Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 620, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 65, __extension__ __PRETTY_FUNCTION__
))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (isReservedInAllContexts(Status) &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
13
Assuming 'E' is null
567 if (E->hasPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
14
Called C++ object pointer is null
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
1
Assuming field 'OpenCLCPlusPlus' is 0
2
Taking false branch
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
3
Assuming the condition is false
4
Taking false branch
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
5
Assuming field 'CXXTypeInfoDecl' is non-null
6
Taking false branch
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
7
Assuming field 'RTTI' is not equal to 0
8
Taking false branch
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
9
Assuming 'isType' is false
10
Taking false branch
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
11
Passing value via 3rd parameter 'E'
12
Calling 'Sema::BuildCXXTypeId'
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (!CurLSI->Mutable)
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140 // can happen during instantiation of its nested generic lambda call
1141 // operator); 2. if we're in a lambda scope (lambda body).
1142 if (CurLSI && isLambdaCallOperator(CurDC)) {
1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1144 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1145 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1147 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
;
1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1148, __extension__ __PRETTY_FUNCTION__
))
;
1149
1150 auto IsThisCaptured =
1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152 IsConst = false;
1153 IsByCopy = false;
1154 for (auto &&C : Closure->captures()) {
1155 if (C.capturesThis()) {
1156 if (C.getCaptureKind() == LCK_StarThis)
1157 IsByCopy = true;
1158 if (Closure->getLambdaCallOperator()->isConst())
1159 IsConst = true;
1160 return true;
1161 }
1162 }
1163 return false;
1164 };
1165
1166 bool IsByCopyCapture = false;
1167 bool IsConstCapture = false;
1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169 while (Closure &&
1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171 if (IsByCopyCapture) {
1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173 if (IsConstCapture)
1174 ClassType.addConst();
1175 return ASTCtx.getPointerType(ClassType);
1176 }
1177 Closure = isLambdaCallOperator(Closure->getParent())
1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179 : nullptr;
1180 }
1181 }
1182 return ASTCtx.getPointerType(ClassType);
1183}
1184
1185QualType Sema::getCurrentThisType() {
1186 DeclContext *DC = getFunctionLevelDeclContext();
1187 QualType ThisTy = CXXThisTypeOverride;
1188
1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190 if (method && method->isInstance())
1191 ThisTy = method->getThisType();
1192 }
1193
1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196
1197 // This is a lambda call operator that is being instantiated as a default
1198 // initializer. DC must point to the enclosing class type, so we can recover
1199 // the 'this' type from it.
1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201 // There are no cv-qualifiers for 'this' within default initializers,
1202 // per [expr.prim.general]p4.
1203 ThisTy = Context.getPointerType(ClassTy);
1204 }
1205
1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207 // might need to be adjusted if the lambda or any of its enclosing lambda's
1208 // captures '*this' by copy.
1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211 CurContext, Context);
1212 return ThisTy;
1213}
1214
1215Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216 Decl *ContextDecl,
1217 Qualifiers CXXThisTypeQuals,
1218 bool Enabled)
1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220{
1221 if (!Enabled || !ContextDecl)
1222 return;
1223
1224 CXXRecordDecl *Record = nullptr;
1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226 Record = Template->getTemplatedDecl();
1227 else
1228 Record = cast<CXXRecordDecl>(ContextDecl);
1229
1230 QualType T = S.Context.getRecordType(Record);
1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232
1233 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234
1235 this->Enabled = true;
1236}
1237
1238
1239Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240 if (Enabled) {
1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242 }
1243}
1244
1245static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1247 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 // [=, this] {}; // until C++20: Error: this when = is the default
1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250 !Sema.getLangOpts().CPlusPlus20)
1251 return;
1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253 << FixItHint::CreateInsertion(
1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255}
1256
1257bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259 const bool ByCopy) {
1260 // We don't need to capture this in an unevaluated context.
1261 if (isUnevaluatedContext() && !Explicit)
1262 return true;
1263
1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1264, __extension__ __PRETTY_FUNCTION__
))
;
1265
1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1267 ? *FunctionScopeIndexToStopAt
1268 : FunctionScopes.size() - 1;
1269
1270 // Check that we can capture the *enclosing object* (referred to by '*this')
1271 // by the capturing-entity/closure (lambda/block/etc) at
1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1273
1274 // Note: The *enclosing object* can only be captured by-value by a
1275 // closure that is a lambda, using the explicit notation:
1276 // [*this] { ... }.
1277 // Every other capture of the *enclosing object* results in its by-reference
1278 // capture.
1279
1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1281 // stack), we can capture the *enclosing object* only if:
1282 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1283 // - or, 'L' has an implicit capture.
1284 // AND
1285 // -- there is no enclosing closure
1286 // -- or, there is some enclosing closure 'E' that has already captured the
1287 // *enclosing object*, and every intervening closure (if any) between 'E'
1288 // and 'L' can implicitly capture the *enclosing object*.
1289 // -- or, every enclosing closure can implicitly capture the
1290 // *enclosing object*
1291
1292
1293 unsigned NumCapturingClosures = 0;
1294 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1295 if (CapturingScopeInfo *CSI =
1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1297 if (CSI->CXXThisCaptureIndex != 0) {
1298 // 'this' is already being captured; there isn't anything more to do.
1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1300 break;
1301 }
1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1303 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1304 // This context can't implicitly capture 'this'; fail out.
1305 if (BuildAndDiagnose) {
1306 Diag(Loc, diag::err_this_capture)
1307 << (Explicit && idx == MaxFunctionScopesIndex);
1308 if (!Explicit)
1309 buildLambdaThisCaptureFixit(*this, LSI);
1310 }
1311 return true;
1312 }
1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1317 (Explicit && idx == MaxFunctionScopesIndex)) {
1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1319 // iteration through can be an explicit capture, all enclosing closures,
1320 // if any, must perform implicit captures.
1321
1322 // This closure can capture 'this'; continue looking upwards.
1323 NumCapturingClosures++;
1324 continue;
1325 }
1326 // This context can't implicitly capture 'this'; fail out.
1327 if (BuildAndDiagnose)
1328 Diag(Loc, diag::err_this_capture)
1329 << (Explicit && idx == MaxFunctionScopesIndex);
1330
1331 if (!Explicit)
1332 buildLambdaThisCaptureFixit(*this, LSI);
1333 return true;
1334 }
1335 break;
1336 }
1337 if (!BuildAndDiagnose) return false;
1338
1339 // If we got here, then the closure at MaxFunctionScopesIndex on the
1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1341 // (including implicit by-reference captures in any enclosing closures).
1342
1343 // In the loop below, respect the ByCopy flag only for the closure requesting
1344 // the capture (i.e. first iteration through the loop below). Ignore it for
1345 // all enclosing closure's up to NumCapturingClosures (since they must be
1346 // implicitly capturing the *enclosing object* by reference (see loop
1347 // above)).
1348 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1349 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1350 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1351 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
;
1352 QualType ThisTy = getCurrentThisType();
1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1354 --idx, --NumCapturingClosures) {
1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1356
1357 // The type of the corresponding data member (not a 'this' pointer if 'by
1358 // copy').
1359 QualType CaptureType = ThisTy;
1360 if (ByCopy) {
1361 // If we are capturing the object referred to by '*this' by copy, ignore
1362 // any cv qualifiers inherited from the type of the member function for
1363 // the type of the closure-type's corresponding data member and any use
1364 // of 'this'.
1365 CaptureType = ThisTy->getPointeeType();
1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1367 }
1368
1369 bool isNested = NumCapturingClosures > 1;
1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1371 }
1372 return false;
1373}
1374
1375ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1377 /// is a non-lvalue expression whose value is the address of the object for
1378 /// which the function is called.
1379
1380 QualType ThisTy = getCurrentThisType();
1381 if (ThisTy.isNull())
1382 return Diag(Loc, diag::err_invalid_this_use);
1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1384}
1385
1386Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1387 bool IsImplicit) {
1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1389 MarkThisReferenced(This);
1390 return This;
1391}
1392
1393void Sema::MarkThisReferenced(CXXThisExpr *This) {
1394 CheckCXXThisCapture(This->getExprLoc());
1395}
1396
1397bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1398 // If we're outside the body of a member function, then we'll have a specified
1399 // type for 'this'.
1400 if (CXXThisTypeOverride.isNull())
1401 return false;
1402
1403 // Determine whether we're looking into a class that's currently being
1404 // defined.
1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1406 return Class && Class->isBeingDefined();
1407}
1408
1409/// Parse construction of a specified type.
1410/// Can be interpreted either as function-style casting ("int(x)")
1411/// or class type construction ("ClassType(x,y,z)")
1412/// or creation of a value-initialized type ("int()").
1413ExprResult
1414Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1415 SourceLocation LParenOrBraceLoc,
1416 MultiExprArg exprs,
1417 SourceLocation RParenOrBraceLoc,
1418 bool ListInitialization) {
1419 if (!TypeRep)
1420 return ExprError();
1421
1422 TypeSourceInfo *TInfo;
1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1424 if (!TInfo)
1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1426
1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1428 RParenOrBraceLoc, ListInitialization);
1429 // Avoid creating a non-type-dependent expression that contains typos.
1430 // Non-type-dependent expressions are liable to be discarded without
1431 // checking for embedded typos.
1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1433 !Result.get()->isTypeDependent())
1434 Result = CorrectDelayedTyposInExpr(Result.get());
1435 else if (Result.isInvalid())
1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1437 RParenOrBraceLoc, exprs, Ty);
1438 return Result;
1439}
1440
1441ExprResult
1442Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1443 SourceLocation LParenOrBraceLoc,
1444 MultiExprArg Exprs,
1445 SourceLocation RParenOrBraceLoc,
1446 bool ListInitialization) {
1447 QualType Ty = TInfo->getType();
1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1449
1450 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
;
1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1454
1455 InitializedEntity Entity =
1456 InitializedEntity::InitializeTemporary(Context, TInfo);
1457 InitializationKind Kind =
1458 Exprs.size()
1459 ? ListInitialization
1460 ? InitializationKind::CreateDirectList(
1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463 RParenOrBraceLoc)
1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465 RParenOrBraceLoc);
1466
1467 // C++1z [expr.type.conv]p1:
1468 // If the type is a placeholder for a deduced class type, [...perform class
1469 // template argument deduction...]
1470 // C++2b:
1471 // Otherwise, if the type contains a placeholder type, it is replaced by the
1472 // type determined by placeholder type deduction.
1473 DeducedType *Deduced = Ty->getContainedDeducedType();
1474 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1475 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1476 Kind, Exprs);
1477 if (Ty.isNull())
1478 return ExprError();
1479 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1480 } else if (Deduced) {
1481 MultiExprArg Inits = Exprs;
1482 if (ListInitialization) {
1483 auto *ILE = cast<InitListExpr>(Exprs[0]);
1484 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1485 }
1486
1487 if (Inits.empty())
1488 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1489 << Ty << FullRange);
1490 if (Inits.size() > 1) {
1491 Expr *FirstBad = Inits[1];
1492 return ExprError(Diag(FirstBad->getBeginLoc(),
1493 diag::err_auto_expr_init_multiple_expressions)
1494 << Ty << FullRange);
1495 }
1496 if (getLangOpts().CPlusPlus2b) {
1497 if (Ty->getAs<AutoType>())
1498 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1499 }
1500 Expr *Deduce = Inits[0];
1501 if (isa<InitListExpr>(Deduce))
1502 return ExprError(
1503 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1504 << ListInitialization << Ty << FullRange);
1505 QualType DeducedType;
1506 if (DeduceAutoType(TInfo, Deduce, DeducedType) == DAR_Failed)
1507 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1508 << Ty << Deduce->getType() << FullRange
1509 << Deduce->getSourceRange());
1510 if (DeducedType.isNull())
1511 return ExprError();
1512
1513 Ty = DeducedType;
1514 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1515 }
1516
1517 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1518 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1519 // directly. We work around this by dropping the locations of the braces.
1520 SourceRange Locs = ListInitialization
1521 ? SourceRange()
1522 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1523 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1524 TInfo, Locs.getBegin(), Exprs,
1525 Locs.getEnd());
1526 }
1527
1528 // C++ [expr.type.conv]p1:
1529 // If the expression list is a parenthesized single expression, the type
1530 // conversion expression is equivalent (in definedness, and if defined in
1531 // meaning) to the corresponding cast expression.
1532 if (Exprs.size() == 1 && !ListInitialization &&
1533 !isa<InitListExpr>(Exprs[0])) {
1534 Expr *Arg = Exprs[0];
1535 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1536 RParenOrBraceLoc);
1537 }
1538
1539 // For an expression of the form T(), T shall not be an array type.
1540 QualType ElemTy = Ty;
1541 if (Ty->isArrayType()) {
1542 if (!ListInitialization)
1543 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1544 << FullRange);
1545 ElemTy = Context.getBaseElementType(Ty);
1546 }
1547
1548 // Only construct objects with object types.
1549 // The standard doesn't explicitly forbid function types here, but that's an
1550 // obvious oversight, as there's no way to dynamically construct a function
1551 // in general.
1552 if (Ty->isFunctionType())
1553 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1554 << Ty << FullRange);
1555
1556 // C++17 [expr.type.conv]p2:
1557 // If the type is cv void and the initializer is (), the expression is a
1558 // prvalue of the specified type that performs no initialization.
1559 if (!Ty->isVoidType() &&
1560 RequireCompleteType(TyBeginLoc, ElemTy,
1561 diag::err_invalid_incomplete_type_use, FullRange))
1562 return ExprError();
1563
1564 // Otherwise, the expression is a prvalue of the specified type whose
1565 // result object is direct-initialized (11.6) with the initializer.
1566 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1567 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1568
1569 if (Result.isInvalid())
1570 return Result;
1571
1572 Expr *Inner = Result.get();
1573 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1574 Inner = BTE->getSubExpr();
1575 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1576 !isa<CXXScalarValueInitExpr>(Inner)) {
1577 // If we created a CXXTemporaryObjectExpr, that node also represents the
1578 // functional cast. Otherwise, create an explicit cast to represent
1579 // the syntactic form of a functional-style cast that was used here.
1580 //
1581 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1582 // would give a more consistent AST representation than using a
1583 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1584 // is sometimes handled by initialization and sometimes not.
1585 QualType ResultType = Result.get()->getType();
1586 SourceRange Locs = ListInitialization
1587 ? SourceRange()
1588 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1589 Result = CXXFunctionalCastExpr::Create(
1590 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1591 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1592 Locs.getBegin(), Locs.getEnd());
1593 }
1594
1595 return Result;
1596}
1597
1598bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1599 // [CUDA] Ignore this function, if we can't call it.
1600 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1601 if (getLangOpts().CUDA) {
1602 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1603 // If it's not callable at all, it's not the right function.
1604 if (CallPreference < CFP_WrongSide)
1605 return false;
1606 if (CallPreference == CFP_WrongSide) {
1607 // Maybe. We have to check if there are better alternatives.
1608 DeclContext::lookup_result R =
1609 Method->getDeclContext()->lookup(Method->getDeclName());
1610 for (const auto *D : R) {
1611 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1612 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1613 return false;
1614 }
1615 }
1616 // We've found no better variants.
1617 }
1618 }
1619
1620 SmallVector<const FunctionDecl*, 4> PreventedBy;
1621 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1622
1623 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1624 return Result;
1625
1626 // In case of CUDA, return true if none of the 1-argument deallocator
1627 // functions are actually callable.
1628 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1629 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
1630 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
;
1631 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1632 });
1633}
1634
1635/// Determine whether the given function is a non-placement
1636/// deallocation function.
1637static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1638 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1639 return S.isUsualDeallocationFunction(Method);
1640
1641 if (FD->getOverloadedOperator() != OO_Delete &&
1642 FD->getOverloadedOperator() != OO_Array_Delete)
1643 return false;
1644
1645 unsigned UsualParams = 1;
1646
1647 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1648 S.Context.hasSameUnqualifiedType(
1649 FD->getParamDecl(UsualParams)->getType(),
1650 S.Context.getSizeType()))
1651 ++UsualParams;
1652
1653 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1654 S.Context.hasSameUnqualifiedType(
1655 FD->getParamDecl(UsualParams)->getType(),
1656 S.Context.getTypeDeclType(S.getStdAlignValT())))
1657 ++UsualParams;
1658
1659 return UsualParams == FD->getNumParams();
1660}
1661
1662namespace {
1663 struct UsualDeallocFnInfo {
1664 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1665 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1666 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1667 Destroying(false), HasSizeT(false), HasAlignValT(false),
1668 CUDAPref(Sema::CFP_Native) {
1669 // A function template declaration is never a usual deallocation function.
1670 if (!FD)
1671 return;
1672 unsigned NumBaseParams = 1;
1673 if (FD->isDestroyingOperatorDelete()) {
1674 Destroying = true;
1675 ++NumBaseParams;
1676 }
1677
1678 if (NumBaseParams < FD->getNumParams() &&
1679 S.Context.hasSameUnqualifiedType(
1680 FD->getParamDecl(NumBaseParams)->getType(),
1681 S.Context.getSizeType())) {
1682 ++NumBaseParams;
1683 HasSizeT = true;
1684 }
1685
1686 if (NumBaseParams < FD->getNumParams() &&
1687 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1688 ++NumBaseParams;
1689 HasAlignValT = true;
1690 }
1691
1692 // In CUDA, determine how much we'd like / dislike to call this.
1693 if (S.getLangOpts().CUDA)
1694 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1695 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1696 }
1697
1698 explicit operator bool() const { return FD; }
1699
1700 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1701 bool WantAlign) const {
1702 // C++ P0722:
1703 // A destroying operator delete is preferred over a non-destroying
1704 // operator delete.
1705 if (Destroying != Other.Destroying)
1706 return Destroying;
1707
1708 // C++17 [expr.delete]p10:
1709 // If the type has new-extended alignment, a function with a parameter
1710 // of type std::align_val_t is preferred; otherwise a function without
1711 // such a parameter is preferred
1712 if (HasAlignValT != Other.HasAlignValT)
1713 return HasAlignValT == WantAlign;
1714
1715 if (HasSizeT != Other.HasSizeT)
1716 return HasSizeT == WantSize;
1717
1718 // Use CUDA call preference as a tiebreaker.
1719 return CUDAPref > Other.CUDAPref;
1720 }
1721
1722 DeclAccessPair Found;
1723 FunctionDecl *FD;
1724 bool Destroying, HasSizeT, HasAlignValT;
1725 Sema::CUDAFunctionPreference CUDAPref;
1726 };
1727}
1728
1729/// Determine whether a type has new-extended alignment. This may be called when
1730/// the type is incomplete (for a delete-expression with an incomplete pointee
1731/// type), in which case it will conservatively return false if the alignment is
1732/// not known.
1733static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1734 return S.getLangOpts().AlignedAllocation &&
1735 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1736 S.getASTContext().getTargetInfo().getNewAlign();
1737}
1738
1739/// Select the correct "usual" deallocation function to use from a selection of
1740/// deallocation functions (either global or class-scope).
1741static UsualDeallocFnInfo resolveDeallocationOverload(
1742 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1743 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1744 UsualDeallocFnInfo Best;
1745
1746 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1747 UsualDeallocFnInfo Info(S, I.getPair());
1748 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1749 Info.CUDAPref == Sema::CFP_Never)
1750 continue;
1751
1752 if (!Best) {
1753 Best = Info;
1754 if (BestFns)
1755 BestFns->push_back(Info);
1756 continue;
1757 }
1758
1759 if (Best.isBetterThan(Info, WantSize, WantAlign))
1760 continue;
1761
1762 // If more than one preferred function is found, all non-preferred
1763 // functions are eliminated from further consideration.
1764 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1765 BestFns->clear();
1766
1767 Best = Info;
1768 if (BestFns)
1769 BestFns->push_back(Info);
1770 }
1771
1772 return Best;
1773}
1774
1775/// Determine whether a given type is a class for which 'delete[]' would call
1776/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1777/// we need to store the array size (even if the type is
1778/// trivially-destructible).
1779static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1780 QualType allocType) {
1781 const RecordType *record =
1782 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1783 if (!record) return false;
1784
1785 // Try to find an operator delete[] in class scope.
1786
1787 DeclarationName deleteName =
1788 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1789 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1790 S.LookupQualifiedName(ops, record->getDecl());
1791
1792 // We're just doing this for information.
1793 ops.suppressDiagnostics();
1794
1795 // Very likely: there's no operator delete[].
1796 if (ops.empty()) return false;
1797
1798 // If it's ambiguous, it should be illegal to call operator delete[]
1799 // on this thing, so it doesn't matter if we allocate extra space or not.
1800 if (ops.isAmbiguous()) return false;
1801
1802 // C++17 [expr.delete]p10:
1803 // If the deallocation functions have class scope, the one without a
1804 // parameter of type std::size_t is selected.
1805 auto Best = resolveDeallocationOverload(
1806 S, ops, /*WantSize*/false,
1807 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1808 return Best && Best.HasSizeT;
1809}
1810
1811/// Parsed a C++ 'new' expression (C++ 5.3.4).
1812///
1813/// E.g.:
1814/// @code new (memory) int[size][4] @endcode
1815/// or
1816/// @code ::new Foo(23, "hello") @endcode
1817///
1818/// \param StartLoc The first location of the expression.
1819/// \param UseGlobal True if 'new' was prefixed with '::'.
1820/// \param PlacementLParen Opening paren of the placement arguments.
1821/// \param PlacementArgs Placement new arguments.
1822/// \param PlacementRParen Closing paren of the placement arguments.
1823/// \param TypeIdParens If the type is in parens, the source range.
1824/// \param D The type to be allocated, as well as array dimensions.
1825/// \param Initializer The initializing expression or initializer-list, or null
1826/// if there is none.
1827ExprResult
1828Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1829 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1830 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1831 Declarator &D, Expr *Initializer) {
1832 Optional<Expr *> ArraySize;
1833 // If the specified type is an array, unwrap it and save the expression.
1834 if (D.getNumTypeObjects() > 0 &&
1835 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1836 DeclaratorChunk &Chunk = D.getTypeObject(0);
1837 if (D.getDeclSpec().hasAutoTypeSpec())
1838 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1839 << D.getSourceRange());
1840 if (Chunk.Arr.hasStatic)
1841 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1842 << D.getSourceRange());
1843 if (!Chunk.Arr.NumElts && !Initializer)
1844 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1845 << D.getSourceRange());
1846
1847 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1848 D.DropFirstTypeObject();
1849 }
1850
1851 // Every dimension shall be of constant size.
1852 if (ArraySize) {
1853 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1854 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1855 break;
1856
1857 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1858 if (Expr *NumElts = (Expr *)Array.NumElts) {
1859 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1860 // FIXME: GCC permits constant folding here. We should either do so consistently
1861 // or not do so at all, rather than changing behavior in C++14 onwards.
1862 if (getLangOpts().CPlusPlus14) {
1863 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1864 // shall be a converted constant expression (5.19) of type std::size_t
1865 // and shall evaluate to a strictly positive value.
1866 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1867 Array.NumElts
1868 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1869 CCEK_ArrayBound)
1870 .get();
1871 } else {
1872 Array.NumElts =
1873 VerifyIntegerConstantExpression(
1874 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1875 .get();
1876 }
1877 if (!Array.NumElts)
1878 return ExprError();
1879 }
1880 }
1881 }
1882 }
1883
1884 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1885 QualType AllocType = TInfo->getType();
1886 if (D.isInvalidType())
1887 return ExprError();
1888
1889 SourceRange DirectInitRange;
1890 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1891 DirectInitRange = List->getSourceRange();
1892
1893 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1894 PlacementLParen, PlacementArgs, PlacementRParen,
1895 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1896 Initializer);
1897}
1898
1899static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1900 Expr *Init) {
1901 if (!Init)
1902 return true;
1903 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1904 return PLE->getNumExprs() == 0;
1905 if (isa<ImplicitValueInitExpr>(Init))
1906 return true;
1907 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1908 return !CCE->isListInitialization() &&
1909 CCE->getConstructor()->isDefaultConstructor();
1910 else if (Style == CXXNewExpr::ListInit) {
1911 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1912, __extension__ __PRETTY_FUNCTION__
))
1912 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1912, __extension__ __PRETTY_FUNCTION__
))
;
1913 return true;
1914 }
1915 return false;
1916}
1917
1918bool
1919Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1920 if (!getLangOpts().AlignedAllocationUnavailable)
1921 return false;
1922 if (FD.isDefined())
1923 return false;
1924 Optional<unsigned> AlignmentParam;
1925 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1926 AlignmentParam.hasValue())
1927 return true;
1928 return false;
1929}
1930
1931// Emit a diagnostic if an aligned allocation/deallocation function that is not
1932// implemented in the standard library is selected.
1933void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1934 SourceLocation Loc) {
1935 if (isUnavailableAlignedAllocationFunction(FD)) {
1936 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1937 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1938 getASTContext().getTargetInfo().getPlatformName());
1939 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1940
1941 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1942 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1943 Diag(Loc, diag::err_aligned_allocation_unavailable)
1944 << IsDelete << FD.getType().getAsString() << OSName
1945 << OSVersion.getAsString() << OSVersion.empty();
1946 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1947 }
1948}
1949
1950ExprResult
1951Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1952 SourceLocation PlacementLParen,
1953 MultiExprArg PlacementArgs,
1954 SourceLocation PlacementRParen,
1955 SourceRange TypeIdParens,
1956 QualType AllocType,
1957 TypeSourceInfo *AllocTypeInfo,
1958 Optional<Expr *> ArraySize,
1959 SourceRange DirectInitRange,
1960 Expr *Initializer) {
1961 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1962 SourceLocation StartLoc = Range.getBegin();
1963
1964 CXXNewExpr::InitializationStyle initStyle;
1965 if (DirectInitRange.isValid()) {
1966 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
;
1967 initStyle = CXXNewExpr::CallInit;
1968 } else if (Initializer && isa<InitListExpr>(Initializer))
1969 initStyle = CXXNewExpr::ListInit;
1970 else {
1971 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
1972 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
1973 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
;
1974 initStyle = CXXNewExpr::NoInit;
1975 }
1976
1977 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
1978 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1979 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1979, __extension__ __PRETTY_FUNCTION__
))
;
1980 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
1981 }
1982
1983 // C++11 [expr.new]p15:
1984 // A new-expression that creates an object of type T initializes that
1985 // object as follows:
1986 InitializationKind Kind
1987 // - If the new-initializer is omitted, the object is default-
1988 // initialized (8.5); if no initialization is performed,
1989 // the object has indeterminate value
1990 = initStyle == CXXNewExpr::NoInit
1991 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1992 // - Otherwise, the new-initializer is interpreted according to
1993 // the
1994 // initialization rules of 8.5 for direct-initialization.
1995 : initStyle == CXXNewExpr::ListInit
1996 ? InitializationKind::CreateDirectList(
1997 TypeRange.getBegin(), Initializer->getBeginLoc(),
1998 Initializer->getEndLoc())
1999 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2000 DirectInitRange.getBegin(),
2001 DirectInitRange.getEnd());
2002
2003 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2004 auto *Deduced = AllocType->getContainedDeducedType();
2005 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
2006 if (ArraySize)
2007 return ExprError(
2008 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2009 diag::err_deduced_class_template_compound_type)
2010 << /*array*/ 2
2011 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2012
2013 InitializedEntity Entity
2014 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2015 AllocType = DeduceTemplateSpecializationFromInitializer(
2016 AllocTypeInfo, Entity, Kind, Exprs);
2017 if (AllocType.isNull())
2018 return ExprError();
2019 } else if (Deduced) {
2020 MultiExprArg Inits = Exprs;
2021 bool Braced = (initStyle == CXXNewExpr::ListInit);
2022 if (Braced) {
2023 auto *ILE = cast<InitListExpr>(Exprs[0]);
2024 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2025 }
2026
2027 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2028 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2029 << AllocType << TypeRange);
2030 if (Inits.size() > 1) {
2031 Expr *FirstBad = Inits[1];
2032 return ExprError(Diag(FirstBad->getBeginLoc(),
2033 diag::err_auto_new_ctor_multiple_expressions)
2034 << AllocType << TypeRange);
2035 }
2036 if (Braced && !getLangOpts().CPlusPlus17)
2037 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2038 << AllocType << TypeRange;
2039 Expr *Deduce = Inits[0];
2040 if (isa<InitListExpr>(Deduce))
2041 return ExprError(
2042 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2043 << Braced << AllocType << TypeRange);
2044 QualType DeducedType;
2045 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2046 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2047 << AllocType << Deduce->getType()
2048 << TypeRange << Deduce->getSourceRange());
2049 if (DeducedType.isNull())
2050 return ExprError();
2051 AllocType = DeducedType;
2052 }
2053
2054 // Per C++0x [expr.new]p5, the type being constructed may be a
2055 // typedef of an array type.
2056 if (!ArraySize) {
2057 if (const ConstantArrayType *Array
2058 = Context.getAsConstantArrayType(AllocType)) {
2059 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2060 Context.getSizeType(),
2061 TypeRange.getEnd());
2062 AllocType = Array->getElementType();
2063 }
2064 }
2065
2066 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2067 return ExprError();
2068
2069 // In ARC, infer 'retaining' for the allocated
2070 if (getLangOpts().ObjCAutoRefCount &&
2071 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2072 AllocType->isObjCLifetimeType()) {
2073 AllocType = Context.getLifetimeQualifiedType(AllocType,
2074 AllocType->getObjCARCImplicitLifetime());
2075 }
2076
2077 QualType ResultType = Context.getPointerType(AllocType);
2078
2079 if (ArraySize && *ArraySize &&
2080 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2081 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2082 if (result.isInvalid()) return ExprError();
2083 ArraySize = result.get();
2084 }
2085 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2086 // integral or enumeration type with a non-negative value."
2087 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2088 // enumeration type, or a class type for which a single non-explicit
2089 // conversion function to integral or unscoped enumeration type exists.
2090 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2091 // std::size_t.
2092 llvm::Optional<uint64_t> KnownArraySize;
2093 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2094 ExprResult ConvertedSize;
2095 if (getLangOpts().CPlusPlus14) {
2096 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2096, __extension__ __PRETTY_FUNCTION__
))
;
2097
2098 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2099 AA_Converting);
2100
2101 if (!ConvertedSize.isInvalid() &&
2102 (*ArraySize)->getType()->getAs<RecordType>())
2103 // Diagnose the compatibility of this conversion.
2104 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2105 << (*ArraySize)->getType() << 0 << "'size_t'";
2106 } else {
2107 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2108 protected:
2109 Expr *ArraySize;
2110
2111 public:
2112 SizeConvertDiagnoser(Expr *ArraySize)
2113 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2114 ArraySize(ArraySize) {}
2115
2116 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2117 QualType T) override {
2118 return S.Diag(Loc, diag::err_array_size_not_integral)
2119 << S.getLangOpts().CPlusPlus11 << T;
2120 }
2121
2122 SemaDiagnosticBuilder diagnoseIncomplete(
2123 Sema &S, SourceLocation Loc, QualType T) override {
2124 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2125 << T << ArraySize->getSourceRange();
2126 }
2127
2128 SemaDiagnosticBuilder diagnoseExplicitConv(
2129 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2130 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2131 }
2132
2133 SemaDiagnosticBuilder noteExplicitConv(
2134 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2135 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2136 << ConvTy->isEnumeralType() << ConvTy;
2137 }
2138
2139 SemaDiagnosticBuilder diagnoseAmbiguous(
2140 Sema &S, SourceLocation Loc, QualType T) override {
2141 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2142 }
2143
2144 SemaDiagnosticBuilder noteAmbiguous(
2145 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2146 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2147 << ConvTy->isEnumeralType() << ConvTy;
2148 }
2149
2150 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2151 QualType T,
2152 QualType ConvTy) override {
2153 return S.Diag(Loc,
2154 S.getLangOpts().CPlusPlus11
2155 ? diag::warn_cxx98_compat_array_size_conversion
2156 : diag::ext_array_size_conversion)
2157 << T << ConvTy->isEnumeralType() << ConvTy;
2158 }
2159 } SizeDiagnoser(*ArraySize);
2160
2161 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2162 SizeDiagnoser);
2163 }
2164 if (ConvertedSize.isInvalid())
2165 return ExprError();
2166
2167 ArraySize = ConvertedSize.get();
2168 QualType SizeType = (*ArraySize)->getType();
2169
2170 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2171 return ExprError();
2172
2173 // C++98 [expr.new]p7:
2174 // The expression in a direct-new-declarator shall have integral type
2175 // with a non-negative value.
2176 //
2177 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2178 // per CWG1464. Otherwise, if it's not a constant, we must have an
2179 // unparenthesized array type.
2180
2181 // We've already performed any required implicit conversion to integer or
2182 // unscoped enumeration type.
2183 // FIXME: Per CWG1464, we are required to check the value prior to
2184 // converting to size_t. This will never find a negative array size in
2185 // C++14 onwards, because Value is always unsigned here!
2186 if (Optional<llvm::APSInt> Value =
2187 (*ArraySize)->getIntegerConstantExpr(Context)) {
2188 if (Value->isSigned() && Value->isNegative()) {
2189 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2190 diag::err_typecheck_negative_array_size)
2191 << (*ArraySize)->getSourceRange());
2192 }
2193
2194 if (!AllocType->isDependentType()) {
2195 unsigned ActiveSizeBits =
2196 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2197 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2198 return ExprError(
2199 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2200 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2201 }
2202
2203 KnownArraySize = Value->getZExtValue();
2204 } else if (TypeIdParens.isValid()) {
2205 // Can't have dynamic array size when the type-id is in parentheses.
2206 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2207 << (*ArraySize)->getSourceRange()
2208 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2209 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2210
2211 TypeIdParens = SourceRange();
2212 }
2213
2214 // Note that we do *not* convert the argument in any way. It can
2215 // be signed, larger than size_t, whatever.
2216 }
2217
2218 FunctionDecl *OperatorNew = nullptr;
2219 FunctionDecl *OperatorDelete = nullptr;
2220 unsigned Alignment =
2221 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2222 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2223 bool PassAlignment = getLangOpts().AlignedAllocation &&
2224 Alignment > NewAlignment;
2225
2226 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2227 if (!AllocType->isDependentType() &&
2228 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2229 FindAllocationFunctions(
2230 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2231 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2232 OperatorNew, OperatorDelete))
2233 return ExprError();
2234
2235 // If this is an array allocation, compute whether the usual array
2236 // deallocation function for the type has a size_t parameter.
2237 bool UsualArrayDeleteWantsSize = false;
2238 if (ArraySize && !AllocType->isDependentType())
2239 UsualArrayDeleteWantsSize =
2240 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2241
2242 SmallVector<Expr *, 8> AllPlaceArgs;
2243 if (OperatorNew) {
2244 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2245 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2246 : VariadicDoesNotApply;
2247
2248 // We've already converted the placement args, just fill in any default
2249 // arguments. Skip the first parameter because we don't have a corresponding
2250 // argument. Skip the second parameter too if we're passing in the
2251 // alignment; we've already filled it in.
2252 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2253 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2254 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2255 CallType))
2256 return ExprError();
2257
2258 if (!AllPlaceArgs.empty())
2259 PlacementArgs = AllPlaceArgs;
2260
2261 // We would like to perform some checking on the given `operator new` call,
2262 // but the PlacementArgs does not contain the implicit arguments,
2263 // namely allocation size and maybe allocation alignment,
2264 // so we need to conjure them.
2265
2266 QualType SizeTy = Context.getSizeType();
2267 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2268
2269 llvm::APInt SingleEltSize(
2270 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2271
2272 // How many bytes do we want to allocate here?
2273 llvm::Optional<llvm::APInt> AllocationSize;
2274 if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2275 // For non-array operator new, we only want to allocate one element.
2276 AllocationSize = SingleEltSize;
2277 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2278 // For array operator new, only deal with static array size case.
2279 bool Overflow;
2280 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2281 .umul_ov(SingleEltSize, Overflow);
2282 (void)Overflow;
2283 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
2284 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
2285 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
;
2286 }
2287
2288 IntegerLiteral AllocationSizeLiteral(
2289 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)),
2290 SizeTy, SourceLocation());
2291 // Otherwise, if we failed to constant-fold the allocation size, we'll
2292 // just give up and pass-in something opaque, that isn't a null pointer.
2293 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2294 OK_Ordinary, /*SourceExpr=*/nullptr);
2295
2296 // Let's synthesize the alignment argument in case we will need it.
2297 // Since we *really* want to allocate these on stack, this is slightly ugly
2298 // because there might not be a `std::align_val_t` type.
2299 EnumDecl *StdAlignValT = getStdAlignValT();
2300 QualType AlignValT =
2301 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2302 IntegerLiteral AlignmentLiteral(
2303 Context,
2304 llvm::APInt(Context.getTypeSize(SizeTy),
2305 Alignment / Context.getCharWidth()),
2306 SizeTy, SourceLocation());
2307 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2308 CK_IntegralCast, &AlignmentLiteral,
2309 VK_PRValue, FPOptionsOverride());
2310
2311 // Adjust placement args by prepending conjured size and alignment exprs.
2312 llvm::SmallVector<Expr *, 8> CallArgs;
2313 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2314 CallArgs.emplace_back(AllocationSize.hasValue()
2315 ? static_cast<Expr *>(&AllocationSizeLiteral)
2316 : &OpaqueAllocationSize);
2317 if (PassAlignment)
2318 CallArgs.emplace_back(&DesiredAlignment);
2319 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2320
2321 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2322
2323 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2324 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2325
2326 // Warn if the type is over-aligned and is being allocated by (unaligned)
2327 // global operator new.
2328 if (PlacementArgs.empty() && !PassAlignment &&
2329 (OperatorNew->isImplicit() ||
2330 (OperatorNew->getBeginLoc().isValid() &&
2331 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2332 if (Alignment > NewAlignment)
2333 Diag(StartLoc, diag::warn_overaligned_type)
2334 << AllocType
2335 << unsigned(Alignment / Context.getCharWidth())
2336 << unsigned(NewAlignment / Context.getCharWidth());
2337 }
2338 }
2339
2340 // Array 'new' can't have any initializers except empty parentheses.
2341 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2342 // dialect distinction.
2343 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2344 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2345 Exprs.back()->getEndLoc());
2346 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2347 return ExprError();
2348 }
2349
2350 // If we can perform the initialization, and we've not already done so,
2351 // do it now.
2352 if (!AllocType->isDependentType() &&
2353 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2354 // The type we initialize is the complete type, including the array bound.
2355 QualType InitType;
2356 if (KnownArraySize)
2357 InitType = Context.getConstantArrayType(
2358 AllocType,
2359 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2360 *KnownArraySize),
2361 *ArraySize, ArrayType::Normal, 0);
2362 else if (ArraySize)
2363 InitType =
2364 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2365 else
2366 InitType = AllocType;
2367
2368 InitializedEntity Entity
2369 = InitializedEntity::InitializeNew(StartLoc, InitType);
2370 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2371 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2372 if (FullInit.isInvalid())
2373 return ExprError();
2374
2375 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2376 // we don't want the initialized object to be destructed.
2377 // FIXME: We should not create these in the first place.
2378 if (CXXBindTemporaryExpr *Binder =
2379 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2380 FullInit = Binder->getSubExpr();
2381
2382 Initializer = FullInit.get();
2383
2384 // FIXME: If we have a KnownArraySize, check that the array bound of the
2385 // initializer is no greater than that constant value.
2386
2387 if (ArraySize && !*ArraySize) {
2388 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2389 if (CAT) {
2390 // FIXME: Track that the array size was inferred rather than explicitly
2391 // specified.
2392 ArraySize = IntegerLiteral::Create(
2393 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2394 } else {
2395 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2396 << Initializer->getSourceRange();
2397 }
2398 }
2399 }
2400
2401 // Mark the new and delete operators as referenced.
2402 if (OperatorNew) {
2403 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2404 return ExprError();
2405 MarkFunctionReferenced(StartLoc, OperatorNew);
2406 }
2407 if (OperatorDelete) {
2408 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2409 return ExprError();
2410 MarkFunctionReferenced(StartLoc, OperatorDelete);
2411 }
2412
2413 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2414 PassAlignment, UsualArrayDeleteWantsSize,
2415 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2416 Initializer, ResultType, AllocTypeInfo, Range,
2417 DirectInitRange);
2418}
2419
2420/// Checks that a type is suitable as the allocated type
2421/// in a new-expression.
2422bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2423 SourceRange R) {
2424 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2425 // abstract class type or array thereof.
2426 if (AllocType->isFunctionType())
2427 return Diag(Loc, diag::err_bad_new_type)
2428 << AllocType << 0 << R;
2429 else if (AllocType->isReferenceType())
2430 return Diag(Loc, diag::err_bad_new_type)
2431 << AllocType << 1 << R;
2432 else if (!AllocType->isDependentType() &&
2433 RequireCompleteSizedType(
2434 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2435 return true;
2436 else if (RequireNonAbstractType(Loc, AllocType,
2437 diag::err_allocation_of_abstract_type))
2438 return true;
2439 else if (AllocType->isVariablyModifiedType())
2440 return Diag(Loc, diag::err_variably_modified_new_type)
2441 << AllocType;
2442 else if (AllocType.getAddressSpace() != LangAS::Default &&
2443 !getLangOpts().OpenCLCPlusPlus)
2444 return Diag(Loc, diag::err_address_space_qualified_new)
2445 << AllocType.getUnqualifiedType()
2446 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2447 else if (getLangOpts().ObjCAutoRefCount) {
2448 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2449 QualType BaseAllocType = Context.getBaseElementType(AT);
2450 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2451 BaseAllocType->isObjCLifetimeType())
2452 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2453 << BaseAllocType;
2454 }
2455 }
2456
2457 return false;
2458}
2459
2460static bool resolveAllocationOverload(
2461 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2462 bool &PassAlignment, FunctionDecl *&Operator,
2463 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2464 OverloadCandidateSet Candidates(R.getNameLoc(),
2465 OverloadCandidateSet::CSK_Normal);
2466 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2467 Alloc != AllocEnd; ++Alloc) {
2468 // Even member operator new/delete are implicitly treated as
2469 // static, so don't use AddMemberCandidate.
2470 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2471
2472 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2473 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2474 /*ExplicitTemplateArgs=*/nullptr, Args,
2475 Candidates,
2476 /*SuppressUserConversions=*/false);
2477 continue;
2478 }
2479
2480 FunctionDecl *Fn = cast<FunctionDecl>(D);
2481 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2482 /*SuppressUserConversions=*/false);
2483 }
2484
2485 // Do the resolution.
2486 OverloadCandidateSet::iterator Best;
2487 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2488 case OR_Success: {
2489 // Got one!
2490 FunctionDecl *FnDecl = Best->Function;
2491 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2492 Best->FoundDecl) == Sema::AR_inaccessible)
2493 return true;
2494
2495 Operator = FnDecl;
2496 return false;
2497 }
2498
2499 case OR_No_Viable_Function:
2500 // C++17 [expr.new]p13:
2501 // If no matching function is found and the allocated object type has
2502 // new-extended alignment, the alignment argument is removed from the
2503 // argument list, and overload resolution is performed again.
2504 if (PassAlignment) {
2505 PassAlignment = false;
2506 AlignArg = Args[1];
2507 Args.erase(Args.begin() + 1);
2508 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2509 Operator, &Candidates, AlignArg,
2510 Diagnose);
2511 }
2512
2513 // MSVC will fall back on trying to find a matching global operator new
2514 // if operator new[] cannot be found. Also, MSVC will leak by not
2515 // generating a call to operator delete or operator delete[], but we
2516 // will not replicate that bug.
2517 // FIXME: Find out how this interacts with the std::align_val_t fallback
2518 // once MSVC implements it.
2519 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2520 S.Context.getLangOpts().MSVCCompat) {
2521 R.clear();
2522 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2523 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2524 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2525 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2526 Operator, /*Candidates=*/nullptr,
2527 /*AlignArg=*/nullptr, Diagnose);
2528 }
2529
2530 if (Diagnose) {
2531 // If this is an allocation of the form 'new (p) X' for some object
2532 // pointer p (or an expression that will decay to such a pointer),
2533 // diagnose the missing inclusion of <new>.
2534 if (!R.isClassLookup() && Args.size() == 2 &&
2535 (Args[1]->getType()->isObjectPointerType() ||
2536 Args[1]->getType()->isArrayType())) {
2537 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2538 << R.getLookupName() << Range;
2539 // Listing the candidates is unlikely to be useful; skip it.
2540 return true;
2541 }
2542
2543 // Finish checking all candidates before we note any. This checking can
2544 // produce additional diagnostics so can't be interleaved with our
2545 // emission of notes.
2546 //
2547 // For an aligned allocation, separately check the aligned and unaligned
2548 // candidates with their respective argument lists.
2549 SmallVector<OverloadCandidate*, 32> Cands;
2550 SmallVector<OverloadCandidate*, 32> AlignedCands;
2551 llvm::SmallVector<Expr*, 4> AlignedArgs;
2552 if (AlignedCandidates) {
2553 auto IsAligned = [](OverloadCandidate &C) {
2554 return C.Function->getNumParams() > 1 &&
2555 C.Function->getParamDecl(1)->getType()->isAlignValT();
2556 };
2557 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2558
2559 AlignedArgs.reserve(Args.size() + 1);
2560 AlignedArgs.push_back(Args[0]);
2561 AlignedArgs.push_back(AlignArg);
2562 AlignedArgs.append(Args.begin() + 1, Args.end());
2563 AlignedCands = AlignedCandidates->CompleteCandidates(
2564 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2565
2566 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2567 R.getNameLoc(), IsUnaligned);
2568 } else {
2569 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2570 R.getNameLoc());
2571 }
2572
2573 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2574 << R.getLookupName() << Range;
2575 if (AlignedCandidates)
2576 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2577 R.getNameLoc());
2578 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2579 }
2580 return true;
2581
2582 case OR_Ambiguous:
2583 if (Diagnose) {
2584 Candidates.NoteCandidates(
2585 PartialDiagnosticAt(R.getNameLoc(),
2586 S.PDiag(diag::err_ovl_ambiguous_call)
2587 << R.getLookupName() << Range),
2588 S, OCD_AmbiguousCandidates, Args);
2589 }
2590 return true;
2591
2592 case OR_Deleted: {
2593 if (Diagnose) {
2594 Candidates.NoteCandidates(
2595 PartialDiagnosticAt(R.getNameLoc(),
2596 S.PDiag(diag::err_ovl_deleted_call)
2597 << R.getLookupName() << Range),
2598 S, OCD_AllCandidates, Args);
2599 }
2600 return true;
2601 }
2602 }
2603 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2603)
;
2604}
2605
2606bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2607 AllocationFunctionScope NewScope,
2608 AllocationFunctionScope DeleteScope,
2609 QualType AllocType, bool IsArray,
2610 bool &PassAlignment, MultiExprArg PlaceArgs,
2611 FunctionDecl *&OperatorNew,
2612 FunctionDecl *&OperatorDelete,
2613 bool Diagnose) {
2614 // --- Choosing an allocation function ---
2615 // C++ 5.3.4p8 - 14 & 18
2616 // 1) If looking in AFS_Global scope for allocation functions, only look in
2617 // the global scope. Else, if AFS_Class, only look in the scope of the
2618 // allocated class. If AFS_Both, look in both.
2619 // 2) If an array size is given, look for operator new[], else look for
2620 // operator new.
2621 // 3) The first argument is always size_t. Append the arguments from the
2622 // placement form.
2623
2624 SmallVector<Expr*, 8> AllocArgs;
2625 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2626
2627 // We don't care about the actual value of these arguments.
2628 // FIXME: Should the Sema create the expression and embed it in the syntax
2629 // tree? Or should the consumer just recalculate the value?
2630 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2631 IntegerLiteral Size(
2632 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2633 Context.getSizeType(), SourceLocation());
2634 AllocArgs.push_back(&Size);
2635
2636 QualType AlignValT = Context.VoidTy;
2637 if (PassAlignment) {
2638 DeclareGlobalNewDelete();
2639 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2640 }
2641 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2642 if (PassAlignment)
2643 AllocArgs.push_back(&Align);
2644
2645 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2646
2647 // C++ [expr.new]p8:
2648 // If the allocated type is a non-array type, the allocation
2649 // function's name is operator new and the deallocation function's
2650 // name is operator delete. If the allocated type is an array
2651 // type, the allocation function's name is operator new[] and the
2652 // deallocation function's name is operator delete[].
2653 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2654 IsArray ? OO_Array_New : OO_New);
2655
2656 QualType AllocElemType = Context.getBaseElementType(AllocType);
2657
2658 // Find the allocation function.
2659 {
2660 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2661
2662 // C++1z [expr.new]p9:
2663 // If the new-expression begins with a unary :: operator, the allocation
2664 // function's name is looked up in the global scope. Otherwise, if the
2665 // allocated type is a class type T or array thereof, the allocation
2666 // function's name is looked up in the scope of T.
2667 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2668 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2669
2670 // We can see ambiguity here if the allocation function is found in
2671 // multiple base classes.
2672 if (R.isAmbiguous())
2673 return true;
2674
2675 // If this lookup fails to find the name, or if the allocated type is not
2676 // a class type, the allocation function's name is looked up in the
2677 // global scope.
2678 if (R.empty()) {
2679 if (NewScope == AFS_Class)
2680 return true;
2681
2682 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2683 }
2684
2685 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2686 if (PlaceArgs.empty()) {
2687 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2688 } else {
2689 Diag(StartLoc, diag::err_openclcxx_placement_new);
2690 }
2691 return true;
2692 }
2693
2694 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2694, __extension__ __PRETTY_FUNCTION__
))
;
2695 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2695, __extension__ __PRETTY_FUNCTION__
))
;
2696
2697 // We do our own custom access checks below.
2698 R.suppressDiagnostics();
2699
2700 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2701 OperatorNew, /*Candidates=*/nullptr,
2702 /*AlignArg=*/nullptr, Diagnose))
2703 return true;
2704 }
2705
2706 // We don't need an operator delete if we're running under -fno-exceptions.
2707 if (!getLangOpts().Exceptions) {
2708 OperatorDelete = nullptr;
2709 return false;
2710 }
2711
2712 // Note, the name of OperatorNew might have been changed from array to
2713 // non-array by resolveAllocationOverload.
2714 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2715 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2716 ? OO_Array_Delete
2717 : OO_Delete);
2718
2719 // C++ [expr.new]p19:
2720 //
2721 // If the new-expression begins with a unary :: operator, the
2722 // deallocation function's name is looked up in the global
2723 // scope. Otherwise, if the allocated type is a class type T or an
2724 // array thereof, the deallocation function's name is looked up in
2725 // the scope of T. If this lookup fails to find the name, or if
2726 // the allocated type is not a class type or array thereof, the
2727 // deallocation function's name is looked up in the global scope.
2728 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2729 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2730 auto *RD =
2731 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2732 LookupQualifiedName(FoundDelete, RD);
2733 }
2734 if (FoundDelete.isAmbiguous())
2735 return true; // FIXME: clean up expressions?
2736
2737 // Filter out any destroying operator deletes. We can't possibly call such a
2738 // function in this context, because we're handling the case where the object
2739 // was not successfully constructed.
2740 // FIXME: This is not covered by the language rules yet.
2741 {
2742 LookupResult::Filter Filter = FoundDelete.makeFilter();
2743 while (Filter.hasNext()) {
2744 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2745 if (FD && FD->isDestroyingOperatorDelete())
2746 Filter.erase();
2747 }
2748 Filter.done();
2749 }
2750
2751 bool FoundGlobalDelete = FoundDelete.empty();
2752 if (FoundDelete.empty()) {
2753 FoundDelete.clear(LookupOrdinaryName);
2754
2755 if (DeleteScope == AFS_Class)
2756 return true;
2757
2758 DeclareGlobalNewDelete();
2759 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2760 }
2761
2762 FoundDelete.suppressDiagnostics();
2763
2764 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2765
2766 // Whether we're looking for a placement operator delete is dictated
2767 // by whether we selected a placement operator new, not by whether
2768 // we had explicit placement arguments. This matters for things like
2769 // struct A { void *operator new(size_t, int = 0); ... };
2770 // A *a = new A()
2771 //
2772 // We don't have any definition for what a "placement allocation function"
2773 // is, but we assume it's any allocation function whose
2774 // parameter-declaration-clause is anything other than (size_t).
2775 //
2776 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2777 // This affects whether an exception from the constructor of an overaligned
2778 // type uses the sized or non-sized form of aligned operator delete.
2779 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2780 OperatorNew->isVariadic();
2781
2782 if (isPlacementNew) {
2783 // C++ [expr.new]p20:
2784 // A declaration of a placement deallocation function matches the
2785 // declaration of a placement allocation function if it has the
2786 // same number of parameters and, after parameter transformations
2787 // (8.3.5), all parameter types except the first are
2788 // identical. [...]
2789 //
2790 // To perform this comparison, we compute the function type that
2791 // the deallocation function should have, and use that type both
2792 // for template argument deduction and for comparison purposes.
2793 QualType ExpectedFunctionType;
2794 {
2795 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2796
2797 SmallVector<QualType, 4> ArgTypes;
2798 ArgTypes.push_back(Context.VoidPtrTy);
2799 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2800 ArgTypes.push_back(Proto->getParamType(I));
2801
2802 FunctionProtoType::ExtProtoInfo EPI;
2803 // FIXME: This is not part of the standard's rule.
2804 EPI.Variadic = Proto->isVariadic();
2805
2806 ExpectedFunctionType
2807 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2808 }
2809
2810 for (LookupResult::iterator D = FoundDelete.begin(),
2811 DEnd = FoundDelete.end();
2812 D != DEnd; ++D) {
2813 FunctionDecl *Fn = nullptr;
2814 if (FunctionTemplateDecl *FnTmpl =
2815 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2816 // Perform template argument deduction to try to match the
2817 // expected function type.
2818 TemplateDeductionInfo Info(StartLoc);
2819 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2820 Info))
2821 continue;
2822 } else
2823 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2824
2825 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2826 ExpectedFunctionType,
2827 /*AdjustExcpetionSpec*/true),
2828 ExpectedFunctionType))
2829 Matches.push_back(std::make_pair(D.getPair(), Fn));
2830 }
2831
2832 if (getLangOpts().CUDA)
2833 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2834 Matches);
2835 } else {
2836 // C++1y [expr.new]p22:
2837 // For a non-placement allocation function, the normal deallocation
2838 // function lookup is used
2839 //
2840 // Per [expr.delete]p10, this lookup prefers a member operator delete
2841 // without a size_t argument, but prefers a non-member operator delete
2842 // with a size_t where possible (which it always is in this case).
2843 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2844 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2845 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2846 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2847 &BestDeallocFns);
2848 if (Selected)
2849 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2850 else {
2851 // If we failed to select an operator, all remaining functions are viable
2852 // but ambiguous.
2853 for (auto Fn : BestDeallocFns)
2854 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2855 }
2856 }
2857
2858 // C++ [expr.new]p20:
2859 // [...] If the lookup finds a single matching deallocation
2860 // function, that function will be called; otherwise, no
2861 // deallocation function will be called.
2862 if (Matches.size() == 1) {
2863 OperatorDelete = Matches[0].second;
2864
2865 // C++1z [expr.new]p23:
2866 // If the lookup finds a usual deallocation function (3.7.4.2)
2867 // with a parameter of type std::size_t and that function, considered
2868 // as a placement deallocation function, would have been
2869 // selected as a match for the allocation function, the program
2870 // is ill-formed.
2871 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2872 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2873 UsualDeallocFnInfo Info(*this,
2874 DeclAccessPair::make(OperatorDelete, AS_public));
2875 // Core issue, per mail to core reflector, 2016-10-09:
2876 // If this is a member operator delete, and there is a corresponding
2877 // non-sized member operator delete, this isn't /really/ a sized
2878 // deallocation function, it just happens to have a size_t parameter.
2879 bool IsSizedDelete = Info.HasSizeT;
2880 if (IsSizedDelete && !FoundGlobalDelete) {
2881 auto NonSizedDelete =
2882 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2883 /*WantAlign*/Info.HasAlignValT);
2884 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2885 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2886 IsSizedDelete = false;
2887 }
2888
2889 if (IsSizedDelete) {
2890 SourceRange R = PlaceArgs.empty()
2891 ? SourceRange()
2892 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2893 PlaceArgs.back()->getEndLoc());
2894 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2895 if (!OperatorDelete->isImplicit())
2896 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2897 << DeleteName;
2898 }
2899 }
2900
2901 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2902 Matches[0].first);
2903 } else if (!Matches.empty()) {
2904 // We found multiple suitable operators. Per [expr.new]p20, that means we
2905 // call no 'operator delete' function, but we should at least warn the user.
2906 // FIXME: Suppress this warning if the construction cannot throw.
2907 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2908 << DeleteName << AllocElemType;
2909
2910 for (auto &Match : Matches)
2911 Diag(Match.second->getLocation(),
2912 diag::note_member_declared_here) << DeleteName;
2913 }
2914
2915 return false;
2916}
2917
2918/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2919/// delete. These are:
2920/// @code
2921/// // C++03:
2922/// void* operator new(std::size_t) throw(std::bad_alloc);
2923/// void* operator new[](std::size_t) throw(std::bad_alloc);
2924/// void operator delete(void *) throw();
2925/// void operator delete[](void *) throw();
2926/// // C++11:
2927/// void* operator new(std::size_t);
2928/// void* operator new[](std::size_t);
2929/// void operator delete(void *) noexcept;
2930/// void operator delete[](void *) noexcept;
2931/// // C++1y:
2932/// void* operator new(std::size_t);
2933/// void* operator new[](std::size_t);
2934/// void operator delete(void *) noexcept;
2935/// void operator delete[](void *) noexcept;
2936/// void operator delete(void *, std::size_t) noexcept;
2937/// void operator delete[](void *, std::size_t) noexcept;
2938/// @endcode
2939/// Note that the placement and nothrow forms of new are *not* implicitly
2940/// declared. Their use requires including \<new\>.
2941void Sema::DeclareGlobalNewDelete() {
2942 if (GlobalNewDeleteDeclared)
2943 return;
2944
2945 // The implicitly declared new and delete operators
2946 // are not supported in OpenCL.
2947 if (getLangOpts().OpenCLCPlusPlus)
2948 return;
2949
2950 // C++ [basic.std.dynamic]p2:
2951 // [...] The following allocation and deallocation functions (18.4) are
2952 // implicitly declared in global scope in each translation unit of a
2953 // program
2954 //
2955 // C++03:
2956 // void* operator new(std::size_t) throw(std::bad_alloc);
2957 // void* operator new[](std::size_t) throw(std::bad_alloc);
2958 // void operator delete(void*) throw();
2959 // void operator delete[](void*) throw();
2960 // C++11:
2961 // void* operator new(std::size_t);
2962 // void* operator new[](std::size_t);
2963 // void operator delete(void*) noexcept;
2964 // void operator delete[](void*) noexcept;
2965 // C++1y:
2966 // void* operator new(std::size_t);
2967 // void* operator new[](std::size_t);
2968 // void operator delete(void*) noexcept;
2969 // void operator delete[](void*) noexcept;
2970 // void operator delete(void*, std::size_t) noexcept;
2971 // void operator delete[](void*, std::size_t) noexcept;
2972 //
2973 // These implicit declarations introduce only the function names operator
2974 // new, operator new[], operator delete, operator delete[].
2975 //
2976 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2977 // "std" or "bad_alloc" as necessary to form the exception specification.
2978 // However, we do not make these implicit declarations visible to name
2979 // lookup.
2980 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2981 // The "std::bad_alloc" class has not yet been declared, so build it
2982 // implicitly.
2983 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2984 getOrCreateStdNamespace(),
2985 SourceLocation(), SourceLocation(),
2986 &PP.getIdentifierTable().get("bad_alloc"),
2987 nullptr);
2988 getStdBadAlloc()->setImplicit(true);
2989 }
2990 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2991 // The "std::align_val_t" enum class has not yet been declared, so build it
2992 // implicitly.
2993 auto *AlignValT = EnumDecl::Create(
2994 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2995 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2996 AlignValT->setIntegerType(Context.getSizeType());
2997 AlignValT->setPromotionType(Context.getSizeType());
2998 AlignValT->setImplicit(true);
2999 StdAlignValT = AlignValT;
3000 }
3001
3002 GlobalNewDeleteDeclared = true;
3003
3004 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3005 QualType SizeT = Context.getSizeType();
3006
3007 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3008 QualType Return, QualType Param) {
3009 llvm::SmallVector<QualType, 3> Params;
3010 Params.push_back(Param);
3011
3012 // Create up to four variants of the function (sized/aligned).
3013 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3014 (Kind == OO_Delete || Kind == OO_Array_Delete);
3015 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3016
3017 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3018 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3019 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3020 if (Sized)
3021 Params.push_back(SizeT);
3022
3023 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3024 if (Aligned)
3025 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3026
3027 DeclareGlobalAllocationFunction(
3028 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3029
3030 if (Aligned)
3031 Params.pop_back();
3032 }
3033 }
3034 };
3035
3036 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3037 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3038 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3039 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3040}
3041
3042/// DeclareGlobalAllocationFunction - Declares a single implicit global
3043/// allocation function if it doesn't already exist.
3044void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3045 QualType Return,
3046 ArrayRef<QualType> Params) {
3047 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3048
3049 // Check if this function is already declared.
3050 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3051 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3052 Alloc != AllocEnd; ++Alloc) {
3053 // Only look at non-template functions, as it is the predefined,
3054 // non-templated allocation function we are trying to declare here.
3055 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3056 if (Func->getNumParams() == Params.size()) {
3057 llvm::SmallVector<QualType, 3> FuncParams;
3058 for (auto *P : Func->parameters())
3059 FuncParams.push_back(
3060 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3061 if (llvm::makeArrayRef(FuncParams) == Params) {
3062 // Make the function visible to name lookup, even if we found it in
3063 // an unimported module. It either is an implicitly-declared global
3064 // allocation function, or is suppressing that function.
3065 Func->setVisibleDespiteOwningModule();
3066 return;
3067 }
3068 }
3069 }
3070 }
3071
3072 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3073 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3074
3075 QualType BadAllocType;
3076 bool HasBadAllocExceptionSpec
3077 = (Name.getCXXOverloadedOperator() == OO_New ||
3078 Name.getCXXOverloadedOperator() == OO_Array_New);
3079 if (HasBadAllocExceptionSpec) {
3080 if (!getLangOpts().CPlusPlus11) {
3081 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3082 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3082, __extension__ __PRETTY_FUNCTION__
))
;
3083 EPI.ExceptionSpec.Type = EST_Dynamic;
3084 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3085 }
3086 if (getLangOpts().NewInfallible) {
3087 EPI.ExceptionSpec.Type = EST_DynamicNone;
3088 }
3089 } else {
3090 EPI.ExceptionSpec =
3091 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3092 }
3093
3094 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3095 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3096 FunctionDecl *Alloc = FunctionDecl::Create(
3097 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3098 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3099 true);
3100 Alloc->setImplicit();
3101 // Global allocation functions should always be visible.
3102 Alloc->setVisibleDespiteOwningModule();
3103
3104 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3105 Alloc->addAttr(
3106 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3107
3108 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3109 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3110 ? VisibilityAttr::Hidden
3111 : VisibilityAttr::Default));
3112
3113 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3114 for (QualType T : Params) {
3115 ParamDecls.push_back(ParmVarDecl::Create(
3116 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3117 /*TInfo=*/nullptr, SC_None, nullptr));
3118 ParamDecls.back()->setImplicit();
3119 }
3120 Alloc->setParams(ParamDecls);
3121 if (ExtraAttr)
3122 Alloc->addAttr(ExtraAttr);
3123 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3124 Context.getTranslationUnitDecl()->addDecl(Alloc);
3125 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3126 };
3127
3128 if (!LangOpts.CUDA)
3129 CreateAllocationFunctionDecl(nullptr);
3130 else {
3131 // Host and device get their own declaration so each can be
3132 // defined or re-declared independently.
3133 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3134 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3135 }
3136}
3137
3138FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3139 bool CanProvideSize,
3140 bool Overaligned,
3141 DeclarationName Name) {
3142 DeclareGlobalNewDelete();
3143
3144 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3145 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3146
3147 // FIXME: It's possible for this to result in ambiguity, through a
3148 // user-declared variadic operator delete or the enable_if attribute. We
3149 // should probably not consider those cases to be usual deallocation
3150 // functions. But for now we just make an arbitrary choice in that case.
3151 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3152 Overaligned);
3153 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3153, __extension__ __PRETTY_FUNCTION__
))
;
3154 return Result.FD;
3155}
3156
3157FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3158 CXXRecordDecl *RD) {
3159 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3160
3161 FunctionDecl *OperatorDelete = nullptr;
3162 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3163 return nullptr;
3164 if (OperatorDelete)
3165 return OperatorDelete;
3166
3167 // If there's no class-specific operator delete, look up the global
3168 // non-array delete.
3169 return FindUsualDeallocationFunction(
3170 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3171 Name);
3172}
3173
3174bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3175 DeclarationName Name,
3176 FunctionDecl *&Operator, bool Diagnose) {
3177 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3178 // Try to find operator delete/operator delete[] in class scope.
3179 LookupQualifiedName(Found, RD);
3180
3181 if (Found.isAmbiguous())
3182 return true;
3183
3184 Found.suppressDiagnostics();
3185
3186 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3187
3188 // C++17 [expr.delete]p10:
3189 // If the deallocation functions have class scope, the one without a
3190 // parameter of type std::size_t is selected.
3191 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3192 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3193 /*WantAlign*/ Overaligned, &Matches);
3194
3195 // If we could find an overload, use it.
3196 if (Matches.size() == 1) {
3197 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3198
3199 // FIXME: DiagnoseUseOfDecl?
3200 if (Operator->isDeleted()) {
3201 if (Diagnose) {
3202 Diag(StartLoc, diag::err_deleted_function_use);
3203 NoteDeletedFunction(Operator);
3204 }
3205 return true;
3206 }
3207
3208 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3209 Matches[0].Found, Diagnose) == AR_inaccessible)
3210 return true;
3211
3212 return false;
3213 }
3214
3215 // We found multiple suitable operators; complain about the ambiguity.
3216 // FIXME: The standard doesn't say to do this; it appears that the intent
3217 // is that this should never happen.
3218 if (!Matches.empty()) {
3219 if (Diagnose) {
3220 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3221 << Name << RD;
3222 for (auto &Match : Matches)
3223 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3224 }
3225 return true;
3226 }
3227
3228 // We did find operator delete/operator delete[] declarations, but
3229 // none of them were suitable.
3230 if (!Found.empty()) {
3231 if (Diagnose) {
3232 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3233 << Name << RD;
3234
3235 for (NamedDecl *D : Found)
3236 Diag(D->getUnderlyingDecl()->getLocation(),
3237 diag::note_member_declared_here) << Name;
3238 }
3239 return true;
3240 }
3241
3242 Operator = nullptr;
3243 return false;
3244}
3245
3246namespace {
3247/// Checks whether delete-expression, and new-expression used for
3248/// initializing deletee have the same array form.
3249class MismatchingNewDeleteDetector {
3250public:
3251 enum MismatchResult {
3252 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3253 NoMismatch,
3254 /// Indicates that variable is initialized with mismatching form of \a new.
3255 VarInitMismatches,
3256 /// Indicates that member is initialized with mismatching form of \a new.
3257 MemberInitMismatches,
3258 /// Indicates that 1 or more constructors' definitions could not been
3259 /// analyzed, and they will be checked again at the end of translation unit.
3260 AnalyzeLater
3261 };
3262
3263 /// \param EndOfTU True, if this is the final analysis at the end of
3264 /// translation unit. False, if this is the initial analysis at the point
3265 /// delete-expression was encountered.
3266 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3267 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3268 HasUndefinedConstructors(false) {}
3269
3270 /// Checks whether pointee of a delete-expression is initialized with
3271 /// matching form of new-expression.
3272 ///
3273 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3274 /// point where delete-expression is encountered, then a warning will be
3275 /// issued immediately. If return value is \c AnalyzeLater at the point where
3276 /// delete-expression is seen, then member will be analyzed at the end of
3277 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3278 /// couldn't be analyzed. If at least one constructor initializes the member
3279 /// with matching type of new, the return value is \c NoMismatch.
3280 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3281 /// Analyzes a class member.
3282 /// \param Field Class member to analyze.
3283 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3284 /// for deleting the \p Field.
3285 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3286 FieldDecl *Field;
3287 /// List of mismatching new-expressions used for initialization of the pointee
3288 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3289 /// Indicates whether delete-expression was in array form.
3290 bool IsArrayForm;
3291
3292private:
3293 const bool EndOfTU;
3294 /// Indicates that there is at least one constructor without body.
3295 bool HasUndefinedConstructors;
3296 /// Returns \c CXXNewExpr from given initialization expression.
3297 /// \param E Expression used for initializing pointee in delete-expression.
3298 /// E can be a single-element \c InitListExpr consisting of new-expression.
3299 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3300 /// Returns whether member is initialized with mismatching form of
3301 /// \c new either by the member initializer or in-class initialization.
3302 ///
3303 /// If bodies of all constructors are not visible at the end of translation
3304 /// unit or at least one constructor initializes member with the matching
3305 /// form of \c new, mismatch cannot be proven, and this function will return
3306 /// \c NoMismatch.
3307 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3308 /// Returns whether variable is initialized with mismatching form of
3309 /// \c new.
3310 ///
3311 /// If variable is initialized with matching form of \c new or variable is not
3312 /// initialized with a \c new expression, this function will return true.
3313 /// If variable is initialized with mismatching form of \c new, returns false.
3314 /// \param D Variable to analyze.
3315 bool hasMatchingVarInit(const DeclRefExpr *D);
3316 /// Checks whether the constructor initializes pointee with mismatching
3317 /// form of \c new.
3318 ///
3319 /// Returns true, if member is initialized with matching form of \c new in
3320 /// member initializer list. Returns false, if member is initialized with the
3321 /// matching form of \c new in this constructor's initializer or given
3322 /// constructor isn't defined at the point where delete-expression is seen, or
3323 /// member isn't initialized by the constructor.
3324 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3325 /// Checks whether member is initialized with matching form of
3326 /// \c new in member initializer list.
3327 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3328 /// Checks whether member is initialized with mismatching form of \c new by
3329 /// in-class initializer.
3330 MismatchResult analyzeInClassInitializer();
3331};
3332}
3333
3334MismatchingNewDeleteDetector::MismatchResult
3335MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3336 NewExprs.clear();
3337 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3337, __extension__ __PRETTY_FUNCTION__
))
;
3338 IsArrayForm = DE->isArrayForm();
3339 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3340 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3341 return analyzeMemberExpr(ME);
3342 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3343 if (!hasMatchingVarInit(D))
3344 return VarInitMismatches;
3345 }
3346 return NoMismatch;
3347}
3348
3349const CXXNewExpr *
3350MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3351 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3351, __extension__ __PRETTY_FUNCTION__
))
;
3352 E = E->IgnoreParenImpCasts();
3353 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3354 if (ILE->getNumInits() == 1)
3355 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3356 }
3357
3358 return dyn_cast_or_null<const CXXNewExpr>(E);
3359}
3360
3361bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3362 const CXXCtorInitializer *CI) {
3363 const CXXNewExpr *NE = nullptr;
3364 if (Field == CI->getMember() &&
3365 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3366 if (NE->isArray() == IsArrayForm)
3367 return true;
3368 else
3369 NewExprs.push_back(NE);
3370 }
3371 return false;
3372}
3373
3374bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3375 const CXXConstructorDecl *CD) {
3376 if (CD->isImplicit())
3377 return false;
3378 const FunctionDecl *Definition = CD;
3379 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3380 HasUndefinedConstructors = true;
3381 return EndOfTU;
3382 }
3383 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3384 if (hasMatchingNewInCtorInit(CI))
3385 return true;
3386 }
3387 return false;
3388}
3389
3390MismatchingNewDeleteDetector::MismatchResult
3391MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3392 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3392, __extension__ __PRETTY_FUNCTION__
))
;
3393 const Expr *InitExpr = Field->getInClassInitializer();
3394 if (!InitExpr)
3395 return EndOfTU ? NoMismatch : AnalyzeLater;
3396 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3397 if (NE->isArray() != IsArrayForm) {
3398 NewExprs.push_back(NE);
3399 return MemberInitMismatches;
3400 }
3401 }
3402 return NoMismatch;
3403}
3404
3405MismatchingNewDeleteDetector::MismatchResult
3406MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3407 bool DeleteWasArrayForm) {
3408 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3408, __extension__ __PRETTY_FUNCTION__
))
;
3409 this->Field = Field;
3410 IsArrayForm = DeleteWasArrayForm;
3411 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3412 for (const auto *CD : RD->ctors()) {
3413 if (hasMatchingNewInCtor(CD))
3414 return NoMismatch;
3415 }
3416 if (HasUndefinedConstructors)
3417 return EndOfTU ? NoMismatch : AnalyzeLater;
3418 if (!NewExprs.empty())
3419 return MemberInitMismatches;
3420 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3421 : NoMismatch;
3422}
3423
3424MismatchingNewDeleteDetector::MismatchResult
3425MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3426 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3426, __extension__ __PRETTY_FUNCTION__
))
;
3427 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3428 return analyzeField(F, IsArrayForm);
3429 return NoMismatch;
3430}
3431
3432bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3433 const CXXNewExpr *NE = nullptr;
3434 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3435 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3436 NE->isArray() != IsArrayForm) {
3437 NewExprs.push_back(NE);
3438 }
3439 }
3440 return NewExprs.empty();
3441}
3442
3443static void
3444DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3445 const MismatchingNewDeleteDetector &Detector) {
3446 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3447 FixItHint H;
3448 if (!Detector.IsArrayForm)
3449 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3450 else {
3451 SourceLocation RSquare = Lexer::findLocationAfterToken(
3452 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3453 SemaRef.getLangOpts(), true);
3454 if (RSquare.isValid())
3455 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3456 }
3457 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3458 << Detector.IsArrayForm << H;
3459
3460 for (const auto *NE : Detector.NewExprs)
3461 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3462 << Detector.IsArrayForm;
3463}
3464
3465void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3466 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3467 return;
3468 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3469 switch (Detector.analyzeDeleteExpr(DE)) {
3470 case MismatchingNewDeleteDetector::VarInitMismatches:
3471 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3472 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3473 break;
3474 }
3475 case MismatchingNewDeleteDetector::AnalyzeLater: {
3476 DeleteExprs[Detector.Field].push_back(
3477 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3478 break;
3479 }
3480 case MismatchingNewDeleteDetector::NoMismatch:
3481 break;
3482 }
3483}
3484
3485void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3486 bool DeleteWasArrayForm) {
3487 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3488 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3489 case MismatchingNewDeleteDetector::VarInitMismatches:
3490 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3490)
;
3491 case MismatchingNewDeleteDetector::AnalyzeLater:
3492 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3493)
3493 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3493)
;
3494 case MismatchingNewDeleteDetector::MemberInitMismatches:
3495 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3496 break;
3497 case MismatchingNewDeleteDetector::NoMismatch:
3498 break;
3499 }
3500}
3501
3502/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3503/// @code ::delete ptr; @endcode
3504/// or
3505/// @code delete [] ptr; @endcode
3506ExprResult
3507Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3508 bool ArrayForm, Expr *ExE) {
3509 // C++ [expr.delete]p1:
3510 // The operand shall have a pointer type, or a class type having a single
3511 // non-explicit conversion function to a pointer type. The result has type
3512 // void.
3513 //
3514 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3515
3516 ExprResult Ex = ExE;
3517 FunctionDecl *OperatorDelete = nullptr;
3518 bool ArrayFormAsWritten = ArrayForm;
3519 bool UsualArrayDeleteWantsSize = false;
3520
3521 if (!Ex.get()->isTypeDependent()) {
3522 // Perform lvalue-to-rvalue cast, if needed.
3523 Ex = DefaultLvalueConversion(Ex.get());
3524 if (Ex.isInvalid())
3525 return ExprError();
3526
3527 QualType Type = Ex.get()->getType();
3528
3529 class DeleteConverter : public ContextualImplicitConverter {
3530 public:
3531 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3532
3533 bool match(QualType ConvType) override {
3534 // FIXME: If we have an operator T* and an operator void*, we must pick
3535 // the operator T*.
3536 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3537 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3538 return true;
3539 return false;
3540 }
3541
3542 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3543 QualType T) override {
3544 return S.Diag(Loc, diag::err_delete_operand) << T;
3545 }
3546
3547 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3548 QualType T) override {
3549 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3550 }
3551
3552 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3553 QualType T,
3554 QualType ConvTy) override {
3555 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3556 }
3557
3558 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3559 QualType ConvTy) override {
3560 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3561 << ConvTy;
3562 }
3563
3564 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3565 QualType T) override {
3566 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3567 }
3568
3569 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3570 QualType ConvTy) override {
3571 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3572 << ConvTy;
3573 }
3574
3575 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3576 QualType T,
3577 QualType ConvTy) override {
3578 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3578)
;
3579 }
3580 } Converter;
3581
3582 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3583 if (Ex.isInvalid())
3584 return ExprError();
3585 Type = Ex.get()->getType();
3586 if (!Converter.match(Type))
3587 // FIXME: PerformContextualImplicitConversion should return ExprError
3588 // itself in this case.
3589 return ExprError();
3590
3591 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3592 QualType PointeeElem = Context.getBaseElementType(Pointee);
3593
3594 if (Pointee.getAddressSpace() != LangAS::Default &&
3595 !getLangOpts().OpenCLCPlusPlus)
3596 return Diag(Ex.get()->getBeginLoc(),
3597 diag::err_address_space_qualified_delete)
3598 << Pointee.getUnqualifiedType()
3599 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3600
3601 CXXRecordDecl *PointeeRD = nullptr;
3602 if (Pointee->isVoidType() && !isSFINAEContext()) {
3603 // The C++ standard bans deleting a pointer to a non-object type, which
3604 // effectively bans deletion of "void*". However, most compilers support
3605 // this, so we treat it as a warning unless we're in a SFINAE context.
3606 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3607 << Type << Ex.get()->getSourceRange();
3608 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3609 Pointee->isSizelessType()) {
3610 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3611 << Type << Ex.get()->getSourceRange());
3612 } else if (!Pointee->isDependentType()) {
3613 // FIXME: This can result in errors if the definition was imported from a
3614 // module but is hidden.
3615 if (!RequireCompleteType(StartLoc, Pointee,
3616 diag::warn_delete_incomplete, Ex.get())) {
3617 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3618 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3619 }
3620 }
3621
3622 if (Pointee->isArrayType() && !ArrayForm) {
3623 Diag(StartLoc, diag::warn_delete_array_type)
3624 << Type << Ex.get()->getSourceRange()
3625 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3626 ArrayForm = true;
3627 }
3628
3629 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3630 ArrayForm ? OO_Array_Delete : OO_Delete);
3631
3632 if (PointeeRD) {
3633 if (!UseGlobal &&
3634 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3635 OperatorDelete))
3636 return ExprError();
3637
3638 // If we're allocating an array of records, check whether the
3639 // usual operator delete[] has a size_t parameter.
3640 if (ArrayForm) {
3641 // If the user specifically asked to use the global allocator,
3642 // we'll need to do the lookup into the class.
3643 if (UseGlobal)
3644 UsualArrayDeleteWantsSize =
3645 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3646
3647 // Otherwise, the usual operator delete[] should be the
3648 // function we just found.
3649 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3650 UsualArrayDeleteWantsSize =
3651 UsualDeallocFnInfo(*this,
3652 DeclAccessPair::make(OperatorDelete, AS_public))
3653 .HasSizeT;
3654 }
3655
3656 if (!PointeeRD->hasIrrelevantDestructor())
3657 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3658 MarkFunctionReferenced(StartLoc,
3659 const_cast<CXXDestructorDecl*>(Dtor));
3660 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3661 return ExprError();
3662 }
3663
3664 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3665 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3666 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3667 SourceLocation());
3668 }
3669
3670 if (!OperatorDelete) {
3671 if (getLangOpts().OpenCLCPlusPlus) {
3672 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3673 return ExprError();
3674 }
3675
3676 bool IsComplete = isCompleteType(StartLoc, Pointee);
3677 bool CanProvideSize =
3678 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3679 Pointee.isDestructedType());
3680 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3681
3682 // Look for a global declaration.
3683 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3684 Overaligned, DeleteName);
3685 }
3686
3687 MarkFunctionReferenced(StartLoc, OperatorDelete);
3688
3689 // Check access and ambiguity of destructor if we're going to call it.
3690 // Note that this is required even for a virtual delete.
3691 bool IsVirtualDelete = false;
3692 if (PointeeRD) {
3693 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3694 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3695 PDiag(diag::err_access_dtor) << PointeeElem);
3696 IsVirtualDelete = Dtor->isVirtual();
3697 }
3698 }
3699
3700 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3701
3702 // Convert the operand to the type of the first parameter of operator
3703 // delete. This is only necessary if we selected a destroying operator
3704 // delete that we are going to call (non-virtually); converting to void*
3705 // is trivial and left to AST consumers to handle.
3706 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3707 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3708 Qualifiers Qs = Pointee.getQualifiers();
3709 if (Qs.hasCVRQualifiers()) {
3710 // Qualifiers are irrelevant to this conversion; we're only looking
3711 // for access and ambiguity.
3712 Qs.removeCVRQualifiers();
3713 QualType Unqual = Context.getPointerType(
3714 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3715 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3716 }
3717 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3718 if (Ex.isInvalid())
3719 return ExprError();
3720 }
3721 }
3722
3723 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3724 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3725 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3726 AnalyzeDeleteExprMismatch(Result);
3727 return Result;
3728}
3729
3730static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3731 bool IsDelete,
3732 FunctionDecl *&Operator) {
3733
3734 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3735 IsDelete ? OO_Delete : OO_New);
3736
3737 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3738 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3739 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3739, __extension__ __PRETTY_FUNCTION__
))
;
3740 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
;
3741
3742 // We do our own custom access checks below.
3743 R.suppressDiagnostics();
3744
3745 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3746 OverloadCandidateSet Candidates(R.getNameLoc(),
3747 OverloadCandidateSet::CSK_Normal);
3748 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3749 FnOvl != FnOvlEnd; ++FnOvl) {
3750 // Even member operator new/delete are implicitly treated as
3751 // static, so don't use AddMemberCandidate.
3752 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3753
3754 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3755 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3756 /*ExplicitTemplateArgs=*/nullptr, Args,
3757 Candidates,
3758 /*SuppressUserConversions=*/false);
3759 continue;
3760 }
3761
3762 FunctionDecl *Fn = cast<FunctionDecl>(D);
3763 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3764 /*SuppressUserConversions=*/false);
3765 }
3766
3767 SourceRange Range = TheCall->getSourceRange();
3768
3769 // Do the resolution.
3770 OverloadCandidateSet::iterator Best;
3771 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3772 case OR_Success: {
3773 // Got one!
3774 FunctionDecl *FnDecl = Best->Function;
3775 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3776, __extension__ __PRETTY_FUNCTION__
))
3776 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3776, __extension__ __PRETTY_FUNCTION__
))
;
3777
3778 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3779 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3780 << (IsDelete ? 1 : 0) << Range;
3781 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3782 << R.getLookupName() << FnDecl->getSourceRange();
3783 return true;
3784 }
3785
3786 Operator = FnDecl;
3787 return false;
3788 }
3789
3790 case OR_No_Viable_Function:
3791 Candidates.NoteCandidates(
3792 PartialDiagnosticAt(R.getNameLoc(),
3793 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3794 << R.getLookupName() << Range),
3795 S, OCD_AllCandidates, Args);
3796 return true;
3797
3798 case OR_Ambiguous:
3799 Candidates.NoteCandidates(
3800 PartialDiagnosticAt(R.getNameLoc(),
3801 S.PDiag(diag::err_ovl_ambiguous_call)
3802 << R.getLookupName() << Range),
3803 S, OCD_AmbiguousCandidates, Args);
3804 return true;
3805
3806 case OR_Deleted: {
3807 Candidates.NoteCandidates(
3808 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3809 << R.getLookupName() << Range),
3810 S, OCD_AllCandidates, Args);
3811 return true;
3812 }
3813 }
3814 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3814)
;
3815}
3816
3817ExprResult
3818Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3819 bool IsDelete) {
3820 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3821 if (!getLangOpts().CPlusPlus) {
3822 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3823 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3824 << "C++";
3825 return ExprError();
3826 }
3827 // CodeGen assumes it can find the global new and delete to call,
3828 // so ensure that they are declared.
3829 DeclareGlobalNewDelete();
3830
3831 FunctionDecl *OperatorNewOrDelete = nullptr;
3832 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3833 OperatorNewOrDelete))
3834 return ExprError();
3835 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3835, __extension__ __PRETTY_FUNCTION__
))
;
3836
3837 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3838 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3839
3840 TheCall->setType(OperatorNewOrDelete->getReturnType());
3841 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3842 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3843 InitializedEntity Entity =
3844 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3845 ExprResult Arg = PerformCopyInitialization(
3846 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3847 if (Arg.isInvalid())
3848 return ExprError();
3849 TheCall->setArg(i, Arg.get());
3850 }
3851 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3852 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3853, __extension__ __PRETTY_FUNCTION__
))
3853 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3853, __extension__ __PRETTY_FUNCTION__
))
;
3854 Callee->setType(OperatorNewOrDelete->getType());
3855
3856 return TheCallResult;
3857}
3858
3859void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3860 bool IsDelete, bool CallCanBeVirtual,
3861 bool WarnOnNonAbstractTypes,
3862 SourceLocation DtorLoc) {
3863 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3864 return;
3865
3866 // C++ [expr.delete]p3:
3867 // In the first alternative (delete object), if the static type of the
3868 // object to be deleted is different from its dynamic type, the static
3869 // type shall be a base class of the dynamic type of the object to be
3870 // deleted and the static type shall have a virtual destructor or the
3871 // behavior is undefined.
3872 //
3873 const CXXRecordDecl *PointeeRD = dtor->getParent();
3874 // Note: a final class cannot be derived from, no issue there
3875 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3876 return;
3877
3878 // If the superclass is in a system header, there's nothing that can be done.
3879 // The `delete` (where we emit the warning) can be in a system header,
3880 // what matters for this warning is where the deleted type is defined.
3881 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3882 return;
3883
3884 QualType ClassType = dtor->getThisType()->getPointeeType();
3885 if (PointeeRD->isAbstract()) {
3886 // If the class is abstract, we warn by default, because we're
3887 // sure the code has undefined behavior.
3888 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3889 << ClassType;
3890 } else if (WarnOnNonAbstractTypes) {
3891 // Otherwise, if this is not an array delete, it's a bit suspect,
3892 // but not necessarily wrong.
3893 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3894 << ClassType;
3895 }
3896 if (!IsDelete) {
3897 std::string TypeStr;
3898 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3899 Diag(DtorLoc, diag::note_delete_non_virtual)
3900 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3901 }
3902}
3903
3904Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3905 SourceLocation StmtLoc,
3906 ConditionKind CK) {
3907 ExprResult E =
3908 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3909 if (E.isInvalid())
3910 return ConditionError();
3911 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3912 CK == ConditionKind::ConstexprIf);
3913}
3914
3915/// Check the use of the given variable as a C++ condition in an if,
3916/// while, do-while, or switch statement.
3917ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3918 SourceLocation StmtLoc,
3919 ConditionKind CK) {
3920 if (ConditionVar->isInvalidDecl())
3921 return ExprError();
3922
3923 QualType T = ConditionVar->getType();
3924
3925 // C++ [stmt.select]p2:
3926 // The declarator shall not specify a function or an array.
3927 if (T->isFunctionType())
3928 return ExprError(Diag(ConditionVar->getLocation(),
3929 diag::err_invalid_use_of_function_type)
3930 << ConditionVar->getSourceRange());
3931 else if (T->isArrayType())
3932 return ExprError(Diag(ConditionVar->getLocation(),
3933 diag::err_invalid_use_of_array_type)
3934 << ConditionVar->getSourceRange());
3935
3936 ExprResult Condition = BuildDeclRefExpr(
3937 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3938 ConditionVar->getLocation());
3939
3940 switch (CK) {
3941 case ConditionKind::Boolean:
3942 return CheckBooleanCondition(StmtLoc, Condition.get());
3943
3944 case ConditionKind::ConstexprIf:
3945 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3946
3947 case ConditionKind::Switch:
3948 return CheckSwitchCondition(StmtLoc, Condition.get());
3949 }
3950
3951 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3951)
;
3952}
3953
3954/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3955ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3956 // C++11 6.4p4:
3957 // The value of a condition that is an initialized declaration in a statement
3958 // other than a switch statement is the value of the declared variable
3959 // implicitly converted to type bool. If that conversion is ill-formed, the
3960 // program is ill-formed.
3961 // The value of a condition that is an expression is the value of the
3962 // expression, implicitly converted to bool.
3963 //
3964 // C++2b 8.5.2p2
3965 // If the if statement is of the form if constexpr, the value of the condition
3966 // is contextually converted to bool and the converted expression shall be
3967 // a constant expression.
3968 //
3969
3970 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3971 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3972 return E;
3973
3974 // FIXME: Return this value to the caller so they don't need to recompute it.
3975 llvm::APSInt Cond;
3976 E = VerifyIntegerConstantExpression(
3977 E.get(), &Cond,
3978 diag::err_constexpr_if_condition_expression_is_not_constant);
3979 return E;
3980}
3981
3982/// Helper function to determine whether this is the (deprecated) C++
3983/// conversion from a string literal to a pointer to non-const char or
3984/// non-const wchar_t (for narrow and wide string literals,
3985/// respectively).
3986bool
3987Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3988 // Look inside the implicit cast, if it exists.
3989 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3990 From = Cast->getSubExpr();
3991
3992 // A string literal (2.13.4) that is not a wide string literal can
3993 // be converted to an rvalue of type "pointer to char"; a wide
3994 // string literal can be converted to an rvalue of type "pointer
3995 // to wchar_t" (C++ 4.2p2).
3996 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3997 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3998 if (const BuiltinType *ToPointeeType
3999 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4000 // This conversion is considered only when there is an
4001 // explicit appropriate pointer target type (C++ 4.2p2).
4002 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4003 switch (StrLit->getKind()) {
4004 case StringLiteral::UTF8:
4005 case StringLiteral::UTF16:
4006 case StringLiteral::UTF32:
4007 // We don't allow UTF literals to be implicitly converted
4008 break;
4009 case StringLiteral::Ascii:
4010 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4011 ToPointeeType->getKind() == BuiltinType::Char_S);
4012 case StringLiteral::Wide:
4013 return Context.typesAreCompatible(Context.getWideCharType(),
4014 QualType(ToPointeeType, 0));
4015 }
4016 }
4017 }
4018
4019 return false;
4020}
4021
4022static ExprResult BuildCXXCastArgument(Sema &S,
4023 SourceLocation CastLoc,
4024 QualType Ty,
4025 CastKind Kind,
4026 CXXMethodDecl *Method,
4027 DeclAccessPair FoundDecl,
4028 bool HadMultipleCandidates,
4029 Expr *From) {
4030 switch (Kind) {
4031 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4031)
;
4032 case CK_ConstructorConversion: {
4033 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4034 SmallVector<Expr*, 8> ConstructorArgs;
4035
4036 if (S.RequireNonAbstractType(CastLoc, Ty,
4037 diag::err_allocation_of_abstract_type))
4038 return ExprError();
4039
4040 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4041 ConstructorArgs))
4042 return ExprError();
4043
4044 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4045 InitializedEntity::InitializeTemporary(Ty));
4046 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4047 return ExprError();
4048
4049 ExprResult Result = S.BuildCXXConstructExpr(
4050 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4051 ConstructorArgs, HadMultipleCandidates,
4052 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4053 CXXConstructExpr::CK_Complete, SourceRange());
4054 if (Result.isInvalid())
4055 return ExprError();
4056
4057 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4058 }
4059
4060 case CK_UserDefinedConversion: {
4061 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4061, __extension__ __PRETTY_FUNCTION__
))
;
4062
4063 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4064 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4065 return ExprError();
4066
4067 // Create an implicit call expr that calls it.
4068 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4069 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4070 HadMultipleCandidates);
4071 if (Result.isInvalid())
4072 return ExprError();
4073 // Record usage of conversion in an implicit cast.
4074 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4075 CK_UserDefinedConversion, Result.get(),
4076 nullptr, Result.get()->getValueKind(),
4077 S.CurFPFeatureOverrides());
4078
4079 return S.MaybeBindToTemporary(Result.get());
4080 }
4081 }
4082}
4083
4084/// PerformImplicitConversion - Perform an implicit conversion of the
4085/// expression From to the type ToType using the pre-computed implicit
4086/// conversion sequence ICS. Returns the converted
4087/// expression. Action is the kind of conversion we're performing,
4088/// used in the error message.
4089ExprResult
4090Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4091 const ImplicitConversionSequence &ICS,
4092 AssignmentAction Action,
4093 CheckedConversionKind CCK) {
4094 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4095 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4096 return From;
4097
4098 switch (ICS.getKind()) {
4099 case ImplicitConversionSequence::StandardConversion: {
4100 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4101 Action, CCK);
4102 if (Res.isInvalid())
4103 return ExprError();
4104 From = Res.get();
4105 break;
4106 }
4107
4108 case ImplicitConversionSequence::UserDefinedConversion: {
4109
4110 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4111 CastKind CastKind;
4112 QualType BeforeToType;
4113 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4113, __extension__ __PRETTY_FUNCTION__
))
;
4114 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4115 CastKind = CK_UserDefinedConversion;
4116
4117 // If the user-defined conversion is specified by a conversion function,
4118 // the initial standard conversion sequence converts the source type to
4119 // the implicit object parameter of the conversion function.
4120 BeforeToType = Context.getTagDeclType(Conv->getParent());
4121 } else {
4122 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4123 CastKind = CK_ConstructorConversion;
4124 // Do no conversion if dealing with ... for the first conversion.
4125 if (!ICS.UserDefined.EllipsisConversion) {
4126 // If the user-defined conversion is specified by a constructor, the
4127 // initial standard conversion sequence converts the source type to
4128 // the type required by the argument of the constructor
4129 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4130 }
4131 }
4132 // Watch out for ellipsis conversion.
4133 if (!ICS.UserDefined.EllipsisConversion) {
4134 ExprResult Res =
4135 PerformImplicitConversion(From, BeforeToType,
4136 ICS.UserDefined.Before, AA_Converting,
4137 CCK);
4138 if (Res.isInvalid())
4139 return ExprError();
4140 From = Res.get();
4141 }
4142
4143 ExprResult CastArg = BuildCXXCastArgument(
4144 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4145 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4146 ICS.UserDefined.HadMultipleCandidates, From);
4147
4148 if (CastArg.isInvalid())
4149 return ExprError();
4150
4151 From = CastArg.get();
4152
4153 // C++ [over.match.oper]p7:
4154 // [...] the second standard conversion sequence of a user-defined
4155 // conversion sequence is not applied.
4156 if (CCK == CCK_ForBuiltinOverloadedOp)
4157 return From;
4158
4159 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4160 AA_Converting, CCK);
4161 }
4162
4163 case ImplicitConversionSequence::AmbiguousConversion:
4164 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4165 PDiag(diag::err_typecheck_ambiguous_condition)
4166 << From->getSourceRange());
4167 return ExprError();
4168
4169 case ImplicitConversionSequence::EllipsisConversion:
4170 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4170)
;
4171
4172 case ImplicitConversionSequence::BadConversion:
4173 Sema::AssignConvertType ConvTy =
4174 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4175 bool Diagnosed = DiagnoseAssignmentResult(
4176 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4177 ToType, From->getType(), From, Action);
4178 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4178, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed;
4179 return ExprError();
4180 }
4181
4182 // Everything went well.
4183 return From;
4184}
4185
4186/// PerformImplicitConversion - Perform an implicit conversion of the
4187/// expression From to the type ToType by following the standard
4188/// conversion sequence SCS. Returns the converted
4189/// expression. Flavor is the context in which we're performing this
4190/// conversion, for use in error messages.
4191ExprResult
4192Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4193 const StandardConversionSequence& SCS,
4194 AssignmentAction Action,
4195 CheckedConversionKind CCK) {
4196 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4197
4198 // Overall FIXME: we are recomputing too many types here and doing far too
4199 // much extra work. What this means is that we need to keep track of more
4200 // information that is computed when we try the implicit conversion initially,
4201 // so that we don't need to recompute anything here.
4202 QualType FromType = From->getType();
4203
4204 if (SCS.CopyConstructor) {
4205 // FIXME: When can ToType be a reference type?
4206 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4206, __extension__ __PRETTY_FUNCTION__))
;
4207 if (SCS.Second == ICK_Derived_To_Base) {
4208 SmallVector<Expr*, 8> ConstructorArgs;
4209 if (CompleteConstructorCall(
4210 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4211 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4212 return ExprError();
4213 return BuildCXXConstructExpr(
4214 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4215 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4216 ConstructorArgs, /*HadMultipleCandidates*/ false,
4217 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4218 CXXConstructExpr::CK_Complete, SourceRange());
4219 }
4220 return BuildCXXConstructExpr(
4221 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4222 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4223 From, /*HadMultipleCandidates*/ false,
4224 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4225 CXXConstructExpr::CK_Complete, SourceRange());
4226 }
4227
4228 // Resolve overloaded function references.
4229 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4230 DeclAccessPair Found;
4231 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4232 true, Found);
4233 if (!Fn)
4234 return ExprError();
4235
4236 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4237 return ExprError();
4238
4239 From = FixOverloadedFunctionReference(From, Found, Fn);
4240
4241 // We might get back another placeholder expression if we resolved to a
4242 // builtin.
4243 ExprResult Checked = CheckPlaceholderExpr(From);
4244 if (Checked.isInvalid())
4245 return ExprError();
4246
4247 From = Checked.get();
4248 FromType = From->getType();
4249 }
4250
4251 // If we're converting to an atomic type, first convert to the corresponding
4252 // non-atomic type.
4253 QualType ToAtomicType;
4254 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4255 ToAtomicType = ToType;
4256 ToType = ToAtomic->getValueType();
4257 }
4258
4259 QualType InitialFromType = FromType;
4260 // Perform the first implicit conversion.
4261 switch (SCS.First) {
4262 case ICK_Identity:
4263 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4264 FromType = FromAtomic->getValueType().getUnqualifiedType();
4265 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4266 From, /*BasePath=*/nullptr, VK_PRValue,
4267 FPOptionsOverride());
4268 }
4269 break;
4270
4271 case ICK_Lvalue_To_Rvalue: {
4272 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4272, __extension__ __PRETTY_FUNCTION__
))
;
4273 ExprResult FromRes = DefaultLvalueConversion(From);
4274 if (FromRes.isInvalid())
4275 return ExprError();
4276
4277 From = FromRes.get();
4278 FromType = From->getType();
4279 break;
4280 }
4281
4282 case ICK_Array_To_Pointer:
4283 FromType = Context.getArrayDecayedType(FromType);
4284 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4285 /*BasePath=*/nullptr, CCK)
4286 .get();
4287 break;
4288
4289 case ICK_Function_To_Pointer:
4290 FromType = Context.getPointerType(FromType);
4291 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4292 VK_PRValue, /*BasePath=*/nullptr, CCK)
4293 .get();
4294 break;
4295
4296 default:
4297 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4297)
;
4298 }
4299
4300 // Perform the second implicit conversion
4301 switch (SCS.Second) {
4302 case ICK_Identity:
4303 // C++ [except.spec]p5:
4304 // [For] assignment to and initialization of pointers to functions,
4305 // pointers to member functions, and references to functions: the
4306 // target entity shall allow at least the exceptions allowed by the
4307 // source value in the assignment or initialization.
4308 switch (Action) {
4309 case AA_Assigning:
4310 case AA_Initializing:
4311 // Note, function argument passing and returning are initialization.
4312 case AA_Passing:
4313 case AA_Returning:
4314 case AA_Sending:
4315 case AA_Passing_CFAudited:
4316 if (CheckExceptionSpecCompatibility(From, ToType))
4317 return ExprError();
4318 break;
4319
4320 case AA_Casting:
4321 case AA_Converting:
4322 // Casts and implicit conversions are not initialization, so are not
4323 // checked for exception specification mismatches.
4324 break;
4325 }
4326 // Nothing else to do.
4327 break;
4328
4329 case ICK_Integral_Promotion:
4330 case ICK_Integral_Conversion:
4331 if (ToType->isBooleanType()) {
4332 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
4333 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
4334 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
;
4335 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4336 /*BasePath=*/nullptr, CCK)
4337 .get();
4338 } else {
4339 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4340 /*BasePath=*/nullptr, CCK)
4341 .get();
4342 }
4343 break;
4344
4345 case ICK_Floating_Promotion:
4346 case ICK_Floating_Conversion:
4347 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4348 /*BasePath=*/nullptr, CCK)
4349 .get();
4350 break;
4351
4352 case ICK_Complex_Promotion:
4353 case ICK_Complex_Conversion: {
4354 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4355 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4356 CastKind CK;
4357 if (FromEl->isRealFloatingType()) {
4358 if (ToEl->isRealFloatingType())
4359 CK = CK_FloatingComplexCast;
4360 else
4361 CK = CK_FloatingComplexToIntegralComplex;
4362 } else if (ToEl->isRealFloatingType()) {
4363 CK = CK_IntegralComplexToFloatingComplex;
4364 } else {
4365 CK = CK_IntegralComplexCast;
4366 }
4367 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4368 CCK)
4369 .get();
4370 break;
4371 }
4372
4373 case ICK_Floating_Integral:
4374 if (ToType->isRealFloatingType())
4375 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4376 /*BasePath=*/nullptr, CCK)
4377 .get();
4378 else
4379 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4380 /*BasePath=*/nullptr, CCK)
4381 .get();
4382 break;
4383
4384 case ICK_Compatible_Conversion:
4385 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4386 /*BasePath=*/nullptr, CCK).get();
4387 break;
4388
4389 case ICK_Writeback_Conversion:
4390 case ICK_Pointer_Conversion: {
4391 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4392 // Diagnose incompatible Objective-C conversions
4393 if (Action == AA_Initializing || Action == AA_Assigning)
4394 Diag(From->getBeginLoc(),
4395 diag::ext_typecheck_convert_incompatible_pointer)
4396 << ToType << From->getType() << Action << From->getSourceRange()
4397 << 0;
4398 else
4399 Diag(From->getBeginLoc(),
4400 diag::ext_typecheck_convert_incompatible_pointer)
4401 << From->getType() << ToType << Action << From->getSourceRange()
4402 << 0;
4403
4404 if (From->getType()->isObjCObjectPointerType() &&
4405 ToType->isObjCObjectPointerType())
4406 EmitRelatedResultTypeNote(From);
4407 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4408 !CheckObjCARCUnavailableWeakConversion(ToType,
4409 From->getType())) {
4410 if (Action == AA_Initializing)
4411 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4412 else
4413 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4414 << (Action == AA_Casting) << From->getType() << ToType
4415 << From->getSourceRange();
4416 }
4417
4418 // Defer address space conversion to the third conversion.
4419 QualType FromPteeType = From->getType()->getPointeeType();
4420 QualType ToPteeType = ToType->getPointeeType();
4421 QualType NewToType = ToType;
4422 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4423 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4424 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4425 NewToType = Context.getAddrSpaceQualType(NewToType,
4426 FromPteeType.getAddressSpace());
4427 if (ToType->isObjCObjectPointerType())
4428 NewToType = Context.getObjCObjectPointerType(NewToType);
4429 else if (ToType->isBlockPointerType())
4430 NewToType = Context.getBlockPointerType(NewToType);
4431 else
4432 NewToType = Context.getPointerType(NewToType);
4433 }
4434
4435 CastKind Kind;
4436 CXXCastPath BasePath;
4437 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4438 return ExprError();
4439
4440 // Make sure we extend blocks if necessary.
4441 // FIXME: doing this here is really ugly.
4442 if (Kind == CK_BlockPointerToObjCPointerCast) {
4443 ExprResult E = From;
4444 (void) PrepareCastToObjCObjectPointer(E);
4445 From = E.get();
4446 }
4447 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4448 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4449 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4450 .get();
4451 break;
4452 }
4453
4454 case ICK_Pointer_Member: {
4455 CastKind Kind;
4456 CXXCastPath BasePath;
4457 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4458 return ExprError();
4459 if (CheckExceptionSpecCompatibility(From, ToType))
4460 return ExprError();
4461
4462 // We may not have been able to figure out what this member pointer resolved
4463 // to up until this exact point. Attempt to lock-in it's inheritance model.
4464 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4465 (void)isCompleteType(From->getExprLoc(), From->getType());
4466 (void)isCompleteType(From->getExprLoc(), ToType);
4467 }
4468
4469 From =
4470 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4471 break;
4472 }
4473
4474 case ICK_Boolean_Conversion:
4475 // Perform half-to-boolean conversion via float.
4476 if (From->getType()->isHalfType()) {
4477 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4478 FromType = Context.FloatTy;
4479 }
4480
4481 From = ImpCastExprToType(From, Context.BoolTy,
4482 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4483 /*BasePath=*/nullptr, CCK)
4484 .get();
4485 break;
4486
4487 case ICK_Derived_To_Base: {
4488 CXXCastPath BasePath;
4489 if (CheckDerivedToBaseConversion(
4490 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4491 From->getSourceRange(), &BasePath, CStyle))
4492 return ExprError();
4493
4494 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4495 CK_DerivedToBase, From->getValueKind(),
4496 &BasePath, CCK).get();
4497 break;
4498 }
4499
4500 case ICK_Vector_Conversion:
4501 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4502 /*BasePath=*/nullptr, CCK)
4503 .get();
4504 break;
4505
4506 case ICK_SVE_Vector_Conversion:
4507 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4508 /*BasePath=*/nullptr, CCK)
4509 .get();
4510 break;
4511
4512 case ICK_Vector_Splat: {
4513 // Vector splat from any arithmetic type to a vector.
4514 Expr *Elem = prepareVectorSplat(ToType, From).get();
4515 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4516 /*BasePath=*/nullptr, CCK)
4517 .get();
4518 break;
4519 }
4520
4521 case ICK_Complex_Real:
4522 // Case 1. x -> _Complex y
4523 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4524 QualType ElType = ToComplex->getElementType();
4525 bool isFloatingComplex = ElType->isRealFloatingType();
4526
4527 // x -> y
4528 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4529 // do nothing
4530 } else if (From->getType()->isRealFloatingType()) {
4531 From = ImpCastExprToType(From, ElType,
4532 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4533 } else {
4534 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
;
4535 From = ImpCastExprToType(From, ElType,
4536 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4537 }
4538 // y -> _Complex y
4539 From = ImpCastExprToType(From, ToType,
4540 isFloatingComplex ? CK_FloatingRealToComplex
4541 : CK_IntegralRealToComplex).get();
4542
4543 // Case 2. _Complex x -> y
4544 } else {
4545 auto *FromComplex = From->getType()->castAs<ComplexType>();
4546 QualType ElType = FromComplex->getElementType();
4547 bool isFloatingComplex = ElType->isRealFloatingType();
4548
4549 // _Complex x -> x
4550 From = ImpCastExprToType(From, ElType,
4551 isFloatingComplex ? CK_FloatingComplexToReal
4552 : CK_IntegralComplexToReal,
4553 VK_PRValue, /*BasePath=*/nullptr, CCK)
4554 .get();
4555
4556 // x -> y
4557 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4558 // do nothing
4559 } else if (ToType->isRealFloatingType()) {
4560 From = ImpCastExprToType(From, ToType,
4561 isFloatingComplex ? CK_FloatingCast
4562 : CK_IntegralToFloating,
4563 VK_PRValue, /*BasePath=*/nullptr, CCK)
4564 .get();
4565 } else {
4566 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4566, __extension__ __PRETTY_FUNCTION__))
;
4567 From = ImpCastExprToType(From, ToType,
4568 isFloatingComplex ? CK_FloatingToIntegral
4569 : CK_IntegralCast,
4570 VK_PRValue, /*BasePath=*/nullptr, CCK)
4571 .get();
4572 }
4573 }
4574 break;
4575
4576 case ICK_Block_Pointer_Conversion: {
4577 LangAS AddrSpaceL =
4578 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4579 LangAS AddrSpaceR =
4580 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4581 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4582, __extension__ __PRETTY_FUNCTION__
))
4582 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4582, __extension__ __PRETTY_FUNCTION__
))
;
4583 CastKind Kind =
4584 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4585 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4586 VK_PRValue, /*BasePath=*/nullptr, CCK)
4587 .get();
4588 break;
4589 }
4590
4591 case ICK_TransparentUnionConversion: {
4592 ExprResult FromRes = From;
4593 Sema::AssignConvertType ConvTy =
4594 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4595 if (FromRes.isInvalid())
4596 return ExprError();
4597 From = FromRes.get();
4598 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4599, __extension__ __PRETTY_FUNCTION__
))
4599 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4599, __extension__ __PRETTY_FUNCTION__
))
;
4600 (void)ConvTy;
4601 break;
4602 }
4603
4604 case ICK_Zero_Event_Conversion:
4605 case ICK_Zero_Queue_Conversion:
4606 From = ImpCastExprToType(From, ToType,
4607 CK_ZeroToOCLOpaqueType,
4608 From->getValueKind()).get();
4609 break;
4610
4611 case ICK_Lvalue_To_Rvalue:
4612 case ICK_Array_To_Pointer:
4613 case ICK_Function_To_Pointer:
4614 case ICK_Function_Conversion:
4615 case ICK_Qualification:
4616 case ICK_Num_Conversion_Kinds:
4617 case ICK_C_Only_Conversion:
4618 case ICK_Incompatible_Pointer_Conversion:
4619 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4619)
;
4620 }
4621
4622 switch (SCS.Third) {
4623 case ICK_Identity:
4624 // Nothing to do.
4625 break;
4626
4627 case ICK_Function_Conversion:
4628 // If both sides are functions (or pointers/references to them), there could
4629 // be incompatible exception declarations.
4630 if (CheckExceptionSpecCompatibility(From, ToType))
4631 return ExprError();
4632
4633 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4634 /*BasePath=*/nullptr, CCK)
4635 .get();
4636 break;
4637
4638 case ICK_Qualification: {
4639 ExprValueKind VK = From->getValueKind();
4640 CastKind CK = CK_NoOp;
4641
4642 if (ToType->isReferenceType() &&
4643 ToType->getPointeeType().getAddressSpace() !=
4644 From->getType().getAddressSpace())
4645 CK = CK_AddressSpaceConversion;
4646
4647 if (ToType->isPointerType() &&
4648 ToType->getPointeeType().getAddressSpace() !=
4649 From->getType()->getPointeeType().getAddressSpace())
4650 CK = CK_AddressSpaceConversion;
4651
4652 if (!isCast(CCK) &&
4653 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4654 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4655 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4656 << InitialFromType << ToType;
4657 }
4658
4659 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4660 /*BasePath=*/nullptr, CCK)
4661 .get();
4662
4663 if (SCS.DeprecatedStringLiteralToCharPtr &&
4664 !getLangOpts().WritableStrings) {
4665 Diag(From->getBeginLoc(),
4666 getLangOpts().CPlusPlus11
4667 ? diag::ext_deprecated_string_literal_conversion
4668 : diag::warn_deprecated_string_literal_conversion)
4669 << ToType.getNonReferenceType();
4670 }
4671
4672 break;
4673 }
4674
4675 default:
4676 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4676)
;
4677 }
4678
4679 // If this conversion sequence involved a scalar -> atomic conversion, perform
4680 // that conversion now.
4681 if (!ToAtomicType.isNull()) {
4682 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4683, __extension__ __PRETTY_FUNCTION__
))
4683 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4683, __extension__ __PRETTY_FUNCTION__
))
;
4684 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4685 VK_PRValue, nullptr, CCK)
4686 .get();
4687 }
4688
4689 // Materialize a temporary if we're implicitly converting to a reference
4690 // type. This is not required by the C++ rules but is necessary to maintain
4691 // AST invariants.
4692 if (ToType->isReferenceType() && From->isPRValue()) {
4693 ExprResult Res = TemporaryMaterializationConversion(From);
4694 if (Res.isInvalid())
4695 return ExprError();
4696 From = Res.get();
4697 }
4698
4699 // If this conversion sequence succeeded and involved implicitly converting a
4700 // _Nullable type to a _Nonnull one, complain.
4701 if (!isCast(CCK))
4702 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4703 From->getBeginLoc());
4704
4705 return From;
4706}
4707
4708/// Check the completeness of a type in a unary type trait.
4709///
4710/// If the particular type trait requires a complete type, tries to complete
4711/// it. If completing the type fails, a diagnostic is emitted and false
4712/// returned. If completing the type succeeds or no completion was required,
4713/// returns true.
4714static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4715 SourceLocation Loc,
4716 QualType ArgTy) {
4717 // C++0x [meta.unary.prop]p3:
4718 // For all of the class templates X declared in this Clause, instantiating
4719 // that template with a template argument that is a class template
4720 // specialization may result in the implicit instantiation of the template
4721 // argument if and only if the semantics of X require that the argument
4722 // must be a complete type.
4723 // We apply this rule to all the type trait expressions used to implement
4724 // these class templates. We also try to follow any GCC documented behavior
4725 // in these expressions to ensure portability of standard libraries.
4726 switch (UTT) {
4727 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4727)
;
4728 // is_complete_type somewhat obviously cannot require a complete type.
4729 case UTT_IsCompleteType:
4730 // Fall-through
4731
4732 // These traits are modeled on the type predicates in C++0x
4733 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4734 // requiring a complete type, as whether or not they return true cannot be
4735 // impacted by the completeness of the type.
4736 case UTT_IsVoid:
4737 case UTT_IsIntegral:
4738 case UTT_IsFloatingPoint:
4739 case UTT_IsArray:
4740 case UTT_IsPointer:
4741 case UTT_IsLvalueReference:
4742 case UTT_IsRvalueReference:
4743 case UTT_IsMemberFunctionPointer:
4744 case UTT_IsMemberObjectPointer:
4745 case UTT_IsEnum:
4746 case UTT_IsUnion:
4747 case UTT_IsClass:
4748 case UTT_IsFunction:
4749 case UTT_IsReference:
4750 case UTT_IsArithmetic:
4751 case UTT_IsFundamental:
4752 case UTT_IsObject:
4753 case UTT_IsScalar:
4754 case UTT_IsCompound:
4755 case UTT_IsMemberPointer:
4756 // Fall-through
4757
4758 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4759 // which requires some of its traits to have the complete type. However,
4760 // the completeness of the type cannot impact these traits' semantics, and
4761 // so they don't require it. This matches the comments on these traits in
4762 // Table 49.
4763 case UTT_IsConst:
4764 case UTT_IsVolatile:
4765 case UTT_IsSigned:
4766 case UTT_IsUnsigned:
4767
4768 // This type trait always returns false, checking the type is moot.
4769 case UTT_IsInterfaceClass:
4770 return true;
4771
4772 // C++14 [meta.unary.prop]:
4773 // If T is a non-union class type, T shall be a complete type.
4774 case UTT_IsEmpty:
4775 case UTT_IsPolymorphic:
4776 case UTT_IsAbstract:
4777 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4778 if (!RD->isUnion())
4779 return !S.RequireCompleteType(
4780 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4781 return true;
4782
4783 // C++14 [meta.unary.prop]:
4784 // If T is a class type, T shall be a complete type.
4785 case UTT_IsFinal:
4786 case UTT_IsSealed:
4787 if (ArgTy->getAsCXXRecordDecl())
4788 return !S.RequireCompleteType(
4789 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4790 return true;
4791
4792 // C++1z [meta.unary.prop]:
4793 // remove_all_extents_t<T> shall be a complete type or cv void.
4794 case UTT_IsAggregate:
4795 case UTT_IsTrivial:
4796 case UTT_IsTriviallyCopyable:
4797 case UTT_IsStandardLayout:
4798 case UTT_IsPOD:
4799 case UTT_IsLiteral:
4800 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4801 // or an array of unknown bound. But GCC actually imposes the same constraints
4802 // as above.
4803 case UTT_HasNothrowAssign:
4804 case UTT_HasNothrowMoveAssign:
4805 case UTT_HasNothrowConstructor:
4806 case UTT_HasNothrowCopy:
4807 case UTT_HasTrivialAssign:
4808 case UTT_HasTrivialMoveAssign:
4809 case UTT_HasTrivialDefaultConstructor:
4810 case UTT_HasTrivialMoveConstructor:
4811 case UTT_HasTrivialCopy:
4812 case UTT_HasTrivialDestructor:
4813 case UTT_HasVirtualDestructor:
4814 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4815 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4816
4817 // C++1z [meta.unary.prop]:
4818 // T shall be a complete type, cv void, or an array of unknown bound.
4819 case UTT_IsDestructible:
4820 case UTT_IsNothrowDestructible:
4821 case UTT_IsTriviallyDestructible:
4822 case UTT_HasUniqueObjectRepresentations:
4823 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4824 return true;
4825
4826 return !S.RequireCompleteType(
4827 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4828 }
4829}
4830
4831static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4832 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4833 bool (CXXRecordDecl::*HasTrivial)() const,
4834 bool (CXXRecordDecl::*HasNonTrivial)() const,
4835 bool (CXXMethodDecl::*IsDesiredOp)() const)
4836{
4837 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4838 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4839 return true;
4840
4841 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4842 DeclarationNameInfo NameInfo(Name, KeyLoc);
4843 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4844 if (Self.LookupQualifiedName(Res, RD)) {
4845 bool FoundOperator = false;
4846 Res.suppressDiagnostics();
4847 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4848 Op != OpEnd; ++Op) {
4849 if (isa<FunctionTemplateDecl>(*Op))
4850 continue;
4851
4852 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4853 if((Operator->*IsDesiredOp)()) {
4854 FoundOperator = true;
4855 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4856 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4857 if (!CPT || !CPT->isNothrow())
4858 return false;
4859 }
4860 }
4861 return FoundOperator;
4862 }
4863 return false;
4864}
4865
4866static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4867 SourceLocation KeyLoc, QualType T) {
4868 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4868, __extension__ __PRETTY_FUNCTION__
))
;
4869
4870 ASTContext &C = Self.Context;
4871 switch(UTT) {
4872 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4872)
;
4873 // Type trait expressions corresponding to the primary type category
4874 // predicates in C++0x [meta.unary.cat].
4875 case UTT_IsVoid:
4876 return T->isVoidType();
4877 case UTT_IsIntegral:
4878 return T->isIntegralType(C);
4879 case UTT_IsFloatingPoint:
4880 return T->isFloatingType();
4881 case UTT_IsArray:
4882 return T->isArrayType();
4883 case UTT_IsPointer:
4884 return T->isAnyPointerType();
4885 case UTT_IsLvalueReference:
4886 return T->isLValueReferenceType();
4887 case UTT_IsRvalueReference:
4888 return T->isRValueReferenceType();
4889 case UTT_IsMemberFunctionPointer:
4890 return T->isMemberFunctionPointerType();
4891 case UTT_IsMemberObjectPointer:
4892 return T->isMemberDataPointerType();
4893 case UTT_IsEnum:
4894 return T->isEnumeralType();
4895 case UTT_IsUnion:
4896 return T->isUnionType();
4897 case UTT_IsClass:
4898 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4899 case UTT_IsFunction:
4900 return T->isFunctionType();
4901
4902 // Type trait expressions which correspond to the convenient composition
4903 // predicates in C++0x [meta.unary.comp].
4904 case UTT_IsReference:
4905 return T->isReferenceType();
4906 case UTT_IsArithmetic:
4907 return T->isArithmeticType() && !T->isEnumeralType();
4908 case UTT_IsFundamental:
4909 return T->isFundamentalType();
4910 case UTT_IsObject:
4911 return T->isObjectType();
4912 case UTT_IsScalar:
4913 // Note: semantic analysis depends on Objective-C lifetime types to be
4914 // considered scalar types. However, such types do not actually behave
4915 // like scalar types at run time (since they may require retain/release
4916 // operations), so we report them as non-scalar.
4917 if (T->isObjCLifetimeType()) {
4918 switch (T.getObjCLifetime()) {
4919 case Qualifiers::OCL_None:
4920 case Qualifiers::OCL_ExplicitNone:
4921 return true;
4922
4923 case Qualifiers::OCL_Strong:
4924 case Qualifiers::OCL_Weak:
4925 case Qualifiers::OCL_Autoreleasing:
4926 return false;
4927 }
4928 }
4929
4930 return T->isScalarType();
4931 case UTT_IsCompound:
4932 return T->isCompoundType();
4933 case UTT_IsMemberPointer:
4934 return T->isMemberPointerType();
4935
4936 // Type trait expressions which correspond to the type property predicates
4937 // in C++0x [meta.unary.prop].
4938 case UTT_IsConst:
4939 return T.isConstQualified();
4940 case UTT_IsVolatile:
4941 return T.isVolatileQualified();
4942 case UTT_IsTrivial:
4943 return T.isTrivialType(C);
4944 case UTT_IsTriviallyCopyable:
4945 return T.isTriviallyCopyableType(C);
4946 case UTT_IsStandardLayout:
4947 return T->isStandardLayoutType();
4948 case UTT_IsPOD:
4949 return T.isPODType(C);
4950 case UTT_IsLiteral:
4951 return T->isLiteralType(C);
4952 case UTT_IsEmpty:
4953 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4954 return !RD->isUnion() && RD->isEmpty();
4955 return false;
4956 case UTT_IsPolymorphic:
4957 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4958 return !RD->isUnion() && RD->isPolymorphic();
4959 return false;
4960 case UTT_IsAbstract:
4961 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4962 return !RD->isUnion() && RD->isAbstract();
4963 return false;
4964 case UTT_IsAggregate:
4965 // Report vector extensions and complex types as aggregates because they
4966 // support aggregate initialization. GCC mirrors this behavior for vectors
4967 // but not _Complex.
4968 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4969 T->isAnyComplexType();
4970 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4971 // even then only when it is used with the 'interface struct ...' syntax
4972 // Clang doesn't support /CLR which makes this type trait moot.
4973 case UTT_IsInterfaceClass:
4974 return false;
4975 case UTT_IsFinal:
4976 case UTT_IsSealed:
4977 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4978 return RD->hasAttr<FinalAttr>();
4979 return false;
4980 case UTT_IsSigned:
4981 // Enum types should always return false.
4982 // Floating points should always return true.
4983 return T->isFloatingType() ||
4984 (T->isSignedIntegerType() && !T->isEnumeralType());
4985 case UTT_IsUnsigned:
4986 // Enum types should always return false.
4987 return T->isUnsignedIntegerType() && !T->isEnumeralType();
4988
4989 // Type trait expressions which query classes regarding their construction,
4990 // destruction, and copying. Rather than being based directly on the
4991 // related type predicates in the standard, they are specified by both
4992 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4993 // specifications.
4994 //
4995 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4996 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4997 //
4998 // Note that these builtins do not behave as documented in g++: if a class
4999 // has both a trivial and a non-trivial special member of a particular kind,
5000 // they return false! For now, we emulate this behavior.
5001 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5002 // does not correctly compute triviality in the presence of multiple special
5003 // members of the same kind. Revisit this once the g++ bug is fixed.
5004 case UTT_HasTrivialDefaultConstructor:
5005 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5006 // If __is_pod (type) is true then the trait is true, else if type is
5007 // a cv class or union type (or array thereof) with a trivial default
5008 // constructor ([class.ctor]) then the trait is true, else it is false.
5009 if (T.isPODType(C))
5010 return true;
5011 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5012 return RD->hasTrivialDefaultConstructor() &&
5013 !RD->hasNonTrivialDefaultConstructor();
5014 return false;
5015 case UTT_HasTrivialMoveConstructor:
5016 // This trait is implemented by MSVC 2012 and needed to parse the
5017 // standard library headers. Specifically this is used as the logic
5018 // behind std::is_trivially_move_constructible (20.9.4.3).
5019 if (T.isPODType(C))
5020 return true;
5021 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5022 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5023 return false;
5024 case UTT_HasTrivialCopy:
5025 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5026 // If __is_pod (type) is true or type is a reference type then
5027 // the trait is true, else if type is a cv class or union type
5028 // with a trivial copy constructor ([class.copy]) then the trait
5029 // is true, else it is false.
5030 if (T.isPODType(C) || T->isReferenceType())
5031 return true;
5032 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5033 return RD->hasTrivialCopyConstructor() &&
5034 !RD->hasNonTrivialCopyConstructor();
5035 return false;
5036 case UTT_HasTrivialMoveAssign:
5037 // This trait is implemented by MSVC 2012 and needed to parse the
5038 // standard library headers. Specifically it is used as the logic
5039 // behind std::is_trivially_move_assignable (20.9.4.3)
5040 if (T.isPODType(C))
5041 return true;
5042 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5043 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5044 return false;
5045 case UTT_HasTrivialAssign:
5046 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5047 // If type is const qualified or is a reference type then the
5048 // trait is false. Otherwise if __is_pod (type) is true then the
5049 // trait is true, else if type is a cv class or union type with
5050 // a trivial copy assignment ([class.copy]) then the trait is
5051 // true, else it is false.
5052 // Note: the const and reference restrictions are interesting,
5053 // given that const and reference members don't prevent a class
5054 // from having a trivial copy assignment operator (but do cause
5055 // errors if the copy assignment operator is actually used, q.v.
5056 // [class.copy]p12).
5057
5058 if (T.isConstQualified())
5059 return false;
5060 if (T.isPODType(C))
5061 return true;
5062 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5063 return RD->hasTrivialCopyAssignment() &&
5064 !RD->hasNonTrivialCopyAssignment();
5065 return false;
5066 case UTT_IsDestructible:
5067 case UTT_IsTriviallyDestructible:
5068 case UTT_IsNothrowDestructible:
5069 // C++14 [meta.unary.prop]:
5070 // For reference types, is_destructible<T>::value is true.
5071 if (T->isReferenceType())
5072 return true;
5073
5074 // Objective-C++ ARC: autorelease types don't require destruction.
5075 if (T->isObjCLifetimeType() &&
5076 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5077 return true;
5078
5079 // C++14 [meta.unary.prop]:
5080 // For incomplete types and function types, is_destructible<T>::value is
5081 // false.
5082 if (T->isIncompleteType() || T->isFunctionType())
5083 return false;
5084
5085 // A type that requires destruction (via a non-trivial destructor or ARC
5086 // lifetime semantics) is not trivially-destructible.
5087 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5088 return false;
5089
5090 // C++14 [meta.unary.prop]:
5091 // For object types and given U equal to remove_all_extents_t<T>, if the
5092 // expression std::declval<U&>().~U() is well-formed when treated as an
5093 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5094 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5095 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5096 if (!Destructor)
5097 return false;
5098 // C++14 [dcl.fct.def.delete]p2:
5099 // A program that refers to a deleted function implicitly or
5100 // explicitly, other than to declare it, is ill-formed.
5101 if (Destructor->isDeleted())
5102 return false;
5103 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5104 return false;
5105 if (UTT == UTT_IsNothrowDestructible) {
5106 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5107 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5108 if (!CPT || !CPT->isNothrow())
5109 return false;
5110 }
5111 }
5112 return true;
5113
5114 case UTT_HasTrivialDestructor:
5115 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5116 // If __is_pod (type) is true or type is a reference type
5117 // then the trait is true, else if type is a cv class or union
5118 // type (or array thereof) with a trivial destructor
5119 // ([class.dtor]) then the trait is true, else it is
5120 // false.
5121 if (T.isPODType(C) || T->isReferenceType())
5122 return true;
5123
5124 // Objective-C++ ARC: autorelease types don't require destruction.
5125 if (T->isObjCLifetimeType() &&
5126 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5127 return true;
5128
5129 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5130 return RD->hasTrivialDestructor();
5131 return false;
5132 // TODO: Propagate nothrowness for implicitly declared special members.
5133 case UTT_HasNothrowAssign:
5134 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5135 // If type is const qualified or is a reference type then the
5136 // trait is false. Otherwise if __has_trivial_assign (type)
5137 // is true then the trait is true, else if type is a cv class
5138 // or union type with copy assignment operators that are known
5139 // not to throw an exception then the trait is true, else it is
5140 // false.
5141 if (C.getBaseElementType(T).isConstQualified())
5142 return false;
5143 if (T->isReferenceType())
5144 return false;
5145 if (T.isPODType(C) || T->isObjCLifetimeType())
5146 return true;
5147
5148 if (const RecordType *RT = T->getAs<RecordType>())
5149 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5150 &CXXRecordDecl::hasTrivialCopyAssignment,
5151 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5152 &CXXMethodDecl::isCopyAssignmentOperator);
5153 return false;
5154 case UTT_HasNothrowMoveAssign:
5155 // This trait is implemented by MSVC 2012 and needed to parse the
5156 // standard library headers. Specifically this is used as the logic
5157 // behind std::is_nothrow_move_assignable (20.9.4.3).
5158 if (T.isPODType(C))
5159 return true;
5160
5161 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5162 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5163 &CXXRecordDecl::hasTrivialMoveAssignment,
5164 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5165 &CXXMethodDecl::isMoveAssignmentOperator);
5166 return false;
5167 case UTT_HasNothrowCopy:
5168 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5169 // If __has_trivial_copy (type) is true then the trait is true, else
5170 // if type is a cv class or union type with copy constructors that are
5171 // known not to throw an exception then the trait is true, else it is
5172 // false.
5173 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5174 return true;
5175 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5176 if (RD->hasTrivialCopyConstructor() &&
5177 !RD->hasNonTrivialCopyConstructor())
5178 return true;
5179
5180 bool FoundConstructor = false;
5181 unsigned FoundTQs;
5182 for (const auto *ND : Self.LookupConstructors(RD)) {
5183 // A template constructor is never a copy constructor.
5184 // FIXME: However, it may actually be selected at the actual overload
5185 // resolution point.
5186 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5187 continue;
5188 // UsingDecl itself is not a constructor
5189 if (isa<UsingDecl>(ND))
5190 continue;
5191 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5192 if (Constructor->isCopyConstructor(FoundTQs)) {
5193 FoundConstructor = true;
5194 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5195 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5196 if (!CPT)
5197 return false;
5198 // TODO: check whether evaluating default arguments can throw.
5199 // For now, we'll be conservative and assume that they can throw.
5200 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5201 return false;
5202 }
5203 }
5204
5205 return FoundConstructor;
5206 }
5207 return false;
5208 case UTT_HasNothrowConstructor:
5209 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5210 // If __has_trivial_constructor (type) is true then the trait is
5211 // true, else if type is a cv class or union type (or array
5212 // thereof) with a default constructor that is known not to
5213 // throw an exception then the trait is true, else it is false.
5214 if (T.isPODType(C) || T->isObjCLifetimeType())
5215 return true;
5216 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5217 if (RD->hasTrivialDefaultConstructor() &&
5218 !RD->hasNonTrivialDefaultConstructor())
5219 return true;
5220
5221 bool FoundConstructor = false;
5222 for (const auto *ND : Self.LookupConstructors(RD)) {
5223 // FIXME: In C++0x, a constructor template can be a default constructor.
5224 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5225 continue;
5226 // UsingDecl itself is not a constructor
5227 if (isa<UsingDecl>(ND))
5228 continue;
5229 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5230 if (Constructor->isDefaultConstructor()) {
5231 FoundConstructor = true;
5232 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5233 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5234 if (!CPT)
5235 return false;
5236 // FIXME: check whether evaluating default arguments can throw.
5237 // For now, we'll be conservative and assume that they can throw.
5238 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5239 return false;
5240 }
5241 }
5242 return FoundConstructor;
5243 }
5244 return false;
5245 case UTT_HasVirtualDestructor:
5246 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5247 // If type is a class type with a virtual destructor ([class.dtor])
5248 // then the trait is true, else it is false.
5249 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5250 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5251 return Destructor->isVirtual();
5252 return false;
5253
5254 // These type trait expressions are modeled on the specifications for the
5255 // Embarcadero C++0x type trait functions:
5256 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5257 case UTT_IsCompleteType:
5258 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5259 // Returns True if and only if T is a complete type at the point of the
5260 // function call.
5261 return !T->isIncompleteType();
5262 case UTT_HasUniqueObjectRepresentations:
5263 return C.hasUniqueObjectRepresentations(T);
5264 }
5265}
5266
5267static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5268 QualType RhsT, SourceLocation KeyLoc);
5269
5270static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5271 ArrayRef<TypeSourceInfo *> Args,
5272 SourceLocation RParenLoc) {
5273 if (Kind <= UTT_Last)
5274 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5275
5276 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5277 // traits to avoid duplication.
5278 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5279 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5280 Args[1]->getType(), RParenLoc);
5281
5282 switch (Kind) {
5283 case clang::BTT_ReferenceBindsToTemporary:
5284 case clang::TT_IsConstructible:
5285 case clang::TT_IsNothrowConstructible:
5286 case clang::TT_IsTriviallyConstructible: {
5287 // C++11 [meta.unary.prop]:
5288 // is_trivially_constructible is defined as:
5289 //
5290 // is_constructible<T, Args...>::value is true and the variable
5291 // definition for is_constructible, as defined below, is known to call
5292 // no operation that is not trivial.
5293 //
5294 // The predicate condition for a template specialization
5295 // is_constructible<T, Args...> shall be satisfied if and only if the
5296 // following variable definition would be well-formed for some invented
5297 // variable t:
5298 //
5299 // T t(create<Args>()...);
5300 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5300, __extension__
__PRETTY_FUNCTION__))
;
5301
5302 // Precondition: T and all types in the parameter pack Args shall be
5303 // complete types, (possibly cv-qualified) void, or arrays of
5304 // unknown bound.
5305 for (const auto *TSI : Args) {
5306 QualType ArgTy = TSI->getType();
5307 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5308 continue;
5309
5310 if (S.RequireCompleteType(KWLoc, ArgTy,
5311 diag::err_incomplete_type_used_in_type_trait_expr))
5312 return false;
5313 }
5314
5315 // Make sure the first argument is not incomplete nor a function type.
5316 QualType T = Args[0]->getType();
5317 if (T->isIncompleteType() || T->isFunctionType())
5318 return false;
5319
5320 // Make sure the first argument is not an abstract type.
5321 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5322 if (RD && RD->isAbstract())
5323 return false;
5324
5325 llvm::BumpPtrAllocator OpaqueExprAllocator;
5326 SmallVector<Expr *, 2> ArgExprs;
5327 ArgExprs.reserve(Args.size() - 1);
5328 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5329 QualType ArgTy = Args[I]->getType();
5330 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5331 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5332 ArgExprs.push_back(
5333 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5334 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5335 ArgTy.getNonLValueExprType(S.Context),
5336 Expr::getValueKindForType(ArgTy)));
5337 }
5338
5339 // Perform the initialization in an unevaluated context within a SFINAE
5340 // trap at translation unit scope.
5341 EnterExpressionEvaluationContext Unevaluated(
5342 S, Sema::ExpressionEvaluationContext::Unevaluated);
5343 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5344 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5345 InitializedEntity To(
5346 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5347 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5348 RParenLoc));
5349 InitializationSequence Init(S, To, InitKind, ArgExprs);
5350 if (Init.Failed())
5351 return false;
5352
5353 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5354 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5355 return false;
5356
5357 if (Kind == clang::TT_IsConstructible)
5358 return true;
5359
5360 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5361 if (!T->isReferenceType())
5362 return false;
5363
5364 return !Init.isDirectReferenceBinding();
5365 }
5366
5367 if (Kind == clang::TT_IsNothrowConstructible)
5368 return S.canThrow(Result.get()) == CT_Cannot;
5369
5370 if (Kind == clang::TT_IsTriviallyConstructible) {
5371 // Under Objective-C ARC and Weak, if the destination has non-trivial
5372 // Objective-C lifetime, this is a non-trivial construction.
5373 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5374 return false;
5375
5376 // The initialization succeeded; now make sure there are no non-trivial
5377 // calls.
5378 return !Result.get()->hasNonTrivialCall(S.Context);
5379 }
5380
5381 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5381)
;
5382 return false;
5383 }
5384 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5384)
;
5385 }
5386
5387 return false;
5388}
5389
5390ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5391 ArrayRef<TypeSourceInfo *> Args,
5392 SourceLocation RParenLoc) {
5393 QualType ResultType = Context.getLogicalOperationType();
5394
5395 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5396 *this, Kind, KWLoc, Args[0]->getType()))
5397 return ExprError();
5398
5399 bool Dependent = false;
5400 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5401 if (Args[I]->getType()->isDependentType()) {
5402 Dependent = true;
5403 break;
5404 }
5405 }
5406
5407 bool Result = false;
5408 if (!Dependent)
5409 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5410
5411 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5412 RParenLoc, Result);
5413}
5414
5415ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5416 ArrayRef<ParsedType> Args,
5417 SourceLocation RParenLoc) {
5418 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5419 ConvertedArgs.reserve(Args.size());
5420
5421 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5422 TypeSourceInfo *TInfo;
5423 QualType T = GetTypeFromParser(Args[I], &TInfo);
5424 if (!TInfo)
5425 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5426
5427 ConvertedArgs.push_back(TInfo);
5428 }
5429
5430 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5431}
5432
5433static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5434 QualType RhsT, SourceLocation KeyLoc) {
5435 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5436, __extension__ __PRETTY_FUNCTION__
))
5436 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5436, __extension__ __PRETTY_FUNCTION__
))
;
5437
5438 switch(BTT) {
5439 case BTT_IsBaseOf: {
5440 // C++0x [meta.rel]p2
5441 // Base is a base class of Derived without regard to cv-qualifiers or
5442 // Base and Derived are not unions and name the same class type without
5443 // regard to cv-qualifiers.
5444
5445 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5446 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5447 if (!rhsRecord || !lhsRecord) {
5448 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5449 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5450 if (!LHSObjTy || !RHSObjTy)
5451 return false;
5452
5453 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5454 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5455 if (!BaseInterface || !DerivedInterface)
5456 return false;
5457
5458 if (Self.RequireCompleteType(
5459 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5460 return false;
5461
5462 return BaseInterface->isSuperClassOf(DerivedInterface);
5463 }
5464
5465 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5466, __extension__ __PRETTY_FUNCTION__
))
5466 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5466, __extension__ __PRETTY_FUNCTION__
))
;
5467
5468 // Unions are never base classes, and never have base classes.
5469 // It doesn't matter if they are complete or not. See PR#41843
5470 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5471 return false;
5472 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5473 return false;
5474
5475 if (lhsRecord == rhsRecord)
5476 return true;
5477
5478 // C++0x [meta.rel]p2:
5479 // If Base and Derived are class types and are different types
5480 // (ignoring possible cv-qualifiers) then Derived shall be a
5481 // complete type.
5482 if (Self.RequireCompleteType(KeyLoc, RhsT,
5483 diag::err_incomplete_type_used_in_type_trait_expr))
5484 return false;
5485
5486 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5487 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5488 }
5489 case BTT_IsSame:
5490 return Self.Context.hasSameType(LhsT, RhsT);
5491 case BTT_TypeCompatible: {
5492 // GCC ignores cv-qualifiers on arrays for this builtin.
5493 Qualifiers LhsQuals, RhsQuals;
5494 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5495 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5496 return Self.Context.typesAreCompatible(Lhs, Rhs);
5497 }
5498 case BTT_IsConvertible:
5499 case BTT_IsConvertibleTo: {
5500 // C++0x [meta.rel]p4:
5501 // Given the following function prototype:
5502 //
5503 // template <class T>
5504 // typename add_rvalue_reference<T>::type create();
5505 //
5506 // the predicate condition for a template specialization
5507 // is_convertible<From, To> shall be satisfied if and only if
5508 // the return expression in the following code would be
5509 // well-formed, including any implicit conversions to the return
5510 // type of the function:
5511 //
5512 // To test() {
5513 // return create<From>();
5514 // }
5515 //
5516 // Access checking is performed as if in a context unrelated to To and
5517 // From. Only the validity of the immediate context of the expression
5518 // of the return-statement (including conversions to the return type)
5519 // is considered.
5520 //
5521 // We model the initialization as a copy-initialization of a temporary
5522 // of the appropriate type, which for this expression is identical to the
5523 // return statement (since NRVO doesn't apply).
5524
5525 // Functions aren't allowed to return function or array types.
5526 if (RhsT->isFunctionType() || RhsT->isArrayType())
5527 return false;
5528
5529 // A return statement in a void function must have void type.
5530 if (RhsT->isVoidType())
5531 return LhsT->isVoidType();
5532
5533 // A function definition requires a complete, non-abstract return type.
5534 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5535 return false;
5536
5537 // Compute the result of add_rvalue_reference.
5538 if (LhsT->isObjectType() || LhsT->isFunctionType())
5539 LhsT = Self.Context.getRValueReferenceType(LhsT);
5540
5541 // Build a fake source and destination for initialization.
5542 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5543 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5544 Expr::getValueKindForType(LhsT));
5545 Expr *FromPtr = &From;
5546 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5547 SourceLocation()));
5548
5549 // Perform the initialization in an unevaluated context within a SFINAE
5550 // trap at translation unit scope.
5551 EnterExpressionEvaluationContext Unevaluated(
5552 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5553 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5554 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5555 InitializationSequence Init(Self, To, Kind, FromPtr);
5556 if (Init.Failed())
5557 return false;
5558
5559 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5560 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5561 }
5562
5563 case BTT_IsAssignable:
5564 case BTT_IsNothrowAssignable:
5565 case BTT_IsTriviallyAssignable: {
5566 // C++11 [meta.unary.prop]p3:
5567 // is_trivially_assignable is defined as:
5568 // is_assignable<T, U>::value is true and the assignment, as defined by
5569 // is_assignable, is known to call no operation that is not trivial
5570 //
5571 // is_assignable is defined as:
5572 // The expression declval<T>() = declval<U>() is well-formed when
5573 // treated as an unevaluated operand (Clause 5).
5574 //
5575 // For both, T and U shall be complete types, (possibly cv-qualified)
5576 // void, or arrays of unknown bound.
5577 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5578 Self.RequireCompleteType(KeyLoc, LhsT,
5579 diag::err_incomplete_type_used_in_type_trait_expr))
5580 return false;
5581 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5582 Self.RequireCompleteType(KeyLoc, RhsT,
5583 diag::err_incomplete_type_used_in_type_trait_expr))
5584 return false;
5585
5586 // cv void is never assignable.
5587 if (LhsT->isVoidType() || RhsT->isVoidType())
5588 return false;
5589
5590 // Build expressions that emulate the effect of declval<T>() and
5591 // declval<U>().
5592 if (LhsT->isObjectType() || LhsT->isFunctionType())
5593 LhsT = Self.Context.getRValueReferenceType(LhsT);
5594 if (RhsT->isObjectType() || RhsT->isFunctionType())
5595 RhsT = Self.Context.getRValueReferenceType(RhsT);
5596 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5597 Expr::getValueKindForType(LhsT));
5598 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5599 Expr::getValueKindForType(RhsT));
5600
5601 // Attempt the assignment in an unevaluated context within a SFINAE
5602 // trap at translation unit scope.
5603 EnterExpressionEvaluationContext Unevaluated(
5604 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5605 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5606 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5607 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5608 &Rhs);
5609 if (Result.isInvalid())
5610 return false;
5611
5612 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5613 Self.CheckUnusedVolatileAssignment(Result.get());
5614
5615 if (SFINAE.hasErrorOccurred())
5616 return false;
5617
5618 if (BTT == BTT_IsAssignable)
5619 return true;
5620
5621 if (BTT == BTT_IsNothrowAssignable)
5622 return Self.canThrow(Result.get()) == CT_Cannot;
5623
5624 if (BTT == BTT_IsTriviallyAssignable) {
5625 // Under Objective-C ARC and Weak, if the destination has non-trivial
5626 // Objective-C lifetime, this is a non-trivial assignment.
5627 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5628 return false;
5629
5630 return !Result.get()->hasNonTrivialCall(Self.Context);
5631 }
5632
5633 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5633)
;
5634 return false;
5635 }
5636 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5636)
;
5637 }
5638 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5638)
;
5639}
5640
5641ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5642 SourceLocation KWLoc,
5643 ParsedType Ty,
5644 Expr* DimExpr,
5645 SourceLocation RParen) {
5646 TypeSourceInfo *TSInfo;
5647 QualType T = GetTypeFromParser(Ty, &TSInfo);
5648 if (!TSInfo)
5649 TSInfo = Context.getTrivialTypeSourceInfo(T);
5650
5651 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5652}
5653
5654static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5655 QualType T, Expr *DimExpr,
5656 SourceLocation KeyLoc) {
5657 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5657, __extension__ __PRETTY_FUNCTION__
))
;
5658
5659 switch(ATT) {
5660 case ATT_ArrayRank:
5661 if (T->isArrayType()) {
5662 unsigned Dim = 0;
5663 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5664 ++Dim;
5665 T = AT->getElementType();
5666 }
5667 return Dim;
5668 }
5669 return 0;
5670
5671 case ATT_ArrayExtent: {
5672 llvm::APSInt Value;
5673 uint64_t Dim;
5674 if (Self.VerifyIntegerConstantExpression(
5675 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5676 .isInvalid())
5677 return 0;
5678 if (Value.isSigned() && Value.isNegative()) {
5679 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5680 << DimExpr->getSourceRange();
5681 return 0;
5682 }
5683 Dim = Value.getLimitedValue();
5684
5685 if (T->isArrayType()) {
5686 unsigned D = 0;
5687 bool Matched = false;
5688 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5689 if (Dim == D) {
5690 Matched = true;
5691 break;
5692 }
5693 ++D;
5694 T = AT->getElementType();
5695 }
5696
5697 if (Matched && T->isArrayType()) {
5698 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5699 return CAT->getSize().getLimitedValue();
5700 }
5701 }
5702 return 0;
5703 }
5704 }
5705 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5705)
;
5706}
5707
5708ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5709 SourceLocation KWLoc,
5710 TypeSourceInfo *TSInfo,
5711 Expr* DimExpr,
5712 SourceLocation RParen) {
5713 QualType T = TSInfo->getType();
5714
5715 // FIXME: This should likely be tracked as an APInt to remove any host
5716 // assumptions about the width of size_t on the target.
5717 uint64_t Value = 0;
5718 if (!T->isDependentType())
5719 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5720
5721 // While the specification for these traits from the Embarcadero C++
5722 // compiler's documentation says the return type is 'unsigned int', Clang
5723 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5724 // compiler, there is no difference. On several other platforms this is an
5725 // important distinction.
5726 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5727 RParen, Context.getSizeType());
5728}
5729
5730ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5731 SourceLocation KWLoc,
5732 Expr *Queried,
5733 SourceLocation RParen) {
5734 // If error parsing the expression, ignore.
5735 if (!Queried)
5736 return ExprError();
5737
5738 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5739
5740 return Result;
5741}
5742
5743static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5744 switch (ET) {
5745 case ET_IsLValueExpr: return E->isLValue();
5746 case ET_IsRValueExpr:
5747 return E->isPRValue();
5748 }
5749 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5749)
;
5750}
5751
5752ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5753 SourceLocation KWLoc,
5754 Expr *Queried,
5755 SourceLocation RParen) {
5756 if (Queried->isTypeDependent()) {
5757 // Delay type-checking for type-dependent expressions.
5758 } else if (Queried->hasPlaceholderType()) {
5759 ExprResult PE = CheckPlaceholderExpr(Queried);
5760 if (PE.isInvalid()) return ExprError();
5761 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5762 }
5763
5764 bool Value = EvaluateExpressionTrait(ET, Queried);
5765
5766 return new (Context)
5767 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5768}
5769
5770QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5771 ExprValueKind &VK,
5772 SourceLocation Loc,
5773 bool isIndirect) {
5774 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5775, __extension__ __PRETTY_FUNCTION__
))
5775 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5775, __extension__ __PRETTY_FUNCTION__
))
;
5776
5777 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5778 // temporary materialization conversion otherwise.
5779 if (isIndirect)
5780 LHS = DefaultLvalueConversion(LHS.get());
5781 else if (LHS.get()->isPRValue())
5782 LHS = TemporaryMaterializationConversion(LHS.get());
5783 if (LHS.isInvalid())
5784 return QualType();
5785
5786 // The RHS always undergoes lvalue conversions.
5787 RHS = DefaultLvalueConversion(RHS.get());
5788 if (RHS.isInvalid()) return QualType();
5789
5790 const char *OpSpelling = isIndirect ? "->*" : ".*";
5791 // C++ 5.5p2
5792 // The binary operator .* [p3: ->*] binds its second operand, which shall
5793 // be of type "pointer to member of T" (where T is a completely-defined
5794 // class type) [...]
5795 QualType RHSType = RHS.get()->getType();
5796 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5797 if (!MemPtr) {
5798 Diag(Loc, diag::err_bad_memptr_rhs)
5799 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5800 return QualType();
5801 }
5802
5803 QualType Class(MemPtr->getClass(), 0);
5804
5805 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5806 // member pointer points must be completely-defined. However, there is no
5807 // reason for this semantic distinction, and the rule is not enforced by
5808 // other compilers. Therefore, we do not check this property, as it is
5809 // likely to be considered a defect.
5810
5811 // C++ 5.5p2
5812 // [...] to its first operand, which shall be of class T or of a class of
5813 // which T is an unambiguous and accessible base class. [p3: a pointer to
5814 // such a class]
5815 QualType LHSType = LHS.get()->getType();
5816 if (isIndirect) {
5817 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5818 LHSType = Ptr->getPointeeType();
5819 else {
5820 Diag(Loc, diag::err_bad_memptr_lhs)
5821 << OpSpelling << 1 << LHSType
5822 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5823 return QualType();
5824 }
5825 }
5826
5827 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5828 // If we want to check the hierarchy, we need a complete type.
5829 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5830 OpSpelling, (int)isIndirect)) {
5831 return QualType();
5832 }
5833
5834 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5835 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5836 << (int)isIndirect << LHS.get()->getType();
5837 return QualType();
5838 }
5839
5840 CXXCastPath BasePath;
5841 if (CheckDerivedToBaseConversion(
5842 LHSType, Class, Loc,
5843 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5844 &BasePath))
5845 return QualType();
5846
5847 // Cast LHS to type of use.
5848 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5849 if (isIndirect)
5850 UseType = Context.getPointerType(UseType);
5851 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5852 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5853 &BasePath);
5854 }
5855
5856 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5857 // Diagnose use of pointer-to-member type which when used as
5858 // the functional cast in a pointer-to-member expression.
5859 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5860 return QualType();
5861 }
5862
5863 // C++ 5.5p2
5864 // The result is an object or a function of the type specified by the
5865 // second operand.
5866 // The cv qualifiers are the union of those in the pointer and the left side,
5867 // in accordance with 5.5p5 and 5.2.5.
5868 QualType Result = MemPtr->getPointeeType();
5869 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5870
5871 // C++0x [expr.mptr.oper]p6:
5872 // In a .* expression whose object expression is an rvalue, the program is
5873 // ill-formed if the second operand is a pointer to member function with
5874 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5875 // expression is an lvalue, the program is ill-formed if the second operand
5876 // is a pointer to member function with ref-qualifier &&.
5877 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5878 switch (Proto->getRefQualifier()) {
5879 case RQ_None:
5880 // Do nothing
5881 break;
5882
5883 case RQ_LValue:
5884 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5885 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5886 // is (exactly) 'const'.
5887 if (Proto->isConst() && !Proto->isVolatile())
5888 Diag(Loc, getLangOpts().CPlusPlus20
5889 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5890 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5891 else
5892 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5893 << RHSType << 1 << LHS.get()->getSourceRange();
5894 }
5895 break;
5896
5897 case RQ_RValue:
5898 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5899 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5900 << RHSType << 0 << LHS.get()->getSourceRange();
5901 break;
5902 }
5903 }
5904
5905 // C++ [expr.mptr.oper]p6:
5906 // The result of a .* expression whose second operand is a pointer
5907 // to a data member is of the same value category as its
5908 // first operand. The result of a .* expression whose second
5909 // operand is a pointer to a member function is a prvalue. The
5910 // result of an ->* expression is an lvalue if its second operand
5911 // is a pointer to data member and a prvalue otherwise.
5912 if (Result->isFunctionType()) {
5913 VK = VK_PRValue;
5914 return Context.BoundMemberTy;
5915 } else if (isIndirect) {
5916 VK = VK_LValue;
5917 } else {
5918 VK = LHS.get()->getValueKind();
5919 }
5920
5921 return Result;
5922}
5923
5924/// Try to convert a type to another according to C++11 5.16p3.
5925///
5926/// This is part of the parameter validation for the ? operator. If either
5927/// value operand is a class type, the two operands are attempted to be
5928/// converted to each other. This function does the conversion in one direction.
5929/// It returns true if the program is ill-formed and has already been diagnosed
5930/// as such.
5931static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5932 SourceLocation QuestionLoc,
5933 bool &HaveConversion,
5934 QualType &ToType) {
5935 HaveConversion = false;
5936 ToType = To->getType();
5937
5938 InitializationKind Kind =
5939 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5940 // C++11 5.16p3
5941 // The process for determining whether an operand expression E1 of type T1
5942 // can be converted to match an operand expression E2 of type T2 is defined
5943 // as follows:
5944 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5945 // implicitly converted to type "lvalue reference to T2", subject to the
5946 // constraint that in the conversion the reference must bind directly to
5947 // an lvalue.
5948 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5949 // implicitly converted to the type "rvalue reference to R2", subject to
5950 // the constraint that the reference must bind directly.
5951 if (To->isGLValue()) {
5952 QualType T = Self.Context.getReferenceQualifiedType(To);
5953 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5954
5955 InitializationSequence InitSeq(Self, Entity, Kind, From);
5956 if (InitSeq.isDirectReferenceBinding()) {
5957 ToType = T;
5958 HaveConversion = true;
5959 return false;
5960 }
5961
5962 if (InitSeq.isAmbiguous())
5963 return InitSeq.Diagnose(Self, Entity, Kind, From);
5964 }
5965
5966 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5967 // -- if E1 and E2 have class type, and the underlying class types are
5968 // the same or one is a base class of the other:
5969 QualType FTy = From->getType();
5970 QualType TTy = To->getType();
5971 const RecordType *FRec = FTy->getAs<RecordType>();
5972 const RecordType *TRec = TTy->getAs<RecordType>();
5973 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5974 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5975 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5976 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5977 // E1 can be converted to match E2 if the class of T2 is the
5978 // same type as, or a base class of, the class of T1, and
5979 // [cv2 > cv1].
5980 if (FRec == TRec || FDerivedFromT) {
5981 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5982 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5983 InitializationSequence InitSeq(Self, Entity, Kind, From);
5984 if (InitSeq) {
5985 HaveConversion = true;
5986 return false;
5987 }
5988
5989 if (InitSeq.isAmbiguous())
5990 return InitSeq.Diagnose(Self, Entity, Kind, From);
5991 }
5992 }
5993
5994 return false;
5995 }
5996
5997 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5998 // implicitly converted to the type that expression E2 would have
5999 // if E2 were converted to an rvalue (or the type it has, if E2 is
6000 // an rvalue).
6001 //
6002 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6003 // to the array-to-pointer or function-to-pointer conversions.
6004 TTy = TTy.getNonLValueExprType(Self.Context);
6005
6006 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6007 InitializationSequence InitSeq(Self, Entity, Kind, From);
6008 HaveConversion = !InitSeq.Failed();
6009 ToType = TTy;
6010 if (InitSeq.isAmbiguous())
6011 return InitSeq.Diagnose(Self, Entity, Kind, From);
6012
6013 return false;
6014}
6015
6016/// Try to find a common type for two according to C++0x 5.16p5.
6017///
6018/// This is part of the parameter validation for the ? operator. If either
6019/// value operand is a class type, overload resolution is used to find a
6020/// conversion to a common type.
6021static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6022 SourceLocation QuestionLoc) {
6023 Expr *Args[2] = { LHS.get(), RHS.get() };
6024 OverloadCandidateSet CandidateSet(QuestionLoc,
6025 OverloadCandidateSet::CSK_Operator);
6026 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6027 CandidateSet);
6028
6029 OverloadCandidateSet::iterator Best;
6030 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6031 case OR_Success: {
6032 // We found a match. Perform the conversions on the arguments and move on.
6033 ExprResult LHSRes = Self.PerformImplicitConversion(
6034 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6035 Sema::AA_Converting);
6036 if (LHSRes.isInvalid())
6037 break;
6038 LHS = LHSRes;
6039
6040 ExprResult RHSRes = Self.PerformImplicitConversion(
6041 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6042 Sema::AA_Converting);
6043 if (RHSRes.isInvalid())
6044 break;
6045 RHS = RHSRes;
6046 if (Best->Function)
6047 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6048 return false;
6049 }
6050
6051 case OR_No_Viable_Function:
6052
6053 // Emit a better diagnostic if one of the expressions is a null pointer
6054 // constant and the other is a pointer type. In this case, the user most
6055 // likely forgot to take the address of the other expression.
6056 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6057 return true;
6058
6059 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6060 << LHS.get()->getType() << RHS.get()->getType()
6061 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6062 return true;
6063
6064 case OR_Ambiguous:
6065 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6066 << LHS.get()->getType() << RHS.get()->getType()
6067 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6068 // FIXME: Print the possible common types by printing the return types of
6069 // the viable candidates.
6070 break;
6071
6072 case OR_Deleted:
6073 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "clang/lib/Sema/SemaExprCXX.cpp", 6073)
;
6074 }
6075 return true;
6076}
6077
6078/// Perform an "extended" implicit conversion as returned by
6079/// TryClassUnification.
6080static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6081 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6082 InitializationKind Kind =
6083 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6084 Expr *Arg = E.get();
6085 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6086 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6087 if (Result.isInvalid())
6088 return true;
6089
6090 E = Result;
6091 return false;
6092}
6093
6094// Check the condition operand of ?: to see if it is valid for the GCC
6095// extension.
6096static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6097 QualType CondTy) {
6098 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6099 return false;
6100 const QualType EltTy =
6101 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6102 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() &&
"Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6102, __extension__ __PRETTY_FUNCTION__
))
;
6103 return EltTy->isIntegralType(Ctx);
6104}
6105
6106QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6107 ExprResult &RHS,
6108 SourceLocation QuestionLoc) {
6109 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6110 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6111
6112 QualType CondType = Cond.get()->getType();
6113 const auto *CondVT = CondType->castAs<VectorType>();
6114 QualType CondElementTy = CondVT->getElementType();
6115 unsigned CondElementCount = CondVT->getNumElements();
6116 QualType LHSType = LHS.get()->getType();
6117 const auto *LHSVT = LHSType->getAs<VectorType>();
6118 QualType RHSType = RHS.get()->getType();
6119 const auto *RHSVT = RHSType->getAs<VectorType>();
6120
6121 QualType ResultType;
6122
6123
6124 if (LHSVT && RHSVT) {
6125 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6126 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6127 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6128 return {};
6129 }
6130
6131 // If both are vector types, they must be the same type.
6132 if (!Context.hasSameType(LHSType, RHSType)) {
6133 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6134 << LHSType << RHSType;
6135 return {};
6136 }
6137 ResultType = LHSType;
6138 } else if (LHSVT || RHSVT) {
6139 ResultType = CheckVectorOperands(
6140 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6141 /*AllowBoolConversions*/ false,
6142 /*AllowBoolOperation*/ true,
6143 /*ReportInvalid*/ true);
6144 if (ResultType.isNull())
6145 return {};
6146 } else {
6147 // Both are scalar.
6148 QualType ResultElementTy;
6149 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6150 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6151
6152 if (Context.hasSameType(LHSType, RHSType))
6153 ResultElementTy = LHSType;
6154 else
6155 ResultElementTy =
6156 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6157
6158 if (ResultElementTy->isEnumeralType()) {
6159 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6160 << ResultElementTy;
6161 return {};
6162 }
6163 if (CondType->isExtVectorType())
6164 ResultType =
6165 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6166 else
6167 ResultType = Context.getVectorType(
6168 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6169
6170 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6171 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6172 }
6173
6174 assert(!ResultType.isNull() && ResultType->isVectorType() &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
6175 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
6176 "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
;
6177 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6178 QualType ResultElementTy = ResultVectorTy->getElementType();
6179 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6180
6181 if (ResultElementCount != CondElementCount) {
6182 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6183 << ResultType;
6184 return {};
6185 }
6186
6187 if (Context.getTypeSize(ResultElementTy) !=
6188 Context.getTypeSize(CondElementTy)) {
6189 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6190 << ResultType;
6191 return {};
6192 }
6193
6194 return ResultType;
6195}
6196
6197/// Check the operands of ?: under C++ semantics.
6198///
6199/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6200/// extension. In this case, LHS == Cond. (But they're not aliases.)
6201///
6202/// This function also implements GCC's vector extension and the
6203/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6204/// permit the use of a?b:c where the type of a is that of a integer vector with
6205/// the same number of elements and size as the vectors of b and c. If one of
6206/// either b or c is a scalar it is implicitly converted to match the type of
6207/// the vector. Otherwise the expression is ill-formed. If both b and c are
6208/// scalars, then b and c are checked and converted to the type of a if
6209/// possible.
6210///
6211/// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6212/// For the GCC extension, the ?: operator is evaluated as
6213/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6214/// For the OpenCL extensions, the ?: operator is evaluated as
6215/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6216/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6217QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6218 ExprResult &RHS, ExprValueKind &VK,
6219 ExprObjectKind &OK,
6220 SourceLocation QuestionLoc) {
6221 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6222 // pointers.
6223
6224 // Assume r-value.
6225 VK = VK_PRValue;
6226 OK = OK_Ordinary;
6227 bool IsVectorConditional =
6228 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6229
6230 // C++11 [expr.cond]p1
6231 // The first expression is contextually converted to bool.
6232 if (!Cond.get()->isTypeDependent()) {
6233 ExprResult CondRes = IsVectorConditional
6234 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6235 : CheckCXXBooleanCondition(Cond.get());
6236 if (CondRes.isInvalid())
6237 return QualType();
6238 Cond = CondRes;
6239 } else {
6240 // To implement C++, the first expression typically doesn't alter the result
6241 // type of the conditional, however the GCC compatible vector extension
6242 // changes the result type to be that of the conditional. Since we cannot
6243 // know if this is a vector extension here, delay the conversion of the
6244 // LHS/RHS below until later.
6245 return Context.DependentTy;
6246 }
6247
6248
6249 // Either of the arguments dependent?
6250 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6251 return Context.DependentTy;
6252
6253 // C++11 [expr.cond]p2
6254 // If either the second or the third operand has type (cv) void, ...
6255 QualType LTy = LHS.get()->getType();
6256 QualType RTy = RHS.get()->getType();
6257 bool LVoid = LTy->isVoidType();
6258 bool RVoid = RTy->isVoidType();
6259 if (LVoid || RVoid) {
6260 // ... one of the following shall hold:
6261 // -- The second or the third operand (but not both) is a (possibly
6262 // parenthesized) throw-expression; the result is of the type
6263 // and value category of the other.
6264 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6265 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6266
6267 // Void expressions aren't legal in the vector-conditional expressions.
6268 if (IsVectorConditional) {
6269 SourceRange DiagLoc =
6270 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6271 bool IsThrow = LVoid ? LThrow : RThrow;
6272 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6273 << DiagLoc << IsThrow;
6274 return QualType();
6275 }
6276
6277 if (LThrow != RThrow) {
6278 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6279 VK = NonThrow->getValueKind();
6280 // DR (no number yet): the result is a bit-field if the
6281 // non-throw-expression operand is a bit-field.
6282 OK = NonThrow->getObjectKind();
6283 return NonThrow->getType();
6284 }
6285
6286 // -- Both the second and third operands have type void; the result is of
6287 // type void and is a prvalue.
6288 if (LVoid && RVoid)
6289 return Context.VoidTy;
6290
6291 // Neither holds, error.
6292 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6293 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6294 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6295 return QualType();
6296 }
6297
6298 // Neither is void.
6299 if (IsVectorConditional)
6300 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6301
6302 // C++11 [expr.cond]p3
6303 // Otherwise, if the second and third operand have different types, and
6304 // either has (cv) class type [...] an attempt is made to convert each of
6305 // those operands to the type of the other.
6306 if (!Context.hasSameType(LTy, RTy) &&
6307 (LTy->isRecordType() || RTy->isRecordType())) {
6308 // These return true if a single direction is already ambiguous.
6309 QualType L2RType, R2LType;
6310 bool HaveL2R, HaveR2L;
6311 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6312 return QualType();
6313 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6314 return QualType();
6315
6316 // If both can be converted, [...] the program is ill-formed.
6317 if (HaveL2R && HaveR2L) {
6318 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6319 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6320 return QualType();
6321 }
6322
6323 // If exactly one conversion is possible, that conversion is applied to
6324 // the chosen operand and the converted operands are used in place of the
6325 // original operands for the remainder of this section.
6326 if (HaveL2R) {
6327 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6328 return QualType();
6329 LTy = LHS.get()->getType();
6330 } else if (HaveR2L) {
6331 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6332 return QualType();
6333 RTy = RHS.get()->getType();
6334 }
6335 }
6336
6337 // C++11 [expr.cond]p3
6338 // if both are glvalues of the same value category and the same type except
6339 // for cv-qualification, an attempt is made to convert each of those
6340 // operands to the type of the other.
6341 // FIXME:
6342 // Resolving a defect in P0012R1: we extend this to cover all cases where
6343 // one of the operands is reference-compatible with the other, in order
6344 // to support conditionals between functions differing in noexcept. This
6345 // will similarly cover difference in array bounds after P0388R4.
6346 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6347 // that instead?
6348 ExprValueKind LVK = LHS.get()->getValueKind();
6349 ExprValueKind RVK = RHS.get()->getValueKind();
6350 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6351 // DerivedToBase was already handled by the class-specific case above.
6352 // FIXME: Should we allow ObjC conversions here?
6353 const ReferenceConversions AllowedConversions =
6354 ReferenceConversions::Qualification |
6355 ReferenceConversions::NestedQualification |
6356 ReferenceConversions::Function;
6357
6358 ReferenceConversions RefConv;
6359 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6360 Ref_Compatible &&
6361 !(RefConv & ~AllowedConversions) &&
6362 // [...] subject to the constraint that the reference must bind
6363 // directly [...]
6364 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6365 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6366 RTy = RHS.get()->getType();
6367 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6368 Ref_Compatible &&
6369 !(RefConv & ~AllowedConversions) &&
6370 !LHS.get()->refersToBitField() &&
6371 !LHS.get()->refersToVectorElement()) {
6372 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6373 LTy = LHS.get()->getType();
6374 }
6375 }
6376
6377 // C++11 [expr.cond]p4
6378 // If the second and third operands are glvalues of the same value
6379 // category and have the same type, the result is of that type and
6380 // value category and it is a bit-field if the second or the third
6381 // operand is a bit-field, or if both are bit-fields.
6382 // We only extend this to bitfields, not to the crazy other kinds of
6383 // l-values.
6384 bool Same = Context.hasSameType(LTy, RTy);
6385 if (Same && LVK == RVK && LVK != VK_PRValue &&
6386 LHS.get()->isOrdinaryOrBitFieldObject() &&
6387 RHS.get()->isOrdinaryOrBitFieldObject()) {
6388 VK = LHS.get()->getValueKind();
6389 if (LHS.get()->getObjectKind() == OK_BitField ||
6390 RHS.get()->getObjectKind() == OK_BitField)
6391 OK = OK_BitField;
6392
6393 // If we have function pointer types, unify them anyway to unify their
6394 // exception specifications, if any.
6395 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6396 Qualifiers Qs = LTy.getQualifiers();
6397 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6398 /*ConvertArgs*/false);
6399 LTy = Context.getQualifiedType(LTy, Qs);
6400
6401 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6402, __extension__ __PRETTY_FUNCTION__
))
6402 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6402, __extension__ __PRETTY_FUNCTION__
))
;
6403 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")(static_cast <bool> (Context.hasSameType(LTy, RTy) &&
"bad composite pointer type") ? void (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6403, __extension__ __PRETTY_FUNCTION__
))
;
6404 }
6405
6406 return LTy;
6407 }
6408
6409 // C++11 [expr.cond]p5
6410 // Otherwise, the result is a prvalue. If the second and third operands
6411 // do not have the same type, and either has (cv) class type, ...
6412 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6413 // ... overload resolution is used to determine the conversions (if any)
6414 // to be applied to the operands. If the overload resolution fails, the
6415 // program is ill-formed.
6416 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6417 return QualType();
6418 }
6419
6420 // C++11 [expr.cond]p6
6421 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6422 // conversions are performed on the second and third operands.
6423 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6424 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6425 if (LHS.isInvalid() || RHS.isInvalid())
6426 return QualType();
6427 LTy = LHS.get()->getType();
6428 RTy = RHS.get()->getType();
6429
6430 // After those conversions, one of the following shall hold:
6431 // -- The second and third operands have the same type; the result
6432 // is of that type. If the operands have class type, the result
6433 // is a prvalue temporary of the result type, which is
6434 // copy-initialized from either the second operand or the third
6435 // operand depending on the value of the first operand.
6436 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6437 if (LTy->isRecordType()) {
6438 // The operands have class type. Make a temporary copy.
6439 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6440
6441 ExprResult LHSCopy = PerformCopyInitialization(Entity,
6442 SourceLocation(),
6443 LHS);
6444 if (LHSCopy.isInvalid())
6445 return QualType();
6446
6447 ExprResult RHSCopy = PerformCopyInitialization(Entity,
6448 SourceLocation(),
6449 RHS);
6450 if (RHSCopy.isInvalid())
6451 return QualType();
6452
6453 LHS = LHSCopy;
6454 RHS = RHSCopy;
6455 }
6456
6457 // If we have function pointer types, unify them anyway to unify their
6458 // exception specifications, if any.
6459 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6460 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6461 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
6462 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
;
6463 }
6464
6465 return LTy;
6466 }
6467
6468 // Extension: conditional operator involving vector types.
6469 if (LTy->isVectorType() || RTy->isVectorType())
6470 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6471 /*AllowBothBool*/ true,
6472 /*AllowBoolConversions*/ false,
6473 /*AllowBoolOperation*/ false,
6474 /*ReportInvalid*/ true);
6475
6476 // -- The second and third operands have arithmetic or enumeration type;
6477 // the usual arithmetic conversions are performed to bring them to a
6478 // common type, and the result is of that type.
6479 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6480 QualType ResTy =
6481 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6482 if (LHS.isInvalid() || RHS.isInvalid())
6483 return QualType();
6484 if (ResTy.isNull()) {
6485 Diag(QuestionLoc,
6486 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6487 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6488 return QualType();
6489 }
6490
6491 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6492 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6493
6494 return ResTy;
6495 }
6496
6497 // -- The second and third operands have pointer type, or one has pointer
6498 // type and the other is a null pointer constant, or both are null
6499 // pointer constants, at least one of which is non-integral; pointer
6500 // conversions and qualification conversions are performed to bring them
6501 // to their composite pointer type. The result is of the composite
6502 // pointer type.
6503 // -- The second and third operands have pointer to member type, or one has
6504 // pointer to member type and the other is a null pointer constant;
6505 // pointer to member conversions and qualification conversions are
6506 // performed to bring them to a common type, whose cv-qualification
6507 // shall match the cv-qualification of either the second or the third
6508 // operand. The result is of the common type.
6509 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6510 if (!Composite.isNull())
6511 return Composite;
6512
6513 // Similarly, attempt to find composite type of two objective-c pointers.
6514 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6515 if (LHS.isInvalid() || RHS.isInvalid())
6516 return QualType();
6517 if (!Composite.isNull())
6518 return Composite;
6519
6520 // Check if we are using a null with a non-pointer type.
6521 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6522 return QualType();
6523
6524 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6525 << LHS.get()->getType() << RHS.get()->getType()
6526 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6527 return QualType();
6528}
6529
6530static FunctionProtoType::ExceptionSpecInfo
6531mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6532 FunctionProtoType::ExceptionSpecInfo ESI2,
6533 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6534 ExceptionSpecificationType EST1 = ESI1.Type;
6535 ExceptionSpecificationType EST2 = ESI2.Type;
6536
6537 // If either of them can throw anything, that is the result.
6538 if (EST1 == EST_None) return ESI1;
6539 if (EST2 == EST_None) return ESI2;
6540 if (EST1 == EST_MSAny) return ESI1;
6541 if (EST2 == EST_MSAny) return ESI2;
6542 if (EST1 == EST_NoexceptFalse) return ESI1;
6543 if (EST2 == EST_NoexceptFalse) return ESI2;
6544
6545 // If either of them is non-throwing, the result is the other.
6546 if (EST1 == EST_NoThrow) return ESI2;
6547 if (EST2 == EST_NoThrow) return ESI1;
6548 if (EST1 == EST_DynamicNone) return ESI2;
6549 if (EST2 == EST_DynamicNone) return ESI1;
6550 if (EST1 == EST_BasicNoexcept) return ESI2;
6551 if (EST2 == EST_BasicNoexcept) return ESI1;
6552 if (EST1 == EST_NoexceptTrue) return ESI2;
6553 if (EST2 == EST_NoexceptTrue) return ESI1;
6554
6555 // If we're left with value-dependent computed noexcept expressions, we're
6556 // stuck. Before C++17, we can just drop the exception specification entirely,
6557 // since it's not actually part of the canonical type. And this should never
6558 // happen in C++17, because it would mean we were computing the composite
6559 // pointer type of dependent types, which should never happen.
6560 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6561 assert(!S.getLangOpts().CPlusPlus17 &&(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6562, __extension__ __PRETTY_FUNCTION__
))
6562 "computing composite pointer type of dependent types")(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6562, __extension__ __PRETTY_FUNCTION__
))
;
6563 return FunctionProtoType::ExceptionSpecInfo();
6564 }
6565
6566 // Switch over the possibilities so that people adding new values know to
6567 // update this function.
6568 switch (EST1) {
6569 case EST_None:
6570 case EST_DynamicNone:
6571 case EST_MSAny:
6572 case EST_BasicNoexcept:
6573 case EST_DependentNoexcept:
6574 case EST_NoexceptFalse:
6575 case EST_NoexceptTrue:
6576 case EST_NoThrow:
6577 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "clang/lib/Sema/SemaExprCXX.cpp"
, 6577)
;
6578
6579 case EST_Dynamic: {
6580 // This is the fun case: both exception specifications are dynamic. Form
6581 // the union of the two lists.
6582 assert(EST2 == EST_Dynamic && "other cases should already be handled")(static_cast <bool> (EST2 == EST_Dynamic && "other cases should already be handled"
) ? void (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6582, __extension__ __PRETTY_FUNCTION__
))
;
6583 llvm::SmallPtrSet<QualType, 8> Found;
6584 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6585 for (QualType E : Exceptions)
6586 if (Found.insert(S.Context.getCanonicalType(E)).second)
6587 ExceptionTypeStorage.push_back(E);
6588
6589 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6590 Result.Exceptions = ExceptionTypeStorage;
6591 return Result;
6592 }
6593
6594 case EST_Unevaluated:
6595 case EST_Uninstantiated:
6596 case EST_Unparsed:
6597 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "clang/lib/Sema/SemaExprCXX.cpp", 6597)
;
6598 }
6599
6600 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "clang/lib/Sema/SemaExprCXX.cpp", 6600)
;
6601}
6602
6603/// Find a merged pointer type and convert the two expressions to it.
6604///
6605/// This finds the composite pointer type for \p E1 and \p E2 according to
6606/// C++2a [expr.type]p3. It converts both expressions to this type and returns
6607/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6608/// is \c true).
6609///
6610/// \param Loc The location of the operator requiring these two expressions to
6611/// be converted to the composite pointer type.
6612///
6613/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6614QualType Sema::FindCompositePointerType(SourceLocation Loc,
6615 Expr *&E1, Expr *&E2,
6616 bool ConvertArgs) {
6617 assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6617, __extension__ __PRETTY_FUNCTION__
))
;
6618
6619 // C++1z [expr]p14:
6620 // The composite pointer type of two operands p1 and p2 having types T1
6621 // and T2
6622 QualType T1 = E1->getType(), T2 = E2->getType();
6623
6624 // where at least one is a pointer or pointer to member type or
6625 // std::nullptr_t is:
6626 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6627 T1->isNullPtrType();
6628 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6629 T2->isNullPtrType();
6630 if (!T1IsPointerLike && !T2IsPointerLike)
6631 return QualType();
6632
6633 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6634 // This can't actually happen, following the standard, but we also use this
6635 // to implement the end of [expr.conv], which hits this case.
6636 //
6637 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6638 if (T1IsPointerLike &&
6639 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6640 if (ConvertArgs)
6641 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6642 ? CK_NullToMemberPointer
6643 : CK_NullToPointer).get();
6644 return T1;
6645 }
6646 if (T2IsPointerLike &&
6647 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6648 if (ConvertArgs)
6649 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6650 ? CK_NullToMemberPointer
6651 : CK_NullToPointer).get();
6652 return T2;
6653 }
6654
6655 // Now both have to be pointers or member pointers.
6656 if (!T1IsPointerLike || !T2IsPointerLike)
6657 return QualType();
6658 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
6659 "nullptr_t should be a null pointer constant")(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
;
6660
6661 struct Step {
6662 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6663 // Qualifiers to apply under the step kind.
6664 Qualifiers Quals;
6665 /// The class for a pointer-to-member; a constant array type with a bound
6666 /// (if any) for an array.
6667 const Type *ClassOrBound;
6668
6669 Step(Kind K, const Type *ClassOrBound = nullptr)
6670 : K(K), ClassOrBound(ClassOrBound) {}
6671 QualType rebuild(ASTContext &Ctx, QualType T) const {
6672 T = Ctx.getQualifiedType(T, Quals);
6673 switch (K) {
6674 case Pointer:
6675 return Ctx.getPointerType(T);
6676 case MemberPointer:
6677 return Ctx.getMemberPointerType(T, ClassOrBound);
6678 case ObjCPointer:
6679 return Ctx.getObjCObjectPointerType(T);
6680 case Array:
6681 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6682 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6683 ArrayType::Normal, 0);
6684 else
6685 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6686 }
6687 llvm_unreachable("unknown step kind")::llvm::llvm_unreachable_internal("unknown step kind", "clang/lib/Sema/SemaExprCXX.cpp"
, 6687)
;
6688 }
6689 };
6690
6691 SmallVector<Step, 8> Steps;
6692
6693 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6694 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6695 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6696 // respectively;
6697 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6698 // to member of C2 of type cv2 U2" for some non-function type U, where
6699 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6700 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6701 // respectively;
6702 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6703 // T2;
6704 //
6705 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6706 // and to prepare to form the cv-combined type if so.
6707 QualType Composite1 = T1;
6708 QualType Composite2 = T2;
6709 unsigned NeedConstBefore = 0;
6710 while (true) {
6711 assert(!Composite1.isNull() && !Composite2.isNull())(static_cast <bool> (!Composite1.isNull() && !Composite2
.isNull()) ? void (0) : __assert_fail ("!Composite1.isNull() && !Composite2.isNull()"
, "clang/lib/Sema/SemaExprCXX.cpp", 6711, __extension__ __PRETTY_FUNCTION__
))
;
6712
6713 Qualifiers Q1, Q2;
6714 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6715 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6716
6717 // Top-level qualifiers are ignored. Merge at all lower levels.
6718 if (!Steps.empty()) {
6719 // Find the qualifier union: (approximately) the unique minimal set of
6720 // qualifiers that is compatible with both types.
6721 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6722 Q2.getCVRUQualifiers());
6723
6724 // Under one level of pointer or pointer-to-member, we can change to an
6725 // unambiguous compatible address space.
6726 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6727 Quals.setAddressSpace(Q1.getAddressSpace());
6728 } else if (Steps.size() == 1) {
6729 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6730 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6731 if (MaybeQ1 == MaybeQ2) {
6732 // Exception for ptr size address spaces. Should be able to choose
6733 // either address space during comparison.
6734 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6735 isPtrSizeAddressSpace(Q2.getAddressSpace()))
6736 MaybeQ1 = true;
6737 else
6738 return QualType(); // No unique best address space.
6739 }
6740 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6741 : Q2.getAddressSpace());
6742 } else {
6743 return QualType();
6744 }
6745
6746 // FIXME: In C, we merge __strong and none to __strong at the top level.
6747 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6748 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6749 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6750 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6750
, __extension__ __PRETTY_FUNCTION__))
;
6751 else
6752 return QualType();
6753
6754 // Mismatched lifetime qualifiers never compatibly include each other.
6755 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6756 Quals.setObjCLifetime(Q1.getObjCLifetime());
6757 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6758 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6758
, __extension__ __PRETTY_FUNCTION__))
;
6759 else
6760 return QualType();
6761
6762 Steps.back().Quals = Quals;
6763 if (Q1 != Quals || Q2 != Quals)
6764 NeedConstBefore = Steps.size() - 1;
6765 }
6766
6767 // FIXME: Can we unify the following with UnwrapSimilarTypes?
6768
6769 const ArrayType *Arr1, *Arr2;
6770 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6771 (Arr2 = Context.getAsArrayType(Composite2))) {
6772 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6773 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6774 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6775 Composite1 = Arr1->getElementType();
6776 Composite2 = Arr2->getElementType();
6777 Steps.emplace_back(Step::Array, CAT1);
6778 continue;
6779 }
6780 bool IAT1 = isa<IncompleteArrayType>(Arr1);
6781 bool IAT2 = isa<IncompleteArrayType>(Arr2);
6782 if ((IAT1 && IAT2) ||
6783 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6784 ((bool)CAT1 != (bool)CAT2) &&
6785 (Steps.empty() || Steps.back().K != Step::Array))) {
6786 // In C++20 onwards, we can unify an array of N T with an array of
6787 // a different or unknown bound. But we can't form an array whose
6788 // element type is an array of unknown bound by doing so.
6789 Composite1 = Arr1->getElementType();
6790 Composite2 = Arr2->getElementType();
6791 Steps.emplace_back(Step::Array);
6792 if (CAT1 || CAT2)
6793 NeedConstBefore = Steps.size();
6794 continue;
6795 }
6796 }
6797
6798 const PointerType *Ptr1, *Ptr2;
6799 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6800 (Ptr2 = Composite2->getAs<PointerType>())) {
6801 Composite1 = Ptr1->getPointeeType();
6802 Composite2 = Ptr2->getPointeeType();
6803 Steps.emplace_back(Step::Pointer);
6804 continue;
6805 }
6806
6807 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6808 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6809 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6810 Composite1 = ObjPtr1->getPointeeType();
6811 Composite2 = ObjPtr2->getPointeeType();
6812 Steps.emplace_back(Step::ObjCPointer);
6813 continue;
6814 }
6815
6816 const MemberPointerType *MemPtr1, *MemPtr2;
6817 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6818 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6819 Composite1 = MemPtr1->getPointeeType();
6820 Composite2 = MemPtr2->getPointeeType();
6821
6822 // At the top level, we can perform a base-to-derived pointer-to-member
6823 // conversion:
6824 //
6825 // - [...] where C1 is reference-related to C2 or C2 is
6826 // reference-related to C1
6827 //
6828 // (Note that the only kinds of reference-relatedness in scope here are
6829 // "same type or derived from".) At any other level, the class must
6830 // exactly match.
6831 const Type *Class = nullptr;
6832 QualType Cls1(MemPtr1->getClass(), 0);
6833 QualType Cls2(MemPtr2->getClass(), 0);
6834 if (Context.hasSameType(Cls1, Cls2))
6835 Class = MemPtr1->getClass();
6836 else if (Steps.empty())
6837 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6838 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6839 if (!Class)
6840 return QualType();
6841
6842 Steps.emplace_back(Step::MemberPointer, Class);
6843 continue;
6844 }
6845
6846 // Special case: at the top level, we can decompose an Objective-C pointer
6847 // and a 'cv void *'. Unify the qualifiers.
6848 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6849 Composite2->isObjCObjectPointerType()) ||
6850 (Composite1->isObjCObjectPointerType() &&
6851 Composite2->isVoidPointerType()))) {
6852 Composite1 = Composite1->getPointeeType();
6853 Composite2 = Composite2->getPointeeType();
6854 Steps.emplace_back(Step::Pointer);
6855 continue;
6856 }
6857
6858 // FIXME: block pointer types?
6859
6860 // Cannot unwrap any more types.
6861 break;
6862 }
6863
6864 // - if T1 or T2 is "pointer to noexcept function" and the other type is
6865 // "pointer to function", where the function types are otherwise the same,
6866 // "pointer to function";
6867 // - if T1 or T2 is "pointer to member of C1 of type function", the other
6868 // type is "pointer to member of C2 of type noexcept function", and C1
6869 // is reference-related to C2 or C2 is reference-related to C1, where
6870 // the function types are otherwise the same, "pointer to member of C2 of
6871 // type function" or "pointer to member of C1 of type function",
6872 // respectively;
6873 //
6874 // We also support 'noreturn' here, so as a Clang extension we generalize the
6875 // above to:
6876 //
6877 // - [Clang] If T1 and T2 are both of type "pointer to function" or
6878 // "pointer to member function" and the pointee types can be unified
6879 // by a function pointer conversion, that conversion is applied
6880 // before checking the following rules.
6881 //
6882 // We've already unwrapped down to the function types, and we want to merge
6883 // rather than just convert, so do this ourselves rather than calling
6884 // IsFunctionConversion.
6885 //
6886 // FIXME: In order to match the standard wording as closely as possible, we
6887 // currently only do this under a single level of pointers. Ideally, we would
6888 // allow this in general, and set NeedConstBefore to the relevant depth on
6889 // the side(s) where we changed anything. If we permit that, we should also
6890 // consider this conversion when determining type similarity and model it as
6891 // a qualification conversion.
6892 if (Steps.size() == 1) {
6893 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6894 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6895 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6896 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6897
6898 // The result is noreturn if both operands are.
6899 bool Noreturn =
6900 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6901 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6902 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6903
6904 // The result is nothrow if both operands are.
6905 SmallVector<QualType, 8> ExceptionTypeStorage;
6906 EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6907 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6908 ExceptionTypeStorage);
6909
6910 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6911 FPT1->getParamTypes(), EPI1);
6912 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6913 FPT2->getParamTypes(), EPI2);
6914 }
6915 }
6916 }
6917
6918 // There are some more conversions we can perform under exactly one pointer.
6919 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6920 !Context.hasSameType(Composite1, Composite2)) {
6921 // - if T1 or T2 is "pointer to cv1 void" and the other type is
6922 // "pointer to cv2 T", where T is an object type or void,
6923 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6924 if (Composite1->isVoidType() && Composite2->isObjectType())
6925 Composite2 = Composite1;
6926 else if (Composite2->isVoidType() && Composite1->isObjectType())
6927 Composite1 = Composite2;
6928 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6929 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6930 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6931 // T1, respectively;
6932 //
6933 // The "similar type" handling covers all of this except for the "T1 is a
6934 // base class of T2" case in the definition of reference-related.
6935 else if (IsDerivedFrom(Loc, Composite1, Composite2))
6936 Composite1 = Composite2;
6937 else if (IsDerivedFrom(Loc, Composite2, Composite1))
6938 Composite2 = Composite1;
6939 }
6940
6941 // At this point, either the inner types are the same or we have failed to
6942 // find a composite pointer type.
6943 if (!Context.hasSameType(Composite1, Composite2))
6944 return QualType();
6945
6946 // Per C++ [conv.qual]p3, add 'const' to every level before the last
6947 // differing qualifier.
6948 for (unsigned I = 0; I != NeedConstBefore; ++I)
6949 Steps[I].Quals.addConst();
6950
6951 // Rebuild the composite type.
6952 QualType Composite = Composite1;
6953 for (auto &S : llvm::reverse(Steps))
6954 Composite = S.rebuild(Context, Composite);
6955
6956 if (ConvertArgs) {
6957 // Convert the expressions to the composite pointer type.
6958 InitializedEntity Entity =
6959 InitializedEntity::InitializeTemporary(Composite);
6960 InitializationKind Kind =
6961 InitializationKind::CreateCopy(Loc, SourceLocation());
6962
6963 InitializationSequence E1ToC(*this, Entity, Kind, E1);
6964 if (!E1ToC)
6965 return QualType();
6966
6967 InitializationSequence E2ToC(*this, Entity, Kind, E2);
6968 if (!E2ToC)
6969 return QualType();
6970
6971 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6972 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6973 if (E1Result.isInvalid())
6974 return QualType();
6975 E1 = E1Result.get();
6976
6977 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6978 if (E2Result.isInvalid())
6979 return QualType();
6980 E2 = E2Result.get();
6981 }
6982
6983 return Composite;
6984}
6985
6986ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6987 if (!E)
6988 return ExprError();
6989
6990 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")(static_cast <bool> (!isa<CXXBindTemporaryExpr>(E
) && "Double-bound temporary?") ? void (0) : __assert_fail
("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6990, __extension__ __PRETTY_FUNCTION__
))
;
6991
6992 // If the result is a glvalue, we shouldn't bind it.
6993 if (E->isGLValue())
6994 return E;
6995
6996 // In ARC, calls that return a retainable type can return retained,
6997 // in which case we have to insert a consuming cast.
6998 if (getLangOpts().ObjCAutoRefCount &&
6999 E->getType()->isObjCRetainableType()) {
7000
7001 bool ReturnsRetained;
7002
7003 // For actual calls, we compute this by examining the type of the
7004 // called value.
7005 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7006 Expr *Callee = Call->getCallee()->IgnoreParens();
7007 QualType T = Callee->getType();
7008
7009 if (T == Context.BoundMemberTy) {
7010 // Handle pointer-to-members.
7011 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7012 T = BinOp->getRHS()->getType();
7013 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7014 T = Mem->getMemberDecl()->getType();
7015 }
7016
7017 if (const PointerType *Ptr = T->getAs<PointerType>())
7018 T = Ptr->getPointeeType();
7019 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7020 T = Ptr->getPointeeType();
7021 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7022 T = MemPtr->getPointeeType();
7023
7024 auto *FTy = T->castAs<FunctionType>();
7025 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7026
7027 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7028 // type always produce a +1 object.
7029 } else if (isa<StmtExpr>(E)) {
7030 ReturnsRetained = true;
7031
7032 // We hit this case with the lambda conversion-to-block optimization;
7033 // we don't want any extra casts here.
7034 } else if (isa<CastExpr>(E) &&
7035 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7036 return E;
7037
7038 // For message sends and property references, we try to find an
7039 // actual method. FIXME: we should infer retention by selector in
7040 // cases where we don't have an actual method.
7041 } else {
7042 ObjCMethodDecl *D = nullptr;
7043 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7044 D = Send->getMethodDecl();
7045 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7046 D = BoxedExpr->getBoxingMethod();
7047 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7048 // Don't do reclaims if we're using the zero-element array
7049 // constant.
7050 if (ArrayLit->getNumElements() == 0 &&
7051 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7052 return E;
7053
7054 D = ArrayLit->getArrayWithObjectsMethod();
7055 } else if (ObjCDictionaryLiteral *DictLit
7056 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7057 // Don't do reclaims if we're using the zero-element dictionary
7058 // constant.
7059 if (DictLit->getNumElements() == 0 &&
7060 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7061 return E;
7062
7063 D = DictLit->getDictWithObjectsMethod();
7064 }
7065
7066 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7067
7068 // Don't do reclaims on performSelector calls; despite their
7069 // return type, the invoked method doesn't necessarily actually
7070 // return an object.
7071 if (!ReturnsRetained &&
7072 D && D->getMethodFamily() == OMF_performSelector)
7073 return E;
7074 }
7075
7076 // Don't reclaim an object of Class type.
7077 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7078 return E;
7079
7080 Cleanup.setExprNeedsCleanups(true);
7081
7082 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7083 : CK_ARCReclaimReturnedObject);
7084 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7085 VK_PRValue, FPOptionsOverride());
7086 }
7087
7088 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7089 Cleanup.setExprNeedsCleanups(true);
7090
7091 if (!getLangOpts().CPlusPlus)
7092 return E;
7093
7094 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7095 // a fast path for the common case that the type is directly a RecordType.
7096 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7097 const RecordType *RT = nullptr;
7098 while (!RT) {
7099 switch (T->getTypeClass()) {
7100 case Type::Record:
7101 RT = cast<RecordType>(T);
7102 break;
7103 case Type::ConstantArray:
7104 case Type::IncompleteArray:
7105 case Type::VariableArray:
7106 case Type::DependentSizedArray:
7107 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7108 break;
7109 default:
7110 return E;
7111 }
7112 }
7113
7114 // That should be enough to guarantee that this type is complete, if we're
7115 // not processing a decltype expression.
7116 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7117 if (RD->isInvalidDecl() || RD->isDependentContext())
7118 return E;
7119
7120 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7121 ExpressionEvaluationContextRecord::EK_Decltype;
7122 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7123
7124 if (Destructor) {
7125 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7126 CheckDestructorAccess(E->getExprLoc(), Destructor,
7127 PDiag(diag::err_access_dtor_temp)
7128 << E->getType());
7129 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7130 return ExprError();
7131
7132 // If destructor is trivial, we can avoid the extra copy.
7133 if (Destructor->isTrivial())
7134 return E;
7135
7136 // We need a cleanup, but we don't need to remember the temporary.
7137 Cleanup.setExprNeedsCleanups(true);
7138 }
7139
7140 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7141 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7142
7143 if (IsDecltype)
7144 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7145
7146 return Bind;
7147}
7148
7149ExprResult
7150Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7151 if (SubExpr.isInvalid())
7152 return ExprError();
7153
7154 return MaybeCreateExprWithCleanups(SubExpr.get());
7155}
7156
7157Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7158 assert(SubExpr && "subexpression can't be null!")(static_cast <bool> (SubExpr && "subexpression can't be null!"
) ? void (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7158, __extension__ __PRETTY_FUNCTION__
))
;
7159
7160 CleanupVarDeclMarking();
7161
7162 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7163 assert(ExprCleanupObjects.size() >= FirstCleanup)(static_cast <bool> (ExprCleanupObjects.size() >= FirstCleanup
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7163, __extension__ __PRETTY_FUNCTION__
))
;
7164 assert(Cleanup.exprNeedsCleanups() ||(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7165, __extension__ __PRETTY_FUNCTION__
))
7165 ExprCleanupObjects.size() == FirstCleanup)(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7165, __extension__ __PRETTY_FUNCTION__
))
;
7166 if (!Cleanup.exprNeedsCleanups())
7167 return SubExpr;
7168
7169 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7170 ExprCleanupObjects.size() - FirstCleanup);
7171
7172 auto *E = ExprWithCleanups::Create(
7173 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7174 DiscardCleanupsInEvaluationContext();
7175
7176 return E;
7177}
7178
7179Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7180 assert(SubStmt && "sub-statement can't be null!")(static_cast <bool> (SubStmt && "sub-statement can't be null!"
) ? void (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7180, __extension__ __PRETTY_FUNCTION__
))
;
7181
7182 CleanupVarDeclMarking();
7183
7184 if (!Cleanup.exprNeedsCleanups())
7185 return SubStmt;
7186
7187 // FIXME: In order to attach the temporaries, wrap the statement into
7188 // a StmtExpr; currently this is only used for asm statements.
7189 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7190 // a new AsmStmtWithTemporaries.
7191 CompoundStmt *CompStmt = CompoundStmt::Create(
7192 Context, SubStmt, SourceLocation(), SourceLocation());
7193 Expr *E = new (Context)
7194 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7195 /*FIXME TemplateDepth=*/0);
7196 return MaybeCreateExprWithCleanups(E);
7197}
7198
7199/// Process the expression contained within a decltype. For such expressions,
7200/// certain semantic checks on temporaries are delayed until this point, and
7201/// are omitted for the 'topmost' call in the decltype expression. If the
7202/// topmost call bound a temporary, strip that temporary off the expression.
7203ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7204 assert(ExprEvalContexts.back().ExprContext ==(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
7205 ExpressionEvaluationContextRecord::EK_Decltype &&(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
7206 "not in a decltype expression")(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
;
7207
7208 ExprResult Result = CheckPlaceholderExpr(E);
7209 if (Result.isInvalid())
7210 return ExprError();
7211 E = Result.get();
7212
7213 // C++11 [expr.call]p11:
7214 // If a function call is a prvalue of object type,
7215 // -- if the function call is either
7216 // -- the operand of a decltype-specifier, or
7217 // -- the right operand of a comma operator that is the operand of a
7218 // decltype-specifier,
7219 // a temporary object is not introduced for the prvalue.
7220
7221 // Recursively rebuild ParenExprs and comma expressions to strip out the
7222 // outermost CXXBindTemporaryExpr, if any.
7223 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7224 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7225 if (SubExpr.isInvalid())
7226 return ExprError();
7227 if (SubExpr.get() == PE->getSubExpr())
7228 return E;
7229 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7230 }
7231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7232 if (BO->getOpcode() == BO_Comma) {
7233 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7234 if (RHS.isInvalid())
7235 return ExprError();
7236 if (RHS.get() == BO->getRHS())
7237 return E;
7238 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7239 BO->getType(), BO->getValueKind(),
7240 BO->getObjectKind(), BO->getOperatorLoc(),
7241 BO->getFPFeatures(getLangOpts()));
7242 }
7243 }
7244
7245 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7246 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7247 : nullptr;
7248 if (TopCall)
7249 E = TopCall;
7250 else
7251 TopBind = nullptr;
7252
7253 // Disable the special decltype handling now.
7254 ExprEvalContexts.back().ExprContext =
7255 ExpressionEvaluationContextRecord::EK_Other;
7256
7257 Result = CheckUnevaluatedOperand(E);
7258 if (Result.isInvalid())
7259 return ExprError();
7260 E = Result.get();
7261
7262 // In MS mode, don't perform any extra checking of call return types within a
7263 // decltype expression.
7264 if (getLangOpts().MSVCCompat)
7265 return E;
7266
7267 // Perform the semantic checks we delayed until this point.
7268 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7269 I != N; ++I) {
7270 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7271 if (Call == TopCall)
7272 continue;
7273
7274 if (CheckCallReturnType(Call->getCallReturnType(Context),
7275 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7276 return ExprError();
7277 }
7278
7279 // Now all relevant types are complete, check the destructors are accessible
7280 // and non-deleted, and annotate them on the temporaries.
7281 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7282 I != N; ++I) {
7283 CXXBindTemporaryExpr *Bind =
7284 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7285 if (Bind == TopBind)
7286 continue;
7287
7288 CXXTemporary *Temp = Bind->getTemporary();
7289
7290 CXXRecordDecl *RD =
7291 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7292 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7293 Temp->setDestructor(Destructor);
7294
7295 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7296 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7297 PDiag(diag::err_access_dtor_temp)
7298 << Bind->getType());
7299 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7300 return ExprError();
7301
7302 // We need a cleanup, but we don't need to remember the temporary.
7303 Cleanup.setExprNeedsCleanups(true);
7304 }
7305
7306 // Possibly strip off the top CXXBindTemporaryExpr.
7307 return E;
7308}
7309
7310/// Note a set of 'operator->' functions that were used for a member access.
7311static void noteOperatorArrows(Sema &S,
7312 ArrayRef<FunctionDecl *> OperatorArrows) {
7313 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7314 // FIXME: Make this configurable?
7315 unsigned Limit = 9;
7316 if (OperatorArrows.size() > Limit) {
7317 // Produce Limit-1 normal notes and one 'skipping' note.
7318 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7319 SkipCount = OperatorArrows.size() - (Limit - 1);
7320 }
7321
7322 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7323 if (I == SkipStart) {
7324 S.Diag(OperatorArrows[I]->getLocation(),
7325 diag::note_operator_arrows_suppressed)
7326 << SkipCount;
7327 I += SkipCount;
7328 } else {
7329 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7330 << OperatorArrows[I]->getCallResultType();
7331 ++I;
7332 }
7333 }
7334}
7335
7336ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7337 SourceLocation OpLoc,
7338 tok::TokenKind OpKind,
7339 ParsedType &ObjectType,
7340 bool &MayBePseudoDestructor) {
7341 // Since this might be a postfix expression, get rid of ParenListExprs.
7342 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7343 if (Result.isInvalid()) return ExprError();
7344 Base = Result.get();
7345
7346 Result = CheckPlaceholderExpr(Base);
7347 if (Result.isInvalid()) return ExprError();
7348 Base = Result.get();
7349
7350 QualType BaseType = Base->getType();
7351 MayBePseudoDestructor = false;
7352 if (BaseType->isDependentType()) {
7353 // If we have a pointer to a dependent type and are using the -> operator,
7354 // the object type is the type that the pointer points to. We might still
7355 // have enough information about that type to do something useful.
7356 if (OpKind == tok::arrow)
7357 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7358 BaseType = Ptr->getPointeeType();
7359
7360 ObjectType = ParsedType::make(BaseType);
7361 MayBePseudoDestructor = true;
7362 return Base;
7363 }
7364
7365 // C++ [over.match.oper]p8:
7366 // [...] When operator->returns, the operator-> is applied to the value
7367 // returned, with the original second operand.
7368 if (OpKind == tok::arrow) {
7369 QualType StartingType = BaseType;
7370 bool NoArrowOperatorFound = false;
7371 bool FirstIteration = true;
7372 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7373 // The set of types we've considered so far.
7374 llvm::SmallPtrSet<CanQualType,8> CTypes;
7375 SmallVector<FunctionDecl*, 8> OperatorArrows;
7376 CTypes.insert(Context.getCanonicalType(BaseType));
7377
7378 while (BaseType->isRecordType()) {
7379 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7380 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7381 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7382 noteOperatorArrows(*this, OperatorArrows);
7383 Diag(OpLoc, diag::note_operator_arrow_depth)
7384 << getLangOpts().ArrowDepth;
7385 return ExprError();
7386 }
7387
7388 Result = BuildOverloadedArrowExpr(
7389 S, Base, OpLoc,
7390 // When in a template specialization and on the first loop iteration,
7391 // potentially give the default diagnostic (with the fixit in a
7392 // separate note) instead of having the error reported back to here
7393 // and giving a diagnostic with a fixit attached to the error itself.
7394 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7395 ? nullptr
7396 : &NoArrowOperatorFound);
7397 if (Result.isInvalid()) {
7398 if (NoArrowOperatorFound) {
7399 if (FirstIteration) {
7400 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7401 << BaseType << 1 << Base->getSourceRange()
7402 << FixItHint::CreateReplacement(OpLoc, ".");
7403 OpKind = tok::period;
7404 break;
7405 }
7406 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7407 << BaseType << Base->getSourceRange();
7408 CallExpr *CE = dyn_cast<CallExpr>(Base);
7409 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7410 Diag(CD->getBeginLoc(),
7411 diag::note_member_reference_arrow_from_operator_arrow);
7412 }
7413 }
7414 return ExprError();
7415 }
7416 Base = Result.get();
7417 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7418 OperatorArrows.push_back(OpCall->getDirectCallee());
7419 BaseType = Base->getType();
7420 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7421 if (!CTypes.insert(CBaseType).second) {
7422 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7423 noteOperatorArrows(*this, OperatorArrows);
7424 return ExprError();
7425 }
7426 FirstIteration = false;
7427 }
7428
7429 if (OpKind == tok::arrow) {
7430 if (BaseType->isPointerType())
7431 BaseType = BaseType->getPointeeType();
7432 else if (auto *AT = Context.getAsArrayType(BaseType))
7433 BaseType = AT->getElementType();
7434 }
7435 }
7436
7437 // Objective-C properties allow "." access on Objective-C pointer types,
7438 // so adjust the base type to the object type itself.
7439 if (BaseType->isObjCObjectPointerType())
7440 BaseType = BaseType->getPointeeType();
7441
7442 // C++ [basic.lookup.classref]p2:
7443 // [...] If the type of the object expression is of pointer to scalar
7444 // type, the unqualified-id is looked up in the context of the complete
7445 // postfix-expression.
7446 //
7447 // This also indicates that we could be parsing a pseudo-destructor-name.
7448 // Note that Objective-C class and object types can be pseudo-destructor
7449 // expressions or normal member (ivar or property) access expressions, and
7450 // it's legal for the type to be incomplete if this is a pseudo-destructor
7451 // call. We'll do more incomplete-type checks later in the lookup process,
7452 // so just skip this check for ObjC types.
7453 if (!BaseType->isRecordType()) {
7454 ObjectType = ParsedType::make(BaseType);
7455 MayBePseudoDestructor = true;
7456 return Base;
7457 }
7458
7459 // The object type must be complete (or dependent), or
7460 // C++11 [expr.prim.general]p3:
7461 // Unlike the object expression in other contexts, *this is not required to
7462 // be of complete type for purposes of class member access (5.2.5) outside
7463 // the member function body.
7464 if (!BaseType->isDependentType() &&
7465 !isThisOutsideMemberFunctionBody(BaseType) &&
7466 RequireCompleteType(OpLoc, BaseType,
7467 diag::err_incomplete_member_access)) {
7468 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7469 }
7470
7471 // C++ [basic.lookup.classref]p2:
7472 // If the id-expression in a class member access (5.2.5) is an
7473 // unqualified-id, and the type of the object expression is of a class
7474 // type C (or of pointer to a class type C), the unqualified-id is looked
7475 // up in the scope of class C. [...]
7476 ObjectType = ParsedType::make(BaseType);
7477 return Base;
7478}
7479
7480static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7481 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7482 if (Base->hasPlaceholderType()) {
7483 ExprResult result = S.CheckPlaceholderExpr(Base);
7484 if (result.isInvalid()) return true;
7485 Base = result.get();
7486 }
7487 ObjectType = Base->getType();
7488
7489 // C++ [expr.pseudo]p2:
7490 // The left-hand side of the dot operator shall be of scalar type. The
7491 // left-hand side of the arrow operator shall be of pointer to scalar type.
7492 // This scalar type is the object type.
7493 // Note that this is rather different from the normal handling for the
7494 // arrow operator.
7495 if (OpKind == tok::arrow) {
7496 // The operator requires a prvalue, so perform lvalue conversions.
7497 // Only do this if we might plausibly end with a pointer, as otherwise
7498 // this was likely to be intended to be a '.'.
7499 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7500 ObjectType->isFunctionType()) {
7501 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7502 if (BaseResult.isInvalid())
7503 return true;
7504 Base = BaseResult.get();
7505 ObjectType = Base->getType();
7506 }
7507
7508 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7509 ObjectType = Ptr->getPointeeType();
7510 } else if (!Base->isTypeDependent()) {
7511 // The user wrote "p->" when they probably meant "p."; fix it.
7512 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7513 << ObjectType << true
7514 << FixItHint::CreateReplacement(OpLoc, ".");
7515 if (S.isSFINAEContext())
7516 return true;
7517
7518 OpKind = tok::period;
7519 }
7520 }
7521
7522 return false;
7523}
7524
7525/// Check if it's ok to try and recover dot pseudo destructor calls on
7526/// pointer objects.
7527static bool
7528canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7529 QualType DestructedType) {
7530 // If this is a record type, check if its destructor is callable.
7531 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7532 if (RD->hasDefinition())
7533 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7534 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7535 return false;
7536 }
7537
7538 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7539 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7540 DestructedType->isVectorType();
7541}
7542
7543ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7544 SourceLocation OpLoc,
7545 tok::TokenKind OpKind,
7546 const CXXScopeSpec &SS,
7547 TypeSourceInfo *ScopeTypeInfo,
7548 SourceLocation CCLoc,
7549 SourceLocation TildeLoc,
7550 PseudoDestructorTypeStorage Destructed) {
7551 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7552
7553 QualType ObjectType;
7554 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7555 return ExprError();
7556
7557 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7558 !ObjectType->isVectorType()) {
7559 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7560 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7561 else {
7562 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7563 << ObjectType << Base->getSourceRange();
7564 return ExprError();
7565 }
7566 }
7567
7568 // C++ [expr.pseudo]p2:
7569 // [...] The cv-unqualified versions of the object type and of the type
7570 // designated by the pseudo-destructor-name shall be the same type.
7571 if (DestructedTypeInfo) {
7572 QualType DestructedType = DestructedTypeInfo->getType();
7573 SourceLocation DestructedTypeStart
7574 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7575 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7576 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7577 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7578 // Foo *foo;
7579 // foo.~Foo();
7580 if (OpKind == tok::period && ObjectType->isPointerType() &&
7581 Context.hasSameUnqualifiedType(DestructedType,
7582 ObjectType->getPointeeType())) {
7583 auto Diagnostic =
7584 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7585 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7586
7587 // Issue a fixit only when the destructor is valid.
7588 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7589 *this, DestructedType))
7590 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7591
7592 // Recover by setting the object type to the destructed type and the
7593 // operator to '->'.
7594 ObjectType = DestructedType;
7595 OpKind = tok::arrow;
7596 } else {
7597 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7598 << ObjectType << DestructedType << Base->getSourceRange()
7599 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7600
7601 // Recover by setting the destructed type to the object type.
7602 DestructedType = ObjectType;
7603 DestructedTypeInfo =
7604 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7605 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7606 }
7607 } else if (DestructedType.getObjCLifetime() !=
7608 ObjectType.getObjCLifetime()) {
7609
7610 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7611 // Okay: just pretend that the user provided the correctly-qualified
7612 // type.
7613 } else {
7614 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7615 << ObjectType << DestructedType << Base->getSourceRange()
7616 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7617 }
7618
7619 // Recover by setting the destructed type to the object type.
7620 DestructedType = ObjectType;
7621 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7622 DestructedTypeStart);
7623 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7624 }
7625 }
7626 }
7627
7628 // C++ [expr.pseudo]p2:
7629 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7630 // form
7631 //
7632 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7633 //
7634 // shall designate the same scalar type.
7635 if (ScopeTypeInfo) {
7636 QualType ScopeType = ScopeTypeInfo->getType();
7637 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7638 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7639
7640 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7641 diag::err_pseudo_dtor_type_mismatch)
7642 << ObjectType << ScopeType << Base->getSourceRange()
7643 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7644
7645 ScopeType = QualType();
7646 ScopeTypeInfo = nullptr;
7647 }
7648 }
7649
7650 Expr *Result
7651 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7652 OpKind == tok::arrow, OpLoc,
7653 SS.getWithLocInContext(Context),
7654 ScopeTypeInfo,
7655 CCLoc,
7656 TildeLoc,
7657 Destructed);
7658
7659 return Result;
7660}
7661
7662ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7663 SourceLocation OpLoc,
7664 tok::TokenKind OpKind,
7665 CXXScopeSpec &SS,
7666 UnqualifiedId &FirstTypeName,
7667 SourceLocation CCLoc,
7668 SourceLocation TildeLoc,
7669 UnqualifiedId &SecondTypeName) {
7670 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
7671 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
7672 "Invalid first type name in pseudo-destructor")(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
;
7673 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
7674 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
7675 "Invalid second type name in pseudo-destructor")(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
;
7676
7677 QualType ObjectType;
7678 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7679 return ExprError();
7680
7681 // Compute the object type that we should use for name lookup purposes. Only
7682 // record types and dependent types matter.
7683 ParsedType ObjectTypePtrForLookup;
7684 if (!SS.isSet()) {
7685 if (ObjectType->isRecordType())
7686 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7687 else if (ObjectType->isDependentType())
7688 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7689 }
7690
7691 // Convert the name of the type being destructed (following the ~) into a
7692 // type (with source-location information).
7693 QualType DestructedType;
7694 TypeSourceInfo *DestructedTypeInfo = nullptr;
7695 PseudoDestructorTypeStorage Destructed;
7696 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7697 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7698 SecondTypeName.StartLocation,
7699 S, &SS, true, false, ObjectTypePtrForLookup,
7700 /*IsCtorOrDtorName*/true);
7701 if (!T &&
7702 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7703 (!SS.isSet() && ObjectType->isDependentType()))) {
7704 // The name of the type being destroyed is a dependent name, and we
7705 // couldn't find anything useful in scope. Just store the identifier and
7706 // it's location, and we'll perform (qualified) name lookup again at
7707 // template instantiation time.
7708 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7709 SecondTypeName.StartLocation);
7710 } else if (!T) {
7711 Diag(SecondTypeName.StartLocation,
7712 diag::err_pseudo_dtor_destructor_non_type)
7713 << SecondTypeName.Identifier << ObjectType;
7714 if (isSFINAEContext())
7715 return ExprError();
7716
7717 // Recover by assuming we had the right type all along.
7718 DestructedType = ObjectType;
7719 } else
7720 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7721 } else {
7722 // Resolve the template-id to a type.
7723 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7724 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7725 TemplateId->NumArgs);
7726 TypeResult T = ActOnTemplateIdType(S,
7727 SS,
7728 TemplateId->TemplateKWLoc,
7729 TemplateId->Template,
7730 TemplateId->Name,
7731 TemplateId->TemplateNameLoc,
7732 TemplateId->LAngleLoc,
7733 TemplateArgsPtr,
7734 TemplateId->RAngleLoc,
7735 /*IsCtorOrDtorName*/true);
7736 if (T.isInvalid() || !T.get()) {
7737 // Recover by assuming we had the right type all along.
7738 DestructedType = ObjectType;
7739 } else
7740 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7741 }
7742
7743 // If we've performed some kind of recovery, (re-)build the type source
7744 // information.
7745 if (!DestructedType.isNull()) {
7746 if (!DestructedTypeInfo)
7747 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7748 SecondTypeName.StartLocation);
7749 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7750 }
7751
7752 // Convert the name of the scope type (the type prior to '::') into a type.
7753 TypeSourceInfo *ScopeTypeInfo = nullptr;
7754 QualType ScopeType;
7755 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7756 FirstTypeName.Identifier) {
7757 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7758 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7759 FirstTypeName.StartLocation,
7760 S, &SS, true, false, ObjectTypePtrForLookup,
7761 /*IsCtorOrDtorName*/true);
7762 if (!T) {
7763 Diag(FirstTypeName.StartLocation,
7764 diag::err_pseudo_dtor_destructor_non_type)
7765 << FirstTypeName.Identifier << ObjectType;
7766
7767 if (isSFINAEContext())
7768 return ExprError();
7769
7770 // Just drop this type. It's unnecessary anyway.
7771 ScopeType = QualType();
7772 } else
7773 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7774 } else {
7775 // Resolve the template-id to a type.
7776 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7777 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7778 TemplateId->NumArgs);
7779 TypeResult T = ActOnTemplateIdType(S,
7780 SS,
7781 TemplateId->TemplateKWLoc,
7782 TemplateId->Template,
7783 TemplateId->Name,
7784 TemplateId->TemplateNameLoc,
7785 TemplateId->LAngleLoc,
7786 TemplateArgsPtr,
7787 TemplateId->RAngleLoc,
7788 /*IsCtorOrDtorName*/true);
7789 if (T.isInvalid() || !T.get()) {
7790 // Recover by dropping this type.
7791 ScopeType = QualType();
7792 } else
7793 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7794 }
7795 }
7796
7797 if (!ScopeType.isNull() && !ScopeTypeInfo)
7798 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7799 FirstTypeName.StartLocation);
7800
7801
7802 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7803 ScopeTypeInfo, CCLoc, TildeLoc,
7804 Destructed);
7805}
7806
7807ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7808 SourceLocation OpLoc,
7809 tok::TokenKind OpKind,
7810 SourceLocation TildeLoc,
7811 const DeclSpec& DS) {
7812 QualType ObjectType;
7813 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7814 return ExprError();
7815
7816 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7817 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7818 return true;
7819 }
7820
7821 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7822
7823 TypeLocBuilder TLB;
7824 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7825 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
7826 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
7827 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7828 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7829
7830 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7831 nullptr, SourceLocation(), TildeLoc,
7832 Destructed);
7833}
7834
7835ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7836 CXXConversionDecl *Method,
7837 bool HadMultipleCandidates) {
7838 // Convert the expression to match the conversion function's implicit object
7839 // parameter.
7840 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7841 FoundDecl, Method);
7842 if (Exp.isInvalid())
7843 return true;
7844
7845 if (Method->getParent()->isLambda() &&
7846 Method->getConversionType()->isBlockPointerType()) {
7847 // This is a lambda conversion to block pointer; check if the argument
7848 // was a LambdaExpr.
7849 Expr *SubE = E;
7850 CastExpr *CE = dyn_cast<CastExpr>(SubE);
7851 if (CE && CE->getCastKind() == CK_NoOp)
7852 SubE = CE->getSubExpr();
7853 SubE = SubE->IgnoreParens();
7854 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7855 SubE = BE->getSubExpr();
7856 if (isa<LambdaExpr>(SubE)) {
7857 // For the conversion to block pointer on a lambda expression, we
7858 // construct a special BlockLiteral instead; this doesn't really make
7859 // a difference in ARC, but outside of ARC the resulting block literal
7860 // follows the normal lifetime rules for block literals instead of being
7861 // autoreleased.
7862 PushExpressionEvaluationContext(
7863 ExpressionEvaluationContext::PotentiallyEvaluated);
7864 ExprResult BlockExp = BuildBlockForLambdaConversion(
7865 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7866 PopExpressionEvaluationContext();
7867
7868 // FIXME: This note should be produced by a CodeSynthesisContext.
7869 if (BlockExp.isInvalid())
7870 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7871 return BlockExp;
7872 }
7873 }
7874
7875 MemberExpr *ME =
7876 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7877 NestedNameSpecifierLoc(), SourceLocation(), Method,
7878 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7879 HadMultipleCandidates, DeclarationNameInfo(),
7880 Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7881
7882 QualType ResultType = Method->getReturnType();
7883 ExprValueKind VK = Expr::getValueKindForType(ResultType);
7884 ResultType = ResultType.getNonLValueExprType(Context);
7885
7886 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7887 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7888 CurFPFeatureOverrides());
7889
7890 if (CheckFunctionCall(Method, CE,
7891 Method->getType()->castAs<FunctionProtoType>()))
7892 return ExprError();
7893
7894 return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7895}
7896
7897ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7898 SourceLocation RParen) {
7899 // If the operand is an unresolved lookup expression, the expression is ill-
7900 // formed per [over.over]p1, because overloaded function names cannot be used
7901 // without arguments except in explicit contexts.
7902 ExprResult R = CheckPlaceholderExpr(Operand);
7903 if (R.isInvalid())
7904 return R;
7905
7906 R = CheckUnevaluatedOperand(R.get());
7907 if (R.isInvalid())
7908 return ExprError();
7909
7910 Operand = R.get();
7911
7912 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7913 Operand->HasSideEffects(Context, false)) {
7914 // The expression operand for noexcept is in an unevaluated expression
7915 // context, so side effects could result in unintended consequences.
7916 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7917 }
7918
7919 CanThrowResult CanThrow = canThrow(Operand);
7920 return new (Context)
7921 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7922}
7923
7924ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7925 Expr *Operand, SourceLocation RParen) {
7926 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7927}
7928
7929static void MaybeDecrementCount(
7930 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7931 DeclRefExpr *LHS = nullptr;
7932 bool IsCompoundAssign = false;
7933 bool isIncrementDecrementUnaryOp = false;
7934 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7935 if (BO->getLHS()->getType()->isDependentType() ||
7936 BO->getRHS()->getType()->isDependentType()) {
7937 if (BO->getOpcode() != BO_Assign)
7938 return;
7939 } else if (!BO->isAssignmentOp())
7940 return;
7941 else
7942 IsCompoundAssign = BO->isCompoundAssignmentOp();
7943 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7944 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7945 if (COCE->getOperator() != OO_Equal)
7946 return;
7947 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7948 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7949 if (!UO->isIncrementDecrementOp())
7950 return;
7951 isIncrementDecrementUnaryOp = true;
7952 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
7953 }
7954 if (!LHS)
7955 return;
7956 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7957 if (!VD)
7958 return;
7959 // Don't decrement RefsMinusAssignments if volatile variable with compound
7960 // assignment (+=, ...) or increment/decrement unary operator to avoid
7961 // potential unused-but-set-variable warning.
7962 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
7963 VD->getType().isVolatileQualified())
7964 return;
7965 auto iter = RefsMinusAssignments.find(VD);
7966 if (iter == RefsMinusAssignments.end())
7967 return;
7968 iter->getSecond()--;
7969}
7970
7971/// Perform the conversions required for an expression used in a
7972/// context that ignores the result.
7973ExprResult Sema::IgnoredValueConversions(Expr *E) {
7974 MaybeDecrementCount(E, RefsMinusAssignments);
7975
7976 if (E->hasPlaceholderType()) {
7977 ExprResult result = CheckPlaceholderExpr(E);
7978 if (result.isInvalid()) return E;
7979 E = result.get();
7980 }
7981
7982 // C99 6.3.2.1:
7983 // [Except in specific positions,] an lvalue that does not have
7984 // array type is converted to the value stored in the
7985 // designated object (and is no longer an lvalue).
7986 if (E->isPRValue()) {
7987 // In C, function designators (i.e. expressions of function type)
7988 // are r-values, but we still want to do function-to-pointer decay
7989 // on them. This is both technically correct and convenient for
7990 // some clients.
7991 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7992 return DefaultFunctionArrayConversion(E);
7993
7994 return E;
7995 }
7996
7997 if (getLangOpts().CPlusPlus) {
7998 // The C++11 standard defines the notion of a discarded-value expression;
7999 // normally, we don't need to do anything to handle it, but if it is a
8000 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8001 // conversion.
8002 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8003 ExprResult Res = DefaultLvalueConversion(E);
8004 if (Res.isInvalid())
8005 return E;
8006 E = Res.get();
8007 } else {
8008 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8009 // it occurs as a discarded-value expression.
8010 CheckUnusedVolatileAssignment(E);
8011 }
8012
8013 // C++1z:
8014 // If the expression is a prvalue after this optional conversion, the
8015 // temporary materialization conversion is applied.
8016 //
8017 // We skip this step: IR generation is able to synthesize the storage for
8018 // itself in the aggregate case, and adding the extra node to the AST is
8019 // just clutter.
8020 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8021 // FIXME: Do any other AST consumers care about this?
8022 return E;
8023 }
8024
8025 // GCC seems to also exclude expressions of incomplete enum type.
8026 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8027 if (!T->getDecl()->isComplete()) {
8028 // FIXME: stupid workaround for a codegen bug!
8029 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8030 return E;
8031 }
8032 }
8033
8034 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8035 if (Res.isInvalid())
8036 return E;
8037 E = Res.get();
8038
8039 if (!E->getType()->isVoidType())
8040 RequireCompleteType(E->getExprLoc(), E->getType(),
8041 diag::err_incomplete_type);
8042 return E;
8043}
8044
8045ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8046 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8047 // it occurs as an unevaluated operand.
8048 CheckUnusedVolatileAssignment(E);
8049
8050 return E;
8051}
8052
8053// If we can unambiguously determine whether Var can never be used
8054// in a constant expression, return true.
8055// - if the variable and its initializer are non-dependent, then
8056// we can unambiguously check if the variable is a constant expression.
8057// - if the initializer is not value dependent - we can determine whether
8058// it can be used to initialize a constant expression. If Init can not
8059// be used to initialize a constant expression we conclude that Var can
8060// never be a constant expression.
8061// - FXIME: if the initializer is dependent, we can still do some analysis and
8062// identify certain cases unambiguously as non-const by using a Visitor:
8063// - such as those that involve odr-use of a ParmVarDecl, involve a new
8064// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8065static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8066 ASTContext &Context) {
8067 if (isa<ParmVarDecl>(Var)) return true;
8068 const VarDecl *DefVD = nullptr;
8069
8070 // If there is no initializer - this can not be a constant expression.
8071 if (!Var->getAnyInitializer(DefVD)) return true;
8072 assert(DefVD)(static_cast <bool> (DefVD) ? void (0) : __assert_fail (
"DefVD", "clang/lib/Sema/SemaExprCXX.cpp", 8072, __extension__
__PRETTY_FUNCTION__))
;
8073 if (DefVD->isWeak()) return false;
8074 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8075
8076 Expr *Init = cast<Expr>(Eval->Value);
8077
8078 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8079 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8080 // of value-dependent expressions, and use it here to determine whether the
8081 // initializer is a potential constant expression.
8082 return false;
8083 }
8084
8085 return !Var->isUsableInConstantExpressions(Context);
8086}
8087
8088/// Check if the current lambda has any potential captures
8089/// that must be captured by any of its enclosing lambdas that are ready to
8090/// capture. If there is a lambda that can capture a nested
8091/// potential-capture, go ahead and do so. Also, check to see if any
8092/// variables are uncaptureable or do not involve an odr-use so do not
8093/// need to be captured.
8094
8095static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8096 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8097
8098 assert(!S.isUnevaluatedContext())(static_cast <bool> (!S.isUnevaluatedContext()) ? void (
0) : __assert_fail ("!S.isUnevaluatedContext()", "clang/lib/Sema/SemaExprCXX.cpp"
, 8098, __extension__ __PRETTY_FUNCTION__))
;
8099 assert(S.CurContext->isDependentContext())(static_cast <bool> (S.CurContext->isDependentContext
()) ? void (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "clang/lib/Sema/SemaExprCXX.cpp", 8099, __extension__ __PRETTY_FUNCTION__
))
;
8100#ifndef NDEBUG
8101 DeclContext *DC = S.CurContext;
8102 while (DC && isa<CapturedDecl>(DC))
8103 DC = DC->getParent();
8104 assert((static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
8105 CurrentLSI->CallOperator == DC &&(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
8106 "The current call operator must be synchronized with Sema's CurContext")(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
;
8107#endif // NDEBUG
8108
8109 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8110
8111 // All the potentially captureable variables in the current nested
8112 // lambda (within a generic outer lambda), must be captured by an
8113 // outer lambda that is enclosed within a non-dependent context.
8114 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8115 // If the variable is clearly identified as non-odr-used and the full
8116 // expression is not instantiation dependent, only then do we not
8117 // need to check enclosing lambda's for speculative captures.
8118 // For e.g.:
8119 // Even though 'x' is not odr-used, it should be captured.
8120 // int test() {
8121 // const int x = 10;
8122 // auto L = [=](auto a) {
8123 // (void) +x + a;
8124 // };
8125 // }
8126 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8127 !IsFullExprInstantiationDependent)
8128 return;
8129
8130 // If we have a capture-capable lambda for the variable, go ahead and
8131 // capture the variable in that lambda (and all its enclosing lambdas).
8132 if (const Optional<unsigned> Index =
8133 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8134 S.FunctionScopes, Var, S))
8135 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8136 Index.getValue());
8137 const bool IsVarNeverAConstantExpression =
8138 VariableCanNeverBeAConstantExpression(Var, S.Context);
8139 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8140 // This full expression is not instantiation dependent or the variable
8141 // can not be used in a constant expression - which means
8142 // this variable must be odr-used here, so diagnose a
8143 // capture violation early, if the variable is un-captureable.
8144 // This is purely for diagnosing errors early. Otherwise, this
8145 // error would get diagnosed when the lambda becomes capture ready.
8146 QualType CaptureType, DeclRefType;
8147 SourceLocation ExprLoc = VarExpr->getExprLoc();
8148 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8149 /*EllipsisLoc*/ SourceLocation(),
8150 /*BuildAndDiagnose*/false, CaptureType,
8151 DeclRefType, nullptr)) {
8152 // We will never be able to capture this variable, and we need
8153 // to be able to in any and all instantiations, so diagnose it.
8154 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8155 /*EllipsisLoc*/ SourceLocation(),
8156 /*BuildAndDiagnose*/true, CaptureType,
8157 DeclRefType, nullptr);
8158 }
8159 }
8160 });
8161
8162 // Check if 'this' needs to be captured.
8163 if (CurrentLSI->hasPotentialThisCapture()) {
8164 // If we have a capture-capable lambda for 'this', go ahead and capture
8165 // 'this' in that lambda (and all its enclosing lambdas).
8166 if (const Optional<unsigned> Index =
8167 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8168 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8169 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8170 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8171 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8172 &FunctionScopeIndexOfCapturableLambda);
8173 }
8174 }
8175
8176 // Reset all the potential captures at the end of each full-expression.
8177 CurrentLSI->clearPotentialCaptures();
8178}
8179
8180static ExprResult attemptRecovery(Sema &SemaRef,
8181 const TypoCorrectionConsumer &Consumer,
8182 const TypoCorrection &TC) {
8183 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8184 Consumer.getLookupResult().getLookupKind());
8185 const CXXScopeSpec *SS = Consumer.getSS();
8186 CXXScopeSpec NewSS;
8187
8188 // Use an approprate CXXScopeSpec for building the expr.
8189 if (auto *NNS = TC.getCorrectionSpecifier())
8190 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8191 else if (SS && !TC.WillReplaceSpecifier())
8192 NewSS = *SS;
8193
8194 if (auto *ND = TC.getFoundDecl()) {
8195 R.setLookupName(ND->getDeclName());
8196 R.addDecl(ND);
8197 if (ND->isCXXClassMember()) {
8198 // Figure out the correct naming class to add to the LookupResult.
8199 CXXRecordDecl *Record = nullptr;
8200 if (auto *NNS = TC.getCorrectionSpecifier())
8201 Record = NNS->getAsType()->getAsCXXRecordDecl();
8202 if (!Record)
8203 Record =
8204 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8205 if (Record)
8206 R.setNamingClass(Record);
8207
8208 // Detect and handle the case where the decl might be an implicit
8209 // member.
8210 bool MightBeImplicitMember;
8211 if (!Consumer.isAddressOfOperand())
8212 MightBeImplicitMember = true;
8213 else if (!NewSS.isEmpty())
8214 MightBeImplicitMember = false;
8215 else if (R.isOverloadedResult())
8216 MightBeImplicitMember = false;
8217 else if (R.isUnresolvableResult())
8218 MightBeImplicitMember = true;
8219 else
8220 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8221 isa<IndirectFieldDecl>(ND) ||
8222 isa<MSPropertyDecl>(ND);
8223
8224 if (MightBeImplicitMember)
8225 return SemaRef.BuildPossibleImplicitMemberExpr(
8226 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8227 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8228 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8229 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8230 Ivar->getIdentifier());
8231 }
8232 }
8233
8234 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8235 /*AcceptInvalidDecl*/ true);
8236}
8237
8238namespace {
8239class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8240 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8241
8242public:
8243 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8244 : TypoExprs(TypoExprs) {}
8245 bool VisitTypoExpr(TypoExpr *TE) {
8246 TypoExprs.insert(TE);
8247 return true;
8248 }
8249};
8250
8251class TransformTypos : public TreeTransform<TransformTypos> {
8252 typedef TreeTransform<TransformTypos> BaseTransform;
8253
8254 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8255 // process of being initialized.
8256 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8257 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8258 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8259 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8260
8261 /// Emit diagnostics for all of the TypoExprs encountered.
8262 ///
8263 /// If the TypoExprs were successfully corrected, then the diagnostics should
8264 /// suggest the corrections. Otherwise the diagnostics will not suggest
8265 /// anything (having been passed an empty TypoCorrection).
8266 ///
8267 /// If we've failed to correct due to ambiguous corrections, we need to
8268 /// be sure to pass empty corrections and replacements. Otherwise it's
8269 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8270 /// and we don't want to report those diagnostics.
8271 void EmitAllDiagnostics(bool IsAmbiguous) {
8272 for (TypoExpr *TE : TypoExprs) {
8273 auto &State = SemaRef.getTypoExprState(TE);
8274 if (State.DiagHandler) {
8275 TypoCorrection TC = IsAmbiguous
8276 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8277 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8278
8279 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8280 // TypoCorrection, replacing the existing decls. This ensures the right
8281 // NamedDecl is used in diagnostics e.g. in the case where overload
8282 // resolution was used to select one from several possible decls that
8283 // had been stored in the TypoCorrection.
8284 if (auto *ND = getDeclFromExpr(
8285 Replacement.isInvalid() ? nullptr : Replacement.get()))
8286 TC.setCorrectionDecl(ND);
8287
8288 State.DiagHandler(TC);
8289 }
8290 SemaRef.clearDelayedTypo(TE);
8291 }
8292 }
8293
8294 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8295 /// We allow advancement of the correction stream by removing it from the
8296 /// TransformCache which allows `TransformTypoExpr` to advance during the
8297 /// next transformation attempt.
8298 ///
8299 /// Any substitution attempts for the previous TypoExprs (which must have been
8300 /// finished) will need to be retried since it's possible that they will now
8301 /// be invalid given the latest advancement.
8302 ///
8303 /// We need to be sure that we're making progress - it's possible that the
8304 /// tree is so malformed that the transform never makes it to the
8305 /// `TransformTypoExpr`.
8306 ///
8307 /// Returns true if there are any untried correction combinations.
8308 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8309 for (auto TE : TypoExprs) {
8310 auto &State = SemaRef.getTypoExprState(TE);
8311 TransformCache.erase(TE);
8312 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8313 return false;
8314 if (!State.Consumer->finished())
8315 return true;
8316 State.Consumer->resetCorrectionStream();
8317 }
8318 return false;
8319 }
8320
8321 NamedDecl *getDeclFromExpr(Expr *E) {
8322 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8323 E = OverloadResolution[OE];
8324
8325 if (!E)
8326 return nullptr;
8327 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8328 return DRE->getFoundDecl();
8329 if (auto *ME = dyn_cast<MemberExpr>(E))
8330 return ME->getFoundDecl();
8331 // FIXME: Add any other expr types that could be be seen by the delayed typo
8332 // correction TreeTransform for which the corresponding TypoCorrection could
8333 // contain multiple decls.
8334 return nullptr;
8335 }
8336
8337 ExprResult TryTransform(Expr *E) {
8338 Sema::SFINAETrap Trap(SemaRef);
8339 ExprResult Res = TransformExpr(E);
8340 if (Trap.hasErrorOccurred() || Res.isInvalid())
8341 return ExprError();
8342
8343 return ExprFilter(Res.get());
8344 }
8345
8346 // Since correcting typos may intoduce new TypoExprs, this function
8347 // checks for new TypoExprs and recurses if it finds any. Note that it will
8348 // only succeed if it is able to correct all typos in the given expression.
8349 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8350 if (Res.isInvalid()) {
8351 return Res;
8352 }
8353 // Check to see if any new TypoExprs were created. If so, we need to recurse
8354 // to check their validity.
8355 Expr *FixedExpr = Res.get();
8356
8357 auto SavedTypoExprs = std::move(TypoExprs);
8358 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8359 TypoExprs.clear();
8360 AmbiguousTypoExprs.clear();
8361
8362 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8363 if (!TypoExprs.empty()) {
8364 // Recurse to handle newly created TypoExprs. If we're not able to
8365 // handle them, discard these TypoExprs.
8366 ExprResult RecurResult =
8367 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8368 if (RecurResult.isInvalid()) {
8369 Res = ExprError();
8370 // Recursive corrections didn't work, wipe them away and don't add
8371 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8372 // since we don't want to clear them twice. Note: it's possible the
8373 // TypoExprs were created recursively and thus won't be in our
8374 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8375 auto &SemaTypoExprs = SemaRef.TypoExprs;
8376 for (auto TE : TypoExprs) {
8377 TransformCache.erase(TE);
8378 SemaRef.clearDelayedTypo(TE);
8379
8380 auto SI = find(SemaTypoExprs, TE);
8381 if (SI != SemaTypoExprs.end()) {
8382 SemaTypoExprs.erase(SI);
8383 }
8384 }
8385 } else {
8386 // TypoExpr is valid: add newly created TypoExprs since we were
8387 // able to correct them.
8388 Res = RecurResult;
8389 SavedTypoExprs.set_union(TypoExprs);
8390 }
8391 }
8392
8393 TypoExprs = std::move(SavedTypoExprs);
8394 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8395
8396 return Res;
8397 }
8398
8399 // Try to transform the given expression, looping through the correction
8400 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8401 //
8402 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8403 // true and this method immediately will return an `ExprError`.
8404 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8405 ExprResult Res;
8406 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8407 SemaRef.TypoExprs.clear();
8408
8409 while (true) {
8410 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8411
8412 // Recursion encountered an ambiguous correction. This means that our
8413 // correction itself is ambiguous, so stop now.
8414 if (IsAmbiguous)
8415 break;
8416
8417 // If the transform is still valid after checking for any new typos,
8418 // it's good to go.
8419 if (!Res.isInvalid())
8420 break;
8421
8422 // The transform was invalid, see if we have any TypoExprs with untried
8423 // correction candidates.
8424 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8425 break;
8426 }
8427
8428 // If we found a valid result, double check to make sure it's not ambiguous.
8429 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8430 auto SavedTransformCache =
8431 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8432
8433 // Ensure none of the TypoExprs have multiple typo correction candidates
8434 // with the same edit length that pass all the checks and filters.
8435 while (!AmbiguousTypoExprs.empty()) {
8436 auto TE = AmbiguousTypoExprs.back();
8437
8438 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8439 // and invalidating our TypoExprState, so always fetch it instead of storing.
8440 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8441
8442 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8443 TypoCorrection Next;
8444 do {
8445 // Fetch the next correction by erasing the typo from the cache and calling
8446 // `TryTransform` which will iterate through corrections in
8447 // `TransformTypoExpr`.
8448 TransformCache.erase(TE);
8449 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8450
8451 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8452 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8453 SavedTransformCache.erase(TE);
8454 Res = ExprError();
8455 IsAmbiguous = true;
8456 break;
8457 }
8458 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8459 Next.getEditDistance(false) == TC.getEditDistance(false));
8460
8461 if (IsAmbiguous)
8462 break;
8463
8464 AmbiguousTypoExprs.remove(TE);
8465 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8466 TransformCache[TE] = SavedTransformCache[TE];
8467 }
8468 TransformCache = std::move(SavedTransformCache);
8469 }
8470
8471 // Wipe away any newly created TypoExprs that we don't know about. Since we
8472 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8473 // possible if a `TypoExpr` is created during a transformation but then
8474 // fails before we can discover it.
8475 auto &SemaTypoExprs = SemaRef.TypoExprs;
8476 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8477 auto TE = *Iterator;
8478 auto FI = find(TypoExprs, TE);
8479 if (FI != TypoExprs.end()) {
8480 Iterator++;
8481 continue;
8482 }
8483 SemaRef.clearDelayedTypo(TE);
8484 Iterator = SemaTypoExprs.erase(Iterator);
8485 }
8486 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8487
8488 return Res;
8489 }
8490
8491public:
8492 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8493 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8494
8495 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8496 MultiExprArg Args,
8497 SourceLocation RParenLoc,
8498 Expr *ExecConfig = nullptr) {
8499 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8500 RParenLoc, ExecConfig);
8501 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8502 if (Result.isUsable()) {
8503 Expr *ResultCall = Result.get();
8504 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8505 ResultCall = BE->getSubExpr();
8506 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8507 OverloadResolution[OE] = CE->getCallee();
8508 }
8509 }
8510 return Result;
8511 }
8512
8513 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8514
8515 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8516
8517 ExprResult Transform(Expr *E) {
8518 bool IsAmbiguous = false;
8519 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8520
8521 if (!Res.isUsable())
8522 FindTypoExprs(TypoExprs).TraverseStmt(E);
8523
8524 EmitAllDiagnostics(IsAmbiguous);
8525
8526 return Res;
8527 }
8528
8529 ExprResult TransformTypoExpr(TypoExpr *E) {
8530 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8531 // cached transformation result if there is one and the TypoExpr isn't the
8532 // first one that was encountered.
8533 auto &CacheEntry = TransformCache[E];
8534 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8535 return CacheEntry;
8536 }
8537
8538 auto &State = SemaRef.getTypoExprState(E);
8539 assert(State.Consumer && "Cannot transform a cleared TypoExpr")(static_cast <bool> (State.Consumer && "Cannot transform a cleared TypoExpr"
) ? void (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8539, __extension__ __PRETTY_FUNCTION__
))
;
8540
8541 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8542 // typo correction and return it.
8543 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8544 if (InitDecl && TC.getFoundDecl() == InitDecl)
8545 continue;
8546 // FIXME: If we would typo-correct to an invalid declaration, it's
8547 // probably best to just suppress all errors from this typo correction.
8548 ExprResult NE = State.RecoveryHandler ?
8549 State.RecoveryHandler(SemaRef, E, TC) :
8550 attemptRecovery(SemaRef, *State.Consumer, TC);
8551 if (!NE.isInvalid()) {
8552 // Check whether there may be a second viable correction with the same
8553 // edit distance; if so, remember this TypoExpr may have an ambiguous
8554 // correction so it can be more thoroughly vetted later.
8555 TypoCorrection Next;
8556 if ((Next = State.Consumer->peekNextCorrection()) &&
8557 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8558 AmbiguousTypoExprs.insert(E);
8559 } else {
8560 AmbiguousTypoExprs.remove(E);
8561 }
8562 assert(!NE.isUnset() &&(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8563, __extension__ __PRETTY_FUNCTION__
))
8563 "Typo was transformed into a valid-but-null ExprResult")(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8563, __extension__ __PRETTY_FUNCTION__
))
;
8564 return CacheEntry = NE;
8565 }
8566 }
8567 return CacheEntry = ExprError();
8568 }
8569};
8570}
8571
8572ExprResult
8573Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8574 bool RecoverUncorrectedTypos,
8575 llvm::function_ref<ExprResult(Expr *)> Filter) {
8576 // If the current evaluation context indicates there are uncorrected typos
8577 // and the current expression isn't guaranteed to not have typos, try to
8578 // resolve any TypoExpr nodes that might be in the expression.
8579 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8580 (E->isTypeDependent() || E->isValueDependent() ||
8581 E->isInstantiationDependent())) {
8582 auto TyposResolved = DelayedTypos.size();
8583 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8584 TyposResolved -= DelayedTypos.size();
8585 if (Result.isInvalid() || Result.get() != E) {
8586 ExprEvalContexts.back().NumTypos -= TyposResolved;
8587 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8588 struct TyposReplace : TreeTransform<TyposReplace> {
8589 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8590 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8591 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8592 E->getEndLoc(), {});
8593 }
8594 } TT(*this);
8595 return TT.TransformExpr(E);
8596 }
8597 return Result;
8598 }
8599 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")(static_cast <bool> (TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? void (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8599, __extension__ __PRETTY_FUNCTION__
))
;
8600 }
8601 return E;
8602}
8603
8604ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8605 bool DiscardedValue,
8606 bool IsConstexpr) {
8607 ExprResult FullExpr = FE;
8608
8609 if (!FullExpr.get())
8610 return ExprError();
8611
8612 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8613 return ExprError();
8614
8615 if (DiscardedValue) {
8616 // Top-level expressions default to 'id' when we're in a debugger.
8617 if (getLangOpts().DebuggerCastResultToId &&
8618 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8619 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8620 if (FullExpr.isInvalid())
8621 return ExprError();
8622 }
8623
8624 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8625 if (FullExpr.isInvalid())
8626 return ExprError();
8627
8628 FullExpr = IgnoredValueConversions(FullExpr.get());
8629 if (FullExpr.isInvalid())
8630 return ExprError();
8631
8632 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8633 }
8634
8635 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8636 /*RecoverUncorrectedTypos=*/true);
8637 if (FullExpr.isInvalid())
8638 return ExprError();
8639
8640 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8641
8642 // At the end of this full expression (which could be a deeply nested
8643 // lambda), if there is a potential capture within the nested lambda,
8644 // have the outer capture-able lambda try and capture it.
8645 // Consider the following code:
8646 // void f(int, int);
8647 // void f(const int&, double);
8648 // void foo() {
8649 // const int x = 10, y = 20;
8650 // auto L = [=](auto a) {
8651 // auto M = [=](auto b) {
8652 // f(x, b); <-- requires x to be captured by L and M
8653 // f(y, a); <-- requires y to be captured by L, but not all Ms
8654 // };
8655 // };
8656 // }
8657
8658 // FIXME: Also consider what happens for something like this that involves
8659 // the gnu-extension statement-expressions or even lambda-init-captures:
8660 // void f() {
8661 // const int n = 0;
8662 // auto L = [&](auto a) {
8663 // +n + ({ 0; a; });
8664 // };
8665 // }
8666 //
8667 // Here, we see +n, and then the full-expression 0; ends, so we don't
8668 // capture n (and instead remove it from our list of potential captures),
8669 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8670 // for us to see that we need to capture n after all.
8671
8672 LambdaScopeInfo *const CurrentLSI =
8673 getCurLambda(/*IgnoreCapturedRegions=*/true);
8674 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8675 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8676 // for an example of the code that might cause this asynchrony.
8677 // By ensuring we are in the context of a lambda's call operator
8678 // we can fix the bug (we only need to check whether we need to capture
8679 // if we are within a lambda's body); but per the comments in that
8680 // PR, a proper fix would entail :
8681 // "Alternative suggestion:
8682 // - Add to Sema an integer holding the smallest (outermost) scope
8683 // index that we are *lexically* within, and save/restore/set to
8684 // FunctionScopes.size() in InstantiatingTemplate's
8685 // constructor/destructor.
8686 // - Teach the handful of places that iterate over FunctionScopes to
8687 // stop at the outermost enclosing lexical scope."
8688 DeclContext *DC = CurContext;
8689 while (DC && isa<CapturedDecl>(DC))
8690 DC = DC->getParent();
8691 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8692 if (IsInLambdaDeclContext && CurrentLSI &&
8693 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8694 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8695 *this);
8696 return MaybeCreateExprWithCleanups(FullExpr);
8697}
8698
8699StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8700 if (!FullStmt) return StmtError();
8701
8702 return MaybeCreateStmtWithCleanups(FullStmt);
8703}
8704
8705Sema::IfExistsResult
8706Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8707 CXXScopeSpec &SS,
8708 const DeclarationNameInfo &TargetNameInfo) {
8709 DeclarationName TargetName = TargetNameInfo.getName();
8710 if (!TargetName)
8711 return IER_DoesNotExist;
8712
8713 // If the name itself is dependent, then the result is dependent.
8714 if (TargetName.isDependentName())
8715 return IER_Dependent;
8716
8717 // Do the redeclaration lookup in the current scope.
8718 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8719 Sema::NotForRedeclaration);
8720 LookupParsedName(R, S, &SS);
8721 R.suppressDiagnostics();
8722
8723 switch (R.getResultKind()) {
8724 case LookupResult::Found:
8725 case LookupResult::FoundOverloaded:
8726 case LookupResult::FoundUnresolvedValue:
8727 case LookupResult::Ambiguous:
8728 return IER_Exists;
8729
8730 case LookupResult::NotFound:
8731 return IER_DoesNotExist;
8732
8733 case LookupResult::NotFoundInCurrentInstantiation:
8734 return IER_Dependent;
8735 }
8736
8737 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "clang/lib/Sema/SemaExprCXX.cpp", 8737)
;
8738}
8739
8740Sema::IfExistsResult
8741Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8742 bool IsIfExists, CXXScopeSpec &SS,
8743 UnqualifiedId &Name) {
8744 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8745
8746 // Check for an unexpanded parameter pack.
8747 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8748 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8749 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8750 return IER_Error;
8751
8752 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8753}
8754
8755concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8756 return BuildExprRequirement(E, /*IsSimple=*/true,
8757 /*NoexceptLoc=*/SourceLocation(),
8758 /*ReturnTypeRequirement=*/{});
8759}
8760
8761concepts::Requirement *
8762Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8763 SourceLocation NameLoc, IdentifierInfo *TypeName,
8764 TemplateIdAnnotation *TemplateId) {
8765 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8766, __extension__ __PRETTY_FUNCTION__
))
8766 "Exactly one of TypeName and TemplateId must be specified.")(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8766, __extension__ __PRETTY_FUNCTION__
))
;
8767 TypeSourceInfo *TSI = nullptr;
8768 if (TypeName) {
8769 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8770 SS.getWithLocInContext(Context), *TypeName,
8771 NameLoc, &TSI, /*DeducedTSTContext=*/false);
8772 if (T.isNull())
8773 return nullptr;
8774 } else {
8775 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8776 TemplateId->NumArgs);
8777 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8778 TemplateId->TemplateKWLoc,
8779 TemplateId->Template, TemplateId->Name,
8780 TemplateId->TemplateNameLoc,
8781 TemplateId->LAngleLoc, ArgsPtr,
8782 TemplateId->RAngleLoc);
8783 if (T.isInvalid())
8784 return nullptr;
8785 if (GetTypeFromParser(T.get(), &TSI).isNull())
8786 return nullptr;
8787 }
8788 return BuildTypeRequirement(TSI);
8789}
8790
8791concepts::Requirement *
8792Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8793 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8794 /*ReturnTypeRequirement=*/{});
8795}
8796
8797concepts::Requirement *
8798Sema::ActOnCompoundRequirement(
8799 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8800 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8801 // C++2a [expr.prim.req.compound] p1.3.3
8802 // [..] the expression is deduced against an invented function template
8803 // F [...] F is a void function template with a single type template
8804 // parameter T declared with the constrained-parameter. Form a new
8805 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
8806 // around the constrained-parameter. F has a single parameter whose
8807 // type-specifier is cv T followed by the abstract-declarator. [...]
8808 //
8809 // The cv part is done in the calling function - we get the concept with
8810 // arguments and the abstract declarator with the correct CV qualification and
8811 // have to synthesize T and the single parameter of F.
8812 auto &II = Context.Idents.get("expr-type");
8813 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8814 SourceLocation(),
8815 SourceLocation(), Depth,
8816 /*Index=*/0, &II,
8817 /*Typename=*/true,
8818 /*ParameterPack=*/false,
8819 /*HasTypeConstraint=*/true);
8820
8821 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8822 /*EllipsisLoc=*/SourceLocation(),
8823 /*AllowUnexpandedPack=*/true))
8824 // Just produce a requirement with no type requirements.
8825 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8826
8827 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8828 SourceLocation(),
8829 ArrayRef<NamedDecl *>(TParam),
8830 SourceLocation(),
8831 /*RequiresClause=*/nullptr);
8832 return BuildExprRequirement(
8833 E, /*IsSimple=*/false, NoexceptLoc,
8834 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8835}
8836
8837concepts::ExprRequirement *
8838Sema::BuildExprRequirement(
8839 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8840 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8841 auto Status = concepts::ExprRequirement::SS_Satisfied;
8842 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8843 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8844 Status = concepts::ExprRequirement::SS_Dependent;
8845 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8846 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8847 else if (ReturnTypeRequirement.isSubstitutionFailure())
8848 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8849 else if (ReturnTypeRequirement.isTypeConstraint()) {
8850 // C++2a [expr.prim.req]p1.3.3
8851 // The immediately-declared constraint ([temp]) of decltype((E)) shall
8852 // be satisfied.
8853 TemplateParameterList *TPL =
8854 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8855 QualType MatchedType =
8856 Context.getReferenceQualifiedType(E).getCanonicalType();
8857 llvm::SmallVector<TemplateArgument, 1> Args;
8858 Args.push_back(TemplateArgument(MatchedType));
8859 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8860 MultiLevelTemplateArgumentList MLTAL(TAL);
8861 for (unsigned I = 0; I < TPL->getDepth(); ++I)
8862 MLTAL.addOuterRetainedLevel();
8863 Expr *IDC =
8864 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8865 ->getImmediatelyDeclaredConstraint();
8866 ExprResult Constraint = SubstExpr(IDC, MLTAL);
8867 assert(!Constraint.isInvalid() &&(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
8868 "Substitution cannot fail as it is simply putting a type template "(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
8869 "argument into a concept specialization expression's parameter.")(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
;
8870
8871 SubstitutedConstraintExpr =
8872 cast<ConceptSpecializationExpr>(Constraint.get());
8873 if (!SubstitutedConstraintExpr->isSatisfied())
8874 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8875 }
8876 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8877 ReturnTypeRequirement, Status,
8878 SubstitutedConstraintExpr);
8879}
8880
8881concepts::ExprRequirement *
8882Sema::BuildExprRequirement(
8883 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8884 bool IsSimple, SourceLocation NoexceptLoc,
8885 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8886 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8887 IsSimple, NoexceptLoc,
8888 ReturnTypeRequirement);
8889}
8890
8891concepts::TypeRequirement *
8892Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8893 return new (Context) concepts::TypeRequirement(Type);
8894}
8895
8896concepts::TypeRequirement *
8897Sema::BuildTypeRequirement(
8898 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8899 return new (Context) concepts::TypeRequirement(SubstDiag);
8900}
8901
8902concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8903 return BuildNestedRequirement(Constraint);
8904}
8905
8906concepts::NestedRequirement *
8907Sema::BuildNestedRequirement(Expr *Constraint) {
8908 ConstraintSatisfaction Satisfaction;
8909 if (!Constraint->isInstantiationDependent() &&
8910 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8911 Constraint->getSourceRange(), Satisfaction))
8912 return nullptr;
8913 return new (Context) concepts::NestedRequirement(Context, Constraint,
8914 Satisfaction);
8915}
8916
8917concepts::NestedRequirement *
8918Sema::BuildNestedRequirement(
8919 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8920 return new (Context) concepts::NestedRequirement(SubstDiag);
8921}
8922
8923RequiresExprBodyDecl *
8924Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8925 ArrayRef<ParmVarDecl *> LocalParameters,
8926 Scope *BodyScope) {
8927 assert(BodyScope)(static_cast <bool> (BodyScope) ? void (0) : __assert_fail
("BodyScope", "clang/lib/Sema/SemaExprCXX.cpp", 8927, __extension__
__PRETTY_FUNCTION__))
;
8928
8929 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8930 RequiresKWLoc);
8931
8932 PushDeclContext(BodyScope, Body);
8933
8934 for (ParmVarDecl *Param : LocalParameters) {
8935 if (Param->hasDefaultArg())
8936 // C++2a [expr.prim.req] p4
8937 // [...] A local parameter of a requires-expression shall not have a
8938 // default argument. [...]
8939 Diag(Param->getDefaultArgRange().getBegin(),
8940 diag::err_requires_expr_local_parameter_default_argument);
8941 // Ignore default argument and move on
8942
8943 Param->setDeclContext(Body);
8944 // If this has an identifier, add it to the scope stack.
8945 if (Param->getIdentifier()) {
8946 CheckShadow(BodyScope, Param);
8947 PushOnScopeChains(Param, BodyScope);
8948 }
8949 }
8950 return Body;
8951}
8952
8953void Sema::ActOnFinishRequiresExpr() {
8954 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8954, __extension__ __PRETTY_FUNCTION__
))
;
8955 CurContext = CurContext->getLexicalParent();
8956 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8956, __extension__ __PRETTY_FUNCTION__
))
;
8957}
8958
8959ExprResult
8960Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8961 RequiresExprBodyDecl *Body,
8962 ArrayRef<ParmVarDecl *> LocalParameters,
8963 ArrayRef<concepts::Requirement *> Requirements,
8964 SourceLocation ClosingBraceLoc) {
8965 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8966 Requirements, ClosingBraceLoc);
8967 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8968 return ExprError();
8969 return RE;
8970}