Bug Summary

File:clang/lib/Sema/SemaExprCXX.cpp
Warning:line 620, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-16-232930-107970-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 65, __extension__ __PRETTY_FUNCTION__
))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (isReservedInAllContexts(Status) &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
13
Assuming 'E' is null
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
14
Called C++ object pointer is null
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
1
Assuming field 'OpenCLCPlusPlus' is 0
2
Taking false branch
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
3
Assuming the condition is false
4
Taking false branch
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
5
Assuming field 'CXXTypeInfoDecl' is non-null
6
Taking false branch
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
7
Assuming field 'RTTI' is not equal to 0
8
Taking false branch
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
9
Assuming 'isType' is false
10
Taking false branch
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
11
Passing value via 3rd parameter 'E'
12
Calling 'Sema::BuildCXXTypeId'
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (CurLSI->CallOperator->isConst())
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140 // can happen during instantiation of its nested generic lambda call
1141 // operator); 2. if we're in a lambda scope (lambda body).
1142 if (CurLSI && isLambdaCallOperator(CurDC)) {
1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1144 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1145 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1147 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
;
1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1148, __extension__ __PRETTY_FUNCTION__
))
;
1149
1150 auto IsThisCaptured =
1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152 IsConst = false;
1153 IsByCopy = false;
1154 for (auto &&C : Closure->captures()) {
1155 if (C.capturesThis()) {
1156 if (C.getCaptureKind() == LCK_StarThis)
1157 IsByCopy = true;
1158 if (Closure->getLambdaCallOperator()->isConst())
1159 IsConst = true;
1160 return true;
1161 }
1162 }
1163 return false;
1164 };
1165
1166 bool IsByCopyCapture = false;
1167 bool IsConstCapture = false;
1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169 while (Closure &&
1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171 if (IsByCopyCapture) {
1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173 if (IsConstCapture)
1174 ClassType.addConst();
1175 return ASTCtx.getPointerType(ClassType);
1176 }
1177 Closure = isLambdaCallOperator(Closure->getParent())
1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179 : nullptr;
1180 }
1181 }
1182 return ASTCtx.getPointerType(ClassType);
1183}
1184
1185QualType Sema::getCurrentThisType() {
1186 DeclContext *DC = getFunctionLevelDeclContext();
1187 QualType ThisTy = CXXThisTypeOverride;
1188
1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190 if (method && method->isInstance())
1191 ThisTy = method->getThisType();
1192 }
1193
1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196
1197 // This is a lambda call operator that is being instantiated as a default
1198 // initializer. DC must point to the enclosing class type, so we can recover
1199 // the 'this' type from it.
1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201 // There are no cv-qualifiers for 'this' within default initializers,
1202 // per [expr.prim.general]p4.
1203 ThisTy = Context.getPointerType(ClassTy);
1204 }
1205
1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207 // might need to be adjusted if the lambda or any of its enclosing lambda's
1208 // captures '*this' by copy.
1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211 CurContext, Context);
1212 return ThisTy;
1213}
1214
1215Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216 Decl *ContextDecl,
1217 Qualifiers CXXThisTypeQuals,
1218 bool Enabled)
1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220{
1221 if (!Enabled || !ContextDecl)
1222 return;
1223
1224 CXXRecordDecl *Record = nullptr;
1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226 Record = Template->getTemplatedDecl();
1227 else
1228 Record = cast<CXXRecordDecl>(ContextDecl);
1229
1230 QualType T = S.Context.getRecordType(Record);
1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232
1233 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234
1235 this->Enabled = true;
1236}
1237
1238
1239Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240 if (Enabled) {
1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242 }
1243}
1244
1245static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1247 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 // [=, this] {}; // until C++20: Error: this when = is the default
1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250 !Sema.getLangOpts().CPlusPlus20)
1251 return;
1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253 << FixItHint::CreateInsertion(
1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255}
1256
1257bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259 const bool ByCopy) {
1260 // We don't need to capture this in an unevaluated context.
1261 if (isUnevaluatedContext() && !Explicit)
1262 return true;
1263
1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1264, __extension__ __PRETTY_FUNCTION__
))
;
1265
1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1267 ? *FunctionScopeIndexToStopAt
1268 : FunctionScopes.size() - 1;
1269
1270 // Check that we can capture the *enclosing object* (referred to by '*this')
1271 // by the capturing-entity/closure (lambda/block/etc) at
1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1273
1274 // Note: The *enclosing object* can only be captured by-value by a
1275 // closure that is a lambda, using the explicit notation:
1276 // [*this] { ... }.
1277 // Every other capture of the *enclosing object* results in its by-reference
1278 // capture.
1279
1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1281 // stack), we can capture the *enclosing object* only if:
1282 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1283 // - or, 'L' has an implicit capture.
1284 // AND
1285 // -- there is no enclosing closure
1286 // -- or, there is some enclosing closure 'E' that has already captured the
1287 // *enclosing object*, and every intervening closure (if any) between 'E'
1288 // and 'L' can implicitly capture the *enclosing object*.
1289 // -- or, every enclosing closure can implicitly capture the
1290 // *enclosing object*
1291
1292
1293 unsigned NumCapturingClosures = 0;
1294 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1295 if (CapturingScopeInfo *CSI =
1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1297 if (CSI->CXXThisCaptureIndex != 0) {
1298 // 'this' is already being captured; there isn't anything more to do.
1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1300 break;
1301 }
1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1303 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1304 // This context can't implicitly capture 'this'; fail out.
1305 if (BuildAndDiagnose) {
1306 Diag(Loc, diag::err_this_capture)
1307 << (Explicit && idx == MaxFunctionScopesIndex);
1308 if (!Explicit)
1309 buildLambdaThisCaptureFixit(*this, LSI);
1310 }
1311 return true;
1312 }
1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1317 (Explicit && idx == MaxFunctionScopesIndex)) {
1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1319 // iteration through can be an explicit capture, all enclosing closures,
1320 // if any, must perform implicit captures.
1321
1322 // This closure can capture 'this'; continue looking upwards.
1323 NumCapturingClosures++;
1324 continue;
1325 }
1326 // This context can't implicitly capture 'this'; fail out.
1327 if (BuildAndDiagnose)
1328 Diag(Loc, diag::err_this_capture)
1329 << (Explicit && idx == MaxFunctionScopesIndex);
1330
1331 if (!Explicit)
1332 buildLambdaThisCaptureFixit(*this, LSI);
1333 return true;
1334 }
1335 break;
1336 }
1337 if (!BuildAndDiagnose) return false;
1338
1339 // If we got here, then the closure at MaxFunctionScopesIndex on the
1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1341 // (including implicit by-reference captures in any enclosing closures).
1342
1343 // In the loop below, respect the ByCopy flag only for the closure requesting
1344 // the capture (i.e. first iteration through the loop below). Ignore it for
1345 // all enclosing closure's up to NumCapturingClosures (since they must be
1346 // implicitly capturing the *enclosing object* by reference (see loop
1347 // above)).
1348 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1349 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1350 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1351 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
;
1352 QualType ThisTy = getCurrentThisType();
1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1354 --idx, --NumCapturingClosures) {
1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1356
1357 // The type of the corresponding data member (not a 'this' pointer if 'by
1358 // copy').
1359 QualType CaptureType = ThisTy;
1360 if (ByCopy) {
1361 // If we are capturing the object referred to by '*this' by copy, ignore
1362 // any cv qualifiers inherited from the type of the member function for
1363 // the type of the closure-type's corresponding data member and any use
1364 // of 'this'.
1365 CaptureType = ThisTy->getPointeeType();
1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1367 }
1368
1369 bool isNested = NumCapturingClosures > 1;
1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1371 }
1372 return false;
1373}
1374
1375ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1377 /// is a non-lvalue expression whose value is the address of the object for
1378 /// which the function is called.
1379
1380 QualType ThisTy = getCurrentThisType();
1381 if (ThisTy.isNull())
1382 return Diag(Loc, diag::err_invalid_this_use);
1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1384}
1385
1386Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1387 bool IsImplicit) {
1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1389 MarkThisReferenced(This);
1390 return This;
1391}
1392
1393void Sema::MarkThisReferenced(CXXThisExpr *This) {
1394 CheckCXXThisCapture(This->getExprLoc());
1395}
1396
1397bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1398 // If we're outside the body of a member function, then we'll have a specified
1399 // type for 'this'.
1400 if (CXXThisTypeOverride.isNull())
1401 return false;
1402
1403 // Determine whether we're looking into a class that's currently being
1404 // defined.
1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1406 return Class && Class->isBeingDefined();
1407}
1408
1409/// Parse construction of a specified type.
1410/// Can be interpreted either as function-style casting ("int(x)")
1411/// or class type construction ("ClassType(x,y,z)")
1412/// or creation of a value-initialized type ("int()").
1413ExprResult
1414Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1415 SourceLocation LParenOrBraceLoc,
1416 MultiExprArg exprs,
1417 SourceLocation RParenOrBraceLoc,
1418 bool ListInitialization) {
1419 if (!TypeRep)
1420 return ExprError();
1421
1422 TypeSourceInfo *TInfo;
1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1424 if (!TInfo)
1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1426
1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1428 RParenOrBraceLoc, ListInitialization);
1429 // Avoid creating a non-type-dependent expression that contains typos.
1430 // Non-type-dependent expressions are liable to be discarded without
1431 // checking for embedded typos.
1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1433 !Result.get()->isTypeDependent())
1434 Result = CorrectDelayedTyposInExpr(Result.get());
1435 else if (Result.isInvalid())
1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1437 RParenOrBraceLoc, exprs, Ty);
1438 return Result;
1439}
1440
1441ExprResult
1442Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1443 SourceLocation LParenOrBraceLoc,
1444 MultiExprArg Exprs,
1445 SourceLocation RParenOrBraceLoc,
1446 bool ListInitialization) {
1447 QualType Ty = TInfo->getType();
1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1449
1450 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
;
1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1454
1455 InitializedEntity Entity =
1456 InitializedEntity::InitializeTemporary(Context, TInfo);
1457 InitializationKind Kind =
1458 Exprs.size()
1459 ? ListInitialization
1460 ? InitializationKind::CreateDirectList(
1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463 RParenOrBraceLoc)
1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465 RParenOrBraceLoc);
1466
1467 // C++1z [expr.type.conv]p1:
1468 // If the type is a placeholder for a deduced class type, [...perform class
1469 // template argument deduction...]
1470 DeducedType *Deduced = Ty->getContainedDeducedType();
1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473 Kind, Exprs);
1474 if (Ty.isNull())
1475 return ExprError();
1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477 }
1478
1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481 // directly. We work around this by dropping the locations of the braces.
1482 SourceRange Locs = ListInitialization
1483 ? SourceRange()
1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486 TInfo, Locs.getBegin(), Exprs,
1487 Locs.getEnd());
1488 }
1489
1490 // C++ [expr.type.conv]p1:
1491 // If the expression list is a parenthesized single expression, the type
1492 // conversion expression is equivalent (in definedness, and if defined in
1493 // meaning) to the corresponding cast expression.
1494 if (Exprs.size() == 1 && !ListInitialization &&
1495 !isa<InitListExpr>(Exprs[0])) {
1496 Expr *Arg = Exprs[0];
1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498 RParenOrBraceLoc);
1499 }
1500
1501 // For an expression of the form T(), T shall not be an array type.
1502 QualType ElemTy = Ty;
1503 if (Ty->isArrayType()) {
1504 if (!ListInitialization)
1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506 << FullRange);
1507 ElemTy = Context.getBaseElementType(Ty);
1508 }
1509
1510 // Only construct objects with object types.
1511 // The standard doesn't explicitly forbid function types here, but that's an
1512 // obvious oversight, as there's no way to dynamically construct a function
1513 // in general.
1514 if (Ty->isFunctionType())
1515 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1516 << Ty << FullRange);
1517
1518 // C++17 [expr.type.conv]p2:
1519 // If the type is cv void and the initializer is (), the expression is a
1520 // prvalue of the specified type that performs no initialization.
1521 if (!Ty->isVoidType() &&
1522 RequireCompleteType(TyBeginLoc, ElemTy,
1523 diag::err_invalid_incomplete_type_use, FullRange))
1524 return ExprError();
1525
1526 // Otherwise, the expression is a prvalue of the specified type whose
1527 // result object is direct-initialized (11.6) with the initializer.
1528 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1529 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1530
1531 if (Result.isInvalid())
1532 return Result;
1533
1534 Expr *Inner = Result.get();
1535 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1536 Inner = BTE->getSubExpr();
1537 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1538 !isa<CXXScalarValueInitExpr>(Inner)) {
1539 // If we created a CXXTemporaryObjectExpr, that node also represents the
1540 // functional cast. Otherwise, create an explicit cast to represent
1541 // the syntactic form of a functional-style cast that was used here.
1542 //
1543 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1544 // would give a more consistent AST representation than using a
1545 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1546 // is sometimes handled by initialization and sometimes not.
1547 QualType ResultType = Result.get()->getType();
1548 SourceRange Locs = ListInitialization
1549 ? SourceRange()
1550 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1551 Result = CXXFunctionalCastExpr::Create(
1552 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1553 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1554 Locs.getBegin(), Locs.getEnd());
1555 }
1556
1557 return Result;
1558}
1559
1560bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1561 // [CUDA] Ignore this function, if we can't call it.
1562 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1563 if (getLangOpts().CUDA) {
1564 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1565 // If it's not callable at all, it's not the right function.
1566 if (CallPreference < CFP_WrongSide)
1567 return false;
1568 if (CallPreference == CFP_WrongSide) {
1569 // Maybe. We have to check if there are better alternatives.
1570 DeclContext::lookup_result R =
1571 Method->getDeclContext()->lookup(Method->getDeclName());
1572 for (const auto *D : R) {
1573 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1574 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1575 return false;
1576 }
1577 }
1578 // We've found no better variants.
1579 }
1580 }
1581
1582 SmallVector<const FunctionDecl*, 4> PreventedBy;
1583 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1584
1585 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1586 return Result;
1587
1588 // In case of CUDA, return true if none of the 1-argument deallocator
1589 // functions are actually callable.
1590 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1591 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1592, __extension__ __PRETTY_FUNCTION__
))
1592 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1592, __extension__ __PRETTY_FUNCTION__
))
;
1593 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1594 });
1595}
1596
1597/// Determine whether the given function is a non-placement
1598/// deallocation function.
1599static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1600 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1601 return S.isUsualDeallocationFunction(Method);
1602
1603 if (FD->getOverloadedOperator() != OO_Delete &&
1604 FD->getOverloadedOperator() != OO_Array_Delete)
1605 return false;
1606
1607 unsigned UsualParams = 1;
1608
1609 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1610 S.Context.hasSameUnqualifiedType(
1611 FD->getParamDecl(UsualParams)->getType(),
1612 S.Context.getSizeType()))
1613 ++UsualParams;
1614
1615 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1616 S.Context.hasSameUnqualifiedType(
1617 FD->getParamDecl(UsualParams)->getType(),
1618 S.Context.getTypeDeclType(S.getStdAlignValT())))
1619 ++UsualParams;
1620
1621 return UsualParams == FD->getNumParams();
1622}
1623
1624namespace {
1625 struct UsualDeallocFnInfo {
1626 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1627 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1628 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1629 Destroying(false), HasSizeT(false), HasAlignValT(false),
1630 CUDAPref(Sema::CFP_Native) {
1631 // A function template declaration is never a usual deallocation function.
1632 if (!FD)
1633 return;
1634 unsigned NumBaseParams = 1;
1635 if (FD->isDestroyingOperatorDelete()) {
1636 Destroying = true;
1637 ++NumBaseParams;
1638 }
1639
1640 if (NumBaseParams < FD->getNumParams() &&
1641 S.Context.hasSameUnqualifiedType(
1642 FD->getParamDecl(NumBaseParams)->getType(),
1643 S.Context.getSizeType())) {
1644 ++NumBaseParams;
1645 HasSizeT = true;
1646 }
1647
1648 if (NumBaseParams < FD->getNumParams() &&
1649 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1650 ++NumBaseParams;
1651 HasAlignValT = true;
1652 }
1653
1654 // In CUDA, determine how much we'd like / dislike to call this.
1655 if (S.getLangOpts().CUDA)
1656 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1657 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1658 }
1659
1660 explicit operator bool() const { return FD; }
1661
1662 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1663 bool WantAlign) const {
1664 // C++ P0722:
1665 // A destroying operator delete is preferred over a non-destroying
1666 // operator delete.
1667 if (Destroying != Other.Destroying)
1668 return Destroying;
1669
1670 // C++17 [expr.delete]p10:
1671 // If the type has new-extended alignment, a function with a parameter
1672 // of type std::align_val_t is preferred; otherwise a function without
1673 // such a parameter is preferred
1674 if (HasAlignValT != Other.HasAlignValT)
1675 return HasAlignValT == WantAlign;
1676
1677 if (HasSizeT != Other.HasSizeT)
1678 return HasSizeT == WantSize;
1679
1680 // Use CUDA call preference as a tiebreaker.
1681 return CUDAPref > Other.CUDAPref;
1682 }
1683
1684 DeclAccessPair Found;
1685 FunctionDecl *FD;
1686 bool Destroying, HasSizeT, HasAlignValT;
1687 Sema::CUDAFunctionPreference CUDAPref;
1688 };
1689}
1690
1691/// Determine whether a type has new-extended alignment. This may be called when
1692/// the type is incomplete (for a delete-expression with an incomplete pointee
1693/// type), in which case it will conservatively return false if the alignment is
1694/// not known.
1695static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1696 return S.getLangOpts().AlignedAllocation &&
1697 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1698 S.getASTContext().getTargetInfo().getNewAlign();
1699}
1700
1701/// Select the correct "usual" deallocation function to use from a selection of
1702/// deallocation functions (either global or class-scope).
1703static UsualDeallocFnInfo resolveDeallocationOverload(
1704 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1705 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1706 UsualDeallocFnInfo Best;
1707
1708 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1709 UsualDeallocFnInfo Info(S, I.getPair());
1710 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1711 Info.CUDAPref == Sema::CFP_Never)
1712 continue;
1713
1714 if (!Best) {
1715 Best = Info;
1716 if (BestFns)
1717 BestFns->push_back(Info);
1718 continue;
1719 }
1720
1721 if (Best.isBetterThan(Info, WantSize, WantAlign))
1722 continue;
1723
1724 // If more than one preferred function is found, all non-preferred
1725 // functions are eliminated from further consideration.
1726 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1727 BestFns->clear();
1728
1729 Best = Info;
1730 if (BestFns)
1731 BestFns->push_back(Info);
1732 }
1733
1734 return Best;
1735}
1736
1737/// Determine whether a given type is a class for which 'delete[]' would call
1738/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1739/// we need to store the array size (even if the type is
1740/// trivially-destructible).
1741static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1742 QualType allocType) {
1743 const RecordType *record =
1744 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1745 if (!record) return false;
1746
1747 // Try to find an operator delete[] in class scope.
1748
1749 DeclarationName deleteName =
1750 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1751 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1752 S.LookupQualifiedName(ops, record->getDecl());
1753
1754 // We're just doing this for information.
1755 ops.suppressDiagnostics();
1756
1757 // Very likely: there's no operator delete[].
1758 if (ops.empty()) return false;
1759
1760 // If it's ambiguous, it should be illegal to call operator delete[]
1761 // on this thing, so it doesn't matter if we allocate extra space or not.
1762 if (ops.isAmbiguous()) return false;
1763
1764 // C++17 [expr.delete]p10:
1765 // If the deallocation functions have class scope, the one without a
1766 // parameter of type std::size_t is selected.
1767 auto Best = resolveDeallocationOverload(
1768 S, ops, /*WantSize*/false,
1769 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1770 return Best && Best.HasSizeT;
1771}
1772
1773/// Parsed a C++ 'new' expression (C++ 5.3.4).
1774///
1775/// E.g.:
1776/// @code new (memory) int[size][4] @endcode
1777/// or
1778/// @code ::new Foo(23, "hello") @endcode
1779///
1780/// \param StartLoc The first location of the expression.
1781/// \param UseGlobal True if 'new' was prefixed with '::'.
1782/// \param PlacementLParen Opening paren of the placement arguments.
1783/// \param PlacementArgs Placement new arguments.
1784/// \param PlacementRParen Closing paren of the placement arguments.
1785/// \param TypeIdParens If the type is in parens, the source range.
1786/// \param D The type to be allocated, as well as array dimensions.
1787/// \param Initializer The initializing expression or initializer-list, or null
1788/// if there is none.
1789ExprResult
1790Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1791 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1792 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1793 Declarator &D, Expr *Initializer) {
1794 Optional<Expr *> ArraySize;
1795 // If the specified type is an array, unwrap it and save the expression.
1796 if (D.getNumTypeObjects() > 0 &&
1797 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1798 DeclaratorChunk &Chunk = D.getTypeObject(0);
1799 if (D.getDeclSpec().hasAutoTypeSpec())
1800 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1801 << D.getSourceRange());
1802 if (Chunk.Arr.hasStatic)
1803 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1804 << D.getSourceRange());
1805 if (!Chunk.Arr.NumElts && !Initializer)
1806 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1807 << D.getSourceRange());
1808
1809 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1810 D.DropFirstTypeObject();
1811 }
1812
1813 // Every dimension shall be of constant size.
1814 if (ArraySize) {
1815 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1816 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1817 break;
1818
1819 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1820 if (Expr *NumElts = (Expr *)Array.NumElts) {
1821 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1822 // FIXME: GCC permits constant folding here. We should either do so consistently
1823 // or not do so at all, rather than changing behavior in C++14 onwards.
1824 if (getLangOpts().CPlusPlus14) {
1825 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1826 // shall be a converted constant expression (5.19) of type std::size_t
1827 // and shall evaluate to a strictly positive value.
1828 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1829 Array.NumElts
1830 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1831 CCEK_ArrayBound)
1832 .get();
1833 } else {
1834 Array.NumElts =
1835 VerifyIntegerConstantExpression(
1836 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1837 .get();
1838 }
1839 if (!Array.NumElts)
1840 return ExprError();
1841 }
1842 }
1843 }
1844 }
1845
1846 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1847 QualType AllocType = TInfo->getType();
1848 if (D.isInvalidType())
1849 return ExprError();
1850
1851 SourceRange DirectInitRange;
1852 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1853 DirectInitRange = List->getSourceRange();
1854
1855 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1856 PlacementLParen, PlacementArgs, PlacementRParen,
1857 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1858 Initializer);
1859}
1860
1861static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1862 Expr *Init) {
1863 if (!Init)
1864 return true;
1865 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1866 return PLE->getNumExprs() == 0;
1867 if (isa<ImplicitValueInitExpr>(Init))
1868 return true;
1869 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1870 return !CCE->isListInitialization() &&
1871 CCE->getConstructor()->isDefaultConstructor();
1872 else if (Style == CXXNewExpr::ListInit) {
1873 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1874, __extension__ __PRETTY_FUNCTION__
))
1874 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1874, __extension__ __PRETTY_FUNCTION__
))
;
1875 return true;
1876 }
1877 return false;
1878}
1879
1880bool
1881Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1882 if (!getLangOpts().AlignedAllocationUnavailable)
1883 return false;
1884 if (FD.isDefined())
1885 return false;
1886 Optional<unsigned> AlignmentParam;
1887 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1888 AlignmentParam.hasValue())
1889 return true;
1890 return false;
1891}
1892
1893// Emit a diagnostic if an aligned allocation/deallocation function that is not
1894// implemented in the standard library is selected.
1895void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1896 SourceLocation Loc) {
1897 if (isUnavailableAlignedAllocationFunction(FD)) {
1898 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1899 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1900 getASTContext().getTargetInfo().getPlatformName());
1901 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1902
1903 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1904 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1905 Diag(Loc, diag::err_aligned_allocation_unavailable)
1906 << IsDelete << FD.getType().getAsString() << OSName
1907 << OSVersion.getAsString() << OSVersion.empty();
1908 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1909 }
1910}
1911
1912ExprResult
1913Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1914 SourceLocation PlacementLParen,
1915 MultiExprArg PlacementArgs,
1916 SourceLocation PlacementRParen,
1917 SourceRange TypeIdParens,
1918 QualType AllocType,
1919 TypeSourceInfo *AllocTypeInfo,
1920 Optional<Expr *> ArraySize,
1921 SourceRange DirectInitRange,
1922 Expr *Initializer) {
1923 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1924 SourceLocation StartLoc = Range.getBegin();
1925
1926 CXXNewExpr::InitializationStyle initStyle;
1927 if (DirectInitRange.isValid()) {
1928 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1928, __extension__ __PRETTY_FUNCTION__
))
;
1929 initStyle = CXXNewExpr::CallInit;
1930 } else if (Initializer && isa<InitListExpr>(Initializer))
1931 initStyle = CXXNewExpr::ListInit;
1932 else {
1933 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
1934 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
1935 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
;
1936 initStyle = CXXNewExpr::NoInit;
1937 }
1938
1939 Expr **Inits = &Initializer;
1940 unsigned NumInits = Initializer ? 1 : 0;
1941 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1942 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1942, __extension__ __PRETTY_FUNCTION__
))
;
1943 Inits = List->getExprs();
1944 NumInits = List->getNumExprs();
1945 }
1946
1947 // C++11 [expr.new]p15:
1948 // A new-expression that creates an object of type T initializes that
1949 // object as follows:
1950 InitializationKind Kind
1951 // - If the new-initializer is omitted, the object is default-
1952 // initialized (8.5); if no initialization is performed,
1953 // the object has indeterminate value
1954 = initStyle == CXXNewExpr::NoInit
1955 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1956 // - Otherwise, the new-initializer is interpreted according to
1957 // the
1958 // initialization rules of 8.5 for direct-initialization.
1959 : initStyle == CXXNewExpr::ListInit
1960 ? InitializationKind::CreateDirectList(
1961 TypeRange.getBegin(), Initializer->getBeginLoc(),
1962 Initializer->getEndLoc())
1963 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1964 DirectInitRange.getBegin(),
1965 DirectInitRange.getEnd());
1966
1967 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1968 auto *Deduced = AllocType->getContainedDeducedType();
1969 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1970 if (ArraySize)
1971 return ExprError(
1972 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1973 diag::err_deduced_class_template_compound_type)
1974 << /*array*/ 2
1975 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1976
1977 InitializedEntity Entity
1978 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1979 AllocType = DeduceTemplateSpecializationFromInitializer(
1980 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1981 if (AllocType.isNull())
1982 return ExprError();
1983 } else if (Deduced) {
1984 bool Braced = (initStyle == CXXNewExpr::ListInit);
1985 if (NumInits == 1) {
1986 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1987 Inits = p->getInits();
1988 NumInits = p->getNumInits();
1989 Braced = true;
1990 }
1991 }
1992
1993 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1994 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1995 << AllocType << TypeRange);
1996 if (NumInits > 1) {
1997 Expr *FirstBad = Inits[1];
1998 return ExprError(Diag(FirstBad->getBeginLoc(),
1999 diag::err_auto_new_ctor_multiple_expressions)
2000 << AllocType << TypeRange);
2001 }
2002 if (Braced && !getLangOpts().CPlusPlus17)
2003 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2004 << AllocType << TypeRange;
2005 Expr *Deduce = Inits[0];
2006 QualType DeducedType;
2007 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2008 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2009 << AllocType << Deduce->getType()
2010 << TypeRange << Deduce->getSourceRange());
2011 if (DeducedType.isNull())
2012 return ExprError();
2013 AllocType = DeducedType;
2014 }
2015
2016 // Per C++0x [expr.new]p5, the type being constructed may be a
2017 // typedef of an array type.
2018 if (!ArraySize) {
2019 if (const ConstantArrayType *Array
2020 = Context.getAsConstantArrayType(AllocType)) {
2021 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2022 Context.getSizeType(),
2023 TypeRange.getEnd());
2024 AllocType = Array->getElementType();
2025 }
2026 }
2027
2028 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2029 return ExprError();
2030
2031 // In ARC, infer 'retaining' for the allocated
2032 if (getLangOpts().ObjCAutoRefCount &&
2033 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2034 AllocType->isObjCLifetimeType()) {
2035 AllocType = Context.getLifetimeQualifiedType(AllocType,
2036 AllocType->getObjCARCImplicitLifetime());
2037 }
2038
2039 QualType ResultType = Context.getPointerType(AllocType);
2040
2041 if (ArraySize && *ArraySize &&
2042 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2043 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2044 if (result.isInvalid()) return ExprError();
2045 ArraySize = result.get();
2046 }
2047 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2048 // integral or enumeration type with a non-negative value."
2049 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2050 // enumeration type, or a class type for which a single non-explicit
2051 // conversion function to integral or unscoped enumeration type exists.
2052 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2053 // std::size_t.
2054 llvm::Optional<uint64_t> KnownArraySize;
2055 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2056 ExprResult ConvertedSize;
2057 if (getLangOpts().CPlusPlus14) {
2058 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2058, __extension__ __PRETTY_FUNCTION__
))
;
2059
2060 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2061 AA_Converting);
2062
2063 if (!ConvertedSize.isInvalid() &&
2064 (*ArraySize)->getType()->getAs<RecordType>())
2065 // Diagnose the compatibility of this conversion.
2066 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2067 << (*ArraySize)->getType() << 0 << "'size_t'";
2068 } else {
2069 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2070 protected:
2071 Expr *ArraySize;
2072
2073 public:
2074 SizeConvertDiagnoser(Expr *ArraySize)
2075 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2076 ArraySize(ArraySize) {}
2077
2078 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2079 QualType T) override {
2080 return S.Diag(Loc, diag::err_array_size_not_integral)
2081 << S.getLangOpts().CPlusPlus11 << T;
2082 }
2083
2084 SemaDiagnosticBuilder diagnoseIncomplete(
2085 Sema &S, SourceLocation Loc, QualType T) override {
2086 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2087 << T << ArraySize->getSourceRange();
2088 }
2089
2090 SemaDiagnosticBuilder diagnoseExplicitConv(
2091 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2092 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2093 }
2094
2095 SemaDiagnosticBuilder noteExplicitConv(
2096 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2097 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2098 << ConvTy->isEnumeralType() << ConvTy;
2099 }
2100
2101 SemaDiagnosticBuilder diagnoseAmbiguous(
2102 Sema &S, SourceLocation Loc, QualType T) override {
2103 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2104 }
2105
2106 SemaDiagnosticBuilder noteAmbiguous(
2107 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2108 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2109 << ConvTy->isEnumeralType() << ConvTy;
2110 }
2111
2112 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2113 QualType T,
2114 QualType ConvTy) override {
2115 return S.Diag(Loc,
2116 S.getLangOpts().CPlusPlus11
2117 ? diag::warn_cxx98_compat_array_size_conversion
2118 : diag::ext_array_size_conversion)
2119 << T << ConvTy->isEnumeralType() << ConvTy;
2120 }
2121 } SizeDiagnoser(*ArraySize);
2122
2123 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2124 SizeDiagnoser);
2125 }
2126 if (ConvertedSize.isInvalid())
2127 return ExprError();
2128
2129 ArraySize = ConvertedSize.get();
2130 QualType SizeType = (*ArraySize)->getType();
2131
2132 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2133 return ExprError();
2134
2135 // C++98 [expr.new]p7:
2136 // The expression in a direct-new-declarator shall have integral type
2137 // with a non-negative value.
2138 //
2139 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2140 // per CWG1464. Otherwise, if it's not a constant, we must have an
2141 // unparenthesized array type.
2142
2143 // We've already performed any required implicit conversion to integer or
2144 // unscoped enumeration type.
2145 // FIXME: Per CWG1464, we are required to check the value prior to
2146 // converting to size_t. This will never find a negative array size in
2147 // C++14 onwards, because Value is always unsigned here!
2148 if (Optional<llvm::APSInt> Value =
2149 (*ArraySize)->getIntegerConstantExpr(Context)) {
2150 if (Value->isSigned() && Value->isNegative()) {
2151 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2152 diag::err_typecheck_negative_array_size)
2153 << (*ArraySize)->getSourceRange());
2154 }
2155
2156 if (!AllocType->isDependentType()) {
2157 unsigned ActiveSizeBits =
2158 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2159 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2160 return ExprError(
2161 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2162 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2163 }
2164
2165 KnownArraySize = Value->getZExtValue();
2166 } else if (TypeIdParens.isValid()) {
2167 // Can't have dynamic array size when the type-id is in parentheses.
2168 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2169 << (*ArraySize)->getSourceRange()
2170 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2171 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2172
2173 TypeIdParens = SourceRange();
2174 }
2175
2176 // Note that we do *not* convert the argument in any way. It can
2177 // be signed, larger than size_t, whatever.
2178 }
2179
2180 FunctionDecl *OperatorNew = nullptr;
2181 FunctionDecl *OperatorDelete = nullptr;
2182 unsigned Alignment =
2183 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2184 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2185 bool PassAlignment = getLangOpts().AlignedAllocation &&
2186 Alignment > NewAlignment;
2187
2188 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2189 if (!AllocType->isDependentType() &&
2190 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2191 FindAllocationFunctions(
2192 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2193 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2194 OperatorNew, OperatorDelete))
2195 return ExprError();
2196
2197 // If this is an array allocation, compute whether the usual array
2198 // deallocation function for the type has a size_t parameter.
2199 bool UsualArrayDeleteWantsSize = false;
2200 if (ArraySize && !AllocType->isDependentType())
2201 UsualArrayDeleteWantsSize =
2202 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2203
2204 SmallVector<Expr *, 8> AllPlaceArgs;
2205 if (OperatorNew) {
2206 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2207 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2208 : VariadicDoesNotApply;
2209
2210 // We've already converted the placement args, just fill in any default
2211 // arguments. Skip the first parameter because we don't have a corresponding
2212 // argument. Skip the second parameter too if we're passing in the
2213 // alignment; we've already filled it in.
2214 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2215 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2216 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2217 CallType))
2218 return ExprError();
2219
2220 if (!AllPlaceArgs.empty())
2221 PlacementArgs = AllPlaceArgs;
2222
2223 // We would like to perform some checking on the given `operator new` call,
2224 // but the PlacementArgs does not contain the implicit arguments,
2225 // namely allocation size and maybe allocation alignment,
2226 // so we need to conjure them.
2227
2228 QualType SizeTy = Context.getSizeType();
2229 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2230
2231 llvm::APInt SingleEltSize(
2232 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2233
2234 // How many bytes do we want to allocate here?
2235 llvm::Optional<llvm::APInt> AllocationSize;
2236 if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2237 // For non-array operator new, we only want to allocate one element.
2238 AllocationSize = SingleEltSize;
2239 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2240 // For array operator new, only deal with static array size case.
2241 bool Overflow;
2242 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2243 .umul_ov(SingleEltSize, Overflow);
2244 (void)Overflow;
2245 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
2246 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
2247 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
;
2248 }
2249
2250 IntegerLiteral AllocationSizeLiteral(
2251 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)),
2252 SizeTy, SourceLocation());
2253 // Otherwise, if we failed to constant-fold the allocation size, we'll
2254 // just give up and pass-in something opaque, that isn't a null pointer.
2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2256 OK_Ordinary, /*SourceExpr=*/nullptr);
2257
2258 // Let's synthesize the alignment argument in case we will need it.
2259 // Since we *really* want to allocate these on stack, this is slightly ugly
2260 // because there might not be a `std::align_val_t` type.
2261 EnumDecl *StdAlignValT = getStdAlignValT();
2262 QualType AlignValT =
2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2264 IntegerLiteral AlignmentLiteral(
2265 Context,
2266 llvm::APInt(Context.getTypeSize(SizeTy),
2267 Alignment / Context.getCharWidth()),
2268 SizeTy, SourceLocation());
2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2270 CK_IntegralCast, &AlignmentLiteral,
2271 VK_PRValue, FPOptionsOverride());
2272
2273 // Adjust placement args by prepending conjured size and alignment exprs.
2274 llvm::SmallVector<Expr *, 8> CallArgs;
2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2276 CallArgs.emplace_back(AllocationSize.hasValue()
2277 ? static_cast<Expr *>(&AllocationSizeLiteral)
2278 : &OpaqueAllocationSize);
2279 if (PassAlignment)
2280 CallArgs.emplace_back(&DesiredAlignment);
2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2282
2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2284
2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2287
2288 // Warn if the type is over-aligned and is being allocated by (unaligned)
2289 // global operator new.
2290 if (PlacementArgs.empty() && !PassAlignment &&
2291 (OperatorNew->isImplicit() ||
2292 (OperatorNew->getBeginLoc().isValid() &&
2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2294 if (Alignment > NewAlignment)
2295 Diag(StartLoc, diag::warn_overaligned_type)
2296 << AllocType
2297 << unsigned(Alignment / Context.getCharWidth())
2298 << unsigned(NewAlignment / Context.getCharWidth());
2299 }
2300 }
2301
2302 // Array 'new' can't have any initializers except empty parentheses.
2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2304 // dialect distinction.
2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2306 SourceRange InitRange(Inits[0]->getBeginLoc(),
2307 Inits[NumInits - 1]->getEndLoc());
2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2309 return ExprError();
2310 }
2311
2312 // If we can perform the initialization, and we've not already done so,
2313 // do it now.
2314 if (!AllocType->isDependentType() &&
2315 !Expr::hasAnyTypeDependentArguments(
2316 llvm::makeArrayRef(Inits, NumInits))) {
2317 // The type we initialize is the complete type, including the array bound.
2318 QualType InitType;
2319 if (KnownArraySize)
2320 InitType = Context.getConstantArrayType(
2321 AllocType,
2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2323 *KnownArraySize),
2324 *ArraySize, ArrayType::Normal, 0);
2325 else if (ArraySize)
2326 InitType =
2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2328 else
2329 InitType = AllocType;
2330
2331 InitializedEntity Entity
2332 = InitializedEntity::InitializeNew(StartLoc, InitType);
2333 InitializationSequence InitSeq(*this, Entity, Kind,
2334 MultiExprArg(Inits, NumInits));
2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2336 MultiExprArg(Inits, NumInits));
2337 if (FullInit.isInvalid())
2338 return ExprError();
2339
2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2341 // we don't want the initialized object to be destructed.
2342 // FIXME: We should not create these in the first place.
2343 if (CXXBindTemporaryExpr *Binder =
2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2345 FullInit = Binder->getSubExpr();
2346
2347 Initializer = FullInit.get();
2348
2349 // FIXME: If we have a KnownArraySize, check that the array bound of the
2350 // initializer is no greater than that constant value.
2351
2352 if (ArraySize && !*ArraySize) {
2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2354 if (CAT) {
2355 // FIXME: Track that the array size was inferred rather than explicitly
2356 // specified.
2357 ArraySize = IntegerLiteral::Create(
2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2359 } else {
2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2361 << Initializer->getSourceRange();
2362 }
2363 }
2364 }
2365
2366 // Mark the new and delete operators as referenced.
2367 if (OperatorNew) {
2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2369 return ExprError();
2370 MarkFunctionReferenced(StartLoc, OperatorNew);
2371 }
2372 if (OperatorDelete) {
2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2374 return ExprError();
2375 MarkFunctionReferenced(StartLoc, OperatorDelete);
2376 }
2377
2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2379 PassAlignment, UsualArrayDeleteWantsSize,
2380 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2381 Initializer, ResultType, AllocTypeInfo, Range,
2382 DirectInitRange);
2383}
2384
2385/// Checks that a type is suitable as the allocated type
2386/// in a new-expression.
2387bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2388 SourceRange R) {
2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2390 // abstract class type or array thereof.
2391 if (AllocType->isFunctionType())
2392 return Diag(Loc, diag::err_bad_new_type)
2393 << AllocType << 0 << R;
2394 else if (AllocType->isReferenceType())
2395 return Diag(Loc, diag::err_bad_new_type)
2396 << AllocType << 1 << R;
2397 else if (!AllocType->isDependentType() &&
2398 RequireCompleteSizedType(
2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2400 return true;
2401 else if (RequireNonAbstractType(Loc, AllocType,
2402 diag::err_allocation_of_abstract_type))
2403 return true;
2404 else if (AllocType->isVariablyModifiedType())
2405 return Diag(Loc, diag::err_variably_modified_new_type)
2406 << AllocType;
2407 else if (AllocType.getAddressSpace() != LangAS::Default &&
2408 !getLangOpts().OpenCLCPlusPlus)
2409 return Diag(Loc, diag::err_address_space_qualified_new)
2410 << AllocType.getUnqualifiedType()
2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2412 else if (getLangOpts().ObjCAutoRefCount) {
2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2414 QualType BaseAllocType = Context.getBaseElementType(AT);
2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2416 BaseAllocType->isObjCLifetimeType())
2417 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2418 << BaseAllocType;
2419 }
2420 }
2421
2422 return false;
2423}
2424
2425static bool resolveAllocationOverload(
2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2427 bool &PassAlignment, FunctionDecl *&Operator,
2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2429 OverloadCandidateSet Candidates(R.getNameLoc(),
2430 OverloadCandidateSet::CSK_Normal);
2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2432 Alloc != AllocEnd; ++Alloc) {
2433 // Even member operator new/delete are implicitly treated as
2434 // static, so don't use AddMemberCandidate.
2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2436
2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2439 /*ExplicitTemplateArgs=*/nullptr, Args,
2440 Candidates,
2441 /*SuppressUserConversions=*/false);
2442 continue;
2443 }
2444
2445 FunctionDecl *Fn = cast<FunctionDecl>(D);
2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2447 /*SuppressUserConversions=*/false);
2448 }
2449
2450 // Do the resolution.
2451 OverloadCandidateSet::iterator Best;
2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2453 case OR_Success: {
2454 // Got one!
2455 FunctionDecl *FnDecl = Best->Function;
2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2457 Best->FoundDecl) == Sema::AR_inaccessible)
2458 return true;
2459
2460 Operator = FnDecl;
2461 return false;
2462 }
2463
2464 case OR_No_Viable_Function:
2465 // C++17 [expr.new]p13:
2466 // If no matching function is found and the allocated object type has
2467 // new-extended alignment, the alignment argument is removed from the
2468 // argument list, and overload resolution is performed again.
2469 if (PassAlignment) {
2470 PassAlignment = false;
2471 AlignArg = Args[1];
2472 Args.erase(Args.begin() + 1);
2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2474 Operator, &Candidates, AlignArg,
2475 Diagnose);
2476 }
2477
2478 // MSVC will fall back on trying to find a matching global operator new
2479 // if operator new[] cannot be found. Also, MSVC will leak by not
2480 // generating a call to operator delete or operator delete[], but we
2481 // will not replicate that bug.
2482 // FIXME: Find out how this interacts with the std::align_val_t fallback
2483 // once MSVC implements it.
2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2485 S.Context.getLangOpts().MSVCCompat) {
2486 R.clear();
2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2489 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2491 Operator, /*Candidates=*/nullptr,
2492 /*AlignArg=*/nullptr, Diagnose);
2493 }
2494
2495 if (Diagnose) {
2496 // If this is an allocation of the form 'new (p) X' for some object
2497 // pointer p (or an expression that will decay to such a pointer),
2498 // diagnose the missing inclusion of <new>.
2499 if (!R.isClassLookup() && Args.size() == 2 &&
2500 (Args[1]->getType()->isObjectPointerType() ||
2501 Args[1]->getType()->isArrayType())) {
2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2503 << R.getLookupName() << Range;
2504 // Listing the candidates is unlikely to be useful; skip it.
2505 return true;
2506 }
2507
2508 // Finish checking all candidates before we note any. This checking can
2509 // produce additional diagnostics so can't be interleaved with our
2510 // emission of notes.
2511 //
2512 // For an aligned allocation, separately check the aligned and unaligned
2513 // candidates with their respective argument lists.
2514 SmallVector<OverloadCandidate*, 32> Cands;
2515 SmallVector<OverloadCandidate*, 32> AlignedCands;
2516 llvm::SmallVector<Expr*, 4> AlignedArgs;
2517 if (AlignedCandidates) {
2518 auto IsAligned = [](OverloadCandidate &C) {
2519 return C.Function->getNumParams() > 1 &&
2520 C.Function->getParamDecl(1)->getType()->isAlignValT();
2521 };
2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2523
2524 AlignedArgs.reserve(Args.size() + 1);
2525 AlignedArgs.push_back(Args[0]);
2526 AlignedArgs.push_back(AlignArg);
2527 AlignedArgs.append(Args.begin() + 1, Args.end());
2528 AlignedCands = AlignedCandidates->CompleteCandidates(
2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2530
2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2532 R.getNameLoc(), IsUnaligned);
2533 } else {
2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2535 R.getNameLoc());
2536 }
2537
2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2539 << R.getLookupName() << Range;
2540 if (AlignedCandidates)
2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2542 R.getNameLoc());
2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2544 }
2545 return true;
2546
2547 case OR_Ambiguous:
2548 if (Diagnose) {
2549 Candidates.NoteCandidates(
2550 PartialDiagnosticAt(R.getNameLoc(),
2551 S.PDiag(diag::err_ovl_ambiguous_call)
2552 << R.getLookupName() << Range),
2553 S, OCD_AmbiguousCandidates, Args);
2554 }
2555 return true;
2556
2557 case OR_Deleted: {
2558 if (Diagnose) {
2559 Candidates.NoteCandidates(
2560 PartialDiagnosticAt(R.getNameLoc(),
2561 S.PDiag(diag::err_ovl_deleted_call)
2562 << R.getLookupName() << Range),
2563 S, OCD_AllCandidates, Args);
2564 }
2565 return true;
2566 }
2567 }
2568 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2568)
;
2569}
2570
2571bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2572 AllocationFunctionScope NewScope,
2573 AllocationFunctionScope DeleteScope,
2574 QualType AllocType, bool IsArray,
2575 bool &PassAlignment, MultiExprArg PlaceArgs,
2576 FunctionDecl *&OperatorNew,
2577 FunctionDecl *&OperatorDelete,
2578 bool Diagnose) {
2579 // --- Choosing an allocation function ---
2580 // C++ 5.3.4p8 - 14 & 18
2581 // 1) If looking in AFS_Global scope for allocation functions, only look in
2582 // the global scope. Else, if AFS_Class, only look in the scope of the
2583 // allocated class. If AFS_Both, look in both.
2584 // 2) If an array size is given, look for operator new[], else look for
2585 // operator new.
2586 // 3) The first argument is always size_t. Append the arguments from the
2587 // placement form.
2588
2589 SmallVector<Expr*, 8> AllocArgs;
2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2591
2592 // We don't care about the actual value of these arguments.
2593 // FIXME: Should the Sema create the expression and embed it in the syntax
2594 // tree? Or should the consumer just recalculate the value?
2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2596 IntegerLiteral Size(
2597 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2598 Context.getSizeType(), SourceLocation());
2599 AllocArgs.push_back(&Size);
2600
2601 QualType AlignValT = Context.VoidTy;
2602 if (PassAlignment) {
2603 DeclareGlobalNewDelete();
2604 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2605 }
2606 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2607 if (PassAlignment)
2608 AllocArgs.push_back(&Align);
2609
2610 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2611
2612 // C++ [expr.new]p8:
2613 // If the allocated type is a non-array type, the allocation
2614 // function's name is operator new and the deallocation function's
2615 // name is operator delete. If the allocated type is an array
2616 // type, the allocation function's name is operator new[] and the
2617 // deallocation function's name is operator delete[].
2618 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2619 IsArray ? OO_Array_New : OO_New);
2620
2621 QualType AllocElemType = Context.getBaseElementType(AllocType);
2622
2623 // Find the allocation function.
2624 {
2625 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2626
2627 // C++1z [expr.new]p9:
2628 // If the new-expression begins with a unary :: operator, the allocation
2629 // function's name is looked up in the global scope. Otherwise, if the
2630 // allocated type is a class type T or array thereof, the allocation
2631 // function's name is looked up in the scope of T.
2632 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2633 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2634
2635 // We can see ambiguity here if the allocation function is found in
2636 // multiple base classes.
2637 if (R.isAmbiguous())
2638 return true;
2639
2640 // If this lookup fails to find the name, or if the allocated type is not
2641 // a class type, the allocation function's name is looked up in the
2642 // global scope.
2643 if (R.empty()) {
2644 if (NewScope == AFS_Class)
2645 return true;
2646
2647 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2648 }
2649
2650 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2651 if (PlaceArgs.empty()) {
2652 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2653 } else {
2654 Diag(StartLoc, diag::err_openclcxx_placement_new);
2655 }
2656 return true;
2657 }
2658
2659 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2659, __extension__ __PRETTY_FUNCTION__
))
;
2660 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2660, __extension__ __PRETTY_FUNCTION__
))
;
2661
2662 // We do our own custom access checks below.
2663 R.suppressDiagnostics();
2664
2665 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2666 OperatorNew, /*Candidates=*/nullptr,
2667 /*AlignArg=*/nullptr, Diagnose))
2668 return true;
2669 }
2670
2671 // We don't need an operator delete if we're running under -fno-exceptions.
2672 if (!getLangOpts().Exceptions) {
2673 OperatorDelete = nullptr;
2674 return false;
2675 }
2676
2677 // Note, the name of OperatorNew might have been changed from array to
2678 // non-array by resolveAllocationOverload.
2679 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2680 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2681 ? OO_Array_Delete
2682 : OO_Delete);
2683
2684 // C++ [expr.new]p19:
2685 //
2686 // If the new-expression begins with a unary :: operator, the
2687 // deallocation function's name is looked up in the global
2688 // scope. Otherwise, if the allocated type is a class type T or an
2689 // array thereof, the deallocation function's name is looked up in
2690 // the scope of T. If this lookup fails to find the name, or if
2691 // the allocated type is not a class type or array thereof, the
2692 // deallocation function's name is looked up in the global scope.
2693 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2694 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2695 auto *RD =
2696 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2697 LookupQualifiedName(FoundDelete, RD);
2698 }
2699 if (FoundDelete.isAmbiguous())
2700 return true; // FIXME: clean up expressions?
2701
2702 // Filter out any destroying operator deletes. We can't possibly call such a
2703 // function in this context, because we're handling the case where the object
2704 // was not successfully constructed.
2705 // FIXME: This is not covered by the language rules yet.
2706 {
2707 LookupResult::Filter Filter = FoundDelete.makeFilter();
2708 while (Filter.hasNext()) {
2709 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2710 if (FD && FD->isDestroyingOperatorDelete())
2711 Filter.erase();
2712 }
2713 Filter.done();
2714 }
2715
2716 bool FoundGlobalDelete = FoundDelete.empty();
2717 if (FoundDelete.empty()) {
2718 FoundDelete.clear(LookupOrdinaryName);
2719
2720 if (DeleteScope == AFS_Class)
2721 return true;
2722
2723 DeclareGlobalNewDelete();
2724 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2725 }
2726
2727 FoundDelete.suppressDiagnostics();
2728
2729 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2730
2731 // Whether we're looking for a placement operator delete is dictated
2732 // by whether we selected a placement operator new, not by whether
2733 // we had explicit placement arguments. This matters for things like
2734 // struct A { void *operator new(size_t, int = 0); ... };
2735 // A *a = new A()
2736 //
2737 // We don't have any definition for what a "placement allocation function"
2738 // is, but we assume it's any allocation function whose
2739 // parameter-declaration-clause is anything other than (size_t).
2740 //
2741 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2742 // This affects whether an exception from the constructor of an overaligned
2743 // type uses the sized or non-sized form of aligned operator delete.
2744 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2745 OperatorNew->isVariadic();
2746
2747 if (isPlacementNew) {
2748 // C++ [expr.new]p20:
2749 // A declaration of a placement deallocation function matches the
2750 // declaration of a placement allocation function if it has the
2751 // same number of parameters and, after parameter transformations
2752 // (8.3.5), all parameter types except the first are
2753 // identical. [...]
2754 //
2755 // To perform this comparison, we compute the function type that
2756 // the deallocation function should have, and use that type both
2757 // for template argument deduction and for comparison purposes.
2758 QualType ExpectedFunctionType;
2759 {
2760 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2761
2762 SmallVector<QualType, 4> ArgTypes;
2763 ArgTypes.push_back(Context.VoidPtrTy);
2764 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2765 ArgTypes.push_back(Proto->getParamType(I));
2766
2767 FunctionProtoType::ExtProtoInfo EPI;
2768 // FIXME: This is not part of the standard's rule.
2769 EPI.Variadic = Proto->isVariadic();
2770
2771 ExpectedFunctionType
2772 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2773 }
2774
2775 for (LookupResult::iterator D = FoundDelete.begin(),
2776 DEnd = FoundDelete.end();
2777 D != DEnd; ++D) {
2778 FunctionDecl *Fn = nullptr;
2779 if (FunctionTemplateDecl *FnTmpl =
2780 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2781 // Perform template argument deduction to try to match the
2782 // expected function type.
2783 TemplateDeductionInfo Info(StartLoc);
2784 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2785 Info))
2786 continue;
2787 } else
2788 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2789
2790 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2791 ExpectedFunctionType,
2792 /*AdjustExcpetionSpec*/true),
2793 ExpectedFunctionType))
2794 Matches.push_back(std::make_pair(D.getPair(), Fn));
2795 }
2796
2797 if (getLangOpts().CUDA)
2798 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2799 } else {
2800 // C++1y [expr.new]p22:
2801 // For a non-placement allocation function, the normal deallocation
2802 // function lookup is used
2803 //
2804 // Per [expr.delete]p10, this lookup prefers a member operator delete
2805 // without a size_t argument, but prefers a non-member operator delete
2806 // with a size_t where possible (which it always is in this case).
2807 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2808 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2809 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2810 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2811 &BestDeallocFns);
2812 if (Selected)
2813 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2814 else {
2815 // If we failed to select an operator, all remaining functions are viable
2816 // but ambiguous.
2817 for (auto Fn : BestDeallocFns)
2818 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2819 }
2820 }
2821
2822 // C++ [expr.new]p20:
2823 // [...] If the lookup finds a single matching deallocation
2824 // function, that function will be called; otherwise, no
2825 // deallocation function will be called.
2826 if (Matches.size() == 1) {
2827 OperatorDelete = Matches[0].second;
2828
2829 // C++1z [expr.new]p23:
2830 // If the lookup finds a usual deallocation function (3.7.4.2)
2831 // with a parameter of type std::size_t and that function, considered
2832 // as a placement deallocation function, would have been
2833 // selected as a match for the allocation function, the program
2834 // is ill-formed.
2835 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2836 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2837 UsualDeallocFnInfo Info(*this,
2838 DeclAccessPair::make(OperatorDelete, AS_public));
2839 // Core issue, per mail to core reflector, 2016-10-09:
2840 // If this is a member operator delete, and there is a corresponding
2841 // non-sized member operator delete, this isn't /really/ a sized
2842 // deallocation function, it just happens to have a size_t parameter.
2843 bool IsSizedDelete = Info.HasSizeT;
2844 if (IsSizedDelete && !FoundGlobalDelete) {
2845 auto NonSizedDelete =
2846 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2847 /*WantAlign*/Info.HasAlignValT);
2848 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2849 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2850 IsSizedDelete = false;
2851 }
2852
2853 if (IsSizedDelete) {
2854 SourceRange R = PlaceArgs.empty()
2855 ? SourceRange()
2856 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2857 PlaceArgs.back()->getEndLoc());
2858 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2859 if (!OperatorDelete->isImplicit())
2860 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2861 << DeleteName;
2862 }
2863 }
2864
2865 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2866 Matches[0].first);
2867 } else if (!Matches.empty()) {
2868 // We found multiple suitable operators. Per [expr.new]p20, that means we
2869 // call no 'operator delete' function, but we should at least warn the user.
2870 // FIXME: Suppress this warning if the construction cannot throw.
2871 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2872 << DeleteName << AllocElemType;
2873
2874 for (auto &Match : Matches)
2875 Diag(Match.second->getLocation(),
2876 diag::note_member_declared_here) << DeleteName;
2877 }
2878
2879 return false;
2880}
2881
2882/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2883/// delete. These are:
2884/// @code
2885/// // C++03:
2886/// void* operator new(std::size_t) throw(std::bad_alloc);
2887/// void* operator new[](std::size_t) throw(std::bad_alloc);
2888/// void operator delete(void *) throw();
2889/// void operator delete[](void *) throw();
2890/// // C++11:
2891/// void* operator new(std::size_t);
2892/// void* operator new[](std::size_t);
2893/// void operator delete(void *) noexcept;
2894/// void operator delete[](void *) noexcept;
2895/// // C++1y:
2896/// void* operator new(std::size_t);
2897/// void* operator new[](std::size_t);
2898/// void operator delete(void *) noexcept;
2899/// void operator delete[](void *) noexcept;
2900/// void operator delete(void *, std::size_t) noexcept;
2901/// void operator delete[](void *, std::size_t) noexcept;
2902/// @endcode
2903/// Note that the placement and nothrow forms of new are *not* implicitly
2904/// declared. Their use requires including \<new\>.
2905void Sema::DeclareGlobalNewDelete() {
2906 if (GlobalNewDeleteDeclared)
2907 return;
2908
2909 // The implicitly declared new and delete operators
2910 // are not supported in OpenCL.
2911 if (getLangOpts().OpenCLCPlusPlus)
2912 return;
2913
2914 // C++ [basic.std.dynamic]p2:
2915 // [...] The following allocation and deallocation functions (18.4) are
2916 // implicitly declared in global scope in each translation unit of a
2917 // program
2918 //
2919 // C++03:
2920 // void* operator new(std::size_t) throw(std::bad_alloc);
2921 // void* operator new[](std::size_t) throw(std::bad_alloc);
2922 // void operator delete(void*) throw();
2923 // void operator delete[](void*) throw();
2924 // C++11:
2925 // void* operator new(std::size_t);
2926 // void* operator new[](std::size_t);
2927 // void operator delete(void*) noexcept;
2928 // void operator delete[](void*) noexcept;
2929 // C++1y:
2930 // void* operator new(std::size_t);
2931 // void* operator new[](std::size_t);
2932 // void operator delete(void*) noexcept;
2933 // void operator delete[](void*) noexcept;
2934 // void operator delete(void*, std::size_t) noexcept;
2935 // void operator delete[](void*, std::size_t) noexcept;
2936 //
2937 // These implicit declarations introduce only the function names operator
2938 // new, operator new[], operator delete, operator delete[].
2939 //
2940 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2941 // "std" or "bad_alloc" as necessary to form the exception specification.
2942 // However, we do not make these implicit declarations visible to name
2943 // lookup.
2944 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2945 // The "std::bad_alloc" class has not yet been declared, so build it
2946 // implicitly.
2947 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2948 getOrCreateStdNamespace(),
2949 SourceLocation(), SourceLocation(),
2950 &PP.getIdentifierTable().get("bad_alloc"),
2951 nullptr);
2952 getStdBadAlloc()->setImplicit(true);
2953 }
2954 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2955 // The "std::align_val_t" enum class has not yet been declared, so build it
2956 // implicitly.
2957 auto *AlignValT = EnumDecl::Create(
2958 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2959 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2960 AlignValT->setIntegerType(Context.getSizeType());
2961 AlignValT->setPromotionType(Context.getSizeType());
2962 AlignValT->setImplicit(true);
2963 StdAlignValT = AlignValT;
2964 }
2965
2966 GlobalNewDeleteDeclared = true;
2967
2968 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2969 QualType SizeT = Context.getSizeType();
2970
2971 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2972 QualType Return, QualType Param) {
2973 llvm::SmallVector<QualType, 3> Params;
2974 Params.push_back(Param);
2975
2976 // Create up to four variants of the function (sized/aligned).
2977 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2978 (Kind == OO_Delete || Kind == OO_Array_Delete);
2979 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2980
2981 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2982 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2983 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2984 if (Sized)
2985 Params.push_back(SizeT);
2986
2987 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2988 if (Aligned)
2989 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2990
2991 DeclareGlobalAllocationFunction(
2992 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2993
2994 if (Aligned)
2995 Params.pop_back();
2996 }
2997 }
2998 };
2999
3000 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3001 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3002 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3003 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3004}
3005
3006/// DeclareGlobalAllocationFunction - Declares a single implicit global
3007/// allocation function if it doesn't already exist.
3008void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3009 QualType Return,
3010 ArrayRef<QualType> Params) {
3011 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3012
3013 // Check if this function is already declared.
3014 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3015 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3016 Alloc != AllocEnd; ++Alloc) {
3017 // Only look at non-template functions, as it is the predefined,
3018 // non-templated allocation function we are trying to declare here.
3019 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3020 if (Func->getNumParams() == Params.size()) {
3021 llvm::SmallVector<QualType, 3> FuncParams;
3022 for (auto *P : Func->parameters())
3023 FuncParams.push_back(
3024 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3025 if (llvm::makeArrayRef(FuncParams) == Params) {
3026 // Make the function visible to name lookup, even if we found it in
3027 // an unimported module. It either is an implicitly-declared global
3028 // allocation function, or is suppressing that function.
3029 Func->setVisibleDespiteOwningModule();
3030 return;
3031 }
3032 }
3033 }
3034 }
3035
3036 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3037 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3038
3039 QualType BadAllocType;
3040 bool HasBadAllocExceptionSpec
3041 = (Name.getCXXOverloadedOperator() == OO_New ||
3042 Name.getCXXOverloadedOperator() == OO_Array_New);
3043 if (HasBadAllocExceptionSpec) {
3044 if (!getLangOpts().CPlusPlus11) {
3045 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3046 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3046, __extension__ __PRETTY_FUNCTION__
))
;
3047 EPI.ExceptionSpec.Type = EST_Dynamic;
3048 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3049 }
3050 if (getLangOpts().NewInfallible) {
3051 EPI.ExceptionSpec.Type = EST_DynamicNone;
3052 }
3053 } else {
3054 EPI.ExceptionSpec =
3055 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3056 }
3057
3058 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3059 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3060 FunctionDecl *Alloc = FunctionDecl::Create(
3061 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3062 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3063 true);
3064 Alloc->setImplicit();
3065 // Global allocation functions should always be visible.
3066 Alloc->setVisibleDespiteOwningModule();
3067
3068 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3069 Alloc->addAttr(
3070 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3071
3072 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3073 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3074 ? VisibilityAttr::Hidden
3075 : VisibilityAttr::Default));
3076
3077 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3078 for (QualType T : Params) {
3079 ParamDecls.push_back(ParmVarDecl::Create(
3080 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3081 /*TInfo=*/nullptr, SC_None, nullptr));
3082 ParamDecls.back()->setImplicit();
3083 }
3084 Alloc->setParams(ParamDecls);
3085 if (ExtraAttr)
3086 Alloc->addAttr(ExtraAttr);
3087 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3088 Context.getTranslationUnitDecl()->addDecl(Alloc);
3089 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3090 };
3091
3092 if (!LangOpts.CUDA)
3093 CreateAllocationFunctionDecl(nullptr);
3094 else {
3095 // Host and device get their own declaration so each can be
3096 // defined or re-declared independently.
3097 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3098 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3099 }
3100}
3101
3102FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3103 bool CanProvideSize,
3104 bool Overaligned,
3105 DeclarationName Name) {
3106 DeclareGlobalNewDelete();
3107
3108 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3109 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3110
3111 // FIXME: It's possible for this to result in ambiguity, through a
3112 // user-declared variadic operator delete or the enable_if attribute. We
3113 // should probably not consider those cases to be usual deallocation
3114 // functions. But for now we just make an arbitrary choice in that case.
3115 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3116 Overaligned);
3117 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3117, __extension__ __PRETTY_FUNCTION__
))
;
3118 return Result.FD;
3119}
3120
3121FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3122 CXXRecordDecl *RD) {
3123 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3124
3125 FunctionDecl *OperatorDelete = nullptr;
3126 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3127 return nullptr;
3128 if (OperatorDelete)
3129 return OperatorDelete;
3130
3131 // If there's no class-specific operator delete, look up the global
3132 // non-array delete.
3133 return FindUsualDeallocationFunction(
3134 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3135 Name);
3136}
3137
3138bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3139 DeclarationName Name,
3140 FunctionDecl *&Operator, bool Diagnose) {
3141 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3142 // Try to find operator delete/operator delete[] in class scope.
3143 LookupQualifiedName(Found, RD);
3144
3145 if (Found.isAmbiguous())
3146 return true;
3147
3148 Found.suppressDiagnostics();
3149
3150 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3151
3152 // C++17 [expr.delete]p10:
3153 // If the deallocation functions have class scope, the one without a
3154 // parameter of type std::size_t is selected.
3155 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3156 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3157 /*WantAlign*/ Overaligned, &Matches);
3158
3159 // If we could find an overload, use it.
3160 if (Matches.size() == 1) {
3161 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3162
3163 // FIXME: DiagnoseUseOfDecl?
3164 if (Operator->isDeleted()) {
3165 if (Diagnose) {
3166 Diag(StartLoc, diag::err_deleted_function_use);
3167 NoteDeletedFunction(Operator);
3168 }
3169 return true;
3170 }
3171
3172 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3173 Matches[0].Found, Diagnose) == AR_inaccessible)
3174 return true;
3175
3176 return false;
3177 }
3178
3179 // We found multiple suitable operators; complain about the ambiguity.
3180 // FIXME: The standard doesn't say to do this; it appears that the intent
3181 // is that this should never happen.
3182 if (!Matches.empty()) {
3183 if (Diagnose) {
3184 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3185 << Name << RD;
3186 for (auto &Match : Matches)
3187 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3188 }
3189 return true;
3190 }
3191
3192 // We did find operator delete/operator delete[] declarations, but
3193 // none of them were suitable.
3194 if (!Found.empty()) {
3195 if (Diagnose) {
3196 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3197 << Name << RD;
3198
3199 for (NamedDecl *D : Found)
3200 Diag(D->getUnderlyingDecl()->getLocation(),
3201 diag::note_member_declared_here) << Name;
3202 }
3203 return true;
3204 }
3205
3206 Operator = nullptr;
3207 return false;
3208}
3209
3210namespace {
3211/// Checks whether delete-expression, and new-expression used for
3212/// initializing deletee have the same array form.
3213class MismatchingNewDeleteDetector {
3214public:
3215 enum MismatchResult {
3216 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3217 NoMismatch,
3218 /// Indicates that variable is initialized with mismatching form of \a new.
3219 VarInitMismatches,
3220 /// Indicates that member is initialized with mismatching form of \a new.
3221 MemberInitMismatches,
3222 /// Indicates that 1 or more constructors' definitions could not been
3223 /// analyzed, and they will be checked again at the end of translation unit.
3224 AnalyzeLater
3225 };
3226
3227 /// \param EndOfTU True, if this is the final analysis at the end of
3228 /// translation unit. False, if this is the initial analysis at the point
3229 /// delete-expression was encountered.
3230 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3231 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3232 HasUndefinedConstructors(false) {}
3233
3234 /// Checks whether pointee of a delete-expression is initialized with
3235 /// matching form of new-expression.
3236 ///
3237 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3238 /// point where delete-expression is encountered, then a warning will be
3239 /// issued immediately. If return value is \c AnalyzeLater at the point where
3240 /// delete-expression is seen, then member will be analyzed at the end of
3241 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3242 /// couldn't be analyzed. If at least one constructor initializes the member
3243 /// with matching type of new, the return value is \c NoMismatch.
3244 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3245 /// Analyzes a class member.
3246 /// \param Field Class member to analyze.
3247 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3248 /// for deleting the \p Field.
3249 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3250 FieldDecl *Field;
3251 /// List of mismatching new-expressions used for initialization of the pointee
3252 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3253 /// Indicates whether delete-expression was in array form.
3254 bool IsArrayForm;
3255
3256private:
3257 const bool EndOfTU;
3258 /// Indicates that there is at least one constructor without body.
3259 bool HasUndefinedConstructors;
3260 /// Returns \c CXXNewExpr from given initialization expression.
3261 /// \param E Expression used for initializing pointee in delete-expression.
3262 /// E can be a single-element \c InitListExpr consisting of new-expression.
3263 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3264 /// Returns whether member is initialized with mismatching form of
3265 /// \c new either by the member initializer or in-class initialization.
3266 ///
3267 /// If bodies of all constructors are not visible at the end of translation
3268 /// unit or at least one constructor initializes member with the matching
3269 /// form of \c new, mismatch cannot be proven, and this function will return
3270 /// \c NoMismatch.
3271 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3272 /// Returns whether variable is initialized with mismatching form of
3273 /// \c new.
3274 ///
3275 /// If variable is initialized with matching form of \c new or variable is not
3276 /// initialized with a \c new expression, this function will return true.
3277 /// If variable is initialized with mismatching form of \c new, returns false.
3278 /// \param D Variable to analyze.
3279 bool hasMatchingVarInit(const DeclRefExpr *D);
3280 /// Checks whether the constructor initializes pointee with mismatching
3281 /// form of \c new.
3282 ///
3283 /// Returns true, if member is initialized with matching form of \c new in
3284 /// member initializer list. Returns false, if member is initialized with the
3285 /// matching form of \c new in this constructor's initializer or given
3286 /// constructor isn't defined at the point where delete-expression is seen, or
3287 /// member isn't initialized by the constructor.
3288 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3289 /// Checks whether member is initialized with matching form of
3290 /// \c new in member initializer list.
3291 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3292 /// Checks whether member is initialized with mismatching form of \c new by
3293 /// in-class initializer.
3294 MismatchResult analyzeInClassInitializer();
3295};
3296}
3297
3298MismatchingNewDeleteDetector::MismatchResult
3299MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3300 NewExprs.clear();
3301 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3301, __extension__ __PRETTY_FUNCTION__
))
;
3302 IsArrayForm = DE->isArrayForm();
3303 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3304 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3305 return analyzeMemberExpr(ME);
3306 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3307 if (!hasMatchingVarInit(D))
3308 return VarInitMismatches;
3309 }
3310 return NoMismatch;
3311}
3312
3313const CXXNewExpr *
3314MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3315 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3315, __extension__ __PRETTY_FUNCTION__
))
;
3316 E = E->IgnoreParenImpCasts();
3317 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3318 if (ILE->getNumInits() == 1)
3319 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3320 }
3321
3322 return dyn_cast_or_null<const CXXNewExpr>(E);
3323}
3324
3325bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3326 const CXXCtorInitializer *CI) {
3327 const CXXNewExpr *NE = nullptr;
3328 if (Field == CI->getMember() &&
3329 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3330 if (NE->isArray() == IsArrayForm)
3331 return true;
3332 else
3333 NewExprs.push_back(NE);
3334 }
3335 return false;
3336}
3337
3338bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3339 const CXXConstructorDecl *CD) {
3340 if (CD->isImplicit())
3341 return false;
3342 const FunctionDecl *Definition = CD;
3343 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3344 HasUndefinedConstructors = true;
3345 return EndOfTU;
3346 }
3347 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3348 if (hasMatchingNewInCtorInit(CI))
3349 return true;
3350 }
3351 return false;
3352}
3353
3354MismatchingNewDeleteDetector::MismatchResult
3355MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3356 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3356, __extension__ __PRETTY_FUNCTION__
))
;
3357 const Expr *InitExpr = Field->getInClassInitializer();
3358 if (!InitExpr)
3359 return EndOfTU ? NoMismatch : AnalyzeLater;
3360 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3361 if (NE->isArray() != IsArrayForm) {
3362 NewExprs.push_back(NE);
3363 return MemberInitMismatches;
3364 }
3365 }
3366 return NoMismatch;
3367}
3368
3369MismatchingNewDeleteDetector::MismatchResult
3370MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3371 bool DeleteWasArrayForm) {
3372 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3372, __extension__ __PRETTY_FUNCTION__
))
;
3373 this->Field = Field;
3374 IsArrayForm = DeleteWasArrayForm;
3375 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3376 for (const auto *CD : RD->ctors()) {
3377 if (hasMatchingNewInCtor(CD))
3378 return NoMismatch;
3379 }
3380 if (HasUndefinedConstructors)
3381 return EndOfTU ? NoMismatch : AnalyzeLater;
3382 if (!NewExprs.empty())
3383 return MemberInitMismatches;
3384 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3385 : NoMismatch;
3386}
3387
3388MismatchingNewDeleteDetector::MismatchResult
3389MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3390 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3390, __extension__ __PRETTY_FUNCTION__
))
;
3391 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3392 return analyzeField(F, IsArrayForm);
3393 return NoMismatch;
3394}
3395
3396bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3397 const CXXNewExpr *NE = nullptr;
3398 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3399 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3400 NE->isArray() != IsArrayForm) {
3401 NewExprs.push_back(NE);
3402 }
3403 }
3404 return NewExprs.empty();
3405}
3406
3407static void
3408DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3409 const MismatchingNewDeleteDetector &Detector) {
3410 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3411 FixItHint H;
3412 if (!Detector.IsArrayForm)
3413 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3414 else {
3415 SourceLocation RSquare = Lexer::findLocationAfterToken(
3416 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3417 SemaRef.getLangOpts(), true);
3418 if (RSquare.isValid())
3419 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3420 }
3421 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3422 << Detector.IsArrayForm << H;
3423
3424 for (const auto *NE : Detector.NewExprs)
3425 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3426 << Detector.IsArrayForm;
3427}
3428
3429void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3430 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3431 return;
3432 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3433 switch (Detector.analyzeDeleteExpr(DE)) {
3434 case MismatchingNewDeleteDetector::VarInitMismatches:
3435 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3436 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3437 break;
3438 }
3439 case MismatchingNewDeleteDetector::AnalyzeLater: {
3440 DeleteExprs[Detector.Field].push_back(
3441 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3442 break;
3443 }
3444 case MismatchingNewDeleteDetector::NoMismatch:
3445 break;
3446 }
3447}
3448
3449void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3450 bool DeleteWasArrayForm) {
3451 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3452 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3453 case MismatchingNewDeleteDetector::VarInitMismatches:
3454 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3454)
;
3455 case MismatchingNewDeleteDetector::AnalyzeLater:
3456 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3457)
3457 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3457)
;
3458 case MismatchingNewDeleteDetector::MemberInitMismatches:
3459 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3460 break;
3461 case MismatchingNewDeleteDetector::NoMismatch:
3462 break;
3463 }
3464}
3465
3466/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3467/// @code ::delete ptr; @endcode
3468/// or
3469/// @code delete [] ptr; @endcode
3470ExprResult
3471Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3472 bool ArrayForm, Expr *ExE) {
3473 // C++ [expr.delete]p1:
3474 // The operand shall have a pointer type, or a class type having a single
3475 // non-explicit conversion function to a pointer type. The result has type
3476 // void.
3477 //
3478 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3479
3480 ExprResult Ex = ExE;
3481 FunctionDecl *OperatorDelete = nullptr;
3482 bool ArrayFormAsWritten = ArrayForm;
3483 bool UsualArrayDeleteWantsSize = false;
3484
3485 if (!Ex.get()->isTypeDependent()) {
3486 // Perform lvalue-to-rvalue cast, if needed.
3487 Ex = DefaultLvalueConversion(Ex.get());
3488 if (Ex.isInvalid())
3489 return ExprError();
3490
3491 QualType Type = Ex.get()->getType();
3492
3493 class DeleteConverter : public ContextualImplicitConverter {
3494 public:
3495 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3496
3497 bool match(QualType ConvType) override {
3498 // FIXME: If we have an operator T* and an operator void*, we must pick
3499 // the operator T*.
3500 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3501 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3502 return true;
3503 return false;
3504 }
3505
3506 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3507 QualType T) override {
3508 return S.Diag(Loc, diag::err_delete_operand) << T;
3509 }
3510
3511 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3512 QualType T) override {
3513 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3514 }
3515
3516 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3517 QualType T,
3518 QualType ConvTy) override {
3519 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3520 }
3521
3522 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3523 QualType ConvTy) override {
3524 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3525 << ConvTy;
3526 }
3527
3528 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3529 QualType T) override {
3530 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3531 }
3532
3533 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3534 QualType ConvTy) override {
3535 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3536 << ConvTy;
3537 }
3538
3539 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3540 QualType T,
3541 QualType ConvTy) override {
3542 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3542)
;
3543 }
3544 } Converter;
3545
3546 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3547 if (Ex.isInvalid())
3548 return ExprError();
3549 Type = Ex.get()->getType();
3550 if (!Converter.match(Type))
3551 // FIXME: PerformContextualImplicitConversion should return ExprError
3552 // itself in this case.
3553 return ExprError();
3554
3555 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3556 QualType PointeeElem = Context.getBaseElementType(Pointee);
3557
3558 if (Pointee.getAddressSpace() != LangAS::Default &&
3559 !getLangOpts().OpenCLCPlusPlus)
3560 return Diag(Ex.get()->getBeginLoc(),
3561 diag::err_address_space_qualified_delete)
3562 << Pointee.getUnqualifiedType()
3563 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3564
3565 CXXRecordDecl *PointeeRD = nullptr;
3566 if (Pointee->isVoidType() && !isSFINAEContext()) {
3567 // The C++ standard bans deleting a pointer to a non-object type, which
3568 // effectively bans deletion of "void*". However, most compilers support
3569 // this, so we treat it as a warning unless we're in a SFINAE context.
3570 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3571 << Type << Ex.get()->getSourceRange();
3572 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3573 Pointee->isSizelessType()) {
3574 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3575 << Type << Ex.get()->getSourceRange());
3576 } else if (!Pointee->isDependentType()) {
3577 // FIXME: This can result in errors if the definition was imported from a
3578 // module but is hidden.
3579 if (!RequireCompleteType(StartLoc, Pointee,
3580 diag::warn_delete_incomplete, Ex.get())) {
3581 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3582 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3583 }
3584 }
3585
3586 if (Pointee->isArrayType() && !ArrayForm) {
3587 Diag(StartLoc, diag::warn_delete_array_type)
3588 << Type << Ex.get()->getSourceRange()
3589 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3590 ArrayForm = true;
3591 }
3592
3593 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3594 ArrayForm ? OO_Array_Delete : OO_Delete);
3595
3596 if (PointeeRD) {
3597 if (!UseGlobal &&
3598 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3599 OperatorDelete))
3600 return ExprError();
3601
3602 // If we're allocating an array of records, check whether the
3603 // usual operator delete[] has a size_t parameter.
3604 if (ArrayForm) {
3605 // If the user specifically asked to use the global allocator,
3606 // we'll need to do the lookup into the class.
3607 if (UseGlobal)
3608 UsualArrayDeleteWantsSize =
3609 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3610
3611 // Otherwise, the usual operator delete[] should be the
3612 // function we just found.
3613 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3614 UsualArrayDeleteWantsSize =
3615 UsualDeallocFnInfo(*this,
3616 DeclAccessPair::make(OperatorDelete, AS_public))
3617 .HasSizeT;
3618 }
3619
3620 if (!PointeeRD->hasIrrelevantDestructor())
3621 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3622 MarkFunctionReferenced(StartLoc,
3623 const_cast<CXXDestructorDecl*>(Dtor));
3624 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3625 return ExprError();
3626 }
3627
3628 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3629 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3630 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3631 SourceLocation());
3632 }
3633
3634 if (!OperatorDelete) {
3635 if (getLangOpts().OpenCLCPlusPlus) {
3636 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3637 return ExprError();
3638 }
3639
3640 bool IsComplete = isCompleteType(StartLoc, Pointee);
3641 bool CanProvideSize =
3642 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3643 Pointee.isDestructedType());
3644 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3645
3646 // Look for a global declaration.
3647 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3648 Overaligned, DeleteName);
3649 }
3650
3651 MarkFunctionReferenced(StartLoc, OperatorDelete);
3652
3653 // Check access and ambiguity of destructor if we're going to call it.
3654 // Note that this is required even for a virtual delete.
3655 bool IsVirtualDelete = false;
3656 if (PointeeRD) {
3657 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3658 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3659 PDiag(diag::err_access_dtor) << PointeeElem);
3660 IsVirtualDelete = Dtor->isVirtual();
3661 }
3662 }
3663
3664 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3665
3666 // Convert the operand to the type of the first parameter of operator
3667 // delete. This is only necessary if we selected a destroying operator
3668 // delete that we are going to call (non-virtually); converting to void*
3669 // is trivial and left to AST consumers to handle.
3670 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3671 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3672 Qualifiers Qs = Pointee.getQualifiers();
3673 if (Qs.hasCVRQualifiers()) {
3674 // Qualifiers are irrelevant to this conversion; we're only looking
3675 // for access and ambiguity.
3676 Qs.removeCVRQualifiers();
3677 QualType Unqual = Context.getPointerType(
3678 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3679 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3680 }
3681 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3682 if (Ex.isInvalid())
3683 return ExprError();
3684 }
3685 }
3686
3687 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3688 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3689 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3690 AnalyzeDeleteExprMismatch(Result);
3691 return Result;
3692}
3693
3694static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3695 bool IsDelete,
3696 FunctionDecl *&Operator) {
3697
3698 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3699 IsDelete ? OO_Delete : OO_New);
3700
3701 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3702 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3703 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3703, __extension__ __PRETTY_FUNCTION__
))
;
3704 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3704, __extension__ __PRETTY_FUNCTION__
))
;
3705
3706 // We do our own custom access checks below.
3707 R.suppressDiagnostics();
3708
3709 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3710 OverloadCandidateSet Candidates(R.getNameLoc(),
3711 OverloadCandidateSet::CSK_Normal);
3712 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3713 FnOvl != FnOvlEnd; ++FnOvl) {
3714 // Even member operator new/delete are implicitly treated as
3715 // static, so don't use AddMemberCandidate.
3716 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3717
3718 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3719 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3720 /*ExplicitTemplateArgs=*/nullptr, Args,
3721 Candidates,
3722 /*SuppressUserConversions=*/false);
3723 continue;
3724 }
3725
3726 FunctionDecl *Fn = cast<FunctionDecl>(D);
3727 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3728 /*SuppressUserConversions=*/false);
3729 }
3730
3731 SourceRange Range = TheCall->getSourceRange();
3732
3733 // Do the resolution.
3734 OverloadCandidateSet::iterator Best;
3735 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3736 case OR_Success: {
3737 // Got one!
3738 FunctionDecl *FnDecl = Best->Function;
3739 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
3740 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
;
3741
3742 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3743 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3744 << (IsDelete ? 1 : 0) << Range;
3745 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3746 << R.getLookupName() << FnDecl->getSourceRange();
3747 return true;
3748 }
3749
3750 Operator = FnDecl;
3751 return false;
3752 }
3753
3754 case OR_No_Viable_Function:
3755 Candidates.NoteCandidates(
3756 PartialDiagnosticAt(R.getNameLoc(),
3757 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3758 << R.getLookupName() << Range),
3759 S, OCD_AllCandidates, Args);
3760 return true;
3761
3762 case OR_Ambiguous:
3763 Candidates.NoteCandidates(
3764 PartialDiagnosticAt(R.getNameLoc(),
3765 S.PDiag(diag::err_ovl_ambiguous_call)
3766 << R.getLookupName() << Range),
3767 S, OCD_AmbiguousCandidates, Args);
3768 return true;
3769
3770 case OR_Deleted: {
3771 Candidates.NoteCandidates(
3772 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3773 << R.getLookupName() << Range),
3774 S, OCD_AllCandidates, Args);
3775 return true;
3776 }
3777 }
3778 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3778)
;
3779}
3780
3781ExprResult
3782Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3783 bool IsDelete) {
3784 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3785 if (!getLangOpts().CPlusPlus) {
3786 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3787 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3788 << "C++";
3789 return ExprError();
3790 }
3791 // CodeGen assumes it can find the global new and delete to call,
3792 // so ensure that they are declared.
3793 DeclareGlobalNewDelete();
3794
3795 FunctionDecl *OperatorNewOrDelete = nullptr;
3796 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3797 OperatorNewOrDelete))
3798 return ExprError();
3799 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3799, __extension__ __PRETTY_FUNCTION__
))
;
3800
3801 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3802 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3803
3804 TheCall->setType(OperatorNewOrDelete->getReturnType());
3805 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3806 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3807 InitializedEntity Entity =
3808 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3809 ExprResult Arg = PerformCopyInitialization(
3810 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3811 if (Arg.isInvalid())
3812 return ExprError();
3813 TheCall->setArg(i, Arg.get());
3814 }
3815 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3816 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
3817 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
;
3818 Callee->setType(OperatorNewOrDelete->getType());
3819
3820 return TheCallResult;
3821}
3822
3823void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3824 bool IsDelete, bool CallCanBeVirtual,
3825 bool WarnOnNonAbstractTypes,
3826 SourceLocation DtorLoc) {
3827 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3828 return;
3829
3830 // C++ [expr.delete]p3:
3831 // In the first alternative (delete object), if the static type of the
3832 // object to be deleted is different from its dynamic type, the static
3833 // type shall be a base class of the dynamic type of the object to be
3834 // deleted and the static type shall have a virtual destructor or the
3835 // behavior is undefined.
3836 //
3837 const CXXRecordDecl *PointeeRD = dtor->getParent();
3838 // Note: a final class cannot be derived from, no issue there
3839 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3840 return;
3841
3842 // If the superclass is in a system header, there's nothing that can be done.
3843 // The `delete` (where we emit the warning) can be in a system header,
3844 // what matters for this warning is where the deleted type is defined.
3845 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3846 return;
3847
3848 QualType ClassType = dtor->getThisType()->getPointeeType();
3849 if (PointeeRD->isAbstract()) {
3850 // If the class is abstract, we warn by default, because we're
3851 // sure the code has undefined behavior.
3852 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3853 << ClassType;
3854 } else if (WarnOnNonAbstractTypes) {
3855 // Otherwise, if this is not an array delete, it's a bit suspect,
3856 // but not necessarily wrong.
3857 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3858 << ClassType;
3859 }
3860 if (!IsDelete) {
3861 std::string TypeStr;
3862 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3863 Diag(DtorLoc, diag::note_delete_non_virtual)
3864 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3865 }
3866}
3867
3868Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3869 SourceLocation StmtLoc,
3870 ConditionKind CK) {
3871 ExprResult E =
3872 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3873 if (E.isInvalid())
3874 return ConditionError();
3875 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3876 CK == ConditionKind::ConstexprIf);
3877}
3878
3879/// Check the use of the given variable as a C++ condition in an if,
3880/// while, do-while, or switch statement.
3881ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3882 SourceLocation StmtLoc,
3883 ConditionKind CK) {
3884 if (ConditionVar->isInvalidDecl())
3885 return ExprError();
3886
3887 QualType T = ConditionVar->getType();
3888
3889 // C++ [stmt.select]p2:
3890 // The declarator shall not specify a function or an array.
3891 if (T->isFunctionType())
3892 return ExprError(Diag(ConditionVar->getLocation(),
3893 diag::err_invalid_use_of_function_type)
3894 << ConditionVar->getSourceRange());
3895 else if (T->isArrayType())
3896 return ExprError(Diag(ConditionVar->getLocation(),
3897 diag::err_invalid_use_of_array_type)
3898 << ConditionVar->getSourceRange());
3899
3900 ExprResult Condition = BuildDeclRefExpr(
3901 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3902 ConditionVar->getLocation());
3903
3904 switch (CK) {
3905 case ConditionKind::Boolean:
3906 return CheckBooleanCondition(StmtLoc, Condition.get());
3907
3908 case ConditionKind::ConstexprIf:
3909 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3910
3911 case ConditionKind::Switch:
3912 return CheckSwitchCondition(StmtLoc, Condition.get());
3913 }
3914
3915 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3915)
;
3916}
3917
3918/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3919ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3920 // C++11 6.4p4:
3921 // The value of a condition that is an initialized declaration in a statement
3922 // other than a switch statement is the value of the declared variable
3923 // implicitly converted to type bool. If that conversion is ill-formed, the
3924 // program is ill-formed.
3925 // The value of a condition that is an expression is the value of the
3926 // expression, implicitly converted to bool.
3927 //
3928 // C++2b 8.5.2p2
3929 // If the if statement is of the form if constexpr, the value of the condition
3930 // is contextually converted to bool and the converted expression shall be
3931 // a constant expression.
3932 //
3933
3934 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3935 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3936 return E;
3937
3938 // FIXME: Return this value to the caller so they don't need to recompute it.
3939 llvm::APSInt Cond;
3940 E = VerifyIntegerConstantExpression(
3941 E.get(), &Cond,
3942 diag::err_constexpr_if_condition_expression_is_not_constant);
3943 return E;
3944}
3945
3946/// Helper function to determine whether this is the (deprecated) C++
3947/// conversion from a string literal to a pointer to non-const char or
3948/// non-const wchar_t (for narrow and wide string literals,
3949/// respectively).
3950bool
3951Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3952 // Look inside the implicit cast, if it exists.
3953 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3954 From = Cast->getSubExpr();
3955
3956 // A string literal (2.13.4) that is not a wide string literal can
3957 // be converted to an rvalue of type "pointer to char"; a wide
3958 // string literal can be converted to an rvalue of type "pointer
3959 // to wchar_t" (C++ 4.2p2).
3960 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3961 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3962 if (const BuiltinType *ToPointeeType
3963 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3964 // This conversion is considered only when there is an
3965 // explicit appropriate pointer target type (C++ 4.2p2).
3966 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3967 switch (StrLit->getKind()) {
3968 case StringLiteral::UTF8:
3969 case StringLiteral::UTF16:
3970 case StringLiteral::UTF32:
3971 // We don't allow UTF literals to be implicitly converted
3972 break;
3973 case StringLiteral::Ascii:
3974 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3975 ToPointeeType->getKind() == BuiltinType::Char_S);
3976 case StringLiteral::Wide:
3977 return Context.typesAreCompatible(Context.getWideCharType(),
3978 QualType(ToPointeeType, 0));
3979 }
3980 }
3981 }
3982
3983 return false;
3984}
3985
3986static ExprResult BuildCXXCastArgument(Sema &S,
3987 SourceLocation CastLoc,
3988 QualType Ty,
3989 CastKind Kind,
3990 CXXMethodDecl *Method,
3991 DeclAccessPair FoundDecl,
3992 bool HadMultipleCandidates,
3993 Expr *From) {
3994 switch (Kind) {
3995 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 3995)
;
3996 case CK_ConstructorConversion: {
3997 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3998 SmallVector<Expr*, 8> ConstructorArgs;
3999
4000 if (S.RequireNonAbstractType(CastLoc, Ty,
4001 diag::err_allocation_of_abstract_type))
4002 return ExprError();
4003
4004 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4005 ConstructorArgs))
4006 return ExprError();
4007
4008 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4009 InitializedEntity::InitializeTemporary(Ty));
4010 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4011 return ExprError();
4012
4013 ExprResult Result = S.BuildCXXConstructExpr(
4014 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4015 ConstructorArgs, HadMultipleCandidates,
4016 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4017 CXXConstructExpr::CK_Complete, SourceRange());
4018 if (Result.isInvalid())
4019 return ExprError();
4020
4021 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4022 }
4023
4024 case CK_UserDefinedConversion: {
4025 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4025, __extension__ __PRETTY_FUNCTION__
))
;
4026
4027 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4028 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4029 return ExprError();
4030
4031 // Create an implicit call expr that calls it.
4032 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4033 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4034 HadMultipleCandidates);
4035 if (Result.isInvalid())
4036 return ExprError();
4037 // Record usage of conversion in an implicit cast.
4038 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4039 CK_UserDefinedConversion, Result.get(),
4040 nullptr, Result.get()->getValueKind(),
4041 S.CurFPFeatureOverrides());
4042
4043 return S.MaybeBindToTemporary(Result.get());
4044 }
4045 }
4046}
4047
4048/// PerformImplicitConversion - Perform an implicit conversion of the
4049/// expression From to the type ToType using the pre-computed implicit
4050/// conversion sequence ICS. Returns the converted
4051/// expression. Action is the kind of conversion we're performing,
4052/// used in the error message.
4053ExprResult
4054Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4055 const ImplicitConversionSequence &ICS,
4056 AssignmentAction Action,
4057 CheckedConversionKind CCK) {
4058 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4059 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4060 return From;
4061
4062 switch (ICS.getKind()) {
4063 case ImplicitConversionSequence::StandardConversion: {
4064 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4065 Action, CCK);
4066 if (Res.isInvalid())
4067 return ExprError();
4068 From = Res.get();
4069 break;
4070 }
4071
4072 case ImplicitConversionSequence::UserDefinedConversion: {
4073
4074 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4075 CastKind CastKind;
4076 QualType BeforeToType;
4077 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4077, __extension__ __PRETTY_FUNCTION__
))
;
4078 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4079 CastKind = CK_UserDefinedConversion;
4080
4081 // If the user-defined conversion is specified by a conversion function,
4082 // the initial standard conversion sequence converts the source type to
4083 // the implicit object parameter of the conversion function.
4084 BeforeToType = Context.getTagDeclType(Conv->getParent());
4085 } else {
4086 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4087 CastKind = CK_ConstructorConversion;
4088 // Do no conversion if dealing with ... for the first conversion.
4089 if (!ICS.UserDefined.EllipsisConversion) {
4090 // If the user-defined conversion is specified by a constructor, the
4091 // initial standard conversion sequence converts the source type to
4092 // the type required by the argument of the constructor
4093 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4094 }
4095 }
4096 // Watch out for ellipsis conversion.
4097 if (!ICS.UserDefined.EllipsisConversion) {
4098 ExprResult Res =
4099 PerformImplicitConversion(From, BeforeToType,
4100 ICS.UserDefined.Before, AA_Converting,
4101 CCK);
4102 if (Res.isInvalid())
4103 return ExprError();
4104 From = Res.get();
4105 }
4106
4107 ExprResult CastArg = BuildCXXCastArgument(
4108 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4109 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4110 ICS.UserDefined.HadMultipleCandidates, From);
4111
4112 if (CastArg.isInvalid())
4113 return ExprError();
4114
4115 From = CastArg.get();
4116
4117 // C++ [over.match.oper]p7:
4118 // [...] the second standard conversion sequence of a user-defined
4119 // conversion sequence is not applied.
4120 if (CCK == CCK_ForBuiltinOverloadedOp)
4121 return From;
4122
4123 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4124 AA_Converting, CCK);
4125 }
4126
4127 case ImplicitConversionSequence::AmbiguousConversion:
4128 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4129 PDiag(diag::err_typecheck_ambiguous_condition)
4130 << From->getSourceRange());
4131 return ExprError();
4132
4133 case ImplicitConversionSequence::EllipsisConversion:
4134 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4134)
;
4135
4136 case ImplicitConversionSequence::BadConversion:
4137 Sema::AssignConvertType ConvTy =
4138 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4139 bool Diagnosed = DiagnoseAssignmentResult(
4140 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4141 ToType, From->getType(), From, Action);
4142 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4142, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed;
4143 return ExprError();
4144 }
4145
4146 // Everything went well.
4147 return From;
4148}
4149
4150/// PerformImplicitConversion - Perform an implicit conversion of the
4151/// expression From to the type ToType by following the standard
4152/// conversion sequence SCS. Returns the converted
4153/// expression. Flavor is the context in which we're performing this
4154/// conversion, for use in error messages.
4155ExprResult
4156Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4157 const StandardConversionSequence& SCS,
4158 AssignmentAction Action,
4159 CheckedConversionKind CCK) {
4160 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4161
4162 // Overall FIXME: we are recomputing too many types here and doing far too
4163 // much extra work. What this means is that we need to keep track of more
4164 // information that is computed when we try the implicit conversion initially,
4165 // so that we don't need to recompute anything here.
4166 QualType FromType = From->getType();
4167
4168 if (SCS.CopyConstructor) {
4169 // FIXME: When can ToType be a reference type?
4170 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4170, __extension__ __PRETTY_FUNCTION__))
;
4171 if (SCS.Second == ICK_Derived_To_Base) {
4172 SmallVector<Expr*, 8> ConstructorArgs;
4173 if (CompleteConstructorCall(
4174 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4175 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4176 return ExprError();
4177 return BuildCXXConstructExpr(
4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4179 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4180 ConstructorArgs, /*HadMultipleCandidates*/ false,
4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4182 CXXConstructExpr::CK_Complete, SourceRange());
4183 }
4184 return BuildCXXConstructExpr(
4185 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4186 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4187 From, /*HadMultipleCandidates*/ false,
4188 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4189 CXXConstructExpr::CK_Complete, SourceRange());
4190 }
4191
4192 // Resolve overloaded function references.
4193 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4194 DeclAccessPair Found;
4195 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4196 true, Found);
4197 if (!Fn)
4198 return ExprError();
4199
4200 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4201 return ExprError();
4202
4203 From = FixOverloadedFunctionReference(From, Found, Fn);
4204 FromType = From->getType();
4205 }
4206
4207 // If we're converting to an atomic type, first convert to the corresponding
4208 // non-atomic type.
4209 QualType ToAtomicType;
4210 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4211 ToAtomicType = ToType;
4212 ToType = ToAtomic->getValueType();
4213 }
4214
4215 QualType InitialFromType = FromType;
4216 // Perform the first implicit conversion.
4217 switch (SCS.First) {
4218 case ICK_Identity:
4219 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4220 FromType = FromAtomic->getValueType().getUnqualifiedType();
4221 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4222 From, /*BasePath=*/nullptr, VK_PRValue,
4223 FPOptionsOverride());
4224 }
4225 break;
4226
4227 case ICK_Lvalue_To_Rvalue: {
4228 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4228, __extension__ __PRETTY_FUNCTION__
))
;
4229 ExprResult FromRes = DefaultLvalueConversion(From);
4230 if (FromRes.isInvalid())
4231 return ExprError();
4232
4233 From = FromRes.get();
4234 FromType = From->getType();
4235 break;
4236 }
4237
4238 case ICK_Array_To_Pointer:
4239 FromType = Context.getArrayDecayedType(FromType);
4240 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4241 /*BasePath=*/nullptr, CCK)
4242 .get();
4243 break;
4244
4245 case ICK_Function_To_Pointer:
4246 FromType = Context.getPointerType(FromType);
4247 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4248 VK_PRValue, /*BasePath=*/nullptr, CCK)
4249 .get();
4250 break;
4251
4252 default:
4253 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4253)
;
4254 }
4255
4256 // Perform the second implicit conversion
4257 switch (SCS.Second) {
4258 case ICK_Identity:
4259 // C++ [except.spec]p5:
4260 // [For] assignment to and initialization of pointers to functions,
4261 // pointers to member functions, and references to functions: the
4262 // target entity shall allow at least the exceptions allowed by the
4263 // source value in the assignment or initialization.
4264 switch (Action) {
4265 case AA_Assigning:
4266 case AA_Initializing:
4267 // Note, function argument passing and returning are initialization.
4268 case AA_Passing:
4269 case AA_Returning:
4270 case AA_Sending:
4271 case AA_Passing_CFAudited:
4272 if (CheckExceptionSpecCompatibility(From, ToType))
4273 return ExprError();
4274 break;
4275
4276 case AA_Casting:
4277 case AA_Converting:
4278 // Casts and implicit conversions are not initialization, so are not
4279 // checked for exception specification mismatches.
4280 break;
4281 }
4282 // Nothing else to do.
4283 break;
4284
4285 case ICK_Integral_Promotion:
4286 case ICK_Integral_Conversion:
4287 if (ToType->isBooleanType()) {
4288 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
4289 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
4290 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
;
4291 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4292 /*BasePath=*/nullptr, CCK)
4293 .get();
4294 } else {
4295 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4296 /*BasePath=*/nullptr, CCK)
4297 .get();
4298 }
4299 break;
4300
4301 case ICK_Floating_Promotion:
4302 case ICK_Floating_Conversion:
4303 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4304 /*BasePath=*/nullptr, CCK)
4305 .get();
4306 break;
4307
4308 case ICK_Complex_Promotion:
4309 case ICK_Complex_Conversion: {
4310 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4311 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4312 CastKind CK;
4313 if (FromEl->isRealFloatingType()) {
4314 if (ToEl->isRealFloatingType())
4315 CK = CK_FloatingComplexCast;
4316 else
4317 CK = CK_FloatingComplexToIntegralComplex;
4318 } else if (ToEl->isRealFloatingType()) {
4319 CK = CK_IntegralComplexToFloatingComplex;
4320 } else {
4321 CK = CK_IntegralComplexCast;
4322 }
4323 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4324 CCK)
4325 .get();
4326 break;
4327 }
4328
4329 case ICK_Floating_Integral:
4330 if (ToType->isRealFloatingType())
4331 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4332 /*BasePath=*/nullptr, CCK)
4333 .get();
4334 else
4335 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4336 /*BasePath=*/nullptr, CCK)
4337 .get();
4338 break;
4339
4340 case ICK_Compatible_Conversion:
4341 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4342 /*BasePath=*/nullptr, CCK).get();
4343 break;
4344
4345 case ICK_Writeback_Conversion:
4346 case ICK_Pointer_Conversion: {
4347 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4348 // Diagnose incompatible Objective-C conversions
4349 if (Action == AA_Initializing || Action == AA_Assigning)
4350 Diag(From->getBeginLoc(),
4351 diag::ext_typecheck_convert_incompatible_pointer)
4352 << ToType << From->getType() << Action << From->getSourceRange()
4353 << 0;
4354 else
4355 Diag(From->getBeginLoc(),
4356 diag::ext_typecheck_convert_incompatible_pointer)
4357 << From->getType() << ToType << Action << From->getSourceRange()
4358 << 0;
4359
4360 if (From->getType()->isObjCObjectPointerType() &&
4361 ToType->isObjCObjectPointerType())
4362 EmitRelatedResultTypeNote(From);
4363 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4364 !CheckObjCARCUnavailableWeakConversion(ToType,
4365 From->getType())) {
4366 if (Action == AA_Initializing)
4367 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4368 else
4369 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4370 << (Action == AA_Casting) << From->getType() << ToType
4371 << From->getSourceRange();
4372 }
4373
4374 // Defer address space conversion to the third conversion.
4375 QualType FromPteeType = From->getType()->getPointeeType();
4376 QualType ToPteeType = ToType->getPointeeType();
4377 QualType NewToType = ToType;
4378 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4379 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4380 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4381 NewToType = Context.getAddrSpaceQualType(NewToType,
4382 FromPteeType.getAddressSpace());
4383 if (ToType->isObjCObjectPointerType())
4384 NewToType = Context.getObjCObjectPointerType(NewToType);
4385 else if (ToType->isBlockPointerType())
4386 NewToType = Context.getBlockPointerType(NewToType);
4387 else
4388 NewToType = Context.getPointerType(NewToType);
4389 }
4390
4391 CastKind Kind;
4392 CXXCastPath BasePath;
4393 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4394 return ExprError();
4395
4396 // Make sure we extend blocks if necessary.
4397 // FIXME: doing this here is really ugly.
4398 if (Kind == CK_BlockPointerToObjCPointerCast) {
4399 ExprResult E = From;
4400 (void) PrepareCastToObjCObjectPointer(E);
4401 From = E.get();
4402 }
4403 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4404 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4405 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4406 .get();
4407 break;
4408 }
4409
4410 case ICK_Pointer_Member: {
4411 CastKind Kind;
4412 CXXCastPath BasePath;
4413 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4414 return ExprError();
4415 if (CheckExceptionSpecCompatibility(From, ToType))
4416 return ExprError();
4417
4418 // We may not have been able to figure out what this member pointer resolved
4419 // to up until this exact point. Attempt to lock-in it's inheritance model.
4420 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4421 (void)isCompleteType(From->getExprLoc(), From->getType());
4422 (void)isCompleteType(From->getExprLoc(), ToType);
4423 }
4424
4425 From =
4426 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4427 break;
4428 }
4429
4430 case ICK_Boolean_Conversion:
4431 // Perform half-to-boolean conversion via float.
4432 if (From->getType()->isHalfType()) {
4433 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4434 FromType = Context.FloatTy;
4435 }
4436
4437 From = ImpCastExprToType(From, Context.BoolTy,
4438 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4439 /*BasePath=*/nullptr, CCK)
4440 .get();
4441 break;
4442
4443 case ICK_Derived_To_Base: {
4444 CXXCastPath BasePath;
4445 if (CheckDerivedToBaseConversion(
4446 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4447 From->getSourceRange(), &BasePath, CStyle))
4448 return ExprError();
4449
4450 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4451 CK_DerivedToBase, From->getValueKind(),
4452 &BasePath, CCK).get();
4453 break;
4454 }
4455
4456 case ICK_Vector_Conversion:
4457 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4458 /*BasePath=*/nullptr, CCK)
4459 .get();
4460 break;
4461
4462 case ICK_SVE_Vector_Conversion:
4463 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4464 /*BasePath=*/nullptr, CCK)
4465 .get();
4466 break;
4467
4468 case ICK_Vector_Splat: {
4469 // Vector splat from any arithmetic type to a vector.
4470 Expr *Elem = prepareVectorSplat(ToType, From).get();
4471 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4472 /*BasePath=*/nullptr, CCK)
4473 .get();
4474 break;
4475 }
4476
4477 case ICK_Complex_Real:
4478 // Case 1. x -> _Complex y
4479 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4480 QualType ElType = ToComplex->getElementType();
4481 bool isFloatingComplex = ElType->isRealFloatingType();
4482
4483 // x -> y
4484 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4485 // do nothing
4486 } else if (From->getType()->isRealFloatingType()) {
4487 From = ImpCastExprToType(From, ElType,
4488 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4489 } else {
4490 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4490, __extension__ __PRETTY_FUNCTION__
))
;
4491 From = ImpCastExprToType(From, ElType,
4492 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4493 }
4494 // y -> _Complex y
4495 From = ImpCastExprToType(From, ToType,
4496 isFloatingComplex ? CK_FloatingRealToComplex
4497 : CK_IntegralRealToComplex).get();
4498
4499 // Case 2. _Complex x -> y
4500 } else {
4501 auto *FromComplex = From->getType()->castAs<ComplexType>();
4502 QualType ElType = FromComplex->getElementType();
4503 bool isFloatingComplex = ElType->isRealFloatingType();
4504
4505 // _Complex x -> x
4506 From = ImpCastExprToType(From, ElType,
4507 isFloatingComplex ? CK_FloatingComplexToReal
4508 : CK_IntegralComplexToReal,
4509 VK_PRValue, /*BasePath=*/nullptr, CCK)
4510 .get();
4511
4512 // x -> y
4513 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4514 // do nothing
4515 } else if (ToType->isRealFloatingType()) {
4516 From = ImpCastExprToType(From, ToType,
4517 isFloatingComplex ? CK_FloatingCast
4518 : CK_IntegralToFloating,
4519 VK_PRValue, /*BasePath=*/nullptr, CCK)
4520 .get();
4521 } else {
4522 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4522, __extension__ __PRETTY_FUNCTION__))
;
4523 From = ImpCastExprToType(From, ToType,
4524 isFloatingComplex ? CK_FloatingToIntegral
4525 : CK_IntegralCast,
4526 VK_PRValue, /*BasePath=*/nullptr, CCK)
4527 .get();
4528 }
4529 }
4530 break;
4531
4532 case ICK_Block_Pointer_Conversion: {
4533 LangAS AddrSpaceL =
4534 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4535 LangAS AddrSpaceR =
4536 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4537 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4538, __extension__ __PRETTY_FUNCTION__
))
4538 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4538, __extension__ __PRETTY_FUNCTION__
))
;
4539 CastKind Kind =
4540 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4541 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4542 VK_PRValue, /*BasePath=*/nullptr, CCK)
4543 .get();
4544 break;
4545 }
4546
4547 case ICK_TransparentUnionConversion: {
4548 ExprResult FromRes = From;
4549 Sema::AssignConvertType ConvTy =
4550 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4551 if (FromRes.isInvalid())
4552 return ExprError();
4553 From = FromRes.get();
4554 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4555, __extension__ __PRETTY_FUNCTION__
))
4555 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4555, __extension__ __PRETTY_FUNCTION__
))
;
4556 (void)ConvTy;
4557 break;
4558 }
4559
4560 case ICK_Zero_Event_Conversion:
4561 case ICK_Zero_Queue_Conversion:
4562 From = ImpCastExprToType(From, ToType,
4563 CK_ZeroToOCLOpaqueType,
4564 From->getValueKind()).get();
4565 break;
4566
4567 case ICK_Lvalue_To_Rvalue:
4568 case ICK_Array_To_Pointer:
4569 case ICK_Function_To_Pointer:
4570 case ICK_Function_Conversion:
4571 case ICK_Qualification:
4572 case ICK_Num_Conversion_Kinds:
4573 case ICK_C_Only_Conversion:
4574 case ICK_Incompatible_Pointer_Conversion:
4575 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4575)
;
4576 }
4577
4578 switch (SCS.Third) {
4579 case ICK_Identity:
4580 // Nothing to do.
4581 break;
4582
4583 case ICK_Function_Conversion:
4584 // If both sides are functions (or pointers/references to them), there could
4585 // be incompatible exception declarations.
4586 if (CheckExceptionSpecCompatibility(From, ToType))
4587 return ExprError();
4588
4589 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4590 /*BasePath=*/nullptr, CCK)
4591 .get();
4592 break;
4593
4594 case ICK_Qualification: {
4595 ExprValueKind VK = From->getValueKind();
4596 CastKind CK = CK_NoOp;
4597
4598 if (ToType->isReferenceType() &&
4599 ToType->getPointeeType().getAddressSpace() !=
4600 From->getType().getAddressSpace())
4601 CK = CK_AddressSpaceConversion;
4602
4603 if (ToType->isPointerType() &&
4604 ToType->getPointeeType().getAddressSpace() !=
4605 From->getType()->getPointeeType().getAddressSpace())
4606 CK = CK_AddressSpaceConversion;
4607
4608 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4609 /*BasePath=*/nullptr, CCK)
4610 .get();
4611
4612 if (SCS.DeprecatedStringLiteralToCharPtr &&
4613 !getLangOpts().WritableStrings) {
4614 Diag(From->getBeginLoc(),
4615 getLangOpts().CPlusPlus11
4616 ? diag::ext_deprecated_string_literal_conversion
4617 : diag::warn_deprecated_string_literal_conversion)
4618 << ToType.getNonReferenceType();
4619 }
4620
4621 break;
4622 }
4623
4624 default:
4625 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4625)
;
4626 }
4627
4628 // If this conversion sequence involved a scalar -> atomic conversion, perform
4629 // that conversion now.
4630 if (!ToAtomicType.isNull()) {
4631 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4632, __extension__ __PRETTY_FUNCTION__
))
4632 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4632, __extension__ __PRETTY_FUNCTION__
))
;
4633 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4634 VK_PRValue, nullptr, CCK)
4635 .get();
4636 }
4637
4638 // Materialize a temporary if we're implicitly converting to a reference
4639 // type. This is not required by the C++ rules but is necessary to maintain
4640 // AST invariants.
4641 if (ToType->isReferenceType() && From->isPRValue()) {
4642 ExprResult Res = TemporaryMaterializationConversion(From);
4643 if (Res.isInvalid())
4644 return ExprError();
4645 From = Res.get();
4646 }
4647
4648 // If this conversion sequence succeeded and involved implicitly converting a
4649 // _Nullable type to a _Nonnull one, complain.
4650 if (!isCast(CCK))
4651 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4652 From->getBeginLoc());
4653
4654 return From;
4655}
4656
4657/// Check the completeness of a type in a unary type trait.
4658///
4659/// If the particular type trait requires a complete type, tries to complete
4660/// it. If completing the type fails, a diagnostic is emitted and false
4661/// returned. If completing the type succeeds or no completion was required,
4662/// returns true.
4663static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4664 SourceLocation Loc,
4665 QualType ArgTy) {
4666 // C++0x [meta.unary.prop]p3:
4667 // For all of the class templates X declared in this Clause, instantiating
4668 // that template with a template argument that is a class template
4669 // specialization may result in the implicit instantiation of the template
4670 // argument if and only if the semantics of X require that the argument
4671 // must be a complete type.
4672 // We apply this rule to all the type trait expressions used to implement
4673 // these class templates. We also try to follow any GCC documented behavior
4674 // in these expressions to ensure portability of standard libraries.
4675 switch (UTT) {
4676 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4676)
;
4677 // is_complete_type somewhat obviously cannot require a complete type.
4678 case UTT_IsCompleteType:
4679 // Fall-through
4680
4681 // These traits are modeled on the type predicates in C++0x
4682 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4683 // requiring a complete type, as whether or not they return true cannot be
4684 // impacted by the completeness of the type.
4685 case UTT_IsVoid:
4686 case UTT_IsIntegral:
4687 case UTT_IsFloatingPoint:
4688 case UTT_IsArray:
4689 case UTT_IsPointer:
4690 case UTT_IsLvalueReference:
4691 case UTT_IsRvalueReference:
4692 case UTT_IsMemberFunctionPointer:
4693 case UTT_IsMemberObjectPointer:
4694 case UTT_IsEnum:
4695 case UTT_IsUnion:
4696 case UTT_IsClass:
4697 case UTT_IsFunction:
4698 case UTT_IsReference:
4699 case UTT_IsArithmetic:
4700 case UTT_IsFundamental:
4701 case UTT_IsObject:
4702 case UTT_IsScalar:
4703 case UTT_IsCompound:
4704 case UTT_IsMemberPointer:
4705 // Fall-through
4706
4707 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4708 // which requires some of its traits to have the complete type. However,
4709 // the completeness of the type cannot impact these traits' semantics, and
4710 // so they don't require it. This matches the comments on these traits in
4711 // Table 49.
4712 case UTT_IsConst:
4713 case UTT_IsVolatile:
4714 case UTT_IsSigned:
4715 case UTT_IsUnsigned:
4716
4717 // This type trait always returns false, checking the type is moot.
4718 case UTT_IsInterfaceClass:
4719 return true;
4720
4721 // C++14 [meta.unary.prop]:
4722 // If T is a non-union class type, T shall be a complete type.
4723 case UTT_IsEmpty:
4724 case UTT_IsPolymorphic:
4725 case UTT_IsAbstract:
4726 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4727 if (!RD->isUnion())
4728 return !S.RequireCompleteType(
4729 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4730 return true;
4731
4732 // C++14 [meta.unary.prop]:
4733 // If T is a class type, T shall be a complete type.
4734 case UTT_IsFinal:
4735 case UTT_IsSealed:
4736 if (ArgTy->getAsCXXRecordDecl())
4737 return !S.RequireCompleteType(
4738 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4739 return true;
4740
4741 // C++1z [meta.unary.prop]:
4742 // remove_all_extents_t<T> shall be a complete type or cv void.
4743 case UTT_IsAggregate:
4744 case UTT_IsTrivial:
4745 case UTT_IsTriviallyCopyable:
4746 case UTT_IsStandardLayout:
4747 case UTT_IsPOD:
4748 case UTT_IsLiteral:
4749 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4750 // or an array of unknown bound. But GCC actually imposes the same constraints
4751 // as above.
4752 case UTT_HasNothrowAssign:
4753 case UTT_HasNothrowMoveAssign:
4754 case UTT_HasNothrowConstructor:
4755 case UTT_HasNothrowCopy:
4756 case UTT_HasTrivialAssign:
4757 case UTT_HasTrivialMoveAssign:
4758 case UTT_HasTrivialDefaultConstructor:
4759 case UTT_HasTrivialMoveConstructor:
4760 case UTT_HasTrivialCopy:
4761 case UTT_HasTrivialDestructor:
4762 case UTT_HasVirtualDestructor:
4763 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4764 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4765
4766 // C++1z [meta.unary.prop]:
4767 // T shall be a complete type, cv void, or an array of unknown bound.
4768 case UTT_IsDestructible:
4769 case UTT_IsNothrowDestructible:
4770 case UTT_IsTriviallyDestructible:
4771 case UTT_HasUniqueObjectRepresentations:
4772 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4773 return true;
4774
4775 return !S.RequireCompleteType(
4776 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4777 }
4778}
4779
4780static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4781 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4782 bool (CXXRecordDecl::*HasTrivial)() const,
4783 bool (CXXRecordDecl::*HasNonTrivial)() const,
4784 bool (CXXMethodDecl::*IsDesiredOp)() const)
4785{
4786 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4787 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4788 return true;
4789
4790 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4791 DeclarationNameInfo NameInfo(Name, KeyLoc);
4792 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4793 if (Self.LookupQualifiedName(Res, RD)) {
4794 bool FoundOperator = false;
4795 Res.suppressDiagnostics();
4796 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4797 Op != OpEnd; ++Op) {
4798 if (isa<FunctionTemplateDecl>(*Op))
4799 continue;
4800
4801 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4802 if((Operator->*IsDesiredOp)()) {
4803 FoundOperator = true;
4804 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4805 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4806 if (!CPT || !CPT->isNothrow())
4807 return false;
4808 }
4809 }
4810 return FoundOperator;
4811 }
4812 return false;
4813}
4814
4815static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4816 SourceLocation KeyLoc, QualType T) {
4817 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4817, __extension__ __PRETTY_FUNCTION__
))
;
4818
4819 ASTContext &C = Self.Context;
4820 switch(UTT) {
4821 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4821)
;
4822 // Type trait expressions corresponding to the primary type category
4823 // predicates in C++0x [meta.unary.cat].
4824 case UTT_IsVoid:
4825 return T->isVoidType();
4826 case UTT_IsIntegral:
4827 return T->isIntegralType(C);
4828 case UTT_IsFloatingPoint:
4829 return T->isFloatingType();
4830 case UTT_IsArray:
4831 return T->isArrayType();
4832 case UTT_IsPointer:
4833 return T->isAnyPointerType();
4834 case UTT_IsLvalueReference:
4835 return T->isLValueReferenceType();
4836 case UTT_IsRvalueReference:
4837 return T->isRValueReferenceType();
4838 case UTT_IsMemberFunctionPointer:
4839 return T->isMemberFunctionPointerType();
4840 case UTT_IsMemberObjectPointer:
4841 return T->isMemberDataPointerType();
4842 case UTT_IsEnum:
4843 return T->isEnumeralType();
4844 case UTT_IsUnion:
4845 return T->isUnionType();
4846 case UTT_IsClass:
4847 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4848 case UTT_IsFunction:
4849 return T->isFunctionType();
4850
4851 // Type trait expressions which correspond to the convenient composition
4852 // predicates in C++0x [meta.unary.comp].
4853 case UTT_IsReference:
4854 return T->isReferenceType();
4855 case UTT_IsArithmetic:
4856 return T->isArithmeticType() && !T->isEnumeralType();
4857 case UTT_IsFundamental:
4858 return T->isFundamentalType();
4859 case UTT_IsObject:
4860 return T->isObjectType();
4861 case UTT_IsScalar:
4862 // Note: semantic analysis depends on Objective-C lifetime types to be
4863 // considered scalar types. However, such types do not actually behave
4864 // like scalar types at run time (since they may require retain/release
4865 // operations), so we report them as non-scalar.
4866 if (T->isObjCLifetimeType()) {
4867 switch (T.getObjCLifetime()) {
4868 case Qualifiers::OCL_None:
4869 case Qualifiers::OCL_ExplicitNone:
4870 return true;
4871
4872 case Qualifiers::OCL_Strong:
4873 case Qualifiers::OCL_Weak:
4874 case Qualifiers::OCL_Autoreleasing:
4875 return false;
4876 }
4877 }
4878
4879 return T->isScalarType();
4880 case UTT_IsCompound:
4881 return T->isCompoundType();
4882 case UTT_IsMemberPointer:
4883 return T->isMemberPointerType();
4884
4885 // Type trait expressions which correspond to the type property predicates
4886 // in C++0x [meta.unary.prop].
4887 case UTT_IsConst:
4888 return T.isConstQualified();
4889 case UTT_IsVolatile:
4890 return T.isVolatileQualified();
4891 case UTT_IsTrivial:
4892 return T.isTrivialType(C);
4893 case UTT_IsTriviallyCopyable:
4894 return T.isTriviallyCopyableType(C);
4895 case UTT_IsStandardLayout:
4896 return T->isStandardLayoutType();
4897 case UTT_IsPOD:
4898 return T.isPODType(C);
4899 case UTT_IsLiteral:
4900 return T->isLiteralType(C);
4901 case UTT_IsEmpty:
4902 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4903 return !RD->isUnion() && RD->isEmpty();
4904 return false;
4905 case UTT_IsPolymorphic:
4906 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4907 return !RD->isUnion() && RD->isPolymorphic();
4908 return false;
4909 case UTT_IsAbstract:
4910 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4911 return !RD->isUnion() && RD->isAbstract();
4912 return false;
4913 case UTT_IsAggregate:
4914 // Report vector extensions and complex types as aggregates because they
4915 // support aggregate initialization. GCC mirrors this behavior for vectors
4916 // but not _Complex.
4917 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4918 T->isAnyComplexType();
4919 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4920 // even then only when it is used with the 'interface struct ...' syntax
4921 // Clang doesn't support /CLR which makes this type trait moot.
4922 case UTT_IsInterfaceClass:
4923 return false;
4924 case UTT_IsFinal:
4925 case UTT_IsSealed:
4926 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4927 return RD->hasAttr<FinalAttr>();
4928 return false;
4929 case UTT_IsSigned:
4930 // Enum types should always return false.
4931 // Floating points should always return true.
4932 return T->isFloatingType() ||
4933 (T->isSignedIntegerType() && !T->isEnumeralType());
4934 case UTT_IsUnsigned:
4935 // Enum types should always return false.
4936 return T->isUnsignedIntegerType() && !T->isEnumeralType();
4937
4938 // Type trait expressions which query classes regarding their construction,
4939 // destruction, and copying. Rather than being based directly on the
4940 // related type predicates in the standard, they are specified by both
4941 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4942 // specifications.
4943 //
4944 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4945 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4946 //
4947 // Note that these builtins do not behave as documented in g++: if a class
4948 // has both a trivial and a non-trivial special member of a particular kind,
4949 // they return false! For now, we emulate this behavior.
4950 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4951 // does not correctly compute triviality in the presence of multiple special
4952 // members of the same kind. Revisit this once the g++ bug is fixed.
4953 case UTT_HasTrivialDefaultConstructor:
4954 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4955 // If __is_pod (type) is true then the trait is true, else if type is
4956 // a cv class or union type (or array thereof) with a trivial default
4957 // constructor ([class.ctor]) then the trait is true, else it is false.
4958 if (T.isPODType(C))
4959 return true;
4960 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4961 return RD->hasTrivialDefaultConstructor() &&
4962 !RD->hasNonTrivialDefaultConstructor();
4963 return false;
4964 case UTT_HasTrivialMoveConstructor:
4965 // This trait is implemented by MSVC 2012 and needed to parse the
4966 // standard library headers. Specifically this is used as the logic
4967 // behind std::is_trivially_move_constructible (20.9.4.3).
4968 if (T.isPODType(C))
4969 return true;
4970 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4971 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4972 return false;
4973 case UTT_HasTrivialCopy:
4974 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4975 // If __is_pod (type) is true or type is a reference type then
4976 // the trait is true, else if type is a cv class or union type
4977 // with a trivial copy constructor ([class.copy]) then the trait
4978 // is true, else it is false.
4979 if (T.isPODType(C) || T->isReferenceType())
4980 return true;
4981 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4982 return RD->hasTrivialCopyConstructor() &&
4983 !RD->hasNonTrivialCopyConstructor();
4984 return false;
4985 case UTT_HasTrivialMoveAssign:
4986 // This trait is implemented by MSVC 2012 and needed to parse the
4987 // standard library headers. Specifically it is used as the logic
4988 // behind std::is_trivially_move_assignable (20.9.4.3)
4989 if (T.isPODType(C))
4990 return true;
4991 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4992 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4993 return false;
4994 case UTT_HasTrivialAssign:
4995 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4996 // If type is const qualified or is a reference type then the
4997 // trait is false. Otherwise if __is_pod (type) is true then the
4998 // trait is true, else if type is a cv class or union type with
4999 // a trivial copy assignment ([class.copy]) then the trait is
5000 // true, else it is false.
5001 // Note: the const and reference restrictions are interesting,
5002 // given that const and reference members don't prevent a class
5003 // from having a trivial copy assignment operator (but do cause
5004 // errors if the copy assignment operator is actually used, q.v.
5005 // [class.copy]p12).
5006
5007 if (T.isConstQualified())
5008 return false;
5009 if (T.isPODType(C))
5010 return true;
5011 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5012 return RD->hasTrivialCopyAssignment() &&
5013 !RD->hasNonTrivialCopyAssignment();
5014 return false;
5015 case UTT_IsDestructible:
5016 case UTT_IsTriviallyDestructible:
5017 case UTT_IsNothrowDestructible:
5018 // C++14 [meta.unary.prop]:
5019 // For reference types, is_destructible<T>::value is true.
5020 if (T->isReferenceType())
5021 return true;
5022
5023 // Objective-C++ ARC: autorelease types don't require destruction.
5024 if (T->isObjCLifetimeType() &&
5025 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5026 return true;
5027
5028 // C++14 [meta.unary.prop]:
5029 // For incomplete types and function types, is_destructible<T>::value is
5030 // false.
5031 if (T->isIncompleteType() || T->isFunctionType())
5032 return false;
5033
5034 // A type that requires destruction (via a non-trivial destructor or ARC
5035 // lifetime semantics) is not trivially-destructible.
5036 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5037 return false;
5038
5039 // C++14 [meta.unary.prop]:
5040 // For object types and given U equal to remove_all_extents_t<T>, if the
5041 // expression std::declval<U&>().~U() is well-formed when treated as an
5042 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5043 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5044 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5045 if (!Destructor)
5046 return false;
5047 // C++14 [dcl.fct.def.delete]p2:
5048 // A program that refers to a deleted function implicitly or
5049 // explicitly, other than to declare it, is ill-formed.
5050 if (Destructor->isDeleted())
5051 return false;
5052 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5053 return false;
5054 if (UTT == UTT_IsNothrowDestructible) {
5055 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5056 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5057 if (!CPT || !CPT->isNothrow())
5058 return false;
5059 }
5060 }
5061 return true;
5062
5063 case UTT_HasTrivialDestructor:
5064 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5065 // If __is_pod (type) is true or type is a reference type
5066 // then the trait is true, else if type is a cv class or union
5067 // type (or array thereof) with a trivial destructor
5068 // ([class.dtor]) then the trait is true, else it is
5069 // false.
5070 if (T.isPODType(C) || T->isReferenceType())
5071 return true;
5072
5073 // Objective-C++ ARC: autorelease types don't require destruction.
5074 if (T->isObjCLifetimeType() &&
5075 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5076 return true;
5077
5078 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5079 return RD->hasTrivialDestructor();
5080 return false;
5081 // TODO: Propagate nothrowness for implicitly declared special members.
5082 case UTT_HasNothrowAssign:
5083 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5084 // If type is const qualified or is a reference type then the
5085 // trait is false. Otherwise if __has_trivial_assign (type)
5086 // is true then the trait is true, else if type is a cv class
5087 // or union type with copy assignment operators that are known
5088 // not to throw an exception then the trait is true, else it is
5089 // false.
5090 if (C.getBaseElementType(T).isConstQualified())
5091 return false;
5092 if (T->isReferenceType())
5093 return false;
5094 if (T.isPODType(C) || T->isObjCLifetimeType())
5095 return true;
5096
5097 if (const RecordType *RT = T->getAs<RecordType>())
5098 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5099 &CXXRecordDecl::hasTrivialCopyAssignment,
5100 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5101 &CXXMethodDecl::isCopyAssignmentOperator);
5102 return false;
5103 case UTT_HasNothrowMoveAssign:
5104 // This trait is implemented by MSVC 2012 and needed to parse the
5105 // standard library headers. Specifically this is used as the logic
5106 // behind std::is_nothrow_move_assignable (20.9.4.3).
5107 if (T.isPODType(C))
5108 return true;
5109
5110 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5111 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5112 &CXXRecordDecl::hasTrivialMoveAssignment,
5113 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5114 &CXXMethodDecl::isMoveAssignmentOperator);
5115 return false;
5116 case UTT_HasNothrowCopy:
5117 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5118 // If __has_trivial_copy (type) is true then the trait is true, else
5119 // if type is a cv class or union type with copy constructors that are
5120 // known not to throw an exception then the trait is true, else it is
5121 // false.
5122 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5123 return true;
5124 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5125 if (RD->hasTrivialCopyConstructor() &&
5126 !RD->hasNonTrivialCopyConstructor())
5127 return true;
5128
5129 bool FoundConstructor = false;
5130 unsigned FoundTQs;
5131 for (const auto *ND : Self.LookupConstructors(RD)) {
5132 // A template constructor is never a copy constructor.
5133 // FIXME: However, it may actually be selected at the actual overload
5134 // resolution point.
5135 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5136 continue;
5137 // UsingDecl itself is not a constructor
5138 if (isa<UsingDecl>(ND))
5139 continue;
5140 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5141 if (Constructor->isCopyConstructor(FoundTQs)) {
5142 FoundConstructor = true;
5143 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5144 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5145 if (!CPT)
5146 return false;
5147 // TODO: check whether evaluating default arguments can throw.
5148 // For now, we'll be conservative and assume that they can throw.
5149 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5150 return false;
5151 }
5152 }
5153
5154 return FoundConstructor;
5155 }
5156 return false;
5157 case UTT_HasNothrowConstructor:
5158 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5159 // If __has_trivial_constructor (type) is true then the trait is
5160 // true, else if type is a cv class or union type (or array
5161 // thereof) with a default constructor that is known not to
5162 // throw an exception then the trait is true, else it is false.
5163 if (T.isPODType(C) || T->isObjCLifetimeType())
5164 return true;
5165 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5166 if (RD->hasTrivialDefaultConstructor() &&
5167 !RD->hasNonTrivialDefaultConstructor())
5168 return true;
5169
5170 bool FoundConstructor = false;
5171 for (const auto *ND : Self.LookupConstructors(RD)) {
5172 // FIXME: In C++0x, a constructor template can be a default constructor.
5173 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5174 continue;
5175 // UsingDecl itself is not a constructor
5176 if (isa<UsingDecl>(ND))
5177 continue;
5178 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5179 if (Constructor->isDefaultConstructor()) {
5180 FoundConstructor = true;
5181 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5182 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5183 if (!CPT)
5184 return false;
5185 // FIXME: check whether evaluating default arguments can throw.
5186 // For now, we'll be conservative and assume that they can throw.
5187 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5188 return false;
5189 }
5190 }
5191 return FoundConstructor;
5192 }
5193 return false;
5194 case UTT_HasVirtualDestructor:
5195 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5196 // If type is a class type with a virtual destructor ([class.dtor])
5197 // then the trait is true, else it is false.
5198 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5199 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5200 return Destructor->isVirtual();
5201 return false;
5202
5203 // These type trait expressions are modeled on the specifications for the
5204 // Embarcadero C++0x type trait functions:
5205 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5206 case UTT_IsCompleteType:
5207 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5208 // Returns True if and only if T is a complete type at the point of the
5209 // function call.
5210 return !T->isIncompleteType();
5211 case UTT_HasUniqueObjectRepresentations:
5212 return C.hasUniqueObjectRepresentations(T);
5213 }
5214}
5215
5216static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5217 QualType RhsT, SourceLocation KeyLoc);
5218
5219static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5220 ArrayRef<TypeSourceInfo *> Args,
5221 SourceLocation RParenLoc) {
5222 if (Kind <= UTT_Last)
5223 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5224
5225 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5226 // traits to avoid duplication.
5227 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5228 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5229 Args[1]->getType(), RParenLoc);
5230
5231 switch (Kind) {
5232 case clang::BTT_ReferenceBindsToTemporary:
5233 case clang::TT_IsConstructible:
5234 case clang::TT_IsNothrowConstructible:
5235 case clang::TT_IsTriviallyConstructible: {
5236 // C++11 [meta.unary.prop]:
5237 // is_trivially_constructible is defined as:
5238 //
5239 // is_constructible<T, Args...>::value is true and the variable
5240 // definition for is_constructible, as defined below, is known to call
5241 // no operation that is not trivial.
5242 //
5243 // The predicate condition for a template specialization
5244 // is_constructible<T, Args...> shall be satisfied if and only if the
5245 // following variable definition would be well-formed for some invented
5246 // variable t:
5247 //
5248 // T t(create<Args>()...);
5249 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5249, __extension__
__PRETTY_FUNCTION__))
;
5250
5251 // Precondition: T and all types in the parameter pack Args shall be
5252 // complete types, (possibly cv-qualified) void, or arrays of
5253 // unknown bound.
5254 for (const auto *TSI : Args) {
5255 QualType ArgTy = TSI->getType();
5256 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5257 continue;
5258
5259 if (S.RequireCompleteType(KWLoc, ArgTy,
5260 diag::err_incomplete_type_used_in_type_trait_expr))
5261 return false;
5262 }
5263
5264 // Make sure the first argument is not incomplete nor a function type.
5265 QualType T = Args[0]->getType();
5266 if (T->isIncompleteType() || T->isFunctionType())
5267 return false;
5268
5269 // Make sure the first argument is not an abstract type.
5270 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5271 if (RD && RD->isAbstract())
5272 return false;
5273
5274 llvm::BumpPtrAllocator OpaqueExprAllocator;
5275 SmallVector<Expr *, 2> ArgExprs;
5276 ArgExprs.reserve(Args.size() - 1);
5277 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5278 QualType ArgTy = Args[I]->getType();
5279 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5280 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5281 ArgExprs.push_back(
5282 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5283 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5284 ArgTy.getNonLValueExprType(S.Context),
5285 Expr::getValueKindForType(ArgTy)));
5286 }
5287
5288 // Perform the initialization in an unevaluated context within a SFINAE
5289 // trap at translation unit scope.
5290 EnterExpressionEvaluationContext Unevaluated(
5291 S, Sema::ExpressionEvaluationContext::Unevaluated);
5292 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5293 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5294 InitializedEntity To(
5295 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5296 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5297 RParenLoc));
5298 InitializationSequence Init(S, To, InitKind, ArgExprs);
5299 if (Init.Failed())
5300 return false;
5301
5302 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5303 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5304 return false;
5305
5306 if (Kind == clang::TT_IsConstructible)
5307 return true;
5308
5309 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5310 if (!T->isReferenceType())
5311 return false;
5312
5313 return !Init.isDirectReferenceBinding();
5314 }
5315
5316 if (Kind == clang::TT_IsNothrowConstructible)
5317 return S.canThrow(Result.get()) == CT_Cannot;
5318
5319 if (Kind == clang::TT_IsTriviallyConstructible) {
5320 // Under Objective-C ARC and Weak, if the destination has non-trivial
5321 // Objective-C lifetime, this is a non-trivial construction.
5322 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5323 return false;
5324
5325 // The initialization succeeded; now make sure there are no non-trivial
5326 // calls.
5327 return !Result.get()->hasNonTrivialCall(S.Context);
5328 }
5329
5330 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5330)
;
5331 return false;
5332 }
5333 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5333)
;
5334 }
5335
5336 return false;
5337}
5338
5339ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5340 ArrayRef<TypeSourceInfo *> Args,
5341 SourceLocation RParenLoc) {
5342 QualType ResultType = Context.getLogicalOperationType();
5343
5344 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5345 *this, Kind, KWLoc, Args[0]->getType()))
5346 return ExprError();
5347
5348 bool Dependent = false;
5349 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5350 if (Args[I]->getType()->isDependentType()) {
5351 Dependent = true;
5352 break;
5353 }
5354 }
5355
5356 bool Result = false;
5357 if (!Dependent)
5358 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5359
5360 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5361 RParenLoc, Result);
5362}
5363
5364ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5365 ArrayRef<ParsedType> Args,
5366 SourceLocation RParenLoc) {
5367 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5368 ConvertedArgs.reserve(Args.size());
5369
5370 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5371 TypeSourceInfo *TInfo;
5372 QualType T = GetTypeFromParser(Args[I], &TInfo);
5373 if (!TInfo)
5374 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5375
5376 ConvertedArgs.push_back(TInfo);
5377 }
5378
5379 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5380}
5381
5382static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5383 QualType RhsT, SourceLocation KeyLoc) {
5384 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5385, __extension__ __PRETTY_FUNCTION__
))
5385 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5385, __extension__ __PRETTY_FUNCTION__
))
;
5386
5387 switch(BTT) {
5388 case BTT_IsBaseOf: {
5389 // C++0x [meta.rel]p2
5390 // Base is a base class of Derived without regard to cv-qualifiers or
5391 // Base and Derived are not unions and name the same class type without
5392 // regard to cv-qualifiers.
5393
5394 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5395 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5396 if (!rhsRecord || !lhsRecord) {
5397 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5398 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5399 if (!LHSObjTy || !RHSObjTy)
5400 return false;
5401
5402 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5403 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5404 if (!BaseInterface || !DerivedInterface)
5405 return false;
5406
5407 if (Self.RequireCompleteType(
5408 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5409 return false;
5410
5411 return BaseInterface->isSuperClassOf(DerivedInterface);
5412 }
5413
5414 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5415, __extension__ __PRETTY_FUNCTION__
))
5415 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5415, __extension__ __PRETTY_FUNCTION__
))
;
5416
5417 // Unions are never base classes, and never have base classes.
5418 // It doesn't matter if they are complete or not. See PR#41843
5419 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5420 return false;
5421 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5422 return false;
5423
5424 if (lhsRecord == rhsRecord)
5425 return true;
5426
5427 // C++0x [meta.rel]p2:
5428 // If Base and Derived are class types and are different types
5429 // (ignoring possible cv-qualifiers) then Derived shall be a
5430 // complete type.
5431 if (Self.RequireCompleteType(KeyLoc, RhsT,
5432 diag::err_incomplete_type_used_in_type_trait_expr))
5433 return false;
5434
5435 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5436 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5437 }
5438 case BTT_IsSame:
5439 return Self.Context.hasSameType(LhsT, RhsT);
5440 case BTT_TypeCompatible: {
5441 // GCC ignores cv-qualifiers on arrays for this builtin.
5442 Qualifiers LhsQuals, RhsQuals;
5443 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5444 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5445 return Self.Context.typesAreCompatible(Lhs, Rhs);
5446 }
5447 case BTT_IsConvertible:
5448 case BTT_IsConvertibleTo: {
5449 // C++0x [meta.rel]p4:
5450 // Given the following function prototype:
5451 //
5452 // template <class T>
5453 // typename add_rvalue_reference<T>::type create();
5454 //
5455 // the predicate condition for a template specialization
5456 // is_convertible<From, To> shall be satisfied if and only if
5457 // the return expression in the following code would be
5458 // well-formed, including any implicit conversions to the return
5459 // type of the function:
5460 //
5461 // To test() {
5462 // return create<From>();
5463 // }
5464 //
5465 // Access checking is performed as if in a context unrelated to To and
5466 // From. Only the validity of the immediate context of the expression
5467 // of the return-statement (including conversions to the return type)
5468 // is considered.
5469 //
5470 // We model the initialization as a copy-initialization of a temporary
5471 // of the appropriate type, which for this expression is identical to the
5472 // return statement (since NRVO doesn't apply).
5473
5474 // Functions aren't allowed to return function or array types.
5475 if (RhsT->isFunctionType() || RhsT->isArrayType())
5476 return false;
5477
5478 // A return statement in a void function must have void type.
5479 if (RhsT->isVoidType())
5480 return LhsT->isVoidType();
5481
5482 // A function definition requires a complete, non-abstract return type.
5483 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5484 return false;
5485
5486 // Compute the result of add_rvalue_reference.
5487 if (LhsT->isObjectType() || LhsT->isFunctionType())
5488 LhsT = Self.Context.getRValueReferenceType(LhsT);
5489
5490 // Build a fake source and destination for initialization.
5491 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5492 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5493 Expr::getValueKindForType(LhsT));
5494 Expr *FromPtr = &From;
5495 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5496 SourceLocation()));
5497
5498 // Perform the initialization in an unevaluated context within a SFINAE
5499 // trap at translation unit scope.
5500 EnterExpressionEvaluationContext Unevaluated(
5501 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5502 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5503 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5504 InitializationSequence Init(Self, To, Kind, FromPtr);
5505 if (Init.Failed())
5506 return false;
5507
5508 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5509 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5510 }
5511
5512 case BTT_IsAssignable:
5513 case BTT_IsNothrowAssignable:
5514 case BTT_IsTriviallyAssignable: {
5515 // C++11 [meta.unary.prop]p3:
5516 // is_trivially_assignable is defined as:
5517 // is_assignable<T, U>::value is true and the assignment, as defined by
5518 // is_assignable, is known to call no operation that is not trivial
5519 //
5520 // is_assignable is defined as:
5521 // The expression declval<T>() = declval<U>() is well-formed when
5522 // treated as an unevaluated operand (Clause 5).
5523 //
5524 // For both, T and U shall be complete types, (possibly cv-qualified)
5525 // void, or arrays of unknown bound.
5526 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5527 Self.RequireCompleteType(KeyLoc, LhsT,
5528 diag::err_incomplete_type_used_in_type_trait_expr))
5529 return false;
5530 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5531 Self.RequireCompleteType(KeyLoc, RhsT,
5532 diag::err_incomplete_type_used_in_type_trait_expr))
5533 return false;
5534
5535 // cv void is never assignable.
5536 if (LhsT->isVoidType() || RhsT->isVoidType())
5537 return false;
5538
5539 // Build expressions that emulate the effect of declval<T>() and
5540 // declval<U>().
5541 if (LhsT->isObjectType() || LhsT->isFunctionType())
5542 LhsT = Self.Context.getRValueReferenceType(LhsT);
5543 if (RhsT->isObjectType() || RhsT->isFunctionType())
5544 RhsT = Self.Context.getRValueReferenceType(RhsT);
5545 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5546 Expr::getValueKindForType(LhsT));
5547 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5548 Expr::getValueKindForType(RhsT));
5549
5550 // Attempt the assignment in an unevaluated context within a SFINAE
5551 // trap at translation unit scope.
5552 EnterExpressionEvaluationContext Unevaluated(
5553 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5554 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5555 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5556 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5557 &Rhs);
5558 if (Result.isInvalid())
5559 return false;
5560
5561 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5562 Self.CheckUnusedVolatileAssignment(Result.get());
5563
5564 if (SFINAE.hasErrorOccurred())
5565 return false;
5566
5567 if (BTT == BTT_IsAssignable)
5568 return true;
5569
5570 if (BTT == BTT_IsNothrowAssignable)
5571 return Self.canThrow(Result.get()) == CT_Cannot;
5572
5573 if (BTT == BTT_IsTriviallyAssignable) {
5574 // Under Objective-C ARC and Weak, if the destination has non-trivial
5575 // Objective-C lifetime, this is a non-trivial assignment.
5576 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5577 return false;
5578
5579 return !Result.get()->hasNonTrivialCall(Self.Context);
5580 }
5581
5582 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5582)
;
5583 return false;
5584 }
5585 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5585)
;
5586 }
5587 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5587)
;
5588}
5589
5590ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5591 SourceLocation KWLoc,
5592 ParsedType Ty,
5593 Expr* DimExpr,
5594 SourceLocation RParen) {
5595 TypeSourceInfo *TSInfo;
5596 QualType T = GetTypeFromParser(Ty, &TSInfo);
5597 if (!TSInfo)
5598 TSInfo = Context.getTrivialTypeSourceInfo(T);
5599
5600 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5601}
5602
5603static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5604 QualType T, Expr *DimExpr,
5605 SourceLocation KeyLoc) {
5606 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5606, __extension__ __PRETTY_FUNCTION__
))
;
5607
5608 switch(ATT) {
5609 case ATT_ArrayRank:
5610 if (T->isArrayType()) {
5611 unsigned Dim = 0;
5612 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5613 ++Dim;
5614 T = AT->getElementType();
5615 }
5616 return Dim;
5617 }
5618 return 0;
5619
5620 case ATT_ArrayExtent: {
5621 llvm::APSInt Value;
5622 uint64_t Dim;
5623 if (Self.VerifyIntegerConstantExpression(
5624 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5625 .isInvalid())
5626 return 0;
5627 if (Value.isSigned() && Value.isNegative()) {
5628 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5629 << DimExpr->getSourceRange();
5630 return 0;
5631 }
5632 Dim = Value.getLimitedValue();
5633
5634 if (T->isArrayType()) {
5635 unsigned D = 0;
5636 bool Matched = false;
5637 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5638 if (Dim == D) {
5639 Matched = true;
5640 break;
5641 }
5642 ++D;
5643 T = AT->getElementType();
5644 }
5645
5646 if (Matched && T->isArrayType()) {
5647 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5648 return CAT->getSize().getLimitedValue();
5649 }
5650 }
5651 return 0;
5652 }
5653 }
5654 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5654)
;
5655}
5656
5657ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5658 SourceLocation KWLoc,
5659 TypeSourceInfo *TSInfo,
5660 Expr* DimExpr,
5661 SourceLocation RParen) {
5662 QualType T = TSInfo->getType();
5663
5664 // FIXME: This should likely be tracked as an APInt to remove any host
5665 // assumptions about the width of size_t on the target.
5666 uint64_t Value = 0;
5667 if (!T->isDependentType())
5668 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5669
5670 // While the specification for these traits from the Embarcadero C++
5671 // compiler's documentation says the return type is 'unsigned int', Clang
5672 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5673 // compiler, there is no difference. On several other platforms this is an
5674 // important distinction.
5675 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5676 RParen, Context.getSizeType());
5677}
5678
5679ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5680 SourceLocation KWLoc,
5681 Expr *Queried,
5682 SourceLocation RParen) {
5683 // If error parsing the expression, ignore.
5684 if (!Queried)
5685 return ExprError();
5686
5687 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5688
5689 return Result;
5690}
5691
5692static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5693 switch (ET) {
5694 case ET_IsLValueExpr: return E->isLValue();
5695 case ET_IsRValueExpr:
5696 return E->isPRValue();
5697 }
5698 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5698)
;
5699}
5700
5701ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5702 SourceLocation KWLoc,
5703 Expr *Queried,
5704 SourceLocation RParen) {
5705 if (Queried->isTypeDependent()) {
5706 // Delay type-checking for type-dependent expressions.
5707 } else if (Queried->getType()->isPlaceholderType()) {
5708 ExprResult PE = CheckPlaceholderExpr(Queried);
5709 if (PE.isInvalid()) return ExprError();
5710 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5711 }
5712
5713 bool Value = EvaluateExpressionTrait(ET, Queried);
5714
5715 return new (Context)
5716 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5717}
5718
5719QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5720 ExprValueKind &VK,
5721 SourceLocation Loc,
5722 bool isIndirect) {
5723 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
5724 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
5725 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
;
5726
5727 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5728 // temporary materialization conversion otherwise.
5729 if (isIndirect)
5730 LHS = DefaultLvalueConversion(LHS.get());
5731 else if (LHS.get()->isPRValue())
5732 LHS = TemporaryMaterializationConversion(LHS.get());
5733 if (LHS.isInvalid())
5734 return QualType();
5735
5736 // The RHS always undergoes lvalue conversions.
5737 RHS = DefaultLvalueConversion(RHS.get());
5738 if (RHS.isInvalid()) return QualType();
5739
5740 const char *OpSpelling = isIndirect ? "->*" : ".*";
5741 // C++ 5.5p2
5742 // The binary operator .* [p3: ->*] binds its second operand, which shall
5743 // be of type "pointer to member of T" (where T is a completely-defined
5744 // class type) [...]
5745 QualType RHSType = RHS.get()->getType();
5746 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5747 if (!MemPtr) {
5748 Diag(Loc, diag::err_bad_memptr_rhs)
5749 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5750 return QualType();
5751 }
5752
5753 QualType Class(MemPtr->getClass(), 0);
5754
5755 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5756 // member pointer points must be completely-defined. However, there is no
5757 // reason for this semantic distinction, and the rule is not enforced by
5758 // other compilers. Therefore, we do not check this property, as it is
5759 // likely to be considered a defect.
5760
5761 // C++ 5.5p2
5762 // [...] to its first operand, which shall be of class T or of a class of
5763 // which T is an unambiguous and accessible base class. [p3: a pointer to
5764 // such a class]
5765 QualType LHSType = LHS.get()->getType();
5766 if (isIndirect) {
5767 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5768 LHSType = Ptr->getPointeeType();
5769 else {
5770 Diag(Loc, diag::err_bad_memptr_lhs)
5771 << OpSpelling << 1 << LHSType
5772 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5773 return QualType();
5774 }
5775 }
5776
5777 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5778 // If we want to check the hierarchy, we need a complete type.
5779 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5780 OpSpelling, (int)isIndirect)) {
5781 return QualType();
5782 }
5783
5784 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5785 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5786 << (int)isIndirect << LHS.get()->getType();
5787 return QualType();
5788 }
5789
5790 CXXCastPath BasePath;
5791 if (CheckDerivedToBaseConversion(
5792 LHSType, Class, Loc,
5793 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5794 &BasePath))
5795 return QualType();
5796
5797 // Cast LHS to type of use.
5798 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5799 if (isIndirect)
5800 UseType = Context.getPointerType(UseType);
5801 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5802 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5803 &BasePath);
5804 }
5805
5806 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5807 // Diagnose use of pointer-to-member type which when used as
5808 // the functional cast in a pointer-to-member expression.
5809 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5810 return QualType();
5811 }
5812
5813 // C++ 5.5p2
5814 // The result is an object or a function of the type specified by the
5815 // second operand.
5816 // The cv qualifiers are the union of those in the pointer and the left side,
5817 // in accordance with 5.5p5 and 5.2.5.
5818 QualType Result = MemPtr->getPointeeType();
5819 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5820
5821 // C++0x [expr.mptr.oper]p6:
5822 // In a .* expression whose object expression is an rvalue, the program is
5823 // ill-formed if the second operand is a pointer to member function with
5824 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5825 // expression is an lvalue, the program is ill-formed if the second operand
5826 // is a pointer to member function with ref-qualifier &&.
5827 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5828 switch (Proto->getRefQualifier()) {