Bug Summary

File:build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 623, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-10-03-140002-15933-1 -x c++ /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/AlignedAllocation.h"
26#include "clang/Basic/DiagnosticSema.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Basic/TypeTraits.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaInternal.h"
38#include "clang/Sema/SemaLambda.h"
39#include "clang/Sema/Template.h"
40#include "clang/Sema/TemplateDeduction.h"
41#include "llvm/ADT/APInt.h"
42#include "llvm/ADT/STLExtras.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/TypeSize.h"
45using namespace clang;
46using namespace sema;
47
48/// Handle the result of the special case name lookup for inheriting
49/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
50/// constructor names in member using declarations, even if 'X' is not the
51/// name of the corresponding type.
52ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
53 SourceLocation NameLoc,
54 IdentifierInfo &Name) {
55 NestedNameSpecifier *NNS = SS.getScopeRep();
56
57 // Convert the nested-name-specifier into a type.
58 QualType Type;
59 switch (NNS->getKind()) {
60 case NestedNameSpecifier::TypeSpec:
61 case NestedNameSpecifier::TypeSpecWithTemplate:
62 Type = QualType(NNS->getAsType(), 0);
63 break;
64
65 case NestedNameSpecifier::Identifier:
66 // Strip off the last layer of the nested-name-specifier and build a
67 // typename type for it.
68 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 68, __extension__ __PRETTY_FUNCTION__
))
;
69 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
70 NNS->getAsIdentifier());
71 break;
72
73 case NestedNameSpecifier::Global:
74 case NestedNameSpecifier::Super:
75 case NestedNameSpecifier::Namespace:
76 case NestedNameSpecifier::NamespaceAlias:
77 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 77)
;
78 }
79
80 // This reference to the type is located entirely at the location of the
81 // final identifier in the qualified-id.
82 return CreateParsedType(Type,
83 Context.getTrivialTypeSourceInfo(Type, NameLoc));
84}
85
86ParsedType Sema::getConstructorName(IdentifierInfo &II,
87 SourceLocation NameLoc,
88 Scope *S, CXXScopeSpec &SS,
89 bool EnteringContext) {
90 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
91 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 92, __extension__ __PRETTY_FUNCTION__
))
92 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 92, __extension__ __PRETTY_FUNCTION__
))
;
93
94 // When naming a constructor as a member of a dependent context (eg, in a
95 // friend declaration or an inherited constructor declaration), form an
96 // unresolved "typename" type.
97 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
98 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
99 return ParsedType::make(T);
100 }
101
102 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
103 return ParsedType();
104
105 // Find the injected-class-name declaration. Note that we make no attempt to
106 // diagnose cases where the injected-class-name is shadowed: the only
107 // declaration that can validly shadow the injected-class-name is a
108 // non-static data member, and if the class contains both a non-static data
109 // member and a constructor then it is ill-formed (we check that in
110 // CheckCompletedCXXClass).
111 CXXRecordDecl *InjectedClassName = nullptr;
112 for (NamedDecl *ND : CurClass->lookup(&II)) {
113 auto *RD = dyn_cast<CXXRecordDecl>(ND);
114 if (RD && RD->isInjectedClassName()) {
115 InjectedClassName = RD;
116 break;
117 }
118 }
119 if (!InjectedClassName) {
120 if (!CurClass->isInvalidDecl()) {
121 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
122 // properly. Work around it here for now.
123 Diag(SS.getLastQualifierNameLoc(),
124 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
125 }
126 return ParsedType();
127 }
128
129 QualType T = Context.getTypeDeclType(InjectedClassName);
130 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
131 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
132
133 return ParsedType::make(T);
134}
135
136ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
137 IdentifierInfo &II,
138 SourceLocation NameLoc,
139 Scope *S, CXXScopeSpec &SS,
140 ParsedType ObjectTypePtr,
141 bool EnteringContext) {
142 // Determine where to perform name lookup.
143
144 // FIXME: This area of the standard is very messy, and the current
145 // wording is rather unclear about which scopes we search for the
146 // destructor name; see core issues 399 and 555. Issue 399 in
147 // particular shows where the current description of destructor name
148 // lookup is completely out of line with existing practice, e.g.,
149 // this appears to be ill-formed:
150 //
151 // namespace N {
152 // template <typename T> struct S {
153 // ~S();
154 // };
155 // }
156 //
157 // void f(N::S<int>* s) {
158 // s->N::S<int>::~S();
159 // }
160 //
161 // See also PR6358 and PR6359.
162 //
163 // For now, we accept all the cases in which the name given could plausibly
164 // be interpreted as a correct destructor name, issuing off-by-default
165 // extension diagnostics on the cases that don't strictly conform to the
166 // C++20 rules. This basically means we always consider looking in the
167 // nested-name-specifier prefix, the complete nested-name-specifier, and
168 // the scope, and accept if we find the expected type in any of the three
169 // places.
170
171 if (SS.isInvalid())
172 return nullptr;
173
174 // Whether we've failed with a diagnostic already.
175 bool Failed = false;
176
177 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
178 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
179
180 // If we have an object type, it's because we are in a
181 // pseudo-destructor-expression or a member access expression, and
182 // we know what type we're looking for.
183 QualType SearchType =
184 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
185
186 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
187 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
188 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
189 if (!Type)
190 return false;
191
192 if (SearchType.isNull() || SearchType->isDependentType())
193 return true;
194
195 QualType T = Context.getTypeDeclType(Type);
196 return Context.hasSameUnqualifiedType(T, SearchType);
197 };
198
199 unsigned NumAcceptableResults = 0;
200 for (NamedDecl *D : Found) {
201 if (IsAcceptableResult(D))
202 ++NumAcceptableResults;
203
204 // Don't list a class twice in the lookup failure diagnostic if it's
205 // found by both its injected-class-name and by the name in the enclosing
206 // scope.
207 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
208 if (RD->isInjectedClassName())
209 D = cast<NamedDecl>(RD->getParent());
210
211 if (FoundDeclSet.insert(D).second)
212 FoundDecls.push_back(D);
213 }
214
215 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
216 // results, and all non-matching results if we have a search type. It's not
217 // clear what the right behavior is if destructor lookup hits an ambiguity,
218 // but other compilers do generally accept at least some kinds of
219 // ambiguity.
220 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
221 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
222 LookupResult::Filter F = Found.makeFilter();
223 while (F.hasNext()) {
224 NamedDecl *D = F.next();
225 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
226 Diag(D->getLocation(), diag::note_destructor_type_here)
227 << Context.getTypeDeclType(TD);
228 else
229 Diag(D->getLocation(), diag::note_destructor_nontype_here);
230
231 if (!IsAcceptableResult(D))
232 F.erase();
233 }
234 F.done();
235 }
236
237 if (Found.isAmbiguous())
238 Failed = true;
239
240 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
241 if (IsAcceptableResult(Type)) {
242 QualType T = Context.getTypeDeclType(Type);
243 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
244 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
245 Context.getTrivialTypeSourceInfo(T, NameLoc));
246 }
247 }
248
249 return nullptr;
250 };
251
252 bool IsDependent = false;
253
254 auto LookupInObjectType = [&]() -> ParsedType {
255 if (Failed || SearchType.isNull())
256 return nullptr;
257
258 IsDependent |= SearchType->isDependentType();
259
260 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
261 DeclContext *LookupCtx = computeDeclContext(SearchType);
262 if (!LookupCtx)
263 return nullptr;
264 LookupQualifiedName(Found, LookupCtx);
265 return CheckLookupResult(Found);
266 };
267
268 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
269 if (Failed)
270 return nullptr;
271
272 IsDependent |= isDependentScopeSpecifier(LookupSS);
273 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
274 if (!LookupCtx)
275 return nullptr;
276
277 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
278 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
279 Failed = true;
280 return nullptr;
281 }
282 LookupQualifiedName(Found, LookupCtx);
283 return CheckLookupResult(Found);
284 };
285
286 auto LookupInScope = [&]() -> ParsedType {
287 if (Failed || !S)
288 return nullptr;
289
290 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
291 LookupName(Found, S);
292 return CheckLookupResult(Found);
293 };
294
295 // C++2a [basic.lookup.qual]p6:
296 // In a qualified-id of the form
297 //
298 // nested-name-specifier[opt] type-name :: ~ type-name
299 //
300 // the second type-name is looked up in the same scope as the first.
301 //
302 // We interpret this as meaning that if you do a dual-scope lookup for the
303 // first name, you also do a dual-scope lookup for the second name, per
304 // C++ [basic.lookup.classref]p4:
305 //
306 // If the id-expression in a class member access is a qualified-id of the
307 // form
308 //
309 // class-name-or-namespace-name :: ...
310 //
311 // the class-name-or-namespace-name following the . or -> is first looked
312 // up in the class of the object expression and the name, if found, is used.
313 // Otherwise, it is looked up in the context of the entire
314 // postfix-expression.
315 //
316 // This looks in the same scopes as for an unqualified destructor name:
317 //
318 // C++ [basic.lookup.classref]p3:
319 // If the unqualified-id is ~ type-name, the type-name is looked up
320 // in the context of the entire postfix-expression. If the type T
321 // of the object expression is of a class type C, the type-name is
322 // also looked up in the scope of class C. At least one of the
323 // lookups shall find a name that refers to cv T.
324 //
325 // FIXME: The intent is unclear here. Should type-name::~type-name look in
326 // the scope anyway if it finds a non-matching name declared in the class?
327 // If both lookups succeed and find a dependent result, which result should
328 // we retain? (Same question for p->~type-name().)
329
330 if (NestedNameSpecifier *Prefix =
331 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
332 // This is
333 //
334 // nested-name-specifier type-name :: ~ type-name
335 //
336 // Look for the second type-name in the nested-name-specifier.
337 CXXScopeSpec PrefixSS;
338 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
339 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
340 return T;
341 } else {
342 // This is one of
343 //
344 // type-name :: ~ type-name
345 // ~ type-name
346 //
347 // Look in the scope and (if any) the object type.
348 if (ParsedType T = LookupInScope())
349 return T;
350 if (ParsedType T = LookupInObjectType())
351 return T;
352 }
353
354 if (Failed)
355 return nullptr;
356
357 if (IsDependent) {
358 // We didn't find our type, but that's OK: it's dependent anyway.
359
360 // FIXME: What if we have no nested-name-specifier?
361 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
362 SS.getWithLocInContext(Context),
363 II, NameLoc);
364 return ParsedType::make(T);
365 }
366
367 // The remaining cases are all non-standard extensions imitating the behavior
368 // of various other compilers.
369 unsigned NumNonExtensionDecls = FoundDecls.size();
370
371 if (SS.isSet()) {
372 // For compatibility with older broken C++ rules and existing code,
373 //
374 // nested-name-specifier :: ~ type-name
375 //
376 // also looks for type-name within the nested-name-specifier.
377 if (ParsedType T = LookupInNestedNameSpec(SS)) {
378 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
379 << SS.getRange()
380 << FixItHint::CreateInsertion(SS.getEndLoc(),
381 ("::" + II.getName()).str());
382 return T;
383 }
384
385 // For compatibility with other compilers and older versions of Clang,
386 //
387 // nested-name-specifier type-name :: ~ type-name
388 //
389 // also looks for type-name in the scope. Unfortunately, we can't
390 // reasonably apply this fallback for dependent nested-name-specifiers.
391 if (SS.getScopeRep()->getPrefix()) {
392 if (ParsedType T = LookupInScope()) {
393 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
394 << FixItHint::CreateRemoval(SS.getRange());
395 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
396 << GetTypeFromParser(T);
397 return T;
398 }
399 }
400 }
401
402 // We didn't find anything matching; tell the user what we did find (if
403 // anything).
404
405 // Don't tell the user about declarations we shouldn't have found.
406 FoundDecls.resize(NumNonExtensionDecls);
407
408 // List types before non-types.
409 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
410 [](NamedDecl *A, NamedDecl *B) {
411 return isa<TypeDecl>(A->getUnderlyingDecl()) >
412 isa<TypeDecl>(B->getUnderlyingDecl());
413 });
414
415 // Suggest a fixit to properly name the destroyed type.
416 auto MakeFixItHint = [&]{
417 const CXXRecordDecl *Destroyed = nullptr;
418 // FIXME: If we have a scope specifier, suggest its last component?
419 if (!SearchType.isNull())
420 Destroyed = SearchType->getAsCXXRecordDecl();
421 else if (S)
422 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
423 if (Destroyed)
424 return FixItHint::CreateReplacement(SourceRange(NameLoc),
425 Destroyed->getNameAsString());
426 return FixItHint();
427 };
428
429 if (FoundDecls.empty()) {
430 // FIXME: Attempt typo-correction?
431 Diag(NameLoc, diag::err_undeclared_destructor_name)
432 << &II << MakeFixItHint();
433 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
434 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
435 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 436, __extension__ __PRETTY_FUNCTION__
))
436 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 436, __extension__ __PRETTY_FUNCTION__
))
;
437 QualType T = Context.getTypeDeclType(TD);
438 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
439 << T << SearchType << MakeFixItHint();
440 } else {
441 Diag(NameLoc, diag::err_destructor_expr_nontype)
442 << &II << MakeFixItHint();
443 }
444 } else {
445 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
446 : diag::err_destructor_expr_mismatch)
447 << &II << SearchType << MakeFixItHint();
448 }
449
450 for (NamedDecl *FoundD : FoundDecls) {
451 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
452 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
453 << Context.getTypeDeclType(TD);
454 else
455 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
456 << FoundD;
457 }
458
459 return nullptr;
460}
461
462ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
463 ParsedType ObjectType) {
464 if (DS.getTypeSpecType() == DeclSpec::TST_error)
465 return nullptr;
466
467 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
468 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
469 return nullptr;
470 }
471
472 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 473, __extension__ __PRETTY_FUNCTION__
))
473 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 473, __extension__ __PRETTY_FUNCTION__
))
;
474 QualType T = BuildDecltypeType(DS.getRepAsExpr());
475
476 // If we know the type of the object, check that the correct destructor
477 // type was named now; we can give better diagnostics this way.
478 QualType SearchType = GetTypeFromParser(ObjectType);
479 if (!SearchType.isNull() && !SearchType->isDependentType() &&
480 !Context.hasSameUnqualifiedType(T, SearchType)) {
481 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
482 << T << SearchType;
483 return nullptr;
484 }
485
486 return ParsedType::make(T);
487}
488
489bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
490 const UnqualifiedId &Name, bool IsUDSuffix) {
491 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 491, __extension__ __PRETTY_FUNCTION__
))
;
492 if (!IsUDSuffix) {
493 // [over.literal] p8
494 //
495 // double operator""_Bq(long double); // OK: not a reserved identifier
496 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
497 IdentifierInfo *II = Name.Identifier;
498 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
499 SourceLocation Loc = Name.getEndLoc();
500 if (isReservedInAllContexts(Status) &&
501 !PP.getSourceManager().isInSystemHeader(Loc)) {
502 Diag(Loc, diag::warn_reserved_extern_symbol)
503 << II << static_cast<int>(Status)
504 << FixItHint::CreateReplacement(
505 Name.getSourceRange(),
506 (StringRef("operator\"\"") + II->getName()).str());
507 }
508 }
509
510 if (!SS.isValid())
511 return false;
512
513 switch (SS.getScopeRep()->getKind()) {
514 case NestedNameSpecifier::Identifier:
515 case NestedNameSpecifier::TypeSpec:
516 case NestedNameSpecifier::TypeSpecWithTemplate:
517 // Per C++11 [over.literal]p2, literal operators can only be declared at
518 // namespace scope. Therefore, this unqualified-id cannot name anything.
519 // Reject it early, because we have no AST representation for this in the
520 // case where the scope is dependent.
521 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
522 << SS.getScopeRep();
523 return true;
524
525 case NestedNameSpecifier::Global:
526 case NestedNameSpecifier::Super:
527 case NestedNameSpecifier::Namespace:
528 case NestedNameSpecifier::NamespaceAlias:
529 return false;
530 }
531
532 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 532)
;
533}
534
535/// Build a C++ typeid expression with a type operand.
536ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
537 SourceLocation TypeidLoc,
538 TypeSourceInfo *Operand,
539 SourceLocation RParenLoc) {
540 // C++ [expr.typeid]p4:
541 // The top-level cv-qualifiers of the lvalue expression or the type-id
542 // that is the operand of typeid are always ignored.
543 // If the type of the type-id is a class type or a reference to a class
544 // type, the class shall be completely-defined.
545 Qualifiers Quals;
546 QualType T
547 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
548 Quals);
549 if (T->getAs<RecordType>() &&
550 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
551 return ExprError();
552
553 if (T->isVariablyModifiedType())
554 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
555
556 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
557 return ExprError();
558
559 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
560 SourceRange(TypeidLoc, RParenLoc));
561}
562
563/// Build a C++ typeid expression with an expression operand.
564ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
565 SourceLocation TypeidLoc,
566 Expr *E,
567 SourceLocation RParenLoc) {
568 bool WasEvaluated = false;
569 if (E && !E->isTypeDependent()) {
13
Assuming 'E' is null
570 if (E->hasPlaceholderType()) {
571 ExprResult result = CheckPlaceholderExpr(E);
572 if (result.isInvalid()) return ExprError();
573 E = result.get();
574 }
575
576 QualType T = E->getType();
577 if (const RecordType *RecordT = T->getAs<RecordType>()) {
578 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
579 // C++ [expr.typeid]p3:
580 // [...] If the type of the expression is a class type, the class
581 // shall be completely-defined.
582 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
583 return ExprError();
584
585 // C++ [expr.typeid]p3:
586 // When typeid is applied to an expression other than an glvalue of a
587 // polymorphic class type [...] [the] expression is an unevaluated
588 // operand. [...]
589 if (RecordD->isPolymorphic() && E->isGLValue()) {
590 if (isUnevaluatedContext()) {
591 // The operand was processed in unevaluated context, switch the
592 // context and recheck the subexpression.
593 ExprResult Result = TransformToPotentiallyEvaluated(E);
594 if (Result.isInvalid())
595 return ExprError();
596 E = Result.get();
597 }
598
599 // We require a vtable to query the type at run time.
600 MarkVTableUsed(TypeidLoc, RecordD);
601 WasEvaluated = true;
602 }
603 }
604
605 ExprResult Result = CheckUnevaluatedOperand(E);
606 if (Result.isInvalid())
607 return ExprError();
608 E = Result.get();
609
610 // C++ [expr.typeid]p4:
611 // [...] If the type of the type-id is a reference to a possibly
612 // cv-qualified type, the result of the typeid expression refers to a
613 // std::type_info object representing the cv-unqualified referenced
614 // type.
615 Qualifiers Quals;
616 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
617 if (!Context.hasSameType(T, UnqualT)) {
618 T = UnqualT;
619 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
620 }
621 }
622
623 if (E->getType()->isVariablyModifiedType())
14
Called C++ object pointer is null
624 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
625 << E->getType());
626 else if (!inTemplateInstantiation() &&
627 E->HasSideEffects(Context, WasEvaluated)) {
628 // The expression operand for typeid is in an unevaluated expression
629 // context, so side effects could result in unintended consequences.
630 Diag(E->getExprLoc(), WasEvaluated
631 ? diag::warn_side_effects_typeid
632 : diag::warn_side_effects_unevaluated_context);
633 }
634
635 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
636 SourceRange(TypeidLoc, RParenLoc));
637}
638
639/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
640ExprResult
641Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
642 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
643 // typeid is not supported in OpenCL.
644 if (getLangOpts().OpenCLCPlusPlus) {
1
Assuming field 'OpenCLCPlusPlus' is 0
2
Taking false branch
645 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
646 << "typeid");
647 }
648
649 // Find the std::type_info type.
650 if (!getStdNamespace())
3
Assuming the condition is false
4
Taking false branch
651 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
652
653 if (!CXXTypeInfoDecl) {
5
Assuming field 'CXXTypeInfoDecl' is non-null
6
Taking false branch
654 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
655 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
656 LookupQualifiedName(R, getStdNamespace());
657 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
658 // Microsoft's typeinfo doesn't have type_info in std but in the global
659 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
660 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
661 LookupQualifiedName(R, Context.getTranslationUnitDecl());
662 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
663 }
664 if (!CXXTypeInfoDecl)
665 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
666 }
667
668 if (!getLangOpts().RTTI) {
7
Assuming field 'RTTI' is not equal to 0
8
Taking false branch
669 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
670 }
671
672 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
673
674 if (isType) {
9
Assuming 'isType' is false
10
Taking false branch
675 // The operand is a type; handle it as such.
676 TypeSourceInfo *TInfo = nullptr;
677 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
678 &TInfo);
679 if (T.isNull())
680 return ExprError();
681
682 if (!TInfo)
683 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
684
685 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
686 }
687
688 // The operand is an expression.
689 ExprResult Result =
690 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
11
Passing value via 3rd parameter 'E'
12
Calling 'Sema::BuildCXXTypeId'
691
692 if (!getLangOpts().RTTIData && !Result.isInvalid())
693 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
694 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
695 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
696 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
697 DiagnosticOptions::MSVC);
698 return Result;
699}
700
701/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
702/// a single GUID.
703static void
704getUuidAttrOfType(Sema &SemaRef, QualType QT,
705 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
706 // Optionally remove one level of pointer, reference or array indirection.
707 const Type *Ty = QT.getTypePtr();
708 if (QT->isPointerType() || QT->isReferenceType())
709 Ty = QT->getPointeeType().getTypePtr();
710 else if (QT->isArrayType())
711 Ty = Ty->getBaseElementTypeUnsafe();
712
713 const auto *TD = Ty->getAsTagDecl();
714 if (!TD)
715 return;
716
717 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
718 UuidAttrs.insert(Uuid);
719 return;
720 }
721
722 // __uuidof can grab UUIDs from template arguments.
723 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
724 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
725 for (const TemplateArgument &TA : TAL.asArray()) {
726 const UuidAttr *UuidForTA = nullptr;
727 if (TA.getKind() == TemplateArgument::Type)
728 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
729 else if (TA.getKind() == TemplateArgument::Declaration)
730 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
731
732 if (UuidForTA)
733 UuidAttrs.insert(UuidForTA);
734 }
735 }
736}
737
738/// Build a Microsoft __uuidof expression with a type operand.
739ExprResult Sema::BuildCXXUuidof(QualType Type,
740 SourceLocation TypeidLoc,
741 TypeSourceInfo *Operand,
742 SourceLocation RParenLoc) {
743 MSGuidDecl *Guid = nullptr;
744 if (!Operand->getType()->isDependentType()) {
745 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
746 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
747 if (UuidAttrs.empty())
748 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
749 if (UuidAttrs.size() > 1)
750 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
751 Guid = UuidAttrs.back()->getGuidDecl();
752 }
753
754 return new (Context)
755 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
756}
757
758/// Build a Microsoft __uuidof expression with an expression operand.
759ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
760 Expr *E, SourceLocation RParenLoc) {
761 MSGuidDecl *Guid = nullptr;
762 if (!E->getType()->isDependentType()) {
763 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
764 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
765 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
766 } else {
767 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
768 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
769 if (UuidAttrs.empty())
770 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
771 if (UuidAttrs.size() > 1)
772 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
773 Guid = UuidAttrs.back()->getGuidDecl();
774 }
775 }
776
777 return new (Context)
778 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
779}
780
781/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
782ExprResult
783Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
784 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
785 QualType GuidType = Context.getMSGuidType();
786 GuidType.addConst();
787
788 if (isType) {
789 // The operand is a type; handle it as such.
790 TypeSourceInfo *TInfo = nullptr;
791 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
792 &TInfo);
793 if (T.isNull())
794 return ExprError();
795
796 if (!TInfo)
797 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
798
799 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
800 }
801
802 // The operand is an expression.
803 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
804}
805
806/// ActOnCXXBoolLiteral - Parse {true,false} literals.
807ExprResult
808Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
809 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 810, __extension__ __PRETTY_FUNCTION__
))
810 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 810, __extension__ __PRETTY_FUNCTION__
))
;
811 return new (Context)
812 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
813}
814
815/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
816ExprResult
817Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
818 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
819}
820
821/// ActOnCXXThrow - Parse throw expressions.
822ExprResult
823Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
824 bool IsThrownVarInScope = false;
825 if (Ex) {
826 // C++0x [class.copymove]p31:
827 // When certain criteria are met, an implementation is allowed to omit the
828 // copy/move construction of a class object [...]
829 //
830 // - in a throw-expression, when the operand is the name of a
831 // non-volatile automatic object (other than a function or catch-
832 // clause parameter) whose scope does not extend beyond the end of the
833 // innermost enclosing try-block (if there is one), the copy/move
834 // operation from the operand to the exception object (15.1) can be
835 // omitted by constructing the automatic object directly into the
836 // exception object
837 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
838 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
839 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
840 for( ; S; S = S->getParent()) {
841 if (S->isDeclScope(Var)) {
842 IsThrownVarInScope = true;
843 break;
844 }
845
846 // FIXME: Many of the scope checks here seem incorrect.
847 if (S->getFlags() &
848 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
849 Scope::ObjCMethodScope | Scope::TryScope))
850 break;
851 }
852 }
853 }
854 }
855
856 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
857}
858
859ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
860 bool IsThrownVarInScope) {
861 // Don't report an error if 'throw' is used in system headers.
862 if (!getLangOpts().CXXExceptions &&
863 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
864 // Delay error emission for the OpenMP device code.
865 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
866 }
867
868 // Exceptions aren't allowed in CUDA device code.
869 if (getLangOpts().CUDA)
870 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
871 << "throw" << CurrentCUDATarget();
872
873 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
874 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
875
876 if (Ex && !Ex->isTypeDependent()) {
877 // Initialize the exception result. This implicitly weeds out
878 // abstract types or types with inaccessible copy constructors.
879
880 // C++0x [class.copymove]p31:
881 // When certain criteria are met, an implementation is allowed to omit the
882 // copy/move construction of a class object [...]
883 //
884 // - in a throw-expression, when the operand is the name of a
885 // non-volatile automatic object (other than a function or
886 // catch-clause
887 // parameter) whose scope does not extend beyond the end of the
888 // innermost enclosing try-block (if there is one), the copy/move
889 // operation from the operand to the exception object (15.1) can be
890 // omitted by constructing the automatic object directly into the
891 // exception object
892 NamedReturnInfo NRInfo =
893 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
894
895 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
896 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
897 return ExprError();
898
899 InitializedEntity Entity =
900 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
901 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
902 if (Res.isInvalid())
903 return ExprError();
904 Ex = Res.get();
905 }
906
907 // PPC MMA non-pointer types are not allowed as throw expr types.
908 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
909 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
910
911 return new (Context)
912 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
913}
914
915static void
916collectPublicBases(CXXRecordDecl *RD,
917 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
918 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
919 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
920 bool ParentIsPublic) {
921 for (const CXXBaseSpecifier &BS : RD->bases()) {
922 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
923 bool NewSubobject;
924 // Virtual bases constitute the same subobject. Non-virtual bases are
925 // always distinct subobjects.
926 if (BS.isVirtual())
927 NewSubobject = VBases.insert(BaseDecl).second;
928 else
929 NewSubobject = true;
930
931 if (NewSubobject)
932 ++SubobjectsSeen[BaseDecl];
933
934 // Only add subobjects which have public access throughout the entire chain.
935 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
936 if (PublicPath)
937 PublicSubobjectsSeen.insert(BaseDecl);
938
939 // Recurse on to each base subobject.
940 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
941 PublicPath);
942 }
943}
944
945static void getUnambiguousPublicSubobjects(
946 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
947 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
948 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
949 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
950 SubobjectsSeen[RD] = 1;
951 PublicSubobjectsSeen.insert(RD);
952 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
953 /*ParentIsPublic=*/true);
954
955 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
956 // Skip ambiguous objects.
957 if (SubobjectsSeen[PublicSubobject] > 1)
958 continue;
959
960 Objects.push_back(PublicSubobject);
961 }
962}
963
964/// CheckCXXThrowOperand - Validate the operand of a throw.
965bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
966 QualType ExceptionObjectTy, Expr *E) {
967 // If the type of the exception would be an incomplete type or a pointer
968 // to an incomplete type other than (cv) void the program is ill-formed.
969 QualType Ty = ExceptionObjectTy;
970 bool isPointer = false;
971 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
972 Ty = Ptr->getPointeeType();
973 isPointer = true;
974 }
975 if (!isPointer || !Ty->isVoidType()) {
976 if (RequireCompleteType(ThrowLoc, Ty,
977 isPointer ? diag::err_throw_incomplete_ptr
978 : diag::err_throw_incomplete,
979 E->getSourceRange()))
980 return true;
981
982 if (!isPointer && Ty->isSizelessType()) {
983 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
984 return true;
985 }
986
987 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
988 diag::err_throw_abstract_type, E))
989 return true;
990 }
991
992 // If the exception has class type, we need additional handling.
993 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
994 if (!RD)
995 return false;
996
997 // If we are throwing a polymorphic class type or pointer thereof,
998 // exception handling will make use of the vtable.
999 MarkVTableUsed(ThrowLoc, RD);
1000
1001 // If a pointer is thrown, the referenced object will not be destroyed.
1002 if (isPointer)
1003 return false;
1004
1005 // If the class has a destructor, we must be able to call it.
1006 if (!RD->hasIrrelevantDestructor()) {
1007 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1008 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1009 CheckDestructorAccess(E->getExprLoc(), Destructor,
1010 PDiag(diag::err_access_dtor_exception) << Ty);
1011 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1012 return true;
1013 }
1014 }
1015
1016 // The MSVC ABI creates a list of all types which can catch the exception
1017 // object. This list also references the appropriate copy constructor to call
1018 // if the object is caught by value and has a non-trivial copy constructor.
1019 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1020 // We are only interested in the public, unambiguous bases contained within
1021 // the exception object. Bases which are ambiguous or otherwise
1022 // inaccessible are not catchable types.
1023 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1024 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1025
1026 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1027 // Attempt to lookup the copy constructor. Various pieces of machinery
1028 // will spring into action, like template instantiation, which means this
1029 // cannot be a simple walk of the class's decls. Instead, we must perform
1030 // lookup and overload resolution.
1031 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1032 if (!CD || CD->isDeleted())
1033 continue;
1034
1035 // Mark the constructor referenced as it is used by this throw expression.
1036 MarkFunctionReferenced(E->getExprLoc(), CD);
1037
1038 // Skip this copy constructor if it is trivial, we don't need to record it
1039 // in the catchable type data.
1040 if (CD->isTrivial())
1041 continue;
1042
1043 // The copy constructor is non-trivial, create a mapping from this class
1044 // type to this constructor.
1045 // N.B. The selection of copy constructor is not sensitive to this
1046 // particular throw-site. Lookup will be performed at the catch-site to
1047 // ensure that the copy constructor is, in fact, accessible (via
1048 // friendship or any other means).
1049 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1050
1051 // We don't keep the instantiated default argument expressions around so
1052 // we must rebuild them here.
1053 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1054 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1055 return true;
1056 }
1057 }
1058 }
1059
1060 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1061 // the runtime with no ability for the compiler to request additional
1062 // alignment. Warn if the exception type requires alignment beyond the minimum
1063 // guaranteed by the target C++ runtime.
1064 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1065 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1066 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1067 if (ExnObjAlign < TypeAlign) {
1068 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1069 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1070 << Ty << (unsigned)TypeAlign.getQuantity()
1071 << (unsigned)ExnObjAlign.getQuantity();
1072 }
1073 }
1074
1075 return false;
1076}
1077
1078static QualType adjustCVQualifiersForCXXThisWithinLambda(
1079 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1080 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1081
1082 QualType ClassType = ThisTy->getPointeeType();
1083 LambdaScopeInfo *CurLSI = nullptr;
1084 DeclContext *CurDC = CurSemaContext;
1085
1086 // Iterate through the stack of lambdas starting from the innermost lambda to
1087 // the outermost lambda, checking if '*this' is ever captured by copy - since
1088 // that could change the cv-qualifiers of the '*this' object.
1089 // The object referred to by '*this' starts out with the cv-qualifiers of its
1090 // member function. We then start with the innermost lambda and iterate
1091 // outward checking to see if any lambda performs a by-copy capture of '*this'
1092 // - and if so, any nested lambda must respect the 'constness' of that
1093 // capturing lamdbda's call operator.
1094 //
1095
1096 // Since the FunctionScopeInfo stack is representative of the lexical
1097 // nesting of the lambda expressions during initial parsing (and is the best
1098 // place for querying information about captures about lambdas that are
1099 // partially processed) and perhaps during instantiation of function templates
1100 // that contain lambda expressions that need to be transformed BUT not
1101 // necessarily during instantiation of a nested generic lambda's function call
1102 // operator (which might even be instantiated at the end of the TU) - at which
1103 // time the DeclContext tree is mature enough to query capture information
1104 // reliably - we use a two pronged approach to walk through all the lexically
1105 // enclosing lambda expressions:
1106 //
1107 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1108 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1109 // enclosed by the call-operator of the LSI below it on the stack (while
1110 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1111 // the stack represents the innermost lambda.
1112 //
1113 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1114 // represents a lambda's call operator. If it does, we must be instantiating
1115 // a generic lambda's call operator (represented by the Current LSI, and
1116 // should be the only scenario where an inconsistency between the LSI and the
1117 // DeclContext should occur), so climb out the DeclContexts if they
1118 // represent lambdas, while querying the corresponding closure types
1119 // regarding capture information.
1120
1121 // 1) Climb down the function scope info stack.
1122 for (int I = FunctionScopes.size();
1123 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1124 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1125 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1126 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1127 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1128
1129 if (!CurLSI->isCXXThisCaptured())
1130 continue;
1131
1132 auto C = CurLSI->getCXXThisCapture();
1133
1134 if (C.isCopyCapture()) {
1135 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1136 if (CurLSI->CallOperator->isConst())
1137 ClassType.addConst();
1138 return ASTCtx.getPointerType(ClassType);
1139 }
1140 }
1141
1142 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1143 // can happen during instantiation of its nested generic lambda call
1144 // operator); 2. if we're in a lambda scope (lambda body).
1145 if (CurLSI && isLambdaCallOperator(CurDC)) {
1146 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1147 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1148 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1149 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1150 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
;
1151 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1151, __extension__ __PRETTY_FUNCTION__
))
;
1152
1153 auto IsThisCaptured =
1154 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1155 IsConst = false;
1156 IsByCopy = false;
1157 for (auto &&C : Closure->captures()) {
1158 if (C.capturesThis()) {
1159 if (C.getCaptureKind() == LCK_StarThis)
1160 IsByCopy = true;
1161 if (Closure->getLambdaCallOperator()->isConst())
1162 IsConst = true;
1163 return true;
1164 }
1165 }
1166 return false;
1167 };
1168
1169 bool IsByCopyCapture = false;
1170 bool IsConstCapture = false;
1171 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1172 while (Closure &&
1173 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1174 if (IsByCopyCapture) {
1175 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1176 if (IsConstCapture)
1177 ClassType.addConst();
1178 return ASTCtx.getPointerType(ClassType);
1179 }
1180 Closure = isLambdaCallOperator(Closure->getParent())
1181 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1182 : nullptr;
1183 }
1184 }
1185 return ASTCtx.getPointerType(ClassType);
1186}
1187
1188QualType Sema::getCurrentThisType() {
1189 DeclContext *DC = getFunctionLevelDeclContext();
1190 QualType ThisTy = CXXThisTypeOverride;
1191
1192 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1193 if (method && method->isInstance())
1194 ThisTy = method->getThisType();
1195 }
1196
1197 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1198 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1199
1200 // This is a lambda call operator that is being instantiated as a default
1201 // initializer. DC must point to the enclosing class type, so we can recover
1202 // the 'this' type from it.
1203 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1204 // There are no cv-qualifiers for 'this' within default initializers,
1205 // per [expr.prim.general]p4.
1206 ThisTy = Context.getPointerType(ClassTy);
1207 }
1208
1209 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1210 // might need to be adjusted if the lambda or any of its enclosing lambda's
1211 // captures '*this' by copy.
1212 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1213 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1214 CurContext, Context);
1215 return ThisTy;
1216}
1217
1218Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1219 Decl *ContextDecl,
1220 Qualifiers CXXThisTypeQuals,
1221 bool Enabled)
1222 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1223{
1224 if (!Enabled || !ContextDecl)
1225 return;
1226
1227 CXXRecordDecl *Record = nullptr;
1228 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1229 Record = Template->getTemplatedDecl();
1230 else
1231 Record = cast<CXXRecordDecl>(ContextDecl);
1232
1233 QualType T = S.Context.getRecordType(Record);
1234 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1235
1236 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1237
1238 this->Enabled = true;
1239}
1240
1241
1242Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1243 if (Enabled) {
1244 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1245 }
1246}
1247
1248static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1249 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1250 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1250, __extension__ __PRETTY_FUNCTION__))
;
1251 // [=, this] {}; // until C++20: Error: this when = is the default
1252 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1253 !Sema.getLangOpts().CPlusPlus20)
1254 return;
1255 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1256 << FixItHint::CreateInsertion(
1257 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1258}
1259
1260bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1261 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1262 const bool ByCopy) {
1263 // We don't need to capture this in an unevaluated context.
1264 if (isUnevaluatedContext() && !Explicit)
1265 return true;
1266
1267 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1267, __extension__ __PRETTY_FUNCTION__
))
;
1268
1269 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1270 ? *FunctionScopeIndexToStopAt
1271 : FunctionScopes.size() - 1;
1272
1273 // Check that we can capture the *enclosing object* (referred to by '*this')
1274 // by the capturing-entity/closure (lambda/block/etc) at
1275 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1276
1277 // Note: The *enclosing object* can only be captured by-value by a
1278 // closure that is a lambda, using the explicit notation:
1279 // [*this] { ... }.
1280 // Every other capture of the *enclosing object* results in its by-reference
1281 // capture.
1282
1283 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1284 // stack), we can capture the *enclosing object* only if:
1285 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1286 // - or, 'L' has an implicit capture.
1287 // AND
1288 // -- there is no enclosing closure
1289 // -- or, there is some enclosing closure 'E' that has already captured the
1290 // *enclosing object*, and every intervening closure (if any) between 'E'
1291 // and 'L' can implicitly capture the *enclosing object*.
1292 // -- or, every enclosing closure can implicitly capture the
1293 // *enclosing object*
1294
1295
1296 unsigned NumCapturingClosures = 0;
1297 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1298 if (CapturingScopeInfo *CSI =
1299 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1300 if (CSI->CXXThisCaptureIndex != 0) {
1301 // 'this' is already being captured; there isn't anything more to do.
1302 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1303 break;
1304 }
1305 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1306 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1307 // This context can't implicitly capture 'this'; fail out.
1308 if (BuildAndDiagnose) {
1309 Diag(Loc, diag::err_this_capture)
1310 << (Explicit && idx == MaxFunctionScopesIndex);
1311 if (!Explicit)
1312 buildLambdaThisCaptureFixit(*this, LSI);
1313 }
1314 return true;
1315 }
1316 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1318 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1319 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1320 (Explicit && idx == MaxFunctionScopesIndex)) {
1321 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1322 // iteration through can be an explicit capture, all enclosing closures,
1323 // if any, must perform implicit captures.
1324
1325 // This closure can capture 'this'; continue looking upwards.
1326 NumCapturingClosures++;
1327 continue;
1328 }
1329 // This context can't implicitly capture 'this'; fail out.
1330 if (BuildAndDiagnose)
1331 Diag(Loc, diag::err_this_capture)
1332 << (Explicit && idx == MaxFunctionScopesIndex);
1333
1334 if (!Explicit)
1335 buildLambdaThisCaptureFixit(*this, LSI);
1336 return true;
1337 }
1338 break;
1339 }
1340 if (!BuildAndDiagnose) return false;
1341
1342 // If we got here, then the closure at MaxFunctionScopesIndex on the
1343 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1344 // (including implicit by-reference captures in any enclosing closures).
1345
1346 // In the loop below, respect the ByCopy flag only for the closure requesting
1347 // the capture (i.e. first iteration through the loop below). Ignore it for
1348 // all enclosing closure's up to NumCapturingClosures (since they must be
1349 // implicitly capturing the *enclosing object* by reference (see loop
1350 // above)).
1351 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1352 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1353 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1354 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
;
1355 QualType ThisTy = getCurrentThisType();
1356 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1357 --idx, --NumCapturingClosures) {
1358 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1359
1360 // The type of the corresponding data member (not a 'this' pointer if 'by
1361 // copy').
1362 QualType CaptureType = ThisTy;
1363 if (ByCopy) {
1364 // If we are capturing the object referred to by '*this' by copy, ignore
1365 // any cv qualifiers inherited from the type of the member function for
1366 // the type of the closure-type's corresponding data member and any use
1367 // of 'this'.
1368 CaptureType = ThisTy->getPointeeType();
1369 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1370 }
1371
1372 bool isNested = NumCapturingClosures > 1;
1373 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1374 }
1375 return false;
1376}
1377
1378ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1379 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1380 /// is a non-lvalue expression whose value is the address of the object for
1381 /// which the function is called.
1382
1383 QualType ThisTy = getCurrentThisType();
1384 if (ThisTy.isNull())
1385 return Diag(Loc, diag::err_invalid_this_use);
1386 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1387}
1388
1389Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1390 bool IsImplicit) {
1391 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1392 MarkThisReferenced(This);
1393 return This;
1394}
1395
1396void Sema::MarkThisReferenced(CXXThisExpr *This) {
1397 CheckCXXThisCapture(This->getExprLoc());
1398}
1399
1400bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1401 // If we're outside the body of a member function, then we'll have a specified
1402 // type for 'this'.
1403 if (CXXThisTypeOverride.isNull())
1404 return false;
1405
1406 // Determine whether we're looking into a class that's currently being
1407 // defined.
1408 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1409 return Class && Class->isBeingDefined();
1410}
1411
1412/// Parse construction of a specified type.
1413/// Can be interpreted either as function-style casting ("int(x)")
1414/// or class type construction ("ClassType(x,y,z)")
1415/// or creation of a value-initialized type ("int()").
1416ExprResult
1417Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1418 SourceLocation LParenOrBraceLoc,
1419 MultiExprArg exprs,
1420 SourceLocation RParenOrBraceLoc,
1421 bool ListInitialization) {
1422 if (!TypeRep)
1423 return ExprError();
1424
1425 TypeSourceInfo *TInfo;
1426 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1427 if (!TInfo)
1428 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1429
1430 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1431 RParenOrBraceLoc, ListInitialization);
1432 // Avoid creating a non-type-dependent expression that contains typos.
1433 // Non-type-dependent expressions are liable to be discarded without
1434 // checking for embedded typos.
1435 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1436 !Result.get()->isTypeDependent())
1437 Result = CorrectDelayedTyposInExpr(Result.get());
1438 else if (Result.isInvalid())
1439 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1440 RParenOrBraceLoc, exprs, Ty);
1441 return Result;
1442}
1443
1444ExprResult
1445Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1446 SourceLocation LParenOrBraceLoc,
1447 MultiExprArg Exprs,
1448 SourceLocation RParenOrBraceLoc,
1449 bool ListInitialization) {
1450 QualType Ty = TInfo->getType();
1451 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1452
1453 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
1454 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
1455 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
;
1456 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1457
1458 InitializedEntity Entity =
1459 InitializedEntity::InitializeTemporary(Context, TInfo);
1460 InitializationKind Kind =
1461 Exprs.size()
1462 ? ListInitialization
1463 ? InitializationKind::CreateDirectList(
1464 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1465 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1466 RParenOrBraceLoc)
1467 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1468 RParenOrBraceLoc);
1469
1470 // C++1z [expr.type.conv]p1:
1471 // If the type is a placeholder for a deduced class type, [...perform class
1472 // template argument deduction...]
1473 // C++2b:
1474 // Otherwise, if the type contains a placeholder type, it is replaced by the
1475 // type determined by placeholder type deduction.
1476 DeducedType *Deduced = Ty->getContainedDeducedType();
1477 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1478 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1479 Kind, Exprs);
1480 if (Ty.isNull())
1481 return ExprError();
1482 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1483 } else if (Deduced) {
1484 MultiExprArg Inits = Exprs;
1485 if (ListInitialization) {
1486 auto *ILE = cast<InitListExpr>(Exprs[0]);
1487 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1488 }
1489
1490 if (Inits.empty())
1491 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1492 << Ty << FullRange);
1493 if (Inits.size() > 1) {
1494 Expr *FirstBad = Inits[1];
1495 return ExprError(Diag(FirstBad->getBeginLoc(),
1496 diag::err_auto_expr_init_multiple_expressions)
1497 << Ty << FullRange);
1498 }
1499 if (getLangOpts().CPlusPlus2b) {
1500 if (Ty->getAs<AutoType>())
1501 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1502 }
1503 Expr *Deduce = Inits[0];
1504 if (isa<InitListExpr>(Deduce))
1505 return ExprError(
1506 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1507 << ListInitialization << Ty << FullRange);
1508 QualType DeducedType;
1509 TemplateDeductionInfo Info(Deduce->getExprLoc());
1510 TemplateDeductionResult Result =
1511 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1512 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1513 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1514 << Ty << Deduce->getType() << FullRange
1515 << Deduce->getSourceRange());
1516 if (DeducedType.isNull()) {
1517 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 1517, __extension__ __PRETTY_FUNCTION__))
;
1518 return ExprError();
1519 }
1520
1521 Ty = DeducedType;
1522 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1523 }
1524
1525 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1526 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1527 // directly. We work around this by dropping the locations of the braces.
1528 SourceRange Locs = ListInitialization
1529 ? SourceRange()
1530 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1531 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1532 TInfo, Locs.getBegin(), Exprs,
1533 Locs.getEnd());
1534 }
1535
1536 // C++ [expr.type.conv]p1:
1537 // If the expression list is a parenthesized single expression, the type
1538 // conversion expression is equivalent (in definedness, and if defined in
1539 // meaning) to the corresponding cast expression.
1540 if (Exprs.size() == 1 && !ListInitialization &&
1541 !isa<InitListExpr>(Exprs[0])) {
1542 Expr *Arg = Exprs[0];
1543 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1544 RParenOrBraceLoc);
1545 }
1546
1547 // For an expression of the form T(), T shall not be an array type.
1548 QualType ElemTy = Ty;
1549 if (Ty->isArrayType()) {
1550 if (!ListInitialization)
1551 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1552 << FullRange);
1553 ElemTy = Context.getBaseElementType(Ty);
1554 }
1555
1556 // Only construct objects with object types.
1557 // The standard doesn't explicitly forbid function types here, but that's an
1558 // obvious oversight, as there's no way to dynamically construct a function
1559 // in general.
1560 if (Ty->isFunctionType())
1561 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1562 << Ty << FullRange);
1563
1564 // C++17 [expr.type.conv]p2:
1565 // If the type is cv void and the initializer is (), the expression is a
1566 // prvalue of the specified type that performs no initialization.
1567 if (!Ty->isVoidType() &&
1568 RequireCompleteType(TyBeginLoc, ElemTy,
1569 diag::err_invalid_incomplete_type_use, FullRange))
1570 return ExprError();
1571
1572 // Otherwise, the expression is a prvalue of the specified type whose
1573 // result object is direct-initialized (11.6) with the initializer.
1574 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1575 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1576
1577 if (Result.isInvalid())
1578 return Result;
1579
1580 Expr *Inner = Result.get();
1581 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1582 Inner = BTE->getSubExpr();
1583 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1584 !isa<CXXScalarValueInitExpr>(Inner)) {
1585 // If we created a CXXTemporaryObjectExpr, that node also represents the
1586 // functional cast. Otherwise, create an explicit cast to represent
1587 // the syntactic form of a functional-style cast that was used here.
1588 //
1589 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1590 // would give a more consistent AST representation than using a
1591 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1592 // is sometimes handled by initialization and sometimes not.
1593 QualType ResultType = Result.get()->getType();
1594 SourceRange Locs = ListInitialization
1595 ? SourceRange()
1596 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1597 Result = CXXFunctionalCastExpr::Create(
1598 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1599 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1600 Locs.getBegin(), Locs.getEnd());
1601 }
1602
1603 return Result;
1604}
1605
1606bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1607 // [CUDA] Ignore this function, if we can't call it.
1608 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1609 if (getLangOpts().CUDA) {
1610 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1611 // If it's not callable at all, it's not the right function.
1612 if (CallPreference < CFP_WrongSide)
1613 return false;
1614 if (CallPreference == CFP_WrongSide) {
1615 // Maybe. We have to check if there are better alternatives.
1616 DeclContext::lookup_result R =
1617 Method->getDeclContext()->lookup(Method->getDeclName());
1618 for (const auto *D : R) {
1619 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1620 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1621 return false;
1622 }
1623 }
1624 // We've found no better variants.
1625 }
1626 }
1627
1628 SmallVector<const FunctionDecl*, 4> PreventedBy;
1629 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1630
1631 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1632 return Result;
1633
1634 // In case of CUDA, return true if none of the 1-argument deallocator
1635 // functions are actually callable.
1636 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1637 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1638, __extension__ __PRETTY_FUNCTION__
))
1638 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1638, __extension__ __PRETTY_FUNCTION__
))
;
1639 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1640 });
1641}
1642
1643/// Determine whether the given function is a non-placement
1644/// deallocation function.
1645static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1646 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1647 return S.isUsualDeallocationFunction(Method);
1648
1649 if (FD->getOverloadedOperator() != OO_Delete &&
1650 FD->getOverloadedOperator() != OO_Array_Delete)
1651 return false;
1652
1653 unsigned UsualParams = 1;
1654
1655 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1656 S.Context.hasSameUnqualifiedType(
1657 FD->getParamDecl(UsualParams)->getType(),
1658 S.Context.getSizeType()))
1659 ++UsualParams;
1660
1661 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1662 S.Context.hasSameUnqualifiedType(
1663 FD->getParamDecl(UsualParams)->getType(),
1664 S.Context.getTypeDeclType(S.getStdAlignValT())))
1665 ++UsualParams;
1666
1667 return UsualParams == FD->getNumParams();
1668}
1669
1670namespace {
1671 struct UsualDeallocFnInfo {
1672 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1673 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1674 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1675 Destroying(false), HasSizeT(false), HasAlignValT(false),
1676 CUDAPref(Sema::CFP_Native) {
1677 // A function template declaration is never a usual deallocation function.
1678 if (!FD)
1679 return;
1680 unsigned NumBaseParams = 1;
1681 if (FD->isDestroyingOperatorDelete()) {
1682 Destroying = true;
1683 ++NumBaseParams;
1684 }
1685
1686 if (NumBaseParams < FD->getNumParams() &&
1687 S.Context.hasSameUnqualifiedType(
1688 FD->getParamDecl(NumBaseParams)->getType(),
1689 S.Context.getSizeType())) {
1690 ++NumBaseParams;
1691 HasSizeT = true;
1692 }
1693
1694 if (NumBaseParams < FD->getNumParams() &&
1695 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1696 ++NumBaseParams;
1697 HasAlignValT = true;
1698 }
1699
1700 // In CUDA, determine how much we'd like / dislike to call this.
1701 if (S.getLangOpts().CUDA)
1702 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1703 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1704 }
1705
1706 explicit operator bool() const { return FD; }
1707
1708 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1709 bool WantAlign) const {
1710 // C++ P0722:
1711 // A destroying operator delete is preferred over a non-destroying
1712 // operator delete.
1713 if (Destroying != Other.Destroying)
1714 return Destroying;
1715
1716 // C++17 [expr.delete]p10:
1717 // If the type has new-extended alignment, a function with a parameter
1718 // of type std::align_val_t is preferred; otherwise a function without
1719 // such a parameter is preferred
1720 if (HasAlignValT != Other.HasAlignValT)
1721 return HasAlignValT == WantAlign;
1722
1723 if (HasSizeT != Other.HasSizeT)
1724 return HasSizeT == WantSize;
1725
1726 // Use CUDA call preference as a tiebreaker.
1727 return CUDAPref > Other.CUDAPref;
1728 }
1729
1730 DeclAccessPair Found;
1731 FunctionDecl *FD;
1732 bool Destroying, HasSizeT, HasAlignValT;
1733 Sema::CUDAFunctionPreference CUDAPref;
1734 };
1735}
1736
1737/// Determine whether a type has new-extended alignment. This may be called when
1738/// the type is incomplete (for a delete-expression with an incomplete pointee
1739/// type), in which case it will conservatively return false if the alignment is
1740/// not known.
1741static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1742 return S.getLangOpts().AlignedAllocation &&
1743 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1744 S.getASTContext().getTargetInfo().getNewAlign();
1745}
1746
1747/// Select the correct "usual" deallocation function to use from a selection of
1748/// deallocation functions (either global or class-scope).
1749static UsualDeallocFnInfo resolveDeallocationOverload(
1750 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1751 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1752 UsualDeallocFnInfo Best;
1753
1754 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1755 UsualDeallocFnInfo Info(S, I.getPair());
1756 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1757 Info.CUDAPref == Sema::CFP_Never)
1758 continue;
1759
1760 if (!Best) {
1761 Best = Info;
1762 if (BestFns)
1763 BestFns->push_back(Info);
1764 continue;
1765 }
1766
1767 if (Best.isBetterThan(Info, WantSize, WantAlign))
1768 continue;
1769
1770 // If more than one preferred function is found, all non-preferred
1771 // functions are eliminated from further consideration.
1772 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1773 BestFns->clear();
1774
1775 Best = Info;
1776 if (BestFns)
1777 BestFns->push_back(Info);
1778 }
1779
1780 return Best;
1781}
1782
1783/// Determine whether a given type is a class for which 'delete[]' would call
1784/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1785/// we need to store the array size (even if the type is
1786/// trivially-destructible).
1787static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1788 QualType allocType) {
1789 const RecordType *record =
1790 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1791 if (!record) return false;
1792
1793 // Try to find an operator delete[] in class scope.
1794
1795 DeclarationName deleteName =
1796 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1797 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1798 S.LookupQualifiedName(ops, record->getDecl());
1799
1800 // We're just doing this for information.
1801 ops.suppressDiagnostics();
1802
1803 // Very likely: there's no operator delete[].
1804 if (ops.empty()) return false;
1805
1806 // If it's ambiguous, it should be illegal to call operator delete[]
1807 // on this thing, so it doesn't matter if we allocate extra space or not.
1808 if (ops.isAmbiguous()) return false;
1809
1810 // C++17 [expr.delete]p10:
1811 // If the deallocation functions have class scope, the one without a
1812 // parameter of type std::size_t is selected.
1813 auto Best = resolveDeallocationOverload(
1814 S, ops, /*WantSize*/false,
1815 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1816 return Best && Best.HasSizeT;
1817}
1818
1819/// Parsed a C++ 'new' expression (C++ 5.3.4).
1820///
1821/// E.g.:
1822/// @code new (memory) int[size][4] @endcode
1823/// or
1824/// @code ::new Foo(23, "hello") @endcode
1825///
1826/// \param StartLoc The first location of the expression.
1827/// \param UseGlobal True if 'new' was prefixed with '::'.
1828/// \param PlacementLParen Opening paren of the placement arguments.
1829/// \param PlacementArgs Placement new arguments.
1830/// \param PlacementRParen Closing paren of the placement arguments.
1831/// \param TypeIdParens If the type is in parens, the source range.
1832/// \param D The type to be allocated, as well as array dimensions.
1833/// \param Initializer The initializing expression or initializer-list, or null
1834/// if there is none.
1835ExprResult
1836Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1837 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1838 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1839 Declarator &D, Expr *Initializer) {
1840 Optional<Expr *> ArraySize;
1841 // If the specified type is an array, unwrap it and save the expression.
1842 if (D.getNumTypeObjects() > 0 &&
1843 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1844 DeclaratorChunk &Chunk = D.getTypeObject(0);
1845 if (D.getDeclSpec().hasAutoTypeSpec())
1846 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1847 << D.getSourceRange());
1848 if (Chunk.Arr.hasStatic)
1849 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1850 << D.getSourceRange());
1851 if (!Chunk.Arr.NumElts && !Initializer)
1852 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1853 << D.getSourceRange());
1854
1855 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1856 D.DropFirstTypeObject();
1857 }
1858
1859 // Every dimension shall be of constant size.
1860 if (ArraySize) {
1861 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1862 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1863 break;
1864
1865 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1866 if (Expr *NumElts = (Expr *)Array.NumElts) {
1867 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1868 // FIXME: GCC permits constant folding here. We should either do so consistently
1869 // or not do so at all, rather than changing behavior in C++14 onwards.
1870 if (getLangOpts().CPlusPlus14) {
1871 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1872 // shall be a converted constant expression (5.19) of type std::size_t
1873 // and shall evaluate to a strictly positive value.
1874 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1875 Array.NumElts
1876 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1877 CCEK_ArrayBound)
1878 .get();
1879 } else {
1880 Array.NumElts =
1881 VerifyIntegerConstantExpression(
1882 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1883 .get();
1884 }
1885 if (!Array.NumElts)
1886 return ExprError();
1887 }
1888 }
1889 }
1890 }
1891
1892 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1893 QualType AllocType = TInfo->getType();
1894 if (D.isInvalidType())
1895 return ExprError();
1896
1897 SourceRange DirectInitRange;
1898 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1899 DirectInitRange = List->getSourceRange();
1900
1901 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1902 PlacementLParen, PlacementArgs, PlacementRParen,
1903 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1904 Initializer);
1905}
1906
1907static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1908 Expr *Init) {
1909 if (!Init)
1910 return true;
1911 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1912 return PLE->getNumExprs() == 0;
1913 if (isa<ImplicitValueInitExpr>(Init))
1914 return true;
1915 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1916 return !CCE->isListInitialization() &&
1917 CCE->getConstructor()->isDefaultConstructor();
1918 else if (Style == CXXNewExpr::ListInit) {
1919 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
1920 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
;
1921 return true;
1922 }
1923 return false;
1924}
1925
1926bool
1927Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1928 if (!getLangOpts().AlignedAllocationUnavailable)
1929 return false;
1930 if (FD.isDefined())
1931 return false;
1932 Optional<unsigned> AlignmentParam;
1933 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1934 AlignmentParam)
1935 return true;
1936 return false;
1937}
1938
1939// Emit a diagnostic if an aligned allocation/deallocation function that is not
1940// implemented in the standard library is selected.
1941void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1942 SourceLocation Loc) {
1943 if (isUnavailableAlignedAllocationFunction(FD)) {
1944 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1945 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1946 getASTContext().getTargetInfo().getPlatformName());
1947 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1948
1949 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1950 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1951 Diag(Loc, diag::err_aligned_allocation_unavailable)
1952 << IsDelete << FD.getType().getAsString() << OSName
1953 << OSVersion.getAsString() << OSVersion.empty();
1954 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1955 }
1956}
1957
1958ExprResult
1959Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1960 SourceLocation PlacementLParen,
1961 MultiExprArg PlacementArgs,
1962 SourceLocation PlacementRParen,
1963 SourceRange TypeIdParens,
1964 QualType AllocType,
1965 TypeSourceInfo *AllocTypeInfo,
1966 Optional<Expr *> ArraySize,
1967 SourceRange DirectInitRange,
1968 Expr *Initializer) {
1969 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1970 SourceLocation StartLoc = Range.getBegin();
1971
1972 CXXNewExpr::InitializationStyle initStyle;
1973 if (DirectInitRange.isValid()) {
1974 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1974, __extension__ __PRETTY_FUNCTION__
))
;
1975 initStyle = CXXNewExpr::CallInit;
1976 } else if (Initializer && isa<InitListExpr>(Initializer))
1977 initStyle = CXXNewExpr::ListInit;
1978 else {
1979 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1981, __extension__ __PRETTY_FUNCTION__
))
1980 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1981, __extension__ __PRETTY_FUNCTION__
))
1981 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1981, __extension__ __PRETTY_FUNCTION__
))
;
1982 initStyle = CXXNewExpr::NoInit;
1983 }
1984
1985 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
1986 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1987 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1987, __extension__ __PRETTY_FUNCTION__
))
;
1988 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
1989 }
1990
1991 // C++11 [expr.new]p15:
1992 // A new-expression that creates an object of type T initializes that
1993 // object as follows:
1994 InitializationKind Kind
1995 // - If the new-initializer is omitted, the object is default-
1996 // initialized (8.5); if no initialization is performed,
1997 // the object has indeterminate value
1998 = initStyle == CXXNewExpr::NoInit
1999 ? InitializationKind::CreateDefault(TypeRange.getBegin())
2000 // - Otherwise, the new-initializer is interpreted according to
2001 // the
2002 // initialization rules of 8.5 for direct-initialization.
2003 : initStyle == CXXNewExpr::ListInit
2004 ? InitializationKind::CreateDirectList(
2005 TypeRange.getBegin(), Initializer->getBeginLoc(),
2006 Initializer->getEndLoc())
2007 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2008 DirectInitRange.getBegin(),
2009 DirectInitRange.getEnd());
2010
2011 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2012 auto *Deduced = AllocType->getContainedDeducedType();
2013 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
2014 if (ArraySize)
2015 return ExprError(
2016 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2017 diag::err_deduced_class_template_compound_type)
2018 << /*array*/ 2
2019 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2020
2021 InitializedEntity Entity
2022 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2023 AllocType = DeduceTemplateSpecializationFromInitializer(
2024 AllocTypeInfo, Entity, Kind, Exprs);
2025 if (AllocType.isNull())
2026 return ExprError();
2027 } else if (Deduced) {
2028 MultiExprArg Inits = Exprs;
2029 bool Braced = (initStyle == CXXNewExpr::ListInit);
2030 if (Braced) {
2031 auto *ILE = cast<InitListExpr>(Exprs[0]);
2032 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2033 }
2034
2035 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2036 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2037 << AllocType << TypeRange);
2038 if (Inits.size() > 1) {
2039 Expr *FirstBad = Inits[1];
2040 return ExprError(Diag(FirstBad->getBeginLoc(),
2041 diag::err_auto_new_ctor_multiple_expressions)
2042 << AllocType << TypeRange);
2043 }
2044 if (Braced && !getLangOpts().CPlusPlus17)
2045 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2046 << AllocType << TypeRange;
2047 Expr *Deduce = Inits[0];
2048 if (isa<InitListExpr>(Deduce))
2049 return ExprError(
2050 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2051 << Braced << AllocType << TypeRange);
2052 QualType DeducedType;
2053 TemplateDeductionInfo Info(Deduce->getExprLoc());
2054 TemplateDeductionResult Result =
2055 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2056 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2057 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2058 << AllocType << Deduce->getType() << TypeRange
2059 << Deduce->getSourceRange());
2060 if (DeducedType.isNull()) {
2061 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 2061, __extension__ __PRETTY_FUNCTION__))
;
2062 return ExprError();
2063 }
2064 AllocType = DeducedType;
2065 }
2066
2067 // Per C++0x [expr.new]p5, the type being constructed may be a
2068 // typedef of an array type.
2069 if (!ArraySize) {
2070 if (const ConstantArrayType *Array
2071 = Context.getAsConstantArrayType(AllocType)) {
2072 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2073 Context.getSizeType(),
2074 TypeRange.getEnd());
2075 AllocType = Array->getElementType();
2076 }
2077 }
2078
2079 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2080 return ExprError();
2081
2082 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2083 return ExprError();
2084
2085 // In ARC, infer 'retaining' for the allocated
2086 if (getLangOpts().ObjCAutoRefCount &&
2087 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2088 AllocType->isObjCLifetimeType()) {
2089 AllocType = Context.getLifetimeQualifiedType(AllocType,
2090 AllocType->getObjCARCImplicitLifetime());
2091 }
2092
2093 QualType ResultType = Context.getPointerType(AllocType);
2094
2095 if (ArraySize && *ArraySize &&
2096 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2097 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2098 if (result.isInvalid()) return ExprError();
2099 ArraySize = result.get();
2100 }
2101 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2102 // integral or enumeration type with a non-negative value."
2103 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2104 // enumeration type, or a class type for which a single non-explicit
2105 // conversion function to integral or unscoped enumeration type exists.
2106 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2107 // std::size_t.
2108 llvm::Optional<uint64_t> KnownArraySize;
2109 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2110 ExprResult ConvertedSize;
2111 if (getLangOpts().CPlusPlus14) {
2112 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2112, __extension__ __PRETTY_FUNCTION__
))
;
2113
2114 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2115 AA_Converting);
2116
2117 if (!ConvertedSize.isInvalid() &&
2118 (*ArraySize)->getType()->getAs<RecordType>())
2119 // Diagnose the compatibility of this conversion.
2120 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2121 << (*ArraySize)->getType() << 0 << "'size_t'";
2122 } else {
2123 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2124 protected:
2125 Expr *ArraySize;
2126
2127 public:
2128 SizeConvertDiagnoser(Expr *ArraySize)
2129 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2130 ArraySize(ArraySize) {}
2131
2132 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2133 QualType T) override {
2134 return S.Diag(Loc, diag::err_array_size_not_integral)
2135 << S.getLangOpts().CPlusPlus11 << T;
2136 }
2137
2138 SemaDiagnosticBuilder diagnoseIncomplete(
2139 Sema &S, SourceLocation Loc, QualType T) override {
2140 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2141 << T << ArraySize->getSourceRange();
2142 }
2143
2144 SemaDiagnosticBuilder diagnoseExplicitConv(
2145 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2146 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2147 }
2148
2149 SemaDiagnosticBuilder noteExplicitConv(
2150 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2151 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2152 << ConvTy->isEnumeralType() << ConvTy;
2153 }
2154
2155 SemaDiagnosticBuilder diagnoseAmbiguous(
2156 Sema &S, SourceLocation Loc, QualType T) override {
2157 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2158 }
2159
2160 SemaDiagnosticBuilder noteAmbiguous(
2161 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2162 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2163 << ConvTy->isEnumeralType() << ConvTy;
2164 }
2165
2166 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2167 QualType T,
2168 QualType ConvTy) override {
2169 return S.Diag(Loc,
2170 S.getLangOpts().CPlusPlus11
2171 ? diag::warn_cxx98_compat_array_size_conversion
2172 : diag::ext_array_size_conversion)
2173 << T << ConvTy->isEnumeralType() << ConvTy;
2174 }
2175 } SizeDiagnoser(*ArraySize);
2176
2177 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2178 SizeDiagnoser);
2179 }
2180 if (ConvertedSize.isInvalid())
2181 return ExprError();
2182
2183 ArraySize = ConvertedSize.get();
2184 QualType SizeType = (*ArraySize)->getType();
2185
2186 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2187 return ExprError();
2188
2189 // C++98 [expr.new]p7:
2190 // The expression in a direct-new-declarator shall have integral type
2191 // with a non-negative value.
2192 //
2193 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2194 // per CWG1464. Otherwise, if it's not a constant, we must have an
2195 // unparenthesized array type.
2196
2197 // We've already performed any required implicit conversion to integer or
2198 // unscoped enumeration type.
2199 // FIXME: Per CWG1464, we are required to check the value prior to
2200 // converting to size_t. This will never find a negative array size in
2201 // C++14 onwards, because Value is always unsigned here!
2202 if (Optional<llvm::APSInt> Value =
2203 (*ArraySize)->getIntegerConstantExpr(Context)) {
2204 if (Value->isSigned() && Value->isNegative()) {
2205 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2206 diag::err_typecheck_negative_array_size)
2207 << (*ArraySize)->getSourceRange());
2208 }
2209
2210 if (!AllocType->isDependentType()) {
2211 unsigned ActiveSizeBits =
2212 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2213 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2214 return ExprError(
2215 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2216 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2217 }
2218
2219 KnownArraySize = Value->getZExtValue();
2220 } else if (TypeIdParens.isValid()) {
2221 // Can't have dynamic array size when the type-id is in parentheses.
2222 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2223 << (*ArraySize)->getSourceRange()
2224 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2225 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2226
2227 TypeIdParens = SourceRange();
2228 }
2229
2230 // Note that we do *not* convert the argument in any way. It can
2231 // be signed, larger than size_t, whatever.
2232 }
2233
2234 FunctionDecl *OperatorNew = nullptr;
2235 FunctionDecl *OperatorDelete = nullptr;
2236 unsigned Alignment =
2237 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2238 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2239 bool PassAlignment = getLangOpts().AlignedAllocation &&
2240 Alignment > NewAlignment;
2241
2242 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2243 if (!AllocType->isDependentType() &&
2244 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2245 FindAllocationFunctions(
2246 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2247 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2248 OperatorNew, OperatorDelete))
2249 return ExprError();
2250
2251 // If this is an array allocation, compute whether the usual array
2252 // deallocation function for the type has a size_t parameter.
2253 bool UsualArrayDeleteWantsSize = false;
2254 if (ArraySize && !AllocType->isDependentType())
2255 UsualArrayDeleteWantsSize =
2256 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2257
2258 SmallVector<Expr *, 8> AllPlaceArgs;
2259 if (OperatorNew) {
2260 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2261 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2262 : VariadicDoesNotApply;
2263
2264 // We've already converted the placement args, just fill in any default
2265 // arguments. Skip the first parameter because we don't have a corresponding
2266 // argument. Skip the second parameter too if we're passing in the
2267 // alignment; we've already filled it in.
2268 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2269 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2270 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2271 CallType))
2272 return ExprError();
2273
2274 if (!AllPlaceArgs.empty())
2275 PlacementArgs = AllPlaceArgs;
2276
2277 // We would like to perform some checking on the given `operator new` call,
2278 // but the PlacementArgs does not contain the implicit arguments,
2279 // namely allocation size and maybe allocation alignment,
2280 // so we need to conjure them.
2281
2282 QualType SizeTy = Context.getSizeType();
2283 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2284
2285 llvm::APInt SingleEltSize(
2286 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2287
2288 // How many bytes do we want to allocate here?
2289 llvm::Optional<llvm::APInt> AllocationSize;
2290 if (!ArraySize && !AllocType->isDependentType()) {
2291 // For non-array operator new, we only want to allocate one element.
2292 AllocationSize = SingleEltSize;
2293 } else if (KnownArraySize && !AllocType->isDependentType()) {
2294 // For array operator new, only deal with static array size case.
2295 bool Overflow;
2296 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2297 .umul_ov(SingleEltSize, Overflow);
2298 (void)Overflow;
2299 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2301, __extension__ __PRETTY_FUNCTION__
))
2300 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2301, __extension__ __PRETTY_FUNCTION__
))
2301 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2301, __extension__ __PRETTY_FUNCTION__
))
;
2302 }
2303
2304 IntegerLiteral AllocationSizeLiteral(
2305 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2306 SizeTy, SourceLocation());
2307 // Otherwise, if we failed to constant-fold the allocation size, we'll
2308 // just give up and pass-in something opaque, that isn't a null pointer.
2309 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2310 OK_Ordinary, /*SourceExpr=*/nullptr);
2311
2312 // Let's synthesize the alignment argument in case we will need it.
2313 // Since we *really* want to allocate these on stack, this is slightly ugly
2314 // because there might not be a `std::align_val_t` type.
2315 EnumDecl *StdAlignValT = getStdAlignValT();
2316 QualType AlignValT =
2317 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2318 IntegerLiteral AlignmentLiteral(
2319 Context,
2320 llvm::APInt(Context.getTypeSize(SizeTy),
2321 Alignment / Context.getCharWidth()),
2322 SizeTy, SourceLocation());
2323 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2324 CK_IntegralCast, &AlignmentLiteral,
2325 VK_PRValue, FPOptionsOverride());
2326
2327 // Adjust placement args by prepending conjured size and alignment exprs.
2328 llvm::SmallVector<Expr *, 8> CallArgs;
2329 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2330 CallArgs.emplace_back(AllocationSize
2331 ? static_cast<Expr *>(&AllocationSizeLiteral)
2332 : &OpaqueAllocationSize);
2333 if (PassAlignment)
2334 CallArgs.emplace_back(&DesiredAlignment);
2335 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2336
2337 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2338
2339 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2340 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2341
2342 // Warn if the type is over-aligned and is being allocated by (unaligned)
2343 // global operator new.
2344 if (PlacementArgs.empty() && !PassAlignment &&
2345 (OperatorNew->isImplicit() ||
2346 (OperatorNew->getBeginLoc().isValid() &&
2347 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2348 if (Alignment > NewAlignment)
2349 Diag(StartLoc, diag::warn_overaligned_type)
2350 << AllocType
2351 << unsigned(Alignment / Context.getCharWidth())
2352 << unsigned(NewAlignment / Context.getCharWidth());
2353 }
2354 }
2355
2356 // Array 'new' can't have any initializers except empty parentheses.
2357 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2358 // dialect distinction.
2359 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2360 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2361 Exprs.back()->getEndLoc());
2362 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2363 return ExprError();
2364 }
2365
2366 // If we can perform the initialization, and we've not already done so,
2367 // do it now.
2368 if (!AllocType->isDependentType() &&
2369 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2370 // The type we initialize is the complete type, including the array bound.
2371 QualType InitType;
2372 if (KnownArraySize)
2373 InitType = Context.getConstantArrayType(
2374 AllocType,
2375 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2376 *KnownArraySize),
2377 *ArraySize, ArrayType::Normal, 0);
2378 else if (ArraySize)
2379 InitType =
2380 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2381 else
2382 InitType = AllocType;
2383
2384 InitializedEntity Entity
2385 = InitializedEntity::InitializeNew(StartLoc, InitType);
2386 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2387 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2388 if (FullInit.isInvalid())
2389 return ExprError();
2390
2391 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2392 // we don't want the initialized object to be destructed.
2393 // FIXME: We should not create these in the first place.
2394 if (CXXBindTemporaryExpr *Binder =
2395 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2396 FullInit = Binder->getSubExpr();
2397
2398 Initializer = FullInit.get();
2399
2400 // FIXME: If we have a KnownArraySize, check that the array bound of the
2401 // initializer is no greater than that constant value.
2402
2403 if (ArraySize && !*ArraySize) {
2404 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2405 if (CAT) {
2406 // FIXME: Track that the array size was inferred rather than explicitly
2407 // specified.
2408 ArraySize = IntegerLiteral::Create(
2409 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2410 } else {
2411 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2412 << Initializer->getSourceRange();
2413 }
2414 }
2415 }
2416
2417 // Mark the new and delete operators as referenced.
2418 if (OperatorNew) {
2419 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2420 return ExprError();
2421 MarkFunctionReferenced(StartLoc, OperatorNew);
2422 }
2423 if (OperatorDelete) {
2424 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2425 return ExprError();
2426 MarkFunctionReferenced(StartLoc, OperatorDelete);
2427 }
2428
2429 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2430 PassAlignment, UsualArrayDeleteWantsSize,
2431 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2432 Initializer, ResultType, AllocTypeInfo, Range,
2433 DirectInitRange);
2434}
2435
2436/// Checks that a type is suitable as the allocated type
2437/// in a new-expression.
2438bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2439 SourceRange R) {
2440 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2441 // abstract class type or array thereof.
2442 if (AllocType->isFunctionType())
2443 return Diag(Loc, diag::err_bad_new_type)
2444 << AllocType << 0 << R;
2445 else if (AllocType->isReferenceType())
2446 return Diag(Loc, diag::err_bad_new_type)
2447 << AllocType << 1 << R;
2448 else if (!AllocType->isDependentType() &&
2449 RequireCompleteSizedType(
2450 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2451 return true;
2452 else if (RequireNonAbstractType(Loc, AllocType,
2453 diag::err_allocation_of_abstract_type))
2454 return true;
2455 else if (AllocType->isVariablyModifiedType())
2456 return Diag(Loc, diag::err_variably_modified_new_type)
2457 << AllocType;
2458 else if (AllocType.getAddressSpace() != LangAS::Default &&
2459 !getLangOpts().OpenCLCPlusPlus)
2460 return Diag(Loc, diag::err_address_space_qualified_new)
2461 << AllocType.getUnqualifiedType()
2462 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2463 else if (getLangOpts().ObjCAutoRefCount) {
2464 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2465 QualType BaseAllocType = Context.getBaseElementType(AT);
2466 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2467 BaseAllocType->isObjCLifetimeType())
2468 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2469 << BaseAllocType;
2470 }
2471 }
2472
2473 return false;
2474}
2475
2476static bool resolveAllocationOverload(
2477 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2478 bool &PassAlignment, FunctionDecl *&Operator,
2479 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2480 OverloadCandidateSet Candidates(R.getNameLoc(),
2481 OverloadCandidateSet::CSK_Normal);
2482 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2483 Alloc != AllocEnd; ++Alloc) {
2484 // Even member operator new/delete are implicitly treated as
2485 // static, so don't use AddMemberCandidate.
2486 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2487
2488 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2489 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2490 /*ExplicitTemplateArgs=*/nullptr, Args,
2491 Candidates,
2492 /*SuppressUserConversions=*/false);
2493 continue;
2494 }
2495
2496 FunctionDecl *Fn = cast<FunctionDecl>(D);
2497 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2498 /*SuppressUserConversions=*/false);
2499 }
2500
2501 // Do the resolution.
2502 OverloadCandidateSet::iterator Best;
2503 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2504 case OR_Success: {
2505 // Got one!
2506 FunctionDecl *FnDecl = Best->Function;
2507 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2508 Best->FoundDecl) == Sema::AR_inaccessible)
2509 return true;
2510
2511 Operator = FnDecl;
2512 return false;
2513 }
2514
2515 case OR_No_Viable_Function:
2516 // C++17 [expr.new]p13:
2517 // If no matching function is found and the allocated object type has
2518 // new-extended alignment, the alignment argument is removed from the
2519 // argument list, and overload resolution is performed again.
2520 if (PassAlignment) {
2521 PassAlignment = false;
2522 AlignArg = Args[1];
2523 Args.erase(Args.begin() + 1);
2524 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2525 Operator, &Candidates, AlignArg,
2526 Diagnose);
2527 }
2528
2529 // MSVC will fall back on trying to find a matching global operator new
2530 // if operator new[] cannot be found. Also, MSVC will leak by not
2531 // generating a call to operator delete or operator delete[], but we
2532 // will not replicate that bug.
2533 // FIXME: Find out how this interacts with the std::align_val_t fallback
2534 // once MSVC implements it.
2535 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2536 S.Context.getLangOpts().MSVCCompat) {
2537 R.clear();
2538 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2539 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2540 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2541 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2542 Operator, /*Candidates=*/nullptr,
2543 /*AlignArg=*/nullptr, Diagnose);
2544 }
2545
2546 if (Diagnose) {
2547 // If this is an allocation of the form 'new (p) X' for some object
2548 // pointer p (or an expression that will decay to such a pointer),
2549 // diagnose the missing inclusion of <new>.
2550 if (!R.isClassLookup() && Args.size() == 2 &&
2551 (Args[1]->getType()->isObjectPointerType() ||
2552 Args[1]->getType()->isArrayType())) {
2553 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2554 << R.getLookupName() << Range;
2555 // Listing the candidates is unlikely to be useful; skip it.
2556 return true;
2557 }
2558
2559 // Finish checking all candidates before we note any. This checking can
2560 // produce additional diagnostics so can't be interleaved with our
2561 // emission of notes.
2562 //
2563 // For an aligned allocation, separately check the aligned and unaligned
2564 // candidates with their respective argument lists.
2565 SmallVector<OverloadCandidate*, 32> Cands;
2566 SmallVector<OverloadCandidate*, 32> AlignedCands;
2567 llvm::SmallVector<Expr*, 4> AlignedArgs;
2568 if (AlignedCandidates) {
2569 auto IsAligned = [](OverloadCandidate &C) {
2570 return C.Function->getNumParams() > 1 &&
2571 C.Function->getParamDecl(1)->getType()->isAlignValT();
2572 };
2573 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2574
2575 AlignedArgs.reserve(Args.size() + 1);
2576 AlignedArgs.push_back(Args[0]);
2577 AlignedArgs.push_back(AlignArg);
2578 AlignedArgs.append(Args.begin() + 1, Args.end());
2579 AlignedCands = AlignedCandidates->CompleteCandidates(
2580 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2581
2582 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2583 R.getNameLoc(), IsUnaligned);
2584 } else {
2585 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2586 R.getNameLoc());
2587 }
2588
2589 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2590 << R.getLookupName() << Range;
2591 if (AlignedCandidates)
2592 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2593 R.getNameLoc());
2594 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2595 }
2596 return true;
2597
2598 case OR_Ambiguous:
2599 if (Diagnose) {
2600 Candidates.NoteCandidates(
2601 PartialDiagnosticAt(R.getNameLoc(),
2602 S.PDiag(diag::err_ovl_ambiguous_call)
2603 << R.getLookupName() << Range),
2604 S, OCD_AmbiguousCandidates, Args);
2605 }
2606 return true;
2607
2608 case OR_Deleted: {
2609 if (Diagnose) {
2610 Candidates.NoteCandidates(
2611 PartialDiagnosticAt(R.getNameLoc(),
2612 S.PDiag(diag::err_ovl_deleted_call)
2613 << R.getLookupName() << Range),
2614 S, OCD_AllCandidates, Args);
2615 }
2616 return true;
2617 }
2618 }
2619 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2619)
;
2620}
2621
2622bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2623 AllocationFunctionScope NewScope,
2624 AllocationFunctionScope DeleteScope,
2625 QualType AllocType, bool IsArray,
2626 bool &PassAlignment, MultiExprArg PlaceArgs,
2627 FunctionDecl *&OperatorNew,
2628 FunctionDecl *&OperatorDelete,
2629 bool Diagnose) {
2630 // --- Choosing an allocation function ---
2631 // C++ 5.3.4p8 - 14 & 18
2632 // 1) If looking in AFS_Global scope for allocation functions, only look in
2633 // the global scope. Else, if AFS_Class, only look in the scope of the
2634 // allocated class. If AFS_Both, look in both.
2635 // 2) If an array size is given, look for operator new[], else look for
2636 // operator new.
2637 // 3) The first argument is always size_t. Append the arguments from the
2638 // placement form.
2639
2640 SmallVector<Expr*, 8> AllocArgs;
2641 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2642
2643 // We don't care about the actual value of these arguments.
2644 // FIXME: Should the Sema create the expression and embed it in the syntax
2645 // tree? Or should the consumer just recalculate the value?
2646 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2647 IntegerLiteral Size(
2648 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2649 Context.getSizeType(), SourceLocation());
2650 AllocArgs.push_back(&Size);
2651
2652 QualType AlignValT = Context.VoidTy;
2653 if (PassAlignment) {
2654 DeclareGlobalNewDelete();
2655 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2656 }
2657 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2658 if (PassAlignment)
2659 AllocArgs.push_back(&Align);
2660
2661 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2662
2663 // C++ [expr.new]p8:
2664 // If the allocated type is a non-array type, the allocation
2665 // function's name is operator new and the deallocation function's
2666 // name is operator delete. If the allocated type is an array
2667 // type, the allocation function's name is operator new[] and the
2668 // deallocation function's name is operator delete[].
2669 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2670 IsArray ? OO_Array_New : OO_New);
2671
2672 QualType AllocElemType = Context.getBaseElementType(AllocType);
2673
2674 // Find the allocation function.
2675 {
2676 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2677
2678 // C++1z [expr.new]p9:
2679 // If the new-expression begins with a unary :: operator, the allocation
2680 // function's name is looked up in the global scope. Otherwise, if the
2681 // allocated type is a class type T or array thereof, the allocation
2682 // function's name is looked up in the scope of T.
2683 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2684 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2685
2686 // We can see ambiguity here if the allocation function is found in
2687 // multiple base classes.
2688 if (R.isAmbiguous())
2689 return true;
2690
2691 // If this lookup fails to find the name, or if the allocated type is not
2692 // a class type, the allocation function's name is looked up in the
2693 // global scope.
2694 if (R.empty()) {
2695 if (NewScope == AFS_Class)
2696 return true;
2697
2698 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2699 }
2700
2701 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2702 if (PlaceArgs.empty()) {
2703 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2704 } else {
2705 Diag(StartLoc, diag::err_openclcxx_placement_new);
2706 }
2707 return true;
2708 }
2709
2710 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2710, __extension__ __PRETTY_FUNCTION__
))
;
2711 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2711, __extension__ __PRETTY_FUNCTION__
))
;
2712
2713 // We do our own custom access checks below.
2714 R.suppressDiagnostics();
2715
2716 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2717 OperatorNew, /*Candidates=*/nullptr,
2718 /*AlignArg=*/nullptr, Diagnose))
2719 return true;
2720 }
2721
2722 // We don't need an operator delete if we're running under -fno-exceptions.
2723 if (!getLangOpts().Exceptions) {
2724 OperatorDelete = nullptr;
2725 return false;
2726 }
2727
2728 // Note, the name of OperatorNew might have been changed from array to
2729 // non-array by resolveAllocationOverload.
2730 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2731 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2732 ? OO_Array_Delete
2733 : OO_Delete);
2734
2735 // C++ [expr.new]p19:
2736 //
2737 // If the new-expression begins with a unary :: operator, the
2738 // deallocation function's name is looked up in the global
2739 // scope. Otherwise, if the allocated type is a class type T or an
2740 // array thereof, the deallocation function's name is looked up in
2741 // the scope of T. If this lookup fails to find the name, or if
2742 // the allocated type is not a class type or array thereof, the
2743 // deallocation function's name is looked up in the global scope.
2744 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2745 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2746 auto *RD =
2747 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2748 LookupQualifiedName(FoundDelete, RD);
2749 }
2750 if (FoundDelete.isAmbiguous())
2751 return true; // FIXME: clean up expressions?
2752
2753 // Filter out any destroying operator deletes. We can't possibly call such a
2754 // function in this context, because we're handling the case where the object
2755 // was not successfully constructed.
2756 // FIXME: This is not covered by the language rules yet.
2757 {
2758 LookupResult::Filter Filter = FoundDelete.makeFilter();
2759 while (Filter.hasNext()) {
2760 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2761 if (FD && FD->isDestroyingOperatorDelete())
2762 Filter.erase();
2763 }
2764 Filter.done();
2765 }
2766
2767 bool FoundGlobalDelete = FoundDelete.empty();
2768 if (FoundDelete.empty()) {
2769 FoundDelete.clear(LookupOrdinaryName);
2770
2771 if (DeleteScope == AFS_Class)
2772 return true;
2773
2774 DeclareGlobalNewDelete();
2775 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2776 }
2777
2778 FoundDelete.suppressDiagnostics();
2779
2780 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2781
2782 // Whether we're looking for a placement operator delete is dictated
2783 // by whether we selected a placement operator new, not by whether
2784 // we had explicit placement arguments. This matters for things like
2785 // struct A { void *operator new(size_t, int = 0); ... };
2786 // A *a = new A()
2787 //
2788 // We don't have any definition for what a "placement allocation function"
2789 // is, but we assume it's any allocation function whose
2790 // parameter-declaration-clause is anything other than (size_t).
2791 //
2792 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2793 // This affects whether an exception from the constructor of an overaligned
2794 // type uses the sized or non-sized form of aligned operator delete.
2795 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2796 OperatorNew->isVariadic();
2797
2798 if (isPlacementNew) {
2799 // C++ [expr.new]p20:
2800 // A declaration of a placement deallocation function matches the
2801 // declaration of a placement allocation function if it has the
2802 // same number of parameters and, after parameter transformations
2803 // (8.3.5), all parameter types except the first are
2804 // identical. [...]
2805 //
2806 // To perform this comparison, we compute the function type that
2807 // the deallocation function should have, and use that type both
2808 // for template argument deduction and for comparison purposes.
2809 QualType ExpectedFunctionType;
2810 {
2811 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2812
2813 SmallVector<QualType, 4> ArgTypes;
2814 ArgTypes.push_back(Context.VoidPtrTy);
2815 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2816 ArgTypes.push_back(Proto->getParamType(I));
2817
2818 FunctionProtoType::ExtProtoInfo EPI;
2819 // FIXME: This is not part of the standard's rule.
2820 EPI.Variadic = Proto->isVariadic();
2821
2822 ExpectedFunctionType
2823 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2824 }
2825
2826 for (LookupResult::iterator D = FoundDelete.begin(),
2827 DEnd = FoundDelete.end();
2828 D != DEnd; ++D) {
2829 FunctionDecl *Fn = nullptr;
2830 if (FunctionTemplateDecl *FnTmpl =
2831 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2832 // Perform template argument deduction to try to match the
2833 // expected function type.
2834 TemplateDeductionInfo Info(StartLoc);
2835 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2836 Info))
2837 continue;
2838 } else
2839 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2840
2841 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2842 ExpectedFunctionType,
2843 /*AdjustExcpetionSpec*/true),
2844 ExpectedFunctionType))
2845 Matches.push_back(std::make_pair(D.getPair(), Fn));
2846 }
2847
2848 if (getLangOpts().CUDA)
2849 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2850 Matches);
2851 } else {
2852 // C++1y [expr.new]p22:
2853 // For a non-placement allocation function, the normal deallocation
2854 // function lookup is used
2855 //
2856 // Per [expr.delete]p10, this lookup prefers a member operator delete
2857 // without a size_t argument, but prefers a non-member operator delete
2858 // with a size_t where possible (which it always is in this case).
2859 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2860 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2861 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2862 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2863 &BestDeallocFns);
2864 if (Selected)
2865 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2866 else {
2867 // If we failed to select an operator, all remaining functions are viable
2868 // but ambiguous.
2869 for (auto Fn : BestDeallocFns)
2870 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2871 }
2872 }
2873
2874 // C++ [expr.new]p20:
2875 // [...] If the lookup finds a single matching deallocation
2876 // function, that function will be called; otherwise, no
2877 // deallocation function will be called.
2878 if (Matches.size() == 1) {
2879 OperatorDelete = Matches[0].second;
2880
2881 // C++1z [expr.new]p23:
2882 // If the lookup finds a usual deallocation function (3.7.4.2)
2883 // with a parameter of type std::size_t and that function, considered
2884 // as a placement deallocation function, would have been
2885 // selected as a match for the allocation function, the program
2886 // is ill-formed.
2887 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2888 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2889 UsualDeallocFnInfo Info(*this,
2890 DeclAccessPair::make(OperatorDelete, AS_public));
2891 // Core issue, per mail to core reflector, 2016-10-09:
2892 // If this is a member operator delete, and there is a corresponding
2893 // non-sized member operator delete, this isn't /really/ a sized
2894 // deallocation function, it just happens to have a size_t parameter.
2895 bool IsSizedDelete = Info.HasSizeT;
2896 if (IsSizedDelete && !FoundGlobalDelete) {
2897 auto NonSizedDelete =
2898 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2899 /*WantAlign*/Info.HasAlignValT);
2900 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2901 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2902 IsSizedDelete = false;
2903 }
2904
2905 if (IsSizedDelete) {
2906 SourceRange R = PlaceArgs.empty()
2907 ? SourceRange()
2908 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2909 PlaceArgs.back()->getEndLoc());
2910 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2911 if (!OperatorDelete->isImplicit())
2912 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2913 << DeleteName;
2914 }
2915 }
2916
2917 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2918 Matches[0].first);
2919 } else if (!Matches.empty()) {
2920 // We found multiple suitable operators. Per [expr.new]p20, that means we
2921 // call no 'operator delete' function, but we should at least warn the user.
2922 // FIXME: Suppress this warning if the construction cannot throw.
2923 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2924 << DeleteName << AllocElemType;
2925
2926 for (auto &Match : Matches)
2927 Diag(Match.second->getLocation(),
2928 diag::note_member_declared_here) << DeleteName;
2929 }
2930
2931 return false;
2932}
2933
2934/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2935/// delete. These are:
2936/// @code
2937/// // C++03:
2938/// void* operator new(std::size_t) throw(std::bad_alloc);
2939/// void* operator new[](std::size_t) throw(std::bad_alloc);
2940/// void operator delete(void *) throw();
2941/// void operator delete[](void *) throw();
2942/// // C++11:
2943/// void* operator new(std::size_t);
2944/// void* operator new[](std::size_t);
2945/// void operator delete(void *) noexcept;
2946/// void operator delete[](void *) noexcept;
2947/// // C++1y:
2948/// void* operator new(std::size_t);
2949/// void* operator new[](std::size_t);
2950/// void operator delete(void *) noexcept;
2951/// void operator delete[](void *) noexcept;
2952/// void operator delete(void *, std::size_t) noexcept;
2953/// void operator delete[](void *, std::size_t) noexcept;
2954/// @endcode
2955/// Note that the placement and nothrow forms of new are *not* implicitly
2956/// declared. Their use requires including \<new\>.
2957void Sema::DeclareGlobalNewDelete() {
2958 if (GlobalNewDeleteDeclared)
2959 return;
2960
2961 // The implicitly declared new and delete operators
2962 // are not supported in OpenCL.
2963 if (getLangOpts().OpenCLCPlusPlus)
2964 return;
2965
2966 // C++ [basic.std.dynamic]p2:
2967 // [...] The following allocation and deallocation functions (18.4) are
2968 // implicitly declared in global scope in each translation unit of a
2969 // program
2970 //
2971 // C++03:
2972 // void* operator new(std::size_t) throw(std::bad_alloc);
2973 // void* operator new[](std::size_t) throw(std::bad_alloc);
2974 // void operator delete(void*) throw();
2975 // void operator delete[](void*) throw();
2976 // C++11:
2977 // void* operator new(std::size_t);
2978 // void* operator new[](std::size_t);
2979 // void operator delete(void*) noexcept;
2980 // void operator delete[](void*) noexcept;
2981 // C++1y:
2982 // void* operator new(std::size_t);
2983 // void* operator new[](std::size_t);
2984 // void operator delete(void*) noexcept;
2985 // void operator delete[](void*) noexcept;
2986 // void operator delete(void*, std::size_t) noexcept;
2987 // void operator delete[](void*, std::size_t) noexcept;
2988 //
2989 // These implicit declarations introduce only the function names operator
2990 // new, operator new[], operator delete, operator delete[].
2991 //
2992 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2993 // "std" or "bad_alloc" as necessary to form the exception specification.
2994 // However, we do not make these implicit declarations visible to name
2995 // lookup.
2996 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2997 // The "std::bad_alloc" class has not yet been declared, so build it
2998 // implicitly.
2999 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
3000 getOrCreateStdNamespace(),
3001 SourceLocation(), SourceLocation(),
3002 &PP.getIdentifierTable().get("bad_alloc"),
3003 nullptr);
3004 getStdBadAlloc()->setImplicit(true);
3005 }
3006 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3007 // The "std::align_val_t" enum class has not yet been declared, so build it
3008 // implicitly.
3009 auto *AlignValT = EnumDecl::Create(
3010 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3011 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3012 AlignValT->setIntegerType(Context.getSizeType());
3013 AlignValT->setPromotionType(Context.getSizeType());
3014 AlignValT->setImplicit(true);
3015 StdAlignValT = AlignValT;
3016 }
3017
3018 GlobalNewDeleteDeclared = true;
3019
3020 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3021 QualType SizeT = Context.getSizeType();
3022
3023 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3024 QualType Return, QualType Param) {
3025 llvm::SmallVector<QualType, 3> Params;
3026 Params.push_back(Param);
3027
3028 // Create up to four variants of the function (sized/aligned).
3029 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3030 (Kind == OO_Delete || Kind == OO_Array_Delete);
3031 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3032
3033 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3034 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3035 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3036 if (Sized)
3037 Params.push_back(SizeT);
3038
3039 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3040 if (Aligned)
3041 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3042
3043 DeclareGlobalAllocationFunction(
3044 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3045
3046 if (Aligned)
3047 Params.pop_back();
3048 }
3049 }
3050 };
3051
3052 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3053 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3054 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3055 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3056}
3057
3058/// DeclareGlobalAllocationFunction - Declares a single implicit global
3059/// allocation function if it doesn't already exist.
3060void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3061 QualType Return,
3062 ArrayRef<QualType> Params) {
3063 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3064
3065 // Check if this function is already declared.
3066 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3067 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3068 Alloc != AllocEnd; ++Alloc) {
3069 // Only look at non-template functions, as it is the predefined,
3070 // non-templated allocation function we are trying to declare here.
3071 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3072 if (Func->getNumParams() == Params.size()) {
3073 llvm::SmallVector<QualType, 3> FuncParams;
3074 for (auto *P : Func->parameters())
3075 FuncParams.push_back(
3076 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3077 if (llvm::makeArrayRef(FuncParams) == Params) {
3078 // Make the function visible to name lookup, even if we found it in
3079 // an unimported module. It either is an implicitly-declared global
3080 // allocation function, or is suppressing that function.
3081 Func->setVisibleDespiteOwningModule();
3082 return;
3083 }
3084 }
3085 }
3086 }
3087
3088 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3089 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3090
3091 QualType BadAllocType;
3092 bool HasBadAllocExceptionSpec
3093 = (Name.getCXXOverloadedOperator() == OO_New ||
3094 Name.getCXXOverloadedOperator() == OO_Array_New);
3095 if (HasBadAllocExceptionSpec) {
3096 if (!getLangOpts().CPlusPlus11) {
3097 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3098 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3098, __extension__ __PRETTY_FUNCTION__
))
;
3099 EPI.ExceptionSpec.Type = EST_Dynamic;
3100 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3101 }
3102 if (getLangOpts().NewInfallible) {
3103 EPI.ExceptionSpec.Type = EST_DynamicNone;
3104 }
3105 } else {
3106 EPI.ExceptionSpec =
3107 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3108 }
3109
3110 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3111 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3112 FunctionDecl *Alloc = FunctionDecl::Create(
3113 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3114 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3115 true);
3116 Alloc->setImplicit();
3117 // Global allocation functions should always be visible.
3118 Alloc->setVisibleDespiteOwningModule();
3119
3120 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3121 Alloc->addAttr(
3122 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3123
3124 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3125 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3126 ? VisibilityAttr::Hidden
3127 : VisibilityAttr::Default));
3128
3129 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3130 for (QualType T : Params) {
3131 ParamDecls.push_back(ParmVarDecl::Create(
3132 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3133 /*TInfo=*/nullptr, SC_None, nullptr));
3134 ParamDecls.back()->setImplicit();
3135 }
3136 Alloc->setParams(ParamDecls);
3137 if (ExtraAttr)
3138 Alloc->addAttr(ExtraAttr);
3139 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3140 Context.getTranslationUnitDecl()->addDecl(Alloc);
3141 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3142 };
3143
3144 if (!LangOpts.CUDA)
3145 CreateAllocationFunctionDecl(nullptr);
3146 else {
3147 // Host and device get their own declaration so each can be
3148 // defined or re-declared independently.
3149 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3150 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3151 }
3152}
3153
3154FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3155 bool CanProvideSize,
3156 bool Overaligned,
3157 DeclarationName Name) {
3158 DeclareGlobalNewDelete();
3159
3160 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3161 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3162
3163 // FIXME: It's possible for this to result in ambiguity, through a
3164 // user-declared variadic operator delete or the enable_if attribute. We
3165 // should probably not consider those cases to be usual deallocation
3166 // functions. But for now we just make an arbitrary choice in that case.
3167 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3168 Overaligned);
3169 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3169, __extension__ __PRETTY_FUNCTION__
))
;
3170 return Result.FD;
3171}
3172
3173FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3174 CXXRecordDecl *RD) {
3175 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3176
3177 FunctionDecl *OperatorDelete = nullptr;
3178 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3179 return nullptr;
3180 if (OperatorDelete)
3181 return OperatorDelete;
3182
3183 // If there's no class-specific operator delete, look up the global
3184 // non-array delete.
3185 return FindUsualDeallocationFunction(
3186 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3187 Name);
3188}
3189
3190bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3191 DeclarationName Name,
3192 FunctionDecl *&Operator, bool Diagnose,
3193 bool WantSize, bool WantAligned) {
3194 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3195 // Try to find operator delete/operator delete[] in class scope.
3196 LookupQualifiedName(Found, RD);
3197
3198 if (Found.isAmbiguous())
3199 return true;
3200
3201 Found.suppressDiagnostics();
3202
3203 bool Overaligned =
3204 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3205
3206 // C++17 [expr.delete]p10:
3207 // If the deallocation functions have class scope, the one without a
3208 // parameter of type std::size_t is selected.
3209 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3210 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3211 /*WantAlign*/ Overaligned, &Matches);
3212
3213 // If we could find an overload, use it.
3214 if (Matches.size() == 1) {
3215 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3216
3217 // FIXME: DiagnoseUseOfDecl?
3218 if (Operator->isDeleted()) {
3219 if (Diagnose) {
3220 Diag(StartLoc, diag::err_deleted_function_use);
3221 NoteDeletedFunction(Operator);
3222 }
3223 return true;
3224 }
3225
3226 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3227 Matches[0].Found, Diagnose) == AR_inaccessible)
3228 return true;
3229
3230 return false;
3231 }
3232
3233 // We found multiple suitable operators; complain about the ambiguity.
3234 // FIXME: The standard doesn't say to do this; it appears that the intent
3235 // is that this should never happen.
3236 if (!Matches.empty()) {
3237 if (Diagnose) {
3238 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3239 << Name << RD;
3240 for (auto &Match : Matches)
3241 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3242 }
3243 return true;
3244 }
3245
3246 // We did find operator delete/operator delete[] declarations, but
3247 // none of them were suitable.
3248 if (!Found.empty()) {
3249 if (Diagnose) {
3250 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3251 << Name << RD;
3252
3253 for (NamedDecl *D : Found)
3254 Diag(D->getUnderlyingDecl()->getLocation(),
3255 diag::note_member_declared_here) << Name;
3256 }
3257 return true;
3258 }
3259
3260 Operator = nullptr;
3261 return false;
3262}
3263
3264namespace {
3265/// Checks whether delete-expression, and new-expression used for
3266/// initializing deletee have the same array form.
3267class MismatchingNewDeleteDetector {
3268public:
3269 enum MismatchResult {
3270 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3271 NoMismatch,
3272 /// Indicates that variable is initialized with mismatching form of \a new.
3273 VarInitMismatches,
3274 /// Indicates that member is initialized with mismatching form of \a new.
3275 MemberInitMismatches,
3276 /// Indicates that 1 or more constructors' definitions could not been
3277 /// analyzed, and they will be checked again at the end of translation unit.
3278 AnalyzeLater
3279 };
3280
3281 /// \param EndOfTU True, if this is the final analysis at the end of
3282 /// translation unit. False, if this is the initial analysis at the point
3283 /// delete-expression was encountered.
3284 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3285 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3286 HasUndefinedConstructors(false) {}
3287
3288 /// Checks whether pointee of a delete-expression is initialized with
3289 /// matching form of new-expression.
3290 ///
3291 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3292 /// point where delete-expression is encountered, then a warning will be
3293 /// issued immediately. If return value is \c AnalyzeLater at the point where
3294 /// delete-expression is seen, then member will be analyzed at the end of
3295 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3296 /// couldn't be analyzed. If at least one constructor initializes the member
3297 /// with matching type of new, the return value is \c NoMismatch.
3298 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3299 /// Analyzes a class member.
3300 /// \param Field Class member to analyze.
3301 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3302 /// for deleting the \p Field.
3303 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3304 FieldDecl *Field;
3305 /// List of mismatching new-expressions used for initialization of the pointee
3306 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3307 /// Indicates whether delete-expression was in array form.
3308 bool IsArrayForm;
3309
3310private:
3311 const bool EndOfTU;
3312 /// Indicates that there is at least one constructor without body.
3313 bool HasUndefinedConstructors;
3314 /// Returns \c CXXNewExpr from given initialization expression.
3315 /// \param E Expression used for initializing pointee in delete-expression.
3316 /// E can be a single-element \c InitListExpr consisting of new-expression.
3317 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3318 /// Returns whether member is initialized with mismatching form of
3319 /// \c new either by the member initializer or in-class initialization.
3320 ///
3321 /// If bodies of all constructors are not visible at the end of translation
3322 /// unit or at least one constructor initializes member with the matching
3323 /// form of \c new, mismatch cannot be proven, and this function will return
3324 /// \c NoMismatch.
3325 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3326 /// Returns whether variable is initialized with mismatching form of
3327 /// \c new.
3328 ///
3329 /// If variable is initialized with matching form of \c new or variable is not
3330 /// initialized with a \c new expression, this function will return true.
3331 /// If variable is initialized with mismatching form of \c new, returns false.
3332 /// \param D Variable to analyze.
3333 bool hasMatchingVarInit(const DeclRefExpr *D);
3334 /// Checks whether the constructor initializes pointee with mismatching
3335 /// form of \c new.
3336 ///
3337 /// Returns true, if member is initialized with matching form of \c new in
3338 /// member initializer list. Returns false, if member is initialized with the
3339 /// matching form of \c new in this constructor's initializer or given
3340 /// constructor isn't defined at the point where delete-expression is seen, or
3341 /// member isn't initialized by the constructor.
3342 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3343 /// Checks whether member is initialized with matching form of
3344 /// \c new in member initializer list.
3345 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3346 /// Checks whether member is initialized with mismatching form of \c new by
3347 /// in-class initializer.
3348 MismatchResult analyzeInClassInitializer();
3349};
3350}
3351
3352MismatchingNewDeleteDetector::MismatchResult
3353MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3354 NewExprs.clear();
3355 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3355, __extension__ __PRETTY_FUNCTION__
))
;
3356 IsArrayForm = DE->isArrayForm();
3357 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3358 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3359 return analyzeMemberExpr(ME);
3360 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3361 if (!hasMatchingVarInit(D))
3362 return VarInitMismatches;
3363 }
3364 return NoMismatch;
3365}
3366
3367const CXXNewExpr *
3368MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3369 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3369, __extension__ __PRETTY_FUNCTION__
))
;
3370 E = E->IgnoreParenImpCasts();
3371 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3372 if (ILE->getNumInits() == 1)
3373 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3374 }
3375
3376 return dyn_cast_or_null<const CXXNewExpr>(E);
3377}
3378
3379bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3380 const CXXCtorInitializer *CI) {
3381 const CXXNewExpr *NE = nullptr;
3382 if (Field == CI->getMember() &&
3383 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3384 if (NE->isArray() == IsArrayForm)
3385 return true;
3386 else
3387 NewExprs.push_back(NE);
3388 }
3389 return false;
3390}
3391
3392bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3393 const CXXConstructorDecl *CD) {
3394 if (CD->isImplicit())
3395 return false;
3396 const FunctionDecl *Definition = CD;
3397 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3398 HasUndefinedConstructors = true;
3399 return EndOfTU;
3400 }
3401 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3402 if (hasMatchingNewInCtorInit(CI))
3403 return true;
3404 }
3405 return false;
3406}
3407
3408MismatchingNewDeleteDetector::MismatchResult
3409MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3410 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3410, __extension__ __PRETTY_FUNCTION__
))
;
3411 const Expr *InitExpr = Field->getInClassInitializer();
3412 if (!InitExpr)
3413 return EndOfTU ? NoMismatch : AnalyzeLater;
3414 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3415 if (NE->isArray() != IsArrayForm) {
3416 NewExprs.push_back(NE);
3417 return MemberInitMismatches;
3418 }
3419 }
3420 return NoMismatch;
3421}
3422
3423MismatchingNewDeleteDetector::MismatchResult
3424MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3425 bool DeleteWasArrayForm) {
3426 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3426, __extension__ __PRETTY_FUNCTION__
))
;
3427 this->Field = Field;
3428 IsArrayForm = DeleteWasArrayForm;
3429 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3430 for (const auto *CD : RD->ctors()) {
3431 if (hasMatchingNewInCtor(CD))
3432 return NoMismatch;
3433 }
3434 if (HasUndefinedConstructors)
3435 return EndOfTU ? NoMismatch : AnalyzeLater;
3436 if (!NewExprs.empty())
3437 return MemberInitMismatches;
3438 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3439 : NoMismatch;
3440}
3441
3442MismatchingNewDeleteDetector::MismatchResult
3443MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3444 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3444, __extension__ __PRETTY_FUNCTION__
))
;
3445 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3446 return analyzeField(F, IsArrayForm);
3447 return NoMismatch;
3448}
3449
3450bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3451 const CXXNewExpr *NE = nullptr;
3452 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3453 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3454 NE->isArray() != IsArrayForm) {
3455 NewExprs.push_back(NE);
3456 }
3457 }
3458 return NewExprs.empty();
3459}
3460
3461static void
3462DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3463 const MismatchingNewDeleteDetector &Detector) {
3464 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3465 FixItHint H;
3466 if (!Detector.IsArrayForm)
3467 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3468 else {
3469 SourceLocation RSquare = Lexer::findLocationAfterToken(
3470 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3471 SemaRef.getLangOpts(), true);
3472 if (RSquare.isValid())
3473 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3474 }
3475 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3476 << Detector.IsArrayForm << H;
3477
3478 for (const auto *NE : Detector.NewExprs)
3479 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3480 << Detector.IsArrayForm;
3481}
3482
3483void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3484 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3485 return;
3486 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3487 switch (Detector.analyzeDeleteExpr(DE)) {
3488 case MismatchingNewDeleteDetector::VarInitMismatches:
3489 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3490 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3491 break;
3492 }
3493 case MismatchingNewDeleteDetector::AnalyzeLater: {
3494 DeleteExprs[Detector.Field].push_back(
3495 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3496 break;
3497 }
3498 case MismatchingNewDeleteDetector::NoMismatch:
3499 break;
3500 }
3501}
3502
3503void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3504 bool DeleteWasArrayForm) {
3505 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3506 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3507 case MismatchingNewDeleteDetector::VarInitMismatches:
3508 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3508)
;
3509 case MismatchingNewDeleteDetector::AnalyzeLater:
3510 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3511)
3511 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3511)
;
3512 case MismatchingNewDeleteDetector::MemberInitMismatches:
3513 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3514 break;
3515 case MismatchingNewDeleteDetector::NoMismatch:
3516 break;
3517 }
3518}
3519
3520/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3521/// @code ::delete ptr; @endcode
3522/// or
3523/// @code delete [] ptr; @endcode
3524ExprResult
3525Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3526 bool ArrayForm, Expr *ExE) {
3527 // C++ [expr.delete]p1:
3528 // The operand shall have a pointer type, or a class type having a single
3529 // non-explicit conversion function to a pointer type. The result has type
3530 // void.
3531 //
3532 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3533
3534 ExprResult Ex = ExE;
3535 FunctionDecl *OperatorDelete = nullptr;
3536 bool ArrayFormAsWritten = ArrayForm;
3537 bool UsualArrayDeleteWantsSize = false;
3538
3539 if (!Ex.get()->isTypeDependent()) {
3540 // Perform lvalue-to-rvalue cast, if needed.
3541 Ex = DefaultLvalueConversion(Ex.get());
3542 if (Ex.isInvalid())
3543 return ExprError();
3544
3545 QualType Type = Ex.get()->getType();
3546
3547 class DeleteConverter : public ContextualImplicitConverter {
3548 public:
3549 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3550
3551 bool match(QualType ConvType) override {
3552 // FIXME: If we have an operator T* and an operator void*, we must pick
3553 // the operator T*.
3554 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3555 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3556 return true;
3557 return false;
3558 }
3559
3560 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3561 QualType T) override {
3562 return S.Diag(Loc, diag::err_delete_operand) << T;
3563 }
3564
3565 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3566 QualType T) override {
3567 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3568 }
3569
3570 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3571 QualType T,
3572 QualType ConvTy) override {
3573 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3574 }
3575
3576 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3577 QualType ConvTy) override {
3578 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3579 << ConvTy;
3580 }
3581
3582 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3583 QualType T) override {
3584 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3585 }
3586
3587 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3588 QualType ConvTy) override {
3589 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3590 << ConvTy;
3591 }
3592
3593 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3594 QualType T,
3595 QualType ConvTy) override {
3596 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3596)
;
3597 }
3598 } Converter;
3599
3600 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3601 if (Ex.isInvalid())
3602 return ExprError();
3603 Type = Ex.get()->getType();
3604 if (!Converter.match(Type))
3605 // FIXME: PerformContextualImplicitConversion should return ExprError
3606 // itself in this case.
3607 return ExprError();
3608
3609 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3610 QualType PointeeElem = Context.getBaseElementType(Pointee);
3611
3612 if (Pointee.getAddressSpace() != LangAS::Default &&
3613 !getLangOpts().OpenCLCPlusPlus)
3614 return Diag(Ex.get()->getBeginLoc(),
3615 diag::err_address_space_qualified_delete)
3616 << Pointee.getUnqualifiedType()
3617 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3618
3619 CXXRecordDecl *PointeeRD = nullptr;
3620 if (Pointee->isVoidType() && !isSFINAEContext()) {
3621 // The C++ standard bans deleting a pointer to a non-object type, which
3622 // effectively bans deletion of "void*". However, most compilers support
3623 // this, so we treat it as a warning unless we're in a SFINAE context.
3624 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3625 << Type << Ex.get()->getSourceRange();
3626 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3627 Pointee->isSizelessType()) {
3628 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3629 << Type << Ex.get()->getSourceRange());
3630 } else if (!Pointee->isDependentType()) {
3631 // FIXME: This can result in errors if the definition was imported from a
3632 // module but is hidden.
3633 if (!RequireCompleteType(StartLoc, Pointee,
3634 diag::warn_delete_incomplete, Ex.get())) {
3635 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3636 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3637 }
3638 }
3639
3640 if (Pointee->isArrayType() && !ArrayForm) {
3641 Diag(StartLoc, diag::warn_delete_array_type)
3642 << Type << Ex.get()->getSourceRange()
3643 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3644 ArrayForm = true;
3645 }
3646
3647 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3648 ArrayForm ? OO_Array_Delete : OO_Delete);
3649
3650 if (PointeeRD) {
3651 if (!UseGlobal &&
3652 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3653 OperatorDelete))
3654 return ExprError();
3655
3656 // If we're allocating an array of records, check whether the
3657 // usual operator delete[] has a size_t parameter.
3658 if (ArrayForm) {
3659 // If the user specifically asked to use the global allocator,
3660 // we'll need to do the lookup into the class.
3661 if (UseGlobal)
3662 UsualArrayDeleteWantsSize =
3663 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3664
3665 // Otherwise, the usual operator delete[] should be the
3666 // function we just found.
3667 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3668 UsualArrayDeleteWantsSize =
3669 UsualDeallocFnInfo(*this,
3670 DeclAccessPair::make(OperatorDelete, AS_public))
3671 .HasSizeT;
3672 }
3673
3674 if (!PointeeRD->hasIrrelevantDestructor())
3675 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3676 MarkFunctionReferenced(StartLoc,
3677 const_cast<CXXDestructorDecl*>(Dtor));
3678 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3679 return ExprError();
3680 }
3681
3682 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3683 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3684 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3685 SourceLocation());
3686 }
3687
3688 if (!OperatorDelete) {
3689 if (getLangOpts().OpenCLCPlusPlus) {
3690 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3691 return ExprError();
3692 }
3693
3694 bool IsComplete = isCompleteType(StartLoc, Pointee);
3695 bool CanProvideSize =
3696 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3697 Pointee.isDestructedType());
3698 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3699
3700 // Look for a global declaration.
3701 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3702 Overaligned, DeleteName);
3703 }
3704
3705 MarkFunctionReferenced(StartLoc, OperatorDelete);
3706
3707 // Check access and ambiguity of destructor if we're going to call it.
3708 // Note that this is required even for a virtual delete.
3709 bool IsVirtualDelete = false;
3710 if (PointeeRD) {
3711 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3712 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3713 PDiag(diag::err_access_dtor) << PointeeElem);
3714 IsVirtualDelete = Dtor->isVirtual();
3715 }
3716 }
3717
3718 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3719
3720 // Convert the operand to the type of the first parameter of operator
3721 // delete. This is only necessary if we selected a destroying operator
3722 // delete that we are going to call (non-virtually); converting to void*
3723 // is trivial and left to AST consumers to handle.
3724 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3725 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3726 Qualifiers Qs = Pointee.getQualifiers();
3727 if (Qs.hasCVRQualifiers()) {
3728 // Qualifiers are irrelevant to this conversion; we're only looking
3729 // for access and ambiguity.
3730 Qs.removeCVRQualifiers();
3731 QualType Unqual = Context.getPointerType(
3732 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3733 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3734 }
3735 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3736 if (Ex.isInvalid())
3737 return ExprError();
3738 }
3739 }
3740
3741 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3742 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3743 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3744 AnalyzeDeleteExprMismatch(Result);
3745 return Result;
3746}
3747
3748static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3749 bool IsDelete,
3750 FunctionDecl *&Operator) {
3751
3752 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3753 IsDelete ? OO_Delete : OO_New);
3754
3755 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3756 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3757 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3757, __extension__ __PRETTY_FUNCTION__
))
;
3758 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3758, __extension__ __PRETTY_FUNCTION__
))
;
3759
3760 // We do our own custom access checks below.
3761 R.suppressDiagnostics();
3762
3763 SmallVector<Expr *, 8> Args(TheCall->arguments());
3764 OverloadCandidateSet Candidates(R.getNameLoc(),
3765 OverloadCandidateSet::CSK_Normal);
3766 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3767 FnOvl != FnOvlEnd; ++FnOvl) {
3768 // Even member operator new/delete are implicitly treated as
3769 // static, so don't use AddMemberCandidate.
3770 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3771
3772 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3773 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3774 /*ExplicitTemplateArgs=*/nullptr, Args,
3775 Candidates,
3776 /*SuppressUserConversions=*/false);
3777 continue;
3778 }
3779
3780 FunctionDecl *Fn = cast<FunctionDecl>(D);
3781 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3782 /*SuppressUserConversions=*/false);
3783 }
3784
3785 SourceRange Range = TheCall->getSourceRange();
3786
3787 // Do the resolution.
3788 OverloadCandidateSet::iterator Best;
3789 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3790 case OR_Success: {
3791 // Got one!
3792 FunctionDecl *FnDecl = Best->Function;
3793 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3794, __extension__ __PRETTY_FUNCTION__
))
3794 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3794, __extension__ __PRETTY_FUNCTION__
))
;
3795
3796 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3797 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3798 << (IsDelete ? 1 : 0) << Range;
3799 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3800 << R.getLookupName() << FnDecl->getSourceRange();
3801 return true;
3802 }
3803
3804 Operator = FnDecl;
3805 return false;
3806 }
3807
3808 case OR_No_Viable_Function:
3809 Candidates.NoteCandidates(
3810 PartialDiagnosticAt(R.getNameLoc(),
3811 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3812 << R.getLookupName() << Range),
3813 S, OCD_AllCandidates, Args);
3814 return true;
3815
3816 case OR_Ambiguous:
3817 Candidates.NoteCandidates(
3818 PartialDiagnosticAt(R.getNameLoc(),
3819 S.PDiag(diag::err_ovl_ambiguous_call)
3820 << R.getLookupName() << Range),
3821 S, OCD_AmbiguousCandidates, Args);
3822 return true;
3823
3824 case OR_Deleted: {
3825 Candidates.NoteCandidates(
3826 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3827 << R.getLookupName() << Range),
3828 S, OCD_AllCandidates, Args);
3829 return true;
3830 }
3831 }
3832 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3832)
;
3833}
3834
3835ExprResult
3836Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3837 bool IsDelete) {
3838 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3839 if (!getLangOpts().CPlusPlus) {
3840 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3841 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3842 << "C++";
3843 return ExprError();
3844 }
3845 // CodeGen assumes it can find the global new and delete to call,
3846 // so ensure that they are declared.
3847 DeclareGlobalNewDelete();
3848
3849 FunctionDecl *OperatorNewOrDelete = nullptr;
3850 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3851 OperatorNewOrDelete))
3852 return ExprError();
3853 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3853, __extension__ __PRETTY_FUNCTION__
))
;
3854
3855 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3856 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3857
3858 TheCall->setType(OperatorNewOrDelete->getReturnType());
3859 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3860 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3861 InitializedEntity Entity =
3862 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3863 ExprResult Arg = PerformCopyInitialization(
3864 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3865 if (Arg.isInvalid())
3866 return ExprError();
3867 TheCall->setArg(i, Arg.get());
3868 }
3869 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3870 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3871, __extension__ __PRETTY_FUNCTION__
))
3871 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3871, __extension__ __PRETTY_FUNCTION__
))
;
3872 Callee->setType(OperatorNewOrDelete->getType());
3873
3874 return TheCallResult;
3875}
3876
3877void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3878 bool IsDelete, bool CallCanBeVirtual,
3879 bool WarnOnNonAbstractTypes,
3880 SourceLocation DtorLoc) {
3881 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3882 return;
3883
3884 // C++ [expr.delete]p3:
3885 // In the first alternative (delete object), if the static type of the
3886 // object to be deleted is different from its dynamic type, the static
3887 // type shall be a base class of the dynamic type of the object to be
3888 // deleted and the static type shall have a virtual destructor or the
3889 // behavior is undefined.
3890 //
3891 const CXXRecordDecl *PointeeRD = dtor->getParent();
3892 // Note: a final class cannot be derived from, no issue there
3893 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3894 return;
3895
3896 // If the superclass is in a system header, there's nothing that can be done.
3897 // The `delete` (where we emit the warning) can be in a system header,
3898 // what matters for this warning is where the deleted type is defined.
3899 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3900 return;
3901
3902 QualType ClassType = dtor->getThisType()->getPointeeType();
3903 if (PointeeRD->isAbstract()) {
3904 // If the class is abstract, we warn by default, because we're
3905 // sure the code has undefined behavior.
3906 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3907 << ClassType;
3908 } else if (WarnOnNonAbstractTypes) {
3909 // Otherwise, if this is not an array delete, it's a bit suspect,
3910 // but not necessarily wrong.
3911 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3912 << ClassType;
3913 }
3914 if (!IsDelete) {
3915 std::string TypeStr;
3916 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3917 Diag(DtorLoc, diag::note_delete_non_virtual)
3918 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3919 }
3920}
3921
3922Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3923 SourceLocation StmtLoc,
3924 ConditionKind CK) {
3925 ExprResult E =
3926 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3927 if (E.isInvalid())
3928 return ConditionError();
3929 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3930 CK == ConditionKind::ConstexprIf);
3931}
3932
3933/// Check the use of the given variable as a C++ condition in an if,
3934/// while, do-while, or switch statement.
3935ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3936 SourceLocation StmtLoc,
3937 ConditionKind CK) {
3938 if (ConditionVar->isInvalidDecl())
3939 return ExprError();
3940
3941 QualType T = ConditionVar->getType();
3942
3943 // C++ [stmt.select]p2:
3944 // The declarator shall not specify a function or an array.
3945 if (T->isFunctionType())
3946 return ExprError(Diag(ConditionVar->getLocation(),
3947 diag::err_invalid_use_of_function_type)
3948 << ConditionVar->getSourceRange());
3949 else if (T->isArrayType())
3950 return ExprError(Diag(ConditionVar->getLocation(),
3951 diag::err_invalid_use_of_array_type)
3952 << ConditionVar->getSourceRange());
3953
3954 ExprResult Condition = BuildDeclRefExpr(
3955 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3956 ConditionVar->getLocation());
3957
3958 switch (CK) {
3959 case ConditionKind::Boolean:
3960 return CheckBooleanCondition(StmtLoc, Condition.get());
3961
3962 case ConditionKind::ConstexprIf:
3963 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3964
3965 case ConditionKind::Switch:
3966 return CheckSwitchCondition(StmtLoc, Condition.get());
3967 }
3968
3969 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3969)
;
3970}
3971
3972/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3973ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3974 // C++11 6.4p4:
3975 // The value of a condition that is an initialized declaration in a statement
3976 // other than a switch statement is the value of the declared variable
3977 // implicitly converted to type bool. If that conversion is ill-formed, the
3978 // program is ill-formed.
3979 // The value of a condition that is an expression is the value of the
3980 // expression, implicitly converted to bool.
3981 //
3982 // C++2b 8.5.2p2
3983 // If the if statement is of the form if constexpr, the value of the condition
3984 // is contextually converted to bool and the converted expression shall be
3985 // a constant expression.
3986 //
3987
3988 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3989 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3990 return E;
3991
3992 // FIXME: Return this value to the caller so they don't need to recompute it.
3993 llvm::APSInt Cond;
3994 E = VerifyIntegerConstantExpression(
3995 E.get(), &Cond,
3996 diag::err_constexpr_if_condition_expression_is_not_constant);
3997 return E;
3998}
3999
4000/// Helper function to determine whether this is the (deprecated) C++
4001/// conversion from a string literal to a pointer to non-const char or
4002/// non-const wchar_t (for narrow and wide string literals,
4003/// respectively).
4004bool
4005Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4006 // Look inside the implicit cast, if it exists.
4007 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4008 From = Cast->getSubExpr();
4009
4010 // A string literal (2.13.4) that is not a wide string literal can
4011 // be converted to an rvalue of type "pointer to char"; a wide
4012 // string literal can be converted to an rvalue of type "pointer
4013 // to wchar_t" (C++ 4.2p2).
4014 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4015 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4016 if (const BuiltinType *ToPointeeType
4017 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4018 // This conversion is considered only when there is an
4019 // explicit appropriate pointer target type (C++ 4.2p2).
4020 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4021 switch (StrLit->getKind()) {
4022 case StringLiteral::UTF8:
4023 case StringLiteral::UTF16:
4024 case StringLiteral::UTF32:
4025 // We don't allow UTF literals to be implicitly converted
4026 break;
4027 case StringLiteral::Ordinary:
4028 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4029 ToPointeeType->getKind() == BuiltinType::Char_S);
4030 case StringLiteral::Wide:
4031 return Context.typesAreCompatible(Context.getWideCharType(),
4032 QualType(ToPointeeType, 0));
4033 }
4034 }
4035 }
4036
4037 return false;
4038}
4039
4040static ExprResult BuildCXXCastArgument(Sema &S,
4041 SourceLocation CastLoc,
4042 QualType Ty,
4043 CastKind Kind,
4044 CXXMethodDecl *Method,
4045 DeclAccessPair FoundDecl,
4046 bool HadMultipleCandidates,
4047 Expr *From) {
4048 switch (Kind) {
4049 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4049)
;
4050 case CK_ConstructorConversion: {
4051 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4052 SmallVector<Expr*, 8> ConstructorArgs;
4053
4054 if (S.RequireNonAbstractType(CastLoc, Ty,
4055 diag::err_allocation_of_abstract_type))
4056 return ExprError();
4057
4058 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4059 ConstructorArgs))
4060 return ExprError();
4061
4062 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4063 InitializedEntity::InitializeTemporary(Ty));
4064 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4065 return ExprError();
4066
4067 ExprResult Result = S.BuildCXXConstructExpr(
4068 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4069 ConstructorArgs, HadMultipleCandidates,
4070 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4071 CXXConstructExpr::CK_Complete, SourceRange());
4072 if (Result.isInvalid())
4073 return ExprError();
4074
4075 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4076 }
4077
4078 case CK_UserDefinedConversion: {
4079 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4079, __extension__ __PRETTY_FUNCTION__
))
;
4080
4081 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4082 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4083 return ExprError();
4084
4085 // Create an implicit call expr that calls it.
4086 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4087 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4088 HadMultipleCandidates);
4089 if (Result.isInvalid())
4090 return ExprError();
4091 // Record usage of conversion in an implicit cast.
4092 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4093 CK_UserDefinedConversion, Result.get(),
4094 nullptr, Result.get()->getValueKind(),
4095 S.CurFPFeatureOverrides());
4096
4097 return S.MaybeBindToTemporary(Result.get());
4098 }
4099 }
4100}
4101
4102/// PerformImplicitConversion - Perform an implicit conversion of the
4103/// expression From to the type ToType using the pre-computed implicit
4104/// conversion sequence ICS. Returns the converted
4105/// expression. Action is the kind of conversion we're performing,
4106/// used in the error message.
4107ExprResult
4108Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4109 const ImplicitConversionSequence &ICS,
4110 AssignmentAction Action,
4111 CheckedConversionKind CCK) {
4112 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4113 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4114 return From;
4115
4116 switch (ICS.getKind()) {
4117 case ImplicitConversionSequence::StandardConversion: {
4118 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4119 Action, CCK);
4120 if (Res.isInvalid())
4121 return ExprError();
4122 From = Res.get();
4123 break;
4124 }
4125
4126 case ImplicitConversionSequence::UserDefinedConversion: {
4127
4128 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4129 CastKind CastKind;
4130 QualType BeforeToType;
4131 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4131, __extension__ __PRETTY_FUNCTION__
))
;
4132 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4133 CastKind = CK_UserDefinedConversion;
4134
4135 // If the user-defined conversion is specified by a conversion function,
4136 // the initial standard conversion sequence converts the source type to
4137 // the implicit object parameter of the conversion function.
4138 BeforeToType = Context.getTagDeclType(Conv->getParent());
4139 } else {
4140 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4141 CastKind = CK_ConstructorConversion;
4142 // Do no conversion if dealing with ... for the first conversion.
4143 if (!ICS.UserDefined.EllipsisConversion) {
4144 // If the user-defined conversion is specified by a constructor, the
4145 // initial standard conversion sequence converts the source type to
4146 // the type required by the argument of the constructor
4147 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4148 }
4149 }
4150 // Watch out for ellipsis conversion.
4151 if (!ICS.UserDefined.EllipsisConversion) {
4152 ExprResult Res =
4153 PerformImplicitConversion(From, BeforeToType,
4154 ICS.UserDefined.Before, AA_Converting,
4155 CCK);
4156 if (Res.isInvalid())
4157 return ExprError();
4158 From = Res.get();
4159 }
4160
4161 ExprResult CastArg = BuildCXXCastArgument(
4162 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4163 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4164 ICS.UserDefined.HadMultipleCandidates, From);
4165
4166 if (CastArg.isInvalid())
4167 return ExprError();
4168
4169 From = CastArg.get();
4170
4171 // C++ [over.match.oper]p7:
4172 // [...] the second standard conversion sequence of a user-defined
4173 // conversion sequence is not applied.
4174 if (CCK == CCK_ForBuiltinOverloadedOp)
4175 return From;
4176
4177 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4178 AA_Converting, CCK);
4179 }
4180
4181 case ImplicitConversionSequence::AmbiguousConversion:
4182 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4183 PDiag(diag::err_typecheck_ambiguous_condition)
4184 << From->getSourceRange());
4185 return ExprError();
4186
4187 case ImplicitConversionSequence::EllipsisConversion:
4188 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4189 llvm_unreachable("bad conversion")::llvm::llvm_unreachable_internal("bad conversion", "clang/lib/Sema/SemaExprCXX.cpp"
, 4189)
;
4190
4191 case ImplicitConversionSequence::BadConversion:
4192 Sema::AssignConvertType ConvTy =
4193 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4194 bool Diagnosed = DiagnoseAssignmentResult(
4195 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4196 ToType, From->getType(), From, Action);
4197 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4197, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed;
4198 return ExprError();
4199 }
4200
4201 // Everything went well.
4202 return From;
4203}
4204
4205/// PerformImplicitConversion - Perform an implicit conversion of the
4206/// expression From to the type ToType by following the standard
4207/// conversion sequence SCS. Returns the converted
4208/// expression. Flavor is the context in which we're performing this
4209/// conversion, for use in error messages.
4210ExprResult
4211Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4212 const StandardConversionSequence& SCS,
4213 AssignmentAction Action,
4214 CheckedConversionKind CCK) {
4215 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4216
4217 // Overall FIXME: we are recomputing too many types here and doing far too
4218 // much extra work. What this means is that we need to keep track of more
4219 // information that is computed when we try the implicit conversion initially,
4220 // so that we don't need to recompute anything here.
4221 QualType FromType = From->getType();
4222
4223 if (SCS.CopyConstructor) {
4224 // FIXME: When can ToType be a reference type?
4225 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
;
4226 if (SCS.Second == ICK_Derived_To_Base) {
4227 SmallVector<Expr*, 8> ConstructorArgs;
4228 if (CompleteConstructorCall(
4229 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4230 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4231 return ExprError();
4232 return BuildCXXConstructExpr(
4233 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4234 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4235 ConstructorArgs, /*HadMultipleCandidates*/ false,
4236 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4237 CXXConstructExpr::CK_Complete, SourceRange());
4238 }
4239 return BuildCXXConstructExpr(
4240 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4241 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4242 From, /*HadMultipleCandidates*/ false,
4243 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4244 CXXConstructExpr::CK_Complete, SourceRange());
4245 }
4246
4247 // Resolve overloaded function references.
4248 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4249 DeclAccessPair Found;
4250 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4251 true, Found);
4252 if (!Fn)
4253 return ExprError();
4254
4255 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4256 return ExprError();
4257
4258 From = FixOverloadedFunctionReference(From, Found, Fn);
4259
4260 // We might get back another placeholder expression if we resolved to a
4261 // builtin.
4262 ExprResult Checked = CheckPlaceholderExpr(From);
4263 if (Checked.isInvalid())
4264 return ExprError();
4265
4266 From = Checked.get();
4267 FromType = From->getType();
4268 }
4269
4270 // If we're converting to an atomic type, first convert to the corresponding
4271 // non-atomic type.
4272 QualType ToAtomicType;
4273 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4274 ToAtomicType = ToType;
4275 ToType = ToAtomic->getValueType();
4276 }
4277
4278 QualType InitialFromType = FromType;
4279 // Perform the first implicit conversion.
4280 switch (SCS.First) {
4281 case ICK_Identity:
4282 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4283 FromType = FromAtomic->getValueType().getUnqualifiedType();
4284 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4285 From, /*BasePath=*/nullptr, VK_PRValue,
4286 FPOptionsOverride());
4287 }
4288 break;
4289
4290 case ICK_Lvalue_To_Rvalue: {
4291 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4291, __extension__ __PRETTY_FUNCTION__
))
;
4292 ExprResult FromRes = DefaultLvalueConversion(From);
4293 if (FromRes.isInvalid())
4294 return ExprError();
4295
4296 From = FromRes.get();
4297 FromType = From->getType();
4298 break;
4299 }
4300
4301 case ICK_Array_To_Pointer:
4302 FromType = Context.getArrayDecayedType(FromType);
4303 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4304 /*BasePath=*/nullptr, CCK)
4305 .get();
4306 break;
4307
4308 case ICK_Function_To_Pointer:
4309 FromType = Context.getPointerType(FromType);
4310 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4311 VK_PRValue, /*BasePath=*/nullptr, CCK)
4312 .get();
4313 break;
4314
4315 default:
4316 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4316)
;
4317 }
4318
4319 // Perform the second implicit conversion
4320 switch (SCS.Second) {
4321 case ICK_Identity:
4322 // C++ [except.spec]p5:
4323 // [For] assignment to and initialization of pointers to functions,
4324 // pointers to member functions, and references to functions: the
4325 // target entity shall allow at least the exceptions allowed by the
4326 // source value in the assignment or initialization.
4327 switch (Action) {
4328 case AA_Assigning:
4329 case AA_Initializing:
4330 // Note, function argument passing and returning are initialization.
4331 case AA_Passing:
4332 case AA_Returning:
4333 case AA_Sending:
4334 case AA_Passing_CFAudited:
4335 if (CheckExceptionSpecCompatibility(From, ToType))
4336 return ExprError();
4337 break;
4338
4339 case AA_Casting:
4340 case AA_Converting:
4341 // Casts and implicit conversions are not initialization, so are not
4342 // checked for exception specification mismatches.
4343 break;
4344 }
4345 // Nothing else to do.
4346 break;
4347
4348 case ICK_Integral_Promotion:
4349 case ICK_Integral_Conversion:
4350 if (ToType->isBooleanType()) {
4351 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4353, __extension__ __PRETTY_FUNCTION__
))
4352 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4353, __extension__ __PRETTY_FUNCTION__
))
4353 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4353, __extension__ __PRETTY_FUNCTION__
))
;
4354 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4355 /*BasePath=*/nullptr, CCK)
4356 .get();
4357 } else {
4358 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4359 /*BasePath=*/nullptr, CCK)
4360 .get();
4361 }
4362 break;
4363
4364 case ICK_Floating_Promotion:
4365 case ICK_Floating_Conversion:
4366 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4367 /*BasePath=*/nullptr, CCK)
4368 .get();
4369 break;
4370
4371 case ICK_Complex_Promotion:
4372 case ICK_Complex_Conversion: {
4373 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4374 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4375 CastKind CK;
4376 if (FromEl->isRealFloatingType()) {
4377 if (ToEl->isRealFloatingType())
4378 CK = CK_FloatingComplexCast;
4379 else
4380 CK = CK_FloatingComplexToIntegralComplex;
4381 } else if (ToEl->isRealFloatingType()) {
4382 CK = CK_IntegralComplexToFloatingComplex;
4383 } else {
4384 CK = CK_IntegralComplexCast;
4385 }
4386 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4387 CCK)
4388 .get();
4389 break;
4390 }
4391
4392 case ICK_Floating_Integral:
4393 if (ToType->isRealFloatingType())
4394 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4395 /*BasePath=*/nullptr, CCK)
4396 .get();
4397 else
4398 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4399 /*BasePath=*/nullptr, CCK)
4400 .get();
4401 break;
4402
4403 case ICK_Compatible_Conversion:
4404 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4405 /*BasePath=*/nullptr, CCK).get();
4406 break;
4407
4408 case ICK_Writeback_Conversion:
4409 case ICK_Pointer_Conversion: {
4410 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4411 // Diagnose incompatible Objective-C conversions
4412 if (Action == AA_Initializing || Action == AA_Assigning)
4413 Diag(From->getBeginLoc(),
4414 diag::ext_typecheck_convert_incompatible_pointer)
4415 << ToType << From->getType() << Action << From->getSourceRange()
4416 << 0;
4417 else
4418 Diag(From->getBeginLoc(),
4419 diag::ext_typecheck_convert_incompatible_pointer)
4420 << From->getType() << ToType << Action << From->getSourceRange()
4421 << 0;
4422
4423 if (From->getType()->isObjCObjectPointerType() &&
4424 ToType->isObjCObjectPointerType())
4425 EmitRelatedResultTypeNote(From);
4426 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4427 !CheckObjCARCUnavailableWeakConversion(ToType,
4428 From->getType())) {
4429 if (Action == AA_Initializing)
4430 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4431 else
4432 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4433 << (Action == AA_Casting) << From->getType() << ToType
4434 << From->getSourceRange();
4435 }
4436
4437 // Defer address space conversion to the third conversion.
4438 QualType FromPteeType = From->getType()->getPointeeType();
4439 QualType ToPteeType = ToType->getPointeeType();
4440 QualType NewToType = ToType;
4441 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4442 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4443 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4444 NewToType = Context.getAddrSpaceQualType(NewToType,
4445 FromPteeType.getAddressSpace());
4446 if (ToType->isObjCObjectPointerType())
4447 NewToType = Context.getObjCObjectPointerType(NewToType);
4448 else if (ToType->isBlockPointerType())
4449 NewToType = Context.getBlockPointerType(NewToType);
4450 else
4451 NewToType = Context.getPointerType(NewToType);
4452 }
4453
4454 CastKind Kind;
4455 CXXCastPath BasePath;
4456 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4457 return ExprError();
4458
4459 // Make sure we extend blocks if necessary.
4460 // FIXME: doing this here is really ugly.
4461 if (Kind == CK_BlockPointerToObjCPointerCast) {
4462 ExprResult E = From;
4463 (void) PrepareCastToObjCObjectPointer(E);
4464 From = E.get();
4465 }
4466 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4467 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4468 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4469 .get();
4470 break;
4471 }
4472
4473 case ICK_Pointer_Member: {
4474 CastKind Kind;
4475 CXXCastPath BasePath;
4476 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4477 return ExprError();
4478 if (CheckExceptionSpecCompatibility(From, ToType))
4479 return ExprError();
4480
4481 // We may not have been able to figure out what this member pointer resolved
4482 // to up until this exact point. Attempt to lock-in it's inheritance model.
4483 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4484 (void)isCompleteType(From->getExprLoc(), From->getType());
4485 (void)isCompleteType(From->getExprLoc(), ToType);
4486 }
4487
4488 From =
4489 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4490 break;
4491 }
4492
4493 case ICK_Boolean_Conversion:
4494 // Perform half-to-boolean conversion via float.
4495 if (From->getType()->isHalfType()) {
4496 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4497 FromType = Context.FloatTy;
4498 }
4499
4500 From = ImpCastExprToType(From, Context.BoolTy,
4501 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4502 /*BasePath=*/nullptr, CCK)
4503 .get();
4504 break;
4505
4506 case ICK_Derived_To_Base: {
4507 CXXCastPath BasePath;
4508 if (CheckDerivedToBaseConversion(
4509 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4510 From->getSourceRange(), &BasePath, CStyle))
4511 return ExprError();
4512
4513 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4514 CK_DerivedToBase, From->getValueKind(),
4515 &BasePath, CCK).get();
4516 break;
4517 }
4518
4519 case ICK_Vector_Conversion:
4520 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4521 /*BasePath=*/nullptr, CCK)
4522 .get();
4523 break;
4524
4525 case ICK_SVE_Vector_Conversion:
4526 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4527 /*BasePath=*/nullptr, CCK)
4528 .get();
4529 break;
4530
4531 case ICK_Vector_Splat: {
4532 // Vector splat from any arithmetic type to a vector.
4533 Expr *Elem = prepareVectorSplat(ToType, From).get();
4534 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4535 /*BasePath=*/nullptr, CCK)
4536 .get();
4537 break;
4538 }
4539
4540 case ICK_Complex_Real:
4541 // Case 1. x -> _Complex y
4542 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4543 QualType ElType = ToComplex->getElementType();
4544 bool isFloatingComplex = ElType->isRealFloatingType();
4545
4546 // x -> y
4547 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4548 // do nothing
4549 } else if (From->getType()->isRealFloatingType()) {
4550 From = ImpCastExprToType(From, ElType,
4551 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4552 } else {
4553 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4553, __extension__ __PRETTY_FUNCTION__
))
;
4554 From = ImpCastExprToType(From, ElType,
4555 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4556 }
4557 // y -> _Complex y
4558 From = ImpCastExprToType(From, ToType,
4559 isFloatingComplex ? CK_FloatingRealToComplex
4560 : CK_IntegralRealToComplex).get();
4561
4562 // Case 2. _Complex x -> y
4563 } else {
4564 auto *FromComplex = From->getType()->castAs<ComplexType>();
4565 QualType ElType = FromComplex->getElementType();
4566 bool isFloatingComplex = ElType->isRealFloatingType();
4567
4568 // _Complex x -> x
4569 From = ImpCastExprToType(From, ElType,
4570 isFloatingComplex ? CK_FloatingComplexToReal
4571 : CK_IntegralComplexToReal,
4572 VK_PRValue, /*BasePath=*/nullptr, CCK)
4573 .get();
4574
4575 // x -> y
4576 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4577 // do nothing
4578 } else if (ToType->isRealFloatingType()) {
4579 From = ImpCastExprToType(From, ToType,
4580 isFloatingComplex ? CK_FloatingCast
4581 : CK_IntegralToFloating,
4582 VK_PRValue, /*BasePath=*/nullptr, CCK)
4583 .get();
4584 } else {
4585 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4585, __extension__ __PRETTY_FUNCTION__))
;
4586 From = ImpCastExprToType(From, ToType,
4587 isFloatingComplex ? CK_FloatingToIntegral
4588 : CK_IntegralCast,
4589 VK_PRValue, /*BasePath=*/nullptr, CCK)
4590 .get();
4591 }
4592 }
4593 break;
4594
4595 case ICK_Block_Pointer_Conversion: {
4596 LangAS AddrSpaceL =
4597 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4598 LangAS AddrSpaceR =
4599 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4600 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4601, __extension__ __PRETTY_FUNCTION__
))
4601 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4601, __extension__ __PRETTY_FUNCTION__
))
;
4602 CastKind Kind =
4603 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4604 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4605 VK_PRValue, /*BasePath=*/nullptr, CCK)
4606 .get();
4607 break;
4608 }
4609
4610 case ICK_TransparentUnionConversion: {
4611 ExprResult FromRes = From;
4612 Sema::AssignConvertType ConvTy =
4613 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4614 if (FromRes.isInvalid())
4615 return ExprError();
4616 From = FromRes.get();
4617 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4618, __extension__ __PRETTY_FUNCTION__
))
4618 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4618, __extension__ __PRETTY_FUNCTION__
))
;
4619 (void)ConvTy;
4620 break;
4621 }
4622
4623 case ICK_Zero_Event_Conversion:
4624 case ICK_Zero_Queue_Conversion:
4625 From = ImpCastExprToType(From, ToType,
4626 CK_ZeroToOCLOpaqueType,
4627 From->getValueKind()).get();
4628 break;
4629
4630 case ICK_Lvalue_To_Rvalue:
4631 case ICK_Array_To_Pointer:
4632 case ICK_Function_To_Pointer:
4633 case ICK_Function_Conversion:
4634 case ICK_Qualification:
4635 case ICK_Num_Conversion_Kinds:
4636 case ICK_C_Only_Conversion:
4637 case ICK_Incompatible_Pointer_Conversion:
4638 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4638)
;
4639 }
4640
4641 switch (SCS.Third) {
4642 case ICK_Identity:
4643 // Nothing to do.
4644 break;
4645
4646 case ICK_Function_Conversion:
4647 // If both sides are functions (or pointers/references to them), there could
4648 // be incompatible exception declarations.
4649 if (CheckExceptionSpecCompatibility(From, ToType))
4650 return ExprError();
4651
4652 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4653 /*BasePath=*/nullptr, CCK)
4654 .get();
4655 break;
4656
4657 case ICK_Qualification: {
4658 ExprValueKind VK = From->getValueKind();
4659 CastKind CK = CK_NoOp;
4660
4661 if (ToType->isReferenceType() &&
4662 ToType->getPointeeType().getAddressSpace() !=
4663 From->getType().getAddressSpace())
4664 CK = CK_AddressSpaceConversion;
4665
4666 if (ToType->isPointerType() &&
4667 ToType->getPointeeType().getAddressSpace() !=
4668 From->getType()->getPointeeType().getAddressSpace())
4669 CK = CK_AddressSpaceConversion;
4670
4671 if (!isCast(CCK) &&
4672 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4673 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4674 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4675 << InitialFromType << ToType;
4676 }
4677
4678 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4679 /*BasePath=*/nullptr, CCK)
4680 .get();
4681
4682 if (SCS.DeprecatedStringLiteralToCharPtr &&
4683 !getLangOpts().WritableStrings) {
4684 Diag(From->getBeginLoc(),
4685 getLangOpts().CPlusPlus11
4686 ? diag::ext_deprecated_string_literal_conversion
4687 : diag::warn_deprecated_string_literal_conversion)
4688 << ToType.getNonReferenceType();
4689 }
4690
4691 break;
4692 }
4693
4694 default:
4695 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4695)
;
4696 }
4697
4698 // If this conversion sequence involved a scalar -> atomic conversion, perform
4699 // that conversion now.
4700 if (!ToAtomicType.isNull()) {
4701 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4702, __extension__ __PRETTY_FUNCTION__
))
4702 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4702, __extension__ __PRETTY_FUNCTION__
))
;
4703 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4704 VK_PRValue, nullptr, CCK)
4705 .get();
4706 }
4707
4708 // Materialize a temporary if we're implicitly converting to a reference
4709 // type. This is not required by the C++ rules but is necessary to maintain
4710 // AST invariants.
4711 if (ToType->isReferenceType() && From->isPRValue()) {
4712 ExprResult Res = TemporaryMaterializationConversion(From);
4713 if (Res.isInvalid())
4714 return ExprError();
4715 From = Res.get();
4716 }
4717
4718 // If this conversion sequence succeeded and involved implicitly converting a
4719 // _Nullable type to a _Nonnull one, complain.
4720 if (!isCast(CCK))
4721 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4722 From->getBeginLoc());
4723
4724 return From;
4725}
4726
4727/// Check the completeness of a type in a unary type trait.
4728///
4729/// If the particular type trait requires a complete type, tries to complete
4730/// it. If completing the type fails, a diagnostic is emitted and false
4731/// returned. If completing the type succeeds or no completion was required,
4732/// returns true.
4733static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4734 SourceLocation Loc,
4735 QualType ArgTy) {
4736 // C++0x [meta.unary.prop]p3:
4737 // For all of the class templates X declared in this Clause, instantiating
4738 // that template with a template argument that is a class template
4739 // specialization may result in the implicit instantiation of the template
4740 // argument if and only if the semantics of X require that the argument
4741 // must be a complete type.
4742 // We apply this rule to all the type trait expressions used to implement
4743 // these class templates. We also try to follow any GCC documented behavior
4744 // in these expressions to ensure portability of standard libraries.
4745 switch (UTT) {
4746 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4746)
;
4747 // is_complete_type somewhat obviously cannot require a complete type.
4748 case UTT_IsCompleteType:
4749 // Fall-through
4750
4751 // These traits are modeled on the type predicates in C++0x
4752 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4753 // requiring a complete type, as whether or not they return true cannot be
4754 // impacted by the completeness of the type.
4755 case UTT_IsVoid:
4756 case UTT_IsIntegral:
4757 case UTT_IsFloatingPoint:
4758 case UTT_IsArray:
4759 case UTT_IsPointer:
4760 case UTT_IsLvalueReference:
4761 case UTT_IsRvalueReference:
4762 case UTT_IsMemberFunctionPointer:
4763 case UTT_IsMemberObjectPointer:
4764 case UTT_IsEnum:
4765 case UTT_IsUnion:
4766 case UTT_IsClass:
4767 case UTT_IsFunction:
4768 case UTT_IsReference:
4769 case UTT_IsArithmetic:
4770 case UTT_IsFundamental:
4771 case UTT_IsObject:
4772 case UTT_IsScalar:
4773 case UTT_IsCompound:
4774 case UTT_IsMemberPointer:
4775 // Fall-through
4776
4777 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4778 // which requires some of its traits to have the complete type. However,
4779 // the completeness of the type cannot impact these traits' semantics, and
4780 // so they don't require it. This matches the comments on these traits in
4781 // Table 49.
4782 case UTT_IsConst:
4783 case UTT_IsVolatile:
4784 case UTT_IsSigned:
4785 case UTT_IsUnsigned:
4786
4787 // This type trait always returns false, checking the type is moot.
4788 case UTT_IsInterfaceClass:
4789 return true;
4790
4791 // C++14 [meta.unary.prop]:
4792 // If T is a non-union class type, T shall be a complete type.
4793 case UTT_IsEmpty:
4794 case UTT_IsPolymorphic:
4795 case UTT_IsAbstract:
4796 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4797 if (!RD->isUnion())
4798 return !S.RequireCompleteType(
4799 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4800 return true;
4801
4802 // C++14 [meta.unary.prop]:
4803 // If T is a class type, T shall be a complete type.
4804 case UTT_IsFinal:
4805 case UTT_IsSealed:
4806 if (ArgTy->getAsCXXRecordDecl())
4807 return !S.RequireCompleteType(
4808 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4809 return true;
4810
4811 // C++1z [meta.unary.prop]:
4812 // remove_all_extents_t<T> shall be a complete type or cv void.
4813 case UTT_IsAggregate:
4814 case UTT_IsTrivial:
4815 case UTT_IsTriviallyCopyable:
4816 case UTT_IsStandardLayout:
4817 case UTT_IsPOD:
4818 case UTT_IsLiteral:
4819 // By analogy, is_trivially_relocatable imposes the same constraints.
4820 case UTT_IsTriviallyRelocatable:
4821 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4822 // or an array of unknown bound. But GCC actually imposes the same constraints
4823 // as above.
4824 case UTT_HasNothrowAssign:
4825 case UTT_HasNothrowMoveAssign:
4826 case UTT_HasNothrowConstructor:
4827 case UTT_HasNothrowCopy:
4828 case UTT_HasTrivialAssign:
4829 case UTT_HasTrivialMoveAssign:
4830 case UTT_HasTrivialDefaultConstructor:
4831 case UTT_HasTrivialMoveConstructor:
4832 case UTT_HasTrivialCopy:
4833 case UTT_HasTrivialDestructor:
4834 case UTT_HasVirtualDestructor:
4835 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4836 [[fallthrough]];
4837
4838 // C++1z [meta.unary.prop]:
4839 // T shall be a complete type, cv void, or an array of unknown bound.
4840 case UTT_IsDestructible:
4841 case UTT_IsNothrowDestructible:
4842 case UTT_IsTriviallyDestructible:
4843 case UTT_HasUniqueObjectRepresentations:
4844 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4845 return true;
4846
4847 return !S.RequireCompleteType(
4848 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4849 }
4850}
4851
4852static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4853 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4854 bool (CXXRecordDecl::*HasTrivial)() const,
4855 bool (CXXRecordDecl::*HasNonTrivial)() const,
4856 bool (CXXMethodDecl::*IsDesiredOp)() const)
4857{
4858 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4859 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4860 return true;
4861
4862 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4863 DeclarationNameInfo NameInfo(Name, KeyLoc);
4864 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4865 if (Self.LookupQualifiedName(Res, RD)) {
4866 bool FoundOperator = false;
4867 Res.suppressDiagnostics();
4868 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4869 Op != OpEnd; ++Op) {
4870 if (isa<FunctionTemplateDecl>(*Op))
4871 continue;
4872
4873 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4874 if((Operator->*IsDesiredOp)()) {
4875 FoundOperator = true;
4876 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4877 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4878 if (!CPT || !CPT->isNothrow())
4879 return false;
4880 }
4881 }
4882 return FoundOperator;
4883 }
4884 return false;
4885}
4886
4887static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4888 SourceLocation KeyLoc, QualType T) {
4889 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4889, __extension__ __PRETTY_FUNCTION__
))
;
4890
4891 ASTContext &C = Self.Context;
4892 switch(UTT) {
4893 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4893)
;
4894 // Type trait expressions corresponding to the primary type category
4895 // predicates in C++0x [meta.unary.cat].
4896 case UTT_IsVoid:
4897 return T->isVoidType();
4898 case UTT_IsIntegral:
4899 return T->isIntegralType(C);
4900 case UTT_IsFloatingPoint:
4901 return T->isFloatingType();
4902 case UTT_IsArray:
4903 return T->isArrayType();
4904 case UTT_IsPointer:
4905 return T->isAnyPointerType();
4906 case UTT_IsLvalueReference:
4907 return T->isLValueReferenceType();
4908 case UTT_IsRvalueReference:
4909 return T->isRValueReferenceType();
4910 case UTT_IsMemberFunctionPointer:
4911 return T->isMemberFunctionPointerType();
4912 case UTT_IsMemberObjectPointer:
4913 return T->isMemberDataPointerType();
4914 case UTT_IsEnum:
4915 return T->isEnumeralType();
4916 case UTT_IsUnion:
4917 return T->isUnionType();
4918 case UTT_IsClass:
4919 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4920 case UTT_IsFunction:
4921 return T->isFunctionType();
4922
4923 // Type trait expressions which correspond to the convenient composition
4924 // predicates in C++0x [meta.unary.comp].
4925 case UTT_IsReference:
4926 return T->isReferenceType();
4927 case UTT_IsArithmetic:
4928 return T->isArithmeticType() && !T->isEnumeralType();
4929 case UTT_IsFundamental:
4930 return T->isFundamentalType();
4931 case UTT_IsObject:
4932 return T->isObjectType();
4933 case UTT_IsScalar:
4934 // Note: semantic analysis depends on Objective-C lifetime types to be
4935 // considered scalar types. However, such types do not actually behave
4936 // like scalar types at run time (since they may require retain/release
4937 // operations), so we report them as non-scalar.
4938 if (T->isObjCLifetimeType()) {
4939 switch (T.getObjCLifetime()) {
4940 case Qualifiers::OCL_None:
4941 case Qualifiers::OCL_ExplicitNone:
4942 return true;
4943
4944 case Qualifiers::OCL_Strong:
4945 case Qualifiers::OCL_Weak:
4946 case Qualifiers::OCL_Autoreleasing:
4947 return false;
4948 }
4949 }
4950
4951 return T->isScalarType();
4952 case UTT_IsCompound:
4953 return T->isCompoundType();
4954 case UTT_IsMemberPointer:
4955 return T->isMemberPointerType();
4956
4957 // Type trait expressions which correspond to the type property predicates
4958 // in C++0x [meta.unary.prop].
4959 case UTT_IsConst:
4960 return T.isConstQualified();
4961 case UTT_IsVolatile:
4962 return T.isVolatileQualified();
4963 case UTT_IsTrivial:
4964 return T.isTrivialType(C);
4965 case UTT_IsTriviallyCopyable:
4966 return T.isTriviallyCopyableType(C);
4967 case UTT_IsStandardLayout:
4968 return T->isStandardLayoutType();
4969 case UTT_IsPOD:
4970 return T.isPODType(C);
4971 case UTT_IsLiteral:
4972 return T->isLiteralType(C);
4973 case UTT_IsEmpty:
4974 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4975 return !RD->isUnion() && RD->isEmpty();
4976 return false;
4977 case UTT_IsPolymorphic:
4978 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4979 return !RD->isUnion() && RD->isPolymorphic();
4980 return false;
4981 case UTT_IsAbstract:
4982 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4983 return !RD->isUnion() && RD->isAbstract();
4984 return false;
4985 case UTT_IsAggregate:
4986 // Report vector extensions and complex types as aggregates because they
4987 // support aggregate initialization. GCC mirrors this behavior for vectors
4988 // but not _Complex.
4989 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4990 T->isAnyComplexType();
4991 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4992 // even then only when it is used with the 'interface struct ...' syntax
4993 // Clang doesn't support /CLR which makes this type trait moot.
4994 case UTT_IsInterfaceClass:
4995 return false;
4996 case UTT_IsFinal:
4997 case UTT_IsSealed:
4998 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4999 return RD->hasAttr<FinalAttr>();
5000 return false;
5001 case UTT_IsSigned:
5002 // Enum types should always return false.
5003 // Floating points should always return true.
5004 return T->isFloatingType() ||
5005 (T->isSignedIntegerType() && !T->isEnumeralType());
5006 case UTT_IsUnsigned:
5007 // Enum types should always return false.
5008 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5009
5010 // Type trait expressions which query classes regarding their construction,
5011 // destruction, and copying. Rather than being based directly on the
5012 // related type predicates in the standard, they are specified by both
5013 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5014 // specifications.
5015 //
5016 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5017 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5018 //
5019 // Note that these builtins do not behave as documented in g++: if a class
5020 // has both a trivial and a non-trivial special member of a particular kind,
5021 // they return false! For now, we emulate this behavior.
5022 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5023 // does not correctly compute triviality in the presence of multiple special
5024 // members of the same kind. Revisit this once the g++ bug is fixed.
5025 case UTT_HasTrivialDefaultConstructor:
5026 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5027 // If __is_pod (type) is true then the trait is true, else if type is
5028 // a cv class or union type (or array thereof) with a trivial default
5029 // constructor ([class.ctor]) then the trait is true, else it is false.
5030 if (T.isPODType(C))
5031 return true;
5032 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5033 return RD->hasTrivialDefaultConstructor() &&
5034 !RD->hasNonTrivialDefaultConstructor();
5035 return false;
5036 case UTT_HasTrivialMoveConstructor:
5037 // This trait is implemented by MSVC 2012 and needed to parse the
5038 // standard library headers. Specifically this is used as the logic
5039 // behind std::is_trivially_move_constructible (20.9.4.3).
5040 if (T.isPODType(C))
5041 return true;
5042 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5043 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5044 return false;
5045 case UTT_HasTrivialCopy:
5046 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5047 // If __is_pod (type) is true or type is a reference type then
5048 // the trait is true, else if type is a cv class or union type
5049 // with a trivial copy constructor ([class.copy]) then the trait
5050 // is true, else it is false.
5051 if (T.isPODType(C) || T->isReferenceType())
5052 return true;
5053 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5054 return RD->hasTrivialCopyConstructor() &&
5055 !RD->hasNonTrivialCopyConstructor();
5056 return false;
5057 case UTT_HasTrivialMoveAssign:
5058 // This trait is implemented by MSVC 2012 and needed to parse the
5059 // standard library headers. Specifically it is used as the logic
5060 // behind std::is_trivially_move_assignable (20.9.4.3)
5061 if (T.isPODType(C))
5062 return true;
5063 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5064 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5065 return false;
5066 case UTT_HasTrivialAssign:
5067 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5068 // If type is const qualified or is a reference type then the
5069 // trait is false. Otherwise if __is_pod (type) is true then the
5070 // trait is true, else if type is a cv class or union type with
5071 // a trivial copy assignment ([class.copy]) then the trait is
5072 // true, else it is false.
5073 // Note: the const and reference restrictions are interesting,
5074 // given that const and reference members don't prevent a class
5075 // from having a trivial copy assignment operator (but do cause
5076 // errors if the copy assignment operator is actually used, q.v.
5077 // [class.copy]p12).
5078
5079 if (T.isConstQualified())
5080 return false;
5081 if (T.isPODType(C))
5082 return true;
5083 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5084 return RD->hasTrivialCopyAssignment() &&
5085 !RD->hasNonTrivialCopyAssignment();
5086 return false;
5087 case UTT_IsDestructible:
5088 case UTT_IsTriviallyDestructible:
5089 case UTT_IsNothrowDestructible:
5090 // C++14 [meta.unary.prop]:
5091 // For reference types, is_destructible<T>::value is true.
5092 if (T->isReferenceType())
5093 return true;
5094
5095 // Objective-C++ ARC: autorelease types don't require destruction.
5096 if (T->isObjCLifetimeType() &&
5097 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5098 return true;
5099
5100 // C++14 [meta.unary.prop]:
5101 // For incomplete types and function types, is_destructible<T>::value is
5102 // false.
5103 if (T->isIncompleteType() || T->isFunctionType())
5104 return false;
5105
5106 // A type that requires destruction (via a non-trivial destructor or ARC
5107 // lifetime semantics) is not trivially-destructible.
5108 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5109 return false;
5110
5111 // C++14 [meta.unary.prop]:
5112 // For object types and given U equal to remove_all_extents_t<T>, if the
5113 // expression std::declval<U&>().~U() is well-formed when treated as an
5114 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5115 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5116 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5117 if (!Destructor)
5118 return false;
5119 // C++14 [dcl.fct.def.delete]p2:
5120 // A program that refers to a deleted function implicitly or
5121 // explicitly, other than to declare it, is ill-formed.
5122 if (Destructor->isDeleted())
5123 return false;
5124 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5125 return false;
5126 if (UTT == UTT_IsNothrowDestructible) {
5127 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5128 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5129 if (!CPT || !CPT->isNothrow())
5130 return false;
5131 }
5132 }
5133 return true;
5134
5135 case UTT_HasTrivialDestructor:
5136 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5137 // If __is_pod (type) is true or type is a reference type
5138 // then the trait is true, else if type is a cv class or union
5139 // type (or array thereof) with a trivial destructor
5140 // ([class.dtor]) then the trait is true, else it is
5141 // false.
5142 if (T.isPODType(C) || T->isReferenceType())
5143 return true;
5144
5145 // Objective-C++ ARC: autorelease types don't require destruction.
5146 if (T->isObjCLifetimeType() &&
5147 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5148 return true;
5149
5150 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5151 return RD->hasTrivialDestructor();
5152 return false;
5153 // TODO: Propagate nothrowness for implicitly declared special members.
5154 case UTT_HasNothrowAssign:
5155 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5156 // If type is const qualified or is a reference type then the
5157 // trait is false. Otherwise if __has_trivial_assign (type)
5158 // is true then the trait is true, else if type is a cv class
5159 // or union type with copy assignment operators that are known
5160 // not to throw an exception then the trait is true, else it is
5161 // false.
5162 if (C.getBaseElementType(T).isConstQualified())
5163 return false;
5164 if (T->isReferenceType())
5165 return false;
5166 if (T.isPODType(C) || T->isObjCLifetimeType())
5167 return true;
5168
5169 if (const RecordType *RT = T->getAs<RecordType>())
5170 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5171 &CXXRecordDecl::hasTrivialCopyAssignment,
5172 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5173 &CXXMethodDecl::isCopyAssignmentOperator);
5174 return false;
5175 case UTT_HasNothrowMoveAssign:
5176 // This trait is implemented by MSVC 2012 and needed to parse the
5177 // standard library headers. Specifically this is used as the logic
5178 // behind std::is_nothrow_move_assignable (20.9.4.3).
5179 if (T.isPODType(C))
5180 return true;
5181
5182 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5183 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5184 &CXXRecordDecl::hasTrivialMoveAssignment,
5185 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5186 &CXXMethodDecl::isMoveAssignmentOperator);
5187 return false;
5188 case UTT_HasNothrowCopy:
5189 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5190 // If __has_trivial_copy (type) is true then the trait is true, else
5191 // if type is a cv class or union type with copy constructors that are
5192 // known not to throw an exception then the trait is true, else it is
5193 // false.
5194 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5195 return true;
5196 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5197 if (RD->hasTrivialCopyConstructor() &&
5198 !RD->hasNonTrivialCopyConstructor())
5199 return true;
5200
5201 bool FoundConstructor = false;
5202 unsigned FoundTQs;
5203 for (const auto *ND : Self.LookupConstructors(RD)) {
5204 // A template constructor is never a copy constructor.
5205 // FIXME: However, it may actually be selected at the actual overload
5206 // resolution point.
5207 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5208 continue;
5209 // UsingDecl itself is not a constructor
5210 if (isa<UsingDecl>(ND))
5211 continue;
5212 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5213 if (Constructor->isCopyConstructor(FoundTQs)) {
5214 FoundConstructor = true;
5215 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5216 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5217 if (!CPT)
5218 return false;
5219 // TODO: check whether evaluating default arguments can throw.
5220 // For now, we'll be conservative and assume that they can throw.
5221 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5222 return false;
5223 }
5224 }
5225
5226 return FoundConstructor;
5227 }
5228 return false;
5229 case UTT_HasNothrowConstructor:
5230 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5231 // If __has_trivial_constructor (type) is true then the trait is
5232 // true, else if type is a cv class or union type (or array
5233 // thereof) with a default constructor that is known not to
5234 // throw an exception then the trait is true, else it is false.
5235 if (T.isPODType(C) || T->isObjCLifetimeType())
5236 return true;
5237 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5238 if (RD->hasTrivialDefaultConstructor() &&
5239 !RD->hasNonTrivialDefaultConstructor())
5240 return true;
5241
5242 bool FoundConstructor = false;
5243 for (const auto *ND : Self.LookupConstructors(RD)) {
5244 // FIXME: In C++0x, a constructor template can be a default constructor.
5245 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5246 continue;
5247 // UsingDecl itself is not a constructor
5248 if (isa<UsingDecl>(ND))
5249 continue;
5250 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5251 if (Constructor->isDefaultConstructor()) {
5252 FoundConstructor = true;
5253 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5254 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5255 if (!CPT)
5256 return false;
5257 // FIXME: check whether evaluating default arguments can throw.
5258 // For now, we'll be conservative and assume that they can throw.
5259 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5260 return false;
5261 }
5262 }
5263 return FoundConstructor;
5264 }
5265 return false;
5266 case UTT_HasVirtualDestructor:
5267 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5268 // If type is a class type with a virtual destructor ([class.dtor])
5269 // then the trait is true, else it is false.
5270 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5271 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5272 return Destructor->isVirtual();
5273 return false;
5274
5275 // These type trait expressions are modeled on the specifications for the
5276 // Embarcadero C++0x type trait functions:
5277 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5278 case UTT_IsCompleteType:
5279 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5280 // Returns True if and only if T is a complete type at the point of the
5281 // function call.
5282 return !T->isIncompleteType();
5283 case UTT_HasUniqueObjectRepresentations:
5284 return C.hasUniqueObjectRepresentations(T);
5285 case UTT_IsTriviallyRelocatable:
5286 return T.isTriviallyRelocatableType(C);
5287 }
5288}
5289
5290static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5291 QualType RhsT, SourceLocation KeyLoc);
5292
5293static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5294 ArrayRef<TypeSourceInfo *> Args,
5295 SourceLocation RParenLoc) {
5296 if (Kind <= UTT_Last)
5297 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5298
5299 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5300 // traits to avoid duplication.
5301 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5302 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5303 Args[1]->getType(), RParenLoc);
5304
5305 switch (Kind) {
5306 case clang::BTT_ReferenceBindsToTemporary:
5307 case clang::TT_IsConstructible:
5308 case clang::TT_IsNothrowConstructible:
5309 case clang::TT_IsTriviallyConstructible: {
5310 // C++11 [meta.unary.prop]:
5311 // is_trivially_constructible is defined as:
5312 //
5313 // is_constructible<T, Args...>::value is true and the variable
5314 // definition for is_constructible, as defined below, is known to call
5315 // no operation that is not trivial.
5316 //
5317 // The predicate condition for a template specialization
5318 // is_constructible<T, Args...> shall be satisfied if and only if the
5319 // following variable definition would be well-formed for some invented
5320 // variable t:
5321 //
5322 // T t(create<Args>()...);
5323 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5323, __extension__
__PRETTY_FUNCTION__))
;
5324
5325 // Precondition: T and all types in the parameter pack Args shall be
5326 // complete types, (possibly cv-qualified) void, or arrays of
5327 // unknown bound.
5328 for (const auto *TSI : Args) {
5329 QualType ArgTy = TSI->getType();
5330 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5331 continue;
5332
5333 if (S.RequireCompleteType(KWLoc, ArgTy,
5334 diag::err_incomplete_type_used_in_type_trait_expr))
5335 return false;
5336 }
5337
5338 // Make sure the first argument is not incomplete nor a function type.
5339 QualType T = Args[0]->getType();
5340 if (T->isIncompleteType() || T->isFunctionType())
5341 return false;
5342
5343 // Make sure the first argument is not an abstract type.
5344 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5345 if (RD && RD->isAbstract())
5346 return false;
5347
5348 llvm::BumpPtrAllocator OpaqueExprAllocator;
5349 SmallVector<Expr *, 2> ArgExprs;
5350 ArgExprs.reserve(Args.size() - 1);
5351 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5352 QualType ArgTy = Args[I]->getType();
5353 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5354 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5355 ArgExprs.push_back(
5356 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5357 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5358 ArgTy.getNonLValueExprType(S.Context),
5359 Expr::getValueKindForType(ArgTy)));
5360 }
5361
5362 // Perform the initialization in an unevaluated context within a SFINAE
5363 // trap at translation unit scope.
5364 EnterExpressionEvaluationContext Unevaluated(
5365 S, Sema::ExpressionEvaluationContext::Unevaluated);
5366 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5367 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5368 InitializedEntity To(
5369 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5370 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5371 RParenLoc));
5372 InitializationSequence Init(S, To, InitKind, ArgExprs);
5373 if (Init.Failed())
5374 return false;
5375
5376 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5377 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5378 return false;
5379
5380 if (Kind == clang::TT_IsConstructible)
5381 return true;
5382
5383 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5384 if (!T->isReferenceType())
5385 return false;
5386
5387 return !Init.isDirectReferenceBinding();
5388 }
5389
5390 if (Kind == clang::TT_IsNothrowConstructible)
5391 return S.canThrow(Result.get()) == CT_Cannot;
5392
5393 if (Kind == clang::TT_IsTriviallyConstructible) {
5394 // Under Objective-C ARC and Weak, if the destination has non-trivial
5395 // Objective-C lifetime, this is a non-trivial construction.
5396 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5397 return false;
5398
5399 // The initialization succeeded; now make sure there are no non-trivial
5400 // calls.
5401 return !Result.get()->hasNonTrivialCall(S.Context);
5402 }
5403
5404 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5404)
;
5405 return false;
5406 }
5407 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5407)
;
5408 }
5409
5410 return false;
5411}
5412
5413namespace {
5414void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5415 SourceLocation KWLoc) {
5416 TypeTrait Replacement;
5417 switch (Kind) {
5418 case UTT_HasNothrowAssign:
5419 case UTT_HasNothrowMoveAssign:
5420 Replacement = BTT_IsNothrowAssignable;
5421 break;
5422 case UTT_HasNothrowCopy:
5423 case UTT_HasNothrowConstructor:
5424 Replacement = TT_IsNothrowConstructible;
5425 break;
5426 case UTT_HasTrivialAssign:
5427 case UTT_HasTrivialMoveAssign:
5428 Replacement = BTT_IsTriviallyAssignable;
5429 break;
5430 case UTT_HasTrivialCopy:
5431 Replacement = UTT_IsTriviallyCopyable;
5432 break;
5433 case UTT_HasTrivialDefaultConstructor:
5434 case UTT_HasTrivialMoveConstructor:
5435 Replacement = TT_IsTriviallyConstructible;
5436 break;
5437 case UTT_HasTrivialDestructor:
5438 Replacement = UTT_IsTriviallyDestructible;
5439 break;
5440 default:
5441 return;
5442 }
5443 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5444 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5445}
5446}
5447
5448bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5449 if (Arity && N != Arity) {
5450 Diag(Loc, diag::err_type_trait_arity)
5451 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5452 return false;
5453 }
5454
5455 if (!Arity && N == 0) {
5456 Diag(Loc, diag::err_type_trait_arity)
5457 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5458 return false;
5459 }
5460 return true;
5461}
5462
5463ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5464 ArrayRef<TypeSourceInfo *> Args,
5465 SourceLocation RParenLoc) {
5466 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5467 return ExprError();
5468 QualType ResultType = Context.getLogicalOperationType();
5469
5470 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5471 *this, Kind, KWLoc, Args[0]->getType()))
5472 return ExprError();
5473
5474 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5475
5476 bool Dependent = false;
5477 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5478 if (Args[I]->getType()->isDependentType()) {
5479 Dependent = true;
5480 break;
5481 }
5482 }
5483
5484 bool Result = false;
5485 if (!Dependent)
5486 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5487
5488 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5489 RParenLoc, Result);
5490}
5491
5492ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5493 ArrayRef<ParsedType> Args,
5494 SourceLocation RParenLoc) {
5495 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5496 ConvertedArgs.reserve(Args.size());
5497
5498 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5499 TypeSourceInfo *TInfo;
5500 QualType T = GetTypeFromParser(Args[I], &TInfo);
5501 if (!TInfo)
5502 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5503
5504 ConvertedArgs.push_back(TInfo);
5505 }
5506
5507 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5508}
5509
5510static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5511 QualType RhsT, SourceLocation KeyLoc) {
5512 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5513, __extension__ __PRETTY_FUNCTION__
))
5513 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5513, __extension__ __PRETTY_FUNCTION__
))
;
5514
5515 switch(BTT) {
5516 case BTT_IsBaseOf: {
5517 // C++0x [meta.rel]p2
5518 // Base is a base class of Derived without regard to cv-qualifiers or
5519 // Base and Derived are not unions and name the same class type without
5520 // regard to cv-qualifiers.
5521
5522 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5523 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5524 if (!rhsRecord || !lhsRecord) {
5525 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5526 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5527 if (!LHSObjTy || !RHSObjTy)
5528 return false;
5529
5530 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5531 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5532 if (!BaseInterface || !DerivedInterface)
5533 return false;
5534
5535 if (Self.RequireCompleteType(
5536 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5537 return false;
5538
5539 return BaseInterface->isSuperClassOf(DerivedInterface);
5540 }
5541
5542 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5543, __extension__ __PRETTY_FUNCTION__
))
5543 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5543, __extension__ __PRETTY_FUNCTION__
))
;
5544
5545 // Unions are never base classes, and never have base classes.
5546 // It doesn't matter if they are complete or not. See PR#41843
5547 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5548 return false;
5549 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5550 return false;
5551
5552 if (lhsRecord == rhsRecord)
5553 return true;
5554
5555 // C++0x [meta.rel]p2:
5556 // If Base and Derived are class types and are different types
5557 // (ignoring possible cv-qualifiers) then Derived shall be a
5558 // complete type.
5559 if (Self.RequireCompleteType(KeyLoc, RhsT,
5560 diag::err_incomplete_type_used_in_type_trait_expr))
5561 return false;
5562
5563 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5564 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5565 }
5566 case BTT_IsSame:
5567 return Self.Context.hasSameType(LhsT, RhsT);
5568 case BTT_TypeCompatible: {
5569 // GCC ignores cv-qualifiers on arrays for this builtin.
5570 Qualifiers LhsQuals, RhsQuals;
5571 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5572 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5573 return Self.Context.typesAreCompatible(Lhs, Rhs);
5574 }
5575 case BTT_IsConvertible:
5576 case BTT_IsConvertibleTo: {
5577 // C++0x [meta.rel]p4:
5578 // Given the following function prototype:
5579 //
5580 // template <class T>
5581 // typename add_rvalue_reference<T>::type create();
5582 //
5583 // the predicate condition for a template specialization
5584 // is_convertible<From, To> shall be satisfied if and only if
5585 // the return expression in the following code would be
5586 // well-formed, including any implicit conversions to the return
5587 // type of the function:
5588 //
5589 // To test() {
5590 // return create<From>();
5591 // }
5592 //
5593 // Access checking is performed as if in a context unrelated to To and
5594 // From. Only the validity of the immediate context of the expression
5595 // of the return-statement (including conversions to the return type)
5596 // is considered.
5597 //
5598 // We model the initialization as a copy-initialization of a temporary
5599 // of the appropriate type, which for this expression is identical to the
5600 // return statement (since NRVO doesn't apply).
5601
5602 // Functions aren't allowed to return function or array types.
5603 if (RhsT->isFunctionType() || RhsT->isArrayType())
5604 return false;
5605
5606 // A return statement in a void function must have void type.
5607 if (RhsT->isVoidType())
5608 return LhsT->isVoidType();
5609
5610 // A function definition requires a complete, non-abstract return type.
5611 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5612 return false;
5613
5614 // Compute the result of add_rvalue_reference.
5615 if (LhsT->isObjectType() || LhsT->isFunctionType())
5616 LhsT = Self.Context.getRValueReferenceType(LhsT);
5617
5618 // Build a fake source and destination for initialization.
5619 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5620 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5621 Expr::getValueKindForType(LhsT));
5622 Expr *FromPtr = &From;
5623 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5624 SourceLocation()));
5625
5626 // Perform the initialization in an unevaluated context within a SFINAE
5627 // trap at translation unit scope.
5628 EnterExpressionEvaluationContext Unevaluated(
5629 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5630 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5631 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5632 InitializationSequence Init(Self, To, Kind, FromPtr);
5633 if (Init.Failed())
5634 return false;
5635
5636 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5637 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5638 }
5639
5640 case BTT_IsAssignable:
5641 case BTT_IsNothrowAssignable:
5642 case BTT_IsTriviallyAssignable: {
5643 // C++11 [meta.unary.prop]p3:
5644 // is_trivially_assignable is defined as:
5645 // is_assignable<T, U>::value is true and the assignment, as defined by
5646 // is_assignable, is known to call no operation that is not trivial
5647 //
5648 // is_assignable is defined as:
5649 // The expression declval<T>() = declval<U>() is well-formed when
5650 // treated as an unevaluated operand (Clause 5).
5651 //
5652 // For both, T and U shall be complete types, (possibly cv-qualified)
5653 // void, or arrays of unknown bound.
5654 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5655 Self.RequireCompleteType(KeyLoc, LhsT,
5656 diag::err_incomplete_type_used_in_type_trait_expr))
5657 return false;
5658 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5659 Self.RequireCompleteType(KeyLoc, RhsT,
5660 diag::err_incomplete_type_used_in_type_trait_expr))
5661 return false;
5662
5663 // cv void is never assignable.
5664 if (LhsT->isVoidType() || RhsT->isVoidType())
5665 return false;
5666
5667 // Build expressions that emulate the effect of declval<T>() and
5668 // declval<U>().
5669 if (LhsT->isObjectType() || LhsT->isFunctionType())
5670 LhsT = Self.Context.getRValueReferenceType(LhsT);
5671 if (RhsT->isObjectType() || RhsT->isFunctionType())
5672 RhsT = Self.Context.getRValueReferenceType(RhsT);
5673 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5674 Expr::getValueKindForType(LhsT));
5675 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5676 Expr::getValueKindForType(RhsT));
5677
5678 // Attempt the assignment in an unevaluated context within a SFINAE
5679 // trap at translation unit scope.
5680 EnterExpressionEvaluationContext Unevaluated(
5681 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5682 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5683 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5684 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5685 &Rhs);
5686 if (Result.isInvalid())
5687 return false;
5688
5689 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5690 Self.CheckUnusedVolatileAssignment(Result.get());
5691
5692 if (SFINAE.hasErrorOccurred())
5693 return false;
5694
5695 if (BTT == BTT_IsAssignable)
5696 return true;
5697
5698 if (BTT == BTT_IsNothrowAssignable)
5699 return Self.canThrow(Result.get()) == CT_Cannot;
5700
5701 if (BTT == BTT_IsTriviallyAssignable) {
5702 // Under Objective-C ARC and Weak, if the destination has non-trivial
5703 // Objective-C lifetime, this is a non-trivial assignment.
5704 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5705 return false;
5706
5707 return !Result.get()->hasNonTrivialCall(Self.Context);
5708 }
5709
5710 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5710)
;
5711 return false;
5712 }
5713 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5713)
;
5714 }
5715 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5715)
;
5716}
5717
5718ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5719 SourceLocation KWLoc,
5720 ParsedType Ty,
5721 Expr* DimExpr,
5722 SourceLocation RParen) {
5723 TypeSourceInfo *TSInfo;
5724 QualType T = GetTypeFromParser(Ty, &TSInfo);
5725 if (!TSInfo)
5726 TSInfo = Context.getTrivialTypeSourceInfo(T);
5727
5728 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5729}
5730
5731static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5732 QualType T, Expr *DimExpr,
5733 SourceLocation KeyLoc) {
5734 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5734, __extension__ __PRETTY_FUNCTION__
))
;
5735
5736 switch(ATT) {
5737 case ATT_ArrayRank:
5738 if (T->isArrayType()) {
5739 unsigned Dim = 0;
5740 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5741 ++Dim;
5742 T = AT->getElementType();
5743 }
5744 return Dim;
5745 }
5746 return 0;
5747
5748 case ATT_ArrayExtent: {
5749 llvm::APSInt Value;
5750 uint64_t Dim;
5751 if (Self.VerifyIntegerConstantExpression(
5752 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5753 .isInvalid())
5754 return 0;
5755 if (Value.isSigned() && Value.isNegative()) {
5756 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5757 << DimExpr->getSourceRange();
5758 return 0;
5759 }
5760 Dim = Value.getLimitedValue();
5761
5762 if (T->isArrayType()) {
5763 unsigned D = 0;
5764 bool Matched = false;
5765 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5766 if (Dim == D) {
5767 Matched = true;
5768 break;
5769 }
5770 ++D;
5771 T = AT->getElementType();
5772 }
5773
5774 if (Matched && T->isArrayType()) {
5775 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5776 return CAT->getSize().getLimitedValue();
5777 }
5778 }
5779 return 0;
5780 }
5781 }
5782 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5782)
;
5783}
5784
5785ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5786 SourceLocation KWLoc,
5787 TypeSourceInfo *TSInfo,
5788 Expr* DimExpr,
5789 SourceLocation RParen) {
5790 QualType T = TSInfo->getType();
5791
5792 // FIXME: This should likely be tracked as an APInt to remove any host
5793 // assumptions about the width of size_t on the target.
5794 uint64_t Value = 0;
5795 if (!T->isDependentType())
5796 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5797
5798 // While the specification for these traits from the Embarcadero C++
5799 // compiler's documentation says the return type is 'unsigned int', Clang
5800 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5801 // compiler, there is no difference. On several other platforms this is an
5802 // important distinction.
5803 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5804 RParen, Context.getSizeType());
5805}
5806
5807ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5808 SourceLocation KWLoc,
5809 Expr *Queried,
5810 SourceLocation RParen) {
5811 // If error parsing the expression, ignore.
5812 if (!Queried)
5813 return ExprError();
5814
5815 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5816
5817 return Result;
5818}
5819
5820static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5821 switch (ET) {
5822 case ET_IsLValueExpr: return E->isLValue();
5823 case ET_IsRValueExpr:
5824 return E->isPRValue();
5825 }
5826 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5826)
;
5827}
5828
5829ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5830 SourceLocation KWLoc,
5831 Expr *Queried,
5832 SourceLocation RParen) {
5833 if (Queried->isTypeDependent()) {
5834 // Delay type-checking for type-dependent expressions.
5835 } else if (Queried->hasPlaceholderType()) {
5836 ExprResult PE = CheckPlaceholderExpr(Queried);
5837 if (PE.isInvalid()) return ExprError();
5838 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5839