; | |||
| 2894 | if (IsSizedDelete && !FoundGlobalDelete) { | |||
| 2895 | auto NonSizedDelete = | |||
| 2896 | resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, | |||
| 2897 | /*WantAlign*/Info.HasAlignValT); | |||
| 2898 | if (NonSizedDelete && !NonSizedDelete.HasSizeT && | |||
| 2899 | NonSizedDelete.HasAlignValT == Info.HasAlignValT) | |||
| 2900 | IsSizedDelete = false; | |||
| 2901 | } | |||
| 2902 | ||||
| 2903 | if (IsSizedDelete) { | |||
| 2904 | SourceRange R = PlaceArgs.empty() | |||
| 2905 | ? SourceRange() | |||
| 2906 | : SourceRange(PlaceArgs.front()->getBeginLoc(), | |||
| 2907 | PlaceArgs.back()->getEndLoc()); | |||
| 2908 | Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; | |||
| 2909 | if (!OperatorDelete->isImplicit()) | |||
| 2910 | Diag(OperatorDelete->getLocation(), diag::note_previous_decl) | |||
| 2911 | << DeleteName; | |||
| 2912 | } | |||
| 2913 | } | |||
| 2914 | ||||
| 2915 | CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), | |||
| 2916 | Matches[0].first); | |||
| 2917 | } else if (!Matches.empty()) { | |||
| 2918 | // We found multiple suitable operators. Per [expr.new]p20, that means we | |||
| 2919 | // call no 'operator delete' function, but we should at least warn the user. | |||
| 2920 | // FIXME: Suppress this warning if the construction cannot throw. | |||
| 2921 | Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) | |||
| 2922 | << DeleteName << AllocElemType; | |||
| 2923 | ||||
| 2924 | for (auto &Match : Matches) | |||
| 2925 | Diag(Match.second->getLocation(), | |||
| 2926 | diag::note_member_declared_here) << DeleteName; | |||
| 2927 | } | |||
| 2928 | ||||
| 2929 | return false; | |||
| 2930 | } | |||
| 2931 | ||||
| 2932 | /// DeclareGlobalNewDelete - Declare the global forms of operator new and | |||
| 2933 | /// delete. These are: | |||
| 2934 | /// @code | |||
| 2935 | /// // C++03: | |||
| 2936 | /// void* operator new(std::size_t) throw(std::bad_alloc); | |||
| 2937 | /// void* operator new[](std::size_t) throw(std::bad_alloc); | |||
| 2938 | /// void operator delete(void *) throw(); | |||
| 2939 | /// void operator delete[](void *) throw(); | |||
| 2940 | /// // C++11: | |||
| 2941 | /// void* operator new(std::size_t); | |||
| 2942 | /// void* operator new[](std::size_t); | |||
| 2943 | /// void operator delete(void *) noexcept; | |||
| 2944 | /// void operator delete[](void *) noexcept; | |||
| 2945 | /// // C++1y: | |||
| 2946 | /// void* operator new(std::size_t); | |||
| 2947 | /// void* operator new[](std::size_t); | |||
| 2948 | /// void operator delete(void *) noexcept; | |||
| 2949 | /// void operator delete[](void *) noexcept; | |||
| 2950 | /// void operator delete(void *, std::size_t) noexcept; | |||
| 2951 | /// void operator delete[](void *, std::size_t) noexcept; | |||
| 2952 | /// @endcode | |||
| 2953 | /// Note that the placement and nothrow forms of new are *not* implicitly | |||
| 2954 | /// declared. Their use requires including \<new\>. | |||
| 2955 | void Sema::DeclareGlobalNewDelete() { | |||
| 2956 | if (GlobalNewDeleteDeclared) | |||
| 2957 | return; | |||
| 2958 | ||||
| 2959 | // The implicitly declared new and delete operators | |||
| 2960 | // are not supported in OpenCL. | |||
| 2961 | if (getLangOpts().OpenCLCPlusPlus) | |||
| 2962 | return; | |||
| 2963 | ||||
| 2964 | // C++ [basic.stc.dynamic.general]p2: | |||
| 2965 | // The library provides default definitions for the global allocation | |||
| 2966 | // and deallocation functions. Some global allocation and deallocation | |||
| 2967 | // functions are replaceable ([new.delete]); these are attached to the | |||
| 2968 | // global module ([module.unit]). | |||
| 2969 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) | |||
| 2970 | PushGlobalModuleFragment(SourceLocation()); | |||
| 2971 | ||||
| 2972 | // C++ [basic.std.dynamic]p2: | |||
| 2973 | // [...] The following allocation and deallocation functions (18.4) are | |||
| 2974 | // implicitly declared in global scope in each translation unit of a | |||
| 2975 | // program | |||
| 2976 | // | |||
| 2977 | // C++03: | |||
| 2978 | // void* operator new(std::size_t) throw(std::bad_alloc); | |||
| 2979 | // void* operator new[](std::size_t) throw(std::bad_alloc); | |||
| 2980 | // void operator delete(void*) throw(); | |||
| 2981 | // void operator delete[](void*) throw(); | |||
| 2982 | // C++11: | |||
| 2983 | // void* operator new(std::size_t); | |||
| 2984 | // void* operator new[](std::size_t); | |||
| 2985 | // void operator delete(void*) noexcept; | |||
| 2986 | // void operator delete[](void*) noexcept; | |||
| 2987 | // C++1y: | |||
| 2988 | // void* operator new(std::size_t); | |||
| 2989 | // void* operator new[](std::size_t); | |||
| 2990 | // void operator delete(void*) noexcept; | |||
| 2991 | // void operator delete[](void*) noexcept; | |||
| 2992 | // void operator delete(void*, std::size_t) noexcept; | |||
| 2993 | // void operator delete[](void*, std::size_t) noexcept; | |||
| 2994 | // | |||
| 2995 | // These implicit declarations introduce only the function names operator | |||
| 2996 | // new, operator new[], operator delete, operator delete[]. | |||
| 2997 | // | |||
| 2998 | // Here, we need to refer to std::bad_alloc, so we will implicitly declare | |||
| 2999 | // "std" or "bad_alloc" as necessary to form the exception specification. | |||
| 3000 | // However, we do not make these implicit declarations visible to name | |||
| 3001 | // lookup. | |||
| 3002 | if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { | |||
| 3003 | // The "std::bad_alloc" class has not yet been declared, so build it | |||
| 3004 | // implicitly. | |||
| 3005 | StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, | |||
| 3006 | getOrCreateStdNamespace(), | |||
| 3007 | SourceLocation(), SourceLocation(), | |||
| 3008 | &PP.getIdentifierTable().get("bad_alloc"), | |||
| 3009 | nullptr); | |||
| 3010 | getStdBadAlloc()->setImplicit(true); | |||
| 3011 | ||||
| 3012 | // The implicitly declared "std::bad_alloc" should live in global module | |||
| 3013 | // fragment. | |||
| 3014 | if (TheGlobalModuleFragment) { | |||
| 3015 | getStdBadAlloc()->setModuleOwnershipKind( | |||
| 3016 | Decl::ModuleOwnershipKind::ReachableWhenImported); | |||
| 3017 | getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); | |||
| 3018 | } | |||
| 3019 | } | |||
| 3020 | if (!StdAlignValT && getLangOpts().AlignedAllocation) { | |||
| 3021 | // The "std::align_val_t" enum class has not yet been declared, so build it | |||
| 3022 | // implicitly. | |||
| 3023 | auto *AlignValT = EnumDecl::Create( | |||
| 3024 | Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), | |||
| 3025 | &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); | |||
| 3026 | ||||
| 3027 | // The implicitly declared "std::align_val_t" should live in global module | |||
| 3028 | // fragment. | |||
| 3029 | if (TheGlobalModuleFragment) { | |||
| 3030 | AlignValT->setModuleOwnershipKind( | |||
| 3031 | Decl::ModuleOwnershipKind::ReachableWhenImported); | |||
| 3032 | AlignValT->setLocalOwningModule(TheGlobalModuleFragment); | |||
| 3033 | } | |||
| 3034 | ||||
| 3035 | AlignValT->setIntegerType(Context.getSizeType()); | |||
| 3036 | AlignValT->setPromotionType(Context.getSizeType()); | |||
| 3037 | AlignValT->setImplicit(true); | |||
| 3038 | ||||
| 3039 | StdAlignValT = AlignValT; | |||
| 3040 | } | |||
| 3041 | ||||
| 3042 | GlobalNewDeleteDeclared = true; | |||
| 3043 | ||||
| 3044 | QualType VoidPtr = Context.getPointerType(Context.VoidTy); | |||
| 3045 | QualType SizeT = Context.getSizeType(); | |||
| 3046 | ||||
| 3047 | auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, | |||
| 3048 | QualType Return, QualType Param) { | |||
| 3049 | llvm::SmallVector<QualType, 3> Params; | |||
| 3050 | Params.push_back(Param); | |||
| 3051 | ||||
| 3052 | // Create up to four variants of the function (sized/aligned). | |||
| 3053 | bool HasSizedVariant = getLangOpts().SizedDeallocation && | |||
| 3054 | (Kind == OO_Delete || Kind == OO_Array_Delete); | |||
| 3055 | bool HasAlignedVariant = getLangOpts().AlignedAllocation; | |||
| 3056 | ||||
| 3057 | int NumSizeVariants = (HasSizedVariant ? 2 : 1); | |||
| 3058 | int NumAlignVariants = (HasAlignedVariant ? 2 : 1); | |||
| 3059 | for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { | |||
| 3060 | if (Sized) | |||
| 3061 | Params.push_back(SizeT); | |||
| 3062 | ||||
| 3063 | for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { | |||
| 3064 | if (Aligned) | |||
| 3065 | Params.push_back(Context.getTypeDeclType(getStdAlignValT())); | |||
| 3066 | ||||
| 3067 | DeclareGlobalAllocationFunction( | |||
| 3068 | Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); | |||
| 3069 | ||||
| 3070 | if (Aligned) | |||
| 3071 | Params.pop_back(); | |||
| 3072 | } | |||
| 3073 | } | |||
| 3074 | }; | |||
| 3075 | ||||
| 3076 | DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); | |||
| 3077 | DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); | |||
| 3078 | DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); | |||
| 3079 | DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); | |||
| 3080 | ||||
| 3081 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) | |||
| 3082 | PopGlobalModuleFragment(); | |||
| 3083 | } | |||
| 3084 | ||||
| 3085 | /// DeclareGlobalAllocationFunction - Declares a single implicit global | |||
| 3086 | /// allocation function if it doesn't already exist. | |||
| 3087 | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, | |||
| 3088 | QualType Return, | |||
| 3089 | ArrayRef<QualType> Params) { | |||
| 3090 | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); | |||
| 3091 | ||||
| 3092 | // Check if this function is already declared. | |||
| 3093 | DeclContext::lookup_result R = GlobalCtx->lookup(Name); | |||
| 3094 | for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); | |||
| 3095 | Alloc != AllocEnd; ++Alloc) { | |||
| 3096 | // Only look at non-template functions, as it is the predefined, | |||
| 3097 | // non-templated allocation function we are trying to declare here. | |||
| 3098 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { | |||
| 3099 | if (Func->getNumParams() == Params.size()) { | |||
| 3100 | llvm::SmallVector<QualType, 3> FuncParams; | |||
| 3101 | for (auto *P : Func->parameters()) | |||
| 3102 | FuncParams.push_back( | |||
| 3103 | Context.getCanonicalType(P->getType().getUnqualifiedType())); | |||
| 3104 | if (llvm::ArrayRef(FuncParams) == Params) { | |||
| 3105 | // Make the function visible to name lookup, even if we found it in | |||
| 3106 | // an unimported module. It either is an implicitly-declared global | |||
| 3107 | // allocation function, or is suppressing that function. | |||
| 3108 | Func->setVisibleDespiteOwningModule(); | |||
| 3109 | return; | |||
| 3110 | } | |||
| 3111 | } | |||
| 3112 | } | |||
| 3113 | } | |||
| 3114 | ||||
| 3115 | FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( | |||
| 3116 | /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); | |||
| 3117 | ||||
| 3118 | QualType BadAllocType; | |||
| 3119 | bool HasBadAllocExceptionSpec | |||
| 3120 | = (Name.getCXXOverloadedOperator() == OO_New || | |||
| 3121 | Name.getCXXOverloadedOperator() == OO_Array_New); | |||
| 3122 | if (HasBadAllocExceptionSpec) { | |||
| 3123 | if (!getLangOpts().CPlusPlus11) { | |||
| 3124 | BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); | |||
| 3125 | assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared" ) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3125, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3126 | EPI.ExceptionSpec.Type = EST_Dynamic; | |||
| 3127 | EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); | |||
| 3128 | } | |||
| 3129 | if (getLangOpts().NewInfallible) { | |||
| 3130 | EPI.ExceptionSpec.Type = EST_DynamicNone; | |||
| 3131 | } | |||
| 3132 | } else { | |||
| 3133 | EPI.ExceptionSpec = | |||
| 3134 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; | |||
| 3135 | } | |||
| 3136 | ||||
| 3137 | auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { | |||
| 3138 | QualType FnType = Context.getFunctionType(Return, Params, EPI); | |||
| 3139 | FunctionDecl *Alloc = FunctionDecl::Create( | |||
| 3140 | Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, | |||
| 3141 | /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, | |||
| 3142 | true); | |||
| 3143 | Alloc->setImplicit(); | |||
| 3144 | // Global allocation functions should always be visible. | |||
| 3145 | Alloc->setVisibleDespiteOwningModule(); | |||
| 3146 | ||||
| 3147 | if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) | |||
| 3148 | Alloc->addAttr( | |||
| 3149 | ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); | |||
| 3150 | ||||
| 3151 | // C++ [basic.stc.dynamic.general]p2: | |||
| 3152 | // The library provides default definitions for the global allocation | |||
| 3153 | // and deallocation functions. Some global allocation and deallocation | |||
| 3154 | // functions are replaceable ([new.delete]); these are attached to the | |||
| 3155 | // global module ([module.unit]). | |||
| 3156 | // | |||
| 3157 | // In the language wording, these functions are attched to the global | |||
| 3158 | // module all the time. But in the implementation, the global module | |||
| 3159 | // is only meaningful when we're in a module unit. So here we attach | |||
| 3160 | // these allocation functions to global module conditionally. | |||
| 3161 | if (TheGlobalModuleFragment) { | |||
| 3162 | Alloc->setModuleOwnershipKind( | |||
| 3163 | Decl::ModuleOwnershipKind::ReachableWhenImported); | |||
| 3164 | Alloc->setLocalOwningModule(TheGlobalModuleFragment); | |||
| 3165 | } | |||
| 3166 | ||||
| 3167 | Alloc->addAttr(VisibilityAttr::CreateImplicit( | |||
| 3168 | Context, LangOpts.GlobalAllocationFunctionVisibilityHidden | |||
| 3169 | ? VisibilityAttr::Hidden | |||
| 3170 | : VisibilityAttr::Default)); | |||
| 3171 | ||||
| 3172 | llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; | |||
| 3173 | for (QualType T : Params) { | |||
| 3174 | ParamDecls.push_back(ParmVarDecl::Create( | |||
| 3175 | Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, | |||
| 3176 | /*TInfo=*/nullptr, SC_None, nullptr)); | |||
| 3177 | ParamDecls.back()->setImplicit(); | |||
| 3178 | } | |||
| 3179 | Alloc->setParams(ParamDecls); | |||
| 3180 | if (ExtraAttr) | |||
| 3181 | Alloc->addAttr(ExtraAttr); | |||
| 3182 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); | |||
| 3183 | Context.getTranslationUnitDecl()->addDecl(Alloc); | |||
| 3184 | IdResolver.tryAddTopLevelDecl(Alloc, Name); | |||
| 3185 | }; | |||
| 3186 | ||||
| 3187 | if (!LangOpts.CUDA) | |||
| 3188 | CreateAllocationFunctionDecl(nullptr); | |||
| 3189 | else { | |||
| 3190 | // Host and device get their own declaration so each can be | |||
| 3191 | // defined or re-declared independently. | |||
| 3192 | CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); | |||
| 3193 | CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); | |||
| 3194 | } | |||
| 3195 | } | |||
| 3196 | ||||
| 3197 | FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, | |||
| 3198 | bool CanProvideSize, | |||
| 3199 | bool Overaligned, | |||
| 3200 | DeclarationName Name) { | |||
| 3201 | DeclareGlobalNewDelete(); | |||
| 3202 | ||||
| 3203 | LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); | |||
| 3204 | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); | |||
| 3205 | ||||
| 3206 | // FIXME: It's possible for this to result in ambiguity, through a | |||
| 3207 | // user-declared variadic operator delete or the enable_if attribute. We | |||
| 3208 | // should probably not consider those cases to be usual deallocation | |||
| 3209 | // functions. But for now we just make an arbitrary choice in that case. | |||
| 3210 | auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, | |||
| 3211 | Overaligned); | |||
| 3212 | assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?" ) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3212, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3213 | return Result.FD; | |||
| 3214 | } | |||
| 3215 | ||||
| 3216 | FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, | |||
| 3217 | CXXRecordDecl *RD) { | |||
| 3218 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); | |||
| 3219 | ||||
| 3220 | FunctionDecl *OperatorDelete = nullptr; | |||
| 3221 | if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) | |||
| 3222 | return nullptr; | |||
| 3223 | if (OperatorDelete) | |||
| 3224 | return OperatorDelete; | |||
| 3225 | ||||
| 3226 | // If there's no class-specific operator delete, look up the global | |||
| 3227 | // non-array delete. | |||
| 3228 | return FindUsualDeallocationFunction( | |||
| 3229 | Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), | |||
| 3230 | Name); | |||
| 3231 | } | |||
| 3232 | ||||
| 3233 | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, | |||
| 3234 | DeclarationName Name, | |||
| 3235 | FunctionDecl *&Operator, bool Diagnose, | |||
| 3236 | bool WantSize, bool WantAligned) { | |||
| 3237 | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); | |||
| 3238 | // Try to find operator delete/operator delete[] in class scope. | |||
| 3239 | LookupQualifiedName(Found, RD); | |||
| 3240 | ||||
| 3241 | if (Found.isAmbiguous()) | |||
| 3242 | return true; | |||
| 3243 | ||||
| 3244 | Found.suppressDiagnostics(); | |||
| 3245 | ||||
| 3246 | bool Overaligned = | |||
| 3247 | WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); | |||
| 3248 | ||||
| 3249 | // C++17 [expr.delete]p10: | |||
| 3250 | // If the deallocation functions have class scope, the one without a | |||
| 3251 | // parameter of type std::size_t is selected. | |||
| 3252 | llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; | |||
| 3253 | resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, | |||
| 3254 | /*WantAlign*/ Overaligned, &Matches); | |||
| 3255 | ||||
| 3256 | // If we could find an overload, use it. | |||
| 3257 | if (Matches.size() == 1) { | |||
| 3258 | Operator = cast<CXXMethodDecl>(Matches[0].FD); | |||
| 3259 | ||||
| 3260 | // FIXME: DiagnoseUseOfDecl? | |||
| 3261 | if (Operator->isDeleted()) { | |||
| 3262 | if (Diagnose) { | |||
| 3263 | Diag(StartLoc, diag::err_deleted_function_use); | |||
| 3264 | NoteDeletedFunction(Operator); | |||
| 3265 | } | |||
| 3266 | return true; | |||
| 3267 | } | |||
| 3268 | ||||
| 3269 | if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), | |||
| 3270 | Matches[0].Found, Diagnose) == AR_inaccessible) | |||
| 3271 | return true; | |||
| 3272 | ||||
| 3273 | return false; | |||
| 3274 | } | |||
| 3275 | ||||
| 3276 | // We found multiple suitable operators; complain about the ambiguity. | |||
| 3277 | // FIXME: The standard doesn't say to do this; it appears that the intent | |||
| 3278 | // is that this should never happen. | |||
| 3279 | if (!Matches.empty()) { | |||
| 3280 | if (Diagnose) { | |||
| 3281 | Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) | |||
| 3282 | << Name << RD; | |||
| 3283 | for (auto &Match : Matches) | |||
| 3284 | Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; | |||
| 3285 | } | |||
| 3286 | return true; | |||
| 3287 | } | |||
| 3288 | ||||
| 3289 | // We did find operator delete/operator delete[] declarations, but | |||
| 3290 | // none of them were suitable. | |||
| 3291 | if (!Found.empty()) { | |||
| 3292 | if (Diagnose) { | |||
| 3293 | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) | |||
| 3294 | << Name << RD; | |||
| 3295 | ||||
| 3296 | for (NamedDecl *D : Found) | |||
| 3297 | Diag(D->getUnderlyingDecl()->getLocation(), | |||
| 3298 | diag::note_member_declared_here) << Name; | |||
| 3299 | } | |||
| 3300 | return true; | |||
| 3301 | } | |||
| 3302 | ||||
| 3303 | Operator = nullptr; | |||
| 3304 | return false; | |||
| 3305 | } | |||
| 3306 | ||||
| 3307 | namespace { | |||
| 3308 | /// Checks whether delete-expression, and new-expression used for | |||
| 3309 | /// initializing deletee have the same array form. | |||
| 3310 | class MismatchingNewDeleteDetector { | |||
| 3311 | public: | |||
| 3312 | enum MismatchResult { | |||
| 3313 | /// Indicates that there is no mismatch or a mismatch cannot be proven. | |||
| 3314 | NoMismatch, | |||
| 3315 | /// Indicates that variable is initialized with mismatching form of \a new. | |||
| 3316 | VarInitMismatches, | |||
| 3317 | /// Indicates that member is initialized with mismatching form of \a new. | |||
| 3318 | MemberInitMismatches, | |||
| 3319 | /// Indicates that 1 or more constructors' definitions could not been | |||
| 3320 | /// analyzed, and they will be checked again at the end of translation unit. | |||
| 3321 | AnalyzeLater | |||
| 3322 | }; | |||
| 3323 | ||||
| 3324 | /// \param EndOfTU True, if this is the final analysis at the end of | |||
| 3325 | /// translation unit. False, if this is the initial analysis at the point | |||
| 3326 | /// delete-expression was encountered. | |||
| 3327 | explicit MismatchingNewDeleteDetector(bool EndOfTU) | |||
| 3328 | : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), | |||
| 3329 | HasUndefinedConstructors(false) {} | |||
| 3330 | ||||
| 3331 | /// Checks whether pointee of a delete-expression is initialized with | |||
| 3332 | /// matching form of new-expression. | |||
| 3333 | /// | |||
| 3334 | /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the | |||
| 3335 | /// point where delete-expression is encountered, then a warning will be | |||
| 3336 | /// issued immediately. If return value is \c AnalyzeLater at the point where | |||
| 3337 | /// delete-expression is seen, then member will be analyzed at the end of | |||
| 3338 | /// translation unit. \c AnalyzeLater is returned iff at least one constructor | |||
| 3339 | /// couldn't be analyzed. If at least one constructor initializes the member | |||
| 3340 | /// with matching type of new, the return value is \c NoMismatch. | |||
| 3341 | MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); | |||
| 3342 | /// Analyzes a class member. | |||
| 3343 | /// \param Field Class member to analyze. | |||
| 3344 | /// \param DeleteWasArrayForm Array form-ness of the delete-expression used | |||
| 3345 | /// for deleting the \p Field. | |||
| 3346 | MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); | |||
| 3347 | FieldDecl *Field; | |||
| 3348 | /// List of mismatching new-expressions used for initialization of the pointee | |||
| 3349 | llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; | |||
| 3350 | /// Indicates whether delete-expression was in array form. | |||
| 3351 | bool IsArrayForm; | |||
| 3352 | ||||
| 3353 | private: | |||
| 3354 | const bool EndOfTU; | |||
| 3355 | /// Indicates that there is at least one constructor without body. | |||
| 3356 | bool HasUndefinedConstructors; | |||
| 3357 | /// Returns \c CXXNewExpr from given initialization expression. | |||
| 3358 | /// \param E Expression used for initializing pointee in delete-expression. | |||
| 3359 | /// E can be a single-element \c InitListExpr consisting of new-expression. | |||
| 3360 | const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); | |||
| 3361 | /// Returns whether member is initialized with mismatching form of | |||
| 3362 | /// \c new either by the member initializer or in-class initialization. | |||
| 3363 | /// | |||
| 3364 | /// If bodies of all constructors are not visible at the end of translation | |||
| 3365 | /// unit or at least one constructor initializes member with the matching | |||
| 3366 | /// form of \c new, mismatch cannot be proven, and this function will return | |||
| 3367 | /// \c NoMismatch. | |||
| 3368 | MismatchResult analyzeMemberExpr(const MemberExpr *ME); | |||
| 3369 | /// Returns whether variable is initialized with mismatching form of | |||
| 3370 | /// \c new. | |||
| 3371 | /// | |||
| 3372 | /// If variable is initialized with matching form of \c new or variable is not | |||
| 3373 | /// initialized with a \c new expression, this function will return true. | |||
| 3374 | /// If variable is initialized with mismatching form of \c new, returns false. | |||
| 3375 | /// \param D Variable to analyze. | |||
| 3376 | bool hasMatchingVarInit(const DeclRefExpr *D); | |||
| 3377 | /// Checks whether the constructor initializes pointee with mismatching | |||
| 3378 | /// form of \c new. | |||
| 3379 | /// | |||
| 3380 | /// Returns true, if member is initialized with matching form of \c new in | |||
| 3381 | /// member initializer list. Returns false, if member is initialized with the | |||
| 3382 | /// matching form of \c new in this constructor's initializer or given | |||
| 3383 | /// constructor isn't defined at the point where delete-expression is seen, or | |||
| 3384 | /// member isn't initialized by the constructor. | |||
| 3385 | bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); | |||
| 3386 | /// Checks whether member is initialized with matching form of | |||
| 3387 | /// \c new in member initializer list. | |||
| 3388 | bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); | |||
| 3389 | /// Checks whether member is initialized with mismatching form of \c new by | |||
| 3390 | /// in-class initializer. | |||
| 3391 | MismatchResult analyzeInClassInitializer(); | |||
| 3392 | }; | |||
| 3393 | } | |||
| 3394 | ||||
| 3395 | MismatchingNewDeleteDetector::MismatchResult | |||
| 3396 | MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { | |||
| 3397 | NewExprs.clear(); | |||
| 3398 | assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression" ) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3398, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3399 | IsArrayForm = DE->isArrayForm(); | |||
| 3400 | const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); | |||
| 3401 | if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { | |||
| 3402 | return analyzeMemberExpr(ME); | |||
| 3403 | } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { | |||
| 3404 | if (!hasMatchingVarInit(D)) | |||
| 3405 | return VarInitMismatches; | |||
| 3406 | } | |||
| 3407 | return NoMismatch; | |||
| 3408 | } | |||
| 3409 | ||||
| 3410 | const CXXNewExpr * | |||
| 3411 | MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { | |||
| 3412 | assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression" ) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3412, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3413 | E = E->IgnoreParenImpCasts(); | |||
| 3414 | if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { | |||
| 3415 | if (ILE->getNumInits() == 1) | |||
| 3416 | E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); | |||
| 3417 | } | |||
| 3418 | ||||
| 3419 | return dyn_cast_or_null<const CXXNewExpr>(E); | |||
| 3420 | } | |||
| 3421 | ||||
| 3422 | bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( | |||
| 3423 | const CXXCtorInitializer *CI) { | |||
| 3424 | const CXXNewExpr *NE = nullptr; | |||
| 3425 | if (Field == CI->getMember() && | |||
| 3426 | (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { | |||
| 3427 | if (NE->isArray() == IsArrayForm) | |||
| 3428 | return true; | |||
| 3429 | else | |||
| 3430 | NewExprs.push_back(NE); | |||
| 3431 | } | |||
| 3432 | return false; | |||
| 3433 | } | |||
| 3434 | ||||
| 3435 | bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( | |||
| 3436 | const CXXConstructorDecl *CD) { | |||
| 3437 | if (CD->isImplicit()) | |||
| 3438 | return false; | |||
| 3439 | const FunctionDecl *Definition = CD; | |||
| 3440 | if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { | |||
| 3441 | HasUndefinedConstructors = true; | |||
| 3442 | return EndOfTU; | |||
| 3443 | } | |||
| 3444 | for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { | |||
| 3445 | if (hasMatchingNewInCtorInit(CI)) | |||
| 3446 | return true; | |||
| 3447 | } | |||
| 3448 | return false; | |||
| 3449 | } | |||
| 3450 | ||||
| 3451 | MismatchingNewDeleteDetector::MismatchResult | |||
| 3452 | MismatchingNewDeleteDetector::analyzeInClassInitializer() { | |||
| 3453 | assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members" ) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3453, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3454 | const Expr *InitExpr = Field->getInClassInitializer(); | |||
| 3455 | if (!InitExpr) | |||
| 3456 | return EndOfTU ? NoMismatch : AnalyzeLater; | |||
| 3457 | if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { | |||
| 3458 | if (NE->isArray() != IsArrayForm) { | |||
| 3459 | NewExprs.push_back(NE); | |||
| 3460 | return MemberInitMismatches; | |||
| 3461 | } | |||
| 3462 | } | |||
| 3463 | return NoMismatch; | |||
| 3464 | } | |||
| 3465 | ||||
| 3466 | MismatchingNewDeleteDetector::MismatchResult | |||
| 3467 | MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, | |||
| 3468 | bool DeleteWasArrayForm) { | |||
| 3469 | assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member." ) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3469, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3470 | this->Field = Field; | |||
| 3471 | IsArrayForm = DeleteWasArrayForm; | |||
| 3472 | const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); | |||
| 3473 | for (const auto *CD : RD->ctors()) { | |||
| 3474 | if (hasMatchingNewInCtor(CD)) | |||
| 3475 | return NoMismatch; | |||
| 3476 | } | |||
| 3477 | if (HasUndefinedConstructors) | |||
| 3478 | return EndOfTU ? NoMismatch : AnalyzeLater; | |||
| 3479 | if (!NewExprs.empty()) | |||
| 3480 | return MemberInitMismatches; | |||
| 3481 | return Field->hasInClassInitializer() ? analyzeInClassInitializer() | |||
| 3482 | : NoMismatch; | |||
| 3483 | } | |||
| 3484 | ||||
| 3485 | MismatchingNewDeleteDetector::MismatchResult | |||
| 3486 | MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { | |||
| 3487 | assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression" ) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3487, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3488 | if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) | |||
| 3489 | return analyzeField(F, IsArrayForm); | |||
| 3490 | return NoMismatch; | |||
| 3491 | } | |||
| 3492 | ||||
| 3493 | bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { | |||
| 3494 | const CXXNewExpr *NE = nullptr; | |||
| 3495 | if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { | |||
| 3496 | if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && | |||
| 3497 | NE->isArray() != IsArrayForm) { | |||
| 3498 | NewExprs.push_back(NE); | |||
| 3499 | } | |||
| 3500 | } | |||
| 3501 | return NewExprs.empty(); | |||
| 3502 | } | |||
| 3503 | ||||
| 3504 | static void | |||
| 3505 | DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, | |||
| 3506 | const MismatchingNewDeleteDetector &Detector) { | |||
| 3507 | SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); | |||
| 3508 | FixItHint H; | |||
| 3509 | if (!Detector.IsArrayForm) | |||
| 3510 | H = FixItHint::CreateInsertion(EndOfDelete, "[]"); | |||
| 3511 | else { | |||
| 3512 | SourceLocation RSquare = Lexer::findLocationAfterToken( | |||
| 3513 | DeleteLoc, tok::l_square, SemaRef.getSourceManager(), | |||
| 3514 | SemaRef.getLangOpts(), true); | |||
| 3515 | if (RSquare.isValid()) | |||
| 3516 | H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); | |||
| 3517 | } | |||
| 3518 | SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) | |||
| 3519 | << Detector.IsArrayForm << H; | |||
| 3520 | ||||
| 3521 | for (const auto *NE : Detector.NewExprs) | |||
| 3522 | SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) | |||
| 3523 | << Detector.IsArrayForm; | |||
| 3524 | } | |||
| 3525 | ||||
| 3526 | void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { | |||
| 3527 | if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) | |||
| 3528 | return; | |||
| 3529 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); | |||
| 3530 | switch (Detector.analyzeDeleteExpr(DE)) { | |||
| 3531 | case MismatchingNewDeleteDetector::VarInitMismatches: | |||
| 3532 | case MismatchingNewDeleteDetector::MemberInitMismatches: { | |||
| 3533 | DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); | |||
| 3534 | break; | |||
| 3535 | } | |||
| 3536 | case MismatchingNewDeleteDetector::AnalyzeLater: { | |||
| 3537 | DeleteExprs[Detector.Field].push_back( | |||
| 3538 | std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); | |||
| 3539 | break; | |||
| 3540 | } | |||
| 3541 | case MismatchingNewDeleteDetector::NoMismatch: | |||
| 3542 | break; | |||
| 3543 | } | |||
| 3544 | } | |||
| 3545 | ||||
| 3546 | void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, | |||
| 3547 | bool DeleteWasArrayForm) { | |||
| 3548 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); | |||
| 3549 | switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { | |||
| 3550 | case MismatchingNewDeleteDetector::VarInitMismatches: | |||
| 3551 | llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members." , "clang/lib/Sema/SemaExprCXX.cpp", 3551); | |||
| 3552 | case MismatchingNewDeleteDetector::AnalyzeLater: | |||
| 3553 | llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of " "translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3554) | |||
| 3554 | "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of " "translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3554); | |||
| 3555 | case MismatchingNewDeleteDetector::MemberInitMismatches: | |||
| 3556 | DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); | |||
| 3557 | break; | |||
| 3558 | case MismatchingNewDeleteDetector::NoMismatch: | |||
| 3559 | break; | |||
| 3560 | } | |||
| 3561 | } | |||
| 3562 | ||||
| 3563 | /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: | |||
| 3564 | /// @code ::delete ptr; @endcode | |||
| 3565 | /// or | |||
| 3566 | /// @code delete [] ptr; @endcode | |||
| 3567 | ExprResult | |||
| 3568 | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, | |||
| 3569 | bool ArrayForm, Expr *ExE) { | |||
| 3570 | // C++ [expr.delete]p1: | |||
| 3571 | // The operand shall have a pointer type, or a class type having a single | |||
| 3572 | // non-explicit conversion function to a pointer type. The result has type | |||
| 3573 | // void. | |||
| 3574 | // | |||
| 3575 | // DR599 amends "pointer type" to "pointer to object type" in both cases. | |||
| 3576 | ||||
| 3577 | ExprResult Ex = ExE; | |||
| 3578 | FunctionDecl *OperatorDelete = nullptr; | |||
| 3579 | bool ArrayFormAsWritten = ArrayForm; | |||
| 3580 | bool UsualArrayDeleteWantsSize = false; | |||
| 3581 | ||||
| 3582 | if (!Ex.get()->isTypeDependent()) { | |||
| 3583 | // Perform lvalue-to-rvalue cast, if needed. | |||
| 3584 | Ex = DefaultLvalueConversion(Ex.get()); | |||
| 3585 | if (Ex.isInvalid()) | |||
| 3586 | return ExprError(); | |||
| 3587 | ||||
| 3588 | QualType Type = Ex.get()->getType(); | |||
| 3589 | ||||
| 3590 | class DeleteConverter : public ContextualImplicitConverter { | |||
| 3591 | public: | |||
| 3592 | DeleteConverter() : ContextualImplicitConverter(false, true) {} | |||
| 3593 | ||||
| 3594 | bool match(QualType ConvType) override { | |||
| 3595 | // FIXME: If we have an operator T* and an operator void*, we must pick | |||
| 3596 | // the operator T*. | |||
| 3597 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | |||
| 3598 | if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) | |||
| 3599 | return true; | |||
| 3600 | return false; | |||
| 3601 | } | |||
| 3602 | ||||
| 3603 | SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, | |||
| 3604 | QualType T) override { | |||
| 3605 | return S.Diag(Loc, diag::err_delete_operand) << T; | |||
| 3606 | } | |||
| 3607 | ||||
| 3608 | SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, | |||
| 3609 | QualType T) override { | |||
| 3610 | return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; | |||
| 3611 | } | |||
| 3612 | ||||
| 3613 | SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, | |||
| 3614 | QualType T, | |||
| 3615 | QualType ConvTy) override { | |||
| 3616 | return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; | |||
| 3617 | } | |||
| 3618 | ||||
| 3619 | SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, | |||
| 3620 | QualType ConvTy) override { | |||
| 3621 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) | |||
| 3622 | << ConvTy; | |||
| 3623 | } | |||
| 3624 | ||||
| 3625 | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, | |||
| 3626 | QualType T) override { | |||
| 3627 | return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; | |||
| 3628 | } | |||
| 3629 | ||||
| 3630 | SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, | |||
| 3631 | QualType ConvTy) override { | |||
| 3632 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) | |||
| 3633 | << ConvTy; | |||
| 3634 | } | |||
| 3635 | ||||
| 3636 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, | |||
| 3637 | QualType T, | |||
| 3638 | QualType ConvTy) override { | |||
| 3639 | llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted" , "clang/lib/Sema/SemaExprCXX.cpp", 3639); | |||
| 3640 | } | |||
| 3641 | } Converter; | |||
| 3642 | ||||
| 3643 | Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); | |||
| 3644 | if (Ex.isInvalid()) | |||
| 3645 | return ExprError(); | |||
| 3646 | Type = Ex.get()->getType(); | |||
| 3647 | if (!Converter.match(Type)) | |||
| 3648 | // FIXME: PerformContextualImplicitConversion should return ExprError | |||
| 3649 | // itself in this case. | |||
| 3650 | return ExprError(); | |||
| 3651 | ||||
| 3652 | QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); | |||
| 3653 | QualType PointeeElem = Context.getBaseElementType(Pointee); | |||
| 3654 | ||||
| 3655 | if (Pointee.getAddressSpace() != LangAS::Default && | |||
| 3656 | !getLangOpts().OpenCLCPlusPlus) | |||
| 3657 | return Diag(Ex.get()->getBeginLoc(), | |||
| 3658 | diag::err_address_space_qualified_delete) | |||
| 3659 | << Pointee.getUnqualifiedType() | |||
| 3660 | << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); | |||
| 3661 | ||||
| 3662 | CXXRecordDecl *PointeeRD = nullptr; | |||
| 3663 | if (Pointee->isVoidType() && !isSFINAEContext()) { | |||
| 3664 | // The C++ standard bans deleting a pointer to a non-object type, which | |||
| 3665 | // effectively bans deletion of "void*". However, most compilers support | |||
| 3666 | // this, so we treat it as a warning unless we're in a SFINAE context. | |||
| 3667 | Diag(StartLoc, diag::ext_delete_void_ptr_operand) | |||
| 3668 | << Type << Ex.get()->getSourceRange(); | |||
| 3669 | } else if (Pointee->isFunctionType() || Pointee->isVoidType() || | |||
| 3670 | Pointee->isSizelessType()) { | |||
| 3671 | return ExprError(Diag(StartLoc, diag::err_delete_operand) | |||
| 3672 | << Type << Ex.get()->getSourceRange()); | |||
| 3673 | } else if (!Pointee->isDependentType()) { | |||
| 3674 | // FIXME: This can result in errors if the definition was imported from a | |||
| 3675 | // module but is hidden. | |||
| 3676 | if (!RequireCompleteType(StartLoc, Pointee, | |||
| 3677 | diag::warn_delete_incomplete, Ex.get())) { | |||
| 3678 | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) | |||
| 3679 | PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 3680 | } | |||
| 3681 | } | |||
| 3682 | ||||
| 3683 | if (Pointee->isArrayType() && !ArrayForm) { | |||
| 3684 | Diag(StartLoc, diag::warn_delete_array_type) | |||
| 3685 | << Type << Ex.get()->getSourceRange() | |||
| 3686 | << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); | |||
| 3687 | ArrayForm = true; | |||
| 3688 | } | |||
| 3689 | ||||
| 3690 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | |||
| 3691 | ArrayForm ? OO_Array_Delete : OO_Delete); | |||
| 3692 | ||||
| 3693 | if (PointeeRD) { | |||
| 3694 | if (!UseGlobal && | |||
| 3695 | FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, | |||
| 3696 | OperatorDelete)) | |||
| 3697 | return ExprError(); | |||
| 3698 | ||||
| 3699 | // If we're allocating an array of records, check whether the | |||
| 3700 | // usual operator delete[] has a size_t parameter. | |||
| 3701 | if (ArrayForm) { | |||
| 3702 | // If the user specifically asked to use the global allocator, | |||
| 3703 | // we'll need to do the lookup into the class. | |||
| 3704 | if (UseGlobal) | |||
| 3705 | UsualArrayDeleteWantsSize = | |||
| 3706 | doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); | |||
| 3707 | ||||
| 3708 | // Otherwise, the usual operator delete[] should be the | |||
| 3709 | // function we just found. | |||
| 3710 | else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) | |||
| 3711 | UsualArrayDeleteWantsSize = | |||
| 3712 | UsualDeallocFnInfo(*this, | |||
| 3713 | DeclAccessPair::make(OperatorDelete, AS_public)) | |||
| 3714 | .HasSizeT; | |||
| 3715 | } | |||
| 3716 | ||||
| 3717 | if (!PointeeRD->hasIrrelevantDestructor()) | |||
| 3718 | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { | |||
| 3719 | MarkFunctionReferenced(StartLoc, | |||
| 3720 | const_cast<CXXDestructorDecl*>(Dtor)); | |||
| 3721 | if (DiagnoseUseOfDecl(Dtor, StartLoc)) | |||
| 3722 | return ExprError(); | |||
| 3723 | } | |||
| 3724 | ||||
| 3725 | CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, | |||
| 3726 | /*IsDelete=*/true, /*CallCanBeVirtual=*/true, | |||
| 3727 | /*WarnOnNonAbstractTypes=*/!ArrayForm, | |||
| 3728 | SourceLocation()); | |||
| 3729 | } | |||
| 3730 | ||||
| 3731 | if (!OperatorDelete) { | |||
| 3732 | if (getLangOpts().OpenCLCPlusPlus) { | |||
| 3733 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; | |||
| 3734 | return ExprError(); | |||
| 3735 | } | |||
| 3736 | ||||
| 3737 | bool IsComplete = isCompleteType(StartLoc, Pointee); | |||
| 3738 | bool CanProvideSize = | |||
| 3739 | IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || | |||
| 3740 | Pointee.isDestructedType()); | |||
| 3741 | bool Overaligned = hasNewExtendedAlignment(*this, Pointee); | |||
| 3742 | ||||
| 3743 | // Look for a global declaration. | |||
| 3744 | OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, | |||
| 3745 | Overaligned, DeleteName); | |||
| 3746 | } | |||
| 3747 | ||||
| 3748 | MarkFunctionReferenced(StartLoc, OperatorDelete); | |||
| 3749 | ||||
| 3750 | // Check access and ambiguity of destructor if we're going to call it. | |||
| 3751 | // Note that this is required even for a virtual delete. | |||
| 3752 | bool IsVirtualDelete = false; | |||
| 3753 | if (PointeeRD) { | |||
| 3754 | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { | |||
| 3755 | CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, | |||
| 3756 | PDiag(diag::err_access_dtor) << PointeeElem); | |||
| 3757 | IsVirtualDelete = Dtor->isVirtual(); | |||
| 3758 | } | |||
| 3759 | } | |||
| 3760 | ||||
| 3761 | DiagnoseUseOfDecl(OperatorDelete, StartLoc); | |||
| 3762 | ||||
| 3763 | // Convert the operand to the type of the first parameter of operator | |||
| 3764 | // delete. This is only necessary if we selected a destroying operator | |||
| 3765 | // delete that we are going to call (non-virtually); converting to void* | |||
| 3766 | // is trivial and left to AST consumers to handle. | |||
| 3767 | QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); | |||
| 3768 | if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { | |||
| 3769 | Qualifiers Qs = Pointee.getQualifiers(); | |||
| 3770 | if (Qs.hasCVRQualifiers()) { | |||
| 3771 | // Qualifiers are irrelevant to this conversion; we're only looking | |||
| 3772 | // for access and ambiguity. | |||
| 3773 | Qs.removeCVRQualifiers(); | |||
| 3774 | QualType Unqual = Context.getPointerType( | |||
| 3775 | Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); | |||
| 3776 | Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); | |||
| 3777 | } | |||
| 3778 | Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); | |||
| 3779 | if (Ex.isInvalid()) | |||
| 3780 | return ExprError(); | |||
| 3781 | } | |||
| 3782 | } | |||
| 3783 | ||||
| 3784 | CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( | |||
| 3785 | Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, | |||
| 3786 | UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); | |||
| 3787 | AnalyzeDeleteExprMismatch(Result); | |||
| 3788 | return Result; | |||
| 3789 | } | |||
| 3790 | ||||
| 3791 | static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, | |||
| 3792 | bool IsDelete, | |||
| 3793 | FunctionDecl *&Operator) { | |||
| 3794 | ||||
| 3795 | DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( | |||
| 3796 | IsDelete ? OO_Delete : OO_New); | |||
| 3797 | ||||
| 3798 | LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); | |||
| 3799 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); | |||
| 3800 | assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found" ) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3800, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3801 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous" ) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3801, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3802 | ||||
| 3803 | // We do our own custom access checks below. | |||
| 3804 | R.suppressDiagnostics(); | |||
| 3805 | ||||
| 3806 | SmallVector<Expr *, 8> Args(TheCall->arguments()); | |||
| 3807 | OverloadCandidateSet Candidates(R.getNameLoc(), | |||
| 3808 | OverloadCandidateSet::CSK_Normal); | |||
| 3809 | for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); | |||
| 3810 | FnOvl != FnOvlEnd; ++FnOvl) { | |||
| 3811 | // Even member operator new/delete are implicitly treated as | |||
| 3812 | // static, so don't use AddMemberCandidate. | |||
| 3813 | NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); | |||
| 3814 | ||||
| 3815 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { | |||
| 3816 | S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), | |||
| 3817 | /*ExplicitTemplateArgs=*/nullptr, Args, | |||
| 3818 | Candidates, | |||
| 3819 | /*SuppressUserConversions=*/false); | |||
| 3820 | continue; | |||
| 3821 | } | |||
| 3822 | ||||
| 3823 | FunctionDecl *Fn = cast<FunctionDecl>(D); | |||
| 3824 | S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, | |||
| 3825 | /*SuppressUserConversions=*/false); | |||
| 3826 | } | |||
| 3827 | ||||
| 3828 | SourceRange Range = TheCall->getSourceRange(); | |||
| 3829 | ||||
| 3830 | // Do the resolution. | |||
| 3831 | OverloadCandidateSet::iterator Best; | |||
| 3832 | switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { | |||
| 3833 | case OR_Success: { | |||
| 3834 | // Got one! | |||
| 3835 | FunctionDecl *FnDecl = Best->Function; | |||
| 3836 | assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr && "class members should not be considered") ? void (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3837, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3837 | "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr && "class members should not be considered") ? void (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3837, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3838 | ||||
| 3839 | if (!FnDecl->isReplaceableGlobalAllocationFunction()) { | |||
| 3840 | S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) | |||
| 3841 | << (IsDelete ? 1 : 0) << Range; | |||
| 3842 | S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) | |||
| 3843 | << R.getLookupName() << FnDecl->getSourceRange(); | |||
| 3844 | return true; | |||
| 3845 | } | |||
| 3846 | ||||
| 3847 | Operator = FnDecl; | |||
| 3848 | return false; | |||
| 3849 | } | |||
| 3850 | ||||
| 3851 | case OR_No_Viable_Function: | |||
| 3852 | Candidates.NoteCandidates( | |||
| 3853 | PartialDiagnosticAt(R.getNameLoc(), | |||
| 3854 | S.PDiag(diag::err_ovl_no_viable_function_in_call) | |||
| 3855 | << R.getLookupName() << Range), | |||
| 3856 | S, OCD_AllCandidates, Args); | |||
| 3857 | return true; | |||
| 3858 | ||||
| 3859 | case OR_Ambiguous: | |||
| 3860 | Candidates.NoteCandidates( | |||
| 3861 | PartialDiagnosticAt(R.getNameLoc(), | |||
| 3862 | S.PDiag(diag::err_ovl_ambiguous_call) | |||
| 3863 | << R.getLookupName() << Range), | |||
| 3864 | S, OCD_AmbiguousCandidates, Args); | |||
| 3865 | return true; | |||
| 3866 | ||||
| 3867 | case OR_Deleted: { | |||
| 3868 | Candidates.NoteCandidates( | |||
| 3869 | PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) | |||
| 3870 | << R.getLookupName() << Range), | |||
| 3871 | S, OCD_AllCandidates, Args); | |||
| 3872 | return true; | |||
| 3873 | } | |||
| 3874 | } | |||
| 3875 | llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction" , "clang/lib/Sema/SemaExprCXX.cpp", 3875); | |||
| 3876 | } | |||
| 3877 | ||||
| 3878 | ExprResult | |||
| 3879 | Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, | |||
| 3880 | bool IsDelete) { | |||
| 3881 | CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); | |||
| 3882 | if (!getLangOpts().CPlusPlus) { | |||
| 3883 | Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) | |||
| 3884 | << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") | |||
| 3885 | << "C++"; | |||
| 3886 | return ExprError(); | |||
| 3887 | } | |||
| 3888 | // CodeGen assumes it can find the global new and delete to call, | |||
| 3889 | // so ensure that they are declared. | |||
| 3890 | DeclareGlobalNewDelete(); | |||
| 3891 | ||||
| 3892 | FunctionDecl *OperatorNewOrDelete = nullptr; | |||
| 3893 | if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, | |||
| 3894 | OperatorNewOrDelete)) | |||
| 3895 | return ExprError(); | |||
| 3896 | assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found" ) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3896, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3897 | ||||
| 3898 | DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); | |||
| 3899 | MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); | |||
| 3900 | ||||
| 3901 | TheCall->setType(OperatorNewOrDelete->getReturnType()); | |||
| 3902 | for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { | |||
| 3903 | QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); | |||
| 3904 | InitializedEntity Entity = | |||
| 3905 | InitializedEntity::InitializeParameter(Context, ParamTy, false); | |||
| 3906 | ExprResult Arg = PerformCopyInitialization( | |||
| 3907 | Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); | |||
| 3908 | if (Arg.isInvalid()) | |||
| 3909 | return ExprError(); | |||
| 3910 | TheCall->setArg(i, Arg.get()); | |||
| 3911 | } | |||
| 3912 | auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); | |||
| 3913 | assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind () == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer" ) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3914, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3914 | "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind () == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer" ) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\"" , "clang/lib/Sema/SemaExprCXX.cpp", 3914, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3915 | Callee->setType(OperatorNewOrDelete->getType()); | |||
| 3916 | ||||
| 3917 | return TheCallResult; | |||
| 3918 | } | |||
| 3919 | ||||
| 3920 | void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, | |||
| 3921 | bool IsDelete, bool CallCanBeVirtual, | |||
| 3922 | bool WarnOnNonAbstractTypes, | |||
| 3923 | SourceLocation DtorLoc) { | |||
| 3924 | if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) | |||
| 3925 | return; | |||
| 3926 | ||||
| 3927 | // C++ [expr.delete]p3: | |||
| 3928 | // In the first alternative (delete object), if the static type of the | |||
| 3929 | // object to be deleted is different from its dynamic type, the static | |||
| 3930 | // type shall be a base class of the dynamic type of the object to be | |||
| 3931 | // deleted and the static type shall have a virtual destructor or the | |||
| 3932 | // behavior is undefined. | |||
| 3933 | // | |||
| 3934 | const CXXRecordDecl *PointeeRD = dtor->getParent(); | |||
| 3935 | // Note: a final class cannot be derived from, no issue there | |||
| 3936 | if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) | |||
| 3937 | return; | |||
| 3938 | ||||
| 3939 | // If the superclass is in a system header, there's nothing that can be done. | |||
| 3940 | // The `delete` (where we emit the warning) can be in a system header, | |||
| 3941 | // what matters for this warning is where the deleted type is defined. | |||
| 3942 | if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) | |||
| 3943 | return; | |||
| 3944 | ||||
| 3945 | QualType ClassType = dtor->getThisType()->getPointeeType(); | |||
| 3946 | if (PointeeRD->isAbstract()) { | |||
| 3947 | // If the class is abstract, we warn by default, because we're | |||
| 3948 | // sure the code has undefined behavior. | |||
| 3949 | Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) | |||
| 3950 | << ClassType; | |||
| 3951 | } else if (WarnOnNonAbstractTypes) { | |||
| 3952 | // Otherwise, if this is not an array delete, it's a bit suspect, | |||
| 3953 | // but not necessarily wrong. | |||
| 3954 | Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) | |||
| 3955 | << ClassType; | |||
| 3956 | } | |||
| 3957 | if (!IsDelete) { | |||
| 3958 | std::string TypeStr; | |||
| 3959 | ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); | |||
| 3960 | Diag(DtorLoc, diag::note_delete_non_virtual) | |||
| 3961 | << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); | |||
| 3962 | } | |||
| 3963 | } | |||
| 3964 | ||||
| 3965 | Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, | |||
| 3966 | SourceLocation StmtLoc, | |||
| 3967 | ConditionKind CK) { | |||
| 3968 | ExprResult E = | |||
| 3969 | CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); | |||
| 3970 | if (E.isInvalid()) | |||
| 3971 | return ConditionError(); | |||
| 3972 | return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), | |||
| 3973 | CK == ConditionKind::ConstexprIf); | |||
| 3974 | } | |||
| 3975 | ||||
| 3976 | /// Check the use of the given variable as a C++ condition in an if, | |||
| 3977 | /// while, do-while, or switch statement. | |||
| 3978 | ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, | |||
| 3979 | SourceLocation StmtLoc, | |||
| 3980 | ConditionKind CK) { | |||
| 3981 | if (ConditionVar->isInvalidDecl()) | |||
| 3982 | return ExprError(); | |||
| 3983 | ||||
| 3984 | QualType T = ConditionVar->getType(); | |||
| 3985 | ||||
| 3986 | // C++ [stmt.select]p2: | |||
| 3987 | // The declarator shall not specify a function or an array. | |||
| 3988 | if (T->isFunctionType()) | |||
| 3989 | return ExprError(Diag(ConditionVar->getLocation(), | |||
| 3990 | diag::err_invalid_use_of_function_type) | |||
| 3991 | << ConditionVar->getSourceRange()); | |||
| 3992 | else if (T->isArrayType()) | |||
| 3993 | return ExprError(Diag(ConditionVar->getLocation(), | |||
| 3994 | diag::err_invalid_use_of_array_type) | |||
| 3995 | << ConditionVar->getSourceRange()); | |||
| 3996 | ||||
| 3997 | ExprResult Condition = BuildDeclRefExpr( | |||
| 3998 | ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, | |||
| 3999 | ConditionVar->getLocation()); | |||
| 4000 | ||||
| 4001 | switch (CK) { | |||
| 4002 | case ConditionKind::Boolean: | |||
| 4003 | return CheckBooleanCondition(StmtLoc, Condition.get()); | |||
| 4004 | ||||
| 4005 | case ConditionKind::ConstexprIf: | |||
| 4006 | return CheckBooleanCondition(StmtLoc, Condition.get(), true); | |||
| 4007 | ||||
| 4008 | case ConditionKind::Switch: | |||
| 4009 | return CheckSwitchCondition(StmtLoc, Condition.get()); | |||
| 4010 | } | |||
| 4011 | ||||
| 4012 | llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind" , "clang/lib/Sema/SemaExprCXX.cpp", 4012); | |||
| 4013 | } | |||
| 4014 | ||||
| 4015 | /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. | |||
| 4016 | ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { | |||
| 4017 | // C++11 6.4p4: | |||
| 4018 | // The value of a condition that is an initialized declaration in a statement | |||
| 4019 | // other than a switch statement is the value of the declared variable | |||
| 4020 | // implicitly converted to type bool. If that conversion is ill-formed, the | |||
| 4021 | // program is ill-formed. | |||
| 4022 | // The value of a condition that is an expression is the value of the | |||
| 4023 | // expression, implicitly converted to bool. | |||
| 4024 | // | |||
| 4025 | // C++23 8.5.2p2 | |||
| 4026 | // If the if statement is of the form if constexpr, the value of the condition | |||
| 4027 | // is contextually converted to bool and the converted expression shall be | |||
| 4028 | // a constant expression. | |||
| 4029 | // | |||
| 4030 | ||||
| 4031 | ExprResult E = PerformContextuallyConvertToBool(CondExpr); | |||
| 4032 | if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) | |||
| 4033 | return E; | |||
| 4034 | ||||
| 4035 | // FIXME: Return this value to the caller so they don't need to recompute it. | |||
| 4036 | llvm::APSInt Cond; | |||
| 4037 | E = VerifyIntegerConstantExpression( | |||
| 4038 | E.get(), &Cond, | |||
| 4039 | diag::err_constexpr_if_condition_expression_is_not_constant); | |||
| 4040 | return E; | |||
| 4041 | } | |||
| 4042 | ||||
| 4043 | /// Helper function to determine whether this is the (deprecated) C++ | |||
| 4044 | /// conversion from a string literal to a pointer to non-const char or | |||
| 4045 | /// non-const wchar_t (for narrow and wide string literals, | |||
| 4046 | /// respectively). | |||
| 4047 | bool | |||
| 4048 | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { | |||
| 4049 | // Look inside the implicit cast, if it exists. | |||
| 4050 | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) | |||
| 4051 | From = Cast->getSubExpr(); | |||
| 4052 | ||||
| 4053 | // A string literal (2.13.4) that is not a wide string literal can | |||
| 4054 | // be converted to an rvalue of type "pointer to char"; a wide | |||
| 4055 | // string literal can be converted to an rvalue of type "pointer | |||
| 4056 | // to wchar_t" (C++ 4.2p2). | |||
| 4057 | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) | |||
| 4058 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) | |||
| 4059 | if (const BuiltinType *ToPointeeType | |||
| 4060 | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { | |||
| 4061 | // This conversion is considered only when there is an | |||
| 4062 | // explicit appropriate pointer target type (C++ 4.2p2). | |||
| 4063 | if (!ToPtrType->getPointeeType().hasQualifiers()) { | |||
| 4064 | switch (StrLit->getKind()) { | |||
| 4065 | case StringLiteral::UTF8: | |||
| 4066 | case StringLiteral::UTF16: | |||
| 4067 | case StringLiteral::UTF32: | |||
| 4068 | // We don't allow UTF literals to be implicitly converted | |||
| 4069 | break; | |||
| 4070 | case StringLiteral::Ordinary: | |||
| 4071 | return (ToPointeeType->getKind() == BuiltinType::Char_U || | |||
| 4072 | ToPointeeType->getKind() == BuiltinType::Char_S); | |||
| 4073 | case StringLiteral::Wide: | |||
| 4074 | return Context.typesAreCompatible(Context.getWideCharType(), | |||
| 4075 | QualType(ToPointeeType, 0)); | |||
| 4076 | } | |||
| 4077 | } | |||
| 4078 | } | |||
| 4079 | ||||
| 4080 | return false; | |||
| 4081 | } | |||
| 4082 | ||||
| 4083 | static ExprResult BuildCXXCastArgument(Sema &S, | |||
| 4084 | SourceLocation CastLoc, | |||
| 4085 | QualType Ty, | |||
| 4086 | CastKind Kind, | |||
| 4087 | CXXMethodDecl *Method, | |||
| 4088 | DeclAccessPair FoundDecl, | |||
| 4089 | bool HadMultipleCandidates, | |||
| 4090 | Expr *From) { | |||
| 4091 | switch (Kind) { | |||
| 4092 | default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp" , 4092); | |||
| 4093 | case CK_ConstructorConversion: { | |||
| 4094 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); | |||
| 4095 | SmallVector<Expr*, 8> ConstructorArgs; | |||
| 4096 | ||||
| 4097 | if (S.RequireNonAbstractType(CastLoc, Ty, | |||
| 4098 | diag::err_allocation_of_abstract_type)) | |||
| 4099 | return ExprError(); | |||
| 4100 | ||||
| 4101 | if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, | |||
| 4102 | ConstructorArgs)) | |||
| 4103 | return ExprError(); | |||
| 4104 | ||||
| 4105 | S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, | |||
| 4106 | InitializedEntity::InitializeTemporary(Ty)); | |||
| 4107 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) | |||
| 4108 | return ExprError(); | |||
| 4109 | ||||
| 4110 | ExprResult Result = S.BuildCXXConstructExpr( | |||
| 4111 | CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), | |||
| 4112 | ConstructorArgs, HadMultipleCandidates, | |||
| 4113 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | |||
| 4114 | CXXConstructExpr::CK_Complete, SourceRange()); | |||
| 4115 | if (Result.isInvalid()) | |||
| 4116 | return ExprError(); | |||
| 4117 | ||||
| 4118 | return S.MaybeBindToTemporary(Result.getAs<Expr>()); | |||
| 4119 | } | |||
| 4120 | ||||
| 4121 | case CK_UserDefinedConversion: { | |||
| 4122 | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType () && "Arg can't have pointer type!") ? void (0) : __assert_fail ("!From->getType()->isPointerType() && \"Arg can't have pointer type!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4122, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4123 | ||||
| 4124 | S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); | |||
| 4125 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) | |||
| 4126 | return ExprError(); | |||
| 4127 | ||||
| 4128 | // Create an implicit call expr that calls it. | |||
| 4129 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); | |||
| 4130 | ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, | |||
| 4131 | HadMultipleCandidates); | |||
| 4132 | if (Result.isInvalid()) | |||
| 4133 | return ExprError(); | |||
| 4134 | // Record usage of conversion in an implicit cast. | |||
| 4135 | Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), | |||
| 4136 | CK_UserDefinedConversion, Result.get(), | |||
| 4137 | nullptr, Result.get()->getValueKind(), | |||
| 4138 | S.CurFPFeatureOverrides()); | |||
| 4139 | ||||
| 4140 | return S.MaybeBindToTemporary(Result.get()); | |||
| 4141 | } | |||
| 4142 | } | |||
| 4143 | } | |||
| 4144 | ||||
| 4145 | /// PerformImplicitConversion - Perform an implicit conversion of the | |||
| 4146 | /// expression From to the type ToType using the pre-computed implicit | |||
| 4147 | /// conversion sequence ICS. Returns the converted | |||
| 4148 | /// expression. Action is the kind of conversion we're performing, | |||
| 4149 | /// used in the error message. | |||
| 4150 | ExprResult | |||
| 4151 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | |||
| 4152 | const ImplicitConversionSequence &ICS, | |||
| 4153 | AssignmentAction Action, | |||
| 4154 | CheckedConversionKind CCK) { | |||
| 4155 | // C++ [over.match.oper]p7: [...] operands of class type are converted [...] | |||
| 4156 | if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) | |||
| 4157 | return From; | |||
| 4158 | ||||
| 4159 | switch (ICS.getKind()) { | |||
| 4160 | case ImplicitConversionSequence::StandardConversion: { | |||
| 4161 | ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, | |||
| 4162 | Action, CCK); | |||
| 4163 | if (Res.isInvalid()) | |||
| 4164 | return ExprError(); | |||
| 4165 | From = Res.get(); | |||
| 4166 | break; | |||
| 4167 | } | |||
| 4168 | ||||
| 4169 | case ImplicitConversionSequence::UserDefinedConversion: { | |||
| 4170 | ||||
| 4171 | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; | |||
| 4172 | CastKind CastKind; | |||
| 4173 | QualType BeforeToType; | |||
| 4174 | assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq" ) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4174, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4175 | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { | |||
| 4176 | CastKind = CK_UserDefinedConversion; | |||
| 4177 | ||||
| 4178 | // If the user-defined conversion is specified by a conversion function, | |||
| 4179 | // the initial standard conversion sequence converts the source type to | |||
| 4180 | // the implicit object parameter of the conversion function. | |||
| 4181 | BeforeToType = Context.getTagDeclType(Conv->getParent()); | |||
| 4182 | } else { | |||
| 4183 | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); | |||
| 4184 | CastKind = CK_ConstructorConversion; | |||
| 4185 | // Do no conversion if dealing with ... for the first conversion. | |||
| 4186 | if (!ICS.UserDefined.EllipsisConversion) { | |||
| 4187 | // If the user-defined conversion is specified by a constructor, the | |||
| 4188 | // initial standard conversion sequence converts the source type to | |||
| 4189 | // the type required by the argument of the constructor | |||
| 4190 | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); | |||
| 4191 | } | |||
| 4192 | } | |||
| 4193 | // Watch out for ellipsis conversion. | |||
| 4194 | if (!ICS.UserDefined.EllipsisConversion) { | |||
| 4195 | ExprResult Res = | |||
| 4196 | PerformImplicitConversion(From, BeforeToType, | |||
| 4197 | ICS.UserDefined.Before, AA_Converting, | |||
| 4198 | CCK); | |||
| 4199 | if (Res.isInvalid()) | |||
| 4200 | return ExprError(); | |||
| 4201 | From = Res.get(); | |||
| 4202 | } | |||
| 4203 | ||||
| 4204 | ExprResult CastArg = BuildCXXCastArgument( | |||
| 4205 | *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, | |||
| 4206 | cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, | |||
| 4207 | ICS.UserDefined.HadMultipleCandidates, From); | |||
| 4208 | ||||
| 4209 | if (CastArg.isInvalid()) | |||
| 4210 | return ExprError(); | |||
| 4211 | ||||
| 4212 | From = CastArg.get(); | |||
| 4213 | ||||
| 4214 | // C++ [over.match.oper]p7: | |||
| 4215 | // [...] the second standard conversion sequence of a user-defined | |||
| 4216 | // conversion sequence is not applied. | |||
| 4217 | if (CCK == CCK_ForBuiltinOverloadedOp) | |||
| 4218 | return From; | |||
| 4219 | ||||
| 4220 | return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, | |||
| 4221 | AA_Converting, CCK); | |||
| 4222 | } | |||
| 4223 | ||||
| 4224 | case ImplicitConversionSequence::AmbiguousConversion: | |||
| 4225 | ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), | |||
| 4226 | PDiag(diag::err_typecheck_ambiguous_condition) | |||
| 4227 | << From->getSourceRange()); | |||
| 4228 | return ExprError(); | |||
| 4229 | ||||
| 4230 | case ImplicitConversionSequence::EllipsisConversion: | |||
| 4231 | case ImplicitConversionSequence::StaticObjectArgumentConversion: | |||
| 4232 | llvm_unreachable("bad conversion")::llvm::llvm_unreachable_internal("bad conversion", "clang/lib/Sema/SemaExprCXX.cpp" , 4232); | |||
| 4233 | ||||
| 4234 | case ImplicitConversionSequence::BadConversion: | |||
| 4235 | Sema::AssignConvertType ConvTy = | |||
| 4236 | CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); | |||
| 4237 | bool Diagnosed = DiagnoseAssignmentResult( | |||
| 4238 | ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), | |||
| 4239 | ToType, From->getType(), From, Action); | |||
| 4240 | assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion" ) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4240, __extension__ __PRETTY_FUNCTION__ )); (void)Diagnosed; | |||
| 4241 | return ExprError(); | |||
| 4242 | } | |||
| 4243 | ||||
| 4244 | // Everything went well. | |||
| 4245 | return From; | |||
| 4246 | } | |||
| 4247 | ||||
| 4248 | /// PerformImplicitConversion - Perform an implicit conversion of the | |||
| 4249 | /// expression From to the type ToType by following the standard | |||
| 4250 | /// conversion sequence SCS. Returns the converted | |||
| 4251 | /// expression. Flavor is the context in which we're performing this | |||
| 4252 | /// conversion, for use in error messages. | |||
| 4253 | ExprResult | |||
| 4254 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | |||
| 4255 | const StandardConversionSequence& SCS, | |||
| 4256 | AssignmentAction Action, | |||
| 4257 | CheckedConversionKind CCK) { | |||
| 4258 | bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); | |||
| 4259 | ||||
| 4260 | // Overall FIXME: we are recomputing too many types here and doing far too | |||
| 4261 | // much extra work. What this means is that we need to keep track of more | |||
| 4262 | // information that is computed when we try the implicit conversion initially, | |||
| 4263 | // so that we don't need to recompute anything here. | |||
| 4264 | QualType FromType = From->getType(); | |||
| 4265 | ||||
| 4266 | if (SCS.CopyConstructor) { | |||
| 4267 | // FIXME: When can ToType be a reference type? | |||
| 4268 | assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void (0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp" , 4268, __extension__ __PRETTY_FUNCTION__)); | |||
| 4269 | if (SCS.Second == ICK_Derived_To_Base) { | |||
| 4270 | SmallVector<Expr*, 8> ConstructorArgs; | |||
| 4271 | if (CompleteConstructorCall( | |||
| 4272 | cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, | |||
| 4273 | /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) | |||
| 4274 | return ExprError(); | |||
| 4275 | return BuildCXXConstructExpr( | |||
| 4276 | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, | |||
| 4277 | SCS.FoundCopyConstructor, SCS.CopyConstructor, | |||
| 4278 | ConstructorArgs, /*HadMultipleCandidates*/ false, | |||
| 4279 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | |||
| 4280 | CXXConstructExpr::CK_Complete, SourceRange()); | |||
| 4281 | } | |||
| 4282 | return BuildCXXConstructExpr( | |||
| 4283 | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, | |||
| 4284 | SCS.FoundCopyConstructor, SCS.CopyConstructor, | |||
| 4285 | From, /*HadMultipleCandidates*/ false, | |||
| 4286 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, | |||
| 4287 | CXXConstructExpr::CK_Complete, SourceRange()); | |||
| 4288 | } | |||
| 4289 | ||||
| 4290 | // Resolve overloaded function references. | |||
| 4291 | if (Context.hasSameType(FromType, Context.OverloadTy)) { | |||
| 4292 | DeclAccessPair Found; | |||
| 4293 | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, | |||
| 4294 | true, Found); | |||
| 4295 | if (!Fn) | |||
| 4296 | return ExprError(); | |||
| 4297 | ||||
| 4298 | if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) | |||
| 4299 | return ExprError(); | |||
| 4300 | ||||
| 4301 | From = FixOverloadedFunctionReference(From, Found, Fn); | |||
| 4302 | ||||
| 4303 | // We might get back another placeholder expression if we resolved to a | |||
| 4304 | // builtin. | |||
| 4305 | ExprResult Checked = CheckPlaceholderExpr(From); | |||
| 4306 | if (Checked.isInvalid()) | |||
| 4307 | return ExprError(); | |||
| 4308 | ||||
| 4309 | From = Checked.get(); | |||
| 4310 | FromType = From->getType(); | |||
| 4311 | } | |||
| 4312 | ||||
| 4313 | // If we're converting to an atomic type, first convert to the corresponding | |||
| 4314 | // non-atomic type. | |||
| 4315 | QualType ToAtomicType; | |||
| 4316 | if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { | |||
| 4317 | ToAtomicType = ToType; | |||
| 4318 | ToType = ToAtomic->getValueType(); | |||
| 4319 | } | |||
| 4320 | ||||
| 4321 | QualType InitialFromType = FromType; | |||
| 4322 | // Perform the first implicit conversion. | |||
| 4323 | switch (SCS.First) { | |||
| 4324 | case ICK_Identity: | |||
| 4325 | if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { | |||
| 4326 | FromType = FromAtomic->getValueType().getUnqualifiedType(); | |||
| 4327 | From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, | |||
| 4328 | From, /*BasePath=*/nullptr, VK_PRValue, | |||
| 4329 | FPOptionsOverride()); | |||
| 4330 | } | |||
| 4331 | break; | |||
| 4332 | ||||
| 4333 | case ICK_Lvalue_To_Rvalue: { | |||
| 4334 | assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty ) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty" , "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4335 | ExprResult FromRes = DefaultLvalueConversion(From); | |||
| 4336 | if (FromRes.isInvalid()) | |||
| 4337 | return ExprError(); | |||
| 4338 | ||||
| 4339 | From = FromRes.get(); | |||
| 4340 | FromType = From->getType(); | |||
| 4341 | break; | |||
| 4342 | } | |||
| 4343 | ||||
| 4344 | case ICK_Array_To_Pointer: | |||
| 4345 | FromType = Context.getArrayDecayedType(FromType); | |||
| 4346 | From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, | |||
| 4347 | /*BasePath=*/nullptr, CCK) | |||
| 4348 | .get(); | |||
| 4349 | break; | |||
| 4350 | ||||
| 4351 | case ICK_Function_To_Pointer: | |||
| 4352 | FromType = Context.getPointerType(FromType); | |||
| 4353 | From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, | |||
| 4354 | VK_PRValue, /*BasePath=*/nullptr, CCK) | |||
| 4355 | .get(); | |||
| 4356 | break; | |||
| 4357 | ||||
| 4358 | default: | |||
| 4359 | llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion" , "clang/lib/Sema/SemaExprCXX.cpp", 4359); | |||
| 4360 | } | |||
| 4361 | ||||
| 4362 | // Perform the second implicit conversion | |||
| 4363 | switch (SCS.Second) { | |||
| 4364 | case ICK_Identity: | |||
| 4365 | // C++ [except.spec]p5: | |||
| 4366 | // [For] assignment to and initialization of pointers to functions, | |||
| 4367 | // pointers to member functions, and references to functions: the | |||
| 4368 | // target entity shall allow at least the exceptions allowed by the | |||
| 4369 | // source value in the assignment or initialization. | |||
| 4370 | switch (Action) { | |||
| 4371 | case AA_Assigning: | |||
| 4372 | case AA_Initializing: | |||
| 4373 | // Note, function argument passing and returning are initialization. | |||
| 4374 | case AA_Passing: | |||
| 4375 | case AA_Returning: | |||
| 4376 | case AA_Sending: | |||
| 4377 | case AA_Passing_CFAudited: | |||
| 4378 | if (CheckExceptionSpecCompatibility(From, ToType)) | |||
| 4379 | return ExprError(); | |||
| 4380 | break; | |||
| 4381 | ||||
| 4382 | case AA_Casting: | |||
| 4383 | case AA_Converting: | |||
| 4384 | // Casts and implicit conversions are not initialization, so are not | |||
| 4385 | // checked for exception specification mismatches. | |||
| 4386 | break; | |||
| 4387 | } | |||
| 4388 | // Nothing else to do. | |||
| 4389 | break; | |||
| 4390 | ||||
| 4391 | case ICK_Integral_Promotion: | |||
| 4392 | case ICK_Integral_Conversion: | |||
| 4393 | if (ToType->isBooleanType()) { | |||
| 4394 | assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType> ()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && "only enums with fixed underlying type can promote to bool" ) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4396, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4395 | SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType> ()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && "only enums with fixed underlying type can promote to bool" ) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4396, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4396 | "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType> ()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && "only enums with fixed underlying type can promote to bool" ) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4396, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4397 | From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, | |||
| 4398 | /*BasePath=*/nullptr, CCK) | |||
| 4399 | .get(); | |||
| 4400 | } else { | |||
| 4401 | From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, | |||
| 4402 | /*BasePath=*/nullptr, CCK) | |||
| 4403 | .get(); | |||
| 4404 | } | |||
| 4405 | break; | |||
| 4406 | ||||
| 4407 | case ICK_Floating_Promotion: | |||
| 4408 | case ICK_Floating_Conversion: | |||
| 4409 | From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, | |||
| 4410 | /*BasePath=*/nullptr, CCK) | |||
| 4411 | .get(); | |||
| 4412 | break; | |||
| 4413 | ||||
| 4414 | case ICK_Complex_Promotion: | |||
| 4415 | case ICK_Complex_Conversion: { | |||
| 4416 | QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); | |||
| 4417 | QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); | |||
| 4418 | CastKind CK; | |||
| 4419 | if (FromEl->isRealFloatingType()) { | |||
| 4420 | if (ToEl->isRealFloatingType()) | |||
| 4421 | CK = CK_FloatingComplexCast; | |||
| 4422 | else | |||
| 4423 | CK = CK_FloatingComplexToIntegralComplex; | |||
| 4424 | } else if (ToEl->isRealFloatingType()) { | |||
| 4425 | CK = CK_IntegralComplexToFloatingComplex; | |||
| 4426 | } else { | |||
| 4427 | CK = CK_IntegralComplexCast; | |||
| 4428 | } | |||
| 4429 | From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, | |||
| 4430 | CCK) | |||
| 4431 | .get(); | |||
| 4432 | break; | |||
| 4433 | } | |||
| 4434 | ||||
| 4435 | case ICK_Floating_Integral: | |||
| 4436 | if (ToType->isRealFloatingType()) | |||
| 4437 | From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, | |||
| 4438 | /*BasePath=*/nullptr, CCK) | |||
| 4439 | .get(); | |||
| 4440 | else | |||
| 4441 | From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, | |||
| 4442 | /*BasePath=*/nullptr, CCK) | |||
| 4443 | .get(); | |||
| 4444 | break; | |||
| 4445 | ||||
| 4446 | case ICK_Compatible_Conversion: | |||
| 4447 | From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), | |||
| 4448 | /*BasePath=*/nullptr, CCK).get(); | |||
| 4449 | break; | |||
| 4450 | ||||
| 4451 | case ICK_Writeback_Conversion: | |||
| 4452 | case ICK_Pointer_Conversion: { | |||
| 4453 | if (SCS.IncompatibleObjC && Action != AA_Casting) { | |||
| 4454 | // Diagnose incompatible Objective-C conversions | |||
| 4455 | if (Action == AA_Initializing || Action == AA_Assigning) | |||
| 4456 | Diag(From->getBeginLoc(), | |||
| 4457 | diag::ext_typecheck_convert_incompatible_pointer) | |||
| 4458 | << ToType << From->getType() << Action << From->getSourceRange() | |||
| 4459 | << 0; | |||
| 4460 | else | |||
| 4461 | Diag(From->getBeginLoc(), | |||
| 4462 | diag::ext_typecheck_convert_incompatible_pointer) | |||
| 4463 | << From->getType() << ToType << Action << From->getSourceRange() | |||
| 4464 | << 0; | |||
| 4465 | ||||
| 4466 | if (From->getType()->isObjCObjectPointerType() && | |||
| 4467 | ToType->isObjCObjectPointerType()) | |||
| 4468 | EmitRelatedResultTypeNote(From); | |||
| 4469 | } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |||
| 4470 | !CheckObjCARCUnavailableWeakConversion(ToType, | |||
| 4471 | From->getType())) { | |||
| 4472 | if (Action == AA_Initializing) | |||
| 4473 | Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); | |||
| 4474 | else | |||
| 4475 | Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) | |||
| 4476 | << (Action == AA_Casting) << From->getType() << ToType | |||
| 4477 | << From->getSourceRange(); | |||
| 4478 | } | |||
| 4479 | ||||
| 4480 | // Defer address space conversion to the third conversion. | |||
| 4481 | QualType FromPteeType = From->getType()->getPointeeType(); | |||
| 4482 | QualType ToPteeType = ToType->getPointeeType(); | |||
| 4483 | QualType NewToType = ToType; | |||
| 4484 | if (!FromPteeType.isNull() && !ToPteeType.isNull() && | |||
| 4485 | FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { | |||
| 4486 | NewToType = Context.removeAddrSpaceQualType(ToPteeType); | |||
| 4487 | NewToType = Context.getAddrSpaceQualType(NewToType, | |||
| 4488 | FromPteeType.getAddressSpace()); | |||
| 4489 | if (ToType->isObjCObjectPointerType()) | |||
| 4490 | NewToType = Context.getObjCObjectPointerType(NewToType); | |||
| 4491 | else if (ToType->isBlockPointerType()) | |||
| 4492 | NewToType = Context.getBlockPointerType(NewToType); | |||
| 4493 | else | |||
| 4494 | NewToType = Context.getPointerType(NewToType); | |||
| 4495 | } | |||
| 4496 | ||||
| 4497 | CastKind Kind; | |||
| 4498 | CXXCastPath BasePath; | |||
| 4499 | if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) | |||
| 4500 | return ExprError(); | |||
| 4501 | ||||
| 4502 | // Make sure we extend blocks if necessary. | |||
| 4503 | // FIXME: doing this here is really ugly. | |||
| 4504 | if (Kind == CK_BlockPointerToObjCPointerCast) { | |||
| 4505 | ExprResult E = From; | |||
| 4506 | (void) PrepareCastToObjCObjectPointer(E); | |||
| 4507 | From = E.get(); | |||
| 4508 | } | |||
| 4509 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) | |||
| 4510 | CheckObjCConversion(SourceRange(), NewToType, From, CCK); | |||
| 4511 | From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) | |||
| 4512 | .get(); | |||
| 4513 | break; | |||
| 4514 | } | |||
| 4515 | ||||
| 4516 | case ICK_Pointer_Member: { | |||
| 4517 | CastKind Kind; | |||
| 4518 | CXXCastPath BasePath; | |||
| 4519 | if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) | |||
| 4520 | return ExprError(); | |||
| 4521 | if (CheckExceptionSpecCompatibility(From, ToType)) | |||
| 4522 | return ExprError(); | |||
| 4523 | ||||
| 4524 | // We may not have been able to figure out what this member pointer resolved | |||
| 4525 | // to up until this exact point. Attempt to lock-in it's inheritance model. | |||
| 4526 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
| 4527 | (void)isCompleteType(From->getExprLoc(), From->getType()); | |||
| 4528 | (void)isCompleteType(From->getExprLoc(), ToType); | |||
| 4529 | } | |||
| 4530 | ||||
| 4531 | From = | |||
| 4532 | ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); | |||
| 4533 | break; | |||
| 4534 | } | |||
| 4535 | ||||
| 4536 | case ICK_Boolean_Conversion: | |||
| 4537 | // Perform half-to-boolean conversion via float. | |||
| 4538 | if (From->getType()->isHalfType()) { | |||
| 4539 | From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); | |||
| 4540 | FromType = Context.FloatTy; | |||
| 4541 | } | |||
| 4542 | ||||
| 4543 | From = ImpCastExprToType(From, Context.BoolTy, | |||
| 4544 | ScalarTypeToBooleanCastKind(FromType), VK_PRValue, | |||
| 4545 | /*BasePath=*/nullptr, CCK) | |||
| 4546 | .get(); | |||
| 4547 | break; | |||
| 4548 | ||||
| 4549 | case ICK_Derived_To_Base: { | |||
| 4550 | CXXCastPath BasePath; | |||
| 4551 | if (CheckDerivedToBaseConversion( | |||
| 4552 | From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), | |||
| 4553 | From->getSourceRange(), &BasePath, CStyle)) | |||
| 4554 | return ExprError(); | |||
| 4555 | ||||
| 4556 | From = ImpCastExprToType(From, ToType.getNonReferenceType(), | |||
| 4557 | CK_DerivedToBase, From->getValueKind(), | |||
| 4558 | &BasePath, CCK).get(); | |||
| 4559 | break; | |||
| 4560 | } | |||
| 4561 | ||||
| 4562 | case ICK_Vector_Conversion: | |||
| 4563 | From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, | |||
| 4564 | /*BasePath=*/nullptr, CCK) | |||
| 4565 | .get(); | |||
| 4566 | break; | |||
| 4567 | ||||
| 4568 | case ICK_SVE_Vector_Conversion: | |||
| 4569 | case ICK_RVV_Vector_Conversion: | |||
| 4570 | From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, | |||
| 4571 | /*BasePath=*/nullptr, CCK) | |||
| 4572 | .get(); | |||
| 4573 | break; | |||
| 4574 | ||||
| 4575 | case ICK_Vector_Splat: { | |||
| 4576 | // Vector splat from any arithmetic type to a vector. | |||
| 4577 | Expr *Elem = prepareVectorSplat(ToType, From).get(); | |||
| 4578 | From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, | |||
| 4579 | /*BasePath=*/nullptr, CCK) | |||
| 4580 | .get(); | |||
| 4581 | break; | |||
| 4582 | } | |||
| 4583 | ||||
| 4584 | case ICK_Complex_Real: | |||
| 4585 | // Case 1. x -> _Complex y | |||
| 4586 | if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { | |||
| 4587 | QualType ElType = ToComplex->getElementType(); | |||
| 4588 | bool isFloatingComplex = ElType->isRealFloatingType(); | |||
| 4589 | ||||
| 4590 | // x -> y | |||
| 4591 | if (Context.hasSameUnqualifiedType(ElType, From->getType())) { | |||
| 4592 | // do nothing | |||
| 4593 | } else if (From->getType()->isRealFloatingType()) { | |||
| 4594 | From = ImpCastExprToType(From, ElType, | |||
| 4595 | isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); | |||
| 4596 | } else { | |||
| 4597 | assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType ()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()" , "clang/lib/Sema/SemaExprCXX.cpp", 4597, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4598 | From = ImpCastExprToType(From, ElType, | |||
| 4599 | isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); | |||
| 4600 | } | |||
| 4601 | // y -> _Complex y | |||
| 4602 | From = ImpCastExprToType(From, ToType, | |||
| 4603 | isFloatingComplex ? CK_FloatingRealToComplex | |||
| 4604 | : CK_IntegralRealToComplex).get(); | |||
| 4605 | ||||
| 4606 | // Case 2. _Complex x -> y | |||
| 4607 | } else { | |||
| 4608 | auto *FromComplex = From->getType()->castAs<ComplexType>(); | |||
| 4609 | QualType ElType = FromComplex->getElementType(); | |||
| 4610 | bool isFloatingComplex = ElType->isRealFloatingType(); | |||
| 4611 | ||||
| 4612 | // _Complex x -> x | |||
| 4613 | From = ImpCastExprToType(From, ElType, | |||
| 4614 | isFloatingComplex ? CK_FloatingComplexToReal | |||
| 4615 | : CK_IntegralComplexToReal, | |||
| 4616 | VK_PRValue, /*BasePath=*/nullptr, CCK) | |||
| 4617 | .get(); | |||
| 4618 | ||||
| 4619 | // x -> y | |||
| 4620 | if (Context.hasSameUnqualifiedType(ElType, ToType)) { | |||
| 4621 | // do nothing | |||
| 4622 | } else if (ToType->isRealFloatingType()) { | |||
| 4623 | From = ImpCastExprToType(From, ToType, | |||
| 4624 | isFloatingComplex ? CK_FloatingCast | |||
| 4625 | : CK_IntegralToFloating, | |||
| 4626 | VK_PRValue, /*BasePath=*/nullptr, CCK) | |||
| 4627 | .get(); | |||
| 4628 | } else { | |||
| 4629 | assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void (0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp" , 4629, __extension__ __PRETTY_FUNCTION__)); | |||
| 4630 | From = ImpCastExprToType(From, ToType, | |||
| 4631 | isFloatingComplex ? CK_FloatingToIntegral | |||
| 4632 | : CK_IntegralCast, | |||
| 4633 | VK_PRValue, /*BasePath=*/nullptr, CCK) | |||
| 4634 | .get(); | |||
| 4635 | } | |||
| 4636 | } | |||
| 4637 | break; | |||
| 4638 | ||||
| 4639 | case ICK_Block_Pointer_Conversion: { | |||
| 4640 | LangAS AddrSpaceL = | |||
| 4641 | ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); | |||
| 4642 | LangAS AddrSpaceR = | |||
| 4643 | FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); | |||
| 4644 | assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf (AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0 ) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4645, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4645 | "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf (AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0 ) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4645, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4646 | CastKind Kind = | |||
| 4647 | AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | |||
| 4648 | From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, | |||
| 4649 | VK_PRValue, /*BasePath=*/nullptr, CCK) | |||
| 4650 | .get(); | |||
| 4651 | break; | |||
| 4652 | } | |||
| 4653 | ||||
| 4654 | case ICK_TransparentUnionConversion: { | |||
| 4655 | ExprResult FromRes = From; | |||
| 4656 | Sema::AssignConvertType ConvTy = | |||
| 4657 | CheckTransparentUnionArgumentConstraints(ToType, FromRes); | |||
| 4658 | if (FromRes.isInvalid()) | |||
| 4659 | return ExprError(); | |||
| 4660 | From = FromRes.get(); | |||
| 4661 | assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) && "Improper transparent union conversion") ? void (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4662, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4662 | "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) && "Improper transparent union conversion") ? void (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4662, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4663 | (void)ConvTy; | |||
| 4664 | break; | |||
| 4665 | } | |||
| 4666 | ||||
| 4667 | case ICK_Zero_Event_Conversion: | |||
| 4668 | case ICK_Zero_Queue_Conversion: | |||
| 4669 | From = ImpCastExprToType(From, ToType, | |||
| 4670 | CK_ZeroToOCLOpaqueType, | |||
| 4671 | From->getValueKind()).get(); | |||
| 4672 | break; | |||
| 4673 | ||||
| 4674 | case ICK_Lvalue_To_Rvalue: | |||
| 4675 | case ICK_Array_To_Pointer: | |||
| 4676 | case ICK_Function_To_Pointer: | |||
| 4677 | case ICK_Function_Conversion: | |||
| 4678 | case ICK_Qualification: | |||
| 4679 | case ICK_Num_Conversion_Kinds: | |||
| 4680 | case ICK_C_Only_Conversion: | |||
| 4681 | case ICK_Incompatible_Pointer_Conversion: | |||
| 4682 | llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion" , "clang/lib/Sema/SemaExprCXX.cpp", 4682); | |||
| 4683 | } | |||
| 4684 | ||||
| 4685 | switch (SCS.Third) { | |||
| 4686 | case ICK_Identity: | |||
| 4687 | // Nothing to do. | |||
| 4688 | break; | |||
| 4689 | ||||
| 4690 | case ICK_Function_Conversion: | |||
| 4691 | // If both sides are functions (or pointers/references to them), there could | |||
| 4692 | // be incompatible exception declarations. | |||
| 4693 | if (CheckExceptionSpecCompatibility(From, ToType)) | |||
| 4694 | return ExprError(); | |||
| 4695 | ||||
| 4696 | From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, | |||
| 4697 | /*BasePath=*/nullptr, CCK) | |||
| 4698 | .get(); | |||
| 4699 | break; | |||
| 4700 | ||||
| 4701 | case ICK_Qualification: { | |||
| 4702 | ExprValueKind VK = From->getValueKind(); | |||
| 4703 | CastKind CK = CK_NoOp; | |||
| 4704 | ||||
| 4705 | if (ToType->isReferenceType() && | |||
| 4706 | ToType->getPointeeType().getAddressSpace() != | |||
| 4707 | From->getType().getAddressSpace()) | |||
| 4708 | CK = CK_AddressSpaceConversion; | |||
| 4709 | ||||
| 4710 | if (ToType->isPointerType() && | |||
| 4711 | ToType->getPointeeType().getAddressSpace() != | |||
| 4712 | From->getType()->getPointeeType().getAddressSpace()) | |||
| 4713 | CK = CK_AddressSpaceConversion; | |||
| 4714 | ||||
| 4715 | if (!isCast(CCK) && | |||
| 4716 | !ToType->getPointeeType().getQualifiers().hasUnaligned() && | |||
| 4717 | From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { | |||
| 4718 | Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) | |||
| 4719 | << InitialFromType << ToType; | |||
| 4720 | } | |||
| 4721 | ||||
| 4722 | From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, | |||
| 4723 | /*BasePath=*/nullptr, CCK) | |||
| 4724 | .get(); | |||
| 4725 | ||||
| 4726 | if (SCS.DeprecatedStringLiteralToCharPtr && | |||
| 4727 | !getLangOpts().WritableStrings) { | |||
| 4728 | Diag(From->getBeginLoc(), | |||
| 4729 | getLangOpts().CPlusPlus11 | |||
| 4730 | ? diag::ext_deprecated_string_literal_conversion | |||
| 4731 | : diag::warn_deprecated_string_literal_conversion) | |||
| 4732 | << ToType.getNonReferenceType(); | |||
| 4733 | } | |||
| 4734 | ||||
| 4735 | break; | |||
| 4736 | } | |||
| 4737 | ||||
| 4738 | default: | |||
| 4739 | llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion" , "clang/lib/Sema/SemaExprCXX.cpp", 4739); | |||
| 4740 | } | |||
| 4741 | ||||
| 4742 | // If this conversion sequence involved a scalar -> atomic conversion, perform | |||
| 4743 | // that conversion now. | |||
| 4744 | if (!ToAtomicType.isNull()) { | |||
| 4745 | assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType-> castAs<AtomicType>()->getValueType(), From->getType ())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())" , "clang/lib/Sema/SemaExprCXX.cpp", 4746, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4746 | ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType-> castAs<AtomicType>()->getValueType(), From->getType ())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())" , "clang/lib/Sema/SemaExprCXX.cpp", 4746, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4747 | From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, | |||
| 4748 | VK_PRValue, nullptr, CCK) | |||
| 4749 | .get(); | |||
| 4750 | } | |||
| 4751 | ||||
| 4752 | // Materialize a temporary if we're implicitly converting to a reference | |||
| 4753 | // type. This is not required by the C++ rules but is necessary to maintain | |||
| 4754 | // AST invariants. | |||
| 4755 | if (ToType->isReferenceType() && From->isPRValue()) { | |||
| 4756 | ExprResult Res = TemporaryMaterializationConversion(From); | |||
| 4757 | if (Res.isInvalid()) | |||
| 4758 | return ExprError(); | |||
| 4759 | From = Res.get(); | |||
| 4760 | } | |||
| 4761 | ||||
| 4762 | // If this conversion sequence succeeded and involved implicitly converting a | |||
| 4763 | // _Nullable type to a _Nonnull one, complain. | |||
| 4764 | if (!isCast(CCK)) | |||
| 4765 | diagnoseNullableToNonnullConversion(ToType, InitialFromType, | |||
| 4766 | From->getBeginLoc()); | |||
| 4767 | ||||
| 4768 | return From; | |||
| 4769 | } | |||
| 4770 | ||||
| 4771 | /// Check the completeness of a type in a unary type trait. | |||
| 4772 | /// | |||
| 4773 | /// If the particular type trait requires a complete type, tries to complete | |||
| 4774 | /// it. If completing the type fails, a diagnostic is emitted and false | |||
| 4775 | /// returned. If completing the type succeeds or no completion was required, | |||
| 4776 | /// returns true. | |||
| 4777 | static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, | |||
| 4778 | SourceLocation Loc, | |||
| 4779 | QualType ArgTy) { | |||
| 4780 | // C++0x [meta.unary.prop]p3: | |||
| 4781 | // For all of the class templates X declared in this Clause, instantiating | |||
| 4782 | // that template with a template argument that is a class template | |||
| 4783 | // specialization may result in the implicit instantiation of the template | |||
| 4784 | // argument if and only if the semantics of X require that the argument | |||
| 4785 | // must be a complete type. | |||
| 4786 | // We apply this rule to all the type trait expressions used to implement | |||
| 4787 | // these class templates. We also try to follow any GCC documented behavior | |||
| 4788 | // in these expressions to ensure portability of standard libraries. | |||
| 4789 | switch (UTT) { | |||
| 4790 | default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp" , 4790); | |||
| 4791 | // is_complete_type somewhat obviously cannot require a complete type. | |||
| 4792 | case UTT_IsCompleteType: | |||
| 4793 | // Fall-through | |||
| 4794 | ||||
| 4795 | // These traits are modeled on the type predicates in C++0x | |||
| 4796 | // [meta.unary.cat] and [meta.unary.comp]. They are not specified as | |||
| 4797 | // requiring a complete type, as whether or not they return true cannot be | |||
| 4798 | // impacted by the completeness of the type. | |||
| 4799 | case UTT_IsVoid: | |||
| 4800 | case UTT_IsIntegral: | |||
| 4801 | case UTT_IsFloatingPoint: | |||
| 4802 | case UTT_IsArray: | |||
| 4803 | case UTT_IsBoundedArray: | |||
| 4804 | case UTT_IsPointer: | |||
| 4805 | case UTT_IsNullPointer: | |||
| 4806 | case UTT_IsReferenceable: | |||
| 4807 | case UTT_IsLvalueReference: | |||
| 4808 | case UTT_IsRvalueReference: | |||
| 4809 | case UTT_IsMemberFunctionPointer: | |||
| 4810 | case UTT_IsMemberObjectPointer: | |||
| 4811 | case UTT_IsEnum: | |||
| 4812 | case UTT_IsScopedEnum: | |||
| 4813 | case UTT_IsUnion: | |||
| 4814 | case UTT_IsClass: | |||
| 4815 | case UTT_IsFunction: | |||
| 4816 | case UTT_IsReference: | |||
| 4817 | case UTT_IsArithmetic: | |||
| 4818 | case UTT_IsFundamental: | |||
| 4819 | case UTT_IsObject: | |||
| 4820 | case UTT_IsScalar: | |||
| 4821 | case UTT_IsCompound: | |||
| 4822 | case UTT_IsMemberPointer: | |||
| 4823 | // Fall-through | |||
| 4824 | ||||
| 4825 | // These traits are modeled on type predicates in C++0x [meta.unary.prop] | |||
| 4826 | // which requires some of its traits to have the complete type. However, | |||
| 4827 | // the completeness of the type cannot impact these traits' semantics, and | |||
| 4828 | // so they don't require it. This matches the comments on these traits in | |||
| 4829 | // Table 49. | |||
| 4830 | case UTT_IsConst: | |||
| 4831 | case UTT_IsVolatile: | |||
| 4832 | case UTT_IsSigned: | |||
| 4833 | case UTT_IsUnboundedArray: | |||
| 4834 | case UTT_IsUnsigned: | |||
| 4835 | ||||
| 4836 | // This type trait always returns false, checking the type is moot. | |||
| 4837 | case UTT_IsInterfaceClass: | |||
| 4838 | return true; | |||
| 4839 | ||||
| 4840 | // C++14 [meta.unary.prop]: | |||
| 4841 | // If T is a non-union class type, T shall be a complete type. | |||
| 4842 | case UTT_IsEmpty: | |||
| 4843 | case UTT_IsPolymorphic: | |||
| 4844 | case UTT_IsAbstract: | |||
| 4845 | if (const auto *RD = ArgTy->getAsCXXRecordDecl()) | |||
| 4846 | if (!RD->isUnion()) | |||
| 4847 | return !S.RequireCompleteType( | |||
| 4848 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); | |||
| 4849 | return true; | |||
| 4850 | ||||
| 4851 | // C++14 [meta.unary.prop]: | |||
| 4852 | // If T is a class type, T shall be a complete type. | |||
| 4853 | case UTT_IsFinal: | |||
| 4854 | case UTT_IsSealed: | |||
| 4855 | if (ArgTy->getAsCXXRecordDecl()) | |||
| 4856 | return !S.RequireCompleteType( | |||
| 4857 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); | |||
| 4858 | return true; | |||
| 4859 | ||||
| 4860 | // LWG3823: T shall be an array type, a complete type, or cv void. | |||
| 4861 | case UTT_IsAggregate: | |||
| 4862 | if (ArgTy->isArrayType() || ArgTy->isVoidType()) | |||
| 4863 | return true; | |||
| 4864 | ||||
| 4865 | return !S.RequireCompleteType( | |||
| 4866 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); | |||
| 4867 | ||||
| 4868 | // C++1z [meta.unary.prop]: | |||
| 4869 | // remove_all_extents_t<T> shall be a complete type or cv void. | |||
| 4870 | case UTT_IsTrivial: | |||
| 4871 | case UTT_IsTriviallyCopyable: | |||
| 4872 | case UTT_IsStandardLayout: | |||
| 4873 | case UTT_IsPOD: | |||
| 4874 | case UTT_IsLiteral: | |||
| 4875 | // By analogy, is_trivially_relocatable and is_trivially_equality_comparable | |||
| 4876 | // impose the same constraints. | |||
| 4877 | case UTT_IsTriviallyRelocatable: | |||
| 4878 | case UTT_IsTriviallyEqualityComparable: | |||
| 4879 | case UTT_CanPassInRegs: | |||
| 4880 | // Per the GCC type traits documentation, T shall be a complete type, cv void, | |||
| 4881 | // or an array of unknown bound. But GCC actually imposes the same constraints | |||
| 4882 | // as above. | |||
| 4883 | case UTT_HasNothrowAssign: | |||
| 4884 | case UTT_HasNothrowMoveAssign: | |||
| 4885 | case UTT_HasNothrowConstructor: | |||
| 4886 | case UTT_HasNothrowCopy: | |||
| 4887 | case UTT_HasTrivialAssign: | |||
| 4888 | case UTT_HasTrivialMoveAssign: | |||
| 4889 | case UTT_HasTrivialDefaultConstructor: | |||
| 4890 | case UTT_HasTrivialMoveConstructor: | |||
| 4891 | case UTT_HasTrivialCopy: | |||
| 4892 | case UTT_HasTrivialDestructor: | |||
| 4893 | case UTT_HasVirtualDestructor: | |||
| 4894 | ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); | |||
| 4895 | [[fallthrough]]; | |||
| 4896 | ||||
| 4897 | // C++1z [meta.unary.prop]: | |||
| 4898 | // T shall be a complete type, cv void, or an array of unknown bound. | |||
| 4899 | case UTT_IsDestructible: | |||
| 4900 | case UTT_IsNothrowDestructible: | |||
| 4901 | case UTT_IsTriviallyDestructible: | |||
| 4902 | case UTT_HasUniqueObjectRepresentations: | |||
| 4903 | if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) | |||
| 4904 | return true; | |||
| 4905 | ||||
| 4906 | return !S.RequireCompleteType( | |||
| 4907 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); | |||
| 4908 | } | |||
| 4909 | } | |||
| 4910 | ||||
| 4911 | static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, | |||
| 4912 | Sema &Self, SourceLocation KeyLoc, ASTContext &C, | |||
| 4913 | bool (CXXRecordDecl::*HasTrivial)() const, | |||
| 4914 | bool (CXXRecordDecl::*HasNonTrivial)() const, | |||
| 4915 | bool (CXXMethodDecl::*IsDesiredOp)() const) | |||
| 4916 | { | |||
| 4917 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 4918 | if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) | |||
| 4919 | return true; | |||
| 4920 | ||||
| 4921 | DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); | |||
| 4922 | DeclarationNameInfo NameInfo(Name, KeyLoc); | |||
| 4923 | LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); | |||
| 4924 | if (Self.LookupQualifiedName(Res, RD)) { | |||
| 4925 | bool FoundOperator = false; | |||
| 4926 | Res.suppressDiagnostics(); | |||
| 4927 | for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); | |||
| 4928 | Op != OpEnd; ++Op) { | |||
| 4929 | if (isa<FunctionTemplateDecl>(*Op)) | |||
| 4930 | continue; | |||
| 4931 | ||||
| 4932 | CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); | |||
| 4933 | if((Operator->*IsDesiredOp)()) { | |||
| 4934 | FoundOperator = true; | |||
| 4935 | auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); | |||
| 4936 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | |||
| 4937 | if (!CPT || !CPT->isNothrow()) | |||
| 4938 | return false; | |||
| 4939 | } | |||
| 4940 | } | |||
| 4941 | return FoundOperator; | |||
| 4942 | } | |||
| 4943 | return false; | |||
| 4944 | } | |||
| 4945 | ||||
| 4946 | static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, | |||
| 4947 | SourceLocation KeyLoc, QualType T) { | |||
| 4948 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() && "Cannot evaluate traits of dependent type") ? void (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 4948, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4949 | ||||
| 4950 | ASTContext &C = Self.Context; | |||
| 4951 | switch(UTT) { | |||
| 4952 | default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp" , 4952); | |||
| 4953 | // Type trait expressions corresponding to the primary type category | |||
| 4954 | // predicates in C++0x [meta.unary.cat]. | |||
| 4955 | case UTT_IsVoid: | |||
| 4956 | return T->isVoidType(); | |||
| 4957 | case UTT_IsIntegral: | |||
| 4958 | return T->isIntegralType(C); | |||
| 4959 | case UTT_IsFloatingPoint: | |||
| 4960 | return T->isFloatingType(); | |||
| 4961 | case UTT_IsArray: | |||
| 4962 | return T->isArrayType(); | |||
| 4963 | case UTT_IsBoundedArray: | |||
| 4964 | if (!T->isVariableArrayType()) { | |||
| 4965 | return T->isArrayType() && !T->isIncompleteArrayType(); | |||
| 4966 | } | |||
| 4967 | ||||
| 4968 | Self.Diag(KeyLoc, diag::err_vla_unsupported) | |||
| 4969 | << 1 << tok::kw___is_bounded_array; | |||
| 4970 | return false; | |||
| 4971 | case UTT_IsUnboundedArray: | |||
| 4972 | if (!T->isVariableArrayType()) { | |||
| 4973 | return T->isIncompleteArrayType(); | |||
| 4974 | } | |||
| 4975 | ||||
| 4976 | Self.Diag(KeyLoc, diag::err_vla_unsupported) | |||
| 4977 | << 1 << tok::kw___is_unbounded_array; | |||
| 4978 | return false; | |||
| 4979 | case UTT_IsPointer: | |||
| 4980 | return T->isAnyPointerType(); | |||
| 4981 | case UTT_IsNullPointer: | |||
| 4982 | return T->isNullPtrType(); | |||
| 4983 | case UTT_IsLvalueReference: | |||
| 4984 | return T->isLValueReferenceType(); | |||
| 4985 | case UTT_IsRvalueReference: | |||
| 4986 | return T->isRValueReferenceType(); | |||
| 4987 | case UTT_IsMemberFunctionPointer: | |||
| 4988 | return T->isMemberFunctionPointerType(); | |||
| 4989 | case UTT_IsMemberObjectPointer: | |||
| 4990 | return T->isMemberDataPointerType(); | |||
| 4991 | case UTT_IsEnum: | |||
| 4992 | return T->isEnumeralType(); | |||
| 4993 | case UTT_IsScopedEnum: | |||
| 4994 | return T->isScopedEnumeralType(); | |||
| 4995 | case UTT_IsUnion: | |||
| 4996 | return T->isUnionType(); | |||
| 4997 | case UTT_IsClass: | |||
| 4998 | return T->isClassType() || T->isStructureType() || T->isInterfaceType(); | |||
| 4999 | case UTT_IsFunction: | |||
| 5000 | return T->isFunctionType(); | |||
| 5001 | ||||
| 5002 | // Type trait expressions which correspond to the convenient composition | |||
| 5003 | // predicates in C++0x [meta.unary.comp]. | |||
| 5004 | case UTT_IsReference: | |||
| 5005 | return T->isReferenceType(); | |||
| 5006 | case UTT_IsArithmetic: | |||
| 5007 | return T->isArithmeticType() && !T->isEnumeralType(); | |||
| 5008 | case UTT_IsFundamental: | |||
| 5009 | return T->isFundamentalType(); | |||
| 5010 | case UTT_IsObject: | |||
| 5011 | return T->isObjectType(); | |||
| 5012 | case UTT_IsScalar: | |||
| 5013 | // Note: semantic analysis depends on Objective-C lifetime types to be | |||
| 5014 | // considered scalar types. However, such types do not actually behave | |||
| 5015 | // like scalar types at run time (since they may require retain/release | |||
| 5016 | // operations), so we report them as non-scalar. | |||
| 5017 | if (T->isObjCLifetimeType()) { | |||
| 5018 | switch (T.getObjCLifetime()) { | |||
| 5019 | case Qualifiers::OCL_None: | |||
| 5020 | case Qualifiers::OCL_ExplicitNone: | |||
| 5021 | return true; | |||
| 5022 | ||||
| 5023 | case Qualifiers::OCL_Strong: | |||
| 5024 | case Qualifiers::OCL_Weak: | |||
| 5025 | case Qualifiers::OCL_Autoreleasing: | |||
| 5026 | return false; | |||
| 5027 | } | |||
| 5028 | } | |||
| 5029 | ||||
| 5030 | return T->isScalarType(); | |||
| 5031 | case UTT_IsCompound: | |||
| 5032 | return T->isCompoundType(); | |||
| 5033 | case UTT_IsMemberPointer: | |||
| 5034 | return T->isMemberPointerType(); | |||
| 5035 | ||||
| 5036 | // Type trait expressions which correspond to the type property predicates | |||
| 5037 | // in C++0x [meta.unary.prop]. | |||
| 5038 | case UTT_IsConst: | |||
| 5039 | return T.isConstQualified(); | |||
| 5040 | case UTT_IsVolatile: | |||
| 5041 | return T.isVolatileQualified(); | |||
| 5042 | case UTT_IsTrivial: | |||
| 5043 | return T.isTrivialType(C); | |||
| 5044 | case UTT_IsTriviallyCopyable: | |||
| 5045 | return T.isTriviallyCopyableType(C); | |||
| 5046 | case UTT_IsStandardLayout: | |||
| 5047 | return T->isStandardLayoutType(); | |||
| 5048 | case UTT_IsPOD: | |||
| 5049 | return T.isPODType(C); | |||
| 5050 | case UTT_IsLiteral: | |||
| 5051 | return T->isLiteralType(C); | |||
| 5052 | case UTT_IsEmpty: | |||
| 5053 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5054 | return !RD->isUnion() && RD->isEmpty(); | |||
| 5055 | return false; | |||
| 5056 | case UTT_IsPolymorphic: | |||
| 5057 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5058 | return !RD->isUnion() && RD->isPolymorphic(); | |||
| 5059 | return false; | |||
| 5060 | case UTT_IsAbstract: | |||
| 5061 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5062 | return !RD->isUnion() && RD->isAbstract(); | |||
| 5063 | return false; | |||
| 5064 | case UTT_IsAggregate: | |||
| 5065 | // Report vector extensions and complex types as aggregates because they | |||
| 5066 | // support aggregate initialization. GCC mirrors this behavior for vectors | |||
| 5067 | // but not _Complex. | |||
| 5068 | return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || | |||
| 5069 | T->isAnyComplexType(); | |||
| 5070 | // __is_interface_class only returns true when CL is invoked in /CLR mode and | |||
| 5071 | // even then only when it is used with the 'interface struct ...' syntax | |||
| 5072 | // Clang doesn't support /CLR which makes this type trait moot. | |||
| 5073 | case UTT_IsInterfaceClass: | |||
| 5074 | return false; | |||
| 5075 | case UTT_IsFinal: | |||
| 5076 | case UTT_IsSealed: | |||
| 5077 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5078 | return RD->hasAttr<FinalAttr>(); | |||
| 5079 | return false; | |||
| 5080 | case UTT_IsSigned: | |||
| 5081 | // Enum types should always return false. | |||
| 5082 | // Floating points should always return true. | |||
| 5083 | return T->isFloatingType() || | |||
| 5084 | (T->isSignedIntegerType() && !T->isEnumeralType()); | |||
| 5085 | case UTT_IsUnsigned: | |||
| 5086 | // Enum types should always return false. | |||
| 5087 | return T->isUnsignedIntegerType() && !T->isEnumeralType(); | |||
| 5088 | ||||
| 5089 | // Type trait expressions which query classes regarding their construction, | |||
| 5090 | // destruction, and copying. Rather than being based directly on the | |||
| 5091 | // related type predicates in the standard, they are specified by both | |||
| 5092 | // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those | |||
| 5093 | // specifications. | |||
| 5094 | // | |||
| 5095 | // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html | |||
| 5096 | // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index | |||
| 5097 | // | |||
| 5098 | // Note that these builtins do not behave as documented in g++: if a class | |||
| 5099 | // has both a trivial and a non-trivial special member of a particular kind, | |||
| 5100 | // they return false! For now, we emulate this behavior. | |||
| 5101 | // FIXME: This appears to be a g++ bug: more complex cases reveal that it | |||
| 5102 | // does not correctly compute triviality in the presence of multiple special | |||
| 5103 | // members of the same kind. Revisit this once the g++ bug is fixed. | |||
| 5104 | case UTT_HasTrivialDefaultConstructor: | |||
| 5105 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5106 | // If __is_pod (type) is true then the trait is true, else if type is | |||
| 5107 | // a cv class or union type (or array thereof) with a trivial default | |||
| 5108 | // constructor ([class.ctor]) then the trait is true, else it is false. | |||
| 5109 | if (T.isPODType(C)) | |||
| 5110 | return true; | |||
| 5111 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | |||
| 5112 | return RD->hasTrivialDefaultConstructor() && | |||
| 5113 | !RD->hasNonTrivialDefaultConstructor(); | |||
| 5114 | return false; | |||
| 5115 | case UTT_HasTrivialMoveConstructor: | |||
| 5116 | // This trait is implemented by MSVC 2012 and needed to parse the | |||
| 5117 | // standard library headers. Specifically this is used as the logic | |||
| 5118 | // behind std::is_trivially_move_constructible (20.9.4.3). | |||
| 5119 | if (T.isPODType(C)) | |||
| 5120 | return true; | |||
| 5121 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | |||
| 5122 | return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); | |||
| 5123 | return false; | |||
| 5124 | case UTT_HasTrivialCopy: | |||
| 5125 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5126 | // If __is_pod (type) is true or type is a reference type then | |||
| 5127 | // the trait is true, else if type is a cv class or union type | |||
| 5128 | // with a trivial copy constructor ([class.copy]) then the trait | |||
| 5129 | // is true, else it is false. | |||
| 5130 | if (T.isPODType(C) || T->isReferenceType()) | |||
| 5131 | return true; | |||
| 5132 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5133 | return RD->hasTrivialCopyConstructor() && | |||
| 5134 | !RD->hasNonTrivialCopyConstructor(); | |||
| 5135 | return false; | |||
| 5136 | case UTT_HasTrivialMoveAssign: | |||
| 5137 | // This trait is implemented by MSVC 2012 and needed to parse the | |||
| 5138 | // standard library headers. Specifically it is used as the logic | |||
| 5139 | // behind std::is_trivially_move_assignable (20.9.4.3) | |||
| 5140 | if (T.isPODType(C)) | |||
| 5141 | return true; | |||
| 5142 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | |||
| 5143 | return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); | |||
| 5144 | return false; | |||
| 5145 | case UTT_HasTrivialAssign: | |||
| 5146 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5147 | // If type is const qualified or is a reference type then the | |||
| 5148 | // trait is false. Otherwise if __is_pod (type) is true then the | |||
| 5149 | // trait is true, else if type is a cv class or union type with | |||
| 5150 | // a trivial copy assignment ([class.copy]) then the trait is | |||
| 5151 | // true, else it is false. | |||
| 5152 | // Note: the const and reference restrictions are interesting, | |||
| 5153 | // given that const and reference members don't prevent a class | |||
| 5154 | // from having a trivial copy assignment operator (but do cause | |||
| 5155 | // errors if the copy assignment operator is actually used, q.v. | |||
| 5156 | // [class.copy]p12). | |||
| 5157 | ||||
| 5158 | if (T.isConstQualified()) | |||
| 5159 | return false; | |||
| 5160 | if (T.isPODType(C)) | |||
| 5161 | return true; | |||
| 5162 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5163 | return RD->hasTrivialCopyAssignment() && | |||
| 5164 | !RD->hasNonTrivialCopyAssignment(); | |||
| 5165 | return false; | |||
| 5166 | case UTT_IsDestructible: | |||
| 5167 | case UTT_IsTriviallyDestructible: | |||
| 5168 | case UTT_IsNothrowDestructible: | |||
| 5169 | // C++14 [meta.unary.prop]: | |||
| 5170 | // For reference types, is_destructible<T>::value is true. | |||
| 5171 | if (T->isReferenceType()) | |||
| 5172 | return true; | |||
| 5173 | ||||
| 5174 | // Objective-C++ ARC: autorelease types don't require destruction. | |||
| 5175 | if (T->isObjCLifetimeType() && | |||
| 5176 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) | |||
| 5177 | return true; | |||
| 5178 | ||||
| 5179 | // C++14 [meta.unary.prop]: | |||
| 5180 | // For incomplete types and function types, is_destructible<T>::value is | |||
| 5181 | // false. | |||
| 5182 | if (T->isIncompleteType() || T->isFunctionType()) | |||
| 5183 | return false; | |||
| 5184 | ||||
| 5185 | // A type that requires destruction (via a non-trivial destructor or ARC | |||
| 5186 | // lifetime semantics) is not trivially-destructible. | |||
| 5187 | if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) | |||
| 5188 | return false; | |||
| 5189 | ||||
| 5190 | // C++14 [meta.unary.prop]: | |||
| 5191 | // For object types and given U equal to remove_all_extents_t<T>, if the | |||
| 5192 | // expression std::declval<U&>().~U() is well-formed when treated as an | |||
| 5193 | // unevaluated operand (Clause 5), then is_destructible<T>::value is true | |||
| 5194 | if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { | |||
| 5195 | CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); | |||
| 5196 | if (!Destructor) | |||
| 5197 | return false; | |||
| 5198 | // C++14 [dcl.fct.def.delete]p2: | |||
| 5199 | // A program that refers to a deleted function implicitly or | |||
| 5200 | // explicitly, other than to declare it, is ill-formed. | |||
| 5201 | if (Destructor->isDeleted()) | |||
| 5202 | return false; | |||
| 5203 | if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) | |||
| 5204 | return false; | |||
| 5205 | if (UTT == UTT_IsNothrowDestructible) { | |||
| 5206 | auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); | |||
| 5207 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | |||
| 5208 | if (!CPT || !CPT->isNothrow()) | |||
| 5209 | return false; | |||
| 5210 | } | |||
| 5211 | } | |||
| 5212 | return true; | |||
| 5213 | ||||
| 5214 | case UTT_HasTrivialDestructor: | |||
| 5215 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html | |||
| 5216 | // If __is_pod (type) is true or type is a reference type | |||
| 5217 | // then the trait is true, else if type is a cv class or union | |||
| 5218 | // type (or array thereof) with a trivial destructor | |||
| 5219 | // ([class.dtor]) then the trait is true, else it is | |||
| 5220 | // false. | |||
| 5221 | if (T.isPODType(C) || T->isReferenceType()) | |||
| 5222 | return true; | |||
| 5223 | ||||
| 5224 | // Objective-C++ ARC: autorelease types don't require destruction. | |||
| 5225 | if (T->isObjCLifetimeType() && | |||
| 5226 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) | |||
| 5227 | return true; | |||
| 5228 | ||||
| 5229 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) | |||
| 5230 | return RD->hasTrivialDestructor(); | |||
| 5231 | return false; | |||
| 5232 | // TODO: Propagate nothrowness for implicitly declared special members. | |||
| 5233 | case UTT_HasNothrowAssign: | |||
| 5234 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5235 | // If type is const qualified or is a reference type then the | |||
| 5236 | // trait is false. Otherwise if __has_trivial_assign (type) | |||
| 5237 | // is true then the trait is true, else if type is a cv class | |||
| 5238 | // or union type with copy assignment operators that are known | |||
| 5239 | // not to throw an exception then the trait is true, else it is | |||
| 5240 | // false. | |||
| 5241 | if (C.getBaseElementType(T).isConstQualified()) | |||
| 5242 | return false; | |||
| 5243 | if (T->isReferenceType()) | |||
| 5244 | return false; | |||
| 5245 | if (T.isPODType(C) || T->isObjCLifetimeType()) | |||
| 5246 | return true; | |||
| 5247 | ||||
| 5248 | if (const RecordType *RT = T->getAs<RecordType>()) | |||
| 5249 | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, | |||
| 5250 | &CXXRecordDecl::hasTrivialCopyAssignment, | |||
| 5251 | &CXXRecordDecl::hasNonTrivialCopyAssignment, | |||
| 5252 | &CXXMethodDecl::isCopyAssignmentOperator); | |||
| 5253 | return false; | |||
| 5254 | case UTT_HasNothrowMoveAssign: | |||
| 5255 | // This trait is implemented by MSVC 2012 and needed to parse the | |||
| 5256 | // standard library headers. Specifically this is used as the logic | |||
| 5257 | // behind std::is_nothrow_move_assignable (20.9.4.3). | |||
| 5258 | if (T.isPODType(C)) | |||
| 5259 | return true; | |||
| 5260 | ||||
| 5261 | if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) | |||
| 5262 | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, | |||
| 5263 | &CXXRecordDecl::hasTrivialMoveAssignment, | |||
| 5264 | &CXXRecordDecl::hasNonTrivialMoveAssignment, | |||
| 5265 | &CXXMethodDecl::isMoveAssignmentOperator); | |||
| 5266 | return false; | |||
| 5267 | case UTT_HasNothrowCopy: | |||
| 5268 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5269 | // If __has_trivial_copy (type) is true then the trait is true, else | |||
| 5270 | // if type is a cv class or union type with copy constructors that are | |||
| 5271 | // known not to throw an exception then the trait is true, else it is | |||
| 5272 | // false. | |||
| 5273 | if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) | |||
| 5274 | return true; | |||
| 5275 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | |||
| 5276 | if (RD->hasTrivialCopyConstructor() && | |||
| 5277 | !RD->hasNonTrivialCopyConstructor()) | |||
| 5278 | return true; | |||
| 5279 | ||||
| 5280 | bool FoundConstructor = false; | |||
| 5281 | unsigned FoundTQs; | |||
| 5282 | for (const auto *ND : Self.LookupConstructors(RD)) { | |||
| 5283 | // A template constructor is never a copy constructor. | |||
| 5284 | // FIXME: However, it may actually be selected at the actual overload | |||
| 5285 | // resolution point. | |||
| 5286 | if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) | |||
| 5287 | continue; | |||
| 5288 | // UsingDecl itself is not a constructor | |||
| 5289 | if (isa<UsingDecl>(ND)) | |||
| 5290 | continue; | |||
| 5291 | auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); | |||
| 5292 | if (Constructor->isCopyConstructor(FoundTQs)) { | |||
| 5293 | FoundConstructor = true; | |||
| 5294 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); | |||
| 5295 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | |||
| 5296 | if (!CPT) | |||
| 5297 | return false; | |||
| 5298 | // TODO: check whether evaluating default arguments can throw. | |||
| 5299 | // For now, we'll be conservative and assume that they can throw. | |||
| 5300 | if (!CPT->isNothrow() || CPT->getNumParams() > 1) | |||
| 5301 | return false; | |||
| 5302 | } | |||
| 5303 | } | |||
| 5304 | ||||
| 5305 | return FoundConstructor; | |||
| 5306 | } | |||
| 5307 | return false; | |||
| 5308 | case UTT_HasNothrowConstructor: | |||
| 5309 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html | |||
| 5310 | // If __has_trivial_constructor (type) is true then the trait is | |||
| 5311 | // true, else if type is a cv class or union type (or array | |||
| 5312 | // thereof) with a default constructor that is known not to | |||
| 5313 | // throw an exception then the trait is true, else it is false. | |||
| 5314 | if (T.isPODType(C) || T->isObjCLifetimeType()) | |||
| 5315 | return true; | |||
| 5316 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { | |||
| 5317 | if (RD->hasTrivialDefaultConstructor() && | |||
| 5318 | !RD->hasNonTrivialDefaultConstructor()) | |||
| 5319 | return true; | |||
| 5320 | ||||
| 5321 | bool FoundConstructor = false; | |||
| 5322 | for (const auto *ND : Self.LookupConstructors(RD)) { | |||
| 5323 | // FIXME: In C++0x, a constructor template can be a default constructor. | |||
| 5324 | if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) | |||
| 5325 | continue; | |||
| 5326 | // UsingDecl itself is not a constructor | |||
| 5327 | if (isa<UsingDecl>(ND)) | |||
| 5328 | continue; | |||
| 5329 | auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); | |||
| 5330 | if (Constructor->isDefaultConstructor()) { | |||
| 5331 | FoundConstructor = true; | |||
| 5332 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); | |||
| 5333 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); | |||
| 5334 | if (!CPT) | |||
| 5335 | return false; | |||
| 5336 | // FIXME: check whether evaluating default arguments can throw. | |||
| 5337 | // For now, we'll be conservative and assume that they can throw. | |||
| 5338 | if (!CPT->isNothrow() || CPT->getNumParams() > 0) | |||
| 5339 | return false; | |||
| 5340 | } | |||
| 5341 | } | |||
| 5342 | return FoundConstructor; | |||
| 5343 | } | |||
| 5344 | return false; | |||
| 5345 | case UTT_HasVirtualDestructor: | |||
| 5346 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | |||
| 5347 | // If type is a class type with a virtual destructor ([class.dtor]) | |||
| 5348 | // then the trait is true, else it is false. | |||
| 5349 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 5350 | if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) | |||
| 5351 | return Destructor->isVirtual(); | |||
| 5352 | return false; | |||
| 5353 | ||||
| 5354 | // These type trait expressions are modeled on the specifications for the | |||
| 5355 | // Embarcadero C++0x type trait functions: | |||
| 5356 | // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index | |||
| 5357 | case UTT_IsCompleteType: | |||
| 5358 | // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): | |||
| 5359 | // Returns True if and only if T is a complete type at the point of the | |||
| 5360 | // function call. | |||
| 5361 | return !T->isIncompleteType(); | |||
| 5362 | case UTT_HasUniqueObjectRepresentations: | |||
| 5363 | return C.hasUniqueObjectRepresentations(T); | |||
| 5364 | case UTT_IsTriviallyRelocatable: | |||
| 5365 | return T.isTriviallyRelocatableType(C); | |||
| 5366 | case UTT_IsReferenceable: | |||
| 5367 | return T.isReferenceable(); | |||
| 5368 | case UTT_CanPassInRegs: | |||
| 5369 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) | |||
| 5370 | return RD->canPassInRegisters(); | |||
| 5371 | Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T; | |||
| 5372 | return false; | |||
| 5373 | case UTT_IsTriviallyEqualityComparable: | |||
| 5374 | return T.isTriviallyEqualityComparableType(C); | |||
| 5375 | } | |||
| 5376 | } | |||
| 5377 | ||||
| 5378 | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, | |||
| 5379 | QualType RhsT, SourceLocation KeyLoc); | |||
| 5380 | ||||
| 5381 | static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, | |||
| 5382 | ArrayRef<TypeSourceInfo *> Args, | |||
| 5383 | SourceLocation RParenLoc) { | |||
| 5384 | if (Kind <= UTT_Last) | |||
| 5385 | return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); | |||
| 5386 | ||||
| 5387 | // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible | |||
| 5388 | // traits to avoid duplication. | |||
| 5389 | if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) | |||
| 5390 | return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), | |||
| 5391 | Args[1]->getType(), RParenLoc); | |||
| 5392 | ||||
| 5393 | switch (Kind) { | |||
| 5394 | case clang::BTT_ReferenceBindsToTemporary: | |||
| 5395 | case clang::TT_IsConstructible: | |||
| 5396 | case clang::TT_IsNothrowConstructible: | |||
| 5397 | case clang::TT_IsTriviallyConstructible: { | |||
| 5398 | // C++11 [meta.unary.prop]: | |||
| 5399 | // is_trivially_constructible is defined as: | |||
| 5400 | // | |||
| 5401 | // is_constructible<T, Args...>::value is true and the variable | |||
| 5402 | // definition for is_constructible, as defined below, is known to call | |||
| 5403 | // no operation that is not trivial. | |||
| 5404 | // | |||
| 5405 | // The predicate condition for a template specialization | |||
| 5406 | // is_constructible<T, Args...> shall be satisfied if and only if the | |||
| 5407 | // following variable definition would be well-formed for some invented | |||
| 5408 | // variable t: | |||
| 5409 | // | |||
| 5410 | // T t(create<Args>()...); | |||
| 5411 | assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail ("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5411, __extension__ __PRETTY_FUNCTION__)); | |||
| 5412 | ||||
| 5413 | // Precondition: T and all types in the parameter pack Args shall be | |||
| 5414 | // complete types, (possibly cv-qualified) void, or arrays of | |||
| 5415 | // unknown bound. | |||
| 5416 | for (const auto *TSI : Args) { | |||
| 5417 | QualType ArgTy = TSI->getType(); | |||
| 5418 | if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) | |||
| 5419 | continue; | |||
| 5420 | ||||
| 5421 | if (S.RequireCompleteType(KWLoc, ArgTy, | |||
| 5422 | diag::err_incomplete_type_used_in_type_trait_expr)) | |||
| 5423 | return false; | |||
| 5424 | } | |||
| 5425 | ||||
| 5426 | // Make sure the first argument is not incomplete nor a function type. | |||
| 5427 | QualType T = Args[0]->getType(); | |||
| 5428 | if (T->isIncompleteType() || T->isFunctionType()) | |||
| 5429 | return false; | |||
| 5430 | ||||
| 5431 | // Make sure the first argument is not an abstract type. | |||
| 5432 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); | |||
| 5433 | if (RD && RD->isAbstract()) | |||
| 5434 | return false; | |||
| 5435 | ||||
| 5436 | llvm::BumpPtrAllocator OpaqueExprAllocator; | |||
| 5437 | SmallVector<Expr *, 2> ArgExprs; | |||
| 5438 | ArgExprs.reserve(Args.size() - 1); | |||
| 5439 | for (unsigned I = 1, N = Args.size(); I != N; ++I) { | |||
| 5440 | QualType ArgTy = Args[I]->getType(); | |||
| 5441 | if (ArgTy->isObjectType() || ArgTy->isFunctionType()) | |||
| 5442 | ArgTy = S.Context.getRValueReferenceType(ArgTy); | |||
| 5443 | ArgExprs.push_back( | |||
| 5444 | new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) | |||
| 5445 | OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), | |||
| 5446 | ArgTy.getNonLValueExprType(S.Context), | |||
| 5447 | Expr::getValueKindForType(ArgTy))); | |||
| 5448 | } | |||
| 5449 | ||||
| 5450 | // Perform the initialization in an unevaluated context within a SFINAE | |||
| 5451 | // trap at translation unit scope. | |||
| 5452 | EnterExpressionEvaluationContext Unevaluated( | |||
| 5453 | S, Sema::ExpressionEvaluationContext::Unevaluated); | |||
| 5454 | Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); | |||
| 5455 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); | |||
| 5456 | InitializedEntity To( | |||
| 5457 | InitializedEntity::InitializeTemporary(S.Context, Args[0])); | |||
| 5458 | InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, | |||
| 5459 | RParenLoc)); | |||
| 5460 | InitializationSequence Init(S, To, InitKind, ArgExprs); | |||
| 5461 | if (Init.Failed()) | |||
| 5462 | return false; | |||
| 5463 | ||||
| 5464 | ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); | |||
| 5465 | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) | |||
| 5466 | return false; | |||
| 5467 | ||||
| 5468 | if (Kind == clang::TT_IsConstructible) | |||
| 5469 | return true; | |||
| 5470 | ||||
| 5471 | if (Kind == clang::BTT_ReferenceBindsToTemporary) { | |||
| 5472 | if (!T->isReferenceType()) | |||
| 5473 | return false; | |||
| 5474 | ||||
| 5475 | return !Init.isDirectReferenceBinding(); | |||
| 5476 | } | |||
| 5477 | ||||
| 5478 | if (Kind == clang::TT_IsNothrowConstructible) | |||
| 5479 | return S.canThrow(Result.get()) == CT_Cannot; | |||
| 5480 | ||||
| 5481 | if (Kind == clang::TT_IsTriviallyConstructible) { | |||
| 5482 | // Under Objective-C ARC and Weak, if the destination has non-trivial | |||
| 5483 | // Objective-C lifetime, this is a non-trivial construction. | |||
| 5484 | if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) | |||
| 5485 | return false; | |||
| 5486 | ||||
| 5487 | // The initialization succeeded; now make sure there are no non-trivial | |||
| 5488 | // calls. | |||
| 5489 | return !Result.get()->hasNonTrivialCall(S.Context); | |||
| 5490 | } | |||
| 5491 | ||||
| 5492 | llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp" , 5492); | |||
| 5493 | return false; | |||
| 5494 | } | |||
| 5495 | default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp" , 5495); | |||
| 5496 | } | |||
| 5497 | ||||
| 5498 | return false; | |||
| 5499 | } | |||
| 5500 | ||||
| 5501 | namespace { | |||
| 5502 | void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, | |||
| 5503 | SourceLocation KWLoc) { | |||
| 5504 | TypeTrait Replacement; | |||
| 5505 | switch (Kind) { | |||
| 5506 | case UTT_HasNothrowAssign: | |||
| 5507 | case UTT_HasNothrowMoveAssign: | |||
| 5508 | Replacement = BTT_IsNothrowAssignable; | |||
| 5509 | break; | |||
| 5510 | case UTT_HasNothrowCopy: | |||
| 5511 | case UTT_HasNothrowConstructor: | |||
| 5512 | Replacement = TT_IsNothrowConstructible; | |||
| 5513 | break; | |||
| 5514 | case UTT_HasTrivialAssign: | |||
| 5515 | case UTT_HasTrivialMoveAssign: | |||
| 5516 | Replacement = BTT_IsTriviallyAssignable; | |||
| 5517 | break; | |||
| 5518 | case UTT_HasTrivialCopy: | |||
| 5519 | Replacement = UTT_IsTriviallyCopyable; | |||
| 5520 | break; | |||
| 5521 | case UTT_HasTrivialDefaultConstructor: | |||
| 5522 | case UTT_HasTrivialMoveConstructor: | |||
| 5523 | Replacement = TT_IsTriviallyConstructible; | |||
| 5524 | break; | |||
| 5525 | case UTT_HasTrivialDestructor: | |||
| 5526 | Replacement = UTT_IsTriviallyDestructible; | |||
| 5527 | break; | |||
| 5528 | default: | |||
| 5529 | return; | |||
| 5530 | } | |||
| 5531 | S.Diag(KWLoc, diag::warn_deprecated_builtin) | |||
| 5532 | << getTraitSpelling(Kind) << getTraitSpelling(Replacement); | |||
| 5533 | } | |||
| 5534 | } | |||
| 5535 | ||||
| 5536 | bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { | |||
| 5537 | if (Arity && N != Arity) { | |||
| 5538 | Diag(Loc, diag::err_type_trait_arity) | |||
| 5539 | << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); | |||
| 5540 | return false; | |||
| 5541 | } | |||
| 5542 | ||||
| 5543 | if (!Arity && N == 0) { | |||
| 5544 | Diag(Loc, diag::err_type_trait_arity) | |||
| 5545 | << 1 << 1 << 1 << (int)N << SourceRange(Loc); | |||
| 5546 | return false; | |||
| 5547 | } | |||
| 5548 | return true; | |||
| 5549 | } | |||
| 5550 | ||||
| 5551 | ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | |||
| 5552 | ArrayRef<TypeSourceInfo *> Args, | |||
| 5553 | SourceLocation RParenLoc) { | |||
| 5554 | if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) | |||
| 5555 | return ExprError(); | |||
| 5556 | QualType ResultType = Context.getLogicalOperationType(); | |||
| 5557 | ||||
| 5558 | if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( | |||
| 5559 | *this, Kind, KWLoc, Args[0]->getType())) | |||
| 5560 | return ExprError(); | |||
| 5561 | ||||
| 5562 | DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); | |||
| 5563 | ||||
| 5564 | bool Dependent = false; | |||
| 5565 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | |||
| 5566 | if (Args[I]->getType()->isDependentType()) { | |||
| 5567 | Dependent = true; | |||
| 5568 | break; | |||
| 5569 | } | |||
| 5570 | } | |||
| 5571 | ||||
| 5572 | bool Result = false; | |||
| 5573 | if (!Dependent) | |||
| 5574 | Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); | |||
| 5575 | ||||
| 5576 | return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, | |||
| 5577 | RParenLoc, Result); | |||
| 5578 | } | |||
| 5579 | ||||
| 5580 | ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | |||
| 5581 | ArrayRef<ParsedType> Args, | |||
| 5582 | SourceLocation RParenLoc) { | |||
| 5583 | SmallVector<TypeSourceInfo *, 4> ConvertedArgs; | |||
| 5584 | ConvertedArgs.reserve(Args.size()); | |||
| 5585 | ||||
| 5586 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | |||
| 5587 | TypeSourceInfo *TInfo; | |||
| 5588 | QualType T = GetTypeFromParser(Args[I], &TInfo); | |||
| 5589 | if (!TInfo) | |||
| 5590 | TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); | |||
| 5591 | ||||
| 5592 | ConvertedArgs.push_back(TInfo); | |||
| 5593 | } | |||
| 5594 | ||||
| 5595 | return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); | |||
| 5596 | } | |||
| 5597 | ||||
| 5598 | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, | |||
| 5599 | QualType RhsT, SourceLocation KeyLoc) { | |||
| 5600 | assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() && !RhsT->isDependentType() && "Cannot evaluate traits of dependent types" ) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\"" , "clang/lib/Sema/SemaExprCXX.cpp", 5601, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5601 | "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() && !RhsT->isDependentType() && "Cannot evaluate traits of dependent types" ) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\"" , "clang/lib/Sema/SemaExprCXX.cpp", 5601, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5602 | ||||
| 5603 | switch(BTT) { | |||
| 5604 | case BTT_IsBaseOf: { | |||
| 5605 | // C++0x [meta.rel]p2 | |||
| 5606 | // Base is a base class of Derived without regard to cv-qualifiers or | |||
| 5607 | // Base and Derived are not unions and name the same class type without | |||
| 5608 | // regard to cv-qualifiers. | |||
| 5609 | ||||
| 5610 | const RecordType *lhsRecord = LhsT->getAs<RecordType>(); | |||
| 5611 | const RecordType *rhsRecord = RhsT->getAs<RecordType>(); | |||
| 5612 | if (!rhsRecord || !lhsRecord) { | |||
| 5613 | const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); | |||
| 5614 | const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); | |||
| 5615 | if (!LHSObjTy || !RHSObjTy) | |||
| 5616 | return false; | |||
| 5617 | ||||
| 5618 | ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); | |||
| 5619 | ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); | |||
| 5620 | if (!BaseInterface || !DerivedInterface) | |||
| 5621 | return false; | |||
| 5622 | ||||
| 5623 | if (Self.RequireCompleteType( | |||
| 5624 | KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) | |||
| 5625 | return false; | |||
| 5626 | ||||
| 5627 | return BaseInterface->isSuperClassOf(DerivedInterface); | |||
| 5628 | } | |||
| 5629 | ||||
| 5630 | assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType (LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail ("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)" , "clang/lib/Sema/SemaExprCXX.cpp", 5631, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5631 | == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType (LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail ("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)" , "clang/lib/Sema/SemaExprCXX.cpp", 5631, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5632 | ||||
| 5633 | // Unions are never base classes, and never have base classes. | |||
| 5634 | // It doesn't matter if they are complete or not. See PR#41843 | |||
| 5635 | if (lhsRecord && lhsRecord->getDecl()->isUnion()) | |||
| 5636 | return false; | |||
| 5637 | if (rhsRecord && rhsRecord->getDecl()->isUnion()) | |||
| 5638 | return false; | |||
| 5639 | ||||
| 5640 | if (lhsRecord == rhsRecord) | |||
| 5641 | return true; | |||
| 5642 | ||||
| 5643 | // C++0x [meta.rel]p2: | |||
| 5644 | // If Base and Derived are class types and are different types | |||
| 5645 | // (ignoring possible cv-qualifiers) then Derived shall be a | |||
| 5646 | // complete type. | |||
| 5647 | if (Self.RequireCompleteType(KeyLoc, RhsT, | |||
| 5648 | diag::err_incomplete_type_used_in_type_trait_expr)) | |||
| 5649 | return false; | |||
| 5650 | ||||
| 5651 | return cast<CXXRecordDecl>(rhsRecord->getDecl()) | |||
| 5652 | ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); | |||
| 5653 | } | |||
| 5654 | case BTT_IsSame: | |||
| 5655 | return Self.Context.hasSameType(LhsT, RhsT); | |||
| 5656 | case BTT_TypeCompatible: { | |||
| 5657 | // GCC ignores cv-qualifiers on arrays for this builtin. | |||
| 5658 | Qualifiers LhsQuals, RhsQuals; | |||
| 5659 | QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); | |||
| 5660 | QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); | |||
| 5661 | return Self.Context.typesAreCompatible(Lhs, Rhs); | |||
| 5662 | } | |||
| 5663 | case BTT_IsConvertible: | |||
| 5664 | case BTT_IsConvertibleTo: { | |||
| 5665 | // C++0x [meta.rel]p4: | |||
| 5666 | // Given the following function prototype: | |||
| 5667 | // | |||
| 5668 | // template <class T> | |||
| 5669 | // typename add_rvalue_reference<T>::type create(); | |||
| 5670 | // | |||
| 5671 | // the predicate condition for a template specialization | |||
| 5672 | // is_convertible<From, To> shall be satisfied if and only if | |||
| 5673 | // the return expression in the following code would be | |||
| 5674 | // well-formed, including any implicit conversions to the return | |||
| 5675 | // type of the function: | |||
| 5676 | // | |||
| 5677 | // To test() { | |||
| 5678 | // return create<From>(); | |||
| 5679 | // } | |||
| 5680 | // | |||
| 5681 | // Access checking is performed as if in a context unrelated to To and | |||
| 5682 | // From. Only the validity of the immediate context of the expression | |||
| 5683 | // of the return-statement (including conversions to the return type) | |||
| 5684 | // is considered. | |||
| 5685 | // | |||
| 5686 | // We model the initialization as a copy-initialization of a temporary | |||
| 5687 | // of the appropriate type, which for this expression is identical to the | |||
| 5688 | // return statement (since NRVO doesn't apply). | |||
| 5689 | ||||
| 5690 | // Functions aren't allowed to return function or array types. | |||
| 5691 | if (RhsT->isFunctionType() || RhsT->isArrayType()) | |||
| 5692 | return false; | |||
| 5693 | ||||
| 5694 | // A return statement in a void function must have void type. | |||
| 5695 | if (RhsT->isVoidType()) | |||
| 5696 | return LhsT->isVoidType(); | |||
| 5697 | ||||
| 5698 | // A function definition requires a complete, non-abstract return type. | |||
| 5699 | if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) | |||
| 5700 | return false; | |||
| 5701 | ||||
| 5702 | // Compute the result of add_rvalue_reference. | |||
| 5703 | if (LhsT->isObjectType() || LhsT->isFunctionType()) | |||
| 5704 | LhsT = Self.Context.getRValueReferenceType(LhsT); | |||
| 5705 | ||||
| 5706 | // Build a fake source and destination for initialization. | |||
| 5707 | InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); | |||
| 5708 | OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), | |||
| 5709 | Expr::getValueKindForType(LhsT)); | |||
| 5710 | Expr *FromPtr = &From; | |||
| 5711 | InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, | |||
| 5712 | SourceLocation())); | |||
| 5713 | ||||
| 5714 | // Perform the initialization in an unevaluated context within a SFINAE | |||
| 5715 | // trap at translation unit scope. | |||
| 5716 | EnterExpressionEvaluationContext Unevaluated( | |||
| 5717 | Self, Sema::ExpressionEvaluationContext::Unevaluated); | |||
| 5718 | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); | |||
| 5719 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); | |||
| 5720 | InitializationSequence Init(Self, To, Kind, FromPtr); | |||
| 5721 | if (Init.Failed()) | |||
| 5722 | return false; | |||
| 5723 | ||||
| 5724 | ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); | |||
| 5725 | return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); | |||
| 5726 | } | |||
| 5727 | ||||
| 5728 | case BTT_IsAssignable: | |||
| 5729 | case BTT_IsNothrowAssignable: | |||
| 5730 | case BTT_IsTriviallyAssignable: { | |||
| 5731 | // C++11 [meta.unary.prop]p3: | |||
| 5732 | // is_trivially_assignable is defined as: | |||
| 5733 | // is_assignable<T, U>::value is true and the assignment, as defined by | |||
| 5734 | // is_assignable, is known to call no operation that is not trivial | |||
| 5735 | // | |||
| 5736 | // is_assignable is defined as: | |||
| 5737 | // The expression declval<T>() = declval<U>() is well-formed when | |||
| 5738 | // treated as an unevaluated operand (Clause 5). | |||
| 5739 | // | |||
| 5740 | // For both, T and U shall be complete types, (possibly cv-qualified) | |||
| 5741 | // void, or arrays of unknown bound. | |||
| 5742 | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && | |||
| 5743 | Self.RequireCompleteType(KeyLoc, LhsT, | |||
| 5744 | diag::err_incomplete_type_used_in_type_trait_expr)) | |||
| 5745 | return false; | |||
| 5746 | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && | |||
| 5747 | Self.RequireCompleteType(KeyLoc, RhsT, | |||
| 5748 | diag::err_incomplete_type_used_in_type_trait_expr)) | |||
| 5749 | return false; | |||
| 5750 | ||||
| 5751 | // cv void is never assignable. | |||
| 5752 | if (LhsT->isVoidType() || RhsT->isVoidType()) | |||
| 5753 | return false; | |||
| 5754 | ||||
| 5755 | // Build expressions that emulate the effect of declval<T>() and | |||
| 5756 | // declval<U>(). | |||
| 5757 | if (LhsT->isObjectType() || LhsT->isFunctionType()) | |||
| 5758 | LhsT = Self.Context.getRValueReferenceType(LhsT); | |||
| 5759 | if (RhsT->isObjectType() || RhsT->isFunctionType()) | |||
| 5760 | RhsT = Self.Context.getRValueReferenceType(RhsT); | |||
| 5761 | OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), | |||
| 5762 | Expr::getValueKindForType(LhsT)); | |||
| 5763 | OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), | |||
| 5764 | Expr::getValueKindForType(RhsT)); | |||
| 5765 | ||||
| 5766 | // Attempt the assignment in an unevaluated context within a SFINAE | |||
| 5767 | // trap at translation unit scope. | |||
| 5768 | EnterExpressionEvaluationContext Unevaluated( | |||
| 5769 | Self, Sema::ExpressionEvaluationContext::Unevaluated); | |||
| 5770 | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); | |||
| 5771 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); | |||
| 5772 | ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, | |||
| 5773 | &Rhs); | |||
| 5774 | if (Result.isInvalid()) | |||
| 5775 | return false; | |||
| 5776 | ||||
| 5777 | // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. | |||
| 5778 | Self.CheckUnusedVolatileAssignment(Result.get()); | |||
| 5779 | ||||
| 5780 | if (SFINAE.hasErrorOccurred()) | |||
| 5781 | return false; | |||
| 5782 | ||||
| 5783 | if (BTT == BTT_IsAssignable) | |||
| 5784 | return true; | |||
| 5785 | ||||
| 5786 | if (BTT == BTT_IsNothrowAssignable) | |||
| 5787 | return Self.canThrow(Result.get()) == CT_Cannot; | |||
| 5788 | ||||
| 5789 | if (BTT == BTT_IsTriviallyAssignable) { | |||
| 5790 | // Under Objective-C ARC and Weak, if the destination has non-trivial | |||
| 5791 | // Objective-C lifetime, this is a non-trivial assignment. | |||
| 5792 | if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) | |||
| 5793 | return false; | |||
| 5794 | ||||
| 5795 | return !Result.get()->hasNonTrivialCall(Self.Context); | |||
| 5796 | } | |||
| 5797 | ||||
| 5798 | llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp" , 5798); | |||
| 5799 | return false; | |||
| 5800 | } | |||
| 5801 | default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp" , 5801); | |||
| 5802 | } | |||
| 5803 | llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented" , "clang/lib/Sema/SemaExprCXX.cpp", 5803); | |||
| 5804 | } | |||
| 5805 | ||||
| 5806 | ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, | |||
| 5807 | SourceLocation KWLoc, | |||
| 5808 | ParsedType Ty, | |||
| 5809 | Expr* DimExpr, | |||
| 5810 | SourceLocation RParen) { | |||
| 5811 | TypeSourceInfo *TSInfo; | |||
| 5812 | QualType T = GetTypeFromParser(Ty, &TSInfo); | |||
| 5813 | if (!TSInfo) | |||
| 5814 | TSInfo = Context.getTrivialTypeSourceInfo(T); | |||
| 5815 | ||||
| 5816 | return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); | |||
| 5817 | } | |||
| 5818 | ||||
| 5819 | static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, | |||
| 5820 | QualType T, Expr *DimExpr, | |||
| 5821 | SourceLocation KeyLoc) { | |||
| 5822 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() && "Cannot evaluate traits of dependent type") ? void (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 5822, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5823 | ||||
| 5824 | switch(ATT) { | |||
| 5825 | case ATT_ArrayRank: | |||
| 5826 | if (T->isArrayType()) { | |||
| 5827 | unsigned Dim = 0; | |||
| 5828 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { | |||
| 5829 | ++Dim; | |||
| 5830 | T = AT->getElementType(); | |||
| 5831 | } | |||
| 5832 | return Dim; | |||
| 5833 | } | |||
| 5834 | return 0; | |||
| 5835 | ||||
| 5836 | case ATT_ArrayExtent: { | |||
| 5837 | llvm::APSInt Value; | |||
| 5838 | uint64_t Dim; | |||
| 5839 | if (Self.VerifyIntegerConstantExpression( | |||
| 5840 | DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) | |||
| 5841 | .isInvalid()) | |||
| 5842 | return 0; | |||
| 5843 | if (Value.isSigned() && Value.isNegative()) { | |||
| 5844 | Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) | |||
| 5845 | << DimExpr->getSourceRange(); | |||
| 5846 | return 0; | |||
| 5847 | } | |||
| 5848 | Dim = Value.getLimitedValue(); | |||
| 5849 | ||||
| 5850 | if (T->isArrayType()) { | |||
| 5851 | unsigned D = 0; | |||
| 5852 | bool Matched = false; | |||
| 5853 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { | |||
| 5854 | if (Dim == D) { | |||
| 5855 | Matched = true; | |||
| 5856 | break; | |||
| 5857 | } | |||
| 5858 | ++D; | |||
| 5859 | T = AT->getElementType(); | |||
| 5860 | } | |||
| 5861 | ||||
| 5862 | if (Matched && T->isArrayType()) { | |||
| 5863 | if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) | |||
| 5864 | return CAT->getSize().getLimitedValue(); | |||
| 5865 | } | |||
| 5866 | } | |||
| 5867 | return 0; | |||
| 5868 | } | |||
| 5869 | } | |||
| 5870 | llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented" , "clang/lib/Sema/SemaExprCXX.cpp", 5870); | |||
| 5871 | } | |||
| 5872 | ||||
| 5873 | ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, | |||
| 5874 | SourceLocation KWLoc, | |||
| 5875 | TypeSourceInfo *TSInfo, | |||
| 5876 | Expr* DimExpr, | |||
| 5877 | SourceLocation RParen) { | |||
| 5878 | QualType T = TSInfo->getType(); | |||
| 5879 | ||||
| 5880 | // FIXME: This should likely be tracked as an APInt to remove any host | |||
| 5881 | // assumptions about the width of size_t on the target. | |||
| 5882 | uint64_t Value = 0; | |||
| 5883 | if (!T->isDependentType()) | |||
| 5884 | Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); | |||
| 5885 | ||||
| 5886 | // While the specification for these traits from the Embarcadero C++ | |||
| 5887 | // compiler's documentation says the return type is 'unsigned int', Clang | |||
| 5888 | // returns 'size_t'. On Windows, the primary platform for the Embarcadero | |||
| 5889 | // compiler, there is no difference. On several other platforms this is an | |||
| 5890 | // important distinction. | |||
| 5891 | return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, | |||
| 5892 | RParen, Context.getSizeType()); | |||
| 5893 | } | |||
| 5894 | ||||
| 5895 | ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, | |||
| 5896 | SourceLocation KWLoc, | |||
| 5897 | Expr *Queried, | |||
| 5898 | SourceLocation RParen) { | |||
| 5899 | // If error parsing the expression, ignore. | |||
| 5900 | if (!Queried) | |||
| 5901 | return ExprError(); | |||
| 5902 | ||||
| 5903 | ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); | |||
| 5904 | ||||
| 5905 | return Result; | |||
| 5906 | } | |||
| 5907 | ||||
| 5908 | static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { | |||
| 5909 | switch (ET) { | |||
| 5910 | case ET_IsLValueExpr: return E->isLValue(); | |||
| 5911 | case ET_IsRValueExpr: | |||
| 5912 | return E->isPRValue(); | |||
| 5913 | } | |||
| 5914 | llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch" , "clang/lib/Sema/SemaExprCXX.cpp", 5914); | |||
| 5915 | } | |||
| 5916 | ||||
| 5917 | ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, | |||
| 5918 | SourceLocation KWLoc, | |||
| 5919 | Expr *Queried, | |||
| 5920 | SourceLocation RParen) { | |||
| 5921 | if (Queried->isTypeDependent()) { | |||
| 5922 | // Delay type-checking for type-dependent expressions. | |||
| 5923 | } else if (Queried->hasPlaceholderType()) { | |||
| 5924 | ExprResult PE = CheckPlaceholderExpr(Queried); | |||
| 5925 | if (PE.isInvalid()) return ExprError(); | |||
| 5926 | return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); | |||
| 5927 | } | |||
| 5928 | ||||
| 5929 | bool Value = EvaluateExpressionTrait(ET, Queried); | |||
| 5930 | ||||
| 5931 | return new (Context) | |||
| 5932 | ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); | |||
| 5933 | } | |||
| 5934 | ||||
| 5935 | QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 5936 | ExprValueKind &VK, | |||
| 5937 | SourceLocation Loc, | |||
| 5938 | bool isIndirect) { | |||
| 5939 | assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&(static_cast <bool> (!LHS.get()->hasPlaceholderType( ) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now" ) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\"" , "clang/lib/Sema/SemaExprCXX.cpp", 5940, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5940 | "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->hasPlaceholderType( ) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now" ) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\"" , "clang/lib/Sema/SemaExprCXX.cpp", 5940, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5941 | ||||
| 5942 | // The LHS undergoes lvalue conversions if this is ->*, and undergoes the | |||
| 5943 | // temporary materialization conversion otherwise. | |||
| 5944 | if (isIndirect) | |||
| 5945 | LHS = DefaultLvalueConversion(LHS.get()); | |||
| 5946 | else if (LHS.get()->isPRValue()) | |||
| 5947 | LHS = TemporaryMaterializationConversion(LHS.get()); | |||
| 5948 | if (LHS.isInvalid()) | |||
| 5949 | return QualType(); | |||
| 5950 | ||||
| 5951 | // The RHS always undergoes lvalue conversions. | |||
| 5952 | RHS = DefaultLvalueConversion(RHS.get()); | |||
| 5953 | if (RHS.isInvalid()) return QualType(); | |||
| 5954 | ||||
| 5955 | const char *OpSpelling = isIndirect ? "->*" : ".*"; | |||
| 5956 | // C++ 5.5p2 | |||
| 5957 | // The binary operator .* [p3: ->*] binds its second operand, which shall | |||
| 5958 | // be of type "pointer to member of T" (where T is a completely-defined | |||
| 5959 | // class type) [...] | |||
| 5960 | QualType RHSType = RHS.get()->getType(); | |||
| 5961 | const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); | |||
| 5962 | if (!MemPtr) { | |||
| 5963 | Diag(Loc, diag::err_bad_memptr_rhs) | |||
| 5964 | << OpSpelling << RHSType << RHS.get()->getSourceRange(); | |||
| 5965 | return QualType(); | |||
| 5966 | } | |||
| 5967 | ||||
| 5968 | QualType Class(MemPtr->getClass(), 0); | |||
| 5969 | ||||
| 5970 | // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the | |||
| 5971 | // member pointer points must be completely-defined. However, there is no | |||
| 5972 | // reason for this semantic distinction, and the rule is not enforced by | |||
| 5973 | // other compilers. Therefore, we do not check this property, as it is | |||
| 5974 | // likely to be considered a defect. | |||
| 5975 | ||||
| 5976 | // C++ 5.5p2 | |||
| 5977 | // [...] to its first operand, which shall be of class T or of a class of | |||
| 5978 | // which T is an unambiguous and accessible base class. [p3: a pointer to | |||
| 5979 | // such a class] | |||
| 5980 | QualType LHSType = LHS.get()->getType(); | |||
| 5981 | if (isIndirect) { | |||
| 5982 | if (const PointerType *Ptr = LHSType->getAs<PointerType>()) | |||
| 5983 | LHSType = Ptr->getPointeeType(); | |||
| 5984 | else { | |||
| 5985 | Diag(Loc, diag::err_bad_memptr_lhs) | |||
| 5986 | << OpSpelling << 1 << LHSType | |||
| 5987 | << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); | |||
| 5988 | return QualType(); | |||
| 5989 | } | |||
| 5990 | } | |||
| 5991 | ||||
| 5992 | if (!Context.hasSameUnqualifiedType(Class, LHSType)) { | |||
| 5993 | // If we want to check the hierarchy, we need a complete type. | |||
| 5994 | if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, | |||
| 5995 | OpSpelling, (int)isIndirect)) { | |||
| 5996 | return QualType(); | |||
| 5997 | } | |||
| 5998 | ||||
| 5999 | if (!IsDerivedFrom(Loc, LHSType, Class)) { | |||
| 6000 | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling | |||
| 6001 | << (int)isIndirect << LHS.get()->getType(); | |||
| 6002 | return QualType(); | |||
| 6003 | } | |||
| 6004 | ||||
| 6005 | CXXCastPath BasePath; | |||
| 6006 | if (CheckDerivedToBaseConversion( | |||
| 6007 | LHSType, Class, Loc, | |||
| 6008 | SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), | |||
| 6009 | &BasePath)) | |||
| 6010 | return QualType(); | |||
| 6011 | ||||
| 6012 | // Cast LHS to type of use. | |||
| 6013 | QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); | |||
| 6014 | if (isIndirect) | |||
| 6015 | UseType = Context.getPointerType(UseType); | |||
| 6016 | ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); | |||
| 6017 | LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, | |||
| 6018 | &BasePath); | |||
| 6019 | } | |||
| 6020 | ||||
| 6021 | if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { | |||
| 6022 | // Diagnose use of pointer-to-member type which when used as | |||
| 6023 | // the functional cast in a pointer-to-member expression. | |||
| 6024 | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; | |||
| 6025 | return QualType(); | |||
| 6026 | } | |||
| 6027 | ||||
| 6028 | // C++ 5.5p2 | |||
| 6029 | // The result is an object or a function of the type specified by the | |||
| 6030 | // second operand. | |||
| 6031 | // The cv qualifiers are the union of those in the pointer and the left side, | |||
| 6032 | // in accordance with 5.5p5 and 5.2.5. | |||
| 6033 | QualType Result = MemPtr->getPointeeType(); | |||
| 6034 | Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); | |||
| 6035 | ||||
| 6036 | // C++0x [expr.mptr.oper]p6: | |||
| 6037 | // In a .* expression whose object expression is an rvalue, the program is | |||
| 6038 | // ill-formed if the second operand is a pointer to member function with | |||
| 6039 | // ref-qualifier &. In a ->* expression or in a .* expression whose object | |||
| 6040 | // expression is an lvalue, the program is ill-formed if the second operand | |||
| 6041 | // is a pointer to member function with ref-qualifier &&. | |||
| 6042 | if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { | |||
| 6043 | switch (Proto->getRefQualifier()) { | |||
| 6044 | case RQ_None: | |||
| 6045 | // Do nothing | |||
| 6046 | break; | |||
| 6047 | ||||
| 6048 | case RQ_LValue: | |||
| 6049 | if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { | |||
| 6050 | // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq | |||
| 6051 | // is (exactly) 'const'. | |||
| 6052 | if (Proto->isConst() && !Proto->isVolatile()) | |||
| 6053 | Diag(Loc, getLangOpts().CPlusPlus20 | |||
| 6054 | ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue | |||
| 6055 | : diag::ext_pointer_to_const_ref_member_on_rvalue); | |||
| 6056 | else | |||
| 6057 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | |||
| 6058 | << RHSType << 1 << LHS.get()->getSourceRange(); | |||
| 6059 | } | |||
| 6060 | break; | |||
| 6061 | ||||
| 6062 | case RQ_RValue: | |||
| 6063 | if (isIndirect || !LHS.get()->Classify(Context).isRValue()) | |||
| 6064 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | |||
| 6065 | << RHSType << 0 << LHS.get()->getSourceRange(); | |||
| 6066 | break; | |||
| 6067 | } | |||
| 6068 | } | |||
| 6069 | ||||
| 6070 | // C++ [expr.mptr.oper]p6: | |||
| 6071 | // The result of a .* expression whose second operand is a pointer | |||
| 6072 | // to a data member is of the same value category as its | |||
| 6073 | // first operand. The result of a .* expression whose second | |||
| 6074 | // operand is a pointer to a member function is a prvalue. The | |||
| 6075 | // result of an ->* expression is an lvalue if its second operand | |||
| 6076 | // is a pointer to data member and a prvalue otherwise. | |||
| 6077 | if (Result->isFunctionType()) { | |||
| 6078 | VK = VK_PRValue; | |||
| 6079 | return Context.BoundMemberTy; | |||
| 6080 | } else if (isIndirect) { | |||
| 6081 | VK = VK_LValue; | |||
| 6082 | } else { | |||
| 6083 | VK = LHS.get()->getValueKind(); | |||
| 6084 | } | |||
| 6085 | ||||
| 6086 | return Result; | |||
| 6087 | } | |||
| 6088 | ||||
| 6089 | /// Try to convert a type to another according to C++11 5.16p3. | |||
| 6090 | /// | |||
| 6091 | /// This is part of the parameter validation for the ? operator. If either | |||
| 6092 | /// value operand is a class type, the two operands are attempted to be | |||
| 6093 | /// converted to each other. This function does the conversion in one direction. | |||
| 6094 | /// It returns true if the program is ill-formed and has already been diagnosed | |||
| 6095 | /// as such. | |||
| 6096 | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, | |||
| 6097 | SourceLocation QuestionLoc, | |||
| 6098 | bool &HaveConversion, | |||
| 6099 | QualType &ToType) { | |||
| 6100 | HaveConversion = false; | |||
| 6101 | ToType = To->getType(); | |||
| 6102 | ||||
| 6103 | InitializationKind Kind = | |||
| 6104 | InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); | |||
| 6105 | // C++11 5.16p3 | |||
| 6106 | // The process for determining whether an operand expression E1 of type T1 | |||
| 6107 | // can be converted to match an operand expression E2 of type T2 is defined | |||
| 6108 | // as follows: | |||
| 6109 | // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be | |||
| 6110 | // implicitly converted to type "lvalue reference to T2", subject to the | |||
| 6111 | // constraint that in the conversion the reference must bind directly to | |||
| 6112 | // an lvalue. | |||
| 6113 | // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be | |||
| 6114 | // implicitly converted to the type "rvalue reference to R2", subject to | |||
| 6115 | // the constraint that the reference must bind directly. | |||
| 6116 | if (To->isGLValue()) { | |||
| 6117 | QualType T = Self.Context.getReferenceQualifiedType(To); | |||
| 6118 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | |||
| 6119 | ||||
| 6120 | InitializationSequence InitSeq(Self, Entity, Kind, From); | |||
| 6121 | if (InitSeq.isDirectReferenceBinding()) { | |||
| 6122 | ToType = T; | |||
| 6123 | HaveConversion = true; | |||
| 6124 | return false; | |||
| 6125 | } | |||
| 6126 | ||||
| 6127 | if (InitSeq.isAmbiguous()) | |||
| 6128 | return InitSeq.Diagnose(Self, Entity, Kind, From); | |||
| 6129 | } | |||
| 6130 | ||||
| 6131 | // -- If E2 is an rvalue, or if the conversion above cannot be done: | |||
| 6132 | // -- if E1 and E2 have class type, and the underlying class types are | |||
| 6133 | // the same or one is a base class of the other: | |||
| 6134 | QualType FTy = From->getType(); | |||
| 6135 | QualType TTy = To->getType(); | |||
| 6136 | const RecordType *FRec = FTy->getAs<RecordType>(); | |||
| 6137 | const RecordType *TRec = TTy->getAs<RecordType>(); | |||
| 6138 | bool FDerivedFromT = FRec && TRec && FRec != TRec && | |||
| 6139 | Self.IsDerivedFrom(QuestionLoc, FTy, TTy); | |||
| 6140 | if (FRec && TRec && (FRec == TRec || FDerivedFromT || | |||
| 6141 | Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { | |||
| 6142 | // E1 can be converted to match E2 if the class of T2 is the | |||
| 6143 | // same type as, or a base class of, the class of T1, and | |||
| 6144 | // [cv2 > cv1]. | |||
| 6145 | if (FRec == TRec || FDerivedFromT) { | |||
| 6146 | if (TTy.isAtLeastAsQualifiedAs(FTy)) { | |||
| 6147 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | |||
| 6148 | InitializationSequence InitSeq(Self, Entity, Kind, From); | |||
| 6149 | if (InitSeq) { | |||
| 6150 | HaveConversion = true; | |||
| 6151 | return false; | |||
| 6152 | } | |||
| 6153 | ||||
| 6154 | if (InitSeq.isAmbiguous()) | |||
| 6155 | return InitSeq.Diagnose(Self, Entity, Kind, From); | |||
| 6156 | } | |||
| 6157 | } | |||
| 6158 | ||||
| 6159 | return false; | |||
| 6160 | } | |||
| 6161 | ||||
| 6162 | // -- Otherwise: E1 can be converted to match E2 if E1 can be | |||
| 6163 | // implicitly converted to the type that expression E2 would have | |||
| 6164 | // if E2 were converted to an rvalue (or the type it has, if E2 is | |||
| 6165 | // an rvalue). | |||
| 6166 | // | |||
| 6167 | // This actually refers very narrowly to the lvalue-to-rvalue conversion, not | |||
| 6168 | // to the array-to-pointer or function-to-pointer conversions. | |||
| 6169 | TTy = TTy.getNonLValueExprType(Self.Context); | |||
| 6170 | ||||
| 6171 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | |||
| 6172 | InitializationSequence InitSeq(Self, Entity, Kind, From); | |||
| 6173 | HaveConversion = !InitSeq.Failed(); | |||
| 6174 | ToType = TTy; | |||
| 6175 | if (InitSeq.isAmbiguous()) | |||
| 6176 | return InitSeq.Diagnose(Self, Entity, Kind, From); | |||
| 6177 | ||||
| 6178 | return false; | |||
| 6179 | } | |||
| 6180 | ||||
| 6181 | /// Try to find a common type for two according to C++0x 5.16p5. | |||
| 6182 | /// | |||
| 6183 | /// This is part of the parameter validation for the ? operator. If either | |||
| 6184 | /// value operand is a class type, overload resolution is used to find a | |||
| 6185 | /// conversion to a common type. | |||
| 6186 | static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, | |||
| 6187 | SourceLocation QuestionLoc) { | |||
| 6188 | Expr *Args[2] = { LHS.get(), RHS.get() }; | |||
| 6189 | OverloadCandidateSet CandidateSet(QuestionLoc, | |||
| 6190 | OverloadCandidateSet::CSK_Operator); | |||
| 6191 | Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, | |||
| 6192 | CandidateSet); | |||
| 6193 | ||||
| 6194 | OverloadCandidateSet::iterator Best; | |||
| 6195 | switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { | |||
| 6196 | case OR_Success: { | |||
| 6197 | // We found a match. Perform the conversions on the arguments and move on. | |||
| 6198 | ExprResult LHSRes = Self.PerformImplicitConversion( | |||
| 6199 | LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], | |||
| 6200 | Sema::AA_Converting); | |||
| 6201 | if (LHSRes.isInvalid()) | |||
| 6202 | break; | |||
| 6203 | LHS = LHSRes; | |||
| 6204 | ||||
| 6205 | ExprResult RHSRes = Self.PerformImplicitConversion( | |||
| 6206 | RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], | |||
| 6207 | Sema::AA_Converting); | |||
| 6208 | if (RHSRes.isInvalid()) | |||
| 6209 | break; | |||
| 6210 | RHS = RHSRes; | |||
| 6211 | if (Best->Function) | |||
| 6212 | Self.MarkFunctionReferenced(QuestionLoc, Best->Function); | |||
| 6213 | return false; | |||
| 6214 | } | |||
| 6215 | ||||
| 6216 | case OR_No_Viable_Function: | |||
| 6217 | ||||
| 6218 | // Emit a better diagnostic if one of the expressions is a null pointer | |||
| 6219 | // constant and the other is a pointer type. In this case, the user most | |||
| 6220 | // likely forgot to take the address of the other expression. | |||
| 6221 | if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | |||
| 6222 | return true; | |||
| 6223 | ||||
| 6224 | Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | |||
| 6225 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 6226 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6227 | return true; | |||
| 6228 | ||||
| 6229 | case OR_Ambiguous: | |||
| 6230 | Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) | |||
| 6231 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 6232 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6233 | // FIXME: Print the possible common types by printing the return types of | |||
| 6234 | // the viable candidates. | |||
| 6235 | break; | |||
| 6236 | ||||
| 6237 | case OR_Deleted: | |||
| 6238 | llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads" , "clang/lib/Sema/SemaExprCXX.cpp", 6238); | |||
| 6239 | } | |||
| 6240 | return true; | |||
| 6241 | } | |||
| 6242 | ||||
| 6243 | /// Perform an "extended" implicit conversion as returned by | |||
| 6244 | /// TryClassUnification. | |||
| 6245 | static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { | |||
| 6246 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | |||
| 6247 | InitializationKind Kind = | |||
| 6248 | InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); | |||
| 6249 | Expr *Arg = E.get(); | |||
| 6250 | InitializationSequence InitSeq(Self, Entity, Kind, Arg); | |||
| 6251 | ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); | |||
| 6252 | if (Result.isInvalid()) | |||
| 6253 | return true; | |||
| 6254 | ||||
| 6255 | E = Result; | |||
| 6256 | return false; | |||
| 6257 | } | |||
| 6258 | ||||
| 6259 | // Check the condition operand of ?: to see if it is valid for the GCC | |||
| 6260 | // extension. | |||
| 6261 | static bool isValidVectorForConditionalCondition(ASTContext &Ctx, | |||
| 6262 | QualType CondTy) { | |||
| 6263 | if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) | |||
| 6264 | return false; | |||
| 6265 | const QualType EltTy = | |||
| 6266 | cast<VectorType>(CondTy.getCanonicalType())->getElementType(); | |||
| 6267 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() && "Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6267, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6268 | return EltTy->isIntegralType(Ctx); | |||
| 6269 | } | |||
| 6270 | ||||
| 6271 | static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, | |||
| 6272 | QualType CondTy) { | |||
| 6273 | if (!CondTy->isVLSTBuiltinType()) | |||
| 6274 | return false; | |||
| 6275 | const QualType EltTy = | |||
| 6276 | cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); | |||
| 6277 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() && "Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6277, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6278 | return EltTy->isIntegralType(Ctx); | |||
| 6279 | } | |||
| 6280 | ||||
| 6281 | QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, | |||
| 6282 | ExprResult &RHS, | |||
| 6283 | SourceLocation QuestionLoc) { | |||
| 6284 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 6285 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 6286 | ||||
| 6287 | QualType CondType = Cond.get()->getType(); | |||
| 6288 | const auto *CondVT = CondType->castAs<VectorType>(); | |||
| 6289 | QualType CondElementTy = CondVT->getElementType(); | |||
| 6290 | unsigned CondElementCount = CondVT->getNumElements(); | |||
| 6291 | QualType LHSType = LHS.get()->getType(); | |||
| 6292 | const auto *LHSVT = LHSType->getAs<VectorType>(); | |||
| 6293 | QualType RHSType = RHS.get()->getType(); | |||
| 6294 | const auto *RHSVT = RHSType->getAs<VectorType>(); | |||
| 6295 | ||||
| 6296 | QualType ResultType; | |||
| 6297 | ||||
| 6298 | ||||
| 6299 | if (LHSVT && RHSVT) { | |||
| 6300 | if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { | |||
| 6301 | Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) | |||
| 6302 | << /*isExtVector*/ isa<ExtVectorType>(CondVT); | |||
| 6303 | return {}; | |||
| 6304 | } | |||
| 6305 | ||||
| 6306 | // If both are vector types, they must be the same type. | |||
| 6307 | if (!Context.hasSameType(LHSType, RHSType)) { | |||
| 6308 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) | |||
| 6309 | << LHSType << RHSType; | |||
| 6310 | return {}; | |||
| 6311 | } | |||
| 6312 | ResultType = Context.getCommonSugaredType(LHSType, RHSType); | |||
| 6313 | } else if (LHSVT || RHSVT) { | |||
| 6314 | ResultType = CheckVectorOperands( | |||
| 6315 | LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, | |||
| 6316 | /*AllowBoolConversions*/ false, | |||
| 6317 | /*AllowBoolOperation*/ true, | |||
| 6318 | /*ReportInvalid*/ true); | |||
| 6319 | if (ResultType.isNull()) | |||
| 6320 | return {}; | |||
| 6321 | } else { | |||
| 6322 | // Both are scalar. | |||
| 6323 | LHSType = LHSType.getUnqualifiedType(); | |||
| 6324 | RHSType = RHSType.getUnqualifiedType(); | |||
| 6325 | QualType ResultElementTy = | |||
| 6326 | Context.hasSameType(LHSType, RHSType) | |||
| 6327 | ? Context.getCommonSugaredType(LHSType, RHSType) | |||
| 6328 | : UsualArithmeticConversions(LHS, RHS, QuestionLoc, | |||
| 6329 | ACK_Conditional); | |||
| 6330 | ||||
| 6331 | if (ResultElementTy->isEnumeralType()) { | |||
| 6332 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) | |||
| 6333 | << ResultElementTy; | |||
| 6334 | return {}; | |||
| 6335 | } | |||
| 6336 | if (CondType->isExtVectorType()) | |||
| 6337 | ResultType = | |||
| 6338 | Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); | |||
| 6339 | else | |||
| 6340 | ResultType = Context.getVectorType( | |||
| 6341 | ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); | |||
| 6342 | ||||
| 6343 | LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); | |||
| 6344 | RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); | |||
| 6345 | } | |||
| 6346 | ||||
| 6347 | assert(!ResultType.isNull() && ResultType->isVectorType() &&(static_cast <bool> (!ResultType.isNull() && ResultType ->isVectorType() && (!CondType->isExtVectorType () || ResultType->isExtVectorType()) && "Result should have been a vector type" ) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6349, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6348 | (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&(static_cast <bool> (!ResultType.isNull() && ResultType ->isVectorType() && (!CondType->isExtVectorType () || ResultType->isExtVectorType()) && "Result should have been a vector type" ) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6349, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6349 | "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType ->isVectorType() && (!CondType->isExtVectorType () || ResultType->isExtVectorType()) && "Result should have been a vector type" ) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6349, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6350 | auto *ResultVectorTy = ResultType->castAs<VectorType>(); | |||
| 6351 | QualType ResultElementTy = ResultVectorTy->getElementType(); | |||
| 6352 | unsigned ResultElementCount = ResultVectorTy->getNumElements(); | |||
| 6353 | ||||
| 6354 | if (ResultElementCount != CondElementCount) { | |||
| 6355 | Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType | |||
| 6356 | << ResultType; | |||
| 6357 | return {}; | |||
| 6358 | } | |||
| 6359 | ||||
| 6360 | if (Context.getTypeSize(ResultElementTy) != | |||
| 6361 | Context.getTypeSize(CondElementTy)) { | |||
| 6362 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType | |||
| 6363 | << ResultType; | |||
| 6364 | return {}; | |||
| 6365 | } | |||
| 6366 | ||||
| 6367 | return ResultType; | |||
| 6368 | } | |||
| 6369 | ||||
| 6370 | QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, | |||
| 6371 | ExprResult &LHS, | |||
| 6372 | ExprResult &RHS, | |||
| 6373 | SourceLocation QuestionLoc) { | |||
| 6374 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 6375 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 6376 | ||||
| 6377 | QualType CondType = Cond.get()->getType(); | |||
| 6378 | const auto *CondBT = CondType->castAs<BuiltinType>(); | |||
| 6379 | QualType CondElementTy = CondBT->getSveEltType(Context); | |||
| 6380 | llvm::ElementCount CondElementCount = | |||
| 6381 | Context.getBuiltinVectorTypeInfo(CondBT).EC; | |||
| 6382 | ||||
| 6383 | QualType LHSType = LHS.get()->getType(); | |||
| 6384 | const auto *LHSBT = | |||
| 6385 | LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; | |||
| 6386 | QualType RHSType = RHS.get()->getType(); | |||
| 6387 | const auto *RHSBT = | |||
| 6388 | RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; | |||
| 6389 | ||||
| 6390 | QualType ResultType; | |||
| 6391 | ||||
| 6392 | if (LHSBT && RHSBT) { | |||
| 6393 | // If both are sizeless vector types, they must be the same type. | |||
| 6394 | if (!Context.hasSameType(LHSType, RHSType)) { | |||
| 6395 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) | |||
| 6396 | << LHSType << RHSType; | |||
| 6397 | return QualType(); | |||
| 6398 | } | |||
| 6399 | ResultType = LHSType; | |||
| 6400 | } else if (LHSBT || RHSBT) { | |||
| 6401 | ResultType = CheckSizelessVectorOperands( | |||
| 6402 | LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); | |||
| 6403 | if (ResultType.isNull()) | |||
| 6404 | return QualType(); | |||
| 6405 | } else { | |||
| 6406 | // Both are scalar so splat | |||
| 6407 | QualType ResultElementTy; | |||
| 6408 | LHSType = LHSType.getCanonicalType().getUnqualifiedType(); | |||
| 6409 | RHSType = RHSType.getCanonicalType().getUnqualifiedType(); | |||
| 6410 | ||||
| 6411 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 6412 | ResultElementTy = LHSType; | |||
| 6413 | else | |||
| 6414 | ResultElementTy = | |||
| 6415 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); | |||
| 6416 | ||||
| 6417 | if (ResultElementTy->isEnumeralType()) { | |||
| 6418 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) | |||
| 6419 | << ResultElementTy; | |||
| 6420 | return QualType(); | |||
| 6421 | } | |||
| 6422 | ||||
| 6423 | ResultType = Context.getScalableVectorType( | |||
| 6424 | ResultElementTy, CondElementCount.getKnownMinValue()); | |||
| 6425 | ||||
| 6426 | LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); | |||
| 6427 | RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); | |||
| 6428 | } | |||
| 6429 | ||||
| 6430 | assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&(static_cast <bool> (!ResultType.isNull() && ResultType ->isVLSTBuiltinType() && "Result should have been a vector type" ) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVLSTBuiltinType() && \"Result should have been a vector type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6431, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6431 | "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType ->isVLSTBuiltinType() && "Result should have been a vector type" ) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVLSTBuiltinType() && \"Result should have been a vector type\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6431, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6432 | auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); | |||
| 6433 | QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); | |||
| 6434 | llvm::ElementCount ResultElementCount = | |||
| 6435 | Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; | |||
| 6436 | ||||
| 6437 | if (ResultElementCount != CondElementCount) { | |||
| 6438 | Diag(QuestionLoc, diag::err_conditional_vector_size) | |||
| 6439 | << CondType << ResultType; | |||
| 6440 | return QualType(); | |||
| 6441 | } | |||
| 6442 | ||||
| 6443 | if (Context.getTypeSize(ResultElementTy) != | |||
| 6444 | Context.getTypeSize(CondElementTy)) { | |||
| 6445 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) | |||
| 6446 | << CondType << ResultType; | |||
| 6447 | return QualType(); | |||
| 6448 | } | |||
| 6449 | ||||
| 6450 | return ResultType; | |||
| 6451 | } | |||
| 6452 | ||||
| 6453 | /// Check the operands of ?: under C++ semantics. | |||
| 6454 | /// | |||
| 6455 | /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y | |||
| 6456 | /// extension. In this case, LHS == Cond. (But they're not aliases.) | |||
| 6457 | /// | |||
| 6458 | /// This function also implements GCC's vector extension and the | |||
| 6459 | /// OpenCL/ext_vector_type extension for conditionals. The vector extensions | |||
| 6460 | /// permit the use of a?b:c where the type of a is that of a integer vector with | |||
| 6461 | /// the same number of elements and size as the vectors of b and c. If one of | |||
| 6462 | /// either b or c is a scalar it is implicitly converted to match the type of | |||
| 6463 | /// the vector. Otherwise the expression is ill-formed. If both b and c are | |||
| 6464 | /// scalars, then b and c are checked and converted to the type of a if | |||
| 6465 | /// possible. | |||
| 6466 | /// | |||
| 6467 | /// The expressions are evaluated differently for GCC's and OpenCL's extensions. | |||
| 6468 | /// For the GCC extension, the ?: operator is evaluated as | |||
| 6469 | /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). | |||
| 6470 | /// For the OpenCL extensions, the ?: operator is evaluated as | |||
| 6471 | /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , | |||
| 6472 | /// most-significant-bit-set(a[n]) ? b[n] : c[n]). | |||
| 6473 | QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, | |||
| 6474 | ExprResult &RHS, ExprValueKind &VK, | |||
| 6475 | ExprObjectKind &OK, | |||
| 6476 | SourceLocation QuestionLoc) { | |||
| 6477 | // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface | |||
| 6478 | // pointers. | |||
| 6479 | ||||
| 6480 | // Assume r-value. | |||
| 6481 | VK = VK_PRValue; | |||
| 6482 | OK = OK_Ordinary; | |||
| 6483 | bool IsVectorConditional = | |||
| 6484 | isValidVectorForConditionalCondition(Context, Cond.get()->getType()); | |||
| 6485 | ||||
| 6486 | bool IsSizelessVectorConditional = | |||
| 6487 | isValidSizelessVectorForConditionalCondition(Context, | |||
| 6488 | Cond.get()->getType()); | |||
| 6489 | ||||
| 6490 | // C++11 [expr.cond]p1 | |||
| 6491 | // The first expression is contextually converted to bool. | |||
| 6492 | if (!Cond.get()->isTypeDependent()) { | |||
| 6493 | ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional | |||
| 6494 | ? DefaultFunctionArrayLvalueConversion(Cond.get()) | |||
| 6495 | : CheckCXXBooleanCondition(Cond.get()); | |||
| 6496 | if (CondRes.isInvalid()) | |||
| 6497 | return QualType(); | |||
| 6498 | Cond = CondRes; | |||
| 6499 | } else { | |||
| 6500 | // To implement C++, the first expression typically doesn't alter the result | |||
| 6501 | // type of the conditional, however the GCC compatible vector extension | |||
| 6502 | // changes the result type to be that of the conditional. Since we cannot | |||
| 6503 | // know if this is a vector extension here, delay the conversion of the | |||
| 6504 | // LHS/RHS below until later. | |||
| 6505 | return Context.DependentTy; | |||
| 6506 | } | |||
| 6507 | ||||
| 6508 | ||||
| 6509 | // Either of the arguments dependent? | |||
| 6510 | if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) | |||
| 6511 | return Context.DependentTy; | |||
| 6512 | ||||
| 6513 | // C++11 [expr.cond]p2 | |||
| 6514 | // If either the second or the third operand has type (cv) void, ... | |||
| 6515 | QualType LTy = LHS.get()->getType(); | |||
| 6516 | QualType RTy = RHS.get()->getType(); | |||
| 6517 | bool LVoid = LTy->isVoidType(); | |||
| 6518 | bool RVoid = RTy->isVoidType(); | |||
| 6519 | if (LVoid || RVoid) { | |||
| 6520 | // ... one of the following shall hold: | |||
| 6521 | // -- The second or the third operand (but not both) is a (possibly | |||
| 6522 | // parenthesized) throw-expression; the result is of the type | |||
| 6523 | // and value category of the other. | |||
| 6524 | bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); | |||
| 6525 | bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); | |||
| 6526 | ||||
| 6527 | // Void expressions aren't legal in the vector-conditional expressions. | |||
| 6528 | if (IsVectorConditional) { | |||
| 6529 | SourceRange DiagLoc = | |||
| 6530 | LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); | |||
| 6531 | bool IsThrow = LVoid ? LThrow : RThrow; | |||
| 6532 | Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) | |||
| 6533 | << DiagLoc << IsThrow; | |||
| 6534 | return QualType(); | |||
| 6535 | } | |||
| 6536 | ||||
| 6537 | if (LThrow != RThrow) { | |||
| 6538 | Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); | |||
| 6539 | VK = NonThrow->getValueKind(); | |||
| 6540 | // DR (no number yet): the result is a bit-field if the | |||
| 6541 | // non-throw-expression operand is a bit-field. | |||
| 6542 | OK = NonThrow->getObjectKind(); | |||
| 6543 | return NonThrow->getType(); | |||
| 6544 | } | |||
| 6545 | ||||
| 6546 | // -- Both the second and third operands have type void; the result is of | |||
| 6547 | // type void and is a prvalue. | |||
| 6548 | if (LVoid && RVoid) | |||
| 6549 | return Context.getCommonSugaredType(LTy, RTy); | |||
| 6550 | ||||
| 6551 | // Neither holds, error. | |||
| 6552 | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) | |||
| 6553 | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) | |||
| 6554 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6555 | return QualType(); | |||
| 6556 | } | |||
| 6557 | ||||
| 6558 | // Neither is void. | |||
| 6559 | if (IsVectorConditional) | |||
| 6560 | return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); | |||
| 6561 | ||||
| 6562 | if (IsSizelessVectorConditional) | |||
| 6563 | return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); | |||
| 6564 | ||||
| 6565 | // C++11 [expr.cond]p3 | |||
| 6566 | // Otherwise, if the second and third operand have different types, and | |||
| 6567 | // either has (cv) class type [...] an attempt is made to convert each of | |||
| 6568 | // those operands to the type of the other. | |||
| 6569 | if (!Context.hasSameType(LTy, RTy) && | |||
| 6570 | (LTy->isRecordType() || RTy->isRecordType())) { | |||
| 6571 | // These return true if a single direction is already ambiguous. | |||
| 6572 | QualType L2RType, R2LType; | |||
| 6573 | bool HaveL2R, HaveR2L; | |||
| 6574 | if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) | |||
| 6575 | return QualType(); | |||
| 6576 | if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) | |||
| 6577 | return QualType(); | |||
| 6578 | ||||
| 6579 | // If both can be converted, [...] the program is ill-formed. | |||
| 6580 | if (HaveL2R && HaveR2L) { | |||
| 6581 | Diag(QuestionLoc, diag::err_conditional_ambiguous) | |||
| 6582 | << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6583 | return QualType(); | |||
| 6584 | } | |||
| 6585 | ||||
| 6586 | // If exactly one conversion is possible, that conversion is applied to | |||
| 6587 | // the chosen operand and the converted operands are used in place of the | |||
| 6588 | // original operands for the remainder of this section. | |||
| 6589 | if (HaveL2R) { | |||
| 6590 | if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) | |||
| 6591 | return QualType(); | |||
| 6592 | LTy = LHS.get()->getType(); | |||
| 6593 | } else if (HaveR2L) { | |||
| 6594 | if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) | |||
| 6595 | return QualType(); | |||
| 6596 | RTy = RHS.get()->getType(); | |||
| 6597 | } | |||
| 6598 | } | |||
| 6599 | ||||
| 6600 | // C++11 [expr.cond]p3 | |||
| 6601 | // if both are glvalues of the same value category and the same type except | |||
| 6602 | // for cv-qualification, an attempt is made to convert each of those | |||
| 6603 | // operands to the type of the other. | |||
| 6604 | // FIXME: | |||
| 6605 | // Resolving a defect in P0012R1: we extend this to cover all cases where | |||
| 6606 | // one of the operands is reference-compatible with the other, in order | |||
| 6607 | // to support conditionals between functions differing in noexcept. This | |||
| 6608 | // will similarly cover difference in array bounds after P0388R4. | |||
| 6609 | // FIXME: If LTy and RTy have a composite pointer type, should we convert to | |||
| 6610 | // that instead? | |||
| 6611 | ExprValueKind LVK = LHS.get()->getValueKind(); | |||
| 6612 | ExprValueKind RVK = RHS.get()->getValueKind(); | |||
| 6613 | if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { | |||
| 6614 | // DerivedToBase was already handled by the class-specific case above. | |||
| 6615 | // FIXME: Should we allow ObjC conversions here? | |||
| 6616 | const ReferenceConversions AllowedConversions = | |||
| 6617 | ReferenceConversions::Qualification | | |||
| 6618 | ReferenceConversions::NestedQualification | | |||
| 6619 | ReferenceConversions::Function; | |||
| 6620 | ||||
| 6621 | ReferenceConversions RefConv; | |||
| 6622 | if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == | |||
| 6623 | Ref_Compatible && | |||
| 6624 | !(RefConv & ~AllowedConversions) && | |||
| 6625 | // [...] subject to the constraint that the reference must bind | |||
| 6626 | // directly [...] | |||
| 6627 | !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { | |||
| 6628 | RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); | |||
| 6629 | RTy = RHS.get()->getType(); | |||
| 6630 | } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == | |||
| 6631 | Ref_Compatible && | |||
| 6632 | !(RefConv & ~AllowedConversions) && | |||
| 6633 | !LHS.get()->refersToBitField() && | |||
| 6634 | !LHS.get()->refersToVectorElement()) { | |||
| 6635 | LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); | |||
| 6636 | LTy = LHS.get()->getType(); | |||
| 6637 | } | |||
| 6638 | } | |||
| 6639 | ||||
| 6640 | // C++11 [expr.cond]p4 | |||
| 6641 | // If the second and third operands are glvalues of the same value | |||
| 6642 | // category and have the same type, the result is of that type and | |||
| 6643 | // value category and it is a bit-field if the second or the third | |||
| 6644 | // operand is a bit-field, or if both are bit-fields. | |||
| 6645 | // We only extend this to bitfields, not to the crazy other kinds of | |||
| 6646 | // l-values. | |||
| 6647 | bool Same = Context.hasSameType(LTy, RTy); | |||
| 6648 | if (Same && LVK == RVK && LVK != VK_PRValue && | |||
| 6649 | LHS.get()->isOrdinaryOrBitFieldObject() && | |||
| 6650 | RHS.get()->isOrdinaryOrBitFieldObject()) { | |||
| 6651 | VK = LHS.get()->getValueKind(); | |||
| 6652 | if (LHS.get()->getObjectKind() == OK_BitField || | |||
| 6653 | RHS.get()->getObjectKind() == OK_BitField) | |||
| 6654 | OK = OK_BitField; | |||
| 6655 | return Context.getCommonSugaredType(LTy, RTy); | |||
| 6656 | } | |||
| 6657 | ||||
| 6658 | // C++11 [expr.cond]p5 | |||
| 6659 | // Otherwise, the result is a prvalue. If the second and third operands | |||
| 6660 | // do not have the same type, and either has (cv) class type, ... | |||
| 6661 | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { | |||
| 6662 | // ... overload resolution is used to determine the conversions (if any) | |||
| 6663 | // to be applied to the operands. If the overload resolution fails, the | |||
| 6664 | // program is ill-formed. | |||
| 6665 | if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) | |||
| 6666 | return QualType(); | |||
| 6667 | } | |||
| 6668 | ||||
| 6669 | // C++11 [expr.cond]p6 | |||
| 6670 | // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard | |||
| 6671 | // conversions are performed on the second and third operands. | |||
| 6672 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 6673 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 6674 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 6675 | return QualType(); | |||
| 6676 | LTy = LHS.get()->getType(); | |||
| 6677 | RTy = RHS.get()->getType(); | |||
| 6678 | ||||
| 6679 | // After those conversions, one of the following shall hold: | |||
| 6680 | // -- The second and third operands have the same type; the result | |||
| 6681 | // is of that type. If the operands have class type, the result | |||
| 6682 | // is a prvalue temporary of the result type, which is | |||
| 6683 | // copy-initialized from either the second operand or the third | |||
| 6684 | // operand depending on the value of the first operand. | |||
| 6685 | if (Context.hasSameType(LTy, RTy)) { | |||
| 6686 | if (LTy->isRecordType()) { | |||
| 6687 | // The operands have class type. Make a temporary copy. | |||
| 6688 | ExprResult LHSCopy = PerformCopyInitialization( | |||
| 6689 | InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS); | |||
| 6690 | if (LHSCopy.isInvalid()) | |||
| 6691 | return QualType(); | |||
| 6692 | ||||
| 6693 | ExprResult RHSCopy = PerformCopyInitialization( | |||
| 6694 | InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS); | |||
| 6695 | if (RHSCopy.isInvalid()) | |||
| 6696 | return QualType(); | |||
| 6697 | ||||
| 6698 | LHS = LHSCopy; | |||
| 6699 | RHS = RHSCopy; | |||
| 6700 | } | |||
| 6701 | return Context.getCommonSugaredType(LTy, RTy); | |||
| 6702 | } | |||
| 6703 | ||||
| 6704 | // Extension: conditional operator involving vector types. | |||
| 6705 | if (LTy->isVectorType() || RTy->isVectorType()) | |||
| 6706 | return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, | |||
| 6707 | /*AllowBothBool*/ true, | |||
| 6708 | /*AllowBoolConversions*/ false, | |||
| 6709 | /*AllowBoolOperation*/ false, | |||
| 6710 | /*ReportInvalid*/ true); | |||
| 6711 | ||||
| 6712 | // -- The second and third operands have arithmetic or enumeration type; | |||
| 6713 | // the usual arithmetic conversions are performed to bring them to a | |||
| 6714 | // common type, and the result is of that type. | |||
| 6715 | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { | |||
| 6716 | QualType ResTy = | |||
| 6717 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); | |||
| 6718 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 6719 | return QualType(); | |||
| 6720 | if (ResTy.isNull()) { | |||
| 6721 | Diag(QuestionLoc, | |||
| 6722 | diag::err_typecheck_cond_incompatible_operands) << LTy << RTy | |||
| 6723 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6724 | return QualType(); | |||
| 6725 | } | |||
| 6726 | ||||
| 6727 | LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); | |||
| 6728 | RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); | |||
| 6729 | ||||
| 6730 | return ResTy; | |||
| 6731 | } | |||
| 6732 | ||||
| 6733 | // -- The second and third operands have pointer type, or one has pointer | |||
| 6734 | // type and the other is a null pointer constant, or both are null | |||
| 6735 | // pointer constants, at least one of which is non-integral; pointer | |||
| 6736 | // conversions and qualification conversions are performed to bring them | |||
| 6737 | // to their composite pointer type. The result is of the composite | |||
| 6738 | // pointer type. | |||
| 6739 | // -- The second and third operands have pointer to member type, or one has | |||
| 6740 | // pointer to member type and the other is a null pointer constant; | |||
| 6741 | // pointer to member conversions and qualification conversions are | |||
| 6742 | // performed to bring them to a common type, whose cv-qualification | |||
| 6743 | // shall match the cv-qualification of either the second or the third | |||
| 6744 | // operand. The result is of the common type. | |||
| 6745 | QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); | |||
| 6746 | if (!Composite.isNull()) | |||
| 6747 | return Composite; | |||
| 6748 | ||||
| 6749 | // Similarly, attempt to find composite type of two objective-c pointers. | |||
| 6750 | Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); | |||
| 6751 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 6752 | return QualType(); | |||
| 6753 | if (!Composite.isNull()) | |||
| 6754 | return Composite; | |||
| 6755 | ||||
| 6756 | // Check if we are using a null with a non-pointer type. | |||
| 6757 | if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | |||
| 6758 | return QualType(); | |||
| 6759 | ||||
| 6760 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | |||
| 6761 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 6762 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 6763 | return QualType(); | |||
| 6764 | } | |||
| 6765 | ||||
| 6766 | /// Find a merged pointer type and convert the two expressions to it. | |||
| 6767 | /// | |||
| 6768 | /// This finds the composite pointer type for \p E1 and \p E2 according to | |||
| 6769 | /// C++2a [expr.type]p3. It converts both expressions to this type and returns | |||
| 6770 | /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs | |||
| 6771 | /// is \c true). | |||
| 6772 | /// | |||
| 6773 | /// \param Loc The location of the operator requiring these two expressions to | |||
| 6774 | /// be converted to the composite pointer type. | |||
| 6775 | /// | |||
| 6776 | /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. | |||
| 6777 | QualType Sema::FindCompositePointerType(SourceLocation Loc, | |||
| 6778 | Expr *&E1, Expr *&E2, | |||
| 6779 | bool ConvertArgs) { | |||
| 6780 | assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus && "This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6780, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6781 | ||||
| 6782 | // C++1z [expr]p14: | |||
| 6783 | // The composite pointer type of two operands p1 and p2 having types T1 | |||
| 6784 | // and T2 | |||
| 6785 | QualType T1 = E1->getType(), T2 = E2->getType(); | |||
| 6786 | ||||
| 6787 | // where at least one is a pointer or pointer to member type or | |||
| 6788 | // std::nullptr_t is: | |||
| 6789 | bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || | |||
| 6790 | T1->isNullPtrType(); | |||
| 6791 | bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || | |||
| 6792 | T2->isNullPtrType(); | |||
| 6793 | if (!T1IsPointerLike && !T2IsPointerLike) | |||
| 6794 | return QualType(); | |||
| 6795 | ||||
| 6796 | // - if both p1 and p2 are null pointer constants, std::nullptr_t; | |||
| 6797 | // This can't actually happen, following the standard, but we also use this | |||
| 6798 | // to implement the end of [expr.conv], which hits this case. | |||
| 6799 | // | |||
| 6800 | // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; | |||
| 6801 | if (T1IsPointerLike && | |||
| 6802 | E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | |||
| 6803 | if (ConvertArgs) | |||
| 6804 | E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() | |||
| 6805 | ? CK_NullToMemberPointer | |||
| 6806 | : CK_NullToPointer).get(); | |||
| 6807 | return T1; | |||
| 6808 | } | |||
| 6809 | if (T2IsPointerLike && | |||
| 6810 | E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | |||
| 6811 | if (ConvertArgs) | |||
| 6812 | E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() | |||
| 6813 | ? CK_NullToMemberPointer | |||
| 6814 | : CK_NullToPointer).get(); | |||
| 6815 | return T2; | |||
| 6816 | } | |||
| 6817 | ||||
| 6818 | // Now both have to be pointers or member pointers. | |||
| 6819 | if (!T1IsPointerLike || !T2IsPointerLike) | |||
| 6820 | return QualType(); | |||
| 6821 | assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&(static_cast <bool> (!T1->isNullPtrType() && !T2->isNullPtrType() && "nullptr_t should be a null pointer constant" ) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6822, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6822 | "nullptr_t should be a null pointer constant")(static_cast <bool> (!T1->isNullPtrType() && !T2->isNullPtrType() && "nullptr_t should be a null pointer constant" ) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\"" , "clang/lib/Sema/SemaExprCXX.cpp", 6822, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6823 | ||||
| 6824 | struct Step { | |||
| 6825 | enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; | |||
| 6826 | // Qualifiers to apply under the step kind. | |||
| 6827 | Qualifiers Quals; | |||
| 6828 | /// The class for a pointer-to-member; a constant array type with a bound | |||
| 6829 | /// (if any) for an array. | |||
| 6830 | const Type *ClassOrBound; | |||
| 6831 | ||||
| 6832 | Step(Kind K, const Type *ClassOrBound = nullptr) | |||
| 6833 | : K(K), ClassOrBound(ClassOrBound) {} | |||
| 6834 | QualType rebuild(ASTContext &Ctx, QualType T) const { | |||
| 6835 | T = Ctx.getQualifiedType(T, Quals); | |||
| 6836 | switch (K) { | |||
| 6837 | case Pointer: | |||
| 6838 | return Ctx.getPointerType(T); | |||
| 6839 | case MemberPointer: | |||
| 6840 | return Ctx.getMemberPointerType(T, ClassOrBound); | |||
| 6841 | case ObjCPointer: | |||
| 6842 | return Ctx.getObjCObjectPointerType(T); | |||
| 6843 | case Array: | |||
| 6844 | if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) | |||
| 6845 | return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, | |||
| 6846 | ArrayType::Normal, 0); | |||
| 6847 | else | |||
| 6848 | return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); | |||
| 6849 | } | |||
| 6850 | llvm_unreachable("unknown step kind")::llvm::llvm_unreachable_internal("unknown step kind", "clang/lib/Sema/SemaExprCXX.cpp" , 6850); | |||
| 6851 | } | |||
| 6852 | }; | |||
| 6853 | ||||
| 6854 | SmallVector<Step, 8> Steps; | |||
| 6855 | ||||
| 6856 | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 | |||
| 6857 | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), | |||
| 6858 | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, | |||
| 6859 | // respectively; | |||
| 6860 | // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer | |||
| 6861 | // to member of C2 of type cv2 U2" for some non-function type U, where | |||
| 6862 | // C1 is reference-related to C2 or C2 is reference-related to C1, the | |||
| 6863 | // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, | |||
| 6864 | // respectively; | |||
| 6865 | // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and | |||
| 6866 | // T2; | |||
| 6867 | // | |||
| 6868 | // Dismantle T1 and T2 to simultaneously determine whether they are similar | |||
| 6869 | // and to prepare to form the cv-combined type if so. | |||
| 6870 | QualType Composite1 = T1; | |||
| 6871 | QualType Composite2 = T2; | |||
| 6872 | unsigned NeedConstBefore = 0; | |||
| 6873 | while (true) { | |||
| 6874 | assert(!Composite1.isNull() && !Composite2.isNull())(static_cast <bool> (!Composite1.isNull() && !Composite2 .isNull()) ? void (0) : __assert_fail ("!Composite1.isNull() && !Composite2.isNull()" , "clang/lib/Sema/SemaExprCXX.cpp", 6874, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6875 | ||||
| 6876 | Qualifiers Q1, Q2; | |||
| 6877 | Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); | |||
| 6878 | Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); | |||
| 6879 | ||||
| 6880 | // Top-level qualifiers are ignored. Merge at all lower levels. | |||
| 6881 | if (!Steps.empty()) { | |||
| 6882 | // Find the qualifier union: (approximately) the unique minimal set of | |||
| 6883 | // qualifiers that is compatible with both types. | |||
| 6884 | Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | | |||
| 6885 | Q2.getCVRUQualifiers()); | |||
| 6886 | ||||
| 6887 | // Under one level of pointer or pointer-to-member, we can change to an | |||
| 6888 | // unambiguous compatible address space. | |||
| 6889 | if (Q1.getAddressSpace() == Q2.getAddressSpace()) { | |||
| 6890 | Quals.setAddressSpace(Q1.getAddressSpace()); | |||
| 6891 | } else if (Steps.size() == 1) { | |||
| 6892 | bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); | |||
| 6893 | bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); | |||
| 6894 | if (MaybeQ1 == MaybeQ2) { | |||
| 6895 | // Exception for ptr size address spaces. Should be able to choose | |||
| 6896 | // either address space during comparison. | |||
| 6897 | if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || | |||
| 6898 | isPtrSizeAddressSpace(Q2.getAddressSpace())) | |||
| 6899 | MaybeQ1 = true; | |||
| 6900 | else | |||
| 6901 | return QualType(); // No unique best address space. | |||
| 6902 | } | |||
| 6903 | Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() | |||
| 6904 | : Q2.getAddressSpace()); | |||
| 6905 | } else { | |||
| 6906 | return QualType(); | |||
| 6907 | } | |||
| 6908 | ||||
| 6909 | // FIXME: In C, we merge __strong and none to __strong at the top level. | |||
| 6910 | if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) | |||
| 6911 | Quals.setObjCGCAttr(Q1.getObjCGCAttr()); | |||
| 6912 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) | |||
| 6913 | assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail ("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6913 , __extension__ __PRETTY_FUNCTION__)); | |||
| 6914 | else | |||
| 6915 | return QualType(); | |||
| 6916 | ||||
| 6917 | // Mismatched lifetime qualifiers never compatibly include each other. | |||
| 6918 | if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) | |||
| 6919 | Quals.setObjCLifetime(Q1.getObjCLifetime()); | |||
| 6920 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) | |||
| 6921 | assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail ("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6921 , __extension__ __PRETTY_FUNCTION__)); | |||
| 6922 | else | |||
| 6923 | return QualType(); | |||
| 6924 | ||||
| 6925 | Steps.back().Quals = Quals; | |||
| 6926 | if (Q1 != Quals || Q2 != Quals) | |||
| 6927 | NeedConstBefore = Steps.size() - 1; | |||
| 6928 | } | |||
| 6929 | ||||
| 6930 | // FIXME: Can we unify the following with UnwrapSimilarTypes? | |||
| 6931 | ||||
| 6932 | const ArrayType *Arr1, *Arr2; | |||
| 6933 | if ((Arr1 = Context.getAsArrayType(Composite1)) && | |||
| 6934 | (Arr2 = Context.getAsArrayType(Composite2))) { | |||
| 6935 | auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); | |||
| 6936 | auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); | |||
| 6937 | if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { | |||
| 6938 | Composite1 = Arr1->getElementType(); | |||
| 6939 | Composite2 = Arr2->getElementType(); | |||
| 6940 | Steps.emplace_back(Step::Array, CAT1); | |||
| 6941 | continue; | |||
| 6942 | } | |||
| 6943 | bool IAT1 = isa<IncompleteArrayType>(Arr1); | |||
| 6944 | bool IAT2 = isa<IncompleteArrayType>(Arr2); | |||
| 6945 | if ((IAT1 && IAT2) || | |||
| 6946 | (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && | |||
| 6947 | ((bool)CAT1 != (bool)CAT2) && | |||
| 6948 | (Steps.empty() || Steps.back().K != Step::Array))) { | |||
| 6949 | // In C++20 onwards, we can unify an array of N T with an array of | |||
| 6950 | // a different or unknown bound. But we can't form an array whose | |||
| 6951 | // element type is an array of unknown bound by doing so. | |||
| 6952 | Composite1 = Arr1->getElementType(); | |||
| 6953 | Composite2 = Arr2->getElementType(); | |||
| 6954 | Steps.emplace_back(Step::Array); | |||
| 6955 | if (CAT1 || CAT2) | |||
| 6956 | NeedConstBefore = Steps.size(); | |||
| 6957 | continue; | |||
| 6958 | } | |||
| 6959 | } | |||
| 6960 | ||||
| 6961 | const PointerType *Ptr1, *Ptr2; | |||
| 6962 | if ((Ptr1 = Composite1->getAs<PointerType>()) && | |||
| 6963 | (Ptr2 = Composite2->getAs<PointerType>())) { | |||
| 6964 | Composite1 = Ptr1->getPointeeType(); | |||
| 6965 | Composite2 = Ptr2->getPointeeType(); | |||
| 6966 | Steps.emplace_back(Step::Pointer); | |||
| 6967 | continue; | |||
| 6968 | } | |||
| 6969 | ||||
| 6970 | const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; | |||
| 6971 | if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && | |||
| 6972 | (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { | |||
| 6973 | Composite1 = ObjPtr1->getPointeeType(); | |||
| 6974 | Composite2 = ObjPtr2->getPointeeType(); | |||
| 6975 | Steps.emplace_back(Step::ObjCPointer); | |||
| 6976 | continue; | |||
| 6977 | } | |||
| 6978 | ||||
| 6979 | const MemberPointerType *MemPtr1, *MemPtr2; | |||
| 6980 | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && | |||
| 6981 | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { | |||
| 6982 | Composite1 = MemPtr1->getPointeeType(); | |||
| 6983 | Composite2 = MemPtr2->getPointeeType(); | |||
| 6984 | ||||
| 6985 | // At the top level, we can perform a base-to-derived pointer-to-member | |||
| 6986 | // conversion: | |||
| 6987 | // | |||
| 6988 | // - [...] where C1 is reference-related to C2 or C2 is | |||
| 6989 | // reference-related to C1 | |||
| 6990 | // | |||
| 6991 | // (Note that the only kinds of reference-relatedness in scope here are | |||
| 6992 | // "same type or derived from".) At any other level, the class must | |||
| 6993 | // exactly match. | |||
| 6994 | const Type *Class = nullptr; | |||
| 6995 | QualType Cls1(MemPtr1->getClass(), 0); | |||
| 6996 | QualType Cls2(MemPtr2->getClass(), 0); | |||
| 6997 | if (Context.hasSameType(Cls1, Cls2)) | |||
| 6998 | Class = MemPtr1->getClass(); | |||
| 6999 | else if (Steps.empty()) | |||
| 7000 | Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : | |||
| 7001 | IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; | |||
| 7002 | if (!Class) | |||
| 7003 | return QualType(); | |||
| 7004 | ||||
| 7005 | Steps.emplace_back(Step::MemberPointer, Class); | |||
| 7006 | continue; | |||
| 7007 | } | |||
| 7008 | ||||
| 7009 | // Special case: at the top level, we can decompose an Objective-C pointer | |||
| 7010 | // and a 'cv void *'. Unify the qualifiers. | |||
| 7011 | if (Steps.empty() && ((Composite1->isVoidPointerType() && | |||
| 7012 | Composite2->isObjCObjectPointerType()) || | |||
| 7013 | (Composite1->isObjCObjectPointerType() && | |||
| 7014 | Composite2->isVoidPointerType()))) { | |||
| 7015 | Composite1 = Composite1->getPointeeType(); | |||
| 7016 | Composite2 = Composite2->getPointeeType(); | |||
| 7017 | Steps.emplace_back(Step::Pointer); | |||
| 7018 | continue; | |||
| 7019 | } | |||
| 7020 | ||||
| 7021 | // FIXME: block pointer types? | |||
| 7022 | ||||
| 7023 | // Cannot unwrap any more types. | |||
| 7024 | break; | |||
| 7025 | } | |||
| 7026 | ||||
| 7027 | // - if T1 or T2 is "pointer to noexcept function" and the other type is | |||
| 7028 | // "pointer to function", where the function types are otherwise the same, | |||
| 7029 | // "pointer to function"; | |||
| 7030 | // - if T1 or T2 is "pointer to member of C1 of type function", the other | |||
| 7031 | // type is "pointer to member of C2 of type noexcept function", and C1 | |||
| 7032 | // is reference-related to C2 or C2 is reference-related to C1, where | |||
| 7033 | // the function types are otherwise the same, "pointer to member of C2 of | |||
| 7034 | // type function" or "pointer to member of C1 of type function", | |||
| 7035 | // respectively; | |||
| 7036 | // | |||
| 7037 | // We also support 'noreturn' here, so as a Clang extension we generalize the | |||
| 7038 | // above to: | |||
| 7039 | // | |||
| 7040 | // - [Clang] If T1 and T2 are both of type "pointer to function" or | |||
| 7041 | // "pointer to member function" and the pointee types can be unified | |||
| 7042 | // by a function pointer conversion, that conversion is applied | |||
| 7043 | // before checking the following rules. | |||
| 7044 | // | |||
| 7045 | // We've already unwrapped down to the function types, and we want to merge | |||
| 7046 | // rather than just convert, so do this ourselves rather than calling | |||
| 7047 | // IsFunctionConversion. | |||
| 7048 | // | |||
| 7049 | // FIXME: In order to match the standard wording as closely as possible, we | |||
| 7050 | // currently only do this under a single level of pointers. Ideally, we would | |||
| 7051 | // allow this in general, and set NeedConstBefore to the relevant depth on | |||
| 7052 | // the side(s) where we changed anything. If we permit that, we should also | |||
| 7053 | // consider this conversion when determining type similarity and model it as | |||
| 7054 | // a qualification conversion. | |||
| 7055 | if (Steps.size() == 1) { | |||
| 7056 | if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { | |||
| 7057 | if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { | |||
| 7058 | FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); | |||
| 7059 | FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); | |||
| 7060 | ||||
| 7061 | // The result is noreturn if both operands are. | |||
| 7062 | bool Noreturn = | |||
| 7063 | EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); | |||
| 7064 | EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); | |||
| 7065 | EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); | |||
| 7066 | ||||
| 7067 | // The result is nothrow if both operands are. | |||
| 7068 | SmallVector<QualType, 8> ExceptionTypeStorage; | |||
| 7069 | EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( | |||
| 7070 | EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage, | |||
| 7071 | getLangOpts().CPlusPlus17); | |||
| 7072 | ||||
| 7073 | Composite1 = Context.getFunctionType(FPT1->getReturnType(), | |||
| 7074 | FPT1->getParamTypes(), EPI1); | |||
| 7075 | Composite2 = Context.getFunctionType(FPT2->getReturnType(), | |||
| 7076 | FPT2->getParamTypes(), EPI2); | |||
| 7077 | } | |||
| 7078 | } | |||
| 7079 | } | |||
| 7080 | ||||
| 7081 | // There are some more conversions we can perform under exactly one pointer. | |||
| 7082 | if (Steps.size() == 1 && Steps.front().K == Step::Pointer && | |||
| 7083 | !Context.hasSameType(Composite1, Composite2)) { | |||
| 7084 | // - if T1 or T2 is "pointer to cv1 void" and the other type is | |||
| 7085 | // "pointer to cv2 T", where T is an object type or void, | |||
| 7086 | // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; | |||
| 7087 | if (Composite1->isVoidType() && Composite2->isObjectType()) | |||
| 7088 | Composite2 = Composite1; | |||
| 7089 | else if (Composite2->isVoidType() && Composite1->isObjectType()) | |||
| 7090 | Composite1 = Composite2; | |||
| 7091 | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 | |||
| 7092 | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), | |||
| 7093 | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and | |||
| 7094 | // T1, respectively; | |||
| 7095 | // | |||
| 7096 | // The "similar type" handling covers all of this except for the "T1 is a | |||
| 7097 | // base class of T2" case in the definition of reference-related. | |||
| 7098 | else if (IsDerivedFrom(Loc, Composite1, Composite2)) | |||
| 7099 | Composite1 = Composite2; | |||
| 7100 | else if (IsDerivedFrom(Loc, Composite2, Composite1)) | |||
| 7101 | Composite2 = Composite1; | |||
| 7102 | } | |||
| 7103 | ||||
| 7104 | // At this point, either the inner types are the same or we have failed to | |||
| 7105 | // find a composite pointer type. | |||
| 7106 | if (!Context.hasSameType(Composite1, Composite2)) | |||
| 7107 | return QualType(); | |||
| 7108 | ||||
| 7109 | // Per C++ [conv.qual]p3, add 'const' to every level before the last | |||
| 7110 | // differing qualifier. | |||
| 7111 | for (unsigned I = 0; I != NeedConstBefore; ++I) | |||
| 7112 | Steps[I].Quals.addConst(); | |||
| 7113 | ||||
| 7114 | // Rebuild the composite type. | |||
| 7115 | QualType Composite = Context.getCommonSugaredType(Composite1, Composite2); | |||
| 7116 | for (auto &S : llvm::reverse(Steps)) | |||
| 7117 | Composite = S.rebuild(Context, Composite); | |||
| 7118 | ||||
| 7119 | if (ConvertArgs) { | |||
| 7120 | // Convert the expressions to the composite pointer type. | |||
| 7121 | InitializedEntity Entity = | |||
| 7122 | InitializedEntity::InitializeTemporary(Composite); | |||
| 7123 | InitializationKind Kind = | |||
| 7124 | InitializationKind::CreateCopy(Loc, SourceLocation()); | |||
| 7125 | ||||
| 7126 | InitializationSequence E1ToC(*this, Entity, Kind, E1); | |||
| 7127 | if (!E1ToC) | |||
| 7128 | return QualType(); | |||
| 7129 | ||||
| 7130 | InitializationSequence E2ToC(*this, Entity, Kind, E2); | |||
| 7131 | if (!E2ToC) | |||
| 7132 | return QualType(); | |||
| 7133 | ||||
| 7134 | // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. | |||
| 7135 | ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); | |||
| 7136 | if (E1Result.isInvalid()) | |||
| 7137 | return QualType(); | |||
| 7138 | E1 = E1Result.get(); | |||
| 7139 | ||||
| 7140 | ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); | |||
| 7141 | if (E2Result.isInvalid()) | |||
| 7142 | return QualType(); | |||
| 7143 | E2 = E2Result.get(); | |||
| 7144 | } | |||
| 7145 | ||||
| 7146 | return Composite; | |||
| 7147 | } | |||
| 7148 | ||||
| 7149 | ExprResult Sema::MaybeBindToTemporary(Expr *E) { | |||
| 7150 | if (!E) | |||
| 7151 | return ExprError(); | |||
| 7152 | ||||
| 7153 | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")(static_cast <bool> (!isa<CXXBindTemporaryExpr>(E ) && "Double-bound temporary?") ? void (0) : __assert_fail ("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7153, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7154 | ||||
| 7155 | // If the result is a glvalue, we shouldn't bind it. | |||
| 7156 | if (E->isGLValue()) | |||
| 7157 | return E; | |||
| 7158 | ||||
| 7159 | // In ARC, calls that return a retainable type can return retained, | |||
| 7160 | // in which case we have to insert a consuming cast. | |||
| 7161 | if (getLangOpts().ObjCAutoRefCount && | |||
| 7162 | E->getType()->isObjCRetainableType()) { | |||
| 7163 | ||||
| 7164 | bool ReturnsRetained; | |||
| 7165 | ||||
| 7166 | // For actual calls, we compute this by examining the type of the | |||
| 7167 | // called value. | |||
| 7168 | if (CallExpr *Call = dyn_cast<CallExpr>(E)) { | |||
| 7169 | Expr *Callee = Call->getCallee()->IgnoreParens(); | |||
| 7170 | QualType T = Callee->getType(); | |||
| 7171 | ||||
| 7172 | if (T == Context.BoundMemberTy) { | |||
| 7173 | // Handle pointer-to-members. | |||
| 7174 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) | |||
| 7175 | T = BinOp->getRHS()->getType(); | |||
| 7176 | else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) | |||
| 7177 | T = Mem->getMemberDecl()->getType(); | |||
| 7178 | } | |||
| 7179 | ||||
| 7180 | if (const PointerType *Ptr = T->getAs<PointerType>()) | |||
| 7181 | T = Ptr->getPointeeType(); | |||
| 7182 | else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) | |||
| 7183 | T = Ptr->getPointeeType(); | |||
| 7184 | else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) | |||
| 7185 | T = MemPtr->getPointeeType(); | |||
| 7186 | ||||
| 7187 | auto *FTy = T->castAs<FunctionType>(); | |||
| 7188 | ReturnsRetained = FTy->getExtInfo().getProducesResult(); | |||
| 7189 | ||||
| 7190 | // ActOnStmtExpr arranges things so that StmtExprs of retainable | |||
| 7191 | // type always produce a +1 object. | |||
| 7192 | } else if (isa<StmtExpr>(E)) { | |||
| 7193 | ReturnsRetained = true; | |||
| 7194 | ||||
| 7195 | // We hit this case with the lambda conversion-to-block optimization; | |||
| 7196 | // we don't want any extra casts here. | |||
| 7197 | } else if (isa<CastExpr>(E) && | |||
| 7198 | isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { | |||
| 7199 | return E; | |||
| 7200 | ||||
| 7201 | // For message sends and property references, we try to find an | |||
| 7202 | // actual method. FIXME: we should infer retention by selector in | |||
| 7203 | // cases where we don't have an actual method. | |||
| 7204 | } else { | |||
| 7205 | ObjCMethodDecl *D = nullptr; | |||
| 7206 | if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { | |||
| 7207 | D = Send->getMethodDecl(); | |||
| 7208 | } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { | |||
| 7209 | D = BoxedExpr->getBoxingMethod(); | |||
| 7210 | } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { | |||
| 7211 | // Don't do reclaims if we're using the zero-element array | |||
| 7212 | // constant. | |||
| 7213 | if (ArrayLit->getNumElements() == 0 && | |||
| 7214 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) | |||
| 7215 | return E; | |||
| 7216 | ||||
| 7217 | D = ArrayLit->getArrayWithObjectsMethod(); | |||
| 7218 | } else if (ObjCDictionaryLiteral *DictLit | |||
| 7219 | = dyn_cast<ObjCDictionaryLiteral>(E)) { | |||
| 7220 | // Don't do reclaims if we're using the zero-element dictionary | |||
| 7221 | // constant. | |||
| 7222 | if (DictLit->getNumElements() == 0 && | |||
| 7223 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) | |||
| 7224 | return E; | |||
| 7225 | ||||
| 7226 | D = DictLit->getDictWithObjectsMethod(); | |||
| 7227 | } | |||
| 7228 | ||||
| 7229 | ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); | |||
| 7230 | ||||
| 7231 | // Don't do reclaims on performSelector calls; despite their | |||
| 7232 | // return type, the invoked method doesn't necessarily actually | |||
| 7233 | // return an object. | |||
| 7234 | if (!ReturnsRetained && | |||
| 7235 | D && D->getMethodFamily() == OMF_performSelector) | |||
| 7236 | return E; | |||
| 7237 | } | |||
| 7238 | ||||
| 7239 | // Don't reclaim an object of Class type. | |||
| 7240 | if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) | |||
| 7241 | return E; | |||
| 7242 | ||||
| 7243 | Cleanup.setExprNeedsCleanups(true); | |||
| 7244 | ||||
| 7245 | CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject | |||
| 7246 | : CK_ARCReclaimReturnedObject); | |||
| 7247 | return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, | |||
| 7248 | VK_PRValue, FPOptionsOverride()); | |||
| 7249 | } | |||
| 7250 | ||||
| 7251 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | |||
| 7252 | Cleanup.setExprNeedsCleanups(true); | |||
| 7253 | ||||
| 7254 | if (!getLangOpts().CPlusPlus) | |||
| 7255 | return E; | |||
| 7256 | ||||
| 7257 | // Search for the base element type (cf. ASTContext::getBaseElementType) with | |||
| 7258 | // a fast path for the common case that the type is directly a RecordType. | |||
| 7259 | const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); | |||
| 7260 | const RecordType *RT = nullptr; | |||
| 7261 | while (!RT) { | |||
| 7262 | switch (T->getTypeClass()) { | |||
| 7263 | case Type::Record: | |||
| 7264 | RT = cast<RecordType>(T); | |||
| 7265 | break; | |||
| 7266 | case Type::ConstantArray: | |||
| 7267 | case Type::IncompleteArray: | |||
| 7268 | case Type::VariableArray: | |||
| 7269 | case Type::DependentSizedArray: | |||
| 7270 | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | |||
| 7271 | break; | |||
| 7272 | default: | |||
| 7273 | return E; | |||
| 7274 | } | |||
| 7275 | } | |||
| 7276 | ||||
| 7277 | // That should be enough to guarantee that this type is complete, if we're | |||
| 7278 | // not processing a decltype expression. | |||
| 7279 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 7280 | if (RD->isInvalidDecl() || RD->isDependentContext()) | |||
| 7281 | return E; | |||
| 7282 | ||||
| 7283 | bool IsDecltype = ExprEvalContexts.back().ExprContext == | |||
| 7284 | ExpressionEvaluationContextRecord::EK_Decltype; | |||
| 7285 | CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); | |||
| 7286 | ||||
| 7287 | if (Destructor) { | |||
| 7288 | MarkFunctionReferenced(E->getExprLoc(), Destructor); | |||
| 7289 | CheckDestructorAccess(E->getExprLoc(), Destructor, | |||
| 7290 | PDiag(diag::err_access_dtor_temp) | |||
| 7291 | << E->getType()); | |||
| 7292 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) | |||
| 7293 | return ExprError(); | |||
| 7294 | ||||
| 7295 | // If destructor is trivial, we can avoid the extra copy. | |||
| 7296 | if (Destructor->isTrivial()) | |||
| 7297 | return E; | |||
| 7298 | ||||
| 7299 | // We need a cleanup, but we don't need to remember the temporary. | |||
| 7300 | Cleanup.setExprNeedsCleanups(true); | |||
| 7301 | } | |||
| 7302 | ||||
| 7303 | CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); | |||
| 7304 | CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); | |||
| 7305 | ||||
| 7306 | if (IsDecltype) | |||
| 7307 | ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); | |||
| 7308 | ||||
| 7309 | return Bind; | |||
| 7310 | } | |||
| 7311 | ||||
| 7312 | ExprResult | |||
| 7313 | Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { | |||
| 7314 | if (SubExpr.isInvalid()) | |||
| 7315 | return ExprError(); | |||
| 7316 | ||||
| 7317 | return MaybeCreateExprWithCleanups(SubExpr.get()); | |||
| 7318 | } | |||
| 7319 | ||||
| 7320 | Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { | |||
| 7321 | assert(SubExpr && "subexpression can't be null!")(static_cast <bool> (SubExpr && "subexpression can't be null!" ) ? void (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7321, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7322 | ||||
| 7323 | CleanupVarDeclMarking(); | |||
| 7324 | ||||
| 7325 | unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; | |||
| 7326 | assert(ExprCleanupObjects.size() >= FirstCleanup)(static_cast <bool> (ExprCleanupObjects.size() >= FirstCleanup ) ? void (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup" , "clang/lib/Sema/SemaExprCXX.cpp", 7326, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7327 | assert(Cleanup.exprNeedsCleanups() ||(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects .size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup" , "clang/lib/Sema/SemaExprCXX.cpp", 7328, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7328 | ExprCleanupObjects.size() == FirstCleanup)(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects .size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup" , "clang/lib/Sema/SemaExprCXX.cpp", 7328, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7329 | if (!Cleanup.exprNeedsCleanups()) | |||
| 7330 | return SubExpr; | |||
| 7331 | ||||
| 7332 | auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, | |||
| 7333 | ExprCleanupObjects.size() - FirstCleanup); | |||
| 7334 | ||||
| 7335 | auto *E = ExprWithCleanups::Create( | |||
| 7336 | Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); | |||
| 7337 | DiscardCleanupsInEvaluationContext(); | |||
| 7338 | ||||
| 7339 | return E; | |||
| 7340 | } | |||
| 7341 | ||||
| 7342 | Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { | |||
| 7343 | assert(SubStmt && "sub-statement can't be null!")(static_cast <bool> (SubStmt && "sub-statement can't be null!" ) ? void (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7343, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7344 | ||||
| 7345 | CleanupVarDeclMarking(); | |||
| 7346 | ||||
| 7347 | if (!Cleanup.exprNeedsCleanups()) | |||
| 7348 | return SubStmt; | |||
| 7349 | ||||
| 7350 | // FIXME: In order to attach the temporaries, wrap the statement into | |||
| 7351 | // a StmtExpr; currently this is only used for asm statements. | |||
| 7352 | // This is hacky, either create a new CXXStmtWithTemporaries statement or | |||
| 7353 | // a new AsmStmtWithTemporaries. | |||
| 7354 | CompoundStmt *CompStmt = | |||
| 7355 | CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), | |||
| 7356 | SourceLocation(), SourceLocation()); | |||
| 7357 | Expr *E = new (Context) | |||
| 7358 | StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), | |||
| 7359 | /*FIXME TemplateDepth=*/0); | |||
| 7360 | return MaybeCreateExprWithCleanups(E); | |||
| 7361 | } | |||
| 7362 | ||||
| 7363 | /// Process the expression contained within a decltype. For such expressions, | |||
| 7364 | /// certain semantic checks on temporaries are delayed until this point, and | |||
| 7365 | /// are omitted for the 'topmost' call in the decltype expression. If the | |||
| 7366 | /// topmost call bound a temporary, strip that temporary off the expression. | |||
| 7367 | ExprResult Sema::ActOnDecltypeExpression(Expr *E) { | |||
| 7368 | assert(ExprEvalContexts.back().ExprContext ==(static_cast <bool> (ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && "not in a decltype expression") ? void (0) : __assert_fail ( "ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7370, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7369 | ExpressionEvaluationContextRecord::EK_Decltype &&(static_cast <bool> (ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && "not in a decltype expression") ? void (0) : __assert_fail ( "ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7370, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7370 | "not in a decltype expression")(static_cast <bool> (ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && "not in a decltype expression") ? void (0) : __assert_fail ( "ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7370, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7371 | ||||
| 7372 | ExprResult Result = CheckPlaceholderExpr(E); | |||
| 7373 | if (Result.isInvalid()) | |||
| 7374 | return ExprError(); | |||
| 7375 | E = Result.get(); | |||
| 7376 | ||||
| 7377 | // C++11 [expr.call]p11: | |||
| 7378 | // If a function call is a prvalue of object type, | |||
| 7379 | // -- if the function call is either | |||
| 7380 | // -- the operand of a decltype-specifier, or | |||
| 7381 | // -- the right operand of a comma operator that is the operand of a | |||
| 7382 | // decltype-specifier, | |||
| 7383 | // a temporary object is not introduced for the prvalue. | |||
| 7384 | ||||
| 7385 | // Recursively rebuild ParenExprs and comma expressions to strip out the | |||
| 7386 | // outermost CXXBindTemporaryExpr, if any. | |||
| 7387 | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | |||
| 7388 | ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); | |||
| 7389 | if (SubExpr.isInvalid()) | |||
| 7390 | return ExprError(); | |||
| 7391 | if (SubExpr.get() == PE->getSubExpr()) | |||
| 7392 | return E; | |||
| 7393 | return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); | |||
| 7394 | } | |||
| 7395 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |||
| 7396 | if (BO->getOpcode() == BO_Comma) { | |||
| 7397 | ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); | |||
| 7398 | if (RHS.isInvalid()) | |||
| 7399 | return ExprError(); | |||
| 7400 | if (RHS.get() == BO->getRHS()) | |||
| 7401 | return E; | |||
| 7402 | return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, | |||
| 7403 | BO->getType(), BO->getValueKind(), | |||
| 7404 | BO->getObjectKind(), BO->getOperatorLoc(), | |||
| 7405 | BO->getFPFeatures()); | |||
| 7406 | } | |||
| 7407 | } | |||
| 7408 | ||||
| 7409 | CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); | |||
| 7410 | CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) | |||
| 7411 | : nullptr; | |||
| 7412 | if (TopCall) | |||
| 7413 | E = TopCall; | |||
| 7414 | else | |||
| 7415 | TopBind = nullptr; | |||
| 7416 | ||||
| 7417 | // Disable the special decltype handling now. | |||
| 7418 | ExprEvalContexts.back().ExprContext = | |||
| 7419 | ExpressionEvaluationContextRecord::EK_Other; | |||
| 7420 | ||||
| 7421 | Result = CheckUnevaluatedOperand(E); | |||
| 7422 | if (Result.isInvalid()) | |||
| 7423 | return ExprError(); | |||
| 7424 | E = Result.get(); | |||
| 7425 | ||||
| 7426 | // In MS mode, don't perform any extra checking of call return types within a | |||
| 7427 | // decltype expression. | |||
| 7428 | if (getLangOpts().MSVCCompat) | |||
| 7429 | return E; | |||
| 7430 | ||||
| 7431 | // Perform the semantic checks we delayed until this point. | |||
| 7432 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); | |||
| 7433 | I != N; ++I) { | |||
| 7434 | CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; | |||
| 7435 | if (Call == TopCall) | |||
| 7436 | continue; | |||
| 7437 | ||||
| 7438 | if (CheckCallReturnType(Call->getCallReturnType(Context), | |||
| 7439 | Call->getBeginLoc(), Call, Call->getDirectCallee())) | |||
| 7440 | return ExprError(); | |||
| 7441 | } | |||
| 7442 | ||||
| 7443 | // Now all relevant types are complete, check the destructors are accessible | |||
| 7444 | // and non-deleted, and annotate them on the temporaries. | |||
| 7445 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); | |||
| 7446 | I != N; ++I) { | |||
| 7447 | CXXBindTemporaryExpr *Bind = | |||
| 7448 | ExprEvalContexts.back().DelayedDecltypeBinds[I]; | |||
| 7449 | if (Bind == TopBind) | |||
| 7450 | continue; | |||
| 7451 | ||||
| 7452 | CXXTemporary *Temp = Bind->getTemporary(); | |||
| 7453 | ||||
| 7454 | CXXRecordDecl *RD = | |||
| 7455 | Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | |||
| 7456 | CXXDestructorDecl *Destructor = LookupDestructor(RD); | |||
| 7457 | Temp->setDestructor(Destructor); | |||
| 7458 | ||||
| 7459 | MarkFunctionReferenced(Bind->getExprLoc(), Destructor); | |||
| 7460 | CheckDestructorAccess(Bind->getExprLoc(), Destructor, | |||
| 7461 | PDiag(diag::err_access_dtor_temp) | |||
| 7462 | << Bind->getType()); | |||
| 7463 | if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) | |||
| 7464 | return ExprError(); | |||
| 7465 | ||||
| 7466 | // We need a cleanup, but we don't need to remember the temporary. | |||
| 7467 | Cleanup.setExprNeedsCleanups(true); | |||
| 7468 | } | |||
| 7469 | ||||
| 7470 | // Possibly strip off the top CXXBindTemporaryExpr. | |||
| 7471 | return E; | |||
| 7472 | } | |||
| 7473 | ||||
| 7474 | /// Note a set of 'operator->' functions that were used for a member access. | |||
| 7475 | static void noteOperatorArrows(Sema &S, | |||
| 7476 | ArrayRef<FunctionDecl *> OperatorArrows) { | |||
| 7477 | unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; | |||
| 7478 | // FIXME: Make this configurable? | |||
| 7479 | unsigned Limit = 9; | |||
| 7480 | if (OperatorArrows.size() > Limit) { | |||
| 7481 | // Produce Limit-1 normal notes and one 'skipping' note. | |||
| 7482 | SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; | |||
| 7483 | SkipCount = OperatorArrows.size() - (Limit - 1); | |||
| 7484 | } | |||
| 7485 | ||||
| 7486 | for (unsigned I = 0; I < OperatorArrows.size(); /**/) { | |||
| 7487 | if (I == SkipStart) { | |||
| 7488 | S.Diag(OperatorArrows[I]->getLocation(), | |||
| 7489 | diag::note_operator_arrows_suppressed) | |||
| 7490 | << SkipCount; | |||
| 7491 | I += SkipCount; | |||
| 7492 | } else { | |||
| 7493 | S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) | |||
| 7494 | << OperatorArrows[I]->getCallResultType(); | |||
| 7495 | ++I; | |||
| 7496 | } | |||
| 7497 | } | |||
| 7498 | } | |||
| 7499 | ||||
| 7500 | ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, | |||
| 7501 | SourceLocation OpLoc, | |||
| 7502 | tok::TokenKind OpKind, | |||
| 7503 | ParsedType &ObjectType, | |||
| 7504 | bool &MayBePseudoDestructor) { | |||
| 7505 | // Since this might be a postfix expression, get rid of ParenListExprs. | |||
| 7506 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); | |||
| 7507 | if (Result.isInvalid()) return ExprError(); | |||
| 7508 | Base = Result.get(); | |||
| 7509 | ||||
| 7510 | Result = CheckPlaceholderExpr(Base); | |||
| 7511 | if (Result.isInvalid()) return ExprError(); | |||
| 7512 | Base = Result.get(); | |||
| 7513 | ||||
| 7514 | QualType BaseType = Base->getType(); | |||
| 7515 | MayBePseudoDestructor = false; | |||
| 7516 | if (BaseType->isDependentType()) { | |||
| 7517 | // If we have a pointer to a dependent type and are using the -> operator, | |||
| 7518 | // the object type is the type that the pointer points to. We might still | |||
| 7519 | // have enough information about that type to do something useful. | |||
| 7520 | if (OpKind == tok::arrow) | |||
| 7521 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) | |||
| 7522 | BaseType = Ptr->getPointeeType(); | |||
| 7523 | ||||
| 7524 | ObjectType = ParsedType::make(BaseType); | |||
| 7525 | MayBePseudoDestructor = true; | |||
| 7526 | return Base; | |||
| 7527 | } | |||
| 7528 | ||||
| 7529 | // C++ [over.match.oper]p8: | |||
| 7530 | // [...] When operator->returns, the operator-> is applied to the value | |||
| 7531 | // returned, with the original second operand. | |||
| 7532 | if (OpKind == tok::arrow) { | |||
| 7533 | QualType StartingType = BaseType; | |||
| 7534 | bool NoArrowOperatorFound = false; | |||
| 7535 | bool FirstIteration = true; | |||
| 7536 | FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); | |||
| 7537 | // The set of types we've considered so far. | |||
| 7538 | llvm::SmallPtrSet<CanQualType,8> CTypes; | |||
| 7539 | SmallVector<FunctionDecl*, 8> OperatorArrows; | |||
| 7540 | CTypes.insert(Context.getCanonicalType(BaseType)); | |||
| 7541 | ||||
| 7542 | while (BaseType->isRecordType()) { | |||
| 7543 | if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { | |||
| 7544 | Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) | |||
| 7545 | << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); | |||
| 7546 | noteOperatorArrows(*this, OperatorArrows); | |||
| 7547 | Diag(OpLoc, diag::note_operator_arrow_depth) | |||
| 7548 | << getLangOpts().ArrowDepth; | |||
| 7549 | return ExprError(); | |||
| 7550 | } | |||
| 7551 | ||||
| 7552 | Result = BuildOverloadedArrowExpr( | |||
| 7553 | S, Base, OpLoc, | |||
| 7554 | // When in a template specialization and on the first loop iteration, | |||
| 7555 | // potentially give the default diagnostic (with the fixit in a | |||
| 7556 | // separate note) instead of having the error reported back to here | |||
| 7557 | // and giving a diagnostic with a fixit attached to the error itself. | |||
| 7558 | (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) | |||
| 7559 | ? nullptr | |||
| 7560 | : &NoArrowOperatorFound); | |||
| 7561 | if (Result.isInvalid()) { | |||
| 7562 | if (NoArrowOperatorFound) { | |||
| 7563 | if (FirstIteration) { | |||
| 7564 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | |||
| 7565 | << BaseType << 1 << Base->getSourceRange() | |||
| 7566 | << FixItHint::CreateReplacement(OpLoc, "."); | |||
| 7567 | OpKind = tok::period; | |||
| 7568 | break; | |||
| 7569 | } | |||
| 7570 | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | |||
| 7571 | << BaseType << Base->getSourceRange(); | |||
| 7572 | CallExpr *CE = dyn_cast<CallExpr>(Base); | |||
| 7573 | if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { | |||
| 7574 | Diag(CD->getBeginLoc(), | |||
| 7575 | diag::note_member_reference_arrow_from_operator_arrow); | |||
| 7576 | } | |||
| 7577 | } | |||
| 7578 | return ExprError(); | |||
| 7579 | } | |||
| 7580 | Base = Result.get(); | |||
| 7581 | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) | |||
| 7582 | OperatorArrows.push_back(OpCall->getDirectCallee()); | |||
| 7583 | BaseType = Base->getType(); | |||
| 7584 | CanQualType CBaseType = Context.getCanonicalType(BaseType); | |||
| 7585 | if (!CTypes.insert(CBaseType).second) { | |||
| 7586 | Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; | |||
| 7587 | noteOperatorArrows(*this, OperatorArrows); | |||
| 7588 | return ExprError(); | |||
| 7589 | } | |||
| 7590 | FirstIteration = false; | |||
| 7591 | } | |||
| 7592 | ||||
| 7593 | if (OpKind == tok::arrow) { | |||
| 7594 | if (BaseType->isPointerType()) | |||
| 7595 | BaseType = BaseType->getPointeeType(); | |||
| 7596 | else if (auto *AT = Context.getAsArrayType(BaseType)) | |||
| 7597 | BaseType = AT->getElementType(); | |||
| 7598 | } | |||
| 7599 | } | |||
| 7600 | ||||
| 7601 | // Objective-C properties allow "." access on Objective-C pointer types, | |||
| 7602 | // so adjust the base type to the object type itself. | |||
| 7603 | if (BaseType->isObjCObjectPointerType()) | |||
| 7604 | BaseType = BaseType->getPointeeType(); | |||
| 7605 | ||||
| 7606 | // C++ [basic.lookup.classref]p2: | |||
| 7607 | // [...] If the type of the object expression is of pointer to scalar | |||
| 7608 | // type, the unqualified-id is looked up in the context of the complete | |||
| 7609 | // postfix-expression. | |||
| 7610 | // | |||
| 7611 | // This also indicates that we could be parsing a pseudo-destructor-name. | |||
| 7612 | // Note that Objective-C class and object types can be pseudo-destructor | |||
| 7613 | // expressions or normal member (ivar or property) access expressions, and | |||
| 7614 | // it's legal for the type to be incomplete if this is a pseudo-destructor | |||
| 7615 | // call. We'll do more incomplete-type checks later in the lookup process, | |||
| 7616 | // so just skip this check for ObjC types. | |||
| 7617 | if (!BaseType->isRecordType()) { | |||
| 7618 | ObjectType = ParsedType::make(BaseType); | |||
| 7619 | MayBePseudoDestructor = true; | |||
| 7620 | return Base; | |||
| 7621 | } | |||
| 7622 | ||||
| 7623 | // The object type must be complete (or dependent), or | |||
| 7624 | // C++11 [expr.prim.general]p3: | |||
| 7625 | // Unlike the object expression in other contexts, *this is not required to | |||
| 7626 | // be of complete type for purposes of class member access (5.2.5) outside | |||
| 7627 | // the member function body. | |||
| 7628 | if (!BaseType->isDependentType() && | |||
| 7629 | !isThisOutsideMemberFunctionBody(BaseType) && | |||
| 7630 | RequireCompleteType(OpLoc, BaseType, | |||
| 7631 | diag::err_incomplete_member_access)) { | |||
| 7632 | return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); | |||
| 7633 | } | |||
| 7634 | ||||
| 7635 | // C++ [basic.lookup.classref]p2: | |||
| 7636 | // If the id-expression in a class member access (5.2.5) is an | |||
| 7637 | // unqualified-id, and the type of the object expression is of a class | |||
| 7638 | // type C (or of pointer to a class type C), the unqualified-id is looked | |||
| 7639 | // up in the scope of class C. [...] | |||
| 7640 | ObjectType = ParsedType::make(BaseType); | |||
| 7641 | return Base; | |||
| 7642 | } | |||
| 7643 | ||||
| 7644 | static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, | |||
| 7645 | tok::TokenKind &OpKind, SourceLocation OpLoc) { | |||
| 7646 | if (Base->hasPlaceholderType()) { | |||
| 7647 | ExprResult result = S.CheckPlaceholderExpr(Base); | |||
| 7648 | if (result.isInvalid()) return true; | |||
| 7649 | Base = result.get(); | |||
| 7650 | } | |||
| 7651 | ObjectType = Base->getType(); | |||
| 7652 | ||||
| 7653 | // C++ [expr.pseudo]p2: | |||
| 7654 | // The left-hand side of the dot operator shall be of scalar type. The | |||
| 7655 | // left-hand side of the arrow operator shall be of pointer to scalar type. | |||
| 7656 | // This scalar type is the object type. | |||
| 7657 | // Note that this is rather different from the normal handling for the | |||
| 7658 | // arrow operator. | |||
| 7659 | if (OpKind == tok::arrow) { | |||
| 7660 | // The operator requires a prvalue, so perform lvalue conversions. | |||
| 7661 | // Only do this if we might plausibly end with a pointer, as otherwise | |||
| 7662 | // this was likely to be intended to be a '.'. | |||
| 7663 | if (ObjectType->isPointerType() || ObjectType->isArrayType() || | |||
| 7664 | ObjectType->isFunctionType()) { | |||
| 7665 | ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); | |||
| 7666 | if (BaseResult.isInvalid()) | |||
| 7667 | return true; | |||
| 7668 | Base = BaseResult.get(); | |||
| 7669 | ObjectType = Base->getType(); | |||
| 7670 | } | |||
| 7671 | ||||
| 7672 | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { | |||
| 7673 | ObjectType = Ptr->getPointeeType(); | |||
| 7674 | } else if (!Base->isTypeDependent()) { | |||
| 7675 | // The user wrote "p->" when they probably meant "p."; fix it. | |||
| 7676 | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | |||
| 7677 | << ObjectType << true | |||
| 7678 | << FixItHint::CreateReplacement(OpLoc, "."); | |||
| 7679 | if (S.isSFINAEContext()) | |||
| 7680 | return true; | |||
| 7681 | ||||
| 7682 | OpKind = tok::period; | |||
| 7683 | } | |||
| 7684 | } | |||
| 7685 | ||||
| 7686 | return false; | |||
| 7687 | } | |||
| 7688 | ||||
| 7689 | /// Check if it's ok to try and recover dot pseudo destructor calls on | |||
| 7690 | /// pointer objects. | |||
| 7691 | static bool | |||
| 7692 | canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, | |||
| 7693 | QualType DestructedType) { | |||
| 7694 | // If this is a record type, check if its destructor is callable. | |||
| 7695 | if (auto *RD = DestructedType->getAsCXXRecordDecl()) { | |||
| 7696 | if (RD->hasDefinition()) | |||
| 7697 | if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) | |||
| 7698 | return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); | |||
| 7699 | return false; | |||
| 7700 | } | |||
| 7701 | ||||
| 7702 | // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. | |||
| 7703 | return DestructedType->isDependentType() || DestructedType->isScalarType() || | |||
| 7704 | DestructedType->isVectorType(); | |||
| 7705 | } | |||
| 7706 | ||||
| 7707 | ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, | |||
| 7708 | SourceLocation OpLoc, | |||
| 7709 | tok::TokenKind OpKind, | |||
| 7710 | const CXXScopeSpec &SS, | |||
| 7711 | TypeSourceInfo *ScopeTypeInfo, | |||
| 7712 | SourceLocation CCLoc, | |||
| 7713 | SourceLocation TildeLoc, | |||
| 7714 | PseudoDestructorTypeStorage Destructed) { | |||
| 7715 | TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); | |||
| 7716 | ||||
| 7717 | QualType ObjectType; | |||
| 7718 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | |||
| 7719 | return ExprError(); | |||
| 7720 | ||||
| 7721 | if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && | |||
| 7722 | !ObjectType->isVectorType()) { | |||
| 7723 | if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) | |||
| 7724 | Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); | |||
| 7725 | else { | |||
| 7726 | Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) | |||
| 7727 | << ObjectType << Base->getSourceRange(); | |||
| 7728 | return ExprError(); | |||
| 7729 | } | |||
| 7730 | } | |||
| 7731 | ||||
| 7732 | // C++ [expr.pseudo]p2: | |||
| 7733 | // [...] The cv-unqualified versions of the object type and of the type | |||
| 7734 | // designated by the pseudo-destructor-name shall be the same type. | |||
| 7735 | if (DestructedTypeInfo) { | |||
| 7736 | QualType DestructedType = DestructedTypeInfo->getType(); | |||
| 7737 | SourceLocation DestructedTypeStart = | |||
| 7738 | DestructedTypeInfo->getTypeLoc().getBeginLoc(); | |||
| 7739 | if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { | |||
| 7740 | if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { | |||
| 7741 | // Detect dot pseudo destructor calls on pointer objects, e.g.: | |||
| 7742 | // Foo *foo; | |||
| 7743 | // foo.~Foo(); | |||
| 7744 | if (OpKind == tok::period && ObjectType->isPointerType() && | |||
| 7745 | Context.hasSameUnqualifiedType(DestructedType, | |||
| 7746 | ObjectType->getPointeeType())) { | |||
| 7747 | auto Diagnostic = | |||
| 7748 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | |||
| 7749 | << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); | |||
| 7750 | ||||
| 7751 | // Issue a fixit only when the destructor is valid. | |||
| 7752 | if (canRecoverDotPseudoDestructorCallsOnPointerObjects( | |||
| 7753 | *this, DestructedType)) | |||
| 7754 | Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); | |||
| 7755 | ||||
| 7756 | // Recover by setting the object type to the destructed type and the | |||
| 7757 | // operator to '->'. | |||
| 7758 | ObjectType = DestructedType; | |||
| 7759 | OpKind = tok::arrow; | |||
| 7760 | } else { | |||
| 7761 | Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) | |||
| 7762 | << ObjectType << DestructedType << Base->getSourceRange() | |||
| 7763 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); | |||
| 7764 | ||||
| 7765 | // Recover by setting the destructed type to the object type. | |||
| 7766 | DestructedType = ObjectType; | |||
| 7767 | DestructedTypeInfo = | |||
| 7768 | Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); | |||
| 7769 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | |||
| 7770 | } | |||
| 7771 | } else if (DestructedType.getObjCLifetime() != | |||
| 7772 | ObjectType.getObjCLifetime()) { | |||
| 7773 | ||||
| 7774 | if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { | |||
| 7775 | // Okay: just pretend that the user provided the correctly-qualified | |||
| 7776 | // type. | |||
| 7777 | } else { | |||
| 7778 | Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) | |||
| 7779 | << ObjectType << DestructedType << Base->getSourceRange() | |||
| 7780 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); | |||
| 7781 | } | |||
| 7782 | ||||
| 7783 | // Recover by setting the destructed type to the object type. | |||
| 7784 | DestructedType = ObjectType; | |||
| 7785 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, | |||
| 7786 | DestructedTypeStart); | |||
| 7787 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | |||
| 7788 | } | |||
| 7789 | } | |||
| 7790 | } | |||
| 7791 | ||||
| 7792 | // C++ [expr.pseudo]p2: | |||
| 7793 | // [...] Furthermore, the two type-names in a pseudo-destructor-name of the | |||
| 7794 | // form | |||
| 7795 | // | |||
| 7796 | // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name | |||
| 7797 | // | |||
| 7798 | // shall designate the same scalar type. | |||
| 7799 | if (ScopeTypeInfo) { | |||
| 7800 | QualType ScopeType = ScopeTypeInfo->getType(); | |||
| 7801 | if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && | |||
| 7802 | !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { | |||
| 7803 | ||||
| 7804 | Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), | |||
| 7805 | diag::err_pseudo_dtor_type_mismatch) | |||
| 7806 | << ObjectType << ScopeType << Base->getSourceRange() | |||
| 7807 | << ScopeTypeInfo->getTypeLoc().getSourceRange(); | |||
| 7808 | ||||
| 7809 | ScopeType = QualType(); | |||
| 7810 | ScopeTypeInfo = nullptr; | |||
| 7811 | } | |||
| 7812 | } | |||
| 7813 | ||||
| 7814 | Expr *Result | |||
| 7815 | = new (Context) CXXPseudoDestructorExpr(Context, Base, | |||
| 7816 | OpKind == tok::arrow, OpLoc, | |||
| 7817 | SS.getWithLocInContext(Context), | |||
| 7818 | ScopeTypeInfo, | |||
| 7819 | CCLoc, | |||
| 7820 | TildeLoc, | |||
| 7821 | Destructed); | |||
| 7822 | ||||
| 7823 | return Result; | |||
| 7824 | } | |||
| 7825 | ||||
| 7826 | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | |||
| 7827 | SourceLocation OpLoc, | |||
| 7828 | tok::TokenKind OpKind, | |||
| 7829 | CXXScopeSpec &SS, | |||
| 7830 | UnqualifiedId &FirstTypeName, | |||
| 7831 | SourceLocation CCLoc, | |||
| 7832 | SourceLocation TildeLoc, | |||
| 7833 | UnqualifiedId &SecondTypeName) { | |||
| 7834 | assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid first type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7836, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7835 | FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid first type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7836, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7836 | "Invalid first type name in pseudo-destructor")(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid first type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7836, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7837 | assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid second type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7839, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7838 | SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid second type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7839, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7839 | "Invalid second type name in pseudo-destructor")(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind ::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind ::IK_Identifier) && "Invalid second type name in pseudo-destructor" ) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\"" , "clang/lib/Sema/SemaExprCXX.cpp", 7839, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7840 | ||||
| 7841 | QualType ObjectType; | |||
| 7842 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | |||
| 7843 | return ExprError(); | |||
| 7844 | ||||
| 7845 | // Compute the object type that we should use for name lookup purposes. Only | |||
| 7846 | // record types and dependent types matter. | |||
| 7847 | ParsedType ObjectTypePtrForLookup; | |||
| 7848 | if (!SS.isSet()) { | |||
| 7849 | if (ObjectType->isRecordType()) | |||
| 7850 | ObjectTypePtrForLookup = ParsedType::make(ObjectType); | |||
| 7851 | else if (ObjectType->isDependentType()) | |||
| 7852 | ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); | |||
| 7853 | } | |||
| 7854 | ||||
| 7855 | // Convert the name of the type being destructed (following the ~) into a | |||
| 7856 | // type (with source-location information). | |||
| 7857 | QualType DestructedType; | |||
| 7858 | TypeSourceInfo *DestructedTypeInfo = nullptr; | |||
| 7859 | PseudoDestructorTypeStorage Destructed; | |||
| 7860 | if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { | |||
| 7861 | ParsedType T = getTypeName(*SecondTypeName.Identifier, | |||
| 7862 | SecondTypeName.StartLocation, | |||
| 7863 | S, &SS, true, false, ObjectTypePtrForLookup, | |||
| 7864 | /*IsCtorOrDtorName*/true); | |||
| 7865 | if (!T && | |||
| 7866 | ((SS.isSet() && !computeDeclContext(SS, false)) || | |||
| 7867 | (!SS.isSet() && ObjectType->isDependentType()))) { | |||
| 7868 | // The name of the type being destroyed is a dependent name, and we | |||
| 7869 | // couldn't find anything useful in scope. Just store the identifier and | |||
| 7870 | // it's location, and we'll perform (qualified) name lookup again at | |||
| 7871 | // template instantiation time. | |||
| 7872 | Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, | |||
| 7873 | SecondTypeName.StartLocation); | |||
| 7874 | } else if (!T) { | |||
| 7875 | Diag(SecondTypeName.StartLocation, | |||
| 7876 | diag::err_pseudo_dtor_destructor_non_type) | |||
| 7877 | << SecondTypeName.Identifier << ObjectType; | |||
| 7878 | if (isSFINAEContext()) | |||
| 7879 | return ExprError(); | |||
| 7880 | ||||
| 7881 | // Recover by assuming we had the right type all along. | |||
| 7882 | DestructedType = ObjectType; | |||
| 7883 | } else | |||
| 7884 | DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); | |||
| 7885 | } else { | |||
| 7886 | // Resolve the template-id to a type. | |||
| 7887 | TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; | |||
| 7888 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
| 7889 | TemplateId->NumArgs); | |||
| 7890 | TypeResult T = ActOnTemplateIdType(S, | |||
| 7891 | SS, | |||
| 7892 | TemplateId->TemplateKWLoc, | |||
| 7893 | TemplateId->Template, | |||
| 7894 | TemplateId->Name, | |||
| 7895 | TemplateId->TemplateNameLoc, | |||
| 7896 | TemplateId->LAngleLoc, | |||
| 7897 | TemplateArgsPtr, | |||
| 7898 | TemplateId->RAngleLoc, | |||
| 7899 | /*IsCtorOrDtorName*/true); | |||
| 7900 | if (T.isInvalid() || !T.get()) { | |||
| 7901 | // Recover by assuming we had the right type all along. | |||
| 7902 | DestructedType = ObjectType; | |||
| 7903 | } else | |||
| 7904 | DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); | |||
| 7905 | } | |||
| 7906 | ||||
| 7907 | // If we've performed some kind of recovery, (re-)build the type source | |||
| 7908 | // information. | |||
| 7909 | if (!DestructedType.isNull()) { | |||
| 7910 | if (!DestructedTypeInfo) | |||
| 7911 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, | |||
| 7912 | SecondTypeName.StartLocation); | |||
| 7913 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | |||
| 7914 | } | |||
| 7915 | ||||
| 7916 | // Convert the name of the scope type (the type prior to '::') into a type. | |||
| 7917 | TypeSourceInfo *ScopeTypeInfo = nullptr; | |||
| 7918 | QualType ScopeType; | |||
| 7919 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || | |||
| 7920 | FirstTypeName.Identifier) { | |||
| 7921 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { | |||
| 7922 | ParsedType T = getTypeName(*FirstTypeName.Identifier, | |||
| 7923 | FirstTypeName.StartLocation, | |||
| 7924 | S, &SS, true, false, ObjectTypePtrForLookup, | |||
| 7925 | /*IsCtorOrDtorName*/true); | |||
| 7926 | if (!T) { | |||
| 7927 | Diag(FirstTypeName.StartLocation, | |||
| 7928 | diag::err_pseudo_dtor_destructor_non_type) | |||
| 7929 | << FirstTypeName.Identifier << ObjectType; | |||
| 7930 | ||||
| 7931 | if (isSFINAEContext()) | |||
| 7932 | return ExprError(); | |||
| 7933 | ||||
| 7934 | // Just drop this type. It's unnecessary anyway. | |||
| 7935 | ScopeType = QualType(); | |||
| 7936 | } else | |||
| 7937 | ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); | |||
| 7938 | } else { | |||
| 7939 | // Resolve the template-id to a type. | |||
| 7940 | TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; | |||
| 7941 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
| 7942 | TemplateId->NumArgs); | |||
| 7943 | TypeResult T = ActOnTemplateIdType(S, | |||
| 7944 | SS, | |||
| 7945 | TemplateId->TemplateKWLoc, | |||
| 7946 | TemplateId->Template, | |||
| 7947 | TemplateId->Name, | |||
| 7948 | TemplateId->TemplateNameLoc, | |||
| 7949 | TemplateId->LAngleLoc, | |||
| 7950 | TemplateArgsPtr, | |||
| 7951 | TemplateId->RAngleLoc, | |||
| 7952 | /*IsCtorOrDtorName*/true); | |||
| 7953 | if (T.isInvalid() || !T.get()) { | |||
| 7954 | // Recover by dropping this type. | |||
| 7955 | ScopeType = QualType(); | |||
| 7956 | } else | |||
| 7957 | ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); | |||
| 7958 | } | |||
| 7959 | } | |||
| 7960 | ||||
| 7961 | if (!ScopeType.isNull() && !ScopeTypeInfo) | |||
| 7962 | ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, | |||
| 7963 | FirstTypeName.StartLocation); | |||
| 7964 | ||||
| 7965 | ||||
| 7966 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, | |||
| 7967 | ScopeTypeInfo, CCLoc, TildeLoc, | |||
| 7968 | Destructed); | |||
| 7969 | } | |||
| 7970 | ||||
| 7971 | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | |||
| 7972 | SourceLocation OpLoc, | |||
| 7973 | tok::TokenKind OpKind, | |||
| 7974 | SourceLocation TildeLoc, | |||
| 7975 | const DeclSpec& DS) { | |||
| 7976 | QualType ObjectType; | |||
| 7977 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) | |||
| 7978 | return ExprError(); | |||
| 7979 | ||||
| 7980 | if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { | |||
| 7981 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); | |||
| 7982 | return true; | |||
| 7983 | } | |||
| 7984 | ||||
| 7985 | QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); | |||
| 7986 | ||||
| 7987 | TypeLocBuilder TLB; | |||
| 7988 | DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); | |||
| 7989 | DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); | |||
| 7990 | DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); | |||
| 7991 | TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); | |||
| 7992 | PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); | |||
| 7993 | ||||
| 7994 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), | |||
| 7995 | nullptr, SourceLocation(), TildeLoc, | |||
| 7996 | Destructed); | |||
| 7997 | } | |||
| 7998 | ||||
| 7999 | ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, | |||
| 8000 | CXXConversionDecl *Method, | |||
| 8001 | bool HadMultipleCandidates) { | |||
| 8002 | // Convert the expression to match the conversion function's implicit object | |||
| 8003 | // parameter. | |||
| 8004 | ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, | |||
| 8005 | FoundDecl, Method); | |||
| 8006 | if (Exp.isInvalid()) | |||
| 8007 | return true; | |||
| 8008 | ||||
| 8009 | if (Method->getParent()->isLambda() && | |||
| 8010 | Method->getConversionType()->isBlockPointerType()) { | |||
| 8011 | // This is a lambda conversion to block pointer; check if the argument | |||
| 8012 | // was a LambdaExpr. | |||
| 8013 | Expr *SubE = E; | |||
| 8014 | CastExpr *CE = dyn_cast<CastExpr>(SubE); | |||
| 8015 | if (CE && CE->getCastKind() == CK_NoOp) | |||
| 8016 | SubE = CE->getSubExpr(); | |||
| 8017 | SubE = SubE->IgnoreParens(); | |||
| 8018 | if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) | |||
| 8019 | SubE = BE->getSubExpr(); | |||
| 8020 | if (isa<LambdaExpr>(SubE)) { | |||
| 8021 | // For the conversion to block pointer on a lambda expression, we | |||
| 8022 | // construct a special BlockLiteral instead; this doesn't really make | |||
| 8023 | // a difference in ARC, but outside of ARC the resulting block literal | |||
| 8024 | // follows the normal lifetime rules for block literals instead of being | |||
| 8025 | // autoreleased. | |||
| 8026 | PushExpressionEvaluationContext( | |||
| 8027 | ExpressionEvaluationContext::PotentiallyEvaluated); | |||
| 8028 | ExprResult BlockExp = BuildBlockForLambdaConversion( | |||
| 8029 | Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); | |||
| 8030 | PopExpressionEvaluationContext(); | |||
| 8031 | ||||
| 8032 | // FIXME: This note should be produced by a CodeSynthesisContext. | |||
| 8033 | if (BlockExp.isInvalid()) | |||
| 8034 | Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); | |||
| 8035 | return BlockExp; | |||
| 8036 | } | |||
| 8037 | } | |||
| 8038 | ||||
| 8039 | MemberExpr *ME = | |||
| 8040 | BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), | |||
| 8041 | NestedNameSpecifierLoc(), SourceLocation(), Method, | |||
| 8042 | DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), | |||
| 8043 | HadMultipleCandidates, DeclarationNameInfo(), | |||
| 8044 | Context.BoundMemberTy, VK_PRValue, OK_Ordinary); | |||
| 8045 | ||||
| 8046 | QualType ResultType = Method->getReturnType(); | |||
| 8047 | ExprValueKind VK = Expr::getValueKindForType(ResultType); | |||
| 8048 | ResultType = ResultType.getNonLValueExprType(Context); | |||
| 8049 | ||||
| 8050 | CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( | |||
| 8051 | Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), | |||
| 8052 | CurFPFeatureOverrides()); | |||
| 8053 | ||||
| 8054 | if (CheckFunctionCall(Method, CE, | |||
| 8055 | Method->getType()->castAs<FunctionProtoType>())) | |||
| 8056 | return ExprError(); | |||
| 8057 | ||||
| 8058 | return CheckForImmediateInvocation(CE, CE->getMethodDecl()); | |||
| 8059 | } | |||
| 8060 | ||||
| 8061 | ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, | |||
| 8062 | SourceLocation RParen) { | |||
| 8063 | // If the operand is an unresolved lookup expression, the expression is ill- | |||
| 8064 | // formed per [over.over]p1, because overloaded function names cannot be used | |||
| 8065 | // without arguments except in explicit contexts. | |||
| 8066 | ExprResult R = CheckPlaceholderExpr(Operand); | |||
| 8067 | if (R.isInvalid()) | |||
| 8068 | return R; | |||
| 8069 | ||||
| 8070 | R = CheckUnevaluatedOperand(R.get()); | |||
| 8071 | if (R.isInvalid()) | |||
| 8072 | return ExprError(); | |||
| 8073 | ||||
| 8074 | Operand = R.get(); | |||
| 8075 | ||||
| 8076 | if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && | |||
| 8077 | Operand->HasSideEffects(Context, false)) { | |||
| 8078 | // The expression operand for noexcept is in an unevaluated expression | |||
| 8079 | // context, so side effects could result in unintended consequences. | |||
| 8080 | Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); | |||
| 8081 | } | |||
| 8082 | ||||
| 8083 | CanThrowResult CanThrow = canThrow(Operand); | |||
| 8084 | return new (Context) | |||
| 8085 | CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); | |||
| 8086 | } | |||
| 8087 | ||||
| 8088 | ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, | |||
| 8089 | Expr *Operand, SourceLocation RParen) { | |||
| 8090 | return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); | |||
| 8091 | } | |||
| 8092 | ||||
| 8093 | static void MaybeDecrementCount( | |||
| 8094 | Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { | |||
| 8095 | DeclRefExpr *LHS = nullptr; | |||
| 8096 | bool IsCompoundAssign = false; | |||
| 8097 | bool isIncrementDecrementUnaryOp = false; | |||
| 8098 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |||
| 8099 | if (BO->getLHS()->getType()->isDependentType() || | |||
| 8100 | BO->getRHS()->getType()->isDependentType()) { | |||
| 8101 | if (BO->getOpcode() != BO_Assign) | |||
| 8102 | return; | |||
| 8103 | } else if (!BO->isAssignmentOp()) | |||
| 8104 | return; | |||
| 8105 | else | |||
| 8106 | IsCompoundAssign = BO->isCompoundAssignmentOp(); | |||
| 8107 | LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); | |||
| 8108 | } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { | |||
| 8109 | if (COCE->getOperator() != OO_Equal) | |||
| 8110 | return; | |||
| 8111 | LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); | |||
| 8112 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | |||
| 8113 | if (!UO->isIncrementDecrementOp()) | |||
| 8114 | return; | |||
| 8115 | isIncrementDecrementUnaryOp = true; | |||
| 8116 | LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); | |||
| 8117 | } | |||
| 8118 | if (!LHS) | |||
| 8119 | return; | |||
| 8120 | VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); | |||
| 8121 | if (!VD) | |||
| 8122 | return; | |||
| 8123 | // Don't decrement RefsMinusAssignments if volatile variable with compound | |||
| 8124 | // assignment (+=, ...) or increment/decrement unary operator to avoid | |||
| 8125 | // potential unused-but-set-variable warning. | |||
| 8126 | if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && | |||
| 8127 | VD->getType().isVolatileQualified()) | |||
| 8128 | return; | |||
| 8129 | auto iter = RefsMinusAssignments.find(VD); | |||
| 8130 | if (iter == RefsMinusAssignments.end()) | |||
| 8131 | return; | |||
| 8132 | iter->getSecond()--; | |||
| 8133 | } | |||
| 8134 | ||||
| 8135 | /// Perform the conversions required for an expression used in a | |||
| 8136 | /// context that ignores the result. | |||
| 8137 | ExprResult Sema::IgnoredValueConversions(Expr *E) { | |||
| 8138 | MaybeDecrementCount(E, RefsMinusAssignments); | |||
| 8139 | ||||
| 8140 | if (E->hasPlaceholderType()) { | |||
| 8141 | ExprResult result = CheckPlaceholderExpr(E); | |||
| 8142 | if (result.isInvalid()) return E; | |||
| 8143 | E = result.get(); | |||
| 8144 | } | |||
| 8145 | ||||
| 8146 | // C99 6.3.2.1: | |||
| 8147 | // [Except in specific positions,] an lvalue that does not have | |||
| 8148 | // array type is converted to the value stored in the | |||
| 8149 | // designated object (and is no longer an lvalue). | |||
| 8150 | if (E->isPRValue()) { | |||
| 8151 | // In C, function designators (i.e. expressions of function type) | |||
| 8152 | // are r-values, but we still want to do function-to-pointer decay | |||
| 8153 | // on them. This is both technically correct and convenient for | |||
| 8154 | // some clients. | |||
| 8155 | if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) | |||
| 8156 | return DefaultFunctionArrayConversion(E); | |||
| 8157 | ||||
| 8158 | return E; | |||
| 8159 | } | |||
| 8160 | ||||
| 8161 | if (getLangOpts().CPlusPlus) { | |||
| 8162 | // The C++11 standard defines the notion of a discarded-value expression; | |||
| 8163 | // normally, we don't need to do anything to handle it, but if it is a | |||
| 8164 | // volatile lvalue with a special form, we perform an lvalue-to-rvalue | |||
| 8165 | // conversion. | |||
| 8166 | if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { | |||
| 8167 | ExprResult Res = DefaultLvalueConversion(E); | |||
| 8168 | if (Res.isInvalid()) | |||
| 8169 | return E; | |||
| 8170 | E = Res.get(); | |||
| 8171 | } else { | |||
| 8172 | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if | |||
| 8173 | // it occurs as a discarded-value expression. | |||
| 8174 | CheckUnusedVolatileAssignment(E); | |||
| 8175 | } | |||
| 8176 | ||||
| 8177 | // C++1z: | |||
| 8178 | // If the expression is a prvalue after this optional conversion, the | |||
| 8179 | // temporary materialization conversion is applied. | |||
| 8180 | // | |||
| 8181 | // We skip this step: IR generation is able to synthesize the storage for | |||
| 8182 | // itself in the aggregate case, and adding the extra node to the AST is | |||
| 8183 | // just clutter. | |||
| 8184 | // FIXME: We don't emit lifetime markers for the temporaries due to this. | |||
| 8185 | // FIXME: Do any other AST consumers care about this? | |||
| 8186 | return E; | |||
| 8187 | } | |||
| 8188 | ||||
| 8189 | // GCC seems to also exclude expressions of incomplete enum type. | |||
| 8190 | if (const EnumType *T = E->getType()->getAs<EnumType>()) { | |||
| 8191 | if (!T->getDecl()->isComplete()) { | |||
| 8192 | // FIXME: stupid workaround for a codegen bug! | |||
| 8193 | E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); | |||
| 8194 | return E; | |||
| 8195 | } | |||
| 8196 | } | |||
| 8197 | ||||
| 8198 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | |||
| 8199 | if (Res.isInvalid()) | |||
| 8200 | return E; | |||
| 8201 | E = Res.get(); | |||
| 8202 | ||||
| 8203 | if (!E->getType()->isVoidType()) | |||
| 8204 | RequireCompleteType(E->getExprLoc(), E->getType(), | |||
| 8205 | diag::err_incomplete_type); | |||
| 8206 | return E; | |||
| 8207 | } | |||
| 8208 | ||||
| 8209 | ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { | |||
| 8210 | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if | |||
| 8211 | // it occurs as an unevaluated operand. | |||
| 8212 | CheckUnusedVolatileAssignment(E); | |||
| 8213 | ||||
| 8214 | return E; | |||
| 8215 | } | |||
| 8216 | ||||
| 8217 | // If we can unambiguously determine whether Var can never be used | |||
| 8218 | // in a constant expression, return true. | |||
| 8219 | // - if the variable and its initializer are non-dependent, then | |||
| 8220 | // we can unambiguously check if the variable is a constant expression. | |||
| 8221 | // - if the initializer is not value dependent - we can determine whether | |||
| 8222 | // it can be used to initialize a constant expression. If Init can not | |||
| 8223 | // be used to initialize a constant expression we conclude that Var can | |||
| 8224 | // never be a constant expression. | |||
| 8225 | // - FXIME: if the initializer is dependent, we can still do some analysis and | |||
| 8226 | // identify certain cases unambiguously as non-const by using a Visitor: | |||
| 8227 | // - such as those that involve odr-use of a ParmVarDecl, involve a new | |||
| 8228 | // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... | |||
| 8229 | static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, | |||
| 8230 | ASTContext &Context) { | |||
| 8231 | if (isa<ParmVarDecl>(Var)) return true; | |||
| 8232 | const VarDecl *DefVD = nullptr; | |||
| 8233 | ||||
| 8234 | // If there is no initializer - this can not be a constant expression. | |||
| 8235 | const Expr *Init = Var->getAnyInitializer(DefVD); | |||
| 8236 | if (!Init) | |||
| 8237 | return true; | |||
| 8238 | assert(DefVD)(static_cast <bool> (DefVD) ? void (0) : __assert_fail ( "DefVD", "clang/lib/Sema/SemaExprCXX.cpp", 8238, __extension__ __PRETTY_FUNCTION__)); | |||
| 8239 | if (DefVD->isWeak()) | |||
| 8240 | return false; | |||
| 8241 | ||||
| 8242 | if (Var->getType()->isDependentType() || Init->isValueDependent()) { | |||
| 8243 | // FIXME: Teach the constant evaluator to deal with the non-dependent parts | |||
| 8244 | // of value-dependent expressions, and use it here to determine whether the | |||
| 8245 | // initializer is a potential constant expression. | |||
| 8246 | return false; | |||
| 8247 | } | |||
| 8248 | ||||
| 8249 | return !Var->isUsableInConstantExpressions(Context); | |||
| 8250 | } | |||
| 8251 | ||||
| 8252 | /// Check if the current lambda has any potential captures | |||
| 8253 | /// that must be captured by any of its enclosing lambdas that are ready to | |||
| 8254 | /// capture. If there is a lambda that can capture a nested | |||
| 8255 | /// potential-capture, go ahead and do so. Also, check to see if any | |||
| 8256 | /// variables are uncaptureable or do not involve an odr-use so do not | |||
| 8257 | /// need to be captured. | |||
| 8258 | ||||
| 8259 | static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( | |||
| 8260 | Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { | |||
| 8261 | ||||
| 8262 | assert(!S.isUnevaluatedContext())(static_cast <bool> (!S.isUnevaluatedContext()) ? void ( 0) : __assert_fail ("!S.isUnevaluatedContext()", "clang/lib/Sema/SemaExprCXX.cpp" , 8262, __extension__ __PRETTY_FUNCTION__)); | |||
| 8263 | assert(S.CurContext->isDependentContext())(static_cast <bool> (S.CurContext->isDependentContext ()) ? void (0) : __assert_fail ("S.CurContext->isDependentContext()" , "clang/lib/Sema/SemaExprCXX.cpp", 8263, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8264 | #ifndef NDEBUG | |||
| 8265 | DeclContext *DC = S.CurContext; | |||
| 8266 | while (DC && isa<CapturedDecl>(DC)) | |||
| 8267 | DC = DC->getParent(); | |||
| 8268 | assert((static_cast <bool> (CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext" ) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8270, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8269 | CurrentLSI->CallOperator == DC &&(static_cast <bool> (CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext" ) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8270, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8270 | "The current call operator must be synchronized with Sema's CurContext")(static_cast <bool> (CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext" ) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8270, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8271 | #endif // NDEBUG | |||
| 8272 | ||||
| 8273 | const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); | |||
| 8274 | ||||
| 8275 | // All the potentially captureable variables in the current nested | |||
| 8276 | // lambda (within a generic outer lambda), must be captured by an | |||
| 8277 | // outer lambda that is enclosed within a non-dependent context. | |||
| 8278 | CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) { | |||
| 8279 | // If the variable is clearly identified as non-odr-used and the full | |||
| 8280 | // expression is not instantiation dependent, only then do we not | |||
| 8281 | // need to check enclosing lambda's for speculative captures. | |||
| 8282 | // For e.g.: | |||
| 8283 | // Even though 'x' is not odr-used, it should be captured. | |||
| 8284 | // int test() { | |||
| 8285 | // const int x = 10; | |||
| 8286 | // auto L = [=](auto a) { | |||
| 8287 | // (void) +x + a; | |||
| 8288 | // }; | |||
| 8289 | // } | |||
| 8290 | if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && | |||
| 8291 | !IsFullExprInstantiationDependent) | |||
| 8292 | return; | |||
| 8293 | ||||
| 8294 | VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); | |||
| 8295 | if (!UnderlyingVar) | |||
| 8296 | return; | |||
| 8297 | ||||
| 8298 | // If we have a capture-capable lambda for the variable, go ahead and | |||
| 8299 | // capture the variable in that lambda (and all its enclosing lambdas). | |||
| 8300 | if (const std::optional<unsigned> Index = | |||
| 8301 | getStackIndexOfNearestEnclosingCaptureCapableLambda( | |||
| 8302 | S.FunctionScopes, Var, S)) | |||
| 8303 | S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); | |||
| 8304 | const bool IsVarNeverAConstantExpression = | |||
| 8305 | VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context); | |||
| 8306 | if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { | |||
| 8307 | // This full expression is not instantiation dependent or the variable | |||
| 8308 | // can not be used in a constant expression - which means | |||
| 8309 | // this variable must be odr-used here, so diagnose a | |||
| 8310 | // capture violation early, if the variable is un-captureable. | |||
| 8311 | // This is purely for diagnosing errors early. Otherwise, this | |||
| 8312 | // error would get diagnosed when the lambda becomes capture ready. | |||
| 8313 | QualType CaptureType, DeclRefType; | |||
| 8314 | SourceLocation ExprLoc = VarExpr->getExprLoc(); | |||
| 8315 | if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, | |||
| 8316 | /*EllipsisLoc*/ SourceLocation(), | |||
| 8317 | /*BuildAndDiagnose*/false, CaptureType, | |||
| 8318 | DeclRefType, nullptr)) { | |||
| 8319 | // We will never be able to capture this variable, and we need | |||
| 8320 | // to be able to in any and all instantiations, so diagnose it. | |||
| 8321 | S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, | |||
| 8322 | /*EllipsisLoc*/ SourceLocation(), | |||
| 8323 | /*BuildAndDiagnose*/true, CaptureType, | |||
| 8324 | DeclRefType, nullptr); | |||
| 8325 | } | |||
| 8326 | } | |||
| 8327 | }); | |||
| 8328 | ||||
| 8329 | // Check if 'this' needs to be captured. | |||
| 8330 | if (CurrentLSI->hasPotentialThisCapture()) { | |||
| 8331 | // If we have a capture-capable lambda for 'this', go ahead and capture | |||
| 8332 | // 'this' in that lambda (and all its enclosing lambdas). | |||
| 8333 | if (const std::optional<unsigned> Index = | |||
| 8334 | getStackIndexOfNearestEnclosingCaptureCapableLambda( | |||
| 8335 | S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { | |||
| 8336 | const unsigned FunctionScopeIndexOfCapturableLambda = *Index; | |||
| 8337 | S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, | |||
| 8338 | /*Explicit*/ false, /*BuildAndDiagnose*/ true, | |||
| 8339 | &FunctionScopeIndexOfCapturableLambda); | |||
| 8340 | } | |||
| 8341 | } | |||
| 8342 | ||||
| 8343 | // Reset all the potential captures at the end of each full-expression. | |||
| 8344 | CurrentLSI->clearPotentialCaptures(); | |||
| 8345 | } | |||
| 8346 | ||||
| 8347 | static ExprResult attemptRecovery(Sema &SemaRef, | |||
| 8348 | const TypoCorrectionConsumer &Consumer, | |||
| 8349 | const TypoCorrection &TC) { | |||
| 8350 | LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), | |||
| 8351 | Consumer.getLookupResult().getLookupKind()); | |||
| 8352 | const CXXScopeSpec *SS = Consumer.getSS(); | |||
| 8353 | CXXScopeSpec NewSS; | |||
| 8354 | ||||
| 8355 | // Use an approprate CXXScopeSpec for building the expr. | |||
| 8356 | if (auto *NNS = TC.getCorrectionSpecifier()) | |||
| 8357 | NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); | |||
| 8358 | else if (SS && !TC.WillReplaceSpecifier()) | |||
| 8359 | NewSS = *SS; | |||
| 8360 | ||||
| 8361 | if (auto *ND = TC.getFoundDecl()) { | |||
| 8362 | R.setLookupName(ND->getDeclName()); | |||
| 8363 | R.addDecl(ND); | |||
| 8364 | if (ND->isCXXClassMember()) { | |||
| 8365 | // Figure out the correct naming class to add to the LookupResult. | |||
| 8366 | CXXRecordDecl *Record = nullptr; | |||
| 8367 | if (auto *NNS = TC.getCorrectionSpecifier()) | |||
| 8368 | Record = NNS->getAsType()->getAsCXXRecordDecl(); | |||
| 8369 | if (!Record) | |||
| 8370 | Record = | |||
| 8371 | dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); | |||
| 8372 | if (Record) | |||
| 8373 | R.setNamingClass(Record); | |||
| 8374 | ||||
| 8375 | // Detect and handle the case where the decl might be an implicit | |||
| 8376 | // member. | |||
| 8377 | bool MightBeImplicitMember; | |||
| 8378 | if (!Consumer.isAddressOfOperand()) | |||
| 8379 | MightBeImplicitMember = true; | |||
| 8380 | else if (!NewSS.isEmpty()) | |||
| 8381 | MightBeImplicitMember = false; | |||
| 8382 | else if (R.isOverloadedResult()) | |||
| 8383 | MightBeImplicitMember = false; | |||
| 8384 | else if (R.isUnresolvableResult()) | |||
| 8385 | MightBeImplicitMember = true; | |||
| 8386 | else | |||
| 8387 | MightBeImplicitMember = isa<FieldDecl>(ND) || | |||
| 8388 | isa<IndirectFieldDecl>(ND) || | |||
| 8389 | isa<MSPropertyDecl>(ND); | |||
| 8390 | ||||
| 8391 | if (MightBeImplicitMember) | |||
| 8392 | return SemaRef.BuildPossibleImplicitMemberExpr( | |||
| 8393 | NewSS, /*TemplateKWLoc*/ SourceLocation(), R, | |||
| 8394 | /*TemplateArgs*/ nullptr, /*S*/ nullptr); | |||
| 8395 | } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { | |||
| 8396 | return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), | |||
| 8397 | Ivar->getIdentifier()); | |||
| 8398 | } | |||
| 8399 | } | |||
| 8400 | ||||
| 8401 | return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, | |||
| 8402 | /*AcceptInvalidDecl*/ true); | |||
| 8403 | } | |||
| 8404 | ||||
| 8405 | namespace { | |||
| 8406 | class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { | |||
| 8407 | llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; | |||
| 8408 | ||||
| 8409 | public: | |||
| 8410 | explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) | |||
| 8411 | : TypoExprs(TypoExprs) {} | |||
| 8412 | bool VisitTypoExpr(TypoExpr *TE) { | |||
| 8413 | TypoExprs.insert(TE); | |||
| 8414 | return true; | |||
| 8415 | } | |||
| 8416 | }; | |||
| 8417 | ||||
| 8418 | class TransformTypos : public TreeTransform<TransformTypos> { | |||
| 8419 | typedef TreeTransform<TransformTypos> BaseTransform; | |||
| 8420 | ||||
| 8421 | VarDecl *InitDecl; // A decl to avoid as a correction because it is in the | |||
| 8422 | // process of being initialized. | |||
| 8423 | llvm::function_ref<ExprResult(Expr *)> ExprFilter; | |||
| 8424 | llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; | |||
| 8425 | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; | |||
| 8426 | llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; | |||
| 8427 | ||||
| 8428 | /// Emit diagnostics for all of the TypoExprs encountered. | |||
| 8429 | /// | |||
| 8430 | /// If the TypoExprs were successfully corrected, then the diagnostics should | |||
| 8431 | /// suggest the corrections. Otherwise the diagnostics will not suggest | |||
| 8432 | /// anything (having been passed an empty TypoCorrection). | |||
| 8433 | /// | |||
| 8434 | /// If we've failed to correct due to ambiguous corrections, we need to | |||
| 8435 | /// be sure to pass empty corrections and replacements. Otherwise it's | |||
| 8436 | /// possible that the Consumer has a TypoCorrection that failed to ambiguity | |||
| 8437 | /// and we don't want to report those diagnostics. | |||
| 8438 | void EmitAllDiagnostics(bool IsAmbiguous) { | |||
| 8439 | for (TypoExpr *TE : TypoExprs) { | |||
| 8440 | auto &State = SemaRef.getTypoExprState(TE); | |||
| 8441 | if (State.DiagHandler) { | |||
| 8442 | TypoCorrection TC = IsAmbiguous | |||
| 8443 | ? TypoCorrection() : State.Consumer->getCurrentCorrection(); | |||
| 8444 | ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; | |||
| 8445 | ||||
| 8446 | // Extract the NamedDecl from the transformed TypoExpr and add it to the | |||
| 8447 | // TypoCorrection, replacing the existing decls. This ensures the right | |||
| 8448 | // NamedDecl is used in diagnostics e.g. in the case where overload | |||
| 8449 | // resolution was used to select one from several possible decls that | |||
| 8450 | // had been stored in the TypoCorrection. | |||
| 8451 | if (auto *ND = getDeclFromExpr( | |||
| 8452 | Replacement.isInvalid() ? nullptr : Replacement.get())) | |||
| 8453 | TC.setCorrectionDecl(ND); | |||
| 8454 | ||||
| 8455 | State.DiagHandler(TC); | |||
| 8456 | } | |||
| 8457 | SemaRef.clearDelayedTypo(TE); | |||
| 8458 | } | |||
| 8459 | } | |||
| 8460 | ||||
| 8461 | /// Try to advance the typo correction state of the first unfinished TypoExpr. | |||
| 8462 | /// We allow advancement of the correction stream by removing it from the | |||
| 8463 | /// TransformCache which allows `TransformTypoExpr` to advance during the | |||
| 8464 | /// next transformation attempt. | |||
| 8465 | /// | |||
| 8466 | /// Any substitution attempts for the previous TypoExprs (which must have been | |||
| 8467 | /// finished) will need to be retried since it's possible that they will now | |||
| 8468 | /// be invalid given the latest advancement. | |||
| 8469 | /// | |||
| 8470 | /// We need to be sure that we're making progress - it's possible that the | |||
| 8471 | /// tree is so malformed that the transform never makes it to the | |||
| 8472 | /// `TransformTypoExpr`. | |||
| 8473 | /// | |||
| 8474 | /// Returns true if there are any untried correction combinations. | |||
| 8475 | bool CheckAndAdvanceTypoExprCorrectionStreams() { | |||
| 8476 | for (auto *TE : TypoExprs) { | |||
| 8477 | auto &State = SemaRef.getTypoExprState(TE); | |||
| 8478 | TransformCache.erase(TE); | |||
| 8479 | if (!State.Consumer->hasMadeAnyCorrectionProgress()) | |||
| 8480 | return false; | |||
| 8481 | if (!State.Consumer->finished()) | |||
| 8482 | return true; | |||
| 8483 | State.Consumer->resetCorrectionStream(); | |||
| 8484 | } | |||
| 8485 | return false; | |||
| 8486 | } | |||
| 8487 | ||||
| 8488 | NamedDecl *getDeclFromExpr(Expr *E) { | |||
| 8489 | if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) | |||
| 8490 | E = OverloadResolution[OE]; | |||
| 8491 | ||||
| 8492 | if (!E) | |||
| 8493 | return nullptr; | |||
| 8494 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | |||
| 8495 | return DRE->getFoundDecl(); | |||
| 8496 | if (auto *ME = dyn_cast<MemberExpr>(E)) | |||
| 8497 | return ME->getFoundDecl(); | |||
| 8498 | // FIXME: Add any other expr types that could be seen by the delayed typo | |||
| 8499 | // correction TreeTransform for which the corresponding TypoCorrection could | |||
| 8500 | // contain multiple decls. | |||
| 8501 | return nullptr; | |||
| 8502 | } | |||
| 8503 | ||||
| 8504 | ExprResult TryTransform(Expr *E) { | |||
| 8505 | Sema::SFINAETrap Trap(SemaRef); | |||
| 8506 | ExprResult Res = TransformExpr(E); | |||
| 8507 | if (Trap.hasErrorOccurred() || Res.isInvalid()) | |||
| 8508 | return ExprError(); | |||
| 8509 | ||||
| 8510 | return ExprFilter(Res.get()); | |||
| 8511 | } | |||
| 8512 | ||||
| 8513 | // Since correcting typos may intoduce new TypoExprs, this function | |||
| 8514 | // checks for new TypoExprs and recurses if it finds any. Note that it will | |||
| 8515 | // only succeed if it is able to correct all typos in the given expression. | |||
| 8516 | ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { | |||
| 8517 | if (Res.isInvalid()) { | |||
| 8518 | return Res; | |||
| 8519 | } | |||
| 8520 | // Check to see if any new TypoExprs were created. If so, we need to recurse | |||
| 8521 | // to check their validity. | |||
| 8522 | Expr *FixedExpr = Res.get(); | |||
| 8523 | ||||
| 8524 | auto SavedTypoExprs = std::move(TypoExprs); | |||
| 8525 | auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); | |||
| 8526 | TypoExprs.clear(); | |||
| 8527 | AmbiguousTypoExprs.clear(); | |||
| 8528 | ||||
| 8529 | FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); | |||
| 8530 | if (!TypoExprs.empty()) { | |||
| 8531 | // Recurse to handle newly created TypoExprs. If we're not able to | |||
| 8532 | // handle them, discard these TypoExprs. | |||
| 8533 | ExprResult RecurResult = | |||
| 8534 | RecursiveTransformLoop(FixedExpr, IsAmbiguous); | |||
| 8535 | if (RecurResult.isInvalid()) { | |||
| 8536 | Res = ExprError(); | |||
| 8537 | // Recursive corrections didn't work, wipe them away and don't add | |||
| 8538 | // them to the TypoExprs set. Remove them from Sema's TypoExpr list | |||
| 8539 | // since we don't want to clear them twice. Note: it's possible the | |||
| 8540 | // TypoExprs were created recursively and thus won't be in our | |||
| 8541 | // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. | |||
| 8542 | auto &SemaTypoExprs = SemaRef.TypoExprs; | |||
| 8543 | for (auto *TE : TypoExprs) { | |||
| 8544 | TransformCache.erase(TE); | |||
| 8545 | SemaRef.clearDelayedTypo(TE); | |||
| 8546 | ||||
| 8547 | auto SI = find(SemaTypoExprs, TE); | |||
| 8548 | if (SI != SemaTypoExprs.end()) { | |||
| 8549 | SemaTypoExprs.erase(SI); | |||
| 8550 | } | |||
| 8551 | } | |||
| 8552 | } else { | |||
| 8553 | // TypoExpr is valid: add newly created TypoExprs since we were | |||
| 8554 | // able to correct them. | |||
| 8555 | Res = RecurResult; | |||
| 8556 | SavedTypoExprs.set_union(TypoExprs); | |||
| 8557 | } | |||
| 8558 | } | |||
| 8559 | ||||
| 8560 | TypoExprs = std::move(SavedTypoExprs); | |||
| 8561 | AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); | |||
| 8562 | ||||
| 8563 | return Res; | |||
| 8564 | } | |||
| 8565 | ||||
| 8566 | // Try to transform the given expression, looping through the correction | |||
| 8567 | // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. | |||
| 8568 | // | |||
| 8569 | // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to | |||
| 8570 | // true and this method immediately will return an `ExprError`. | |||
| 8571 | ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { | |||
| 8572 | ExprResult Res; | |||
| 8573 | auto SavedTypoExprs = std::move(SemaRef.TypoExprs); | |||
| 8574 | SemaRef.TypoExprs.clear(); | |||
| 8575 | ||||
| 8576 | while (true) { | |||
| 8577 | Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); | |||
| 8578 | ||||
| 8579 | // Recursion encountered an ambiguous correction. This means that our | |||
| 8580 | // correction itself is ambiguous, so stop now. | |||
| 8581 | if (IsAmbiguous) | |||
| 8582 | break; | |||
| 8583 | ||||
| 8584 | // If the transform is still valid after checking for any new typos, | |||
| 8585 | // it's good to go. | |||
| 8586 | if (!Res.isInvalid()) | |||
| 8587 | break; | |||
| 8588 | ||||
| 8589 | // The transform was invalid, see if we have any TypoExprs with untried | |||
| 8590 | // correction candidates. | |||
| 8591 | if (!CheckAndAdvanceTypoExprCorrectionStreams()) | |||
| 8592 | break; | |||
| 8593 | } | |||
| 8594 | ||||
| 8595 | // If we found a valid result, double check to make sure it's not ambiguous. | |||
| 8596 | if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { | |||
| 8597 | auto SavedTransformCache = | |||
| 8598 | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); | |||
| 8599 | ||||
| 8600 | // Ensure none of the TypoExprs have multiple typo correction candidates | |||
| 8601 | // with the same edit length that pass all the checks and filters. | |||
| 8602 | while (!AmbiguousTypoExprs.empty()) { | |||
| 8603 | auto TE = AmbiguousTypoExprs.back(); | |||
| 8604 | ||||
| 8605 | // TryTransform itself can create new Typos, adding them to the TypoExpr map | |||
| 8606 | // and invalidating our TypoExprState, so always fetch it instead of storing. | |||
| 8607 | SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); | |||
| 8608 | ||||
| 8609 | TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); | |||
| 8610 | TypoCorrection Next; | |||
| 8611 | do { | |||
| 8612 | // Fetch the next correction by erasing the typo from the cache and calling | |||
| 8613 | // `TryTransform` which will iterate through corrections in | |||
| 8614 | // `TransformTypoExpr`. | |||
| 8615 | TransformCache.erase(TE); | |||
| 8616 | ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); | |||
| 8617 | ||||
| 8618 | if (!AmbigRes.isInvalid() || IsAmbiguous) { | |||
| 8619 | SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); | |||
| 8620 | SavedTransformCache.erase(TE); | |||
| 8621 | Res = ExprError(); | |||
| 8622 | IsAmbiguous = true; | |||
| 8623 | break; | |||
| 8624 | } | |||
| 8625 | } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && | |||
| 8626 | Next.getEditDistance(false) == TC.getEditDistance(false)); | |||
| 8627 | ||||
| 8628 | if (IsAmbiguous) | |||
| 8629 | break; | |||
| 8630 | ||||
| 8631 | AmbiguousTypoExprs.remove(TE); | |||
| 8632 | SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); | |||
| 8633 | TransformCache[TE] = SavedTransformCache[TE]; | |||
| 8634 | } | |||
| 8635 | TransformCache = std::move(SavedTransformCache); | |||
| 8636 | } | |||
| 8637 | ||||
| 8638 | // Wipe away any newly created TypoExprs that we don't know about. Since we | |||
| 8639 | // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only | |||
| 8640 | // possible if a `TypoExpr` is created during a transformation but then | |||
| 8641 | // fails before we can discover it. | |||
| 8642 | auto &SemaTypoExprs = SemaRef.TypoExprs; | |||
| 8643 | for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { | |||
| 8644 | auto TE = *Iterator; | |||
| 8645 | auto FI = find(TypoExprs, TE); | |||
| 8646 | if (FI != TypoExprs.end()) { | |||
| 8647 | Iterator++; | |||
| 8648 | continue; | |||
| 8649 | } | |||
| 8650 | SemaRef.clearDelayedTypo(TE); | |||
| 8651 | Iterator = SemaTypoExprs.erase(Iterator); | |||
| 8652 | } | |||
| 8653 | SemaRef.TypoExprs = std::move(SavedTypoExprs); | |||
| 8654 | ||||
| 8655 | return Res; | |||
| 8656 | } | |||
| 8657 | ||||
| 8658 | public: | |||
| 8659 | TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) | |||
| 8660 | : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} | |||
| 8661 | ||||
| 8662 | ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, | |||
| 8663 | MultiExprArg Args, | |||
| 8664 | SourceLocation RParenLoc, | |||
| 8665 | Expr *ExecConfig = nullptr) { | |||
| 8666 | auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, | |||
| 8667 | RParenLoc, ExecConfig); | |||
| 8668 | if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { | |||
| 8669 | if (Result.isUsable()) { | |||
| 8670 | Expr *ResultCall = Result.get(); | |||
| 8671 | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) | |||
| 8672 | ResultCall = BE->getSubExpr(); | |||
| 8673 | if (auto *CE = dyn_cast<CallExpr>(ResultCall)) | |||
| 8674 | OverloadResolution[OE] = CE->getCallee(); | |||
| 8675 | } | |||
| 8676 | } | |||
| 8677 | return Result; | |||
| 8678 | } | |||
| 8679 | ||||
| 8680 | ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } | |||
| 8681 | ||||
| 8682 | ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } | |||
| 8683 | ||||
| 8684 | ExprResult Transform(Expr *E) { | |||
| 8685 | bool IsAmbiguous = false; | |||
| 8686 | ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); | |||
| 8687 | ||||
| 8688 | if (!Res.isUsable()) | |||
| 8689 | FindTypoExprs(TypoExprs).TraverseStmt(E); | |||
| 8690 | ||||
| 8691 | EmitAllDiagnostics(IsAmbiguous); | |||
| 8692 | ||||
| 8693 | return Res; | |||
| 8694 | } | |||
| 8695 | ||||
| 8696 | ExprResult TransformTypoExpr(TypoExpr *E) { | |||
| 8697 | // If the TypoExpr hasn't been seen before, record it. Otherwise, return the | |||
| 8698 | // cached transformation result if there is one and the TypoExpr isn't the | |||
| 8699 | // first one that was encountered. | |||
| 8700 | auto &CacheEntry = TransformCache[E]; | |||
| 8701 | if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { | |||
| 8702 | return CacheEntry; | |||
| 8703 | } | |||
| 8704 | ||||
| 8705 | auto &State = SemaRef.getTypoExprState(E); | |||
| 8706 | assert(State.Consumer && "Cannot transform a cleared TypoExpr")(static_cast <bool> (State.Consumer && "Cannot transform a cleared TypoExpr" ) ? void (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8706, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8707 | ||||
| 8708 | // For the first TypoExpr and an uncached TypoExpr, find the next likely | |||
| 8709 | // typo correction and return it. | |||
| 8710 | while (TypoCorrection TC = State.Consumer->getNextCorrection()) { | |||
| 8711 | if (InitDecl && TC.getFoundDecl() == InitDecl) | |||
| 8712 | continue; | |||
| 8713 | // FIXME: If we would typo-correct to an invalid declaration, it's | |||
| 8714 | // probably best to just suppress all errors from this typo correction. | |||
| 8715 | ExprResult NE = State.RecoveryHandler ? | |||
| 8716 | State.RecoveryHandler(SemaRef, E, TC) : | |||
| 8717 | attemptRecovery(SemaRef, *State.Consumer, TC); | |||
| 8718 | if (!NE.isInvalid()) { | |||
| 8719 | // Check whether there may be a second viable correction with the same | |||
| 8720 | // edit distance; if so, remember this TypoExpr may have an ambiguous | |||
| 8721 | // correction so it can be more thoroughly vetted later. | |||
| 8722 | TypoCorrection Next; | |||
| 8723 | if ((Next = State.Consumer->peekNextCorrection()) && | |||
| 8724 | Next.getEditDistance(false) == TC.getEditDistance(false)) { | |||
| 8725 | AmbiguousTypoExprs.insert(E); | |||
| 8726 | } else { | |||
| 8727 | AmbiguousTypoExprs.remove(E); | |||
| 8728 | } | |||
| 8729 | assert(!NE.isUnset() &&(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult" ) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8730, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8730 | "Typo was transformed into a valid-but-null ExprResult")(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult" ) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8730, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8731 | return CacheEntry = NE; | |||
| 8732 | } | |||
| 8733 | } | |||
| 8734 | return CacheEntry = ExprError(); | |||
| 8735 | } | |||
| 8736 | }; | |||
| 8737 | } | |||
| 8738 | ||||
| 8739 | ExprResult | |||
| 8740 | Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, | |||
| 8741 | bool RecoverUncorrectedTypos, | |||
| 8742 | llvm::function_ref<ExprResult(Expr *)> Filter) { | |||
| 8743 | // If the current evaluation context indicates there are uncorrected typos | |||
| 8744 | // and the current expression isn't guaranteed to not have typos, try to | |||
| 8745 | // resolve any TypoExpr nodes that might be in the expression. | |||
| 8746 | if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && | |||
| 8747 | (E->isTypeDependent() || E->isValueDependent() || | |||
| 8748 | E->isInstantiationDependent())) { | |||
| 8749 | auto TyposResolved = DelayedTypos.size(); | |||
| 8750 | auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); | |||
| 8751 | TyposResolved -= DelayedTypos.size(); | |||
| 8752 | if (Result.isInvalid() || Result.get() != E) { | |||
| 8753 | ExprEvalContexts.back().NumTypos -= TyposResolved; | |||
| 8754 | if (Result.isInvalid() && RecoverUncorrectedTypos) { | |||
| 8755 | struct TyposReplace : TreeTransform<TyposReplace> { | |||
| 8756 | TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} | |||
| 8757 | ExprResult TransformTypoExpr(clang::TypoExpr *E) { | |||
| 8758 | return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), | |||
| 8759 | E->getEndLoc(), {}); | |||
| 8760 | } | |||
| 8761 | } TT(*this); | |||
| 8762 | return TT.TransformExpr(E); | |||
| 8763 | } | |||
| 8764 | return Result; | |||
| 8765 | } | |||
| 8766 | assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")(static_cast <bool> (TyposResolved == 0 && "Corrected typo but got same Expr back?" ) ? void (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8766, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8767 | } | |||
| 8768 | return E; | |||
| 8769 | } | |||
| 8770 | ||||
| 8771 | ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, | |||
| 8772 | bool DiscardedValue, bool IsConstexpr, | |||
| 8773 | bool IsTemplateArgument) { | |||
| 8774 | ExprResult FullExpr = FE; | |||
| 8775 | ||||
| 8776 | if (!FullExpr.get()) | |||
| 8777 | return ExprError(); | |||
| 8778 | ||||
| 8779 | if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get())) | |||
| 8780 | return ExprError(); | |||
| 8781 | ||||
| 8782 | if (DiscardedValue) { | |||
| 8783 | // Top-level expressions default to 'id' when we're in a debugger. | |||
| 8784 | if (getLangOpts().DebuggerCastResultToId && | |||
| 8785 | FullExpr.get()->getType() == Context.UnknownAnyTy) { | |||
| 8786 | FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); | |||
| 8787 | if (FullExpr.isInvalid()) | |||
| 8788 | return ExprError(); | |||
| 8789 | } | |||
| 8790 | ||||
| 8791 | FullExpr = CheckPlaceholderExpr(FullExpr.get()); | |||
| 8792 | if (FullExpr.isInvalid()) | |||
| 8793 | return ExprError(); | |||
| 8794 | ||||
| 8795 | FullExpr = IgnoredValueConversions(FullExpr.get()); | |||
| 8796 | if (FullExpr.isInvalid()) | |||
| 8797 | return ExprError(); | |||
| 8798 | ||||
| 8799 | DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); | |||
| 8800 | } | |||
| 8801 | ||||
| 8802 | FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, | |||
| 8803 | /*RecoverUncorrectedTypos=*/true); | |||
| 8804 | if (FullExpr.isInvalid()) | |||
| 8805 | return ExprError(); | |||
| 8806 | ||||
| 8807 | CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); | |||
| 8808 | ||||
| 8809 | // At the end of this full expression (which could be a deeply nested | |||
| 8810 | // lambda), if there is a potential capture within the nested lambda, | |||
| 8811 | // have the outer capture-able lambda try and capture it. | |||
| 8812 | // Consider the following code: | |||
| 8813 | // void f(int, int); | |||
| 8814 | // void f(const int&, double); | |||
| 8815 | // void foo() { | |||
| 8816 | // const int x = 10, y = 20; | |||
| 8817 | // auto L = [=](auto a) { | |||
| 8818 | // auto M = [=](auto b) { | |||
| 8819 | // f(x, b); <-- requires x to be captured by L and M | |||
| 8820 | // f(y, a); <-- requires y to be captured by L, but not all Ms | |||
| 8821 | // }; | |||
| 8822 | // }; | |||
| 8823 | // } | |||
| 8824 | ||||
| 8825 | // FIXME: Also consider what happens for something like this that involves | |||
| 8826 | // the gnu-extension statement-expressions or even lambda-init-captures: | |||
| 8827 | // void f() { | |||
| 8828 | // const int n = 0; | |||
| 8829 | // auto L = [&](auto a) { | |||
| 8830 | // +n + ({ 0; a; }); | |||
| 8831 | // }; | |||
| 8832 | // } | |||
| 8833 | // | |||
| 8834 | // Here, we see +n, and then the full-expression 0; ends, so we don't | |||
| 8835 | // capture n (and instead remove it from our list of potential captures), | |||
| 8836 | // and then the full-expression +n + ({ 0; }); ends, but it's too late | |||
| 8837 | // for us to see that we need to capture n after all. | |||
| 8838 | ||||
| 8839 | LambdaScopeInfo *const CurrentLSI = | |||
| 8840 | getCurLambda(/*IgnoreCapturedRegions=*/true); | |||
| 8841 | // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer | |||
| 8842 | // even if CurContext is not a lambda call operator. Refer to that Bug Report | |||
| 8843 | // for an example of the code that might cause this asynchrony. | |||
| 8844 | // By ensuring we are in the context of a lambda's call operator | |||
| 8845 | // we can fix the bug (we only need to check whether we need to capture | |||
| 8846 | // if we are within a lambda's body); but per the comments in that | |||
| 8847 | // PR, a proper fix would entail : | |||
| 8848 | // "Alternative suggestion: | |||
| 8849 | // - Add to Sema an integer holding the smallest (outermost) scope | |||
| 8850 | // index that we are *lexically* within, and save/restore/set to | |||
| 8851 | // FunctionScopes.size() in InstantiatingTemplate's | |||
| 8852 | // constructor/destructor. | |||
| 8853 | // - Teach the handful of places that iterate over FunctionScopes to | |||
| 8854 | // stop at the outermost enclosing lexical scope." | |||
| 8855 | DeclContext *DC = CurContext; | |||
| 8856 | while (DC && isa<CapturedDecl>(DC)) | |||
| 8857 | DC = DC->getParent(); | |||
| 8858 | const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); | |||
| 8859 | if (IsInLambdaDeclContext && CurrentLSI && | |||
| 8860 | CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) | |||
| 8861 | CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, | |||
| 8862 | *this); | |||
| 8863 | return MaybeCreateExprWithCleanups(FullExpr); | |||
| 8864 | } | |||
| 8865 | ||||
| 8866 | StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { | |||
| 8867 | if (!FullStmt) return StmtError(); | |||
| 8868 | ||||
| 8869 | return MaybeCreateStmtWithCleanups(FullStmt); | |||
| 8870 | } | |||
| 8871 | ||||
| 8872 | Sema::IfExistsResult | |||
| 8873 | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, | |||
| 8874 | CXXScopeSpec &SS, | |||
| 8875 | const DeclarationNameInfo &TargetNameInfo) { | |||
| 8876 | DeclarationName TargetName = TargetNameInfo.getName(); | |||
| 8877 | if (!TargetName) | |||
| 8878 | return IER_DoesNotExist; | |||
| 8879 | ||||
| 8880 | // If the name itself is dependent, then the result is dependent. | |||
| 8881 | if (TargetName.isDependentName()) | |||
| 8882 | return IER_Dependent; | |||
| 8883 | ||||
| 8884 | // Do the redeclaration lookup in the current scope. | |||
| 8885 | LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, | |||
| 8886 | Sema::NotForRedeclaration); | |||
| 8887 | LookupParsedName(R, S, &SS); | |||
| 8888 | R.suppressDiagnostics(); | |||
| 8889 | ||||
| 8890 | switch (R.getResultKind()) { | |||
| 8891 | case LookupResult::Found: | |||
| 8892 | case LookupResult::FoundOverloaded: | |||
| 8893 | case LookupResult::FoundUnresolvedValue: | |||
| 8894 | case LookupResult::Ambiguous: | |||
| 8895 | return IER_Exists; | |||
| 8896 | ||||
| 8897 | case LookupResult::NotFound: | |||
| 8898 | return IER_DoesNotExist; | |||
| 8899 | ||||
| 8900 | case LookupResult::NotFoundInCurrentInstantiation: | |||
| 8901 | return IER_Dependent; | |||
| 8902 | } | |||
| 8903 | ||||
| 8904 | llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!" , "clang/lib/Sema/SemaExprCXX.cpp", 8904); | |||
| 8905 | } | |||
| 8906 | ||||
| 8907 | Sema::IfExistsResult | |||
| 8908 | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, | |||
| 8909 | bool IsIfExists, CXXScopeSpec &SS, | |||
| 8910 | UnqualifiedId &Name) { | |||
| 8911 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | |||
| 8912 | ||||
| 8913 | // Check for an unexpanded parameter pack. | |||
| 8914 | auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; | |||
| 8915 | if (DiagnoseUnexpandedParameterPack(SS, UPPC) || | |||
| 8916 | DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) | |||
| 8917 | return IER_Error; | |||
| 8918 | ||||
| 8919 | return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); | |||
| 8920 | } | |||
| 8921 | ||||
| 8922 | concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { | |||
| 8923 | return BuildExprRequirement(E, /*IsSimple=*/true, | |||
| 8924 | /*NoexceptLoc=*/SourceLocation(), | |||
| 8925 | /*ReturnTypeRequirement=*/{}); | |||
| 8926 | } | |||
| 8927 | ||||
| 8928 | concepts::Requirement * | |||
| 8929 | Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, | |||
| 8930 | SourceLocation NameLoc, IdentifierInfo *TypeName, | |||
| 8931 | TemplateIdAnnotation *TemplateId) { | |||
| 8932 | assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&(static_cast <bool> (((!TypeName && TemplateId) || (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified." ) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8933, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8933 | "Exactly one of TypeName and TemplateId must be specified.")(static_cast <bool> (((!TypeName && TemplateId) || (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified." ) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\"" , "clang/lib/Sema/SemaExprCXX.cpp", 8933, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8934 | TypeSourceInfo *TSI = nullptr; | |||
| 8935 | if (TypeName) { | |||
| 8936 | QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, | |||
| 8937 | SS.getWithLocInContext(Context), *TypeName, | |||
| 8938 | NameLoc, &TSI, /*DeducedTSTContext=*/false); | |||
| 8939 | if (T.isNull()) | |||
| 8940 | return nullptr; | |||
| 8941 | } else { | |||
| 8942 | ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), | |||
| 8943 | TemplateId->NumArgs); | |||
| 8944 | TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, | |||
| 8945 | TemplateId->TemplateKWLoc, | |||
| 8946 | TemplateId->Template, TemplateId->Name, | |||
| 8947 | TemplateId->TemplateNameLoc, | |||
| 8948 | TemplateId->LAngleLoc, ArgsPtr, | |||
| 8949 | TemplateId->RAngleLoc); | |||
| 8950 | if (T.isInvalid()) | |||
| 8951 | return nullptr; | |||
| 8952 | if (GetTypeFromParser(T.get(), &TSI).isNull()) | |||
| 8953 | return nullptr; | |||
| 8954 | } | |||
| 8955 | return BuildTypeRequirement(TSI); | |||
| 8956 | } | |||
| 8957 | ||||
| 8958 | concepts::Requirement * | |||
| 8959 | Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { | |||
| 8960 | return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, | |||
| 8961 | /*ReturnTypeRequirement=*/{}); | |||
| 8962 | } | |||
| 8963 | ||||
| 8964 | concepts::Requirement * | |||
| 8965 | Sema::ActOnCompoundRequirement( | |||
| 8966 | Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, | |||
| 8967 | TemplateIdAnnotation *TypeConstraint, unsigned Depth) { | |||
| 8968 | // C++2a [expr.prim.req.compound] p1.3.3 | |||
| 8969 | // [..] the expression is deduced against an invented function template | |||
| 8970 | // F [...] F is a void function template with a single type template | |||
| 8971 | // parameter T declared with the constrained-parameter. Form a new | |||
| 8972 | // cv-qualifier-seq cv by taking the union of const and volatile specifiers | |||
| 8973 | // around the constrained-parameter. F has a single parameter whose | |||
| 8974 | // type-specifier is cv T followed by the abstract-declarator. [...] | |||
| 8975 | // | |||
| 8976 | // The cv part is done in the calling function - we get the concept with | |||
| 8977 | // arguments and the abstract declarator with the correct CV qualification and | |||
| 8978 | // have to synthesize T and the single parameter of F. | |||
| 8979 | auto &II = Context.Idents.get("expr-type"); | |||
| 8980 | auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, | |||
| 8981 | SourceLocation(), | |||
| 8982 | SourceLocation(), Depth, | |||
| 8983 | /*Index=*/0, &II, | |||
| 8984 | /*Typename=*/true, | |||
| 8985 | /*ParameterPack=*/false, | |||
| 8986 | /*HasTypeConstraint=*/true); | |||
| 8987 | ||||
| 8988 | if (BuildTypeConstraint(SS, TypeConstraint, TParam, | |||
| 8989 | /*EllipsisLoc=*/SourceLocation(), | |||
| 8990 | /*AllowUnexpandedPack=*/true)) | |||
| 8991 | // Just produce a requirement with no type requirements. | |||
| 8992 | return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); | |||
| 8993 | ||||
| 8994 | auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), | |||
| 8995 | SourceLocation(), | |||
| 8996 | ArrayRef<NamedDecl *>(TParam), | |||
| 8997 | SourceLocation(), | |||
| 8998 | /*RequiresClause=*/nullptr); | |||
| 8999 | return BuildExprRequirement( | |||
| 9000 | E, /*IsSimple=*/false, NoexceptLoc, | |||
| 9001 | concepts::ExprRequirement::ReturnTypeRequirement(TPL)); | |||
| 9002 | } | |||
| 9003 | ||||
| 9004 | concepts::ExprRequirement * | |||
| 9005 | Sema::BuildExprRequirement( | |||
| 9006 | Expr *E, bool IsSimple, SourceLocation NoexceptLoc, | |||
| 9007 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { | |||
| 9008 | auto Status = concepts::ExprRequirement::SS_Satisfied; | |||
| 9009 | ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; | |||
| 9010 | if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) | |||
| 9011 | Status = concepts::ExprRequirement::SS_Dependent; | |||
| 9012 | else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) | |||
| 9013 | Status = concepts::ExprRequirement::SS_NoexceptNotMet; | |||
| 9014 | else if (ReturnTypeRequirement.isSubstitutionFailure()) | |||
| 9015 | Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; | |||
| 9016 | else if (ReturnTypeRequirement.isTypeConstraint()) { | |||
| 9017 | // C++2a [expr.prim.req]p1.3.3 | |||
| 9018 | // The immediately-declared constraint ([temp]) of decltype((E)) shall | |||
| 9019 | // be satisfied. | |||
| 9020 | TemplateParameterList *TPL = | |||
| 9021 | ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); | |||
| 9022 | QualType MatchedType = | |||
| 9023 | Context.getReferenceQualifiedType(E).getCanonicalType(); | |||
| 9024 | llvm::SmallVector<TemplateArgument, 1> Args; | |||
| 9025 | Args.push_back(TemplateArgument(MatchedType)); | |||
| 9026 | ||||
| 9027 | auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0)); | |||
| 9028 | ||||
| 9029 | TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); | |||
| 9030 | MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(), | |||
| 9031 | /*Final=*/false); | |||
| 9032 | MLTAL.addOuterRetainedLevels(TPL->getDepth()); | |||
| 9033 | Expr *IDC = Param->getTypeConstraint()->getImmediatelyDeclaredConstraint(); | |||
| 9034 | ExprResult Constraint = SubstExpr(IDC, MLTAL); | |||
| 9035 | if (Constraint.isInvalid()) { | |||
| 9036 | Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure; | |||
| 9037 | } else { | |||
| 9038 | SubstitutedConstraintExpr = | |||
| 9039 | cast<ConceptSpecializationExpr>(Constraint.get()); | |||
| 9040 | if (!SubstitutedConstraintExpr->isSatisfied()) | |||
| 9041 | Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; | |||
| 9042 | } | |||
| 9043 | } | |||
| 9044 | return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, | |||
| 9045 | ReturnTypeRequirement, Status, | |||
| 9046 | SubstitutedConstraintExpr); | |||
| 9047 | } | |||
| 9048 | ||||
| 9049 | concepts::ExprRequirement * | |||
| 9050 | Sema::BuildExprRequirement( | |||
| 9051 | concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, | |||
| 9052 | bool IsSimple, SourceLocation NoexceptLoc, | |||
| 9053 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { | |||
| 9054 | return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, | |||
| 9055 | IsSimple, NoexceptLoc, | |||
| 9056 | ReturnTypeRequirement); | |||
| 9057 | } | |||
| 9058 | ||||
| 9059 | concepts::TypeRequirement * | |||
| 9060 | Sema::BuildTypeRequirement(TypeSourceInfo *Type) { | |||
| 9061 | return new (Context) concepts::TypeRequirement(Type); | |||
| 9062 | } | |||
| 9063 | ||||
| 9064 | concepts::TypeRequirement * | |||
| 9065 | Sema::BuildTypeRequirement( | |||
| 9066 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { | |||
| 9067 | return new (Context) concepts::TypeRequirement(SubstDiag); | |||
| 9068 | } | |||
| 9069 | ||||
| 9070 | concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { | |||
| 9071 | return BuildNestedRequirement(Constraint); | |||
| 9072 | } | |||
| 9073 | ||||
| 9074 | concepts::NestedRequirement * | |||
| 9075 | Sema::BuildNestedRequirement(Expr *Constraint) { | |||
| 9076 | ConstraintSatisfaction Satisfaction; | |||
| 9077 | if (!Constraint->isInstantiationDependent() && | |||
| 9078 | CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, | |||
| 9079 | Constraint->getSourceRange(), Satisfaction)) | |||
| 9080 | return nullptr; | |||
| 9081 | return new (Context) concepts::NestedRequirement(Context, Constraint, | |||
| 9082 | Satisfaction); | |||
| 9083 | } | |||
| 9084 | ||||
| 9085 | concepts::NestedRequirement * | |||
| 9086 | Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, | |||
| 9087 | const ASTConstraintSatisfaction &Satisfaction) { | |||
| 9088 | return new (Context) concepts::NestedRequirement( | |||
| 9089 | InvalidConstraintEntity, | |||
| 9090 | ASTConstraintSatisfaction::Rebuild(Context, Satisfaction)); | |||
| 9091 | } | |||
| 9092 | ||||
| 9093 | RequiresExprBodyDecl * | |||
| 9094 | Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, | |||
| 9095 | ArrayRef<ParmVarDecl *> LocalParameters, | |||
| 9096 | Scope *BodyScope) { | |||
| 9097 | assert(BodyScope)(static_cast <bool> (BodyScope) ? void (0) : __assert_fail ("BodyScope", "clang/lib/Sema/SemaExprCXX.cpp", 9097, __extension__ __PRETTY_FUNCTION__)); | |||
| 9098 | ||||
| 9099 | RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, | |||
| 9100 | RequiresKWLoc); | |||
| 9101 | ||||
| 9102 | PushDeclContext(BodyScope, Body); | |||
| 9103 | ||||
| 9104 | for (ParmVarDecl *Param : LocalParameters) { | |||
| 9105 | if (Param->hasDefaultArg()) | |||
| 9106 | // C++2a [expr.prim.req] p4 | |||
| 9107 | // [...] A local parameter of a requires-expression shall not have a | |||
| 9108 | // default argument. [...] | |||
| 9109 | Diag(Param->getDefaultArgRange().getBegin(), | |||
| 9110 | diag::err_requires_expr_local_parameter_default_argument); | |||
| 9111 | // Ignore default argument and move on | |||
| 9112 | ||||
| 9113 | Param->setDeclContext(Body); | |||
| 9114 | // If this has an identifier, add it to the scope stack. | |||
| 9115 | if (Param->getIdentifier()) { | |||
| 9116 | CheckShadow(BodyScope, Param); | |||
| 9117 | PushOnScopeChains(Param, BodyScope); | |||
| 9118 | } | |||
| 9119 | } | |||
| 9120 | return Body; | |||
| 9121 | } | |||
| 9122 | ||||
| 9123 | void Sema::ActOnFinishRequiresExpr() { | |||
| 9124 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 9124, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9125 | CurContext = CurContext->getLexicalParent(); | |||
| 9126 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaExprCXX.cpp", 9126, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9127 | } | |||
| 9128 | ||||
| 9129 | ExprResult | |||
| 9130 | Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, | |||
| 9131 | RequiresExprBodyDecl *Body, | |||
| 9132 | ArrayRef<ParmVarDecl *> LocalParameters, | |||
| 9133 | ArrayRef<concepts::Requirement *> Requirements, | |||
| 9134 | SourceLocation ClosingBraceLoc) { | |||
| 9135 | auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, | |||
| 9136 | Requirements, ClosingBraceLoc); | |||
| 9137 | if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) | |||
| 9138 | return ExprError(); | |||
| 9139 | return RE; | |||
| 9140 | } |