Bug Summary

File:clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1248, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __extension__ __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 488, __extension__ __PRETTY_FUNCTION__))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (Status != ReservedIdentifierStatus::NotReserved &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 807, __extension__ __PRETTY_FUNCTION__))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 807, __extension__ __PRETTY_FUNCTION__))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity = InitializedEntity::InitializeException(
897 OpLoc, ExceptionObjectTy,
898 /*NRVO=*/NRInfo.isCopyElidable());
899 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
900 if (Res.isInvalid())
901 return ExprError();
902 Ex = Res.get();
903 }
904
905 // PPC MMA non-pointer types are not allowed as throw expr types.
906 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
907 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
908
909 return new (Context)
910 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
911}
912
913static void
914collectPublicBases(CXXRecordDecl *RD,
915 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
916 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
917 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
918 bool ParentIsPublic) {
919 for (const CXXBaseSpecifier &BS : RD->bases()) {
920 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
921 bool NewSubobject;
922 // Virtual bases constitute the same subobject. Non-virtual bases are
923 // always distinct subobjects.
924 if (BS.isVirtual())
925 NewSubobject = VBases.insert(BaseDecl).second;
926 else
927 NewSubobject = true;
928
929 if (NewSubobject)
930 ++SubobjectsSeen[BaseDecl];
931
932 // Only add subobjects which have public access throughout the entire chain.
933 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
934 if (PublicPath)
935 PublicSubobjectsSeen.insert(BaseDecl);
936
937 // Recurse on to each base subobject.
938 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
939 PublicPath);
940 }
941}
942
943static void getUnambiguousPublicSubobjects(
944 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
945 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
946 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
947 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
948 SubobjectsSeen[RD] = 1;
949 PublicSubobjectsSeen.insert(RD);
950 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
951 /*ParentIsPublic=*/true);
952
953 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
954 // Skip ambiguous objects.
955 if (SubobjectsSeen[PublicSubobject] > 1)
956 continue;
957
958 Objects.push_back(PublicSubobject);
959 }
960}
961
962/// CheckCXXThrowOperand - Validate the operand of a throw.
963bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
964 QualType ExceptionObjectTy, Expr *E) {
965 // If the type of the exception would be an incomplete type or a pointer
966 // to an incomplete type other than (cv) void the program is ill-formed.
967 QualType Ty = ExceptionObjectTy;
968 bool isPointer = false;
969 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
970 Ty = Ptr->getPointeeType();
971 isPointer = true;
972 }
973 if (!isPointer || !Ty->isVoidType()) {
974 if (RequireCompleteType(ThrowLoc, Ty,
975 isPointer ? diag::err_throw_incomplete_ptr
976 : diag::err_throw_incomplete,
977 E->getSourceRange()))
978 return true;
979
980 if (!isPointer && Ty->isSizelessType()) {
981 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
982 return true;
983 }
984
985 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
986 diag::err_throw_abstract_type, E))
987 return true;
988 }
989
990 // If the exception has class type, we need additional handling.
991 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
992 if (!RD)
993 return false;
994
995 // If we are throwing a polymorphic class type or pointer thereof,
996 // exception handling will make use of the vtable.
997 MarkVTableUsed(ThrowLoc, RD);
998
999 // If a pointer is thrown, the referenced object will not be destroyed.
1000 if (isPointer)
1001 return false;
1002
1003 // If the class has a destructor, we must be able to call it.
1004 if (!RD->hasIrrelevantDestructor()) {
1005 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1006 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1007 CheckDestructorAccess(E->getExprLoc(), Destructor,
1008 PDiag(diag::err_access_dtor_exception) << Ty);
1009 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1010 return true;
1011 }
1012 }
1013
1014 // The MSVC ABI creates a list of all types which can catch the exception
1015 // object. This list also references the appropriate copy constructor to call
1016 // if the object is caught by value and has a non-trivial copy constructor.
1017 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1018 // We are only interested in the public, unambiguous bases contained within
1019 // the exception object. Bases which are ambiguous or otherwise
1020 // inaccessible are not catchable types.
1021 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1022 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1023
1024 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1025 // Attempt to lookup the copy constructor. Various pieces of machinery
1026 // will spring into action, like template instantiation, which means this
1027 // cannot be a simple walk of the class's decls. Instead, we must perform
1028 // lookup and overload resolution.
1029 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1030 if (!CD || CD->isDeleted())
1031 continue;
1032
1033 // Mark the constructor referenced as it is used by this throw expression.
1034 MarkFunctionReferenced(E->getExprLoc(), CD);
1035
1036 // Skip this copy constructor if it is trivial, we don't need to record it
1037 // in the catchable type data.
1038 if (CD->isTrivial())
1039 continue;
1040
1041 // The copy constructor is non-trivial, create a mapping from this class
1042 // type to this constructor.
1043 // N.B. The selection of copy constructor is not sensitive to this
1044 // particular throw-site. Lookup will be performed at the catch-site to
1045 // ensure that the copy constructor is, in fact, accessible (via
1046 // friendship or any other means).
1047 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1048
1049 // We don't keep the instantiated default argument expressions around so
1050 // we must rebuild them here.
1051 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1052 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1053 return true;
1054 }
1055 }
1056 }
1057
1058 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1059 // the runtime with no ability for the compiler to request additional
1060 // alignment. Warn if the exception type requires alignment beyond the minimum
1061 // guaranteed by the target C++ runtime.
1062 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1063 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1064 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1065 if (ExnObjAlign < TypeAlign) {
1066 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1067 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1068 << Ty << (unsigned)TypeAlign.getQuantity()
1069 << (unsigned)ExnObjAlign.getQuantity();
1070 }
1071 }
1072
1073 return false;
1074}
1075
1076static QualType adjustCVQualifiersForCXXThisWithinLambda(
1077 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1078 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1079
1080 QualType ClassType = ThisTy->getPointeeType();
1081 LambdaScopeInfo *CurLSI = nullptr;
1082 DeclContext *CurDC = CurSemaContext;
1083
1084 // Iterate through the stack of lambdas starting from the innermost lambda to
1085 // the outermost lambda, checking if '*this' is ever captured by copy - since
1086 // that could change the cv-qualifiers of the '*this' object.
1087 // The object referred to by '*this' starts out with the cv-qualifiers of its
1088 // member function. We then start with the innermost lambda and iterate
1089 // outward checking to see if any lambda performs a by-copy capture of '*this'
1090 // - and if so, any nested lambda must respect the 'constness' of that
1091 // capturing lamdbda's call operator.
1092 //
1093
1094 // Since the FunctionScopeInfo stack is representative of the lexical
1095 // nesting of the lambda expressions during initial parsing (and is the best
1096 // place for querying information about captures about lambdas that are
1097 // partially processed) and perhaps during instantiation of function templates
1098 // that contain lambda expressions that need to be transformed BUT not
1099 // necessarily during instantiation of a nested generic lambda's function call
1100 // operator (which might even be instantiated at the end of the TU) - at which
1101 // time the DeclContext tree is mature enough to query capture information
1102 // reliably - we use a two pronged approach to walk through all the lexically
1103 // enclosing lambda expressions:
1104 //
1105 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1106 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1107 // enclosed by the call-operator of the LSI below it on the stack (while
1108 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1109 // the stack represents the innermost lambda.
1110 //
1111 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1112 // represents a lambda's call operator. If it does, we must be instantiating
1113 // a generic lambda's call operator (represented by the Current LSI, and
1114 // should be the only scenario where an inconsistency between the LSI and the
1115 // DeclContext should occur), so climb out the DeclContexts if they
1116 // represent lambdas, while querying the corresponding closure types
1117 // regarding capture information.
1118
1119 // 1) Climb down the function scope info stack.
1120 for (int I = FunctionScopes.size();
1121 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1122 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1123 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1124 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1125 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1126
1127 if (!CurLSI->isCXXThisCaptured())
1128 continue;
1129
1130 auto C = CurLSI->getCXXThisCapture();
1131
1132 if (C.isCopyCapture()) {
1133 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1134 if (CurLSI->CallOperator->isConst())
1135 ClassType.addConst();
1136 return ASTCtx.getPointerType(ClassType);
1137 }
1138 }
1139
1140 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1141 // happen during instantiation of its nested generic lambda call operator)
1142 if (isLambdaCallOperator(CurDC)) {
1143 assert(CurLSI && "While computing 'this' capture-type for a generic "(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1144, __extension__ __PRETTY_FUNCTION__))
1144 "lambda, we must have a corresponding LambdaScopeInfo")(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1144, __extension__ __PRETTY_FUNCTION__))
;
1145 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
1146 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
1147 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
1148 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
1149 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
;
1150 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1150, __extension__ __PRETTY_FUNCTION__))
;
1151
1152 auto IsThisCaptured =
1153 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1154 IsConst = false;
1155 IsByCopy = false;
1156 for (auto &&C : Closure->captures()) {
1157 if (C.capturesThis()) {
1158 if (C.getCaptureKind() == LCK_StarThis)
1159 IsByCopy = true;
1160 if (Closure->getLambdaCallOperator()->isConst())
1161 IsConst = true;
1162 return true;
1163 }
1164 }
1165 return false;
1166 };
1167
1168 bool IsByCopyCapture = false;
1169 bool IsConstCapture = false;
1170 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1171 while (Closure &&
1172 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1173 if (IsByCopyCapture) {
1174 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1175 if (IsConstCapture)
1176 ClassType.addConst();
1177 return ASTCtx.getPointerType(ClassType);
1178 }
1179 Closure = isLambdaCallOperator(Closure->getParent())
1180 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1181 : nullptr;
1182 }
1183 }
1184 return ASTCtx.getPointerType(ClassType);
1185}
1186
1187QualType Sema::getCurrentThisType() {
1188 DeclContext *DC = getFunctionLevelDeclContext();
1189 QualType ThisTy = CXXThisTypeOverride;
1190
1191 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1192 if (method && method->isInstance())
1193 ThisTy = method->getThisType();
1194 }
1195
1196 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1197 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1198
1199 // This is a lambda call operator that is being instantiated as a default
1200 // initializer. DC must point to the enclosing class type, so we can recover
1201 // the 'this' type from it.
1202 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1203 // There are no cv-qualifiers for 'this' within default initializers,
1204 // per [expr.prim.general]p4.
1205 ThisTy = Context.getPointerType(ClassTy);
1206 }
1207
1208 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1209 // might need to be adjusted if the lambda or any of its enclosing lambda's
1210 // captures '*this' by copy.
1211 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1212 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1213 CurContext, Context);
1214 return ThisTy;
1215}
1216
1217Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1218 Decl *ContextDecl,
1219 Qualifiers CXXThisTypeQuals,
1220 bool Enabled)
1221 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1222{
1223 if (!Enabled || !ContextDecl)
1224 return;
1225
1226 CXXRecordDecl *Record = nullptr;
1227 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1228 Record = Template->getTemplatedDecl();
1229 else
1230 Record = cast<CXXRecordDecl>(ContextDecl);
1231
1232 QualType T = S.Context.getRecordType(Record);
1233 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1234
1235 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1236
1237 this->Enabled = true;
1238}
1239
1240
1241Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1242 if (Enabled) {
1243 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1244 }
1245}
1246
1247static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1248 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
32
Called C++ object pointer is null
1249 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1249, __extension__ __PRETTY_FUNCTION__))
;
1250 // [=, this] {}; // until C++20: Error: this when = is the default
1251 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1252 !Sema.getLangOpts().CPlusPlus20)
1253 return;
1254 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1255 << FixItHint::CreateInsertion(
1256 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1257}
1258
1259bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1260 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1261 const bool ByCopy) {
1262 // We don't need to capture this in an unevaluated context.
1263 if (isUnevaluatedContext() && !Explicit)
5
Calling 'Sema::isUnevaluatedContext'
14
Returning from 'Sema::isUnevaluatedContext'
1264 return true;
1265
1266 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1266, __extension__ __PRETTY_FUNCTION__))
;
15
'?' condition is true
1267
1268 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
15.1
'FunctionScopeIndexToStopAt' is null
15.1
'FunctionScopeIndexToStopAt' is null
16
'?' condition is false
1269 ? *FunctionScopeIndexToStopAt 1270 : FunctionScopes.size() - 1; 1271 1272 // Check that we can capture the *enclosing object* (referred to by '*this') 1273 // by the capturing-entity/closure (lambda/block/etc) at 1274 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1275 1276 // Note: The *enclosing object* can only be captured by-value by a 1277 // closure that is a lambda, using the explicit notation: 1278 // [*this] { ... }. 1279 // Every other capture of the *enclosing object* results in its by-reference 1280 // capture. 1281 1282 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1283 // stack), we can capture the *enclosing object* only if: 1284 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1285 // - or, 'L' has an implicit capture. 1286 // AND 1287 // -- there is no enclosing closure 1288 // -- or, there is some enclosing closure 'E' that has already captured the 1289 // *enclosing object*, and every intervening closure (if any) between 'E' 1290 // and 'L' can implicitly capture the *enclosing object*. 1291 // -- or, every enclosing closure can implicitly capture the 1292 // *enclosing object* 1293 1294 1295 unsigned NumCapturingClosures = 0; 1296 for (int idx = MaxFunctionScopesIndex; idx
16.1
'idx' is >= 0
16.1
'idx' is >= 0
>= 0; idx--) {
17
Loop condition is true. Entering loop body
1297 if (CapturingScopeInfo *CSI
18.1
'CSI' is non-null
18.1
'CSI' is non-null
=
19
Taking true branch
1298 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
18
Assuming the object is a 'CapturingScopeInfo'
1299 if (CSI->CXXThisCaptureIndex != 0) {
20
Assuming field 'CXXThisCaptureIndex' is equal to 0
21
Taking false branch
1300 // 'this' is already being captured; there isn't anything more to do. 1301 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1302 break; 1303 } 1304 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
22
Assuming 'CSI' is not a 'LambdaScopeInfo'
23
'LSI' initialized to a null pointer value
1305 if (LSI
23.1
'LSI' is null
23.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1306 // This context can't implicitly capture 'this'; fail out. 1307 if (BuildAndDiagnose) { 1308 Diag(Loc, diag::err_this_capture) 1309 << (Explicit && idx == MaxFunctionScopesIndex); 1310 if (!Explicit) 1311 buildLambdaThisCaptureFixit(*this, LSI); 1312 } 1313 return true; 1314 } 1315 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
24
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
25
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
26
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1318 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
27
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1319 (Explicit
27.1
'Explicit' is false
27.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1320 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1321 // iteration through can be an explicit capture, all enclosing closures, 1322 // if any, must perform implicit captures. 1323 1324 // This closure can capture 'this'; continue looking upwards. 1325 NumCapturingClosures++; 1326 continue; 1327 } 1328 // This context can't implicitly capture 'this'; fail out. 1329 if (BuildAndDiagnose
27.2
'BuildAndDiagnose' is true
27.2
'BuildAndDiagnose' is true
)
28
Taking true branch
1330 Diag(Loc, diag::err_this_capture) 1331 << (Explicit
28.1
'Explicit' is false
28.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1332 1333 if (!Explicit
28.2
'Explicit' is false
28.2
'Explicit' is false
)
29
Taking true branch
1334 buildLambdaThisCaptureFixit(*this, LSI);
30
Passing null pointer value via 2nd parameter 'LSI'
31
Calling 'buildLambdaThisCaptureFixit'
1335 return true; 1336 } 1337 break; 1338 } 1339 if (!BuildAndDiagnose) return false; 1340 1341 // If we got here, then the closure at MaxFunctionScopesIndex on the 1342 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1343 // (including implicit by-reference captures in any enclosing closures). 1344 1345 // In the loop below, respect the ByCopy flag only for the closure requesting 1346 // the capture (i.e. first iteration through the loop below). Ignore it for 1347 // all enclosing closure's up to NumCapturingClosures (since they must be 1348 // implicitly capturing the *enclosing object* by reference (see loop 1349 // above)). 1350 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
1351 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
1352 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
1353 "*this) by copy")(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
; 1354 QualType ThisTy = getCurrentThisType(); 1355 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1356 --idx, --NumCapturingClosures) { 1357 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1358 1359 // The type of the corresponding data member (not a 'this' pointer if 'by 1360 // copy'). 1361 QualType CaptureType = ThisTy; 1362 if (ByCopy) { 1363 // If we are capturing the object referred to by '*this' by copy, ignore 1364 // any cv qualifiers inherited from the type of the member function for 1365 // the type of the closure-type's corresponding data member and any use 1366 // of 'this'. 1367 CaptureType = ThisTy->getPointeeType(); 1368 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1369 } 1370 1371 bool isNested = NumCapturingClosures > 1; 1372 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1373 } 1374 return false; 1375} 1376 1377ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1378 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1379 /// is a non-lvalue expression whose value is the address of the object for 1380 /// which the function is called. 1381 1382 QualType ThisTy = getCurrentThisType(); 1383 if (ThisTy.isNull())
1
Taking false branch
1384 return Diag(Loc, diag::err_invalid_this_use); 1385 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1386} 1387 1388Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1389 bool IsImplicit) { 1390 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1391 MarkThisReferenced(This);
3
Calling 'Sema::MarkThisReferenced'
1392 return This; 1393} 1394 1395void Sema::MarkThisReferenced(CXXThisExpr *This) { 1396 CheckCXXThisCapture(This->getExprLoc());
4
Calling 'Sema::CheckCXXThisCapture'
1397} 1398 1399bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1400 // If we're outside the body of a member function, then we'll have a specified 1401 // type for 'this'. 1402 if (CXXThisTypeOverride.isNull()) 1403 return false; 1404 1405 // Determine whether we're looking into a class that's currently being 1406 // defined. 1407 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1408 return Class && Class->isBeingDefined(); 1409} 1410 1411/// Parse construction of a specified type. 1412/// Can be interpreted either as function-style casting ("int(x)") 1413/// or class type construction ("ClassType(x,y,z)") 1414/// or creation of a value-initialized type ("int()"). 1415ExprResult 1416Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1417 SourceLocation LParenOrBraceLoc, 1418 MultiExprArg exprs, 1419 SourceLocation RParenOrBraceLoc, 1420 bool ListInitialization) { 1421 if (!TypeRep) 1422 return ExprError(); 1423 1424 TypeSourceInfo *TInfo; 1425 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1426 if (!TInfo) 1427 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1428 1429 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1430 RParenOrBraceLoc, ListInitialization); 1431 // Avoid creating a non-type-dependent expression that contains typos. 1432 // Non-type-dependent expressions are liable to be discarded without 1433 // checking for embedded typos. 1434 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1435 !Result.get()->isTypeDependent()) 1436 Result = CorrectDelayedTyposInExpr(Result.get()); 1437 else if (Result.isInvalid()) 1438 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1439 RParenOrBraceLoc, exprs, Ty); 1440 return Result; 1441} 1442 1443ExprResult 1444Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1445 SourceLocation LParenOrBraceLoc, 1446 MultiExprArg Exprs, 1447 SourceLocation RParenOrBraceLoc, 1448 bool ListInitialization) { 1449 QualType Ty = TInfo->getType(); 1450 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1451 1452 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1454, __extension__ __PRETTY_FUNCTION__))
1453 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1454, __extension__ __PRETTY_FUNCTION__))
1454 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1454, __extension__ __PRETTY_FUNCTION__))
; 1455 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1456 1457 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1458 InitializationKind Kind = 1459 Exprs.size() 1460 ? ListInitialization 1461 ? InitializationKind::CreateDirectList( 1462 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1463 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1464 RParenOrBraceLoc) 1465 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1466 RParenOrBraceLoc); 1467 1468 // C++1z [expr.type.conv]p1: 1469 // If the type is a placeholder for a deduced class type, [...perform class 1470 // template argument deduction...] 1471 DeducedType *Deduced = Ty->getContainedDeducedType(); 1472 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1473 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1474 Kind, Exprs); 1475 if (Ty.isNull()) 1476 return ExprError(); 1477 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1478 } 1479 1480 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1481 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1482 // directly. We work around this by dropping the locations of the braces. 1483 SourceRange Locs = ListInitialization 1484 ? SourceRange() 1485 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1486 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1487 TInfo, Locs.getBegin(), Exprs, 1488 Locs.getEnd()); 1489 } 1490 1491 // C++ [expr.type.conv]p1: 1492 // If the expression list is a parenthesized single expression, the type 1493 // conversion expression is equivalent (in definedness, and if defined in 1494 // meaning) to the corresponding cast expression. 1495 if (Exprs.size() == 1 && !ListInitialization && 1496 !isa<InitListExpr>(Exprs[0])) { 1497 Expr *Arg = Exprs[0]; 1498 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1499 RParenOrBraceLoc); 1500 } 1501 1502 // For an expression of the form T(), T shall not be an array type. 1503 QualType ElemTy = Ty; 1504 if (Ty->isArrayType()) { 1505 if (!ListInitialization) 1506 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1507 << FullRange); 1508 ElemTy = Context.getBaseElementType(Ty); 1509 } 1510 1511 // There doesn't seem to be an explicit rule against this but sanity demands 1512 // we only construct objects with object types. 1513 if (Ty->isFunctionType()) 1514 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1515 << Ty << FullRange); 1516 1517 // C++17 [expr.type.conv]p2: 1518 // If the type is cv void and the initializer is (), the expression is a 1519 // prvalue of the specified type that performs no initialization. 1520 if (!Ty->isVoidType() && 1521 RequireCompleteType(TyBeginLoc, ElemTy, 1522 diag::err_invalid_incomplete_type_use, FullRange)) 1523 return ExprError(); 1524 1525 // Otherwise, the expression is a prvalue of the specified type whose 1526 // result object is direct-initialized (11.6) with the initializer. 1527 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1528 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1529 1530 if (Result.isInvalid()) 1531 return Result; 1532 1533 Expr *Inner = Result.get(); 1534 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1535 Inner = BTE->getSubExpr(); 1536 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1537 !isa<CXXScalarValueInitExpr>(Inner)) { 1538 // If we created a CXXTemporaryObjectExpr, that node also represents the 1539 // functional cast. Otherwise, create an explicit cast to represent 1540 // the syntactic form of a functional-style cast that was used here. 1541 // 1542 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1543 // would give a more consistent AST representation than using a 1544 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1545 // is sometimes handled by initialization and sometimes not. 1546 QualType ResultType = Result.get()->getType(); 1547 SourceRange Locs = ListInitialization 1548 ? SourceRange() 1549 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1550 Result = CXXFunctionalCastExpr::Create( 1551 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1552 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1553 Locs.getBegin(), Locs.getEnd()); 1554 } 1555 1556 return Result; 1557} 1558 1559bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1560 // [CUDA] Ignore this function, if we can't call it. 1561 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1562 if (getLangOpts().CUDA) { 1563 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1564 // If it's not callable at all, it's not the right function. 1565 if (CallPreference < CFP_WrongSide) 1566 return false; 1567 if (CallPreference == CFP_WrongSide) { 1568 // Maybe. We have to check if there are better alternatives. 1569 DeclContext::lookup_result R = 1570 Method->getDeclContext()->lookup(Method->getDeclName()); 1571 for (const auto *D : R) { 1572 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1573 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1574 return false; 1575 } 1576 } 1577 // We've found no better variants. 1578 } 1579 } 1580 1581 SmallVector<const FunctionDecl*, 4> PreventedBy; 1582 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1583 1584 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1585 return Result; 1586 1587 // In case of CUDA, return true if none of the 1-argument deallocator 1588 // functions are actually callable. 1589 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1590 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1591, __extension__ __PRETTY_FUNCTION__))
1591 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1591, __extension__ __PRETTY_FUNCTION__))
; 1592 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1593 }); 1594} 1595 1596/// Determine whether the given function is a non-placement 1597/// deallocation function. 1598static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1599 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1600 return S.isUsualDeallocationFunction(Method); 1601 1602 if (FD->getOverloadedOperator() != OO_Delete && 1603 FD->getOverloadedOperator() != OO_Array_Delete) 1604 return false; 1605 1606 unsigned UsualParams = 1; 1607 1608 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1609 S.Context.hasSameUnqualifiedType( 1610 FD->getParamDecl(UsualParams)->getType(), 1611 S.Context.getSizeType())) 1612 ++UsualParams; 1613 1614 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1615 S.Context.hasSameUnqualifiedType( 1616 FD->getParamDecl(UsualParams)->getType(), 1617 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1618 ++UsualParams; 1619 1620 return UsualParams == FD->getNumParams(); 1621} 1622 1623namespace { 1624 struct UsualDeallocFnInfo { 1625 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1626 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1627 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1628 Destroying(false), HasSizeT(false), HasAlignValT(false), 1629 CUDAPref(Sema::CFP_Native) { 1630 // A function template declaration is never a usual deallocation function. 1631 if (!FD) 1632 return; 1633 unsigned NumBaseParams = 1; 1634 if (FD->isDestroyingOperatorDelete()) { 1635 Destroying = true; 1636 ++NumBaseParams; 1637 } 1638 1639 if (NumBaseParams < FD->getNumParams() && 1640 S.Context.hasSameUnqualifiedType( 1641 FD->getParamDecl(NumBaseParams)->getType(), 1642 S.Context.getSizeType())) { 1643 ++NumBaseParams; 1644 HasSizeT = true; 1645 } 1646 1647 if (NumBaseParams < FD->getNumParams() && 1648 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1649 ++NumBaseParams; 1650 HasAlignValT = true; 1651 } 1652 1653 // In CUDA, determine how much we'd like / dislike to call this. 1654 if (S.getLangOpts().CUDA) 1655 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1656 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1657 } 1658 1659 explicit operator bool() const { return FD; } 1660 1661 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1662 bool WantAlign) const { 1663 // C++ P0722: 1664 // A destroying operator delete is preferred over a non-destroying 1665 // operator delete. 1666 if (Destroying != Other.Destroying) 1667 return Destroying; 1668 1669 // C++17 [expr.delete]p10: 1670 // If the type has new-extended alignment, a function with a parameter 1671 // of type std::align_val_t is preferred; otherwise a function without 1672 // such a parameter is preferred 1673 if (HasAlignValT != Other.HasAlignValT) 1674 return HasAlignValT == WantAlign; 1675 1676 if (HasSizeT != Other.HasSizeT) 1677 return HasSizeT == WantSize; 1678 1679 // Use CUDA call preference as a tiebreaker. 1680 return CUDAPref > Other.CUDAPref; 1681 } 1682 1683 DeclAccessPair Found; 1684 FunctionDecl *FD; 1685 bool Destroying, HasSizeT, HasAlignValT; 1686 Sema::CUDAFunctionPreference CUDAPref; 1687 }; 1688} 1689 1690/// Determine whether a type has new-extended alignment. This may be called when 1691/// the type is incomplete (for a delete-expression with an incomplete pointee 1692/// type), in which case it will conservatively return false if the alignment is 1693/// not known. 1694static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1695 return S.getLangOpts().AlignedAllocation && 1696 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1697 S.getASTContext().getTargetInfo().getNewAlign(); 1698} 1699 1700/// Select the correct "usual" deallocation function to use from a selection of 1701/// deallocation functions (either global or class-scope). 1702static UsualDeallocFnInfo resolveDeallocationOverload( 1703 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1704 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1705 UsualDeallocFnInfo Best; 1706 1707 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1708 UsualDeallocFnInfo Info(S, I.getPair()); 1709 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1710 Info.CUDAPref == Sema::CFP_Never) 1711 continue; 1712 1713 if (!Best) { 1714 Best = Info; 1715 if (BestFns) 1716 BestFns->push_back(Info); 1717 continue; 1718 } 1719 1720 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1721 continue; 1722 1723 // If more than one preferred function is found, all non-preferred 1724 // functions are eliminated from further consideration. 1725 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1726 BestFns->clear(); 1727 1728 Best = Info; 1729 if (BestFns) 1730 BestFns->push_back(Info); 1731 } 1732 1733 return Best; 1734} 1735 1736/// Determine whether a given type is a class for which 'delete[]' would call 1737/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1738/// we need to store the array size (even if the type is 1739/// trivially-destructible). 1740static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1741 QualType allocType) { 1742 const RecordType *record = 1743 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1744 if (!record) return false; 1745 1746 // Try to find an operator delete[] in class scope. 1747 1748 DeclarationName deleteName = 1749 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1750 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1751 S.LookupQualifiedName(ops, record->getDecl()); 1752 1753 // We're just doing this for information. 1754 ops.suppressDiagnostics(); 1755 1756 // Very likely: there's no operator delete[]. 1757 if (ops.empty()) return false; 1758 1759 // If it's ambiguous, it should be illegal to call operator delete[] 1760 // on this thing, so it doesn't matter if we allocate extra space or not. 1761 if (ops.isAmbiguous()) return false; 1762 1763 // C++17 [expr.delete]p10: 1764 // If the deallocation functions have class scope, the one without a 1765 // parameter of type std::size_t is selected. 1766 auto Best = resolveDeallocationOverload( 1767 S, ops, /*WantSize*/false, 1768 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1769 return Best && Best.HasSizeT; 1770} 1771 1772/// Parsed a C++ 'new' expression (C++ 5.3.4). 1773/// 1774/// E.g.: 1775/// @code new (memory) int[size][4] @endcode 1776/// or 1777/// @code ::new Foo(23, "hello") @endcode 1778/// 1779/// \param StartLoc The first location of the expression. 1780/// \param UseGlobal True if 'new' was prefixed with '::'. 1781/// \param PlacementLParen Opening paren of the placement arguments. 1782/// \param PlacementArgs Placement new arguments. 1783/// \param PlacementRParen Closing paren of the placement arguments. 1784/// \param TypeIdParens If the type is in parens, the source range. 1785/// \param D The type to be allocated, as well as array dimensions. 1786/// \param Initializer The initializing expression or initializer-list, or null 1787/// if there is none. 1788ExprResult 1789Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1790 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1791 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1792 Declarator &D, Expr *Initializer) { 1793 Optional<Expr *> ArraySize; 1794 // If the specified type is an array, unwrap it and save the expression. 1795 if (D.getNumTypeObjects() > 0 && 1796 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1797 DeclaratorChunk &Chunk = D.getTypeObject(0); 1798 if (D.getDeclSpec().hasAutoTypeSpec()) 1799 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1800 << D.getSourceRange()); 1801 if (Chunk.Arr.hasStatic) 1802 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1803 << D.getSourceRange()); 1804 if (!Chunk.Arr.NumElts && !Initializer) 1805 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1806 << D.getSourceRange()); 1807 1808 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1809 D.DropFirstTypeObject(); 1810 } 1811 1812 // Every dimension shall be of constant size. 1813 if (ArraySize) { 1814 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1815 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1816 break; 1817 1818 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1819 if (Expr *NumElts = (Expr *)Array.NumElts) { 1820 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1821 // FIXME: GCC permits constant folding here. We should either do so consistently 1822 // or not do so at all, rather than changing behavior in C++14 onwards. 1823 if (getLangOpts().CPlusPlus14) { 1824 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1825 // shall be a converted constant expression (5.19) of type std::size_t 1826 // and shall evaluate to a strictly positive value. 1827 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1828 Array.NumElts 1829 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1830 CCEK_ArrayBound) 1831 .get(); 1832 } else { 1833 Array.NumElts = 1834 VerifyIntegerConstantExpression( 1835 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1836 .get(); 1837 } 1838 if (!Array.NumElts) 1839 return ExprError(); 1840 } 1841 } 1842 } 1843 } 1844 1845 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1846 QualType AllocType = TInfo->getType(); 1847 if (D.isInvalidType()) 1848 return ExprError(); 1849 1850 SourceRange DirectInitRange; 1851 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1852 DirectInitRange = List->getSourceRange(); 1853 1854 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1855 PlacementLParen, PlacementArgs, PlacementRParen, 1856 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1857 Initializer); 1858} 1859 1860static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1861 Expr *Init) { 1862 if (!Init) 1863 return true; 1864 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1865 return PLE->getNumExprs() == 0; 1866 if (isa<ImplicitValueInitExpr>(Init)) 1867 return true; 1868 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1869 return !CCE->isListInitialization() && 1870 CCE->getConstructor()->isDefaultConstructor(); 1871 else if (Style == CXXNewExpr::ListInit) { 1872 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1873, __extension__ __PRETTY_FUNCTION__))
1873 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1873, __extension__ __PRETTY_FUNCTION__))
; 1874 return true; 1875 } 1876 return false; 1877} 1878 1879bool 1880Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1881 if (!getLangOpts().AlignedAllocationUnavailable) 1882 return false; 1883 if (FD.isDefined()) 1884 return false; 1885 Optional<unsigned> AlignmentParam; 1886 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1887 AlignmentParam.hasValue()) 1888 return true; 1889 return false; 1890} 1891 1892// Emit a diagnostic if an aligned allocation/deallocation function that is not 1893// implemented in the standard library is selected. 1894void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1895 SourceLocation Loc) { 1896 if (isUnavailableAlignedAllocationFunction(FD)) { 1897 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1898 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1899 getASTContext().getTargetInfo().getPlatformName()); 1900 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1901 1902 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1903 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1904 Diag(Loc, diag::err_aligned_allocation_unavailable) 1905 << IsDelete << FD.getType().getAsString() << OSName 1906 << OSVersion.getAsString() << OSVersion.empty(); 1907 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1908 } 1909} 1910 1911ExprResult 1912Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1913 SourceLocation PlacementLParen, 1914 MultiExprArg PlacementArgs, 1915 SourceLocation PlacementRParen, 1916 SourceRange TypeIdParens, 1917 QualType AllocType, 1918 TypeSourceInfo *AllocTypeInfo, 1919 Optional<Expr *> ArraySize, 1920 SourceRange DirectInitRange, 1921 Expr *Initializer) { 1922 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1923 SourceLocation StartLoc = Range.getBegin(); 1924 1925 CXXNewExpr::InitializationStyle initStyle; 1926 if (DirectInitRange.isValid()) { 1927 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1927, __extension__ __PRETTY_FUNCTION__))
; 1928 initStyle = CXXNewExpr::CallInit; 1929 } else if (Initializer && isa<InitListExpr>(Initializer)) 1930 initStyle = CXXNewExpr::ListInit; 1931 else { 1932 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1934, __extension__ __PRETTY_FUNCTION__))
1933 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1934, __extension__ __PRETTY_FUNCTION__))
1934 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1934, __extension__ __PRETTY_FUNCTION__))
; 1935 initStyle = CXXNewExpr::NoInit; 1936 } 1937 1938 Expr **Inits = &Initializer; 1939 unsigned NumInits = Initializer ? 1 : 0; 1940 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1941 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 1941, __extension__ __PRETTY_FUNCTION__))
; 1942 Inits = List->getExprs(); 1943 NumInits = List->getNumExprs(); 1944 } 1945 1946 // C++11 [expr.new]p15: 1947 // A new-expression that creates an object of type T initializes that 1948 // object as follows: 1949 InitializationKind Kind 1950 // - If the new-initializer is omitted, the object is default- 1951 // initialized (8.5); if no initialization is performed, 1952 // the object has indeterminate value 1953 = initStyle == CXXNewExpr::NoInit 1954 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1955 // - Otherwise, the new-initializer is interpreted according to 1956 // the 1957 // initialization rules of 8.5 for direct-initialization. 1958 : initStyle == CXXNewExpr::ListInit 1959 ? InitializationKind::CreateDirectList( 1960 TypeRange.getBegin(), Initializer->getBeginLoc(), 1961 Initializer->getEndLoc()) 1962 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1963 DirectInitRange.getBegin(), 1964 DirectInitRange.getEnd()); 1965 1966 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1967 auto *Deduced = AllocType->getContainedDeducedType(); 1968 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1969 if (ArraySize) 1970 return ExprError( 1971 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1972 diag::err_deduced_class_template_compound_type) 1973 << /*array*/ 2 1974 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1975 1976 InitializedEntity Entity 1977 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1978 AllocType = DeduceTemplateSpecializationFromInitializer( 1979 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1980 if (AllocType.isNull()) 1981 return ExprError(); 1982 } else if (Deduced) { 1983 bool Braced = (initStyle == CXXNewExpr::ListInit); 1984 if (NumInits == 1) { 1985 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1986 Inits = p->getInits(); 1987 NumInits = p->getNumInits(); 1988 Braced = true; 1989 } 1990 } 1991 1992 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1993 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1994 << AllocType << TypeRange); 1995 if (NumInits > 1) { 1996 Expr *FirstBad = Inits[1]; 1997 return ExprError(Diag(FirstBad->getBeginLoc(), 1998 diag::err_auto_new_ctor_multiple_expressions) 1999 << AllocType << TypeRange); 2000 } 2001 if (Braced && !getLangOpts().CPlusPlus17) 2002 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2003 << AllocType << TypeRange; 2004 Expr *Deduce = Inits[0]; 2005 QualType DeducedType; 2006 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2007 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2008 << AllocType << Deduce->getType() 2009 << TypeRange << Deduce->getSourceRange()); 2010 if (DeducedType.isNull()) 2011 return ExprError(); 2012 AllocType = DeducedType; 2013 } 2014 2015 // Per C++0x [expr.new]p5, the type being constructed may be a 2016 // typedef of an array type. 2017 if (!ArraySize) { 2018 if (const ConstantArrayType *Array 2019 = Context.getAsConstantArrayType(AllocType)) { 2020 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2021 Context.getSizeType(), 2022 TypeRange.getEnd()); 2023 AllocType = Array->getElementType(); 2024 } 2025 } 2026 2027 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2028 return ExprError(); 2029 2030 // In ARC, infer 'retaining' for the allocated 2031 if (getLangOpts().ObjCAutoRefCount && 2032 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2033 AllocType->isObjCLifetimeType()) { 2034 AllocType = Context.getLifetimeQualifiedType(AllocType, 2035 AllocType->getObjCARCImplicitLifetime()); 2036 } 2037 2038 QualType ResultType = Context.getPointerType(AllocType); 2039 2040 if (ArraySize && *ArraySize && 2041 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2042 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2043 if (result.isInvalid()) return ExprError(); 2044 ArraySize = result.get(); 2045 } 2046 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2047 // integral or enumeration type with a non-negative value." 2048 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2049 // enumeration type, or a class type for which a single non-explicit 2050 // conversion function to integral or unscoped enumeration type exists. 2051 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2052 // std::size_t. 2053 llvm::Optional<uint64_t> KnownArraySize; 2054 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2055 ExprResult ConvertedSize; 2056 if (getLangOpts().CPlusPlus14) { 2057 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2057, __extension__ __PRETTY_FUNCTION__))
; 2058 2059 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2060 AA_Converting); 2061 2062 if (!ConvertedSize.isInvalid() && 2063 (*ArraySize)->getType()->getAs<RecordType>()) 2064 // Diagnose the compatibility of this conversion. 2065 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2066 << (*ArraySize)->getType() << 0 << "'size_t'"; 2067 } else { 2068 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2069 protected: 2070 Expr *ArraySize; 2071 2072 public: 2073 SizeConvertDiagnoser(Expr *ArraySize) 2074 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2075 ArraySize(ArraySize) {} 2076 2077 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2078 QualType T) override { 2079 return S.Diag(Loc, diag::err_array_size_not_integral) 2080 << S.getLangOpts().CPlusPlus11 << T; 2081 } 2082 2083 SemaDiagnosticBuilder diagnoseIncomplete( 2084 Sema &S, SourceLocation Loc, QualType T) override { 2085 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2086 << T << ArraySize->getSourceRange(); 2087 } 2088 2089 SemaDiagnosticBuilder diagnoseExplicitConv( 2090 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2091 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2092 } 2093 2094 SemaDiagnosticBuilder noteExplicitConv( 2095 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2096 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2097 << ConvTy->isEnumeralType() << ConvTy; 2098 } 2099 2100 SemaDiagnosticBuilder diagnoseAmbiguous( 2101 Sema &S, SourceLocation Loc, QualType T) override { 2102 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2103 } 2104 2105 SemaDiagnosticBuilder noteAmbiguous( 2106 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2107 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2108 << ConvTy->isEnumeralType() << ConvTy; 2109 } 2110 2111 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2112 QualType T, 2113 QualType ConvTy) override { 2114 return S.Diag(Loc, 2115 S.getLangOpts().CPlusPlus11 2116 ? diag::warn_cxx98_compat_array_size_conversion 2117 : diag::ext_array_size_conversion) 2118 << T << ConvTy->isEnumeralType() << ConvTy; 2119 } 2120 } SizeDiagnoser(*ArraySize); 2121 2122 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2123 SizeDiagnoser); 2124 } 2125 if (ConvertedSize.isInvalid()) 2126 return ExprError(); 2127 2128 ArraySize = ConvertedSize.get(); 2129 QualType SizeType = (*ArraySize)->getType(); 2130 2131 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2132 return ExprError(); 2133 2134 // C++98 [expr.new]p7: 2135 // The expression in a direct-new-declarator shall have integral type 2136 // with a non-negative value. 2137 // 2138 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2139 // per CWG1464. Otherwise, if it's not a constant, we must have an 2140 // unparenthesized array type. 2141 if (!(*ArraySize)->isValueDependent()) { 2142 // We've already performed any required implicit conversion to integer or 2143 // unscoped enumeration type. 2144 // FIXME: Per CWG1464, we are required to check the value prior to 2145 // converting to size_t. This will never find a negative array size in 2146 // C++14 onwards, because Value is always unsigned here! 2147 if (Optional<llvm::APSInt> Value = 2148 (*ArraySize)->getIntegerConstantExpr(Context)) { 2149 if (Value->isSigned() && Value->isNegative()) { 2150 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2151 diag::err_typecheck_negative_array_size) 2152 << (*ArraySize)->getSourceRange()); 2153 } 2154 2155 if (!AllocType->isDependentType()) { 2156 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2157 Context, AllocType, *Value); 2158 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2159 return ExprError( 2160 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2161 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2162 } 2163 2164 KnownArraySize = Value->getZExtValue(); 2165 } else if (TypeIdParens.isValid()) { 2166 // Can't have dynamic array size when the type-id is in parentheses. 2167 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2168 << (*ArraySize)->getSourceRange() 2169 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2170 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2171 2172 TypeIdParens = SourceRange(); 2173 } 2174 } 2175 2176 // Note that we do *not* convert the argument in any way. It can 2177 // be signed, larger than size_t, whatever. 2178 } 2179 2180 FunctionDecl *OperatorNew = nullptr; 2181 FunctionDecl *OperatorDelete = nullptr; 2182 unsigned Alignment = 2183 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2184 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2185 bool PassAlignment = getLangOpts().AlignedAllocation && 2186 Alignment > NewAlignment; 2187 2188 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2189 if (!AllocType->isDependentType() && 2190 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2191 FindAllocationFunctions( 2192 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2193 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2194 OperatorNew, OperatorDelete)) 2195 return ExprError(); 2196 2197 // If this is an array allocation, compute whether the usual array 2198 // deallocation function for the type has a size_t parameter. 2199 bool UsualArrayDeleteWantsSize = false; 2200 if (ArraySize && !AllocType->isDependentType()) 2201 UsualArrayDeleteWantsSize = 2202 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2203 2204 SmallVector<Expr *, 8> AllPlaceArgs; 2205 if (OperatorNew) { 2206 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2207 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2208 : VariadicDoesNotApply; 2209 2210 // We've already converted the placement args, just fill in any default 2211 // arguments. Skip the first parameter because we don't have a corresponding 2212 // argument. Skip the second parameter too if we're passing in the 2213 // alignment; we've already filled it in. 2214 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2215 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2216 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2217 CallType)) 2218 return ExprError(); 2219 2220 if (!AllPlaceArgs.empty()) 2221 PlacementArgs = AllPlaceArgs; 2222 2223 // We would like to perform some checking on the given `operator new` call, 2224 // but the PlacementArgs does not contain the implicit arguments, 2225 // namely allocation size and maybe allocation alignment, 2226 // so we need to conjure them. 2227 2228 QualType SizeTy = Context.getSizeType(); 2229 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2230 2231 llvm::APInt SingleEltSize( 2232 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2233 2234 // How many bytes do we want to allocate here? 2235 llvm::Optional<llvm::APInt> AllocationSize; 2236 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2237 // For non-array operator new, we only want to allocate one element. 2238 AllocationSize = SingleEltSize; 2239 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2240 // For array operator new, only deal with static array size case. 2241 bool Overflow; 2242 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2243 .umul_ov(SingleEltSize, Overflow); 2244 (void)Overflow; 2245 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2247, __extension__ __PRETTY_FUNCTION__))
2246 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2247, __extension__ __PRETTY_FUNCTION__))
2247 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2247, __extension__ __PRETTY_FUNCTION__))
; 2248 } 2249 2250 IntegerLiteral AllocationSizeLiteral( 2251 Context, 2252 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2253 SizeTy, SourceLocation()); 2254 // Otherwise, if we failed to constant-fold the allocation size, we'll 2255 // just give up and pass-in something opaque, that isn't a null pointer. 2256 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2257 OK_Ordinary, /*SourceExpr=*/nullptr); 2258 2259 // Let's synthesize the alignment argument in case we will need it. 2260 // Since we *really* want to allocate these on stack, this is slightly ugly 2261 // because there might not be a `std::align_val_t` type. 2262 EnumDecl *StdAlignValT = getStdAlignValT(); 2263 QualType AlignValT = 2264 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2265 IntegerLiteral AlignmentLiteral( 2266 Context, 2267 llvm::APInt(Context.getTypeSize(SizeTy), 2268 Alignment / Context.getCharWidth()), 2269 SizeTy, SourceLocation()); 2270 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2271 CK_IntegralCast, &AlignmentLiteral, 2272 VK_PRValue, FPOptionsOverride()); 2273 2274 // Adjust placement args by prepending conjured size and alignment exprs. 2275 llvm::SmallVector<Expr *, 8> CallArgs; 2276 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2277 CallArgs.emplace_back(AllocationSize.hasValue() 2278 ? static_cast<Expr *>(&AllocationSizeLiteral) 2279 : &OpaqueAllocationSize); 2280 if (PassAlignment) 2281 CallArgs.emplace_back(&DesiredAlignment); 2282 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2283 2284 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2285 2286 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2287 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2288 2289 // Warn if the type is over-aligned and is being allocated by (unaligned) 2290 // global operator new. 2291 if (PlacementArgs.empty() && !PassAlignment && 2292 (OperatorNew->isImplicit() || 2293 (OperatorNew->getBeginLoc().isValid() && 2294 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2295 if (Alignment > NewAlignment) 2296 Diag(StartLoc, diag::warn_overaligned_type) 2297 << AllocType 2298 << unsigned(Alignment / Context.getCharWidth()) 2299 << unsigned(NewAlignment / Context.getCharWidth()); 2300 } 2301 } 2302 2303 // Array 'new' can't have any initializers except empty parentheses. 2304 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2305 // dialect distinction. 2306 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2307 SourceRange InitRange(Inits[0]->getBeginLoc(), 2308 Inits[NumInits - 1]->getEndLoc()); 2309 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2310 return ExprError(); 2311 } 2312 2313 // If we can perform the initialization, and we've not already done so, 2314 // do it now. 2315 if (!AllocType->isDependentType() && 2316 !Expr::hasAnyTypeDependentArguments( 2317 llvm::makeArrayRef(Inits, NumInits))) { 2318 // The type we initialize is the complete type, including the array bound. 2319 QualType InitType; 2320 if (KnownArraySize) 2321 InitType = Context.getConstantArrayType( 2322 AllocType, 2323 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2324 *KnownArraySize), 2325 *ArraySize, ArrayType::Normal, 0); 2326 else if (ArraySize) 2327 InitType = 2328 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2329 else 2330 InitType = AllocType; 2331 2332 InitializedEntity Entity 2333 = InitializedEntity::InitializeNew(StartLoc, InitType); 2334 InitializationSequence InitSeq(*this, Entity, Kind, 2335 MultiExprArg(Inits, NumInits)); 2336 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2337 MultiExprArg(Inits, NumInits)); 2338 if (FullInit.isInvalid()) 2339 return ExprError(); 2340 2341 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2342 // we don't want the initialized object to be destructed. 2343 // FIXME: We should not create these in the first place. 2344 if (CXXBindTemporaryExpr *Binder = 2345 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2346 FullInit = Binder->getSubExpr(); 2347 2348 Initializer = FullInit.get(); 2349 2350 // FIXME: If we have a KnownArraySize, check that the array bound of the 2351 // initializer is no greater than that constant value. 2352 2353 if (ArraySize && !*ArraySize) { 2354 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2355 if (CAT) { 2356 // FIXME: Track that the array size was inferred rather than explicitly 2357 // specified. 2358 ArraySize = IntegerLiteral::Create( 2359 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2360 } else { 2361 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2362 << Initializer->getSourceRange(); 2363 } 2364 } 2365 } 2366 2367 // Mark the new and delete operators as referenced. 2368 if (OperatorNew) { 2369 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2370 return ExprError(); 2371 MarkFunctionReferenced(StartLoc, OperatorNew); 2372 } 2373 if (OperatorDelete) { 2374 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2375 return ExprError(); 2376 MarkFunctionReferenced(StartLoc, OperatorDelete); 2377 } 2378 2379 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2380 PassAlignment, UsualArrayDeleteWantsSize, 2381 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2382 Initializer, ResultType, AllocTypeInfo, Range, 2383 DirectInitRange); 2384} 2385 2386/// Checks that a type is suitable as the allocated type 2387/// in a new-expression. 2388bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2389 SourceRange R) { 2390 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2391 // abstract class type or array thereof. 2392 if (AllocType->isFunctionType()) 2393 return Diag(Loc, diag::err_bad_new_type) 2394 << AllocType << 0 << R; 2395 else if (AllocType->isReferenceType()) 2396 return Diag(Loc, diag::err_bad_new_type) 2397 << AllocType << 1 << R; 2398 else if (!AllocType->isDependentType() && 2399 RequireCompleteSizedType( 2400 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2401 return true; 2402 else if (RequireNonAbstractType(Loc, AllocType, 2403 diag::err_allocation_of_abstract_type)) 2404 return true; 2405 else if (AllocType->isVariablyModifiedType()) 2406 return Diag(Loc, diag::err_variably_modified_new_type) 2407 << AllocType; 2408 else if (AllocType.getAddressSpace() != LangAS::Default && 2409 !getLangOpts().OpenCLCPlusPlus) 2410 return Diag(Loc, diag::err_address_space_qualified_new) 2411 << AllocType.getUnqualifiedType() 2412 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2413 else if (getLangOpts().ObjCAutoRefCount) { 2414 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2415 QualType BaseAllocType = Context.getBaseElementType(AT); 2416 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2417 BaseAllocType->isObjCLifetimeType()) 2418 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2419 << BaseAllocType; 2420 } 2421 } 2422 2423 return false; 2424} 2425 2426static bool resolveAllocationOverload( 2427 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2428 bool &PassAlignment, FunctionDecl *&Operator, 2429 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2430 OverloadCandidateSet Candidates(R.getNameLoc(), 2431 OverloadCandidateSet::CSK_Normal); 2432 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2433 Alloc != AllocEnd; ++Alloc) { 2434 // Even member operator new/delete are implicitly treated as 2435 // static, so don't use AddMemberCandidate. 2436 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2437 2438 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2439 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2440 /*ExplicitTemplateArgs=*/nullptr, Args, 2441 Candidates, 2442 /*SuppressUserConversions=*/false); 2443 continue; 2444 } 2445 2446 FunctionDecl *Fn = cast<FunctionDecl>(D); 2447 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2448 /*SuppressUserConversions=*/false); 2449 } 2450 2451 // Do the resolution. 2452 OverloadCandidateSet::iterator Best; 2453 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2454 case OR_Success: { 2455 // Got one! 2456 FunctionDecl *FnDecl = Best->Function; 2457 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2458 Best->FoundDecl) == Sema::AR_inaccessible) 2459 return true; 2460 2461 Operator = FnDecl; 2462 return false; 2463 } 2464 2465 case OR_No_Viable_Function: 2466 // C++17 [expr.new]p13: 2467 // If no matching function is found and the allocated object type has 2468 // new-extended alignment, the alignment argument is removed from the 2469 // argument list, and overload resolution is performed again. 2470 if (PassAlignment) { 2471 PassAlignment = false; 2472 AlignArg = Args[1]; 2473 Args.erase(Args.begin() + 1); 2474 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2475 Operator, &Candidates, AlignArg, 2476 Diagnose); 2477 } 2478 2479 // MSVC will fall back on trying to find a matching global operator new 2480 // if operator new[] cannot be found. Also, MSVC will leak by not 2481 // generating a call to operator delete or operator delete[], but we 2482 // will not replicate that bug. 2483 // FIXME: Find out how this interacts with the std::align_val_t fallback 2484 // once MSVC implements it. 2485 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2486 S.Context.getLangOpts().MSVCCompat) { 2487 R.clear(); 2488 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2489 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2490 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2491 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2492 Operator, /*Candidates=*/nullptr, 2493 /*AlignArg=*/nullptr, Diagnose); 2494 } 2495 2496 if (Diagnose) { 2497 // If this is an allocation of the form 'new (p) X' for some object 2498 // pointer p (or an expression that will decay to such a pointer), 2499 // diagnose the missing inclusion of <new>. 2500 if (!R.isClassLookup() && Args.size() == 2 && 2501 (Args[1]->getType()->isObjectPointerType() || 2502 Args[1]->getType()->isArrayType())) { 2503 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2504 << R.getLookupName() << Range; 2505 // Listing the candidates is unlikely to be useful; skip it. 2506 return true; 2507 } 2508 2509 // Finish checking all candidates before we note any. This checking can 2510 // produce additional diagnostics so can't be interleaved with our 2511 // emission of notes. 2512 // 2513 // For an aligned allocation, separately check the aligned and unaligned 2514 // candidates with their respective argument lists. 2515 SmallVector<OverloadCandidate*, 32> Cands; 2516 SmallVector<OverloadCandidate*, 32> AlignedCands; 2517 llvm::SmallVector<Expr*, 4> AlignedArgs; 2518 if (AlignedCandidates) { 2519 auto IsAligned = [](OverloadCandidate &C) { 2520 return C.Function->getNumParams() > 1 && 2521 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2522 }; 2523 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2524 2525 AlignedArgs.reserve(Args.size() + 1); 2526 AlignedArgs.push_back(Args[0]); 2527 AlignedArgs.push_back(AlignArg); 2528 AlignedArgs.append(Args.begin() + 1, Args.end()); 2529 AlignedCands = AlignedCandidates->CompleteCandidates( 2530 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2531 2532 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2533 R.getNameLoc(), IsUnaligned); 2534 } else { 2535 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2536 R.getNameLoc()); 2537 } 2538 2539 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2540 << R.getLookupName() << Range; 2541 if (AlignedCandidates) 2542 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2543 R.getNameLoc()); 2544 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2545 } 2546 return true; 2547 2548 case OR_Ambiguous: 2549 if (Diagnose) { 2550 Candidates.NoteCandidates( 2551 PartialDiagnosticAt(R.getNameLoc(), 2552 S.PDiag(diag::err_ovl_ambiguous_call) 2553 << R.getLookupName() << Range), 2554 S, OCD_AmbiguousCandidates, Args); 2555 } 2556 return true; 2557 2558 case OR_Deleted: { 2559 if (Diagnose) { 2560 Candidates.NoteCandidates( 2561 PartialDiagnosticAt(R.getNameLoc(), 2562 S.PDiag(diag::err_ovl_deleted_call) 2563 << R.getLookupName() << Range), 2564 S, OCD_AllCandidates, Args); 2565 } 2566 return true; 2567 } 2568 } 2569 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2569)
; 2570} 2571 2572bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2573 AllocationFunctionScope NewScope, 2574 AllocationFunctionScope DeleteScope, 2575 QualType AllocType, bool IsArray, 2576 bool &PassAlignment, MultiExprArg PlaceArgs, 2577 FunctionDecl *&OperatorNew, 2578 FunctionDecl *&OperatorDelete, 2579 bool Diagnose) { 2580 // --- Choosing an allocation function --- 2581 // C++ 5.3.4p8 - 14 & 18 2582 // 1) If looking in AFS_Global scope for allocation functions, only look in 2583 // the global scope. Else, if AFS_Class, only look in the scope of the 2584 // allocated class. If AFS_Both, look in both. 2585 // 2) If an array size is given, look for operator new[], else look for 2586 // operator new. 2587 // 3) The first argument is always size_t. Append the arguments from the 2588 // placement form. 2589 2590 SmallVector<Expr*, 8> AllocArgs; 2591 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2592 2593 // We don't care about the actual value of these arguments. 2594 // FIXME: Should the Sema create the expression and embed it in the syntax 2595 // tree? Or should the consumer just recalculate the value? 2596 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2597 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2598 Context.getTargetInfo().getPointerWidth(0)), 2599 Context.getSizeType(), 2600 SourceLocation()); 2601 AllocArgs.push_back(&Size); 2602 2603 QualType AlignValT = Context.VoidTy; 2604 if (PassAlignment) { 2605 DeclareGlobalNewDelete(); 2606 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2607 } 2608 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2609 if (PassAlignment) 2610 AllocArgs.push_back(&Align); 2611 2612 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2613 2614 // C++ [expr.new]p8: 2615 // If the allocated type is a non-array type, the allocation 2616 // function's name is operator new and the deallocation function's 2617 // name is operator delete. If the allocated type is an array 2618 // type, the allocation function's name is operator new[] and the 2619 // deallocation function's name is operator delete[]. 2620 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2621 IsArray ? OO_Array_New : OO_New); 2622 2623 QualType AllocElemType = Context.getBaseElementType(AllocType); 2624 2625 // Find the allocation function. 2626 { 2627 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2628 2629 // C++1z [expr.new]p9: 2630 // If the new-expression begins with a unary :: operator, the allocation 2631 // function's name is looked up in the global scope. Otherwise, if the 2632 // allocated type is a class type T or array thereof, the allocation 2633 // function's name is looked up in the scope of T. 2634 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2635 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2636 2637 // We can see ambiguity here if the allocation function is found in 2638 // multiple base classes. 2639 if (R.isAmbiguous()) 2640 return true; 2641 2642 // If this lookup fails to find the name, or if the allocated type is not 2643 // a class type, the allocation function's name is looked up in the 2644 // global scope. 2645 if (R.empty()) { 2646 if (NewScope == AFS_Class) 2647 return true; 2648 2649 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2650 } 2651 2652 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2653 if (PlaceArgs.empty()) { 2654 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2655 } else { 2656 Diag(StartLoc, diag::err_openclcxx_placement_new); 2657 } 2658 return true; 2659 } 2660 2661 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2661, __extension__ __PRETTY_FUNCTION__))
; 2662 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 2662, __extension__ __PRETTY_FUNCTION__))
; 2663 2664 // We do our own custom access checks below. 2665 R.suppressDiagnostics(); 2666 2667 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2668 OperatorNew, /*Candidates=*/nullptr, 2669 /*AlignArg=*/nullptr, Diagnose)) 2670 return true; 2671 } 2672 2673 // We don't need an operator delete if we're running under -fno-exceptions. 2674 if (!getLangOpts().Exceptions) { 2675 OperatorDelete = nullptr; 2676 return false; 2677 } 2678 2679 // Note, the name of OperatorNew might have been changed from array to 2680 // non-array by resolveAllocationOverload. 2681 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2682 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2683 ? OO_Array_Delete 2684 : OO_Delete); 2685 2686 // C++ [expr.new]p19: 2687 // 2688 // If the new-expression begins with a unary :: operator, the 2689 // deallocation function's name is looked up in the global 2690 // scope. Otherwise, if the allocated type is a class type T or an 2691 // array thereof, the deallocation function's name is looked up in 2692 // the scope of T. If this lookup fails to find the name, or if 2693 // the allocated type is not a class type or array thereof, the 2694 // deallocation function's name is looked up in the global scope. 2695 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2696 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2697 auto *RD = 2698 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2699 LookupQualifiedName(FoundDelete, RD); 2700 } 2701 if (FoundDelete.isAmbiguous()) 2702 return true; // FIXME: clean up expressions? 2703 2704 // Filter out any destroying operator deletes. We can't possibly call such a 2705 // function in this context, because we're handling the case where the object 2706 // was not successfully constructed. 2707 // FIXME: This is not covered by the language rules yet. 2708 { 2709 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2710 while (Filter.hasNext()) { 2711 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2712 if (FD && FD->isDestroyingOperatorDelete()) 2713 Filter.erase(); 2714 } 2715 Filter.done(); 2716 } 2717 2718 bool FoundGlobalDelete = FoundDelete.empty(); 2719 if (FoundDelete.empty()) { 2720 FoundDelete.clear(LookupOrdinaryName); 2721 2722 if (DeleteScope == AFS_Class) 2723 return true; 2724 2725 DeclareGlobalNewDelete(); 2726 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2727 } 2728 2729 FoundDelete.suppressDiagnostics(); 2730 2731 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2732 2733 // Whether we're looking for a placement operator delete is dictated 2734 // by whether we selected a placement operator new, not by whether 2735 // we had explicit placement arguments. This matters for things like 2736 // struct A { void *operator new(size_t, int = 0); ... }; 2737 // A *a = new A() 2738 // 2739 // We don't have any definition for what a "placement allocation function" 2740 // is, but we assume it's any allocation function whose 2741 // parameter-declaration-clause is anything other than (size_t). 2742 // 2743 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2744 // This affects whether an exception from the constructor of an overaligned 2745 // type uses the sized or non-sized form of aligned operator delete. 2746 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2747 OperatorNew->isVariadic(); 2748 2749 if (isPlacementNew) { 2750 // C++ [expr.new]p20: 2751 // A declaration of a placement deallocation function matches the 2752 // declaration of a placement allocation function if it has the 2753 // same number of parameters and, after parameter transformations 2754 // (8.3.5), all parameter types except the first are 2755 // identical. [...] 2756 // 2757 // To perform this comparison, we compute the function type that 2758 // the deallocation function should have, and use that type both 2759 // for template argument deduction and for comparison purposes. 2760 QualType ExpectedFunctionType; 2761 { 2762 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2763 2764 SmallVector<QualType, 4> ArgTypes; 2765 ArgTypes.push_back(Context.VoidPtrTy); 2766 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2767 ArgTypes.push_back(Proto->getParamType(I)); 2768 2769 FunctionProtoType::ExtProtoInfo EPI; 2770 // FIXME: This is not part of the standard's rule. 2771 EPI.Variadic = Proto->isVariadic(); 2772 2773 ExpectedFunctionType 2774 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2775 } 2776 2777 for (LookupResult::iterator D = FoundDelete.begin(), 2778 DEnd = FoundDelete.end(); 2779 D != DEnd; ++D) { 2780 FunctionDecl *Fn = nullptr; 2781 if (FunctionTemplateDecl *FnTmpl = 2782 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2783 // Perform template argument deduction to try to match the 2784 // expected function type. 2785 TemplateDeductionInfo Info(StartLoc); 2786 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2787 Info)) 2788 continue; 2789 } else 2790 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2791 2792 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2793 ExpectedFunctionType, 2794 /*AdjustExcpetionSpec*/true), 2795 ExpectedFunctionType)) 2796 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2797 } 2798 2799 if (getLangOpts().CUDA) 2800 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2801 } else { 2802 // C++1y [expr.new]p22: 2803 // For a non-placement allocation function, the normal deallocation 2804 // function lookup is used 2805 // 2806 // Per [expr.delete]p10, this lookup prefers a member operator delete 2807 // without a size_t argument, but prefers a non-member operator delete 2808 // with a size_t where possible (which it always is in this case). 2809 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2810 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2811 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2812 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2813 &BestDeallocFns); 2814 if (Selected) 2815 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2816 else { 2817 // If we failed to select an operator, all remaining functions are viable 2818 // but ambiguous. 2819 for (auto Fn : BestDeallocFns) 2820 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2821 } 2822 } 2823 2824 // C++ [expr.new]p20: 2825 // [...] If the lookup finds a single matching deallocation 2826 // function, that function will be called; otherwise, no 2827 // deallocation function will be called. 2828 if (Matches.size() == 1) { 2829 OperatorDelete = Matches[0].second; 2830 2831 // C++1z [expr.new]p23: 2832 // If the lookup finds a usual deallocation function (3.7.4.2) 2833 // with a parameter of type std::size_t and that function, considered 2834 // as a placement deallocation function, would have been 2835 // selected as a match for the allocation function, the program 2836 // is ill-formed. 2837 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2838 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2839 UsualDeallocFnInfo Info(*this, 2840 DeclAccessPair::make(OperatorDelete, AS_public)); 2841 // Core issue, per mail to core reflector, 2016-10-09: 2842 // If this is a member operator delete, and there is a corresponding 2843 // non-sized member operator delete, this isn't /really/ a sized 2844 // deallocation function, it just happens to have a size_t parameter. 2845 bool IsSizedDelete = Info.HasSizeT; 2846 if (IsSizedDelete && !FoundGlobalDelete) { 2847 auto NonSizedDelete = 2848 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2849 /*WantAlign*/Info.HasAlignValT); 2850 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2851 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2852 IsSizedDelete = false; 2853 } 2854 2855 if (IsSizedDelete) { 2856 SourceRange R = PlaceArgs.empty() 2857 ? SourceRange() 2858 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2859 PlaceArgs.back()->getEndLoc()); 2860 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2861 if (!OperatorDelete->isImplicit()) 2862 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2863 << DeleteName; 2864 } 2865 } 2866 2867 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2868 Matches[0].first); 2869 } else if (!Matches.empty()) { 2870 // We found multiple suitable operators. Per [expr.new]p20, that means we 2871 // call no 'operator delete' function, but we should at least warn the user. 2872 // FIXME: Suppress this warning if the construction cannot throw. 2873 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2874 << DeleteName << AllocElemType; 2875 2876 for (auto &Match : Matches) 2877 Diag(Match.second->getLocation(), 2878 diag::note_member_declared_here) << DeleteName; 2879 } 2880 2881 return false; 2882} 2883 2884/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2885/// delete. These are: 2886/// @code 2887/// // C++03: 2888/// void* operator new(std::size_t) throw(std::bad_alloc); 2889/// void* operator new[](std::size_t) throw(std::bad_alloc); 2890/// void operator delete(void *) throw(); 2891/// void operator delete[](void *) throw(); 2892/// // C++11: 2893/// void* operator new(std::size_t); 2894/// void* operator new[](std::size_t); 2895/// void operator delete(void *) noexcept; 2896/// void operator delete[](void *) noexcept; 2897/// // C++1y: 2898/// void* operator new(std::size_t); 2899/// void* operator new[](std::size_t); 2900/// void operator delete(void *) noexcept; 2901/// void operator delete[](void *) noexcept; 2902/// void operator delete(void *, std::size_t) noexcept; 2903/// void operator delete[](void *, std::size_t) noexcept; 2904/// @endcode 2905/// Note that the placement and nothrow forms of new are *not* implicitly 2906/// declared. Their use requires including \<new\>. 2907void Sema::DeclareGlobalNewDelete() { 2908 if (GlobalNewDeleteDeclared) 2909 return; 2910 2911 // The implicitly declared new and delete operators 2912 // are not supported in OpenCL. 2913 if (getLangOpts().OpenCLCPlusPlus) 2914 return; 2915 2916 // C++ [basic.std.dynamic]p2: 2917 // [...] The following allocation and deallocation functions (18.4) are 2918 // implicitly declared in global scope in each translation unit of a 2919 // program 2920 // 2921 // C++03: 2922 // void* operator new(std::size_t) throw(std::bad_alloc); 2923 // void* operator new[](std::size_t) throw(std::bad_alloc); 2924 // void operator delete(void*) throw(); 2925 // void operator delete[](void*) throw(); 2926 // C++11: 2927 // void* operator new(std::size_t); 2928 // void* operator new[](std::size_t); 2929 // void operator delete(void*) noexcept; 2930 // void operator delete[](void*) noexcept; 2931 // C++1y: 2932 // void* operator new(std::size_t); 2933 // void* operator new[](std::size_t); 2934 // void operator delete(void*) noexcept; 2935 // void operator delete[](void*) noexcept; 2936 // void operator delete(void*, std::size_t) noexcept; 2937 // void operator delete[](void*, std::size_t) noexcept; 2938 // 2939 // These implicit declarations introduce only the function names operator 2940 // new, operator new[], operator delete, operator delete[]. 2941 // 2942 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2943 // "std" or "bad_alloc" as necessary to form the exception specification. 2944 // However, we do not make these implicit declarations visible to name 2945 // lookup. 2946 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2947 // The "std::bad_alloc" class has not yet been declared, so build it 2948 // implicitly. 2949 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2950 getOrCreateStdNamespace(), 2951 SourceLocation(), SourceLocation(), 2952 &PP.getIdentifierTable().get("bad_alloc"), 2953 nullptr); 2954 getStdBadAlloc()->setImplicit(true); 2955 } 2956 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2957 // The "std::align_val_t" enum class has not yet been declared, so build it 2958 // implicitly. 2959 auto *AlignValT = EnumDecl::Create( 2960 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2961 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2962 AlignValT->setIntegerType(Context.getSizeType()); 2963 AlignValT->setPromotionType(Context.getSizeType()); 2964 AlignValT->setImplicit(true); 2965 StdAlignValT = AlignValT; 2966 } 2967 2968 GlobalNewDeleteDeclared = true; 2969 2970 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2971 QualType SizeT = Context.getSizeType(); 2972 2973 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2974 QualType Return, QualType Param) { 2975 llvm::SmallVector<QualType, 3> Params; 2976 Params.push_back(Param); 2977 2978 // Create up to four variants of the function (sized/aligned). 2979 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2980 (Kind == OO_Delete || Kind == OO_Array_Delete); 2981 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2982 2983 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2984 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2985 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2986 if (Sized) 2987 Params.push_back(SizeT); 2988 2989 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2990 if (Aligned) 2991 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2992 2993 DeclareGlobalAllocationFunction( 2994 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2995 2996 if (Aligned) 2997 Params.pop_back(); 2998 } 2999 } 3000 }; 3001 3002 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3003 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3004 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3005 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3006} 3007 3008/// DeclareGlobalAllocationFunction - Declares a single implicit global 3009/// allocation function if it doesn't already exist. 3010void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3011 QualType Return, 3012 ArrayRef<QualType> Params) { 3013 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3014 3015 // Check if this function is already declared. 3016 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3017 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3018 Alloc != AllocEnd; ++Alloc) { 3019 // Only look at non-template functions, as it is the predefined, 3020 // non-templated allocation function we are trying to declare here. 3021 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3022 if (Func->getNumParams() == Params.size()) { 3023 llvm::SmallVector<QualType, 3> FuncParams; 3024 for (auto *P : Func->parameters()) 3025 FuncParams.push_back( 3026 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3027 if (llvm::makeArrayRef(FuncParams) == Params) { 3028 // Make the function visible to name lookup, even if we found it in 3029 // an unimported module. It either is an implicitly-declared global 3030 // allocation function, or is suppressing that function. 3031 Func->setVisibleDespiteOwningModule(); 3032 return; 3033 } 3034 } 3035 } 3036 } 3037 3038 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3039 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3040 3041 QualType BadAllocType; 3042 bool HasBadAllocExceptionSpec 3043 = (Name.getCXXOverloadedOperator() == OO_New || 3044 Name.getCXXOverloadedOperator() == OO_Array_New); 3045 if (HasBadAllocExceptionSpec) { 3046 if (!getLangOpts().CPlusPlus11) { 3047 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3048 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3048, __extension__ __PRETTY_FUNCTION__))
; 3049 EPI.ExceptionSpec.Type = EST_Dynamic; 3050 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3051 } 3052 if (getLangOpts().NewInfallible) { 3053 EPI.ExceptionSpec.Type = EST_DynamicNone; 3054 } 3055 } else { 3056 EPI.ExceptionSpec = 3057 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3058 } 3059 3060 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3061 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3062 FunctionDecl *Alloc = FunctionDecl::Create( 3063 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3064 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3065 true); 3066 Alloc->setImplicit(); 3067 // Global allocation functions should always be visible. 3068 Alloc->setVisibleDespiteOwningModule(); 3069 3070 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3071 Alloc->addAttr( 3072 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3073 3074 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3075 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3076 ? VisibilityAttr::Hidden 3077 : VisibilityAttr::Default)); 3078 3079 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3080 for (QualType T : Params) { 3081 ParamDecls.push_back(ParmVarDecl::Create( 3082 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3083 /*TInfo=*/nullptr, SC_None, nullptr)); 3084 ParamDecls.back()->setImplicit(); 3085 } 3086 Alloc->setParams(ParamDecls); 3087 if (ExtraAttr) 3088 Alloc->addAttr(ExtraAttr); 3089 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3090 Context.getTranslationUnitDecl()->addDecl(Alloc); 3091 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3092 }; 3093 3094 if (!LangOpts.CUDA) 3095 CreateAllocationFunctionDecl(nullptr); 3096 else { 3097 // Host and device get their own declaration so each can be 3098 // defined or re-declared independently. 3099 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3100 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3101 } 3102} 3103 3104FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3105 bool CanProvideSize, 3106 bool Overaligned, 3107 DeclarationName Name) { 3108 DeclareGlobalNewDelete(); 3109 3110 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3111 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3112 3113 // FIXME: It's possible for this to result in ambiguity, through a 3114 // user-declared variadic operator delete or the enable_if attribute. We 3115 // should probably not consider those cases to be usual deallocation 3116 // functions. But for now we just make an arbitrary choice in that case. 3117 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3118 Overaligned); 3119 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3119, __extension__ __PRETTY_FUNCTION__))
; 3120 return Result.FD; 3121} 3122 3123FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3124 CXXRecordDecl *RD) { 3125 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3126 3127 FunctionDecl *OperatorDelete = nullptr; 3128 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3129 return nullptr; 3130 if (OperatorDelete) 3131 return OperatorDelete; 3132 3133 // If there's no class-specific operator delete, look up the global 3134 // non-array delete. 3135 return FindUsualDeallocationFunction( 3136 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3137 Name); 3138} 3139 3140bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3141 DeclarationName Name, 3142 FunctionDecl *&Operator, bool Diagnose) { 3143 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3144 // Try to find operator delete/operator delete[] in class scope. 3145 LookupQualifiedName(Found, RD); 3146 3147 if (Found.isAmbiguous()) 3148 return true; 3149 3150 Found.suppressDiagnostics(); 3151 3152 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3153 3154 // C++17 [expr.delete]p10: 3155 // If the deallocation functions have class scope, the one without a 3156 // parameter of type std::size_t is selected. 3157 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3158 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3159 /*WantAlign*/ Overaligned, &Matches); 3160 3161 // If we could find an overload, use it. 3162 if (Matches.size() == 1) { 3163 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3164 3165 // FIXME: DiagnoseUseOfDecl? 3166 if (Operator->isDeleted()) { 3167 if (Diagnose) { 3168 Diag(StartLoc, diag::err_deleted_function_use); 3169 NoteDeletedFunction(Operator); 3170 } 3171 return true; 3172 } 3173 3174 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3175 Matches[0].Found, Diagnose) == AR_inaccessible) 3176 return true; 3177 3178 return false; 3179 } 3180 3181 // We found multiple suitable operators; complain about the ambiguity. 3182 // FIXME: The standard doesn't say to do this; it appears that the intent 3183 // is that this should never happen. 3184 if (!Matches.empty()) { 3185 if (Diagnose) { 3186 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3187 << Name << RD; 3188 for (auto &Match : Matches) 3189 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3190 } 3191 return true; 3192 } 3193 3194 // We did find operator delete/operator delete[] declarations, but 3195 // none of them were suitable. 3196 if (!Found.empty()) { 3197 if (Diagnose) { 3198 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3199 << Name << RD; 3200 3201 for (NamedDecl *D : Found) 3202 Diag(D->getUnderlyingDecl()->getLocation(), 3203 diag::note_member_declared_here) << Name; 3204 } 3205 return true; 3206 } 3207 3208 Operator = nullptr; 3209 return false; 3210} 3211 3212namespace { 3213/// Checks whether delete-expression, and new-expression used for 3214/// initializing deletee have the same array form. 3215class MismatchingNewDeleteDetector { 3216public: 3217 enum MismatchResult { 3218 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3219 NoMismatch, 3220 /// Indicates that variable is initialized with mismatching form of \a new. 3221 VarInitMismatches, 3222 /// Indicates that member is initialized with mismatching form of \a new. 3223 MemberInitMismatches, 3224 /// Indicates that 1 or more constructors' definitions could not been 3225 /// analyzed, and they will be checked again at the end of translation unit. 3226 AnalyzeLater 3227 }; 3228 3229 /// \param EndOfTU True, if this is the final analysis at the end of 3230 /// translation unit. False, if this is the initial analysis at the point 3231 /// delete-expression was encountered. 3232 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3233 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3234 HasUndefinedConstructors(false) {} 3235 3236 /// Checks whether pointee of a delete-expression is initialized with 3237 /// matching form of new-expression. 3238 /// 3239 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3240 /// point where delete-expression is encountered, then a warning will be 3241 /// issued immediately. If return value is \c AnalyzeLater at the point where 3242 /// delete-expression is seen, then member will be analyzed at the end of 3243 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3244 /// couldn't be analyzed. If at least one constructor initializes the member 3245 /// with matching type of new, the return value is \c NoMismatch. 3246 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3247 /// Analyzes a class member. 3248 /// \param Field Class member to analyze. 3249 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3250 /// for deleting the \p Field. 3251 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3252 FieldDecl *Field; 3253 /// List of mismatching new-expressions used for initialization of the pointee 3254 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3255 /// Indicates whether delete-expression was in array form. 3256 bool IsArrayForm; 3257 3258private: 3259 const bool EndOfTU; 3260 /// Indicates that there is at least one constructor without body. 3261 bool HasUndefinedConstructors; 3262 /// Returns \c CXXNewExpr from given initialization expression. 3263 /// \param E Expression used for initializing pointee in delete-expression. 3264 /// E can be a single-element \c InitListExpr consisting of new-expression. 3265 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3266 /// Returns whether member is initialized with mismatching form of 3267 /// \c new either by the member initializer or in-class initialization. 3268 /// 3269 /// If bodies of all constructors are not visible at the end of translation 3270 /// unit or at least one constructor initializes member with the matching 3271 /// form of \c new, mismatch cannot be proven, and this function will return 3272 /// \c NoMismatch. 3273 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3274 /// Returns whether variable is initialized with mismatching form of 3275 /// \c new. 3276 /// 3277 /// If variable is initialized with matching form of \c new or variable is not 3278 /// initialized with a \c new expression, this function will return true. 3279 /// If variable is initialized with mismatching form of \c new, returns false. 3280 /// \param D Variable to analyze. 3281 bool hasMatchingVarInit(const DeclRefExpr *D); 3282 /// Checks whether the constructor initializes pointee with mismatching 3283 /// form of \c new. 3284 /// 3285 /// Returns true, if member is initialized with matching form of \c new in 3286 /// member initializer list. Returns false, if member is initialized with the 3287 /// matching form of \c new in this constructor's initializer or given 3288 /// constructor isn't defined at the point where delete-expression is seen, or 3289 /// member isn't initialized by the constructor. 3290 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3291 /// Checks whether member is initialized with matching form of 3292 /// \c new in member initializer list. 3293 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3294 /// Checks whether member is initialized with mismatching form of \c new by 3295 /// in-class initializer. 3296 MismatchResult analyzeInClassInitializer(); 3297}; 3298} 3299 3300MismatchingNewDeleteDetector::MismatchResult 3301MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3302 NewExprs.clear(); 3303 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3303, __extension__ __PRETTY_FUNCTION__))
; 3304 IsArrayForm = DE->isArrayForm(); 3305 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3306 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3307 return analyzeMemberExpr(ME); 3308 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3309 if (!hasMatchingVarInit(D)) 3310 return VarInitMismatches; 3311 } 3312 return NoMismatch; 3313} 3314 3315const CXXNewExpr * 3316MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3317 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3317, __extension__ __PRETTY_FUNCTION__))
; 3318 E = E->IgnoreParenImpCasts(); 3319 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3320 if (ILE->getNumInits() == 1) 3321 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3322 } 3323 3324 return dyn_cast_or_null<const CXXNewExpr>(E); 3325} 3326 3327bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3328 const CXXCtorInitializer *CI) { 3329 const CXXNewExpr *NE = nullptr; 3330 if (Field == CI->getMember() && 3331 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3332 if (NE->isArray() == IsArrayForm) 3333 return true; 3334 else 3335 NewExprs.push_back(NE); 3336 } 3337 return false; 3338} 3339 3340bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3341 const CXXConstructorDecl *CD) { 3342 if (CD->isImplicit()) 3343 return false; 3344 const FunctionDecl *Definition = CD; 3345 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3346 HasUndefinedConstructors = true; 3347 return EndOfTU; 3348 } 3349 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3350 if (hasMatchingNewInCtorInit(CI)) 3351 return true; 3352 } 3353 return false; 3354} 3355 3356MismatchingNewDeleteDetector::MismatchResult 3357MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3358 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3358, __extension__ __PRETTY_FUNCTION__))
; 3359 const Expr *InitExpr = Field->getInClassInitializer(); 3360 if (!InitExpr) 3361 return EndOfTU ? NoMismatch : AnalyzeLater; 3362 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3363 if (NE->isArray() != IsArrayForm) { 3364 NewExprs.push_back(NE); 3365 return MemberInitMismatches; 3366 } 3367 } 3368 return NoMismatch; 3369} 3370 3371MismatchingNewDeleteDetector::MismatchResult 3372MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3373 bool DeleteWasArrayForm) { 3374 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3374, __extension__ __PRETTY_FUNCTION__))
; 3375 this->Field = Field; 3376 IsArrayForm = DeleteWasArrayForm; 3377 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3378 for (const auto *CD : RD->ctors()) { 3379 if (hasMatchingNewInCtor(CD)) 3380 return NoMismatch; 3381 } 3382 if (HasUndefinedConstructors) 3383 return EndOfTU ? NoMismatch : AnalyzeLater; 3384 if (!NewExprs.empty()) 3385 return MemberInitMismatches; 3386 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3387 : NoMismatch; 3388} 3389 3390MismatchingNewDeleteDetector::MismatchResult 3391MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3392 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3392, __extension__ __PRETTY_FUNCTION__))
; 3393 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3394 return analyzeField(F, IsArrayForm); 3395 return NoMismatch; 3396} 3397 3398bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3399 const CXXNewExpr *NE = nullptr; 3400 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3401 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3402 NE->isArray() != IsArrayForm) { 3403 NewExprs.push_back(NE); 3404 } 3405 } 3406 return NewExprs.empty(); 3407} 3408 3409static void 3410DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3411 const MismatchingNewDeleteDetector &Detector) { 3412 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3413 FixItHint H; 3414 if (!Detector.IsArrayForm) 3415 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3416 else { 3417 SourceLocation RSquare = Lexer::findLocationAfterToken( 3418 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3419 SemaRef.getLangOpts(), true); 3420 if (RSquare.isValid()) 3421 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3422 } 3423 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3424 << Detector.IsArrayForm << H; 3425 3426 for (const auto *NE : Detector.NewExprs) 3427 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3428 << Detector.IsArrayForm; 3429} 3430 3431void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3432 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3433 return; 3434 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3435 switch (Detector.analyzeDeleteExpr(DE)) { 3436 case MismatchingNewDeleteDetector::VarInitMismatches: 3437 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3438 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3439 break; 3440 } 3441 case MismatchingNewDeleteDetector::AnalyzeLater: { 3442 DeleteExprs[Detector.Field].push_back( 3443 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3444 break; 3445 } 3446 case MismatchingNewDeleteDetector::NoMismatch: 3447 break; 3448 } 3449} 3450 3451void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3452 bool DeleteWasArrayForm) { 3453 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3454 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3455 case MismatchingNewDeleteDetector::VarInitMismatches: 3456 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3456)
; 3457 case MismatchingNewDeleteDetector::AnalyzeLater: 3458 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3459)
3459 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3459)
; 3460 case MismatchingNewDeleteDetector::MemberInitMismatches: 3461 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3462 break; 3463 case MismatchingNewDeleteDetector::NoMismatch: 3464 break; 3465 } 3466} 3467 3468/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3469/// @code ::delete ptr; @endcode 3470/// or 3471/// @code delete [] ptr; @endcode 3472ExprResult 3473Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3474 bool ArrayForm, Expr *ExE) { 3475 // C++ [expr.delete]p1: 3476 // The operand shall have a pointer type, or a class type having a single 3477 // non-explicit conversion function to a pointer type. The result has type 3478 // void. 3479 // 3480 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3481 3482 ExprResult Ex = ExE; 3483 FunctionDecl *OperatorDelete = nullptr; 3484 bool ArrayFormAsWritten = ArrayForm; 3485 bool UsualArrayDeleteWantsSize = false; 3486 3487 if (!Ex.get()->isTypeDependent()) { 3488 // Perform lvalue-to-rvalue cast, if needed. 3489 Ex = DefaultLvalueConversion(Ex.get()); 3490 if (Ex.isInvalid()) 3491 return ExprError(); 3492 3493 QualType Type = Ex.get()->getType(); 3494 3495 class DeleteConverter : public ContextualImplicitConverter { 3496 public: 3497 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3498 3499 bool match(QualType ConvType) override { 3500 // FIXME: If we have an operator T* and an operator void*, we must pick 3501 // the operator T*. 3502 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3503 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3504 return true; 3505 return false; 3506 } 3507 3508 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3509 QualType T) override { 3510 return S.Diag(Loc, diag::err_delete_operand) << T; 3511 } 3512 3513 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3514 QualType T) override { 3515 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3516 } 3517 3518 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3519 QualType T, 3520 QualType ConvTy) override { 3521 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3522 } 3523 3524 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3525 QualType ConvTy) override { 3526 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3527 << ConvTy; 3528 } 3529 3530 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3531 QualType T) override { 3532 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3533 } 3534 3535 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3536 QualType ConvTy) override { 3537 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3538 << ConvTy; 3539 } 3540 3541 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3542 QualType T, 3543 QualType ConvTy) override { 3544 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3544)
; 3545 } 3546 } Converter; 3547 3548 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3549 if (Ex.isInvalid()) 3550 return ExprError(); 3551 Type = Ex.get()->getType(); 3552 if (!Converter.match(Type)) 3553 // FIXME: PerformContextualImplicitConversion should return ExprError 3554 // itself in this case. 3555 return ExprError(); 3556 3557 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3558 QualType PointeeElem = Context.getBaseElementType(Pointee); 3559 3560 if (Pointee.getAddressSpace() != LangAS::Default && 3561 !getLangOpts().OpenCLCPlusPlus) 3562 return Diag(Ex.get()->getBeginLoc(), 3563 diag::err_address_space_qualified_delete) 3564 << Pointee.getUnqualifiedType() 3565 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3566 3567 CXXRecordDecl *PointeeRD = nullptr; 3568 if (Pointee->isVoidType() && !isSFINAEContext()) { 3569 // The C++ standard bans deleting a pointer to a non-object type, which 3570 // effectively bans deletion of "void*". However, most compilers support 3571 // this, so we treat it as a warning unless we're in a SFINAE context. 3572 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3573 << Type << Ex.get()->getSourceRange(); 3574 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3575 Pointee->isSizelessType()) { 3576 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3577 << Type << Ex.get()->getSourceRange()); 3578 } else if (!Pointee->isDependentType()) { 3579 // FIXME: This can result in errors if the definition was imported from a 3580 // module but is hidden. 3581 if (!RequireCompleteType(StartLoc, Pointee, 3582 diag::warn_delete_incomplete, Ex.get())) { 3583 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3584 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3585 } 3586 } 3587 3588 if (Pointee->isArrayType() && !ArrayForm) { 3589 Diag(StartLoc, diag::warn_delete_array_type) 3590 << Type << Ex.get()->getSourceRange() 3591 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3592 ArrayForm = true; 3593 } 3594 3595 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3596 ArrayForm ? OO_Array_Delete : OO_Delete); 3597 3598 if (PointeeRD) { 3599 if (!UseGlobal && 3600 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3601 OperatorDelete)) 3602 return ExprError(); 3603 3604 // If we're allocating an array of records, check whether the 3605 // usual operator delete[] has a size_t parameter. 3606 if (ArrayForm) { 3607 // If the user specifically asked to use the global allocator, 3608 // we'll need to do the lookup into the class. 3609 if (UseGlobal) 3610 UsualArrayDeleteWantsSize = 3611 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3612 3613 // Otherwise, the usual operator delete[] should be the 3614 // function we just found. 3615 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3616 UsualArrayDeleteWantsSize = 3617 UsualDeallocFnInfo(*this, 3618 DeclAccessPair::make(OperatorDelete, AS_public)) 3619 .HasSizeT; 3620 } 3621 3622 if (!PointeeRD->hasIrrelevantDestructor()) 3623 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3624 MarkFunctionReferenced(StartLoc, 3625 const_cast<CXXDestructorDecl*>(Dtor)); 3626 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3627 return ExprError(); 3628 } 3629 3630 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3631 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3632 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3633 SourceLocation()); 3634 } 3635 3636 if (!OperatorDelete) { 3637 if (getLangOpts().OpenCLCPlusPlus) { 3638 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3639 return ExprError(); 3640 } 3641 3642 bool IsComplete = isCompleteType(StartLoc, Pointee); 3643 bool CanProvideSize = 3644 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3645 Pointee.isDestructedType()); 3646 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3647 3648 // Look for a global declaration. 3649 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3650 Overaligned, DeleteName); 3651 } 3652 3653 MarkFunctionReferenced(StartLoc, OperatorDelete); 3654 3655 // Check access and ambiguity of destructor if we're going to call it. 3656 // Note that this is required even for a virtual delete. 3657 bool IsVirtualDelete = false; 3658 if (PointeeRD) { 3659 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3660 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3661 PDiag(diag::err_access_dtor) << PointeeElem); 3662 IsVirtualDelete = Dtor->isVirtual(); 3663 } 3664 } 3665 3666 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3667 3668 // Convert the operand to the type of the first parameter of operator 3669 // delete. This is only necessary if we selected a destroying operator 3670 // delete that we are going to call (non-virtually); converting to void* 3671 // is trivial and left to AST consumers to handle. 3672 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3673 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3674 Qualifiers Qs = Pointee.getQualifiers(); 3675 if (Qs.hasCVRQualifiers()) { 3676 // Qualifiers are irrelevant to this conversion; we're only looking 3677 // for access and ambiguity. 3678 Qs.removeCVRQualifiers(); 3679 QualType Unqual = Context.getPointerType( 3680 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3681 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3682 } 3683 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3684 if (Ex.isInvalid()) 3685 return ExprError(); 3686 } 3687 } 3688 3689 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3690 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3691 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3692 AnalyzeDeleteExprMismatch(Result); 3693 return Result; 3694} 3695 3696static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3697 bool IsDelete, 3698 FunctionDecl *&Operator) { 3699 3700 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3701 IsDelete ? OO_Delete : OO_New); 3702 3703 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3704 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3705 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3705, __extension__ __PRETTY_FUNCTION__))
; 3706 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3706, __extension__ __PRETTY_FUNCTION__))
; 3707 3708 // We do our own custom access checks below. 3709 R.suppressDiagnostics(); 3710 3711 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3712 OverloadCandidateSet Candidates(R.getNameLoc(), 3713 OverloadCandidateSet::CSK_Normal); 3714 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3715 FnOvl != FnOvlEnd; ++FnOvl) { 3716 // Even member operator new/delete are implicitly treated as 3717 // static, so don't use AddMemberCandidate. 3718 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3719 3720 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3721 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3722 /*ExplicitTemplateArgs=*/nullptr, Args, 3723 Candidates, 3724 /*SuppressUserConversions=*/false); 3725 continue; 3726 } 3727 3728 FunctionDecl *Fn = cast<FunctionDecl>(D); 3729 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3730 /*SuppressUserConversions=*/false); 3731 } 3732 3733 SourceRange Range = TheCall->getSourceRange(); 3734 3735 // Do the resolution. 3736 OverloadCandidateSet::iterator Best; 3737 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3738 case OR_Success: { 3739 // Got one! 3740 FunctionDecl *FnDecl = Best->Function; 3741 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3742, __extension__ __PRETTY_FUNCTION__))
3742 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3742, __extension__ __PRETTY_FUNCTION__))
; 3743 3744 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3745 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3746 << (IsDelete ? 1 : 0) << Range; 3747 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3748 << R.getLookupName() << FnDecl->getSourceRange(); 3749 return true; 3750 } 3751 3752 Operator = FnDecl; 3753 return false; 3754 } 3755 3756 case OR_No_Viable_Function: 3757 Candidates.NoteCandidates( 3758 PartialDiagnosticAt(R.getNameLoc(), 3759 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3760 << R.getLookupName() << Range), 3761 S, OCD_AllCandidates, Args); 3762 return true; 3763 3764 case OR_Ambiguous: 3765 Candidates.NoteCandidates( 3766 PartialDiagnosticAt(R.getNameLoc(), 3767 S.PDiag(diag::err_ovl_ambiguous_call) 3768 << R.getLookupName() << Range), 3769 S, OCD_AmbiguousCandidates, Args); 3770 return true; 3771 3772 case OR_Deleted: { 3773 Candidates.NoteCandidates( 3774 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3775 << R.getLookupName() << Range), 3776 S, OCD_AllCandidates, Args); 3777 return true; 3778 } 3779 } 3780 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3780)
; 3781} 3782 3783ExprResult 3784Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3785 bool IsDelete) { 3786 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3787 if (!getLangOpts().CPlusPlus) { 3788 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3789 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3790 << "C++"; 3791 return ExprError(); 3792 } 3793 // CodeGen assumes it can find the global new and delete to call, 3794 // so ensure that they are declared. 3795 DeclareGlobalNewDelete(); 3796 3797 FunctionDecl *OperatorNewOrDelete = nullptr; 3798 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3799 OperatorNewOrDelete)) 3800 return ExprError(); 3801 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3801, __extension__ __PRETTY_FUNCTION__))
; 3802 3803 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3804 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3805 3806 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3807 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3808 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3809 InitializedEntity Entity = 3810 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3811 ExprResult Arg = PerformCopyInitialization( 3812 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3813 if (Arg.isInvalid()) 3814 return ExprError(); 3815 TheCall->setArg(i, Arg.get()); 3816 } 3817 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3818 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3819, __extension__ __PRETTY_FUNCTION__))
3819 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3819, __extension__ __PRETTY_FUNCTION__))
; 3820 Callee->setType(OperatorNewOrDelete->getType()); 3821 3822 return TheCallResult; 3823} 3824 3825void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3826 bool IsDelete, bool CallCanBeVirtual, 3827 bool WarnOnNonAbstractTypes, 3828 SourceLocation DtorLoc) { 3829 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3830 return; 3831 3832 // C++ [expr.delete]p3: 3833 // In the first alternative (delete object), if the static type of the 3834 // object to be deleted is different from its dynamic type, the static 3835 // type shall be a base class of the dynamic type of the object to be 3836 // deleted and the static type shall have a virtual destructor or the 3837 // behavior is undefined. 3838 // 3839 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3840 // Note: a final class cannot be derived from, no issue there 3841 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3842 return; 3843 3844 // If the superclass is in a system header, there's nothing that can be done. 3845 // The `delete` (where we emit the warning) can be in a system header, 3846 // what matters for this warning is where the deleted type is defined. 3847 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3848 return; 3849 3850 QualType ClassType = dtor->getThisType()->getPointeeType(); 3851 if (PointeeRD->isAbstract()) { 3852 // If the class is abstract, we warn by default, because we're 3853 // sure the code has undefined behavior. 3854 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3855 << ClassType; 3856 } else if (WarnOnNonAbstractTypes) { 3857 // Otherwise, if this is not an array delete, it's a bit suspect, 3858 // but not necessarily wrong. 3859 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3860 << ClassType; 3861 } 3862 if (!IsDelete) { 3863 std::string TypeStr; 3864 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3865 Diag(DtorLoc, diag::note_delete_non_virtual) 3866 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3867 } 3868} 3869 3870Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3871 SourceLocation StmtLoc, 3872 ConditionKind CK) { 3873 ExprResult E = 3874 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3875 if (E.isInvalid()) 3876 return ConditionError(); 3877 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3878 CK == ConditionKind::ConstexprIf); 3879} 3880 3881/// Check the use of the given variable as a C++ condition in an if, 3882/// while, do-while, or switch statement. 3883ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3884 SourceLocation StmtLoc, 3885 ConditionKind CK) { 3886 if (ConditionVar->isInvalidDecl()) 3887 return ExprError(); 3888 3889 QualType T = ConditionVar->getType(); 3890 3891 // C++ [stmt.select]p2: 3892 // The declarator shall not specify a function or an array. 3893 if (T->isFunctionType()) 3894 return ExprError(Diag(ConditionVar->getLocation(), 3895 diag::err_invalid_use_of_function_type) 3896 << ConditionVar->getSourceRange()); 3897 else if (T->isArrayType()) 3898 return ExprError(Diag(ConditionVar->getLocation(), 3899 diag::err_invalid_use_of_array_type) 3900 << ConditionVar->getSourceRange()); 3901 3902 ExprResult Condition = BuildDeclRefExpr( 3903 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3904 ConditionVar->getLocation()); 3905 3906 switch (CK) { 3907 case ConditionKind::Boolean: 3908 return CheckBooleanCondition(StmtLoc, Condition.get()); 3909 3910 case ConditionKind::ConstexprIf: 3911 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3912 3913 case ConditionKind::Switch: 3914 return CheckSwitchCondition(StmtLoc, Condition.get()); 3915 } 3916 3917 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3917)
; 3918} 3919 3920/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3921ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3922 // C++11 6.4p4: 3923 // The value of a condition that is an initialized declaration in a statement 3924 // other than a switch statement is the value of the declared variable 3925 // implicitly converted to type bool. If that conversion is ill-formed, the 3926 // program is ill-formed. 3927 // The value of a condition that is an expression is the value of the 3928 // expression, implicitly converted to bool. 3929 // 3930 // C++2b 8.5.2p2 3931 // If the if statement is of the form if constexpr, the value of the condition 3932 // is contextually converted to bool and the converted expression shall be 3933 // a constant expression. 3934 // 3935 3936 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3937 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3938 return E; 3939 3940 // FIXME: Return this value to the caller so they don't need to recompute it. 3941 llvm::APSInt Cond; 3942 E = VerifyIntegerConstantExpression( 3943 E.get(), &Cond, 3944 diag::err_constexpr_if_condition_expression_is_not_constant); 3945 return E; 3946} 3947 3948/// Helper function to determine whether this is the (deprecated) C++ 3949/// conversion from a string literal to a pointer to non-const char or 3950/// non-const wchar_t (for narrow and wide string literals, 3951/// respectively). 3952bool 3953Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3954 // Look inside the implicit cast, if it exists. 3955 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3956 From = Cast->getSubExpr(); 3957 3958 // A string literal (2.13.4) that is not a wide string literal can 3959 // be converted to an rvalue of type "pointer to char"; a wide 3960 // string literal can be converted to an rvalue of type "pointer 3961 // to wchar_t" (C++ 4.2p2). 3962 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3963 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3964 if (const BuiltinType *ToPointeeType 3965 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3966 // This conversion is considered only when there is an 3967 // explicit appropriate pointer target type (C++ 4.2p2). 3968 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3969 switch (StrLit->getKind()) { 3970 case StringLiteral::UTF8: 3971 case StringLiteral::UTF16: 3972 case StringLiteral::UTF32: 3973 // We don't allow UTF literals to be implicitly converted 3974 break; 3975 case StringLiteral::Ascii: 3976 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3977 ToPointeeType->getKind() == BuiltinType::Char_S); 3978 case StringLiteral::Wide: 3979 return Context.typesAreCompatible(Context.getWideCharType(), 3980 QualType(ToPointeeType, 0)); 3981 } 3982 } 3983 } 3984 3985 return false; 3986} 3987 3988static ExprResult BuildCXXCastArgument(Sema &S, 3989 SourceLocation CastLoc, 3990 QualType Ty, 3991 CastKind Kind, 3992 CXXMethodDecl *Method, 3993 DeclAccessPair FoundDecl, 3994 bool HadMultipleCandidates, 3995 Expr *From) { 3996 switch (Kind) { 3997 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 3997)
; 3998 case CK_ConstructorConversion: { 3999 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4000 SmallVector<Expr*, 8> ConstructorArgs; 4001 4002 if (S.RequireNonAbstractType(CastLoc, Ty, 4003 diag::err_allocation_of_abstract_type)) 4004 return ExprError(); 4005 4006 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4007 ConstructorArgs)) 4008 return ExprError(); 4009 4010 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4011 InitializedEntity::InitializeTemporary(Ty)); 4012 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4013 return ExprError(); 4014 4015 ExprResult Result = S.BuildCXXConstructExpr( 4016 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4017 ConstructorArgs, HadMultipleCandidates, 4018 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4019 CXXConstructExpr::CK_Complete, SourceRange()); 4020 if (Result.isInvalid()) 4021 return ExprError(); 4022 4023 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4024 } 4025 4026 case CK_UserDefinedConversion: { 4027 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4027, __extension__ __PRETTY_FUNCTION__))
; 4028 4029 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4030 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4031 return ExprError(); 4032 4033 // Create an implicit call expr that calls it. 4034 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4035 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4036 HadMultipleCandidates); 4037 if (Result.isInvalid()) 4038 return ExprError(); 4039 // Record usage of conversion in an implicit cast. 4040 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4041 CK_UserDefinedConversion, Result.get(), 4042 nullptr, Result.get()->getValueKind(), 4043 S.CurFPFeatureOverrides()); 4044 4045 return S.MaybeBindToTemporary(Result.get()); 4046 } 4047 } 4048} 4049 4050/// PerformImplicitConversion - Perform an implicit conversion of the 4051/// expression From to the type ToType using the pre-computed implicit 4052/// conversion sequence ICS. Returns the converted 4053/// expression. Action is the kind of conversion we're performing, 4054/// used in the error message. 4055ExprResult 4056Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4057 const ImplicitConversionSequence &ICS, 4058 AssignmentAction Action, 4059 CheckedConversionKind CCK) { 4060 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4061 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4062 return From; 4063 4064 switch (ICS.getKind()) { 4065 case ImplicitConversionSequence::StandardConversion: { 4066 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4067 Action, CCK); 4068 if (Res.isInvalid()) 4069 return ExprError(); 4070 From = Res.get(); 4071 break; 4072 } 4073 4074 case ImplicitConversionSequence::UserDefinedConversion: { 4075 4076 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4077 CastKind CastKind; 4078 QualType BeforeToType; 4079 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4079, __extension__ __PRETTY_FUNCTION__))
; 4080 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4081 CastKind = CK_UserDefinedConversion; 4082 4083 // If the user-defined conversion is specified by a conversion function, 4084 // the initial standard conversion sequence converts the source type to 4085 // the implicit object parameter of the conversion function. 4086 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4087 } else { 4088 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4089 CastKind = CK_ConstructorConversion; 4090 // Do no conversion if dealing with ... for the first conversion. 4091 if (!ICS.UserDefined.EllipsisConversion) { 4092 // If the user-defined conversion is specified by a constructor, the 4093 // initial standard conversion sequence converts the source type to 4094 // the type required by the argument of the constructor 4095 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4096 } 4097 } 4098 // Watch out for ellipsis conversion. 4099 if (!ICS.UserDefined.EllipsisConversion) { 4100 ExprResult Res = 4101 PerformImplicitConversion(From, BeforeToType, 4102 ICS.UserDefined.Before, AA_Converting, 4103 CCK); 4104 if (Res.isInvalid()) 4105 return ExprError(); 4106 From = Res.get(); 4107 } 4108 4109 ExprResult CastArg = BuildCXXCastArgument( 4110 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4111 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4112 ICS.UserDefined.HadMultipleCandidates, From); 4113 4114 if (CastArg.isInvalid()) 4115 return ExprError(); 4116 4117 From = CastArg.get(); 4118 4119 // C++ [over.match.oper]p7: 4120 // [...] the second standard conversion sequence of a user-defined 4121 // conversion sequence is not applied. 4122 if (CCK == CCK_ForBuiltinOverloadedOp) 4123 return From; 4124 4125 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4126 AA_Converting, CCK); 4127 } 4128 4129 case ImplicitConversionSequence::AmbiguousConversion: 4130 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4131 PDiag(diag::err_typecheck_ambiguous_condition) 4132 << From->getSourceRange()); 4133 return ExprError(); 4134 4135 case ImplicitConversionSequence::EllipsisConversion: 4136 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4136)
; 4137 4138 case ImplicitConversionSequence::BadConversion: 4139 Sema::AssignConvertType ConvTy = 4140 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4141 bool Diagnosed = DiagnoseAssignmentResult( 4142 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4143 ToType, From->getType(), From, Action); 4144 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4144, __extension__ __PRETTY_FUNCTION__))
; (void)Diagnosed; 4145 return ExprError(); 4146 } 4147 4148 // Everything went well. 4149 return From; 4150} 4151 4152/// PerformImplicitConversion - Perform an implicit conversion of the 4153/// expression From to the type ToType by following the standard 4154/// conversion sequence SCS. Returns the converted 4155/// expression. Flavor is the context in which we're performing this 4156/// conversion, for use in error messages. 4157ExprResult 4158Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4159 const StandardConversionSequence& SCS, 4160 AssignmentAction Action, 4161 CheckedConversionKind CCK) { 4162 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4163 4164 // Overall FIXME: we are recomputing too many types here and doing far too 4165 // much extra work. What this means is that we need to keep track of more 4166 // information that is computed when we try the implicit conversion initially, 4167 // so that we don't need to recompute anything here. 4168 QualType FromType = From->getType(); 4169 4170 if (SCS.CopyConstructor) { 4171 // FIXME: When can ToType be a reference type? 4172 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4172, __extension__ __PRETTY_FUNCTION__))
; 4173 if (SCS.Second == ICK_Derived_To_Base) { 4174 SmallVector<Expr*, 8> ConstructorArgs; 4175 if (CompleteConstructorCall( 4176 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4177 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4178 return ExprError(); 4179 return BuildCXXConstructExpr( 4180 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4181 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4182 ConstructorArgs, /*HadMultipleCandidates*/ false, 4183 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4184 CXXConstructExpr::CK_Complete, SourceRange()); 4185 } 4186 return BuildCXXConstructExpr( 4187 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4188 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4189 From, /*HadMultipleCandidates*/ false, 4190 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4191 CXXConstructExpr::CK_Complete, SourceRange()); 4192 } 4193 4194 // Resolve overloaded function references. 4195 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4196 DeclAccessPair Found; 4197 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4198 true, Found); 4199 if (!Fn) 4200 return ExprError(); 4201 4202 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4203 return ExprError(); 4204 4205 From = FixOverloadedFunctionReference(From, Found, Fn); 4206 FromType = From->getType(); 4207 } 4208 4209 // If we're converting to an atomic type, first convert to the corresponding 4210 // non-atomic type. 4211 QualType ToAtomicType; 4212 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4213 ToAtomicType = ToType; 4214 ToType = ToAtomic->getValueType(); 4215 } 4216 4217 QualType InitialFromType = FromType; 4218 // Perform the first implicit conversion. 4219 switch (SCS.First) { 4220 case ICK_Identity: 4221 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4222 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4223 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4224 From, /*BasePath=*/nullptr, VK_PRValue, 4225 FPOptionsOverride()); 4226 } 4227 break; 4228 4229 case ICK_Lvalue_To_Rvalue: { 4230 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4230, __extension__ __PRETTY_FUNCTION__))
; 4231 ExprResult FromRes = DefaultLvalueConversion(From); 4232 if (FromRes.isInvalid()) 4233 return ExprError(); 4234 4235 From = FromRes.get(); 4236 FromType = From->getType(); 4237 break; 4238 } 4239 4240 case ICK_Array_To_Pointer: 4241 FromType = Context.getArrayDecayedType(FromType); 4242 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4243 /*BasePath=*/nullptr, CCK) 4244 .get(); 4245 break; 4246 4247 case ICK_Function_To_Pointer: 4248 FromType = Context.getPointerType(FromType); 4249 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4250 VK_PRValue, /*BasePath=*/nullptr, CCK) 4251 .get(); 4252 break; 4253 4254 default: 4255 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4255)
; 4256 } 4257 4258 // Perform the second implicit conversion 4259 switch (SCS.Second) { 4260 case ICK_Identity: 4261 // C++ [except.spec]p5: 4262 // [For] assignment to and initialization of pointers to functions, 4263 // pointers to member functions, and references to functions: the 4264 // target entity shall allow at least the exceptions allowed by the 4265 // source value in the assignment or initialization. 4266 switch (Action) { 4267 case AA_Assigning: 4268 case AA_Initializing: 4269 // Note, function argument passing and returning are initialization. 4270 case AA_Passing: 4271 case AA_Returning: 4272 case AA_Sending: 4273 case AA_Passing_CFAudited: 4274 if (CheckExceptionSpecCompatibility(From, ToType)) 4275 return ExprError(); 4276 break; 4277 4278 case AA_Casting: 4279 case AA_Converting: 4280 // Casts and implicit conversions are not initialization, so are not 4281 // checked for exception specification mismatches. 4282 break; 4283 } 4284 // Nothing else to do. 4285 break; 4286 4287 case ICK_Integral_Promotion: 4288 case ICK_Integral_Conversion: 4289 if (ToType->isBooleanType()) { 4290 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4292, __extension__ __PRETTY_FUNCTION__))
4291 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4292, __extension__ __PRETTY_FUNCTION__))
4292 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4292, __extension__ __PRETTY_FUNCTION__))
; 4293 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4294 /*BasePath=*/nullptr, CCK) 4295 .get(); 4296 } else { 4297 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4298 /*BasePath=*/nullptr, CCK) 4299 .get(); 4300 } 4301 break; 4302 4303 case ICK_Floating_Promotion: 4304 case ICK_Floating_Conversion: 4305 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4306 /*BasePath=*/nullptr, CCK) 4307 .get(); 4308 break; 4309 4310 case ICK_Complex_Promotion: 4311 case ICK_Complex_Conversion: { 4312 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4313 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4314 CastKind CK; 4315 if (FromEl->isRealFloatingType()) { 4316 if (ToEl->isRealFloatingType()) 4317 CK = CK_FloatingComplexCast; 4318 else 4319 CK = CK_FloatingComplexToIntegralComplex; 4320 } else if (ToEl->isRealFloatingType()) { 4321 CK = CK_IntegralComplexToFloatingComplex; 4322 } else { 4323 CK = CK_IntegralComplexCast; 4324 } 4325 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4326 CCK) 4327 .get(); 4328 break; 4329 } 4330 4331 case ICK_Floating_Integral: 4332 if (ToType->isRealFloatingType()) 4333 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4334 /*BasePath=*/nullptr, CCK) 4335 .get(); 4336 else 4337 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4338 /*BasePath=*/nullptr, CCK) 4339 .get(); 4340 break; 4341 4342 case ICK_Compatible_Conversion: 4343 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4344 /*BasePath=*/nullptr, CCK).get(); 4345 break; 4346 4347 case ICK_Writeback_Conversion: 4348 case ICK_Pointer_Conversion: { 4349 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4350 // Diagnose incompatible Objective-C conversions 4351 if (Action == AA_Initializing || Action == AA_Assigning) 4352 Diag(From->getBeginLoc(), 4353 diag::ext_typecheck_convert_incompatible_pointer) 4354 << ToType << From->getType() << Action << From->getSourceRange() 4355 << 0; 4356 else 4357 Diag(From->getBeginLoc(), 4358 diag::ext_typecheck_convert_incompatible_pointer) 4359 << From->getType() << ToType << Action << From->getSourceRange() 4360 << 0; 4361 4362 if (From->getType()->isObjCObjectPointerType() && 4363 ToType->isObjCObjectPointerType()) 4364 EmitRelatedResultTypeNote(From); 4365 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4366 !CheckObjCARCUnavailableWeakConversion(ToType, 4367 From->getType())) { 4368 if (Action == AA_Initializing) 4369 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4370 else 4371 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4372 << (Action == AA_Casting) << From->getType() << ToType 4373 << From->getSourceRange(); 4374 } 4375 4376 // Defer address space conversion to the third conversion. 4377 QualType FromPteeType = From->getType()->getPointeeType(); 4378 QualType ToPteeType = ToType->getPointeeType(); 4379 QualType NewToType = ToType; 4380 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4381 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4382 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4383 NewToType = Context.getAddrSpaceQualType(NewToType, 4384 FromPteeType.getAddressSpace()); 4385 if (ToType->isObjCObjectPointerType()) 4386 NewToType = Context.getObjCObjectPointerType(NewToType); 4387 else if (ToType->isBlockPointerType()) 4388 NewToType = Context.getBlockPointerType(NewToType); 4389 else 4390 NewToType = Context.getPointerType(NewToType); 4391 } 4392 4393 CastKind Kind; 4394 CXXCastPath BasePath; 4395 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4396 return ExprError(); 4397 4398 // Make sure we extend blocks if necessary. 4399 // FIXME: doing this here is really ugly. 4400 if (Kind == CK_BlockPointerToObjCPointerCast) { 4401 ExprResult E = From; 4402 (void) PrepareCastToObjCObjectPointer(E); 4403 From = E.get(); 4404 } 4405 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4406 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4407 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4408 .get(); 4409 break; 4410 } 4411 4412 case ICK_Pointer_Member: { 4413 CastKind Kind; 4414 CXXCastPath BasePath; 4415 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4416 return ExprError(); 4417 if (CheckExceptionSpecCompatibility(From, ToType)) 4418 return ExprError(); 4419 4420 // We may not have been able to figure out what this member pointer resolved 4421 // to up until this exact point. Attempt to lock-in it's inheritance model. 4422 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4423 (void)isCompleteType(From->getExprLoc(), From->getType()); 4424 (void)isCompleteType(From->getExprLoc(), ToType); 4425 } 4426 4427 From = 4428 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4429 break; 4430 } 4431 4432 case ICK_Boolean_Conversion: 4433 // Perform half-to-boolean conversion via float. 4434 if (From->getType()->isHalfType()) { 4435 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4436 FromType = Context.FloatTy; 4437 } 4438 4439 From = ImpCastExprToType(From, Context.BoolTy, 4440 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4441 /*BasePath=*/nullptr, CCK) 4442 .get(); 4443 break; 4444 4445 case ICK_Derived_To_Base: { 4446 CXXCastPath BasePath; 4447 if (CheckDerivedToBaseConversion( 4448 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4449 From->getSourceRange(), &BasePath, CStyle)) 4450 return ExprError(); 4451 4452 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4453 CK_DerivedToBase, From->getValueKind(), 4454 &BasePath, CCK).get(); 4455 break; 4456 } 4457 4458 case ICK_Vector_Conversion: 4459 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4460 /*BasePath=*/nullptr, CCK) 4461 .get(); 4462 break; 4463 4464 case ICK_SVE_Vector_Conversion: 4465 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4466 /*BasePath=*/nullptr, CCK) 4467 .get(); 4468 break; 4469 4470 case ICK_Vector_Splat: { 4471 // Vector splat from any arithmetic type to a vector. 4472 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4473 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4474 /*BasePath=*/nullptr, CCK) 4475 .get(); 4476 break; 4477 } 4478 4479 case ICK_Complex_Real: 4480 // Case 1. x -> _Complex y 4481 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4482 QualType ElType = ToComplex->getElementType(); 4483 bool isFloatingComplex = ElType->isRealFloatingType(); 4484 4485 // x -> y 4486 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4487 // do nothing 4488 } else if (From->getType()->isRealFloatingType()) { 4489 From = ImpCastExprToType(From, ElType, 4490 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4491 } else { 4492 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4492, __extension__ __PRETTY_FUNCTION__))
; 4493 From = ImpCastExprToType(From, ElType, 4494 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4495 } 4496 // y -> _Complex y 4497 From = ImpCastExprToType(From, ToType, 4498 isFloatingComplex ? CK_FloatingRealToComplex 4499 : CK_IntegralRealToComplex).get(); 4500 4501 // Case 2. _Complex x -> y 4502 } else { 4503 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4504 QualType ElType = FromComplex->getElementType(); 4505 bool isFloatingComplex = ElType->isRealFloatingType(); 4506 4507 // _Complex x -> x 4508 From = ImpCastExprToType(From, ElType, 4509 isFloatingComplex ? CK_FloatingComplexToReal 4510 : CK_IntegralComplexToReal, 4511 VK_PRValue, /*BasePath=*/nullptr, CCK) 4512 .get(); 4513 4514 // x -> y 4515 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4516 // do nothing 4517 } else if (ToType->isRealFloatingType()) { 4518 From = ImpCastExprToType(From, ToType, 4519 isFloatingComplex ? CK_FloatingCast 4520 : CK_IntegralToFloating, 4521 VK_PRValue, /*BasePath=*/nullptr, CCK) 4522 .get(); 4523 } else { 4524 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4524, __extension__ __PRETTY_FUNCTION__))
; 4525 From = ImpCastExprToType(From, ToType, 4526 isFloatingComplex ? CK_FloatingToIntegral 4527 : CK_IntegralCast, 4528 VK_PRValue, /*BasePath=*/nullptr, CCK) 4529 .get(); 4530 } 4531 } 4532 break; 4533 4534 case ICK_Block_Pointer_Conversion: { 4535 LangAS AddrSpaceL = 4536 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4537 LangAS AddrSpaceR = 4538 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4539 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4540, __extension__ __PRETTY_FUNCTION__))
4540 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4540, __extension__ __PRETTY_FUNCTION__))
; 4541 CastKind Kind = 4542 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4543 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4544 VK_PRValue, /*BasePath=*/nullptr, CCK) 4545 .get(); 4546 break; 4547 } 4548 4549 case ICK_TransparentUnionConversion: { 4550 ExprResult FromRes = From; 4551 Sema::AssignConvertType ConvTy = 4552 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4553 if (FromRes.isInvalid()) 4554 return ExprError(); 4555 From = FromRes.get(); 4556 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4557, __extension__ __PRETTY_FUNCTION__))
4557 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4557, __extension__ __PRETTY_FUNCTION__))
; 4558 (void)ConvTy; 4559 break; 4560 } 4561 4562 case ICK_Zero_Event_Conversion: 4563 case ICK_Zero_Queue_Conversion: 4564 From = ImpCastExprToType(From, ToType, 4565 CK_ZeroToOCLOpaqueType, 4566 From->getValueKind()).get(); 4567 break; 4568 4569 case ICK_Lvalue_To_Rvalue: 4570 case ICK_Array_To_Pointer: 4571 case ICK_Function_To_Pointer: 4572 case ICK_Function_Conversion: 4573 case ICK_Qualification: 4574 case ICK_Num_Conversion_Kinds: 4575 case ICK_C_Only_Conversion: 4576 case ICK_Incompatible_Pointer_Conversion: 4577 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4577)
; 4578 } 4579 4580 switch (SCS.Third) { 4581 case ICK_Identity: 4582 // Nothing to do. 4583 break; 4584 4585 case ICK_Function_Conversion: 4586 // If both sides are functions (or pointers/references to them), there could 4587 // be incompatible exception declarations. 4588 if (CheckExceptionSpecCompatibility(From, ToType)) 4589 return ExprError(); 4590 4591 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4592 /*BasePath=*/nullptr, CCK) 4593 .get(); 4594 break; 4595 4596 case ICK_Qualification: { 4597 ExprValueKind VK = From->getValueKind(); 4598 CastKind CK = CK_NoOp; 4599 4600 if (ToType->isReferenceType() && 4601 ToType->getPointeeType().getAddressSpace() != 4602 From->getType().getAddressSpace()) 4603 CK = CK_AddressSpaceConversion; 4604 4605 if (ToType->isPointerType() && 4606 ToType->getPointeeType().getAddressSpace() != 4607 From->getType()->getPointeeType().getAddressSpace()) 4608 CK = CK_AddressSpaceConversion; 4609 4610 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4611 /*BasePath=*/nullptr, CCK) 4612 .get(); 4613 4614 if (SCS.DeprecatedStringLiteralToCharPtr && 4615 !getLangOpts().WritableStrings) { 4616 Diag(From->getBeginLoc(), 4617 getLangOpts().CPlusPlus11 4618 ? diag::ext_deprecated_string_literal_conversion 4619 : diag::warn_deprecated_string_literal_conversion) 4620 << ToType.getNonReferenceType(); 4621 } 4622 4623 break; 4624 } 4625 4626 default: 4627 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4627)
; 4628 } 4629 4630 // If this conversion sequence involved a scalar -> atomic conversion, perform 4631 // that conversion now. 4632 if (!ToAtomicType.isNull()) { 4633 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4634, __extension__ __PRETTY_FUNCTION__))
4634 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4634, __extension__ __PRETTY_FUNCTION__))
; 4635 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4636 VK_PRValue, nullptr, CCK) 4637 .get(); 4638 } 4639 4640 // Materialize a temporary if we're implicitly converting to a reference 4641 // type. This is not required by the C++ rules but is necessary to maintain 4642 // AST invariants. 4643 if (ToType->isReferenceType() && From->isPRValue()) { 4644 ExprResult Res = TemporaryMaterializationConversion(From); 4645 if (Res.isInvalid()) 4646 return ExprError(); 4647 From = Res.get(); 4648 } 4649 4650 // If this conversion sequence succeeded and involved implicitly converting a 4651 // _Nullable type to a _Nonnull one, complain. 4652 if (!isCast(CCK)) 4653 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4654 From->getBeginLoc()); 4655 4656 return From; 4657} 4658 4659/// Check the completeness of a type in a unary type trait. 4660/// 4661/// If the particular type trait requires a complete type, tries to complete 4662/// it. If completing the type fails, a diagnostic is emitted and false 4663/// returned. If completing the type succeeds or no completion was required, 4664/// returns true. 4665static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4666 SourceLocation Loc, 4667 QualType ArgTy) { 4668 // C++0x [meta.unary.prop]p3: 4669 // For all of the class templates X declared in this Clause, instantiating 4670 // that template with a template argument that is a class template 4671 // specialization may result in the implicit instantiation of the template 4672 // argument if and only if the semantics of X require that the argument 4673 // must be a complete type. 4674 // We apply this rule to all the type trait expressions used to implement 4675 // these class templates. We also try to follow any GCC documented behavior 4676 // in these expressions to ensure portability of standard libraries. 4677 switch (UTT) { 4678 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4678)
; 4679 // is_complete_type somewhat obviously cannot require a complete type. 4680 case UTT_IsCompleteType: 4681 // Fall-through 4682 4683 // These traits are modeled on the type predicates in C++0x 4684 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4685 // requiring a complete type, as whether or not they return true cannot be 4686 // impacted by the completeness of the type. 4687 case UTT_IsVoid: 4688 case UTT_IsIntegral: 4689 case UTT_IsFloatingPoint: 4690 case UTT_IsArray: 4691 case UTT_IsPointer: 4692 case UTT_IsLvalueReference: 4693 case UTT_IsRvalueReference: 4694 case UTT_IsMemberFunctionPointer: 4695 case UTT_IsMemberObjectPointer: 4696 case UTT_IsEnum: 4697 case UTT_IsUnion: 4698 case UTT_IsClass: 4699 case UTT_IsFunction: 4700 case UTT_IsReference: 4701 case UTT_IsArithmetic: 4702 case UTT_IsFundamental: 4703 case UTT_IsObject: 4704 case UTT_IsScalar: 4705 case UTT_IsCompound: 4706 case UTT_IsMemberPointer: 4707 // Fall-through 4708 4709 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4710 // which requires some of its traits to have the complete type. However, 4711 // the completeness of the type cannot impact these traits' semantics, and 4712 // so they don't require it. This matches the comments on these traits in 4713 // Table 49. 4714 case UTT_IsConst: 4715 case UTT_IsVolatile: 4716 case UTT_IsSigned: 4717 case UTT_IsUnsigned: 4718 4719 // This type trait always returns false, checking the type is moot. 4720 case UTT_IsInterfaceClass: 4721 return true; 4722 4723 // C++14 [meta.unary.prop]: 4724 // If T is a non-union class type, T shall be a complete type. 4725 case UTT_IsEmpty: 4726 case UTT_IsPolymorphic: 4727 case UTT_IsAbstract: 4728 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4729 if (!RD->isUnion()) 4730 return !S.RequireCompleteType( 4731 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4732 return true; 4733 4734 // C++14 [meta.unary.prop]: 4735 // If T is a class type, T shall be a complete type. 4736 case UTT_IsFinal: 4737 case UTT_IsSealed: 4738 if (ArgTy->getAsCXXRecordDecl()) 4739 return !S.RequireCompleteType( 4740 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4741 return true; 4742 4743 // C++1z [meta.unary.prop]: 4744 // remove_all_extents_t<T> shall be a complete type or cv void. 4745 case UTT_IsAggregate: 4746 case UTT_IsTrivial: 4747 case UTT_IsTriviallyCopyable: 4748 case UTT_IsStandardLayout: 4749 case UTT_IsPOD: 4750 case UTT_IsLiteral: 4751 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4752 // or an array of unknown bound. But GCC actually imposes the same constraints 4753 // as above. 4754 case UTT_HasNothrowAssign: 4755 case UTT_HasNothrowMoveAssign: 4756 case UTT_HasNothrowConstructor: 4757 case UTT_HasNothrowCopy: 4758 case UTT_HasTrivialAssign: 4759 case UTT_HasTrivialMoveAssign: 4760 case UTT_HasTrivialDefaultConstructor: 4761 case UTT_HasTrivialMoveConstructor: 4762 case UTT_HasTrivialCopy: 4763 case UTT_HasTrivialDestructor: 4764 case UTT_HasVirtualDestructor: 4765 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4766 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 4767 4768 // C++1z [meta.unary.prop]: 4769 // T shall be a complete type, cv void, or an array of unknown bound. 4770 case UTT_IsDestructible: 4771 case UTT_IsNothrowDestructible: 4772 case UTT_IsTriviallyDestructible: 4773 case UTT_HasUniqueObjectRepresentations: 4774 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4775 return true; 4776 4777 return !S.RequireCompleteType( 4778 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4779 } 4780} 4781 4782static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4783 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4784 bool (CXXRecordDecl::*HasTrivial)() const, 4785 bool (CXXRecordDecl::*HasNonTrivial)() const, 4786 bool (CXXMethodDecl::*IsDesiredOp)() const) 4787{ 4788 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4789 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4790 return true; 4791 4792 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4793 DeclarationNameInfo NameInfo(Name, KeyLoc); 4794 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4795 if (Self.LookupQualifiedName(Res, RD)) { 4796 bool FoundOperator = false; 4797 Res.suppressDiagnostics(); 4798 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4799 Op != OpEnd; ++Op) { 4800 if (isa<FunctionTemplateDecl>(*Op)) 4801 continue; 4802 4803 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4804 if((Operator->*IsDesiredOp)()) { 4805 FoundOperator = true; 4806 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4807 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4808 if (!CPT || !CPT->isNothrow()) 4809 return false; 4810 } 4811 } 4812 return FoundOperator; 4813 } 4814 return false; 4815} 4816 4817static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4818 SourceLocation KeyLoc, QualType T) { 4819 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
; 4820 4821 ASTContext &C = Self.Context; 4822 switch(UTT) { 4823 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 4823)
; 4824 // Type trait expressions corresponding to the primary type category 4825 // predicates in C++0x [meta.unary.cat]. 4826 case UTT_IsVoid: 4827 return T->isVoidType(); 4828 case UTT_IsIntegral: 4829 return T->isIntegralType(C); 4830 case UTT_IsFloatingPoint: 4831 return T->isFloatingType(); 4832 case UTT_IsArray: 4833 return T->isArrayType(); 4834 case UTT_IsPointer: 4835 return T->isAnyPointerType(); 4836 case UTT_IsLvalueReference: 4837 return T->isLValueReferenceType(); 4838 case UTT_IsRvalueReference: 4839 return T->isRValueReferenceType(); 4840 case UTT_IsMemberFunctionPointer: 4841 return T->isMemberFunctionPointerType(); 4842 case UTT_IsMemberObjectPointer: 4843 return T->isMemberDataPointerType(); 4844 case UTT_IsEnum: 4845 return T->isEnumeralType(); 4846 case UTT_IsUnion: 4847 return T->isUnionType(); 4848 case UTT_IsClass: 4849 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4850 case UTT_IsFunction: 4851 return T->isFunctionType(); 4852 4853 // Type trait expressions which correspond to the convenient composition 4854 // predicates in C++0x [meta.unary.comp]. 4855 case UTT_IsReference: 4856 return T->isReferenceType(); 4857 case UTT_IsArithmetic: 4858 return T->isArithmeticType() && !T->isEnumeralType(); 4859 case UTT_IsFundamental: 4860 return T->isFundamentalType(); 4861 case UTT_IsObject: 4862 return T->isObjectType(); 4863 case UTT_IsScalar: 4864 // Note: semantic analysis depends on Objective-C lifetime types to be 4865 // considered scalar types. However, such types do not actually behave 4866 // like scalar types at run time (since they may require retain/release 4867 // operations), so we report them as non-scalar. 4868 if (T->isObjCLifetimeType()) { 4869 switch (T.getObjCLifetime()) { 4870 case Qualifiers::OCL_None: 4871 case Qualifiers::OCL_ExplicitNone: 4872 return true; 4873 4874 case Qualifiers::OCL_Strong: 4875 case Qualifiers::OCL_Weak: 4876 case Qualifiers::OCL_Autoreleasing: 4877 return false; 4878 } 4879 } 4880 4881 return T->isScalarType(); 4882 case UTT_IsCompound: 4883 return T->isCompoundType(); 4884 case UTT_IsMemberPointer: 4885 return T->isMemberPointerType(); 4886 4887 // Type trait expressions which correspond to the type property predicates 4888 // in C++0x [meta.unary.prop]. 4889 case UTT_IsConst: 4890 return T.isConstQualified(); 4891 case UTT_IsVolatile: 4892 return T.isVolatileQualified(); 4893 case UTT_IsTrivial: 4894 return T.isTrivialType(C); 4895 case UTT_IsTriviallyCopyable: 4896 return T.isTriviallyCopyableType(C); 4897 case UTT_IsStandardLayout: 4898 return T->isStandardLayoutType(); 4899 case UTT_IsPOD: 4900 return T.isPODType(C); 4901 case UTT_IsLiteral: 4902 return T->isLiteralType(C); 4903 case UTT_IsEmpty: 4904 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4905 return !RD->isUnion() && RD->isEmpty(); 4906 return false; 4907 case UTT_IsPolymorphic: 4908 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4909 return !RD->isUnion() && RD->isPolymorphic(); 4910 return false; 4911 case UTT_IsAbstract: 4912 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4913 return !RD->isUnion() && RD->isAbstract(); 4914 return false; 4915 case UTT_IsAggregate: 4916 // Report vector extensions and complex types as aggregates because they 4917 // support aggregate initialization. GCC mirrors this behavior for vectors 4918 // but not _Complex. 4919 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4920 T->isAnyComplexType(); 4921 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4922 // even then only when it is used with the 'interface struct ...' syntax 4923 // Clang doesn't support /CLR which makes this type trait moot. 4924 case UTT_IsInterfaceClass: 4925 return false; 4926 case UTT_IsFinal: 4927 case UTT_IsSealed: 4928 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4929 return RD->hasAttr<FinalAttr>(); 4930 return false; 4931 case UTT_IsSigned: 4932 // Enum types should always return false. 4933 // Floating points should always return true. 4934 return T->isFloatingType() || 4935 (T->isSignedIntegerType() && !T->isEnumeralType()); 4936 case UTT_IsUnsigned: 4937 // Enum types should always return false. 4938 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4939 4940 // Type trait expressions which query classes regarding their construction, 4941 // destruction, and copying. Rather than being based directly on the 4942 // related type predicates in the standard, they are specified by both 4943 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4944 // specifications. 4945 // 4946 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4947 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4948 // 4949 // Note that these builtins do not behave as documented in g++: if a class 4950 // has both a trivial and a non-trivial special member of a particular kind, 4951 // they return false! For now, we emulate this behavior. 4952 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4953 // does not correctly compute triviality in the presence of multiple special 4954 // members of the same kind. Revisit this once the g++ bug is fixed. 4955 case UTT_HasTrivialDefaultConstructor: 4956 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4957 // If __is_pod (type) is true then the trait is true, else if type is 4958 // a cv class or union type (or array thereof) with a trivial default 4959 // constructor ([class.ctor]) then the trait is true, else it is false. 4960 if (T.isPODType(C)) 4961 return true; 4962 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4963 return RD->hasTrivialDefaultConstructor() && 4964 !RD->hasNonTrivialDefaultConstructor(); 4965 return false; 4966 case UTT_HasTrivialMoveConstructor: 4967 // This trait is implemented by MSVC 2012 and needed to parse the 4968 // standard library headers. Specifically this is used as the logic 4969 // behind std::is_trivially_move_constructible (20.9.4.3). 4970 if (T.isPODType(C)) 4971 return true; 4972 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4973 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4974 return false; 4975 case UTT_HasTrivialCopy: 4976 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4977 // If __is_pod (type) is true or type is a reference type then 4978 // the trait is true, else if type is a cv class or union type 4979 // with a trivial copy constructor ([class.copy]) then the trait 4980 // is true, else it is false. 4981 if (T.isPODType(C) || T->isReferenceType()) 4982 return true; 4983 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4984 return RD->hasTrivialCopyConstructor() && 4985 !RD->hasNonTrivialCopyConstructor(); 4986 return false; 4987 case UTT_HasTrivialMoveAssign: 4988 // This trait is implemented by MSVC 2012 and needed to parse the 4989 // standard library headers. Specifically it is used as the logic 4990 // behind std::is_trivially_move_assignable (20.9.4.3) 4991 if (T.isPODType(C)) 4992 return true; 4993 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4994 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4995 return false; 4996 case UTT_HasTrivialAssign: 4997 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4998 // If type is const qualified or is a reference type then the 4999 // trait is false. Otherwise if __is_pod (type) is true then the 5000 // trait is true, else if type is a cv class or union type with 5001 // a trivial copy assignment ([class.copy]) then the trait is 5002 // true, else it is false. 5003 // Note: the const and reference restrictions are interesting, 5004 // given that const and reference members don't prevent a class 5005 // from having a trivial copy assignment operator (but do cause 5006 // errors if the copy assignment operator is actually used, q.v. 5007 // [class.copy]p12). 5008 5009 if (T.isConstQualified()) 5010 return false; 5011 if (T.isPODType(C)) 5012 return true; 5013 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5014 return RD->hasTrivialCopyAssignment() && 5015 !RD->hasNonTrivialCopyAssignment(); 5016 return false; 5017 case UTT_IsDestructible: 5018 case UTT_IsTriviallyDestructible: 5019 case UTT_IsNothrowDestructible: 5020 // C++14 [meta.unary.prop]: 5021 // For reference types, is_destructible<T>::value is true. 5022 if (T->isReferenceType()) 5023 return true; 5024 5025 // Objective-C++ ARC: autorelease types don't require destruction. 5026 if (T->isObjCLifetimeType() && 5027 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5028 return true; 5029 5030 // C++14 [meta.unary.prop]: 5031 // For incomplete types and function types, is_destructible<T>::value is 5032 // false. 5033 if (T->isIncompleteType() || T->isFunctionType()) 5034 return false; 5035 5036 // A type that requires destruction (via a non-trivial destructor or ARC 5037 // lifetime semantics) is not trivially-destructible. 5038 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5039 return false; 5040 5041 // C++14 [meta.unary.prop]: 5042 // For object types and given U equal to remove_all_extents_t<T>, if the 5043 // expression std::declval<U&>().~U() is well-formed when treated as an 5044 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5045 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5046 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5047 if (!Destructor) 5048 return false; 5049 // C++14 [dcl.fct.def.delete]p2: 5050 // A program that refers to a deleted function implicitly or 5051 // explicitly, other than to declare it, is ill-formed. 5052 if (Destructor->isDeleted()) 5053 return false; 5054 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5055 return false; 5056 if (UTT == UTT_IsNothrowDestructible) { 5057 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5058 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5059 if (!CPT || !CPT->isNothrow()) 5060 return false; 5061 } 5062 } 5063 return true; 5064 5065 case UTT_HasTrivialDestructor: 5066 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5067 // If __is_pod (type) is true or type is a reference type 5068 // then the trait is true, else if type is a cv class or union 5069 // type (or array thereof) with a trivial destructor 5070 // ([class.dtor]) then the trait is true, else it is 5071 // false. 5072 if (T.isPODType(C) || T->isReferenceType()) 5073 return true; 5074 5075 // Objective-C++ ARC: autorelease types don't require destruction. 5076 if (T->isObjCLifetimeType() && 5077 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5078 return true; 5079 5080 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5081 return RD->hasTrivialDestructor(); 5082 return false; 5083 // TODO: Propagate nothrowness for implicitly declared special members. 5084 case UTT_HasNothrowAssign: 5085 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5086 // If type is const qualified or is a reference type then the 5087 // trait is false. Otherwise if __has_trivial_assign (type) 5088 // is true then the trait is true, else if type is a cv class 5089 // or union type with copy assignment operators that are known 5090 // not to throw an exception then the trait is true, else it is 5091 // false. 5092 if (C.getBaseElementType(T).isConstQualified()) 5093 return false; 5094 if (T->isReferenceType()) 5095 return false; 5096 if (T.isPODType(C) || T->isObjCLifetimeType()) 5097 return true; 5098 5099 if (const RecordType *RT = T->getAs<RecordType>()) 5100 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5101 &CXXRecordDecl::hasTrivialCopyAssignment, 5102 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5103 &CXXMethodDecl::isCopyAssignmentOperator); 5104 return false; 5105 case UTT_HasNothrowMoveAssign: 5106 // This trait is implemented by MSVC 2012 and needed to parse the 5107 // standard library headers. Specifically this is used as the logic 5108 // behind std::is_nothrow_move_assignable (20.9.4.3). 5109 if (T.isPODType(C)) 5110 return true; 5111 5112 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5113 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5114 &CXXRecordDecl::hasTrivialMoveAssignment, 5115 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5116 &CXXMethodDecl::isMoveAssignmentOperator); 5117 return false; 5118 case UTT_HasNothrowCopy: 5119 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5120 // If __has_trivial_copy (type) is true then the trait is true, else 5121 // if type is a cv class or union type with copy constructors that are 5122 // known not to throw an exception then the trait is true, else it is 5123 // false. 5124 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5125 return true; 5126 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5127 if (RD->hasTrivialCopyConstructor() && 5128 !RD->hasNonTrivialCopyConstructor()) 5129 return true; 5130 5131 bool FoundConstructor = false; 5132 unsigned FoundTQs; 5133 for (const auto *ND : Self.LookupConstructors(RD)) { 5134 // A template constructor is never a copy constructor. 5135 // FIXME: However, it may actually be selected at the actual overload 5136 // resolution point. 5137 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5138 continue; 5139 // UsingDecl itself is not a constructor 5140 if (isa<UsingDecl>(ND)) 5141 continue; 5142 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5143 if (Constructor->isCopyConstructor(FoundTQs)) { 5144 FoundConstructor = true; 5145 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5146 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5147 if (!CPT) 5148 return false; 5149 // TODO: check whether evaluating default arguments can throw. 5150 // For now, we'll be conservative and assume that they can throw. 5151 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5152 return false; 5153 } 5154 } 5155 5156 return FoundConstructor; 5157 } 5158 return false; 5159 case UTT_HasNothrowConstructor: 5160 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5161 // If __has_trivial_constructor (type) is true then the trait is 5162 // true, else if type is a cv class or union type (or array 5163 // thereof) with a default constructor that is known not to 5164 // throw an exception then the trait is true, else it is false. 5165 if (T.isPODType(C) || T->isObjCLifetimeType()) 5166 return true; 5167 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5168 if (RD->hasTrivialDefaultConstructor() && 5169 !RD->hasNonTrivialDefaultConstructor()) 5170 return true; 5171 5172 bool FoundConstructor = false; 5173 for (const auto *ND : Self.LookupConstructors(RD)) { 5174 // FIXME: In C++0x, a constructor template can be a default constructor. 5175 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5176 continue; 5177 // UsingDecl itself is not a constructor 5178 if (isa<UsingDecl>(ND)) 5179 continue; 5180 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5181 if (Constructor->isDefaultConstructor()) { 5182 FoundConstructor = true; 5183 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5184 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5185 if (!CPT) 5186 return false; 5187 // FIXME: check whether evaluating default arguments can throw. 5188 // For now, we'll be conservative and assume that they can throw. 5189 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5190 return false; 5191 } 5192 } 5193 return FoundConstructor; 5194 } 5195 return false; 5196 case UTT_HasVirtualDestructor: 5197 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5198 // If type is a class type with a virtual destructor ([class.dtor]) 5199 // then the trait is true, else it is false. 5200 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5201 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5202 return Destructor->isVirtual(); 5203 return false; 5204 5205 // These type trait expressions are modeled on the specifications for the 5206 // Embarcadero C++0x type trait functions: 5207 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5208 case UTT_IsCompleteType: 5209 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5210 // Returns True if and only if T is a complete type at the point of the 5211 // function call. 5212 return !T->isIncompleteType(); 5213 case UTT_HasUniqueObjectRepresentations: 5214 return C.hasUniqueObjectRepresentations(T); 5215 } 5216} 5217 5218static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5219 QualType RhsT, SourceLocation KeyLoc); 5220 5221static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5222 ArrayRef<TypeSourceInfo *> Args, 5223 SourceLocation RParenLoc) { 5224 if (Kind <= UTT_Last) 5225 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5226 5227 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5228 // traits to avoid duplication. 5229 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5230 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5231 Args[1]->getType(), RParenLoc); 5232 5233 switch (Kind) { 5234 case clang::BTT_ReferenceBindsToTemporary: 5235 case clang::TT_IsConstructible: 5236 case clang::TT_IsNothrowConstructible: 5237 case clang::TT_IsTriviallyConstructible: { 5238 // C++11 [meta.unary.prop]: 5239 // is_trivially_constructible is defined as: 5240 // 5241 // is_constructible<T, Args...>::value is true and the variable 5242 // definition for is_constructible, as defined below, is known to call 5243 // no operation that is not trivial. 5244 // 5245 // The predicate condition for a template specialization 5246 // is_constructible<T, Args...> shall be satisfied if and only if the 5247 // following variable definition would be well-formed for some invented 5248 // variable t: 5249 // 5250 // T t(create<Args>()...); 5251 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5251, __extension__ __PRETTY_FUNCTION__))
; 5252 5253 // Precondition: T and all types in the parameter pack Args shall be 5254 // complete types, (possibly cv-qualified) void, or arrays of 5255 // unknown bound. 5256 for (const auto *TSI : Args) { 5257 QualType ArgTy = TSI->getType(); 5258 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5259 continue; 5260 5261 if (S.RequireCompleteType(KWLoc, ArgTy, 5262 diag::err_incomplete_type_used_in_type_trait_expr)) 5263 return false; 5264 } 5265 5266 // Make sure the first argument is not incomplete nor a function type. 5267 QualType T = Args[0]->getType(); 5268 if (T->isIncompleteType() || T->isFunctionType()) 5269 return false; 5270 5271 // Make sure the first argument is not an abstract type. 5272 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5273 if (RD && RD->isAbstract()) 5274 return false; 5275 5276 llvm::BumpPtrAllocator OpaqueExprAllocator; 5277 SmallVector<Expr *, 2> ArgExprs; 5278 ArgExprs.reserve(Args.size() - 1); 5279 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5280 QualType ArgTy = Args[I]->getType(); 5281 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5282 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5283 ArgExprs.push_back( 5284 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5285 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5286 ArgTy.getNonLValueExprType(S.Context), 5287 Expr::getValueKindForType(ArgTy))); 5288 } 5289 5290 // Perform the initialization in an unevaluated context within a SFINAE 5291 // trap at translation unit scope. 5292 EnterExpressionEvaluationContext Unevaluated( 5293 S, Sema::ExpressionEvaluationContext::Unevaluated); 5294 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5295 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5296 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5297 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5298 RParenLoc)); 5299 InitializationSequence Init(S, To, InitKind, ArgExprs); 5300 if (Init.Failed()) 5301 return false; 5302 5303 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5304 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5305 return false; 5306 5307 if (Kind == clang::TT_IsConstructible) 5308 return true; 5309 5310 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5311 if (!T->isReferenceType()) 5312 return false; 5313 5314 return !Init.isDirectReferenceBinding(); 5315 } 5316 5317 if (Kind == clang::TT_IsNothrowConstructible) 5318 return S.canThrow(Result.get()) == CT_Cannot; 5319 5320 if (Kind == clang::TT_IsTriviallyConstructible) { 5321 // Under Objective-C ARC and Weak, if the destination has non-trivial 5322 // Objective-C lifetime, this is a non-trivial construction. 5323 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5324 return false; 5325 5326 // The initialization succeeded; now make sure there are no non-trivial 5327 // calls. 5328 return !Result.get()->hasNonTrivialCall(S.Context); 5329 } 5330 5331 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5331)
; 5332 return false; 5333 } 5334 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5334)
; 5335 } 5336 5337 return false; 5338} 5339 5340ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5341 ArrayRef<TypeSourceInfo *> Args, 5342 SourceLocation RParenLoc) { 5343 QualType ResultType = Context.getLogicalOperationType(); 5344 5345 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5346 *this, Kind, KWLoc, Args[0]->getType())) 5347 return ExprError(); 5348 5349 bool Dependent = false; 5350 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5351 if (Args[I]->getType()->isDependentType()) { 5352 Dependent = true; 5353 break; 5354 } 5355 } 5356 5357 bool Result = false; 5358 if (!Dependent) 5359 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5360 5361 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5362 RParenLoc, Result); 5363} 5364 5365ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5366 ArrayRef<ParsedType> Args, 5367 SourceLocation RParenLoc) { 5368 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5369 ConvertedArgs.reserve(Args.size()); 5370 5371 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5372 TypeSourceInfo *TInfo; 5373 QualType T = GetTypeFromParser(Args[I], &TInfo); 5374 if (!TInfo) 5375 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5376 5377 ConvertedArgs.push_back(TInfo); 5378 } 5379 5380 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5381} 5382 5383static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5384 QualType RhsT, SourceLocation KeyLoc) { 5385 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5386, __extension__ __PRETTY_FUNCTION__))
5386 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5386, __extension__ __PRETTY_FUNCTION__))
; 5387 5388 switch(BTT) { 5389 case BTT_IsBaseOf: { 5390 // C++0x [meta.rel]p2 5391 // Base is a base class of Derived without regard to cv-qualifiers or 5392 // Base and Derived are not unions and name the same class type without 5393 // regard to cv-qualifiers. 5394 5395 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5396 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5397 if (!rhsRecord || !lhsRecord) { 5398 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5399 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5400 if (!LHSObjTy || !RHSObjTy) 5401 return false; 5402 5403 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5404 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5405 if (!BaseInterface || !DerivedInterface) 5406 return false; 5407 5408 if (Self.RequireCompleteType( 5409 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5410 return false; 5411 5412 return BaseInterface->isSuperClassOf(DerivedInterface); 5413 } 5414 5415 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5416, __extension__ __PRETTY_FUNCTION__))
5416 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5416, __extension__ __PRETTY_FUNCTION__))
; 5417 5418 // Unions are never base classes, and never have base classes. 5419 // It doesn't matter if they are complete or not. See PR#41843 5420 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5421 return false; 5422 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5423 return false; 5424 5425 if (lhsRecord == rhsRecord) 5426 return true; 5427 5428 // C++0x [meta.rel]p2: 5429 // If Base and Derived are class types and are different types 5430 // (ignoring possible cv-qualifiers) then Derived shall be a 5431 // complete type. 5432 if (Self.RequireCompleteType(KeyLoc, RhsT, 5433 diag::err_incomplete_type_used_in_type_trait_expr)) 5434 return false; 5435 5436 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5437 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5438 } 5439 case BTT_IsSame: 5440 return Self.Context.hasSameType(LhsT, RhsT); 5441 case BTT_TypeCompatible: { 5442 // GCC ignores cv-qualifiers on arrays for this builtin. 5443 Qualifiers LhsQuals, RhsQuals; 5444 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5445 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5446 return Self.Context.typesAreCompatible(Lhs, Rhs); 5447 } 5448 case BTT_IsConvertible: 5449 case BTT_IsConvertibleTo: { 5450 // C++0x [meta.rel]p4: 5451 // Given the following function prototype: 5452 // 5453 // template <class T> 5454 // typename add_rvalue_reference<T>::type create(); 5455 // 5456 // the predicate condition for a template specialization 5457 // is_convertible<From, To> shall be satisfied if and only if 5458 // the return expression in the following code would be 5459 // well-formed, including any implicit conversions to the return 5460 // type of the function: 5461 // 5462 // To test() { 5463 // return create<From>(); 5464 // } 5465 // 5466 // Access checking is performed as if in a context unrelated to To and 5467 // From. Only the validity of the immediate context of the expression 5468 // of the return-statement (including conversions to the return type) 5469 // is considered. 5470 // 5471 // We model the initialization as a copy-initialization of a temporary 5472 // of the appropriate type, which for this expression is identical to the 5473 // return statement (since NRVO doesn't apply). 5474 5475 // Functions aren't allowed to return function or array types. 5476 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5477 return false; 5478 5479 // A return statement in a void function must have void type. 5480 if (RhsT->isVoidType()) 5481 return LhsT->isVoidType(); 5482 5483 // A function definition requires a complete, non-abstract return type. 5484 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5485 return false; 5486 5487 // Compute the result of add_rvalue_reference. 5488 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5489 LhsT = Self.Context.getRValueReferenceType(LhsT); 5490 5491 // Build a fake source and destination for initialization. 5492 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5493 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5494 Expr::getValueKindForType(LhsT)); 5495 Expr *FromPtr = &From; 5496 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5497 SourceLocation())); 5498 5499 // Perform the initialization in an unevaluated context within a SFINAE 5500 // trap at translation unit scope. 5501 EnterExpressionEvaluationContext Unevaluated( 5502 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5503 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5504 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5505 InitializationSequence Init(Self, To, Kind, FromPtr); 5506 if (Init.Failed()) 5507 return false; 5508 5509 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5510 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5511 } 5512 5513 case BTT_IsAssignable: 5514 case BTT_IsNothrowAssignable: 5515 case BTT_IsTriviallyAssignable: { 5516 // C++11 [meta.unary.prop]p3: 5517 // is_trivially_assignable is defined as: 5518 // is_assignable<T, U>::value is true and the assignment, as defined by 5519 // is_assignable, is known to call no operation that is not trivial 5520 // 5521 // is_assignable is defined as: 5522 // The expression declval<T>() = declval<U>() is well-formed when 5523 // treated as an unevaluated operand (Clause 5). 5524 // 5525 // For both, T and U shall be complete types, (possibly cv-qualified) 5526 // void, or arrays of unknown bound. 5527 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5528 Self.RequireCompleteType(KeyLoc, LhsT, 5529 diag::err_incomplete_type_used_in_type_trait_expr)) 5530 return false; 5531 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5532 Self.RequireCompleteType(KeyLoc, RhsT, 5533 diag::err_incomplete_type_used_in_type_trait_expr)) 5534 return false; 5535 5536 // cv void is never assignable. 5537 if (LhsT->isVoidType() || RhsT->isVoidType()) 5538 return false; 5539 5540 // Build expressions that emulate the effect of declval<T>() and 5541 // declval<U>(). 5542 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5543 LhsT = Self.Context.getRValueReferenceType(LhsT); 5544 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5545 RhsT = Self.Context.getRValueReferenceType(RhsT); 5546 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5547 Expr::getValueKindForType(LhsT)); 5548 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5549 Expr::getValueKindForType(RhsT)); 5550 5551 // Attempt the assignment in an unevaluated context within a SFINAE 5552 // trap at translation unit scope. 5553 EnterExpressionEvaluationContext Unevaluated( 5554 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5555 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5556 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5557 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5558 &Rhs); 5559 if (Result.isInvalid()) 5560 return false; 5561 5562 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5563 Self.CheckUnusedVolatileAssignment(Result.get()); 5564 5565 if (SFINAE.hasErrorOccurred()) 5566 return false; 5567 5568 if (BTT == BTT_IsAssignable) 5569 return true; 5570 5571 if (BTT == BTT_IsNothrowAssignable) 5572 return Self.canThrow(Result.get()) == CT_Cannot; 5573 5574 if (BTT == BTT_IsTriviallyAssignable) { 5575 // Under Objective-C ARC and Weak, if the destination has non-trivial 5576 // Objective-C lifetime, this is a non-trivial assignment. 5577 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5578 return false; 5579 5580 return !Result.get()->hasNonTrivialCall(Self.Context); 5581 } 5582 5583 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5583)
; 5584 return false; 5585 } 5586 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5586)
; 5587 } 5588 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5588)
; 5589} 5590 5591ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5592 SourceLocation KWLoc, 5593 ParsedType Ty, 5594 Expr* DimExpr, 5595 SourceLocation RParen) { 5596 TypeSourceInfo *TSInfo; 5597 QualType T = GetTypeFromParser(Ty, &TSInfo); 5598 if (!TSInfo) 5599 TSInfo = Context.getTrivialTypeSourceInfo(T); 5600 5601 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5602} 5603 5604static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5605 QualType T, Expr *DimExpr, 5606 SourceLocation KeyLoc) { 5607 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5607, __extension__ __PRETTY_FUNCTION__))
; 5608 5609 switch(ATT) { 5610 case ATT_ArrayRank: 5611 if (T->isArrayType()) { 5612 unsigned Dim = 0; 5613 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5614 ++Dim; 5615 T = AT->getElementType(); 5616 } 5617 return Dim; 5618 } 5619 return 0; 5620 5621 case ATT_ArrayExtent: { 5622 llvm::APSInt Value; 5623 uint64_t Dim; 5624 if (Self.VerifyIntegerConstantExpression( 5625 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5626 .isInvalid()) 5627 return 0; 5628 if (Value.isSigned() && Value.isNegative()) { 5629 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5630 << DimExpr->getSourceRange(); 5631 return 0; 5632 } 5633 Dim = Value.getLimitedValue(); 5634 5635 if (T->isArrayType()) { 5636 unsigned D = 0; 5637 bool Matched = false; 5638 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5639 if (Dim == D) { 5640 Matched = true; 5641 break; 5642 } 5643 ++D; 5644 T = AT->getElementType(); 5645 } 5646 5647 if (Matched && T->isArrayType()) { 5648 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5649 return CAT->getSize().getLimitedValue(); 5650 } 5651 } 5652 return 0; 5653 } 5654 } 5655 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5655)
; 5656} 5657 5658ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5659 SourceLocation KWLoc, 5660 TypeSourceInfo *TSInfo, 5661 Expr* DimExpr, 5662 SourceLocation RParen) { 5663 QualType T = TSInfo->getType(); 5664 5665 // FIXME: This should likely be tracked as an APInt to remove any host 5666 // assumptions about the width of size_t on the target. 5667 uint64_t Value = 0; 5668 if (!T->isDependentType()) 5669 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5670 5671 // While the specification for these traits from the Embarcadero C++ 5672 // compiler's documentation says the return type is 'unsigned int', Clang 5673 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5674 // compiler, there is no difference. On several other platforms this is an 5675 // important distinction. 5676 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5677 RParen, Context.getSizeType()); 5678} 5679 5680ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5681 SourceLocation KWLoc, 5682 Expr *Queried, 5683 SourceLocation RParen) { 5684 // If error parsing the expression, ignore. 5685 if (!Queried) 5686 return ExprError(); 5687 5688 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5689 5690 return Result; 5691} 5692 5693static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5694 switch (ET) { 5695 case ET_IsLValueExpr: return E->isLValue(); 5696 case ET_IsRValueExpr: 5697 return E->isPRValue(); 5698 } 5699 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5699)
; 5700} 5701 5702ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5703 SourceLocation KWLoc, 5704 Expr *Queried, 5705 SourceLocation RParen) { 5706 if (Queried->isTypeDependent()) { 5707 // Delay type-checking for type-dependent expressions. 5708 } else if (Queried->getType()->isPlaceholderType()) { 5709 ExprResult PE = CheckPlaceholderExpr(Queried); 5710 if (PE.isInvalid()) return ExprError(); 5711 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5712 } 5713 5714 bool Value = EvaluateExpressionTrait(ET, Queried); 5715 5716 return new (Context) 5717 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5718} 5719 5720QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5721 ExprValueKind &VK, 5722 SourceLocation Loc, 5723 bool isIndirect) { 5724 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5726, __extension__ __PRETTY_FUNCTION__))
5725 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5726, __extension__ __PRETTY_FUNCTION__))
5726 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 5726, __extension__ __PRETTY_FUNCTION__))
; 5727 5728 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5729 // temporary materialization conversion otherwise. 5730 if (isIndirect) 5731 LHS = DefaultLvalueConversion(LHS.get()); 5732 else if (LHS.get()->isPRValue()) 5733 LHS = TemporaryMaterializationConversion(LHS.get()); 5734 if (LHS.isInvalid()) 5735 return QualType(); 5736 5737 // The RHS always undergoes lvalue conversions. 5738 RHS = DefaultLvalueConversion(RHS.get()); 5739 if (RHS.isInvalid()) return QualType(); 5740 5741 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5742 // C++ 5.5p2 5743 // The binary operator .* [p3: ->*] binds its second operand, which shall 5744 // be of type "pointer to member of T" (where T is a completely-defined 5745 // class type) [...] 5746 QualType RHSType = RHS.get()->getType(); 5747 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5748 if (!MemPtr) { 5749 Diag(Loc, diag::err_bad_memptr_rhs) 5750 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5751 return QualType(); 5752 } 5753 5754 QualType Class(MemPtr->getClass(), 0); 5755 5756 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5757 // member pointer points must be completely-defined. However, there is no 5758 // reason for this semantic distinction, and the rule is not enforced by 5759 // other compilers. Therefore, we do not check this property, as it is 5760 // likely to be considered a defect. 5761 5762 // C++ 5.5p2 5763 // [...] to its first operand, which shall be of class T or of a class of 5764 // which T is an unambiguous and accessible base class. [p3: a pointer to 5765 // such a class] 5766 QualType LHSType = LHS.get()->getType(); 5767 if (isIndirect) { 5768 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5769 LHSType = Ptr->getPointeeType(); 5770 else { 5771 Diag(Loc, diag::err_bad_memptr_lhs) 5772 << OpSpelling << 1 << LHSType 5773 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5774 return QualType(); 5775 } 5776 } 5777 5778 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5779 // If we want to check the hierarchy, we need a complete type. 5780 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5781 OpSpelling, (int)isIndirect)) { 5782 return QualType(); 5783 } 5784 5785 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5786 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5787 << (int)isIndirect << LHS.get()->getType(); 5788 return QualType(); 5789 } 5790 5791 CXXCastPath BasePath; 5792 if (CheckDerivedToBaseConversion( 5793 LHSType, Class, Loc, 5794 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5795 &BasePath)) 5796 return QualType(); 5797 5798 // Cast LHS to type of use. 5799 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5800 if (isIndirect) 5801 UseType = Context.getPointerType(UseType); 5802 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5803 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5804 &BasePath); 5805 } 5806 5807 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5808 // Diagnose use of pointer-to-member type which when used as 5809 // the functional cast in a pointer-to-member expression. 5810 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5811 return QualType(); 5812 } 5813 5814 // C++ 5.5p2 5815 // The result is an object or a function of the type specified by the 5816 // second operand. 5817 // The cv qualifiers are the union of those in the pointer and the left side, 5818 // in accordance with 5.5p5 and 5.2.5. 5819 QualType Result = MemPtr->getPointeeType(); 5820 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5821 5822 // C++0x [expr.mptr.oper]p6: 5823 // In a .* expression whose object expression is an rvalue, the program is 5824 // ill-formed if the second operand is a pointer to member function with 5825 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5826 // expression is an lvalue, the program is ill-formed if the second operand 5827 // is a pointer to member function with ref-qualifier &&. 5828 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5829 switch (Proto->getRefQualifier()) { 5830 case RQ_None: 5831 // Do nothing 5832 break; 5833 5834 case RQ_LValue: 5835 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5836 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5837 // is (exactly) 'const'. 5838 if (Proto->isConst() && !Proto->isVolatile()) 5839 Diag(Loc, getLangOpts().CPlusPlus20 5840 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5841 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5842 else 5843 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5844 << RHSType << 1 << LHS.get()->getSourceRange(); 5845 } 5846 break; 5847 5848 case RQ_RValue: 5849 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5850 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5851 << RHSType << 0 << LHS.get()->getSourceRange(); 5852 break; 5853 } 5854 } 5855 5856 // C++ [expr.mptr.oper]p6: 5857 // The result of a .* expression whose second operand is a pointer 5858 // to a data member is of the same value category as its 5859 // first operand. The result of a .* expression whose second 5860 // operand is a pointer to a member function is a prvalue. The 5861 // result of an ->* expression is an lvalue if its second operand 5862 // is a pointer to data member and a prvalue otherwise. 5863 if (Result->isFunctionType()) { 5864 VK = VK_PRValue; 5865 return Context.BoundMemberTy; 5866 } else if (isIndirect) { 5867 VK = VK_LValue; 5868 } else { 5869 VK = LHS.get()->getValueKind(); 5870 } 5871 5872 return Result; 5873} 5874 5875/// Try to convert a type to another according to C++11 5.16p3. 5876/// 5877/// This is part of the parameter validation for the ? operator. If either 5878/// value operand is a class type, the two operands are attempted to be 5879/// converted to each other. This function does the conversion in one direction. 5880/// It returns true if the program is ill-formed and has already been diagnosed 5881/// as such. 5882static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5883 SourceLocation QuestionLoc, 5884 bool &HaveConversion, 5885 QualType &ToType) { 5886 HaveConversion = false; 5887 ToType = To->getType(); 5888 5889 InitializationKind Kind = 5890 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5891 // C++11 5.16p3 5892 // The process for determining whether an operand expression E1 of type T1 5893 // can be converted to match an operand expression E2 of type T2 is defined 5894 // as follows: 5895 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5896 // implicitly converted to type "lvalue reference to T2", subject to the 5897 // constraint that in the conversion the reference must bind directly to 5898 // an lvalue. 5899 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5900 // implicitly converted to the type "rvalue reference to R2", subject to 5901 // the constraint that the reference must bind directly. 5902 if (To->isGLValue()) { 5903 QualType T = Self.Context.getReferenceQualifiedType(To); 5904 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5905 5906 InitializationSequence InitSeq(Self, Entity, Kind, From); 5907 if (InitSeq.isDirectReferenceBinding()) { 5908 ToType = T; 5909 HaveConversion = true; 5910 return false; 5911 } 5912 5913 if (InitSeq.isAmbiguous()) 5914 return InitSeq.Diagnose(Self, Entity, Kind, From); 5915 } 5916 5917 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5918 // -- if E1 and E2 have class type, and the underlying class types are 5919 // the same or one is a base class of the other: 5920 QualType FTy = From->getType(); 5921 QualType TTy = To->getType(); 5922 const RecordType *FRec = FTy->getAs<RecordType>(); 5923 const RecordType *TRec = TTy->getAs<RecordType>(); 5924 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5925 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5926 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5927 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5928 // E1 can be converted to match E2 if the class of T2 is the 5929 // same type as, or a base class of, the class of T1, and 5930 // [cv2 > cv1]. 5931 if (FRec == TRec || FDerivedFromT) { 5932 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5933 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5934 InitializationSequence InitSeq(Self, Entity, Kind, From); 5935 if (InitSeq) { 5936 HaveConversion = true; 5937 return false; 5938 } 5939 5940 if (InitSeq.isAmbiguous()) 5941 return InitSeq.Diagnose(Self, Entity, Kind, From); 5942 } 5943 } 5944 5945 return false; 5946 } 5947 5948 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5949 // implicitly converted to the type that expression E2 would have 5950 // if E2 were converted to an rvalue (or the type it has, if E2 is 5951 // an rvalue). 5952 // 5953 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5954 // to the array-to-pointer or function-to-pointer conversions. 5955 TTy = TTy.getNonLValueExprType(Self.Context); 5956 5957 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5958 InitializationSequence InitSeq(Self, Entity, Kind, From); 5959 HaveConversion = !InitSeq.Failed(); 5960 ToType = TTy; 5961 if (InitSeq.isAmbiguous()) 5962 return InitSeq.Diagnose(Self, Entity, Kind, From); 5963 5964 return false; 5965} 5966 5967/// Try to find a common type for two according to C++0x 5.16p5. 5968/// 5969/// This is part of the parameter validation for the ? operator. If either 5970/// value operand is a class type, overload resolution is used to find a 5971/// conversion to a common type. 5972static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5973 SourceLocation QuestionLoc) { 5974 Expr *Args[2] = { LHS.get(), RHS.get() }; 5975 OverloadCandidateSet CandidateSet(QuestionLoc, 5976 OverloadCandidateSet::CSK_Operator); 5977 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5978 CandidateSet); 5979 5980 OverloadCandidateSet::iterator Best; 5981 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5982 case OR_Success: { 5983 // We found a match. Perform the conversions on the arguments and move on. 5984 ExprResult LHSRes = Self.PerformImplicitConversion( 5985 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5986 Sema::AA_Converting); 5987 if (LHSRes.isInvalid()) 5988 break; 5989 LHS = LHSRes; 5990 5991 ExprResult RHSRes = Self.PerformImplicitConversion( 5992 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5993 Sema::AA_Converting); 5994 if (RHSRes.isInvalid()) 5995 break; 5996 RHS = RHSRes; 5997 if (Best->Function) 5998 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5999 return false; 6000 } 6001 6002 case OR_No_Viable_Function: 6003 6004 // Emit a better diagnostic if one of the expressions is a null pointer 6005 // constant and the other is a pointer type. In this case, the user most 6006 // likely forgot to take the address of the other expression. 6007 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6008 return true; 6009 6010 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6011 << LHS.get()->getType() << RHS.get()->getType() 6012 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6013 return true; 6014 6015 case OR_Ambiguous: 6016 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6017 << LHS.get()->getType() << RHS.get()->getType() 6018 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6019 // FIXME: Print the possible common types by printing the return types of 6020 // the viable candidates. 6021 break; 6022 6023 case OR_Deleted: 6024 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6024)
; 6025 } 6026 return true; 6027} 6028 6029/// Perform an "extended" implicit conversion as returned by 6030/// TryClassUnification. 6031static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6032 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6033 InitializationKind Kind = 6034 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6035 Expr *Arg = E.get(); 6036 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6037 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6038 if (Result.isInvalid()) 6039 return true; 6040 6041 E = Result; 6042 return false; 6043} 6044 6045// Check the condition operand of ?: to see if it is valid for the GCC 6046// extension. 6047static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6048 QualType CondTy) { 6049 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6050 return false; 6051 const QualType EltTy = 6052 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6053 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&(static_cast <bool> (!EltTy->isBooleanType() &&
!EltTy->isEnumeralType() && "Vectors cant be boolean or enum types"
) ? void (0) : __assert_fail ("!EltTy->isBooleanType() && !EltTy->isEnumeralType() && \"Vectors cant be boolean or enum types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6054, __extension__ __PRETTY_FUNCTION__))
6054 "Vectors cant be boolean or enum types")(static_cast <bool> (!EltTy->isBooleanType() &&
!EltTy->isEnumeralType() && "Vectors cant be boolean or enum types"
) ? void (0) : __assert_fail ("!EltTy->isBooleanType() && !EltTy->isEnumeralType() && \"Vectors cant be boolean or enum types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6054, __extension__ __PRETTY_FUNCTION__))
; 6055 return EltTy->isIntegralType(Ctx); 6056} 6057 6058QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6059 ExprResult &RHS, 6060 SourceLocation QuestionLoc) { 6061 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6062 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6063 6064 QualType CondType = Cond.get()->getType(); 6065 const auto *CondVT = CondType->castAs<VectorType>(); 6066 QualType CondElementTy = CondVT->getElementType(); 6067 unsigned CondElementCount = CondVT->getNumElements(); 6068 QualType LHSType = LHS.get()->getType(); 6069 const auto *LHSVT = LHSType->getAs<VectorType>(); 6070 QualType RHSType = RHS.get()->getType(); 6071 const auto *RHSVT = RHSType->getAs<VectorType>(); 6072 6073 QualType ResultType; 6074 6075 6076 if (LHSVT && RHSVT) { 6077 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6078 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6079 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6080 return {}; 6081 } 6082 6083 // If both are vector types, they must be the same type. 6084 if (!Context.hasSameType(LHSType, RHSType)) { 6085 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6086 << LHSType << RHSType; 6087 return {}; 6088 } 6089 ResultType = LHSType; 6090 } else if (LHSVT || RHSVT) { 6091 ResultType = CheckVectorOperands( 6092 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6093 /*AllowBoolConversions*/ false); 6094 if (ResultType.isNull()) 6095 return {}; 6096 } else { 6097 // Both are scalar. 6098 QualType ResultElementTy; 6099 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6100 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6101 6102 if (Context.hasSameType(LHSType, RHSType)) 6103 ResultElementTy = LHSType; 6104 else 6105 ResultElementTy = 6106 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6107 6108 if (ResultElementTy->isEnumeralType()) { 6109 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6110 << ResultElementTy; 6111 return {}; 6112 } 6113 if (CondType->isExtVectorType()) 6114 ResultType = 6115 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6116 else 6117 ResultType = Context.getVectorType( 6118 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6119 6120 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6121 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6122 } 6123 6124 assert(!ResultType.isNull() && ResultType->isVectorType() &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6126, __extension__ __PRETTY_FUNCTION__))
6125 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6126, __extension__ __PRETTY_FUNCTION__))
6126 "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6126, __extension__ __PRETTY_FUNCTION__))
; 6127 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6128 QualType ResultElementTy = ResultVectorTy->getElementType(); 6129 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6130 6131 if (ResultElementCount != CondElementCount) { 6132 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6133 << ResultType; 6134 return {}; 6135 } 6136 6137 if (Context.getTypeSize(ResultElementTy) != 6138 Context.getTypeSize(CondElementTy)) { 6139 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6140 << ResultType; 6141 return {}; 6142 } 6143 6144 return ResultType; 6145} 6146 6147/// Check the operands of ?: under C++ semantics. 6148/// 6149/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6150/// extension. In this case, LHS == Cond. (But they're not aliases.) 6151/// 6152/// This function also implements GCC's vector extension and the 6153/// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6154/// permit the use of a?b:c where the type of a is that of a integer vector with 6155/// the same number of elements and size as the vectors of b and c. If one of 6156/// either b or c is a scalar it is implicitly converted to match the type of 6157/// the vector. Otherwise the expression is ill-formed. If both b and c are 6158/// scalars, then b and c are checked and converted to the type of a if 6159/// possible. 6160/// 6161/// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6162/// For the GCC extension, the ?: operator is evaluated as 6163/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6164/// For the OpenCL extensions, the ?: operator is evaluated as 6165/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6166/// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6167QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6168 ExprResult &RHS, ExprValueKind &VK, 6169 ExprObjectKind &OK, 6170 SourceLocation QuestionLoc) { 6171 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6172 // pointers. 6173 6174 // Assume r-value. 6175 VK = VK_PRValue; 6176 OK = OK_Ordinary; 6177 bool IsVectorConditional = 6178 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6179 6180 // C++11 [expr.cond]p1 6181 // The first expression is contextually converted to bool. 6182 if (!Cond.get()->isTypeDependent()) { 6183 ExprResult CondRes = IsVectorConditional 6184 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6185 : CheckCXXBooleanCondition(Cond.get()); 6186 if (CondRes.isInvalid()) 6187 return QualType(); 6188 Cond = CondRes; 6189 } else { 6190 // To implement C++, the first expression typically doesn't alter the result 6191 // type of the conditional, however the GCC compatible vector extension 6192 // changes the result type to be that of the conditional. Since we cannot 6193 // know if this is a vector extension here, delay the conversion of the 6194 // LHS/RHS below until later. 6195 return Context.DependentTy; 6196 } 6197 6198 6199 // Either of the arguments dependent? 6200 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6201 return Context.DependentTy; 6202 6203 // C++11 [expr.cond]p2 6204 // If either the second or the third operand has type (cv) void, ... 6205 QualType LTy = LHS.get()->getType(); 6206 QualType RTy = RHS.get()->getType(); 6207 bool LVoid = LTy->isVoidType(); 6208 bool RVoid = RTy->isVoidType(); 6209 if (LVoid || RVoid) { 6210 // ... one of the following shall hold: 6211 // -- The second or the third operand (but not both) is a (possibly 6212 // parenthesized) throw-expression; the result is of the type 6213 // and value category of the other. 6214 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6215 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6216 6217 // Void expressions aren't legal in the vector-conditional expressions. 6218 if (IsVectorConditional) { 6219 SourceRange DiagLoc = 6220 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6221 bool IsThrow = LVoid ? LThrow : RThrow; 6222 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6223 << DiagLoc << IsThrow; 6224 return QualType(); 6225 } 6226 6227 if (LThrow != RThrow) { 6228 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6229 VK = NonThrow->getValueKind(); 6230 // DR (no number yet): the result is a bit-field if the 6231 // non-throw-expression operand is a bit-field. 6232 OK = NonThrow->getObjectKind(); 6233 return NonThrow->getType(); 6234 } 6235 6236 // -- Both the second and third operands have type void; the result is of 6237 // type void and is a prvalue. 6238 if (LVoid && RVoid) 6239 return Context.VoidTy; 6240 6241 // Neither holds, error. 6242 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6243 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6244 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6245 return QualType(); 6246 } 6247 6248 // Neither is void. 6249 if (IsVectorConditional) 6250 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6251 6252 // C++11 [expr.cond]p3 6253 // Otherwise, if the second and third operand have different types, and 6254 // either has (cv) class type [...] an attempt is made to convert each of 6255 // those operands to the type of the other. 6256 if (!Context.hasSameType(LTy, RTy) && 6257 (LTy->isRecordType() || RTy->isRecordType())) { 6258 // These return true if a single direction is already ambiguous. 6259 QualType L2RType, R2LType; 6260 bool HaveL2R, HaveR2L; 6261 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6262 return QualType(); 6263 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6264 return QualType(); 6265 6266 // If both can be converted, [...] the program is ill-formed. 6267 if (HaveL2R && HaveR2L) { 6268 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6269 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6270 return QualType(); 6271 } 6272 6273 // If exactly one conversion is possible, that conversion is applied to 6274 // the chosen operand and the converted operands are used in place of the 6275 // original operands for the remainder of this section. 6276 if (HaveL2R) { 6277 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6278 return QualType(); 6279 LTy = LHS.get()->getType(); 6280 } else if (HaveR2L) { 6281 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6282 return QualType(); 6283 RTy = RHS.get()->getType(); 6284 } 6285 } 6286 6287 // C++11 [expr.cond]p3 6288 // if both are glvalues of the same value category and the same type except 6289 // for cv-qualification, an attempt is made to convert each of those 6290 // operands to the type of the other. 6291 // FIXME: 6292 // Resolving a defect in P0012R1: we extend this to cover all cases where 6293 // one of the operands is reference-compatible with the other, in order 6294 // to support conditionals between functions differing in noexcept. This 6295 // will similarly cover difference in array bounds after P0388R4. 6296 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6297 // that instead? 6298 ExprValueKind LVK = LHS.get()->getValueKind(); 6299 ExprValueKind RVK = RHS.get()->getValueKind(); 6300 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6301 // DerivedToBase was already handled by the class-specific case above. 6302 // FIXME: Should we allow ObjC conversions here? 6303 const ReferenceConversions AllowedConversions = 6304 ReferenceConversions::Qualification | 6305 ReferenceConversions::NestedQualification | 6306 ReferenceConversions::Function; 6307 6308 ReferenceConversions RefConv; 6309 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6310 Ref_Compatible && 6311 !(RefConv & ~AllowedConversions) && 6312 // [...] subject to the constraint that the reference must bind 6313 // directly [...] 6314 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6315 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6316 RTy = RHS.get()->getType(); 6317 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6318 Ref_Compatible && 6319 !(RefConv & ~AllowedConversions) && 6320 !LHS.get()->refersToBitField() && 6321 !LHS.get()->refersToVectorElement()) { 6322 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6323 LTy = LHS.get()->getType(); 6324 } 6325 } 6326 6327 // C++11 [expr.cond]p4 6328 // If the second and third operands are glvalues of the same value 6329 // category and have the same type, the result is of that type and 6330 // value category and it is a bit-field if the second or the third 6331 // operand is a bit-field, or if both are bit-fields. 6332 // We only extend this to bitfields, not to the crazy other kinds of 6333 // l-values. 6334 bool Same = Context.hasSameType(LTy, RTy); 6335 if (Same && LVK == RVK && LVK != VK_PRValue && 6336 LHS.get()->isOrdinaryOrBitFieldObject() && 6337 RHS.get()->isOrdinaryOrBitFieldObject()) { 6338 VK = LHS.get()->getValueKind(); 6339 if (LHS.get()->getObjectKind() == OK_BitField || 6340 RHS.get()->getObjectKind() == OK_BitField) 6341 OK = OK_BitField; 6342 6343 // If we have function pointer types, unify them anyway to unify their 6344 // exception specifications, if any. 6345 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6346 Qualifiers Qs = LTy.getQualifiers(); 6347 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6348 /*ConvertArgs*/false); 6349 LTy = Context.getQualifiedType(LTy, Qs); 6350 6351 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6352, __extension__ __PRETTY_FUNCTION__))
6352 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6352, __extension__ __PRETTY_FUNCTION__))
; 6353 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")(static_cast <bool> (Context.hasSameType(LTy, RTy) &&
"bad composite pointer type") ? void (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6353, __extension__ __PRETTY_FUNCTION__))
; 6354 } 6355 6356 return LTy; 6357 } 6358 6359 // C++11 [expr.cond]p5 6360 // Otherwise, the result is a prvalue. If the second and third operands 6361 // do not have the same type, and either has (cv) class type, ... 6362 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6363 // ... overload resolution is used to determine the conversions (if any) 6364 // to be applied to the operands. If the overload resolution fails, the 6365 // program is ill-formed. 6366 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6367 return QualType(); 6368 } 6369 6370 // C++11 [expr.cond]p6 6371 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6372 // conversions are performed on the second and third operands. 6373 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6374 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6375 if (LHS.isInvalid() || RHS.isInvalid()) 6376 return QualType(); 6377 LTy = LHS.get()->getType(); 6378 RTy = RHS.get()->getType(); 6379 6380 // After those conversions, one of the following shall hold: 6381 // -- The second and third operands have the same type; the result 6382 // is of that type. If the operands have class type, the result 6383 // is a prvalue temporary of the result type, which is 6384 // copy-initialized from either the second operand or the third 6385 // operand depending on the value of the first operand. 6386 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6387 if (LTy->isRecordType()) { 6388 // The operands have class type. Make a temporary copy. 6389 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6390 6391 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6392 SourceLocation(), 6393 LHS); 6394 if (LHSCopy.isInvalid()) 6395 return QualType(); 6396 6397 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6398 SourceLocation(), 6399 RHS); 6400 if (RHSCopy.isInvalid()) 6401 return QualType(); 6402 6403 LHS = LHSCopy; 6404 RHS = RHSCopy; 6405 } 6406 6407 // If we have function pointer types, unify them anyway to unify their 6408 // exception specifications, if any. 6409 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6410 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6411 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6412, __extension__ __PRETTY_FUNCTION__))
6412 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6412, __extension__ __PRETTY_FUNCTION__))
; 6413 } 6414 6415 return LTy; 6416 } 6417 6418 // Extension: conditional operator involving vector types. 6419 if (LTy->isVectorType() || RTy->isVectorType()) 6420 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6421 /*AllowBothBool*/true, 6422 /*AllowBoolConversions*/false); 6423 6424 // -- The second and third operands have arithmetic or enumeration type; 6425 // the usual arithmetic conversions are performed to bring them to a 6426 // common type, and the result is of that type. 6427 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6428 QualType ResTy = 6429 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6430 if (LHS.isInvalid() || RHS.isInvalid()) 6431 return QualType(); 6432 if (ResTy.isNull()) { 6433 Diag(QuestionLoc, 6434 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6435 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6436 return QualType(); 6437 } 6438 6439 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6440 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6441 6442 return ResTy; 6443 } 6444 6445 // -- The second and third operands have pointer type, or one has pointer 6446 // type and the other is a null pointer constant, or both are null 6447 // pointer constants, at least one of which is non-integral; pointer 6448 // conversions and qualification conversions are performed to bring them 6449 // to their composite pointer type. The result is of the composite 6450 // pointer type. 6451 // -- The second and third operands have pointer to member type, or one has 6452 // pointer to member type and the other is a null pointer constant; 6453 // pointer to member conversions and qualification conversions are 6454 // performed to bring them to a common type, whose cv-qualification 6455 // shall match the cv-qualification of either the second or the third 6456 // operand. The result is of the common type. 6457 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6458 if (!Composite.isNull()) 6459 return Composite; 6460 6461 // Similarly, attempt to find composite type of two objective-c pointers. 6462 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6463 if (LHS.isInvalid() || RHS.isInvalid()) 6464 return QualType(); 6465 if (!Composite.isNull()) 6466 return Composite; 6467 6468 // Check if we are using a null with a non-pointer type. 6469 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6470 return QualType(); 6471 6472 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6473 << LHS.get()->getType() << RHS.get()->getType() 6474 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6475 return QualType(); 6476} 6477 6478static FunctionProtoType::ExceptionSpecInfo 6479mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6480 FunctionProtoType::ExceptionSpecInfo ESI2, 6481 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6482 ExceptionSpecificationType EST1 = ESI1.Type; 6483 ExceptionSpecificationType EST2 = ESI2.Type; 6484 6485 // If either of them can throw anything, that is the result. 6486 if (EST1 == EST_None) return ESI1; 6487 if (EST2 == EST_None) return ESI2; 6488 if (EST1 == EST_MSAny) return ESI1; 6489 if (EST2 == EST_MSAny) return ESI2; 6490 if (EST1 == EST_NoexceptFalse) return ESI1; 6491 if (EST2 == EST_NoexceptFalse) return ESI2; 6492 6493 // If either of them is non-throwing, the result is the other. 6494 if (EST1 == EST_NoThrow) return ESI2; 6495 if (EST2 == EST_NoThrow) return ESI1; 6496 if (EST1 == EST_DynamicNone) return ESI2; 6497 if (EST2 == EST_DynamicNone) return ESI1; 6498 if (EST1 == EST_BasicNoexcept) return ESI2; 6499 if (EST2 == EST_BasicNoexcept) return ESI1; 6500 if (EST1 == EST_NoexceptTrue) return ESI2; 6501 if (EST2 == EST_NoexceptTrue) return ESI1; 6502 6503 // If we're left with value-dependent computed noexcept expressions, we're 6504 // stuck. Before C++17, we can just drop the exception specification entirely, 6505 // since it's not actually part of the canonical type. And this should never 6506 // happen in C++17, because it would mean we were computing the composite 6507 // pointer type of dependent types, which should never happen. 6508 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6509 assert(!S.getLangOpts().CPlusPlus17 &&(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6510, __extension__ __PRETTY_FUNCTION__))
6510 "computing composite pointer type of dependent types")(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6510, __extension__ __PRETTY_FUNCTION__))
; 6511 return FunctionProtoType::ExceptionSpecInfo(); 6512 } 6513 6514 // Switch over the possibilities so that people adding new values know to 6515 // update this function. 6516 switch (EST1) { 6517 case EST_None: 6518 case EST_DynamicNone: 6519 case EST_MSAny: 6520 case EST_BasicNoexcept: 6521 case EST_DependentNoexcept: 6522 case EST_NoexceptFalse: 6523 case EST_NoexceptTrue: 6524 case EST_NoThrow: 6525 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6525)
; 6526 6527 case EST_Dynamic: { 6528 // This is the fun case: both exception specifications are dynamic. Form 6529 // the union of the two lists. 6530 assert(EST2 == EST_Dynamic && "other cases should already be handled")(static_cast <bool> (EST2 == EST_Dynamic && "other cases should already be handled"
) ? void (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6530, __extension__ __PRETTY_FUNCTION__))
; 6531 llvm::SmallPtrSet<QualType, 8> Found; 6532 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6533 for (QualType E : Exceptions) 6534 if (Found.insert(S.Context.getCanonicalType(E)).second) 6535 ExceptionTypeStorage.push_back(E); 6536 6537 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6538 Result.Exceptions = ExceptionTypeStorage; 6539 return Result; 6540 } 6541 6542 case EST_Unevaluated: 6543 case EST_Uninstantiated: 6544 case EST_Unparsed: 6545 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6545)
; 6546 } 6547 6548 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6548)
; 6549} 6550 6551/// Find a merged pointer type and convert the two expressions to it. 6552/// 6553/// This finds the composite pointer type for \p E1 and \p E2 according to 6554/// C++2a [expr.type]p3. It converts both expressions to this type and returns 6555/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6556/// is \c true). 6557/// 6558/// \param Loc The location of the operator requiring these two expressions to 6559/// be converted to the composite pointer type. 6560/// 6561/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6562QualType Sema::FindCompositePointerType(SourceLocation Loc, 6563 Expr *&E1, Expr *&E2, 6564 bool ConvertArgs) { 6565 assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6565, __extension__ __PRETTY_FUNCTION__))
; 6566 6567 // C++1z [expr]p14: 6568 // The composite pointer type of two operands p1 and p2 having types T1 6569 // and T2 6570 QualType T1 = E1->getType(), T2 = E2->getType(); 6571 6572 // where at least one is a pointer or pointer to member type or 6573 // std::nullptr_t is: 6574 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6575 T1->isNullPtrType(); 6576 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6577 T2->isNullPtrType(); 6578 if (!T1IsPointerLike && !T2IsPointerLike) 6579 return QualType(); 6580 6581 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6582 // This can't actually happen, following the standard, but we also use this 6583 // to implement the end of [expr.conv], which hits this case. 6584 // 6585 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6586 if (T1IsPointerLike && 6587 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6588 if (ConvertArgs) 6589 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6590 ? CK_NullToMemberPointer 6591 : CK_NullToPointer).get(); 6592 return T1; 6593 } 6594 if (T2IsPointerLike && 6595 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6596 if (ConvertArgs) 6597 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6598 ? CK_NullToMemberPointer 6599 : CK_NullToPointer).get(); 6600 return T2; 6601 } 6602 6603 // Now both have to be pointers or member pointers. 6604 if (!T1IsPointerLike || !T2IsPointerLike) 6605 return QualType(); 6606 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6607, __extension__ __PRETTY_FUNCTION__))
6607 "nullptr_t should be a null pointer constant")(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6607, __extension__ __PRETTY_FUNCTION__))
; 6608 6609 struct Step { 6610 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6611 // Qualifiers to apply under the step kind. 6612 Qualifiers Quals; 6613 /// The class for a pointer-to-member; a constant array type with a bound 6614 /// (if any) for an array. 6615 const Type *ClassOrBound; 6616 6617 Step(Kind K, const Type *ClassOrBound = nullptr) 6618 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6619 QualType rebuild(ASTContext &Ctx, QualType T) const { 6620 T = Ctx.getQualifiedType(T, Quals); 6621 switch (K) { 6622 case Pointer: 6623 return Ctx.getPointerType(T); 6624 case MemberPointer: 6625 return Ctx.getMemberPointerType(T, ClassOrBound); 6626 case ObjCPointer: 6627 return Ctx.getObjCObjectPointerType(T); 6628 case Array: 6629 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6630 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6631 ArrayType::Normal, 0); 6632 else 6633 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6634 } 6635 llvm_unreachable("unknown step kind")::llvm::llvm_unreachable_internal("unknown step kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6635)
; 6636 } 6637 }; 6638 6639 SmallVector<Step, 8> Steps; 6640 6641 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6642 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6643 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6644 // respectively; 6645 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6646 // to member of C2 of type cv2 U2" for some non-function type U, where 6647 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6648 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6649 // respectively; 6650 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6651 // T2; 6652 // 6653 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6654 // and to prepare to form the cv-combined type if so. 6655 QualType Composite1 = T1; 6656 QualType Composite2 = T2; 6657 unsigned NeedConstBefore = 0; 6658 while (true) { 6659 assert(!Composite1.isNull() && !Composite2.isNull())(static_cast <bool> (!Composite1.isNull() && !Composite2
.isNull()) ? void (0) : __assert_fail ("!Composite1.isNull() && !Composite2.isNull()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6659, __extension__ __PRETTY_FUNCTION__))
; 6660 6661 Qualifiers Q1, Q2; 6662 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6663 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6664 6665 // Top-level qualifiers are ignored. Merge at all lower levels. 6666 if (!Steps.empty()) { 6667 // Find the qualifier union: (approximately) the unique minimal set of 6668 // qualifiers that is compatible with both types. 6669 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6670 Q2.getCVRUQualifiers()); 6671 6672 // Under one level of pointer or pointer-to-member, we can change to an 6673 // unambiguous compatible address space. 6674 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6675 Quals.setAddressSpace(Q1.getAddressSpace()); 6676 } else if (Steps.size() == 1) { 6677 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6678 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6679 if (MaybeQ1 == MaybeQ2) 6680 return QualType(); // No unique best address space. 6681 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6682 : Q2.getAddressSpace()); 6683 } else { 6684 return QualType(); 6685 } 6686 6687 // FIXME: In C, we merge __strong and none to __strong at the top level. 6688 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6689 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6690 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6691 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6691, __extension__ __PRETTY_FUNCTION__))
; 6692 else 6693 return QualType(); 6694 6695 // Mismatched lifetime qualifiers never compatibly include each other. 6696 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6697 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6698 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6699 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6699, __extension__ __PRETTY_FUNCTION__))
; 6700 else 6701 return QualType(); 6702 6703 Steps.back().Quals = Quals; 6704 if (Q1 != Quals || Q2 != Quals) 6705 NeedConstBefore = Steps.size() - 1; 6706 } 6707 6708 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6709 const PointerType *Ptr1, *Ptr2; 6710 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6711 (Ptr2 = Composite2->getAs<PointerType>())) { 6712 Composite1 = Ptr1->getPointeeType(); 6713 Composite2 = Ptr2->getPointeeType(); 6714 Steps.emplace_back(Step::Pointer); 6715 continue; 6716 } 6717 6718 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6719 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6720 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6721 Composite1 = ObjPtr1->getPointeeType(); 6722 Composite2 = ObjPtr2->getPointeeType(); 6723 Steps.emplace_back(Step::ObjCPointer); 6724 continue; 6725 } 6726 6727 const MemberPointerType *MemPtr1, *MemPtr2; 6728 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6729 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6730 Composite1 = MemPtr1->getPointeeType(); 6731 Composite2 = MemPtr2->getPointeeType(); 6732 6733 // At the top level, we can perform a base-to-derived pointer-to-member 6734 // conversion: 6735 // 6736 // - [...] where C1 is reference-related to C2 or C2 is 6737 // reference-related to C1 6738 // 6739 // (Note that the only kinds of reference-relatedness in scope here are 6740 // "same type or derived from".) At any other level, the class must 6741 // exactly match. 6742 const Type *Class = nullptr; 6743 QualType Cls1(MemPtr1->getClass(), 0); 6744 QualType Cls2(MemPtr2->getClass(), 0); 6745 if (Context.hasSameType(Cls1, Cls2)) 6746 Class = MemPtr1->getClass(); 6747 else if (Steps.empty()) 6748 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6749 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6750 if (!Class) 6751 return QualType(); 6752 6753 Steps.emplace_back(Step::MemberPointer, Class); 6754 continue; 6755 } 6756 6757 // Special case: at the top level, we can decompose an Objective-C pointer 6758 // and a 'cv void *'. Unify the qualifiers. 6759 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6760 Composite2->isObjCObjectPointerType()) || 6761 (Composite1->isObjCObjectPointerType() && 6762 Composite2->isVoidPointerType()))) { 6763 Composite1 = Composite1->getPointeeType(); 6764 Composite2 = Composite2->getPointeeType(); 6765 Steps.emplace_back(Step::Pointer); 6766 continue; 6767 } 6768 6769 // FIXME: arrays 6770 6771 // FIXME: block pointer types? 6772 6773 // Cannot unwrap any more types. 6774 break; 6775 } 6776 6777 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6778 // "pointer to function", where the function types are otherwise the same, 6779 // "pointer to function"; 6780 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6781 // type is "pointer to member of C2 of type noexcept function", and C1 6782 // is reference-related to C2 or C2 is reference-related to C1, where 6783 // the function types are otherwise the same, "pointer to member of C2 of 6784 // type function" or "pointer to member of C1 of type function", 6785 // respectively; 6786 // 6787 // We also support 'noreturn' here, so as a Clang extension we generalize the 6788 // above to: 6789 // 6790 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6791 // "pointer to member function" and the pointee types can be unified 6792 // by a function pointer conversion, that conversion is applied 6793 // before checking the following rules. 6794 // 6795 // We've already unwrapped down to the function types, and we want to merge 6796 // rather than just convert, so do this ourselves rather than calling 6797 // IsFunctionConversion. 6798 // 6799 // FIXME: In order to match the standard wording as closely as possible, we 6800 // currently only do this under a single level of pointers. Ideally, we would 6801 // allow this in general, and set NeedConstBefore to the relevant depth on 6802 // the side(s) where we changed anything. If we permit that, we should also 6803 // consider this conversion when determining type similarity and model it as 6804 // a qualification conversion. 6805 if (Steps.size() == 1) { 6806 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6807 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6808 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6809 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6810 6811 // The result is noreturn if both operands are. 6812 bool Noreturn = 6813 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6814 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6815 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6816 6817 // The result is nothrow if both operands are. 6818 SmallVector<QualType, 8> ExceptionTypeStorage; 6819 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6820 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6821 ExceptionTypeStorage); 6822 6823 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6824 FPT1->getParamTypes(), EPI1); 6825 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6826 FPT2->getParamTypes(), EPI2); 6827 } 6828 } 6829 } 6830 6831 // There are some more conversions we can perform under exactly one pointer. 6832 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6833 !Context.hasSameType(Composite1, Composite2)) { 6834 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6835 // "pointer to cv2 T", where T is an object type or void, 6836 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6837 if (Composite1->isVoidType() && Composite2->isObjectType()) 6838 Composite2 = Composite1; 6839 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6840 Composite1 = Composite2; 6841 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6842 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6843 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6844 // T1, respectively; 6845 // 6846 // The "similar type" handling covers all of this except for the "T1 is a 6847 // base class of T2" case in the definition of reference-related. 6848 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6849 Composite1 = Composite2; 6850 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6851 Composite2 = Composite1; 6852 } 6853 6854 // At this point, either the inner types are the same or we have failed to 6855 // find a composite pointer type. 6856 if (!Context.hasSameType(Composite1, Composite2)) 6857 return QualType(); 6858 6859 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6860 // differing qualifier. 6861 for (unsigned I = 0; I != NeedConstBefore; ++I) 6862 Steps[I].Quals.addConst(); 6863 6864 // Rebuild the composite type. 6865 QualType Composite = Composite1; 6866 for (auto &S : llvm::reverse(Steps)) 6867 Composite = S.rebuild(Context, Composite); 6868 6869 if (ConvertArgs) { 6870 // Convert the expressions to the composite pointer type. 6871 InitializedEntity Entity = 6872 InitializedEntity::InitializeTemporary(Composite); 6873 InitializationKind Kind = 6874 InitializationKind::CreateCopy(Loc, SourceLocation()); 6875 6876 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6877 if (!E1ToC) 6878 return QualType(); 6879 6880 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6881 if (!E2ToC) 6882 return QualType(); 6883 6884 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6885 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6886 if (E1Result.isInvalid()) 6887 return QualType(); 6888 E1 = E1Result.get(); 6889 6890 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6891 if (E2Result.isInvalid()) 6892 return QualType(); 6893 E2 = E2Result.get(); 6894 } 6895 6896 return Composite; 6897} 6898 6899ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6900 if (!E) 6901 return ExprError(); 6902 6903 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")(static_cast <bool> (!isa<CXXBindTemporaryExpr>(E
) && "Double-bound temporary?") ? void (0) : __assert_fail
("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 6903, __extension__ __PRETTY_FUNCTION__))
; 6904 6905 // If the result is a glvalue, we shouldn't bind it. 6906 if (E->isGLValue()) 6907 return E; 6908 6909 // In ARC, calls that return a retainable type can return retained, 6910 // in which case we have to insert a consuming cast. 6911 if (getLangOpts().ObjCAutoRefCount && 6912 E->getType()->isObjCRetainableType()) { 6913 6914 bool ReturnsRetained; 6915 6916 // For actual calls, we compute this by examining the type of the 6917 // called value. 6918 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6919 Expr *Callee = Call->getCallee()->IgnoreParens(); 6920 QualType T = Callee->getType(); 6921 6922 if (T == Context.BoundMemberTy) { 6923 // Handle pointer-to-members. 6924 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6925 T = BinOp->getRHS()->getType(); 6926 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6927 T = Mem->getMemberDecl()->getType(); 6928 } 6929 6930 if (const PointerType *Ptr = T->getAs<PointerType>()) 6931 T = Ptr->getPointeeType(); 6932 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6933 T = Ptr->getPointeeType(); 6934 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6935 T = MemPtr->getPointeeType(); 6936 6937 auto *FTy = T->castAs<FunctionType>(); 6938 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6939 6940 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6941 // type always produce a +1 object. 6942 } else if (isa<StmtExpr>(E)) { 6943 ReturnsRetained = true; 6944 6945 // We hit this case with the lambda conversion-to-block optimization; 6946 // we don't want any extra casts here. 6947 } else if (isa<CastExpr>(E) && 6948 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6949 return E; 6950 6951 // For message sends and property references, we try to find an 6952 // actual method. FIXME: we should infer retention by selector in 6953 // cases where we don't have an actual method. 6954 } else { 6955 ObjCMethodDecl *D = nullptr; 6956 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6957 D = Send->getMethodDecl(); 6958 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6959 D = BoxedExpr->getBoxingMethod(); 6960 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6961 // Don't do reclaims if we're using the zero-element array 6962 // constant. 6963 if (ArrayLit->getNumElements() == 0 && 6964 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6965 return E; 6966 6967 D = ArrayLit->getArrayWithObjectsMethod(); 6968 } else if (ObjCDictionaryLiteral *DictLit 6969 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6970 // Don't do reclaims if we're using the zero-element dictionary 6971 // constant. 6972 if (DictLit->getNumElements() == 0 && 6973 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6974 return E; 6975 6976 D = DictLit->getDictWithObjectsMethod(); 6977 } 6978 6979 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6980 6981 // Don't do reclaims on performSelector calls; despite their 6982 // return type, the invoked method doesn't necessarily actually 6983 // return an object. 6984 if (!ReturnsRetained && 6985 D && D->getMethodFamily() == OMF_performSelector) 6986 return E; 6987 } 6988 6989 // Don't reclaim an object of Class type. 6990 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6991 return E; 6992 6993 Cleanup.setExprNeedsCleanups(true); 6994 6995 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6996 : CK_ARCReclaimReturnedObject); 6997 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6998 VK_PRValue, FPOptionsOverride()); 6999 } 7000 7001 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7002 Cleanup.setExprNeedsCleanups(true); 7003 7004 if (!getLangOpts().CPlusPlus) 7005 return E; 7006 7007 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7008 // a fast path for the common case that the type is directly a RecordType. 7009 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7010 const RecordType *RT = nullptr; 7011 while (!RT) { 7012 switch (T->getTypeClass()) { 7013 case Type::Record: 7014 RT = cast<RecordType>(T); 7015 break; 7016 case Type::ConstantArray: 7017 case Type::IncompleteArray: 7018 case Type::VariableArray: 7019 case Type::DependentSizedArray: 7020 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7021 break; 7022 default: 7023 return E; 7024 } 7025 } 7026 7027 // That should be enough to guarantee that this type is complete, if we're 7028 // not processing a decltype expression. 7029 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7030 if (RD->isInvalidDecl() || RD->isDependentContext()) 7031 return E; 7032 7033 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7034 ExpressionEvaluationContextRecord::EK_Decltype; 7035 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7036 7037 if (Destructor) { 7038 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7039 CheckDestructorAccess(E->getExprLoc(), Destructor, 7040 PDiag(diag::err_access_dtor_temp) 7041 << E->getType()); 7042 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7043 return ExprError(); 7044 7045 // If destructor is trivial, we can avoid the extra copy. 7046 if (Destructor->isTrivial()) 7047 return E; 7048 7049 // We need a cleanup, but we don't need to remember the temporary. 7050 Cleanup.setExprNeedsCleanups(true); 7051 } 7052 7053 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7054 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7055 7056 if (IsDecltype) 7057 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7058 7059 return Bind; 7060} 7061 7062ExprResult 7063Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7064 if (SubExpr.isInvalid()) 7065 return ExprError(); 7066 7067 return MaybeCreateExprWithCleanups(SubExpr.get()); 7068} 7069 7070Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7071 assert(SubExpr && "subexpression can't be null!")(static_cast <bool> (SubExpr && "subexpression can't be null!"
) ? void (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7071, __extension__ __PRETTY_FUNCTION__))
; 7072 7073 CleanupVarDeclMarking(); 7074 7075 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7076 assert(ExprCleanupObjects.size() >= FirstCleanup)(static_cast <bool> (ExprCleanupObjects.size() >= FirstCleanup
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7076, __extension__ __PRETTY_FUNCTION__))
; 7077 assert(Cleanup.exprNeedsCleanups() ||(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7078, __extension__ __PRETTY_FUNCTION__))
7078 ExprCleanupObjects.size() == FirstCleanup)(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7078, __extension__ __PRETTY_FUNCTION__))
; 7079 if (!Cleanup.exprNeedsCleanups()) 7080 return SubExpr; 7081 7082 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7083 ExprCleanupObjects.size() - FirstCleanup); 7084 7085 auto *E = ExprWithCleanups::Create( 7086 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7087 DiscardCleanupsInEvaluationContext(); 7088 7089 return E; 7090} 7091 7092Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7093 assert(SubStmt && "sub-statement can't be null!")(static_cast <bool> (SubStmt && "sub-statement can't be null!"
) ? void (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7093, __extension__ __PRETTY_FUNCTION__))
; 7094 7095 CleanupVarDeclMarking(); 7096 7097 if (!Cleanup.exprNeedsCleanups()) 7098 return SubStmt; 7099 7100 // FIXME: In order to attach the temporaries, wrap the statement into 7101 // a StmtExpr; currently this is only used for asm statements. 7102 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7103 // a new AsmStmtWithTemporaries. 7104 CompoundStmt *CompStmt = CompoundStmt::Create( 7105 Context, SubStmt, SourceLocation(), SourceLocation()); 7106 Expr *E = new (Context) 7107 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7108 /*FIXME TemplateDepth=*/0); 7109 return MaybeCreateExprWithCleanups(E); 7110} 7111 7112/// Process the expression contained within a decltype. For such expressions, 7113/// certain semantic checks on temporaries are delayed until this point, and 7114/// are omitted for the 'topmost' call in the decltype expression. If the 7115/// topmost call bound a temporary, strip that temporary off the expression. 7116ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7117 assert(ExprEvalContexts.back().ExprContext ==(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7119, __extension__ __PRETTY_FUNCTION__))
7118 ExpressionEvaluationContextRecord::EK_Decltype &&(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7119, __extension__ __PRETTY_FUNCTION__))
7119 "not in a decltype expression")(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7119, __extension__ __PRETTY_FUNCTION__))
; 7120 7121 ExprResult Result = CheckPlaceholderExpr(E); 7122 if (Result.isInvalid()) 7123 return ExprError(); 7124 E = Result.get(); 7125 7126 // C++11 [expr.call]p11: 7127 // If a function call is a prvalue of object type, 7128 // -- if the function call is either 7129 // -- the operand of a decltype-specifier, or 7130 // -- the right operand of a comma operator that is the operand of a 7131 // decltype-specifier, 7132 // a temporary object is not introduced for the prvalue. 7133 7134 // Recursively rebuild ParenExprs and comma expressions to strip out the 7135 // outermost CXXBindTemporaryExpr, if any. 7136 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7137 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7138 if (SubExpr.isInvalid()) 7139 return ExprError(); 7140 if (SubExpr.get() == PE->getSubExpr()) 7141 return E; 7142 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7143 } 7144 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7145 if (BO->getOpcode() == BO_Comma) { 7146 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7147 if (RHS.isInvalid()) 7148 return ExprError(); 7149 if (RHS.get() == BO->getRHS()) 7150 return E; 7151 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7152 BO->getType(), BO->getValueKind(), 7153 BO->getObjectKind(), BO->getOperatorLoc(), 7154 BO->getFPFeatures(getLangOpts())); 7155 } 7156 } 7157 7158 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7159 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7160 : nullptr; 7161 if (TopCall) 7162 E = TopCall; 7163 else 7164 TopBind = nullptr; 7165 7166 // Disable the special decltype handling now. 7167 ExprEvalContexts.back().ExprContext = 7168 ExpressionEvaluationContextRecord::EK_Other; 7169 7170 Result = CheckUnevaluatedOperand(E); 7171 if (Result.isInvalid()) 7172 return ExprError(); 7173 E = Result.get(); 7174 7175 // In MS mode, don't perform any extra checking of call return types within a 7176 // decltype expression. 7177 if (getLangOpts().MSVCCompat) 7178 return E; 7179 7180 // Perform the semantic checks we delayed until this point. 7181 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7182 I != N; ++I) { 7183 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7184 if (Call == TopCall) 7185 continue; 7186 7187 if (CheckCallReturnType(Call->getCallReturnType(Context), 7188 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7189 return ExprError(); 7190 } 7191 7192 // Now all relevant types are complete, check the destructors are accessible 7193 // and non-deleted, and annotate them on the temporaries. 7194 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7195 I != N; ++I) { 7196 CXXBindTemporaryExpr *Bind = 7197 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7198 if (Bind == TopBind) 7199 continue; 7200 7201 CXXTemporary *Temp = Bind->getTemporary(); 7202 7203 CXXRecordDecl *RD = 7204 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7205 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7206 Temp->setDestructor(Destructor); 7207 7208 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7209 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7210 PDiag(diag::err_access_dtor_temp) 7211 << Bind->getType()); 7212 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7213 return ExprError(); 7214 7215 // We need a cleanup, but we don't need to remember the temporary. 7216 Cleanup.setExprNeedsCleanups(true); 7217 } 7218 7219 // Possibly strip off the top CXXBindTemporaryExpr. 7220 return E; 7221} 7222 7223/// Note a set of 'operator->' functions that were used for a member access. 7224static void noteOperatorArrows(Sema &S, 7225 ArrayRef<FunctionDecl *> OperatorArrows) { 7226 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7227 // FIXME: Make this configurable? 7228 unsigned Limit = 9; 7229 if (OperatorArrows.size() > Limit) { 7230 // Produce Limit-1 normal notes and one 'skipping' note. 7231 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7232 SkipCount = OperatorArrows.size() - (Limit - 1); 7233 } 7234 7235 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7236 if (I == SkipStart) { 7237 S.Diag(OperatorArrows[I]->getLocation(), 7238 diag::note_operator_arrows_suppressed) 7239 << SkipCount; 7240 I += SkipCount; 7241 } else { 7242 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7243 << OperatorArrows[I]->getCallResultType(); 7244 ++I; 7245 } 7246 } 7247} 7248 7249ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7250 SourceLocation OpLoc, 7251 tok::TokenKind OpKind, 7252 ParsedType &ObjectType, 7253 bool &MayBePseudoDestructor) { 7254 // Since this might be a postfix expression, get rid of ParenListExprs. 7255 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7256 if (Result.isInvalid()) return ExprError(); 7257 Base = Result.get(); 7258 7259 Result = CheckPlaceholderExpr(Base); 7260 if (Result.isInvalid()) return ExprError(); 7261 Base = Result.get(); 7262 7263 QualType BaseType = Base->getType(); 7264 MayBePseudoDestructor = false; 7265 if (BaseType->isDependentType()) { 7266 // If we have a pointer to a dependent type and are using the -> operator, 7267 // the object type is the type that the pointer points to. We might still 7268 // have enough information about that type to do something useful. 7269 if (OpKind == tok::arrow) 7270 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7271 BaseType = Ptr->getPointeeType(); 7272 7273 ObjectType = ParsedType::make(BaseType); 7274 MayBePseudoDestructor = true; 7275 return Base; 7276 } 7277 7278 // C++ [over.match.oper]p8: 7279 // [...] When operator->returns, the operator-> is applied to the value 7280 // returned, with the original second operand. 7281 if (OpKind == tok::arrow) { 7282 QualType StartingType = BaseType; 7283 bool NoArrowOperatorFound = false; 7284 bool FirstIteration = true; 7285 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7286 // The set of types we've considered so far. 7287 llvm::SmallPtrSet<CanQualType,8> CTypes; 7288 SmallVector<FunctionDecl*, 8> OperatorArrows; 7289 CTypes.insert(Context.getCanonicalType(BaseType)); 7290 7291 while (BaseType->isRecordType()) { 7292 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7293 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7294 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7295 noteOperatorArrows(*this, OperatorArrows); 7296 Diag(OpLoc, diag::note_operator_arrow_depth) 7297 << getLangOpts().ArrowDepth; 7298 return ExprError(); 7299 } 7300 7301 Result = BuildOverloadedArrowExpr( 7302 S, Base, OpLoc, 7303 // When in a template specialization and on the first loop iteration, 7304 // potentially give the default diagnostic (with the fixit in a 7305 // separate note) instead of having the error reported back to here 7306 // and giving a diagnostic with a fixit attached to the error itself. 7307 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7308 ? nullptr 7309 : &NoArrowOperatorFound); 7310 if (Result.isInvalid()) { 7311 if (NoArrowOperatorFound) { 7312 if (FirstIteration) { 7313 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7314 << BaseType << 1 << Base->getSourceRange() 7315 << FixItHint::CreateReplacement(OpLoc, "."); 7316 OpKind = tok::period; 7317 break; 7318 } 7319 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7320 << BaseType << Base->getSourceRange(); 7321 CallExpr *CE = dyn_cast<CallExpr>(Base); 7322 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7323 Diag(CD->getBeginLoc(), 7324 diag::note_member_reference_arrow_from_operator_arrow); 7325 } 7326 } 7327 return ExprError(); 7328 } 7329 Base = Result.get(); 7330 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7331 OperatorArrows.push_back(OpCall->getDirectCallee()); 7332 BaseType = Base->getType(); 7333 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7334 if (!CTypes.insert(CBaseType).second) { 7335 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7336 noteOperatorArrows(*this, OperatorArrows); 7337 return ExprError(); 7338 } 7339 FirstIteration = false; 7340 } 7341 7342 if (OpKind == tok::arrow) { 7343 if (BaseType->isPointerType()) 7344 BaseType = BaseType->getPointeeType(); 7345 else if (auto *AT = Context.getAsArrayType(BaseType)) 7346 BaseType = AT->getElementType(); 7347 } 7348 } 7349 7350 // Objective-C properties allow "." access on Objective-C pointer types, 7351 // so adjust the base type to the object type itself. 7352 if (BaseType->isObjCObjectPointerType()) 7353 BaseType = BaseType->getPointeeType(); 7354 7355 // C++ [basic.lookup.classref]p2: 7356 // [...] If the type of the object expression is of pointer to scalar 7357 // type, the unqualified-id is looked up in the context of the complete 7358 // postfix-expression. 7359 // 7360 // This also indicates that we could be parsing a pseudo-destructor-name. 7361 // Note that Objective-C class and object types can be pseudo-destructor 7362 // expressions or normal member (ivar or property) access expressions, and 7363 // it's legal for the type to be incomplete if this is a pseudo-destructor 7364 // call. We'll do more incomplete-type checks later in the lookup process, 7365 // so just skip this check for ObjC types. 7366 if (!BaseType->isRecordType()) { 7367 ObjectType = ParsedType::make(BaseType); 7368 MayBePseudoDestructor = true; 7369 return Base; 7370 } 7371 7372 // The object type must be complete (or dependent), or 7373 // C++11 [expr.prim.general]p3: 7374 // Unlike the object expression in other contexts, *this is not required to 7375 // be of complete type for purposes of class member access (5.2.5) outside 7376 // the member function body. 7377 if (!BaseType->isDependentType() && 7378 !isThisOutsideMemberFunctionBody(BaseType) && 7379 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7380 return ExprError(); 7381 7382 // C++ [basic.lookup.classref]p2: 7383 // If the id-expression in a class member access (5.2.5) is an 7384 // unqualified-id, and the type of the object expression is of a class 7385 // type C (or of pointer to a class type C), the unqualified-id is looked 7386 // up in the scope of class C. [...] 7387 ObjectType = ParsedType::make(BaseType); 7388 return Base; 7389} 7390 7391static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7392 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7393 if (Base->hasPlaceholderType()) { 7394 ExprResult result = S.CheckPlaceholderExpr(Base); 7395 if (result.isInvalid()) return true; 7396 Base = result.get(); 7397 } 7398 ObjectType = Base->getType(); 7399 7400 // C++ [expr.pseudo]p2: 7401 // The left-hand side of the dot operator shall be of scalar type. The 7402 // left-hand side of the arrow operator shall be of pointer to scalar type. 7403 // This scalar type is the object type. 7404 // Note that this is rather different from the normal handling for the 7405 // arrow operator. 7406 if (OpKind == tok::arrow) { 7407 // The operator requires a prvalue, so perform lvalue conversions. 7408 // Only do this if we might plausibly end with a pointer, as otherwise 7409 // this was likely to be intended to be a '.'. 7410 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7411 ObjectType->isFunctionType()) { 7412 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7413 if (BaseResult.isInvalid()) 7414 return true; 7415 Base = BaseResult.get(); 7416 ObjectType = Base->getType(); 7417 } 7418 7419 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7420 ObjectType = Ptr->getPointeeType(); 7421 } else if (!Base->isTypeDependent()) { 7422 // The user wrote "p->" when they probably meant "p."; fix it. 7423 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7424 << ObjectType << true 7425 << FixItHint::CreateReplacement(OpLoc, "."); 7426 if (S.isSFINAEContext()) 7427 return true; 7428 7429 OpKind = tok::period; 7430 } 7431 } 7432 7433 return false; 7434} 7435 7436/// Check if it's ok to try and recover dot pseudo destructor calls on 7437/// pointer objects. 7438static bool 7439canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7440 QualType DestructedType) { 7441 // If this is a record type, check if its destructor is callable. 7442 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7443 if (RD->hasDefinition()) 7444 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7445 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7446 return false; 7447 } 7448 7449 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7450 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7451 DestructedType->isVectorType(); 7452} 7453 7454ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7455 SourceLocation OpLoc, 7456 tok::TokenKind OpKind, 7457 const CXXScopeSpec &SS, 7458 TypeSourceInfo *ScopeTypeInfo, 7459 SourceLocation CCLoc, 7460 SourceLocation TildeLoc, 7461 PseudoDestructorTypeStorage Destructed) { 7462 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7463 7464 QualType ObjectType; 7465 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7466 return ExprError(); 7467 7468 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7469 !ObjectType->isVectorType()) { 7470 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7471 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7472 else { 7473 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7474 << ObjectType << Base->getSourceRange(); 7475 return ExprError(); 7476 } 7477 } 7478 7479 // C++ [expr.pseudo]p2: 7480 // [...] The cv-unqualified versions of the object type and of the type 7481 // designated by the pseudo-destructor-name shall be the same type. 7482 if (DestructedTypeInfo) { 7483 QualType DestructedType = DestructedTypeInfo->getType(); 7484 SourceLocation DestructedTypeStart 7485 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7486 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7487 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7488 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7489 // Foo *foo; 7490 // foo.~Foo(); 7491 if (OpKind == tok::period && ObjectType->isPointerType() && 7492 Context.hasSameUnqualifiedType(DestructedType, 7493 ObjectType->getPointeeType())) { 7494 auto Diagnostic = 7495 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7496 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7497 7498 // Issue a fixit only when the destructor is valid. 7499 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7500 *this, DestructedType)) 7501 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7502 7503 // Recover by setting the object type to the destructed type and the 7504 // operator to '->'. 7505 ObjectType = DestructedType; 7506 OpKind = tok::arrow; 7507 } else { 7508 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7509 << ObjectType << DestructedType << Base->getSourceRange() 7510 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7511 7512 // Recover by setting the destructed type to the object type. 7513 DestructedType = ObjectType; 7514 DestructedTypeInfo = 7515 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7516 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7517 } 7518 } else if (DestructedType.getObjCLifetime() != 7519 ObjectType.getObjCLifetime()) { 7520 7521 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7522 // Okay: just pretend that the user provided the correctly-qualified 7523 // type. 7524 } else { 7525 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7526 << ObjectType << DestructedType << Base->getSourceRange() 7527 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7528 } 7529 7530 // Recover by setting the destructed type to the object type. 7531 DestructedType = ObjectType; 7532 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7533 DestructedTypeStart); 7534 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7535 } 7536 } 7537 } 7538 7539 // C++ [expr.pseudo]p2: 7540 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7541 // form 7542 // 7543 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7544 // 7545 // shall designate the same scalar type. 7546 if (ScopeTypeInfo) { 7547 QualType ScopeType = ScopeTypeInfo->getType(); 7548 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7549 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7550 7551 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7552 diag::err_pseudo_dtor_type_mismatch) 7553 << ObjectType << ScopeType << Base->getSourceRange() 7554 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7555 7556 ScopeType = QualType(); 7557 ScopeTypeInfo = nullptr; 7558 } 7559 } 7560 7561 Expr *Result 7562 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7563 OpKind == tok::arrow, OpLoc, 7564 SS.getWithLocInContext(Context), 7565 ScopeTypeInfo, 7566 CCLoc, 7567 TildeLoc, 7568 Destructed); 7569 7570 return Result; 7571} 7572 7573ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7574 SourceLocation OpLoc, 7575 tok::TokenKind OpKind, 7576 CXXScopeSpec &SS, 7577 UnqualifiedId &FirstTypeName, 7578 SourceLocation CCLoc, 7579 SourceLocation TildeLoc, 7580 UnqualifiedId &SecondTypeName) { 7581 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7583, __extension__ __PRETTY_FUNCTION__))
7582 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7583, __extension__ __PRETTY_FUNCTION__))
7583 "Invalid first type name in pseudo-destructor")(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7583, __extension__ __PRETTY_FUNCTION__))
; 7584 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7586, __extension__ __PRETTY_FUNCTION__))
7585 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7586, __extension__ __PRETTY_FUNCTION__))
7586 "Invalid second type name in pseudo-destructor")(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7586, __extension__ __PRETTY_FUNCTION__))
; 7587 7588 QualType ObjectType; 7589 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7590 return ExprError(); 7591 7592 // Compute the object type that we should use for name lookup purposes. Only 7593 // record types and dependent types matter. 7594 ParsedType ObjectTypePtrForLookup; 7595 if (!SS.isSet()) { 7596 if (ObjectType->isRecordType()) 7597 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7598 else if (ObjectType->isDependentType()) 7599 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7600 } 7601 7602 // Convert the name of the type being destructed (following the ~) into a 7603 // type (with source-location information). 7604 QualType DestructedType; 7605 TypeSourceInfo *DestructedTypeInfo = nullptr; 7606 PseudoDestructorTypeStorage Destructed; 7607 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7608 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7609 SecondTypeName.StartLocation, 7610 S, &SS, true, false, ObjectTypePtrForLookup, 7611 /*IsCtorOrDtorName*/true); 7612 if (!T && 7613 ((SS.isSet() && !computeDeclContext(SS, false)) || 7614 (!SS.isSet() && ObjectType->isDependentType()))) { 7615 // The name of the type being destroyed is a dependent name, and we 7616 // couldn't find anything useful in scope. Just store the identifier and 7617 // it's location, and we'll perform (qualified) name lookup again at 7618 // template instantiation time. 7619 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7620 SecondTypeName.StartLocation); 7621 } else if (!T) { 7622 Diag(SecondTypeName.StartLocation, 7623 diag::err_pseudo_dtor_destructor_non_type) 7624 << SecondTypeName.Identifier << ObjectType; 7625 if (isSFINAEContext()) 7626 return ExprError(); 7627 7628 // Recover by assuming we had the right type all along. 7629 DestructedType = ObjectType; 7630 } else 7631 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7632 } else { 7633 // Resolve the template-id to a type. 7634 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7635 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7636 TemplateId->NumArgs); 7637 TypeResult T = ActOnTemplateIdType(S, 7638 SS, 7639 TemplateId->TemplateKWLoc, 7640 TemplateId->Template, 7641 TemplateId->Name, 7642 TemplateId->TemplateNameLoc, 7643 TemplateId->LAngleLoc, 7644 TemplateArgsPtr, 7645 TemplateId->RAngleLoc, 7646 /*IsCtorOrDtorName*/true); 7647 if (T.isInvalid() || !T.get()) { 7648 // Recover by assuming we had the right type all along. 7649 DestructedType = ObjectType; 7650 } else 7651 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7652 } 7653 7654 // If we've performed some kind of recovery, (re-)build the type source 7655 // information. 7656 if (!DestructedType.isNull()) { 7657 if (!DestructedTypeInfo) 7658 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7659 SecondTypeName.StartLocation); 7660 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7661 } 7662 7663 // Convert the name of the scope type (the type prior to '::') into a type. 7664 TypeSourceInfo *ScopeTypeInfo = nullptr; 7665 QualType ScopeType; 7666 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7667 FirstTypeName.Identifier) { 7668 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7669 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7670 FirstTypeName.StartLocation, 7671 S, &SS, true, false, ObjectTypePtrForLookup, 7672 /*IsCtorOrDtorName*/true); 7673 if (!T) { 7674 Diag(FirstTypeName.StartLocation, 7675 diag::err_pseudo_dtor_destructor_non_type) 7676 << FirstTypeName.Identifier << ObjectType; 7677 7678 if (isSFINAEContext()) 7679 return ExprError(); 7680 7681 // Just drop this type. It's unnecessary anyway. 7682 ScopeType = QualType(); 7683 } else 7684 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7685 } else { 7686 // Resolve the template-id to a type. 7687 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7688 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7689 TemplateId->NumArgs); 7690 TypeResult T = ActOnTemplateIdType(S, 7691 SS, 7692 TemplateId->TemplateKWLoc, 7693 TemplateId->Template, 7694 TemplateId->Name, 7695 TemplateId->TemplateNameLoc, 7696 TemplateId->LAngleLoc, 7697 TemplateArgsPtr, 7698 TemplateId->RAngleLoc, 7699 /*IsCtorOrDtorName*/true); 7700 if (T.isInvalid() || !T.get()) { 7701 // Recover by dropping this type. 7702 ScopeType = QualType(); 7703 } else 7704 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7705 } 7706 } 7707 7708 if (!ScopeType.isNull() && !ScopeTypeInfo) 7709 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7710 FirstTypeName.StartLocation); 7711 7712 7713 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7714 ScopeTypeInfo, CCLoc, TildeLoc, 7715 Destructed); 7716} 7717 7718ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7719 SourceLocation OpLoc, 7720 tok::TokenKind OpKind, 7721 SourceLocation TildeLoc, 7722 const DeclSpec& DS) { 7723 QualType ObjectType; 7724 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7725 return ExprError(); 7726 7727 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7728 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7729 return true; 7730 } 7731 7732 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7733 false); 7734 7735 TypeLocBuilder TLB; 7736 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7737 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7738 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7739 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7740 7741 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7742 nullptr, SourceLocation(), TildeLoc, 7743 Destructed); 7744} 7745 7746ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7747 CXXConversionDecl *Method, 7748 bool HadMultipleCandidates) { 7749 // Convert the expression to match the conversion function's implicit object 7750 // parameter. 7751 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7752 FoundDecl, Method); 7753 if (Exp.isInvalid()) 7754 return true; 7755 7756 if (Method->getParent()->isLambda() && 7757 Method->getConversionType()->isBlockPointerType()) { 7758 // This is a lambda conversion to block pointer; check if the argument 7759 // was a LambdaExpr. 7760 Expr *SubE = E; 7761 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7762 if (CE && CE->getCastKind() == CK_NoOp) 7763 SubE = CE->getSubExpr(); 7764 SubE = SubE->IgnoreParens(); 7765 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7766 SubE = BE->getSubExpr(); 7767 if (isa<LambdaExpr>(SubE)) { 7768 // For the conversion to block pointer on a lambda expression, we 7769 // construct a special BlockLiteral instead; this doesn't really make 7770 // a difference in ARC, but outside of ARC the resulting block literal 7771 // follows the normal lifetime rules for block literals instead of being 7772 // autoreleased. 7773 PushExpressionEvaluationContext( 7774 ExpressionEvaluationContext::PotentiallyEvaluated); 7775 ExprResult BlockExp = BuildBlockForLambdaConversion( 7776 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7777 PopExpressionEvaluationContext(); 7778 7779 // FIXME: This note should be produced by a CodeSynthesisContext. 7780 if (BlockExp.isInvalid()) 7781 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7782 return BlockExp; 7783 } 7784 } 7785 7786 MemberExpr *ME = 7787 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7788 NestedNameSpecifierLoc(), SourceLocation(), Method, 7789 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7790 HadMultipleCandidates, DeclarationNameInfo(), 7791 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 7792 7793 QualType ResultType = Method->getReturnType(); 7794 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7795 ResultType = ResultType.getNonLValueExprType(Context); 7796 7797 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7798 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7799 CurFPFeatureOverrides()); 7800 7801 if (CheckFunctionCall(Method, CE, 7802 Method->getType()->castAs<FunctionProtoType>())) 7803 return ExprError(); 7804 7805 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 7806} 7807 7808ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7809 SourceLocation RParen) { 7810 // If the operand is an unresolved lookup expression, the expression is ill- 7811 // formed per [over.over]p1, because overloaded function names cannot be used 7812 // without arguments except in explicit contexts. 7813 ExprResult R = CheckPlaceholderExpr(Operand); 7814 if (R.isInvalid()) 7815 return R; 7816 7817 R = CheckUnevaluatedOperand(R.get()); 7818 if (R.isInvalid()) 7819 return ExprError(); 7820 7821 Operand = R.get(); 7822 7823 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7824 Operand->HasSideEffects(Context, false)) { 7825 // The expression operand for noexcept is in an unevaluated expression 7826 // context, so side effects could result in unintended consequences. 7827 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7828 } 7829 7830 CanThrowResult CanThrow = canThrow(Operand); 7831 return new (Context) 7832 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7833} 7834 7835ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7836 Expr *Operand, SourceLocation RParen) { 7837 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7838} 7839 7840static void MaybeDecrementCount( 7841 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 7842 DeclRefExpr *LHS = nullptr; 7843 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7844 if (BO->getLHS()->getType()->isDependentType() || 7845 BO->getRHS()->getType()->isDependentType()) { 7846 if (BO->getOpcode() != BO_Assign) 7847 return; 7848 } else if (!BO->isAssignmentOp()) 7849 return; 7850 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 7851 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 7852 if (COCE->getOperator() != OO_Equal) 7853 return; 7854 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 7855 } 7856 if (!LHS) 7857 return; 7858 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 7859 if (!VD) 7860 return; 7861 auto iter = RefsMinusAssignments.find(VD); 7862 if (iter == RefsMinusAssignments.end()) 7863 return; 7864 iter->getSecond()--; 7865} 7866 7867/// Perform the conversions required for an expression used in a 7868/// context that ignores the result. 7869ExprResult Sema::IgnoredValueConversions(Expr *E) { 7870 MaybeDecrementCount(E, RefsMinusAssignments); 7871 7872 if (E->hasPlaceholderType()) { 7873 ExprResult result = CheckPlaceholderExpr(E); 7874 if (result.isInvalid()) return E; 7875 E = result.get(); 7876 } 7877 7878 // C99 6.3.2.1: 7879 // [Except in specific positions,] an lvalue that does not have 7880 // array type is converted to the value stored in the 7881 // designated object (and is no longer an lvalue). 7882 if (E->isPRValue()) { 7883 // In C, function designators (i.e. expressions of function type) 7884 // are r-values, but we still want to do function-to-pointer decay 7885 // on them. This is both technically correct and convenient for 7886 // some clients. 7887 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7888 return DefaultFunctionArrayConversion(E); 7889 7890 return E; 7891 } 7892 7893 if (getLangOpts().CPlusPlus) { 7894 // The C++11 standard defines the notion of a discarded-value expression; 7895 // normally, we don't need to do anything to handle it, but if it is a 7896 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7897 // conversion. 7898 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7899 ExprResult Res = DefaultLvalueConversion(E); 7900 if (Res.isInvalid()) 7901 return E; 7902 E = Res.get(); 7903 } else { 7904 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7905 // it occurs as a discarded-value expression. 7906 CheckUnusedVolatileAssignment(E); 7907 } 7908 7909 // C++1z: 7910 // If the expression is a prvalue after this optional conversion, the 7911 // temporary materialization conversion is applied. 7912 // 7913 // We skip this step: IR generation is able to synthesize the storage for 7914 // itself in the aggregate case, and adding the extra node to the AST is 7915 // just clutter. 7916 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7917 // FIXME: Do any other AST consumers care about this? 7918 return E; 7919 } 7920 7921 // GCC seems to also exclude expressions of incomplete enum type. 7922 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7923 if (!T->getDecl()->isComplete()) { 7924 // FIXME: stupid workaround for a codegen bug! 7925 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7926 return E; 7927 } 7928 } 7929 7930 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7931 if (Res.isInvalid()) 7932 return E; 7933 E = Res.get(); 7934 7935 if (!E->getType()->isVoidType()) 7936 RequireCompleteType(E->getExprLoc(), E->getType(), 7937 diag::err_incomplete_type); 7938 return E; 7939} 7940 7941ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7942 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7943 // it occurs as an unevaluated operand. 7944 CheckUnusedVolatileAssignment(E); 7945 7946 return E; 7947} 7948 7949// If we can unambiguously determine whether Var can never be used 7950// in a constant expression, return true. 7951// - if the variable and its initializer are non-dependent, then 7952// we can unambiguously check if the variable is a constant expression. 7953// - if the initializer is not value dependent - we can determine whether 7954// it can be used to initialize a constant expression. If Init can not 7955// be used to initialize a constant expression we conclude that Var can 7956// never be a constant expression. 7957// - FXIME: if the initializer is dependent, we can still do some analysis and 7958// identify certain cases unambiguously as non-const by using a Visitor: 7959// - such as those that involve odr-use of a ParmVarDecl, involve a new 7960// delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7961static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7962 ASTContext &Context) { 7963 if (isa<ParmVarDecl>(Var)) return true; 7964 const VarDecl *DefVD = nullptr; 7965 7966 // If there is no initializer - this can not be a constant expression. 7967 if (!Var->getAnyInitializer(DefVD)) return true; 7968 assert(DefVD)(static_cast <bool> (DefVD) ? void (0) : __assert_fail (
"DefVD", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7968, __extension__ __PRETTY_FUNCTION__))
; 7969 if (DefVD->isWeak()) return false; 7970 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7971 7972 Expr *Init = cast<Expr>(Eval->Value); 7973 7974 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7975 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7976 // of value-dependent expressions, and use it here to determine whether the 7977 // initializer is a potential constant expression. 7978 return false; 7979 } 7980 7981 return !Var->isUsableInConstantExpressions(Context); 7982} 7983 7984/// Check if the current lambda has any potential captures 7985/// that must be captured by any of its enclosing lambdas that are ready to 7986/// capture. If there is a lambda that can capture a nested 7987/// potential-capture, go ahead and do so. Also, check to see if any 7988/// variables are uncaptureable or do not involve an odr-use so do not 7989/// need to be captured. 7990 7991static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7992 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7993 7994 assert(!S.isUnevaluatedContext())(static_cast <bool> (!S.isUnevaluatedContext()) ? void (
0) : __assert_fail ("!S.isUnevaluatedContext()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7994, __extension__ __PRETTY_FUNCTION__))
; 7995 assert(S.CurContext->isDependentContext())(static_cast <bool> (S.CurContext->isDependentContext
()) ? void (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 7995, __extension__ __PRETTY_FUNCTION__))
; 7996#ifndef NDEBUG 7997 DeclContext *DC = S.CurContext; 7998 while (DC && isa<CapturedDecl>(DC)) 7999 DC = DC->getParent(); 8000 assert((static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8002, __extension__ __PRETTY_FUNCTION__))
8001 CurrentLSI->CallOperator == DC &&(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8002, __extension__ __PRETTY_FUNCTION__))
8002 "The current call operator must be synchronized with Sema's CurContext")(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8002, __extension__ __PRETTY_FUNCTION__))
; 8003#endif // NDEBUG 8004 8005 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8006 8007 // All the potentially captureable variables in the current nested 8008 // lambda (within a generic outer lambda), must be captured by an 8009 // outer lambda that is enclosed within a non-dependent context. 8010 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8011 // If the variable is clearly identified as non-odr-used and the full 8012 // expression is not instantiation dependent, only then do we not 8013 // need to check enclosing lambda's for speculative captures. 8014 // For e.g.: 8015 // Even though 'x' is not odr-used, it should be captured. 8016 // int test() { 8017 // const int x = 10; 8018 // auto L = [=](auto a) { 8019 // (void) +x + a; 8020 // }; 8021 // } 8022 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8023 !IsFullExprInstantiationDependent) 8024 return; 8025 8026 // If we have a capture-capable lambda for the variable, go ahead and 8027 // capture the variable in that lambda (and all its enclosing lambdas). 8028 if (const Optional<unsigned> Index = 8029 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8030 S.FunctionScopes, Var, S)) 8031 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 8032 Index.getValue()); 8033 const bool IsVarNeverAConstantExpression = 8034 VariableCanNeverBeAConstantExpression(Var, S.Context); 8035 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8036 // This full expression is not instantiation dependent or the variable 8037 // can not be used in a constant expression - which means 8038 // this variable must be odr-used here, so diagnose a 8039 // capture violation early, if the variable is un-captureable. 8040 // This is purely for diagnosing errors early. Otherwise, this 8041 // error would get diagnosed when the lambda becomes capture ready. 8042 QualType CaptureType, DeclRefType; 8043 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8044 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8045 /*EllipsisLoc*/ SourceLocation(), 8046 /*BuildAndDiagnose*/false, CaptureType, 8047 DeclRefType, nullptr)) { 8048 // We will never be able to capture this variable, and we need 8049 // to be able to in any and all instantiations, so diagnose it. 8050 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8051 /*EllipsisLoc*/ SourceLocation(), 8052 /*BuildAndDiagnose*/true, CaptureType, 8053 DeclRefType, nullptr); 8054 } 8055 } 8056 }); 8057 8058 // Check if 'this' needs to be captured. 8059 if (CurrentLSI->hasPotentialThisCapture()) { 8060 // If we have a capture-capable lambda for 'this', go ahead and capture 8061 // 'this' in that lambda (and all its enclosing lambdas). 8062 if (const Optional<unsigned> Index = 8063 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8064 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8065 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 8066 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8067 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8068 &FunctionScopeIndexOfCapturableLambda); 8069 } 8070 } 8071 8072 // Reset all the potential captures at the end of each full-expression. 8073 CurrentLSI->clearPotentialCaptures(); 8074} 8075 8076static ExprResult attemptRecovery(Sema &SemaRef, 8077 const TypoCorrectionConsumer &Consumer, 8078 const TypoCorrection &TC) { 8079 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8080 Consumer.getLookupResult().getLookupKind()); 8081 const CXXScopeSpec *SS = Consumer.getSS(); 8082 CXXScopeSpec NewSS; 8083 8084 // Use an approprate CXXScopeSpec for building the expr. 8085 if (auto *NNS = TC.getCorrectionSpecifier()) 8086 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8087 else if (SS && !TC.WillReplaceSpecifier()) 8088 NewSS = *SS; 8089 8090 if (auto *ND = TC.getFoundDecl()) { 8091 R.setLookupName(ND->getDeclName()); 8092 R.addDecl(ND); 8093 if (ND->isCXXClassMember()) { 8094 // Figure out the correct naming class to add to the LookupResult. 8095 CXXRecordDecl *Record = nullptr; 8096 if (auto *NNS = TC.getCorrectionSpecifier()) 8097 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8098 if (!Record) 8099 Record = 8100 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8101 if (Record) 8102 R.setNamingClass(Record); 8103 8104 // Detect and handle the case where the decl might be an implicit 8105 // member. 8106 bool MightBeImplicitMember; 8107 if (!Consumer.isAddressOfOperand()) 8108 MightBeImplicitMember = true; 8109 else if (!NewSS.isEmpty()) 8110 MightBeImplicitMember = false; 8111 else if (R.isOverloadedResult()) 8112 MightBeImplicitMember = false; 8113 else if (R.isUnresolvableResult()) 8114 MightBeImplicitMember = true; 8115 else 8116 MightBeImplicitMember = isa<FieldDecl>(ND) || 8117 isa<IndirectFieldDecl>(ND) || 8118 isa<MSPropertyDecl>(ND); 8119 8120 if (MightBeImplicitMember) 8121 return SemaRef.BuildPossibleImplicitMemberExpr( 8122 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8123 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8124 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8125 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8126 Ivar->getIdentifier()); 8127 } 8128 } 8129 8130 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8131 /*AcceptInvalidDecl*/ true); 8132} 8133 8134namespace { 8135class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8136 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8137 8138public: 8139 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8140 : TypoExprs(TypoExprs) {} 8141 bool VisitTypoExpr(TypoExpr *TE) { 8142 TypoExprs.insert(TE); 8143 return true; 8144 } 8145}; 8146 8147class TransformTypos : public TreeTransform<TransformTypos> { 8148 typedef TreeTransform<TransformTypos> BaseTransform; 8149 8150 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8151 // process of being initialized. 8152 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8153 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8154 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8155 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8156 8157 /// Emit diagnostics for all of the TypoExprs encountered. 8158 /// 8159 /// If the TypoExprs were successfully corrected, then the diagnostics should 8160 /// suggest the corrections. Otherwise the diagnostics will not suggest 8161 /// anything (having been passed an empty TypoCorrection). 8162 /// 8163 /// If we've failed to correct due to ambiguous corrections, we need to 8164 /// be sure to pass empty corrections and replacements. Otherwise it's 8165 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8166 /// and we don't want to report those diagnostics. 8167 void EmitAllDiagnostics(bool IsAmbiguous) { 8168 for (TypoExpr *TE : TypoExprs) { 8169 auto &State = SemaRef.getTypoExprState(TE); 8170 if (State.DiagHandler) { 8171 TypoCorrection TC = IsAmbiguous 8172 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8173 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8174 8175 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8176 // TypoCorrection, replacing the existing decls. This ensures the right 8177 // NamedDecl is used in diagnostics e.g. in the case where overload 8178 // resolution was used to select one from several possible decls that 8179 // had been stored in the TypoCorrection. 8180 if (auto *ND = getDeclFromExpr( 8181 Replacement.isInvalid() ? nullptr : Replacement.get())) 8182 TC.setCorrectionDecl(ND); 8183 8184 State.DiagHandler(TC); 8185 } 8186 SemaRef.clearDelayedTypo(TE); 8187 } 8188 } 8189 8190 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8191 /// We allow advancement of the correction stream by removing it from the 8192 /// TransformCache which allows `TransformTypoExpr` to advance during the 8193 /// next transformation attempt. 8194 /// 8195 /// Any substitution attempts for the previous TypoExprs (which must have been 8196 /// finished) will need to be retried since it's possible that they will now 8197 /// be invalid given the latest advancement. 8198 /// 8199 /// We need to be sure that we're making progress - it's possible that the 8200 /// tree is so malformed that the transform never makes it to the 8201 /// `TransformTypoExpr`. 8202 /// 8203 /// Returns true if there are any untried correction combinations. 8204 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8205 for (auto TE : TypoExprs) { 8206 auto &State = SemaRef.getTypoExprState(TE); 8207 TransformCache.erase(TE); 8208 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8209 return false; 8210 if (!State.Consumer->finished()) 8211 return true; 8212 State.Consumer->resetCorrectionStream(); 8213 } 8214 return false; 8215 } 8216 8217 NamedDecl *getDeclFromExpr(Expr *E) { 8218 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8219 E = OverloadResolution[OE]; 8220 8221 if (!E) 8222 return nullptr; 8223 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8224 return DRE->getFoundDecl(); 8225 if (auto *ME = dyn_cast<MemberExpr>(E)) 8226 return ME->getFoundDecl(); 8227 // FIXME: Add any other expr types that could be be seen by the delayed typo 8228 // correction TreeTransform for which the corresponding TypoCorrection could 8229 // contain multiple decls. 8230 return nullptr; 8231 } 8232 8233 ExprResult TryTransform(Expr *E) { 8234 Sema::SFINAETrap Trap(SemaRef); 8235 ExprResult Res = TransformExpr(E); 8236 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8237 return ExprError(); 8238 8239 return ExprFilter(Res.get()); 8240 } 8241 8242 // Since correcting typos may intoduce new TypoExprs, this function 8243 // checks for new TypoExprs and recurses if it finds any. Note that it will 8244 // only succeed if it is able to correct all typos in the given expression. 8245 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8246 if (Res.isInvalid()) { 8247 return Res; 8248 } 8249 // Check to see if any new TypoExprs were created. If so, we need to recurse 8250 // to check their validity. 8251 Expr *FixedExpr = Res.get(); 8252 8253 auto SavedTypoExprs = std::move(TypoExprs); 8254 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8255 TypoExprs.clear(); 8256 AmbiguousTypoExprs.clear(); 8257 8258 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8259 if (!TypoExprs.empty()) { 8260 // Recurse to handle newly created TypoExprs. If we're not able to 8261 // handle them, discard these TypoExprs. 8262 ExprResult RecurResult = 8263 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8264 if (RecurResult.isInvalid()) { 8265 Res = ExprError(); 8266 // Recursive corrections didn't work, wipe them away and don't add 8267 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8268 // since we don't want to clear them twice. Note: it's possible the 8269 // TypoExprs were created recursively and thus won't be in our 8270 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8271 auto &SemaTypoExprs = SemaRef.TypoExprs; 8272 for (auto TE : TypoExprs) { 8273 TransformCache.erase(TE); 8274 SemaRef.clearDelayedTypo(TE); 8275 8276 auto SI = find(SemaTypoExprs, TE); 8277 if (SI != SemaTypoExprs.end()) { 8278 SemaTypoExprs.erase(SI); 8279 } 8280 } 8281 } else { 8282 // TypoExpr is valid: add newly created TypoExprs since we were 8283 // able to correct them. 8284 Res = RecurResult; 8285 SavedTypoExprs.set_union(TypoExprs); 8286 } 8287 } 8288 8289 TypoExprs = std::move(SavedTypoExprs); 8290 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8291 8292 return Res; 8293 } 8294 8295 // Try to transform the given expression, looping through the correction 8296 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8297 // 8298 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8299 // true and this method immediately will return an `ExprError`. 8300 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8301 ExprResult Res; 8302 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8303 SemaRef.TypoExprs.clear(); 8304 8305 while (true) { 8306 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8307 8308 // Recursion encountered an ambiguous correction. This means that our 8309 // correction itself is ambiguous, so stop now. 8310 if (IsAmbiguous) 8311 break; 8312 8313 // If the transform is still valid after checking for any new typos, 8314 // it's good to go. 8315 if (!Res.isInvalid()) 8316 break; 8317 8318 // The transform was invalid, see if we have any TypoExprs with untried 8319 // correction candidates. 8320 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8321 break; 8322 } 8323 8324 // If we found a valid result, double check to make sure it's not ambiguous. 8325 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8326 auto SavedTransformCache = 8327 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8328 8329 // Ensure none of the TypoExprs have multiple typo correction candidates 8330 // with the same edit length that pass all the checks and filters. 8331 while (!AmbiguousTypoExprs.empty()) { 8332 auto TE = AmbiguousTypoExprs.back(); 8333 8334 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8335 // and invalidating our TypoExprState, so always fetch it instead of storing. 8336 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8337 8338 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8339 TypoCorrection Next; 8340 do { 8341 // Fetch the next correction by erasing the typo from the cache and calling 8342 // `TryTransform` which will iterate through corrections in 8343 // `TransformTypoExpr`. 8344 TransformCache.erase(TE); 8345 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8346 8347 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8348 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8349 SavedTransformCache.erase(TE); 8350 Res = ExprError(); 8351 IsAmbiguous = true; 8352 break; 8353 } 8354 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8355 Next.getEditDistance(false) == TC.getEditDistance(false)); 8356 8357 if (IsAmbiguous) 8358 break; 8359 8360 AmbiguousTypoExprs.remove(TE); 8361 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8362 TransformCache[TE] = SavedTransformCache[TE]; 8363 } 8364 TransformCache = std::move(SavedTransformCache); 8365 } 8366 8367 // Wipe away any newly created TypoExprs that we don't know about. Since we 8368 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8369 // possible if a `TypoExpr` is created during a transformation but then 8370 // fails before we can discover it. 8371 auto &SemaTypoExprs = SemaRef.TypoExprs; 8372 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8373 auto TE = *Iterator; 8374 auto FI = find(TypoExprs, TE); 8375 if (FI != TypoExprs.end()) { 8376 Iterator++; 8377 continue; 8378 } 8379 SemaRef.clearDelayedTypo(TE); 8380 Iterator = SemaTypoExprs.erase(Iterator); 8381 } 8382 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8383 8384 return Res; 8385 } 8386 8387public: 8388 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8389 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8390 8391 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8392 MultiExprArg Args, 8393 SourceLocation RParenLoc, 8394 Expr *ExecConfig = nullptr) { 8395 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8396 RParenLoc, ExecConfig); 8397 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8398 if (Result.isUsable()) { 8399 Expr *ResultCall = Result.get(); 8400 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8401 ResultCall = BE->getSubExpr(); 8402 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8403 OverloadResolution[OE] = CE->getCallee(); 8404 } 8405 } 8406 return Result; 8407 } 8408 8409 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8410 8411 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8412 8413 ExprResult Transform(Expr *E) { 8414 bool IsAmbiguous = false; 8415 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8416 8417 if (!Res.isUsable()) 8418 FindTypoExprs(TypoExprs).TraverseStmt(E); 8419 8420 EmitAllDiagnostics(IsAmbiguous); 8421 8422 return Res; 8423 } 8424 8425 ExprResult TransformTypoExpr(TypoExpr *E) { 8426 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8427 // cached transformation result if there is one and the TypoExpr isn't the 8428 // first one that was encountered. 8429 auto &CacheEntry = TransformCache[E]; 8430 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8431 return CacheEntry; 8432 } 8433 8434 auto &State = SemaRef.getTypoExprState(E); 8435 assert(State.Consumer && "Cannot transform a cleared TypoExpr")(static_cast <bool> (State.Consumer && "Cannot transform a cleared TypoExpr"
) ? void (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8435, __extension__ __PRETTY_FUNCTION__))
; 8436 8437 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8438 // typo correction and return it. 8439 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8440 if (InitDecl && TC.getFoundDecl() == InitDecl) 8441 continue; 8442 // FIXME: If we would typo-correct to an invalid declaration, it's 8443 // probably best to just suppress all errors from this typo correction. 8444 ExprResult NE = State.RecoveryHandler ? 8445 State.RecoveryHandler(SemaRef, E, TC) : 8446 attemptRecovery(SemaRef, *State.Consumer, TC); 8447 if (!NE.isInvalid()) { 8448 // Check whether there may be a second viable correction with the same 8449 // edit distance; if so, remember this TypoExpr may have an ambiguous 8450 // correction so it can be more thoroughly vetted later. 8451 TypoCorrection Next; 8452 if ((Next = State.Consumer->peekNextCorrection()) && 8453 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8454 AmbiguousTypoExprs.insert(E); 8455 } else { 8456 AmbiguousTypoExprs.remove(E); 8457 } 8458 assert(!NE.isUnset() &&(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8459, __extension__ __PRETTY_FUNCTION__))
8459 "Typo was transformed into a valid-but-null ExprResult")(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8459, __extension__ __PRETTY_FUNCTION__))
; 8460 return CacheEntry = NE; 8461 } 8462 } 8463 return CacheEntry = ExprError(); 8464 } 8465}; 8466} 8467 8468ExprResult 8469Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8470 bool RecoverUncorrectedTypos, 8471 llvm::function_ref<ExprResult(Expr *)> Filter) { 8472 // If the current evaluation context indicates there are uncorrected typos 8473 // and the current expression isn't guaranteed to not have typos, try to 8474 // resolve any TypoExpr nodes that might be in the expression. 8475 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8476 (E->isTypeDependent() || E->isValueDependent() || 8477 E->isInstantiationDependent())) { 8478 auto TyposResolved = DelayedTypos.size(); 8479 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8480 TyposResolved -= DelayedTypos.size(); 8481 if (Result.isInvalid() || Result.get() != E) { 8482 ExprEvalContexts.back().NumTypos -= TyposResolved; 8483 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8484 struct TyposReplace : TreeTransform<TyposReplace> { 8485 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8486 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8487 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8488 E->getEndLoc(), {}); 8489 } 8490 } TT(*this); 8491 return TT.TransformExpr(E); 8492 } 8493 return Result; 8494 } 8495 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")(static_cast <bool> (TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? void (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8495, __extension__ __PRETTY_FUNCTION__))
; 8496 } 8497 return E; 8498} 8499 8500ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8501 bool DiscardedValue, 8502 bool IsConstexpr) { 8503 ExprResult FullExpr = FE; 8504 8505 if (!FullExpr.get()) 8506 return ExprError(); 8507 8508 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8509 return ExprError(); 8510 8511 if (DiscardedValue) { 8512 // Top-level expressions default to 'id' when we're in a debugger. 8513 if (getLangOpts().DebuggerCastResultToId && 8514 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8515 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8516 if (FullExpr.isInvalid()) 8517 return ExprError(); 8518 } 8519 8520 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8521 if (FullExpr.isInvalid()) 8522 return ExprError(); 8523 8524 FullExpr = IgnoredValueConversions(FullExpr.get()); 8525 if (FullExpr.isInvalid()) 8526 return ExprError(); 8527 8528 DiagnoseUnusedExprResult(FullExpr.get()); 8529 } 8530 8531 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8532 /*RecoverUncorrectedTypos=*/true); 8533 if (FullExpr.isInvalid()) 8534 return ExprError(); 8535 8536 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8537 8538 // At the end of this full expression (which could be a deeply nested 8539 // lambda), if there is a potential capture within the nested lambda, 8540 // have the outer capture-able lambda try and capture it. 8541 // Consider the following code: 8542 // void f(int, int); 8543 // void f(const int&, double); 8544 // void foo() { 8545 // const int x = 10, y = 20; 8546 // auto L = [=](auto a) { 8547 // auto M = [=](auto b) { 8548 // f(x, b); <-- requires x to be captured by L and M 8549 // f(y, a); <-- requires y to be captured by L, but not all Ms 8550 // }; 8551 // }; 8552 // } 8553 8554 // FIXME: Also consider what happens for something like this that involves 8555 // the gnu-extension statement-expressions or even lambda-init-captures: 8556 // void f() { 8557 // const int n = 0; 8558 // auto L = [&](auto a) { 8559 // +n + ({ 0; a; }); 8560 // }; 8561 // } 8562 // 8563 // Here, we see +n, and then the full-expression 0; ends, so we don't 8564 // capture n (and instead remove it from our list of potential captures), 8565 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8566 // for us to see that we need to capture n after all. 8567 8568 LambdaScopeInfo *const CurrentLSI = 8569 getCurLambda(/*IgnoreCapturedRegions=*/true); 8570 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8571 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8572 // for an example of the code that might cause this asynchrony. 8573 // By ensuring we are in the context of a lambda's call operator 8574 // we can fix the bug (we only need to check whether we need to capture 8575 // if we are within a lambda's body); but per the comments in that 8576 // PR, a proper fix would entail : 8577 // "Alternative suggestion: 8578 // - Add to Sema an integer holding the smallest (outermost) scope 8579 // index that we are *lexically* within, and save/restore/set to 8580 // FunctionScopes.size() in InstantiatingTemplate's 8581 // constructor/destructor. 8582 // - Teach the handful of places that iterate over FunctionScopes to 8583 // stop at the outermost enclosing lexical scope." 8584 DeclContext *DC = CurContext; 8585 while (DC && isa<CapturedDecl>(DC)) 8586 DC = DC->getParent(); 8587 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8588 if (IsInLambdaDeclContext && CurrentLSI && 8589 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8590 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8591 *this); 8592 return MaybeCreateExprWithCleanups(FullExpr); 8593} 8594 8595StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8596 if (!FullStmt) return StmtError(); 8597 8598 return MaybeCreateStmtWithCleanups(FullStmt); 8599} 8600 8601Sema::IfExistsResult 8602Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8603 CXXScopeSpec &SS, 8604 const DeclarationNameInfo &TargetNameInfo) { 8605 DeclarationName TargetName = TargetNameInfo.getName(); 8606 if (!TargetName) 8607 return IER_DoesNotExist; 8608 8609 // If the name itself is dependent, then the result is dependent. 8610 if (TargetName.isDependentName()) 8611 return IER_Dependent; 8612 8613 // Do the redeclaration lookup in the current scope. 8614 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8615 Sema::NotForRedeclaration); 8616 LookupParsedName(R, S, &SS); 8617 R.suppressDiagnostics(); 8618 8619 switch (R.getResultKind()) { 8620 case LookupResult::Found: 8621 case LookupResult::FoundOverloaded: 8622 case LookupResult::FoundUnresolvedValue: 8623 case LookupResult::Ambiguous: 8624 return IER_Exists; 8625 8626 case LookupResult::NotFound: 8627 return IER_DoesNotExist; 8628 8629 case LookupResult::NotFoundInCurrentInstantiation: 8630 return IER_Dependent; 8631 } 8632 8633 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8633)
; 8634} 8635 8636Sema::IfExistsResult 8637Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8638 bool IsIfExists, CXXScopeSpec &SS, 8639 UnqualifiedId &Name) { 8640 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8641 8642 // Check for an unexpanded parameter pack. 8643 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8644 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8645 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8646 return IER_Error; 8647 8648 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8649} 8650 8651concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8652 return BuildExprRequirement(E, /*IsSimple=*/true, 8653 /*NoexceptLoc=*/SourceLocation(), 8654 /*ReturnTypeRequirement=*/{}); 8655} 8656 8657concepts::Requirement * 8658Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8659 SourceLocation NameLoc, IdentifierInfo *TypeName, 8660 TemplateIdAnnotation *TemplateId) { 8661 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8662, __extension__ __PRETTY_FUNCTION__))
8662 "Exactly one of TypeName and TemplateId must be specified.")(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8662, __extension__ __PRETTY_FUNCTION__))
; 8663 TypeSourceInfo *TSI = nullptr; 8664 if (TypeName) { 8665 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8666 SS.getWithLocInContext(Context), *TypeName, 8667 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8668 if (T.isNull()) 8669 return nullptr; 8670 } else { 8671 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8672 TemplateId->NumArgs); 8673 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8674 TemplateId->TemplateKWLoc, 8675 TemplateId->Template, TemplateId->Name, 8676 TemplateId->TemplateNameLoc, 8677 TemplateId->LAngleLoc, ArgsPtr, 8678 TemplateId->RAngleLoc); 8679 if (T.isInvalid()) 8680 return nullptr; 8681 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8682 return nullptr; 8683 } 8684 return BuildTypeRequirement(TSI); 8685} 8686 8687concepts::Requirement * 8688Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8689 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8690 /*ReturnTypeRequirement=*/{}); 8691} 8692 8693concepts::Requirement * 8694Sema::ActOnCompoundRequirement( 8695 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8696 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8697 // C++2a [expr.prim.req.compound] p1.3.3 8698 // [..] the expression is deduced against an invented function template 8699 // F [...] F is a void function template with a single type template 8700 // parameter T declared with the constrained-parameter. Form a new 8701 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8702 // around the constrained-parameter. F has a single parameter whose 8703 // type-specifier is cv T followed by the abstract-declarator. [...] 8704 // 8705 // The cv part is done in the calling function - we get the concept with 8706 // arguments and the abstract declarator with the correct CV qualification and 8707 // have to synthesize T and the single parameter of F. 8708 auto &II = Context.Idents.get("expr-type"); 8709 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8710 SourceLocation(), 8711 SourceLocation(), Depth, 8712 /*Index=*/0, &II, 8713 /*Typename=*/true, 8714 /*ParameterPack=*/false, 8715 /*HasTypeConstraint=*/true); 8716 8717 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8718 /*EllpsisLoc=*/SourceLocation(), 8719 /*AllowUnexpandedPack=*/true)) 8720 // Just produce a requirement with no type requirements. 8721 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8722 8723 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8724 SourceLocation(), 8725 ArrayRef<NamedDecl *>(TParam), 8726 SourceLocation(), 8727 /*RequiresClause=*/nullptr); 8728 return BuildExprRequirement( 8729 E, /*IsSimple=*/false, NoexceptLoc, 8730 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8731} 8732 8733concepts::ExprRequirement * 8734Sema::BuildExprRequirement( 8735 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8736 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8737 auto Status = concepts::ExprRequirement::SS_Satisfied; 8738 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8739 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8740 Status = concepts::ExprRequirement::SS_Dependent; 8741 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8742 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8743 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8744 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8745 else if (ReturnTypeRequirement.isTypeConstraint()) { 8746 // C++2a [expr.prim.req]p1.3.3 8747 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8748 // be satisfied. 8749 TemplateParameterList *TPL = 8750 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8751 QualType MatchedType = 8752 Context.getReferenceQualifiedType(E).getCanonicalType(); 8753 llvm::SmallVector<TemplateArgument, 1> Args; 8754 Args.push_back(TemplateArgument(MatchedType)); 8755 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8756 MultiLevelTemplateArgumentList MLTAL(TAL); 8757 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8758 MLTAL.addOuterRetainedLevel(); 8759 Expr *IDC = 8760 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8761 ->getImmediatelyDeclaredConstraint(); 8762 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8763 assert(!Constraint.isInvalid() &&(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8765, __extension__ __PRETTY_FUNCTION__))
8764 "Substitution cannot fail as it is simply putting a type template "(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8765, __extension__ __PRETTY_FUNCTION__))
8765 "argument into a concept specialization expression's parameter.")(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8765, __extension__ __PRETTY_FUNCTION__))
; 8766 8767 SubstitutedConstraintExpr = 8768 cast<ConceptSpecializationExpr>(Constraint.get()); 8769 if (!SubstitutedConstraintExpr->isSatisfied()) 8770 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8771 } 8772 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8773 ReturnTypeRequirement, Status, 8774 SubstitutedConstraintExpr); 8775} 8776 8777concepts::ExprRequirement * 8778Sema::BuildExprRequirement( 8779 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8780 bool IsSimple, SourceLocation NoexceptLoc, 8781 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8782 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8783 IsSimple, NoexceptLoc, 8784 ReturnTypeRequirement); 8785} 8786 8787concepts::TypeRequirement * 8788Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8789 return new (Context) concepts::TypeRequirement(Type); 8790} 8791 8792concepts::TypeRequirement * 8793Sema::BuildTypeRequirement( 8794 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8795 return new (Context) concepts::TypeRequirement(SubstDiag); 8796} 8797 8798concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8799 return BuildNestedRequirement(Constraint); 8800} 8801 8802concepts::NestedRequirement * 8803Sema::BuildNestedRequirement(Expr *Constraint) { 8804 ConstraintSatisfaction Satisfaction; 8805 if (!Constraint->isInstantiationDependent() && 8806 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8807 Constraint->getSourceRange(), Satisfaction)) 8808 return nullptr; 8809 return new (Context) concepts::NestedRequirement(Context, Constraint, 8810 Satisfaction); 8811} 8812 8813concepts::NestedRequirement * 8814Sema::BuildNestedRequirement( 8815 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8816 return new (Context) concepts::NestedRequirement(SubstDiag); 8817} 8818 8819RequiresExprBodyDecl * 8820Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8821 ArrayRef<ParmVarDecl *> LocalParameters, 8822 Scope *BodyScope) { 8823 assert(BodyScope)(static_cast <bool> (BodyScope) ? void (0) : __assert_fail
("BodyScope", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8823, __extension__ __PRETTY_FUNCTION__))
; 8824 8825 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8826 RequiresKWLoc); 8827 8828 PushDeclContext(BodyScope, Body); 8829 8830 for (ParmVarDecl *Param : LocalParameters) { 8831 if (Param->hasDefaultArg()) 8832 // C++2a [expr.prim.req] p4 8833 // [...] A local parameter of a requires-expression shall not have a 8834 // default argument. [...] 8835 Diag(Param->getDefaultArgRange().getBegin(), 8836 diag::err_requires_expr_local_parameter_default_argument); 8837 // Ignore default argument and move on 8838 8839 Param->setDeclContext(Body); 8840 // If this has an identifier, add it to the scope stack. 8841 if (Param->getIdentifier()) { 8842 CheckShadow(BodyScope, Param); 8843 PushOnScopeChains(Param, BodyScope); 8844 } 8845 } 8846 return Body; 8847} 8848 8849void Sema::ActOnFinishRequiresExpr() { 8850 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8850, __extension__ __PRETTY_FUNCTION__))
; 8851 CurContext = CurContext->getLexicalParent(); 8852 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExprCXX.cpp"
, 8852, __extension__ __PRETTY_FUNCTION__))
; 8853} 8854 8855ExprResult 8856Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8857 RequiresExprBodyDecl *Body, 8858 ArrayRef<ParmVarDecl *> LocalParameters, 8859 ArrayRef<concepts::Requirement *> Requirements, 8860 SourceLocation ClosingBraceLoc) { 8861 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8862 Requirements, ClosingBraceLoc); 8863 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8864 return ExprError(); 8865 return RE; 8866}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
380 "should not have found a non-externally-declarable previous decl")(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
;
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 30;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")(static_cast <bool> (Num == PackNumber && "The pack number has been truncated."
) ? void (0) : __assert_fail ("Num == PackNumber && \"The pack number has been truncated.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 498, __extension__ __PRETTY_FUNCTION__))
;
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
655 "Can only push / pop #pragma stack sentinels!")(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
;
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)(static_cast <bool> (CurPool == nullptr) ? void (0) : __assert_fail
("CurPool == nullptr", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 978, __extension__ __PRETTY_FUNCTION__))
;
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")(static_cast <bool> (ContextToPush && "pushing null context"
) ? void (0) : __assert_fail ("ContextToPush && \"pushing null context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1001, __extension__ __PRETTY_FUNCTION__))
;
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))(static_cast <bool> (isa<ObjCMethodDecl>(DC)) ? void
(0) : __assert_fail ("isa<ObjCMethodDecl>(DC)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1055, __extension__ __PRETTY_FUNCTION__))
;
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)(static_cast <bool> (!PushedCodeSynthesisContext) ? void
(0) : __assert_fail ("!PushedCodeSynthesisContext", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1059, __extension__ __PRETTY_FUNCTION__))
;
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
8
Assuming field 'Context' is not equal to Unevaluated
11
Returning zero, which participates in a condition later
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
9
Assuming field 'Context' is not equal to UnevaluatedAbstract
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
10
Assuming field 'Context' is not equal to UnevaluatedList
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S);
1506 ~FPFeaturesStateRAII();
1507 FPOptionsOverride getOverrides() { return OldOverrides; }
1508
1509 private:
1510 Sema& S;
1511 FPOptions OldFPFeaturesState;
1512 FPOptionsOverride OldOverrides;
1513 int OldEvalMethod;
1514 };
1515
1516 void addImplicitTypedef(StringRef Name, QualType T);
1517
1518 bool WarnedStackExhausted = false;
1519
1520 /// Increment when we find a reference; decrement when we find an ignored
1521 /// assignment. Ultimately the value is 0 if every reference is an ignored
1522 /// assignment.
1523 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1524
1525 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1526
1527public:
1528 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1529 TranslationUnitKind TUKind = TU_Complete,
1530 CodeCompleteConsumer *CompletionConsumer = nullptr);
1531 ~Sema();
1532
1533 /// Perform initialization that occurs after the parser has been
1534 /// initialized but before it parses anything.
1535 void Initialize();
1536
1537 /// This virtual key function only exists to limit the emission of debug info
1538 /// describing the Sema class. GCC and Clang only emit debug info for a class
1539 /// with a vtable when the vtable is emitted. Sema is final and not
1540 /// polymorphic, but the debug info size savings are so significant that it is
1541 /// worth adding a vtable just to take advantage of this optimization.
1542 virtual void anchor();
1543
1544 const LangOptions &getLangOpts() const { return LangOpts; }
1545 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1546 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1547
1548 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1549 SourceManager &getSourceManager() const { return SourceMgr; }
1550 Preprocessor &getPreprocessor() const { return PP; }
1551 ASTContext &getASTContext() const { return Context; }
1552 ASTConsumer &getASTConsumer() const { return Consumer; }
1553 ASTMutationListener *getASTMutationListener() const;
1554 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1555 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1556 StringRef Platform);
1557
1558 ///Registers an external source. If an external source already exists,
1559 /// creates a multiplex external source and appends to it.
1560 ///
1561 ///\param[in] E - A non-null external sema source.
1562 ///
1563 void addExternalSource(ExternalSemaSource *E);
1564
1565 void PrintStats() const;
1566
1567 /// Warn that the stack is nearly exhausted.
1568 void warnStackExhausted(SourceLocation Loc);
1569
1570 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1571 /// guaranteed). Produces a warning if we're low on stack space and allocates
1572 /// more in that case. Use this in code that may recurse deeply (for example,
1573 /// in template instantiation) to avoid stack overflow.
1574 void runWithSufficientStackSpace(SourceLocation Loc,
1575 llvm::function_ref<void()> Fn);
1576
1577 /// Helper class that creates diagnostics with optional
1578 /// template instantiation stacks.
1579 ///
1580 /// This class provides a wrapper around the basic DiagnosticBuilder
1581 /// class that emits diagnostics. ImmediateDiagBuilder is
1582 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1583 /// does) and, if the diagnostic comes from inside a template
1584 /// instantiation, printing the template instantiation stack as
1585 /// well.
1586 class ImmediateDiagBuilder : public DiagnosticBuilder {
1587 Sema &SemaRef;
1588 unsigned DiagID;
1589
1590 public:
1591 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1592 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1593 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1594 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1595
1596 // This is a cunning lie. DiagnosticBuilder actually performs move
1597 // construction in its copy constructor (but due to varied uses, it's not
1598 // possible to conveniently express this as actual move construction). So
1599 // the default copy ctor here is fine, because the base class disables the
1600 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1601 // in that case anwyay.
1602 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1603
1604 ~ImmediateDiagBuilder() {
1605 // If we aren't active, there is nothing to do.
1606 if (!isActive()) return;
1607
1608 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1609 // builder itself so it won't emit the diagnostic in its own destructor.
1610 //
1611 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1612 // do its own needless checks to see if the diagnostic needs to be
1613 // emitted. However, because we take care to ensure that the builder
1614 // objects never escape, a sufficiently smart compiler will be able to
1615 // eliminate that code.
1616 Clear();
1617
1618 // Dispatch to Sema to emit the diagnostic.
1619 SemaRef.EmitCurrentDiagnostic(DiagID);
1620 }
1621
1622 /// Teach operator<< to produce an object of the correct type.
1623 template <typename T>
1624 friend const ImmediateDiagBuilder &
1625 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1626 const DiagnosticBuilder &BaseDiag = Diag;
1627 BaseDiag << Value;
1628 return Diag;
1629 }
1630
1631 // It is necessary to limit this to rvalue reference to avoid calling this
1632 // function with a bitfield lvalue argument since non-const reference to
1633 // bitfield is not allowed.
1634 template <typename T, typename = typename std::enable_if<
1635 !std::is_lvalue_reference<T>::value>::type>
1636 const ImmediateDiagBuilder &operator<<(T &&V) const {
1637 const DiagnosticBuilder &BaseDiag = *this;
1638 BaseDiag << std::move(V);
1639 return *this;
1640 }
1641 };
1642
1643 /// A generic diagnostic builder for errors which may or may not be deferred.
1644 ///
1645 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1646 /// which are not allowed to appear inside __device__ functions and are
1647 /// allowed to appear in __host__ __device__ functions only if the host+device
1648 /// function is never codegen'ed.
1649 ///
1650 /// To handle this, we use the notion of "deferred diagnostics", where we
1651 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1652 ///
1653 /// This class lets you emit either a regular diagnostic, a deferred
1654 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1655 /// its constructor, thus simplifying the process of creating these "maybe
1656 /// deferred" diagnostics.
1657 class SemaDiagnosticBuilder {
1658 public:
1659 enum Kind {
1660 /// Emit no diagnostics.
1661 K_Nop,
1662 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1663 K_Immediate,
1664 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1665 /// emit a call stack showing how this function can be reached by an a
1666 /// priori known-emitted function.
1667 K_ImmediateWithCallStack,
1668 /// Create a deferred diagnostic, which is emitted only if the function
1669 /// it's attached to is codegen'ed. Also emit a call stack as with
1670 /// K_ImmediateWithCallStack.
1671 K_Deferred
1672 };
1673
1674 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1675 FunctionDecl *Fn, Sema &S);
1676 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1677 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1678 ~SemaDiagnosticBuilder();
1679
1680 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1681
1682 /// Convertible to bool: True if we immediately emitted an error, false if
1683 /// we didn't emit an error or we created a deferred error.
1684 ///
1685 /// Example usage:
1686 ///
1687 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1688 /// return ExprError();
1689 ///
1690 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1691 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1692 operator bool() const { return isImmediate(); }
1693
1694 template <typename T>
1695 friend const SemaDiagnosticBuilder &
1696 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1697 if (Diag.ImmediateDiag.hasValue())
1698 *Diag.ImmediateDiag << Value;
1699 else if (Diag.PartialDiagId.hasValue())
1700 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1701 << Value;
1702 return Diag;
1703 }
1704
1705 // It is necessary to limit this to rvalue reference to avoid calling this
1706 // function with a bitfield lvalue argument since non-const reference to
1707 // bitfield is not allowed.
1708 template <typename T, typename = typename std::enable_if<
1709 !std::is_lvalue_reference<T>::value>::type>
1710 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1711 if (ImmediateDiag.hasValue())
1712 *ImmediateDiag << std::move(V);
1713 else if (PartialDiagId.hasValue())
1714 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1715 return *this;
1716 }
1717
1718 friend const SemaDiagnosticBuilder &
1719 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1720 if (Diag.ImmediateDiag.hasValue())
1721 PD.Emit(*Diag.ImmediateDiag);
1722 else if (Diag.PartialDiagId.hasValue())
1723 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1724 return Diag;
1725 }
1726
1727 void AddFixItHint(const FixItHint &Hint) const {
1728 if (ImmediateDiag.hasValue())
1729 ImmediateDiag->AddFixItHint(Hint);
1730 else if (PartialDiagId.hasValue())
1731 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1732 }
1733
1734 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1735 return ExprError();
1736 }
1737 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1738 return StmtError();
1739 }
1740 operator ExprResult() const { return ExprError(); }
1741 operator StmtResult() const { return StmtError(); }
1742 operator TypeResult() const { return TypeError(); }
1743 operator DeclResult() const { return DeclResult(true); }
1744 operator MemInitResult() const { return MemInitResult(true); }
1745
1746 private:
1747 Sema &S;
1748 SourceLocation Loc;
1749 unsigned DiagID;
1750 FunctionDecl *Fn;
1751 bool ShowCallStack;
1752
1753 // Invariant: At most one of these Optionals has a value.
1754 // FIXME: Switch these to a Variant once that exists.
1755 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1756 llvm::Optional<unsigned> PartialDiagId;
1757 };
1758
1759 /// Is the last error level diagnostic immediate. This is used to determined
1760 /// whether the next info diagnostic should be immediate.
1761 bool IsLastErrorImmediate = true;
1762
1763 /// Emit a diagnostic.
1764 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1765 bool DeferHint = false);
1766
1767 /// Emit a partial diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1769 bool DeferHint = false);
1770
1771 /// Build a partial diagnostic.
1772 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1773
1774 /// Whether deferrable diagnostics should be deferred.
1775 bool DeferDiags = false;
1776
1777 /// RAII class to control scope of DeferDiags.
1778 class DeferDiagsRAII {
1779 Sema &S;
1780 bool SavedDeferDiags = false;
1781
1782 public:
1783 DeferDiagsRAII(Sema &S, bool DeferDiags)
1784 : S(S), SavedDeferDiags(S.DeferDiags) {
1785 S.DeferDiags = DeferDiags;
1786 }
1787 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1788 };
1789
1790 /// Whether uncompilable error has occurred. This includes error happens
1791 /// in deferred diagnostics.
1792 bool hasUncompilableErrorOccurred() const;
1793
1794 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1795
1796 /// Get a string to suggest for zero-initialization of a type.
1797 std::string
1798 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1799 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1800
1801 /// Calls \c Lexer::getLocForEndOfToken()
1802 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1803
1804 /// Retrieve the module loader associated with the preprocessor.
1805 ModuleLoader &getModuleLoader() const;
1806
1807 /// Invent a new identifier for parameters of abbreviated templates.
1808 IdentifierInfo *
1809 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1810 unsigned Index);
1811
1812 void emitAndClearUnusedLocalTypedefWarnings();
1813
1814 private:
1815 /// Function or variable declarations to be checked for whether the deferred
1816 /// diagnostics should be emitted.
1817 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1818
1819 public:
1820 // Emit all deferred diagnostics.
1821 void emitDeferredDiags();
1822
1823 enum TUFragmentKind {
1824 /// The global module fragment, between 'module;' and a module-declaration.
1825 Global,
1826 /// A normal translation unit fragment. For a non-module unit, this is the
1827 /// entire translation unit. Otherwise, it runs from the module-declaration
1828 /// to the private-module-fragment (if any) or the end of the TU (if not).
1829 Normal,
1830 /// The private module fragment, between 'module :private;' and the end of
1831 /// the translation unit.
1832 Private
1833 };
1834
1835 void ActOnStartOfTranslationUnit();
1836 void ActOnEndOfTranslationUnit();
1837 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1838
1839 void CheckDelegatingCtorCycles();
1840
1841 Scope *getScopeForContext(DeclContext *Ctx);
1842
1843 void PushFunctionScope();
1844 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1845 sema::LambdaScopeInfo *PushLambdaScope();
1846
1847 /// This is used to inform Sema what the current TemplateParameterDepth
1848 /// is during Parsing. Currently it is used to pass on the depth
1849 /// when parsing generic lambda 'auto' parameters.
1850 void RecordParsingTemplateParameterDepth(unsigned Depth);
1851
1852 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1853 RecordDecl *RD, CapturedRegionKind K,
1854 unsigned OpenMPCaptureLevel = 0);
1855
1856 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1857 /// time after they've been popped.
1858 class PoppedFunctionScopeDeleter {
1859 Sema *Self;
1860
1861 public:
1862 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1863 void operator()(sema::FunctionScopeInfo *Scope) const;
1864 };
1865
1866 using PoppedFunctionScopePtr =
1867 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1868
1869 PoppedFunctionScopePtr
1870 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1871 const Decl *D = nullptr,
1872 QualType BlockType = QualType());
1873
1874 sema::FunctionScopeInfo *getCurFunction() const {
1875 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1876 }
1877
1878 sema::FunctionScopeInfo *getEnclosingFunction() const;
1879
1880 void setFunctionHasBranchIntoScope();
1881 void setFunctionHasBranchProtectedScope();
1882 void setFunctionHasIndirectGoto();
1883 void setFunctionHasMustTail();
1884
1885 void PushCompoundScope(bool IsStmtExpr);
1886 void PopCompoundScope();
1887
1888 sema::CompoundScopeInfo &getCurCompoundScope() const;
1889
1890 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1891
1892 /// Retrieve the current block, if any.
1893 sema::BlockScopeInfo *getCurBlock();
1894
1895 /// Get the innermost lambda enclosing the current location, if any. This
1896 /// looks through intervening non-lambda scopes such as local functions and
1897 /// blocks.
1898 sema::LambdaScopeInfo *getEnclosingLambda() const;
1899
1900 /// Retrieve the current lambda scope info, if any.
1901 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1902 /// lambda scope info ignoring all inner capturing scopes that are not
1903 /// lambda scopes.
1904 sema::LambdaScopeInfo *
1905 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1906
1907 /// Retrieve the current generic lambda info, if any.
1908 sema::LambdaScopeInfo *getCurGenericLambda();
1909
1910 /// Retrieve the current captured region, if any.
1911 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1912
1913 /// Retrieve the current function, if any, that should be analyzed for
1914 /// potential availability violations.
1915 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1916
1917 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1918 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1919
1920 /// Called before parsing a function declarator belonging to a function
1921 /// declaration.
1922 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1923 unsigned TemplateParameterDepth);
1924
1925 /// Called after parsing a function declarator belonging to a function
1926 /// declaration.
1927 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1928
1929 void ActOnComment(SourceRange Comment);
1930
1931 //===--------------------------------------------------------------------===//
1932 // Type Analysis / Processing: SemaType.cpp.
1933 //
1934
1935 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1936 const DeclSpec *DS = nullptr);
1937 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1938 const DeclSpec *DS = nullptr);
1939 QualType BuildPointerType(QualType T,
1940 SourceLocation Loc, DeclarationName Entity);
1941 QualType BuildReferenceType(QualType T, bool LValueRef,
1942 SourceLocation Loc, DeclarationName Entity);
1943 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1944 Expr *ArraySize, unsigned Quals,
1945 SourceRange Brackets, DeclarationName Entity);
1946 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1947 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1948 SourceLocation AttrLoc);
1949 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1950 SourceLocation AttrLoc);
1951
1952 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1953 SourceLocation AttrLoc);
1954
1955 /// Same as above, but constructs the AddressSpace index if not provided.
1956 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1960
1961 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1962
1963 /// Build a function type.
1964 ///
1965 /// This routine checks the function type according to C++ rules and
1966 /// under the assumption that the result type and parameter types have
1967 /// just been instantiated from a template. It therefore duplicates
1968 /// some of the behavior of GetTypeForDeclarator, but in a much
1969 /// simpler form that is only suitable for this narrow use case.
1970 ///
1971 /// \param T The return type of the function.
1972 ///
1973 /// \param ParamTypes The parameter types of the function. This array
1974 /// will be modified to account for adjustments to the types of the
1975 /// function parameters.
1976 ///
1977 /// \param Loc The location of the entity whose type involves this
1978 /// function type or, if there is no such entity, the location of the
1979 /// type that will have function type.
1980 ///
1981 /// \param Entity The name of the entity that involves the function
1982 /// type, if known.
1983 ///
1984 /// \param EPI Extra information about the function type. Usually this will
1985 /// be taken from an existing function with the same prototype.
1986 ///
1987 /// \returns A suitable function type, if there are no errors. The
1988 /// unqualified type will always be a FunctionProtoType.
1989 /// Otherwise, returns a NULL type.
1990 QualType BuildFunctionType(QualType T,
1991 MutableArrayRef<QualType> ParamTypes,
1992 SourceLocation Loc, DeclarationName Entity,
1993 const FunctionProtoType::ExtProtoInfo &EPI);
1994
1995 QualType BuildMemberPointerType(QualType T, QualType Class,
1996 SourceLocation Loc,
1997 DeclarationName Entity);
1998 QualType BuildBlockPointerType(QualType T,
1999 SourceLocation Loc, DeclarationName Entity);
2000 QualType BuildParenType(QualType T);
2001 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2002 QualType BuildReadPipeType(QualType T,
2003 SourceLocation Loc);
2004 QualType BuildWritePipeType(QualType T,
2005 SourceLocation Loc);
2006 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2007
2008 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2009 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2010
2011 /// Package the given type and TSI into a ParsedType.
2012 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2013 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2014 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2015 static QualType GetTypeFromParser(ParsedType Ty,
2016 TypeSourceInfo **TInfo = nullptr);
2017 CanThrowResult canThrow(const Stmt *E);
2018 /// Determine whether the callee of a particular function call can throw.
2019 /// E, D and Loc are all optional.
2020 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2021 SourceLocation Loc = SourceLocation());
2022 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2023 const FunctionProtoType *FPT);
2024 void UpdateExceptionSpec(FunctionDecl *FD,
2025 const FunctionProtoType::ExceptionSpecInfo &ESI);
2026 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2027 bool CheckDistantExceptionSpec(QualType T);
2028 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2029 bool CheckEquivalentExceptionSpec(
2030 const FunctionProtoType *Old, SourceLocation OldLoc,
2031 const FunctionProtoType *New, SourceLocation NewLoc);
2032 bool CheckEquivalentExceptionSpec(
2033 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2037 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2038 const PartialDiagnostic &NestedDiagID,
2039 const PartialDiagnostic &NoteID,
2040 const PartialDiagnostic &NoThrowDiagID,
2041 const FunctionProtoType *Superset,
2042 SourceLocation SuperLoc,
2043 const FunctionProtoType *Subset,
2044 SourceLocation SubLoc);
2045 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2046 const PartialDiagnostic &NoteID,
2047 const FunctionProtoType *Target,
2048 SourceLocation TargetLoc,
2049 const FunctionProtoType *Source,
2050 SourceLocation SourceLoc);
2051
2052 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2053
2054 /// The parser has parsed the context-sensitive type 'instancetype'
2055 /// in an Objective-C message declaration. Return the appropriate type.
2056 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2057
2058 /// Abstract class used to diagnose incomplete types.
2059 struct TypeDiagnoser {
2060 TypeDiagnoser() {}
2061
2062 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2063 virtual ~TypeDiagnoser() {}
2064 };
2065
2066 static int getPrintable(int I) { return I; }
2067 static unsigned getPrintable(unsigned I) { return I; }
2068 static bool getPrintable(bool B) { return B; }
2069 static const char * getPrintable(const char *S) { return S; }
2070 static StringRef getPrintable(StringRef S) { return S; }
2071 static const std::string &getPrintable(const std::string &S) { return S; }
2072 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2073 return II;
2074 }
2075 static DeclarationName getPrintable(DeclarationName N) { return N; }
2076 static QualType getPrintable(QualType T) { return T; }
2077 static SourceRange getPrintable(SourceRange R) { return R; }
2078 static SourceRange getPrintable(SourceLocation L) { return L; }
2079 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2080 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2081
2082 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2083 protected:
2084 unsigned DiagID;
2085 std::tuple<const Ts &...> Args;
2086
2087 template <std::size_t... Is>
2088 void emit(const SemaDiagnosticBuilder &DB,
2089 std::index_sequence<Is...>) const {
2090 // Apply all tuple elements to the builder in order.
2091 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2092 (void)Dummy;
2093 }
2094
2095 public:
2096 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2097 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2098 assert(DiagID != 0 && "no diagnostic for type diagnoser")(static_cast <bool> (DiagID != 0 && "no diagnostic for type diagnoser"
) ? void (0) : __assert_fail ("DiagID != 0 && \"no diagnostic for type diagnoser\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2098, __extension__ __PRETTY_FUNCTION__))
;
2099 }
2100
2101 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2102 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2103 emit(DB, std::index_sequence_for<Ts...>());
2104 DB << T;
2105 }
2106 };
2107
2108 /// Do a check to make sure \p Name looks like a legal argument for the
2109 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2110 /// is invalid for the given declaration.
2111 ///
2112 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2113 ///
2114 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2115 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2116 const ParsedAttr &AL, bool IsAsync);
2117
2118 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2119 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2120 /// For example, a diagnostic with no other parameters would generally have
2121 /// the form "...%select{incomplete|sizeless}0 type %1...".
2122 template <typename... Ts>
2123 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2124 public:
2125 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2126 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2127
2128 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2129 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2130 this->emit(DB, std::index_sequence_for<Ts...>());
2131 DB << T->isSizelessType() << T;
2132 }
2133 };
2134
2135 enum class CompleteTypeKind {
2136 /// Apply the normal rules for complete types. In particular,
2137 /// treat all sizeless types as incomplete.
2138 Normal,
2139
2140 /// Relax the normal rules for complete types so that they include
2141 /// sizeless built-in types.
2142 AcceptSizeless,
2143
2144 // FIXME: Eventually we should flip the default to Normal and opt in
2145 // to AcceptSizeless rather than opt out of it.
2146 Default = AcceptSizeless
2147 };
2148
2149private:
2150 /// Methods for marking which expressions involve dereferencing a pointer
2151 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2152 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2153 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2154 /// `*p`, but need to check that `address of` is called on it. This requires
2155 /// keeping a container of all pending expressions and checking if the address
2156 /// of them are eventually taken.
2157 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2158 void CheckAddressOfNoDeref(const Expr *E);
2159 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2160
2161 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2162 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2163
2164 struct ModuleScope {
2165 SourceLocation BeginLoc;
2166 clang::Module *Module = nullptr;
2167 bool ModuleInterface = false;
2168 bool ImplicitGlobalModuleFragment = false;
2169 VisibleModuleSet OuterVisibleModules;
2170 };
2171 /// The modules we're currently parsing.
2172 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2173
2174 /// Namespace definitions that we will export when they finish.
2175 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2176
2177 /// Get the module whose scope we are currently within.
2178 Module *getCurrentModule() const {
2179 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2180 }
2181
2182 VisibleModuleSet VisibleModules;
2183
2184public:
2185 /// Get the module owning an entity.
2186 Module *getOwningModule(const Decl *Entity) {
2187 return Entity->getOwningModule();
2188 }
2189
2190 /// Make a merged definition of an existing hidden definition \p ND
2191 /// visible at the specified location.
2192 void makeMergedDefinitionVisible(NamedDecl *ND);
2193
2194 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2195
2196 // When loading a non-modular PCH files, this is used to restore module
2197 // visibility.
2198 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2199 VisibleModules.setVisible(Mod, ImportLoc);
2200 }
2201
2202 /// Determine whether a declaration is visible to name lookup.
2203 bool isVisible(const NamedDecl *D) {
2204 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2205 }
2206
2207 /// Determine whether any declaration of an entity is visible.
2208 bool
2209 hasVisibleDeclaration(const NamedDecl *D,
2210 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2211 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2212 }
2213 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules);
2215
2216 bool hasVisibleMergedDefinition(NamedDecl *Def);
2217 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2218
2219 /// Determine if \p D and \p Suggested have a structurally compatible
2220 /// layout as described in C11 6.2.7/1.
2221 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2222
2223 /// Determine if \p D has a visible definition. If not, suggest a declaration
2224 /// that should be made visible to expose the definition.
2225 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2226 bool OnlyNeedComplete = false);
2227 bool hasVisibleDefinition(const NamedDecl *D) {
2228 NamedDecl *Hidden;
2229 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2230 }
2231
2232 /// Determine if the template parameter \p D has a visible default argument.
2233 bool
2234 hasVisibleDefaultArgument(const NamedDecl *D,
2235 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2236
2237 /// Determine if there is a visible declaration of \p D that is an explicit
2238 /// specialization declaration for a specialization of a template. (For a
2239 /// member specialization, use hasVisibleMemberSpecialization.)
2240 bool hasVisibleExplicitSpecialization(
2241 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2242
2243 /// Determine if there is a visible declaration of \p D that is a member
2244 /// specialization declaration (as opposed to an instantiated declaration).
2245 bool hasVisibleMemberSpecialization(
2246 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2247
2248 /// Determine if \p A and \p B are equivalent internal linkage declarations
2249 /// from different modules, and thus an ambiguity error can be downgraded to
2250 /// an extension warning.
2251 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2252 const NamedDecl *B);
2253 void diagnoseEquivalentInternalLinkageDeclarations(
2254 SourceLocation Loc, const NamedDecl *D,
2255 ArrayRef<const NamedDecl *> Equiv);
2256
2257 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2258
2259 bool isCompleteType(SourceLocation Loc, QualType T,
2260 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2261 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2262 }
2263 bool RequireCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2265 bool RequireCompleteType(SourceLocation Loc, QualType T,
2266 CompleteTypeKind Kind, unsigned DiagID);
2267
2268 bool RequireCompleteType(SourceLocation Loc, QualType T,
2269 TypeDiagnoser &Diagnoser) {
2270 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2271 }
2272 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2273 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2274 }
2275
2276 template <typename... Ts>
2277 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2278 const Ts &...Args) {
2279 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2280 return RequireCompleteType(Loc, T, Diagnoser);
2281 }
2282
2283 template <typename... Ts>
2284 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2285 const Ts &... Args) {
2286 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2287 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2288 }
2289
2290 /// Get the type of expression E, triggering instantiation to complete the
2291 /// type if necessary -- that is, if the expression refers to a templated
2292 /// static data member of incomplete array type.
2293 ///
2294 /// May still return an incomplete type if instantiation was not possible or
2295 /// if the type is incomplete for a different reason. Use
2296 /// RequireCompleteExprType instead if a diagnostic is expected for an
2297 /// incomplete expression type.
2298 QualType getCompletedType(Expr *E);
2299
2300 void completeExprArrayBound(Expr *E);
2301 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2302 TypeDiagnoser &Diagnoser);
2303 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2304
2305 template <typename... Ts>
2306 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2307 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2308 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2309 }
2310
2311 template <typename... Ts>
2312 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2313 const Ts &... Args) {
2314 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2315 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2316 }
2317
2318 bool RequireLiteralType(SourceLocation Loc, QualType T,
2319 TypeDiagnoser &Diagnoser);
2320 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2321
2322 template <typename... Ts>
2323 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2324 const Ts &...Args) {
2325 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2326 return RequireLiteralType(Loc, T, Diagnoser);
2327 }
2328
2329 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2330 const CXXScopeSpec &SS, QualType T,
2331 TagDecl *OwnedTagDecl = nullptr);
2332
2333 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2334 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2335 /// context, such as when building a type for decltype(auto).
2336 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2337 bool AsUnevaluated = true);
2338 QualType BuildUnaryTransformType(QualType BaseType,
2339 UnaryTransformType::UTTKind UKind,
2340 SourceLocation Loc);
2341
2342 //===--------------------------------------------------------------------===//
2343 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2344 //
2345
2346 struct SkipBodyInfo {
2347 SkipBodyInfo()
2348 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2349 New(nullptr) {}
2350 bool ShouldSkip;
2351 bool CheckSameAsPrevious;
2352 NamedDecl *Previous;
2353 NamedDecl *New;
2354 };
2355
2356 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2357
2358 void DiagnoseUseOfUnimplementedSelectors();
2359
2360 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2361
2362 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2363 Scope *S, CXXScopeSpec *SS = nullptr,
2364 bool isClassName = false, bool HasTrailingDot = false,
2365 ParsedType ObjectType = nullptr,
2366 bool IsCtorOrDtorName = false,
2367 bool WantNontrivialTypeSourceInfo = false,
2368 bool IsClassTemplateDeductionContext = true,
2369 IdentifierInfo **CorrectedII = nullptr);
2370 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2371 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2372 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2373 SourceLocation IILoc,
2374 Scope *S,
2375 CXXScopeSpec *SS,
2376 ParsedType &SuggestedType,
2377 bool IsTemplateName = false);
2378
2379 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2380 /// type name has failed in a dependent context. In these situations, we
2381 /// automatically form a DependentTypeName that will retry lookup in a related
2382 /// scope during instantiation.
2383 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2384 SourceLocation NameLoc,
2385 bool IsTemplateTypeArg);
2386
2387 /// Describes the result of the name lookup and resolution performed
2388 /// by \c ClassifyName().
2389 enum NameClassificationKind {
2390 /// This name is not a type or template in this context, but might be
2391 /// something else.
2392 NC_Unknown,
2393 /// Classification failed; an error has been produced.
2394 NC_Error,
2395 /// The name has been typo-corrected to a keyword.
2396 NC_Keyword,
2397 /// The name was classified as a type.
2398 NC_Type,
2399 /// The name was classified as a specific non-type, non-template
2400 /// declaration. ActOnNameClassifiedAsNonType should be called to
2401 /// convert the declaration to an expression.
2402 NC_NonType,
2403 /// The name was classified as an ADL-only function name.
2404 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2405 /// result to an expression.
2406 NC_UndeclaredNonType,
2407 /// The name denotes a member of a dependent type that could not be
2408 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2409 /// convert the result to an expression.
2410 NC_DependentNonType,
2411 /// The name was classified as an overload set, and an expression
2412 /// representing that overload set has been formed.
2413 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2414 /// expression referencing the overload set.
2415 NC_OverloadSet,
2416 /// The name was classified as a template whose specializations are types.
2417 NC_TypeTemplate,
2418 /// The name was classified as a variable template name.
2419 NC_VarTemplate,
2420 /// The name was classified as a function template name.
2421 NC_FunctionTemplate,
2422 /// The name was classified as an ADL-only function template name.
2423 NC_UndeclaredTemplate,
2424 /// The name was classified as a concept name.
2425 NC_Concept,
2426 };
2427
2428 class NameClassification {
2429 NameClassificationKind Kind;
2430 union {
2431 ExprResult Expr;
2432 NamedDecl *NonTypeDecl;
2433 TemplateName Template;
2434 ParsedType Type;
2435 };
2436
2437 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2438
2439 public:
2440 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2441
2442 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2443
2444 static NameClassification Error() {
2445 return NameClassification(NC_Error);
2446 }
2447
2448 static NameClassification Unknown() {
2449 return NameClassification(NC_Unknown);
2450 }
2451
2452 static NameClassification OverloadSet(ExprResult E) {
2453 NameClassification Result(NC_OverloadSet);
2454 Result.Expr = E;
2455 return Result;
2456 }
2457
2458 static NameClassification NonType(NamedDecl *D) {
2459 NameClassification Result(NC_NonType);
2460 Result.NonTypeDecl = D;
2461 return Result;
2462 }
2463
2464 static NameClassification UndeclaredNonType() {
2465 return NameClassification(NC_UndeclaredNonType);
2466 }
2467
2468 static NameClassification DependentNonType() {
2469 return NameClassification(NC_DependentNonType);
2470 }
2471
2472 static NameClassification TypeTemplate(TemplateName Name) {
2473 NameClassification Result(NC_TypeTemplate);
2474 Result.Template = Name;
2475 return Result;
2476 }
2477
2478 static NameClassification VarTemplate(TemplateName Name) {
2479 NameClassification Result(NC_VarTemplate);
2480 Result.Template = Name;
2481 return Result;
2482 }
2483
2484 static NameClassification FunctionTemplate(TemplateName Name) {
2485 NameClassification Result(NC_FunctionTemplate);
2486 Result.Template = Name;
2487 return Result;
2488 }
2489
2490 static NameClassification Concept(TemplateName Name) {
2491 NameClassification Result(NC_Concept);
2492 Result.Template = Name;
2493 return Result;
2494 }
2495
2496 static NameClassification UndeclaredTemplate(TemplateName Name) {
2497 NameClassification Result(NC_UndeclaredTemplate);
2498 Result.Template = Name;
2499 return Result;
2500 }
2501
2502 NameClassificationKind getKind() const { return Kind; }
2503
2504 ExprResult getExpression() const {
2505 assert(Kind == NC_OverloadSet)(static_cast <bool> (Kind == NC_OverloadSet) ? void (0)
: __assert_fail ("Kind == NC_OverloadSet", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2505, __extension__ __PRETTY_FUNCTION__))
;
2506 return Expr;
2507 }
2508
2509 ParsedType getType() const {
2510 assert(Kind == NC_Type)(static_cast <bool> (Kind == NC_Type) ? void (0) : __assert_fail
("Kind == NC_Type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2510, __extension__ __PRETTY_FUNCTION__))
;
2511 return Type;
2512 }
2513
2514 NamedDecl *getNonTypeDecl() const {
2515 assert(Kind == NC_NonType)(static_cast <bool> (Kind == NC_NonType) ? void (0) : __assert_fail
("Kind == NC_NonType", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2515, __extension__ __PRETTY_FUNCTION__))
;
2516 return NonTypeDecl;
2517 }
2518
2519 TemplateName getTemplateName() const {
2520 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2521 Kind == NC_VarTemplate || Kind == NC_Concept ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2522 Kind == NC_UndeclaredTemplate)(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
;
2523 return Template;
2524 }
2525
2526 TemplateNameKind getTemplateNameKind() const {
2527 switch (Kind) {
2528 case NC_TypeTemplate:
2529 return TNK_Type_template;
2530 case NC_FunctionTemplate:
2531 return TNK_Function_template;
2532 case NC_VarTemplate:
2533 return TNK_Var_template;
2534 case NC_Concept:
2535 return TNK_Concept_template;
2536 case NC_UndeclaredTemplate:
2537 return TNK_Undeclared_template;
2538 default:
2539 llvm_unreachable("unsupported name classification.")::llvm::llvm_unreachable_internal("unsupported name classification."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2539)
;
2540 }
2541 }
2542 };
2543
2544 /// Perform name lookup on the given name, classifying it based on
2545 /// the results of name lookup and the following token.
2546 ///
2547 /// This routine is used by the parser to resolve identifiers and help direct
2548 /// parsing. When the identifier cannot be found, this routine will attempt
2549 /// to correct the typo and classify based on the resulting name.
2550 ///
2551 /// \param S The scope in which we're performing name lookup.
2552 ///
2553 /// \param SS The nested-name-specifier that precedes the name.
2554 ///
2555 /// \param Name The identifier. If typo correction finds an alternative name,
2556 /// this pointer parameter will be updated accordingly.
2557 ///
2558 /// \param NameLoc The location of the identifier.
2559 ///
2560 /// \param NextToken The token following the identifier. Used to help
2561 /// disambiguate the name.
2562 ///
2563 /// \param CCC The correction callback, if typo correction is desired.
2564 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2565 IdentifierInfo *&Name, SourceLocation NameLoc,
2566 const Token &NextToken,
2567 CorrectionCandidateCallback *CCC = nullptr);
2568
2569 /// Act on the result of classifying a name as an undeclared (ADL-only)
2570 /// non-type declaration.
2571 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2572 SourceLocation NameLoc);
2573 /// Act on the result of classifying a name as an undeclared member of a
2574 /// dependent base class.
2575 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2576 IdentifierInfo *Name,
2577 SourceLocation NameLoc,
2578 bool IsAddressOfOperand);
2579 /// Act on the result of classifying a name as a specific non-type
2580 /// declaration.
2581 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2582 NamedDecl *Found,
2583 SourceLocation NameLoc,
2584 const Token &NextToken);
2585 /// Act on the result of classifying a name as an overload set.
2586 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2587
2588 /// Describes the detailed kind of a template name. Used in diagnostics.
2589 enum class TemplateNameKindForDiagnostics {
2590 ClassTemplate,
2591 FunctionTemplate,
2592 VarTemplate,
2593 AliasTemplate,
2594 TemplateTemplateParam,
2595 Concept,
2596 DependentTemplate
2597 };
2598 TemplateNameKindForDiagnostics
2599 getTemplateNameKindForDiagnostics(TemplateName Name);
2600
2601 /// Determine whether it's plausible that E was intended to be a
2602 /// template-name.
2603 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2604 if (!getLangOpts().CPlusPlus || E.isInvalid())
2605 return false;
2606 Dependent = false;
2607 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2608 return !DRE->hasExplicitTemplateArgs();
2609 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2610 return !ME->hasExplicitTemplateArgs();
2611 Dependent = true;
2612 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2613 return !DSDRE->hasExplicitTemplateArgs();
2614 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2615 return !DSME->hasExplicitTemplateArgs();
2616 // Any additional cases recognized here should also be handled by
2617 // diagnoseExprIntendedAsTemplateName.
2618 return false;
2619 }
2620 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2621 SourceLocation Less,
2622 SourceLocation Greater);
2623
2624 void warnOnReservedIdentifier(const NamedDecl *D);
2625
2626 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2627
2628 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2629 MultiTemplateParamsArg TemplateParameterLists);
2630 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2631 QualType &T, SourceLocation Loc,
2632 unsigned FailedFoldDiagID);
2633 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2634 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2635 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2636 DeclarationName Name, SourceLocation Loc,
2637 bool IsTemplateId);
2638 void
2639 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2640 SourceLocation FallbackLoc,
2641 SourceLocation ConstQualLoc = SourceLocation(),
2642 SourceLocation VolatileQualLoc = SourceLocation(),
2643 SourceLocation RestrictQualLoc = SourceLocation(),
2644 SourceLocation AtomicQualLoc = SourceLocation(),
2645 SourceLocation UnalignedQualLoc = SourceLocation());
2646
2647 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2648 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2649 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2650 const LookupResult &R);
2651 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2652 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2653 const LookupResult &R);
2654 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2655 const LookupResult &R);
2656 void CheckShadow(Scope *S, VarDecl *D);
2657
2658 /// Warn if 'E', which is an expression that is about to be modified, refers
2659 /// to a shadowing declaration.
2660 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2661
2662 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2663
2664private:
2665 /// Map of current shadowing declarations to shadowed declarations. Warn if
2666 /// it looks like the user is trying to modify the shadowing declaration.
2667 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2668
2669public:
2670 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2671 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2672 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2673 TypedefNameDecl *NewTD);
2674 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2675 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2676 TypeSourceInfo *TInfo,
2677 LookupResult &Previous);
2678 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2679 LookupResult &Previous, bool &Redeclaration);
2680 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous,
2683 MultiTemplateParamsArg TemplateParamLists,
2684 bool &AddToScope,
2685 ArrayRef<BindingDecl *> Bindings = None);
2686 NamedDecl *
2687 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2688 MultiTemplateParamsArg TemplateParamLists);
2689 // Returns true if the variable declaration is a redeclaration
2690 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2691 void CheckVariableDeclarationType(VarDecl *NewVD);
2692 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2693 Expr *Init);
2694 void CheckCompleteVariableDeclaration(VarDecl *VD);
2695 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2696 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2697
2698 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2699 TypeSourceInfo *TInfo,
2700 LookupResult &Previous,
2701 MultiTemplateParamsArg TemplateParamLists,
2702 bool &AddToScope);
2703 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2704
2705 enum class CheckConstexprKind {
2706 /// Diagnose issues that are non-constant or that are extensions.
2707 Diagnose,
2708 /// Identify whether this function satisfies the formal rules for constexpr
2709 /// functions in the current lanugage mode (with no extensions).
2710 CheckValid
2711 };
2712
2713 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2714 CheckConstexprKind Kind);
2715
2716 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2717 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2718 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2719 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2720 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2721 // Returns true if the function declaration is a redeclaration
2722 bool CheckFunctionDeclaration(Scope *S,
2723 FunctionDecl *NewFD, LookupResult &Previous,
2724 bool IsMemberSpecialization);
2725 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2726 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2727 QualType NewT, QualType OldT);
2728 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2729 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2730 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2731 bool IsDefinition);
2732 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2733 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2734 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2735 SourceLocation Loc,
2736 QualType T);
2737 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2738 SourceLocation NameLoc, IdentifierInfo *Name,
2739 QualType T, TypeSourceInfo *TSInfo,
2740 StorageClass SC);
2741 void ActOnParamDefaultArgument(Decl *param,
2742 SourceLocation EqualLoc,
2743 Expr *defarg);
2744 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2745 SourceLocation ArgLoc);
2746 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2747 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2748 SourceLocation EqualLoc);
2749 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2750 SourceLocation EqualLoc);
2751
2752 // Contexts where using non-trivial C union types can be disallowed. This is
2753 // passed to err_non_trivial_c_union_in_invalid_context.
2754 enum NonTrivialCUnionContext {
2755 // Function parameter.
2756 NTCUC_FunctionParam,
2757 // Function return.
2758 NTCUC_FunctionReturn,
2759 // Default-initialized object.
2760 NTCUC_DefaultInitializedObject,
2761 // Variable with automatic storage duration.
2762 NTCUC_AutoVar,
2763 // Initializer expression that might copy from another object.
2764 NTCUC_CopyInit,
2765 // Assignment.
2766 NTCUC_Assignment,
2767 // Compound literal.
2768 NTCUC_CompoundLiteral,
2769 // Block capture.
2770 NTCUC_BlockCapture,
2771 // lvalue-to-rvalue conversion of volatile type.
2772 NTCUC_LValueToRValueVolatile,
2773 };
2774
2775 /// Emit diagnostics if the initializer or any of its explicit or
2776 /// implicitly-generated subexpressions require copying or
2777 /// default-initializing a type that is or contains a C union type that is
2778 /// non-trivial to copy or default-initialize.
2779 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2780
2781 // These flags are passed to checkNonTrivialCUnion.
2782 enum NonTrivialCUnionKind {
2783 NTCUK_Init = 0x1,
2784 NTCUK_Destruct = 0x2,
2785 NTCUK_Copy = 0x4,
2786 };
2787
2788 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2789 /// a non-trivial C union is used in an invalid context.
2790 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2791 NonTrivialCUnionContext UseContext,
2792 unsigned NonTrivialKind);
2793
2794 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2795 void ActOnUninitializedDecl(Decl *dcl);
2796 void ActOnInitializerError(Decl *Dcl);
2797
2798 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2799 void ActOnCXXForRangeDecl(Decl *D);
2800 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2801 IdentifierInfo *Ident,
2802 ParsedAttributes &Attrs,
2803 SourceLocation AttrEnd);
2804 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2805 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2806 void CheckStaticLocalForDllExport(VarDecl *VD);
2807 void FinalizeDeclaration(Decl *D);
2808 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2809 ArrayRef<Decl *> Group);
2810 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2811
2812 /// Should be called on all declarations that might have attached
2813 /// documentation comments.
2814 void ActOnDocumentableDecl(Decl *D);
2815 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2816
2817 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2818 SourceLocation LocAfterDecls);
2819 void CheckForFunctionRedefinition(
2820 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2821 SkipBodyInfo *SkipBody = nullptr);
2822 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2823 MultiTemplateParamsArg TemplateParamLists,
2824 SkipBodyInfo *SkipBody = nullptr);
2825 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2828 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2829 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2830 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2831 bool isObjCMethodDecl(Decl *D) {
2832 return D && isa<ObjCMethodDecl>(D);
2833 }
2834
2835 /// Determine whether we can delay parsing the body of a function or
2836 /// function template until it is used, assuming we don't care about emitting
2837 /// code for that function.
2838 ///
2839 /// This will be \c false if we may need the body of the function in the
2840 /// middle of parsing an expression (where it's impractical to switch to
2841 /// parsing a different function), for instance, if it's constexpr in C++11
2842 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2843 bool canDelayFunctionBody(const Declarator &D);
2844
2845 /// Determine whether we can skip parsing the body of a function
2846 /// definition, assuming we don't care about analyzing its body or emitting
2847 /// code for that function.
2848 ///
2849 /// This will be \c false only if we may need the body of the function in
2850 /// order to parse the rest of the program (for instance, if it is
2851 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2852 bool canSkipFunctionBody(Decl *D);
2853
2854 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2855 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2856 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2857 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2858 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2859
2860 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2861 /// attribute for which parsing is delayed.
2862 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2863
2864 /// Diagnose any unused parameters in the given sequence of
2865 /// ParmVarDecl pointers.
2866 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2867
2868 /// Diagnose whether the size of parameters or return value of a
2869 /// function or obj-c method definition is pass-by-value and larger than a
2870 /// specified threshold.
2871 void
2872 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2873 QualType ReturnTy, NamedDecl *D);
2874
2875 void DiagnoseInvalidJumps(Stmt *Body);
2876 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2877 SourceLocation AsmLoc,
2878 SourceLocation RParenLoc);
2879
2880 /// Handle a C++11 empty-declaration and attribute-declaration.
2881 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2882 SourceLocation SemiLoc);
2883
2884 enum class ModuleDeclKind {
2885 Interface, ///< 'export module X;'
2886 Implementation, ///< 'module X;'
2887 };
2888
2889 /// The parser has processed a module-declaration that begins the definition
2890 /// of a module interface or implementation.
2891 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2892 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2893 ModuleIdPath Path, bool IsFirstDecl);
2894
2895 /// The parser has processed a global-module-fragment declaration that begins
2896 /// the definition of the global module fragment of the current module unit.
2897 /// \param ModuleLoc The location of the 'module' keyword.
2898 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2899
2900 /// The parser has processed a private-module-fragment declaration that begins
2901 /// the definition of the private module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 /// \param PrivateLoc The location of the 'private' keyword.
2904 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2905 SourceLocation PrivateLoc);
2906
2907 /// The parser has processed a module import declaration.
2908 ///
2909 /// \param StartLoc The location of the first token in the declaration. This
2910 /// could be the location of an '@', 'export', or 'import'.
2911 /// \param ExportLoc The location of the 'export' keyword, if any.
2912 /// \param ImportLoc The location of the 'import' keyword.
2913 /// \param Path The module access path.
2914 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2915 SourceLocation ExportLoc,
2916 SourceLocation ImportLoc, ModuleIdPath Path);
2917 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2918 SourceLocation ExportLoc,
2919 SourceLocation ImportLoc, Module *M,
2920 ModuleIdPath Path = {});
2921
2922 /// The parser has processed a module import translated from a
2923 /// #include or similar preprocessing directive.
2924 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2925 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2926
2927 /// The parsed has entered a submodule.
2928 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2929 /// The parser has left a submodule.
2930 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// Create an implicit import of the given module at the given
2933 /// source location, for error recovery, if possible.
2934 ///
2935 /// This routine is typically used when an entity found by name lookup
2936 /// is actually hidden within a module that we know about but the user
2937 /// has forgotten to import.
2938 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2939 Module *Mod);
2940
2941 /// Kinds of missing import. Note, the values of these enumerators correspond
2942 /// to %select values in diagnostics.
2943 enum class MissingImportKind {
2944 Declaration,
2945 Definition,
2946 DefaultArgument,
2947 ExplicitSpecialization,
2948 PartialSpecialization
2949 };
2950
2951 /// Diagnose that the specified declaration needs to be visible but
2952 /// isn't, and suggest a module import that would resolve the problem.
2953 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2954 MissingImportKind MIK, bool Recover = true);
2955 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2956 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2957 MissingImportKind MIK, bool Recover);
2958
2959 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2960 SourceLocation LBraceLoc);
2961 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2962 SourceLocation RBraceLoc);
2963
2964 /// We've found a use of a templated declaration that would trigger an
2965 /// implicit instantiation. Check that any relevant explicit specializations
2966 /// and partial specializations are visible, and diagnose if not.
2967 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2968
2969 /// Retrieve a suitable printing policy for diagnostics.
2970 PrintingPolicy getPrintingPolicy() const {
2971 return getPrintingPolicy(Context, PP);
2972 }
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2976 const Preprocessor &PP);
2977
2978 /// Scope actions.
2979 void ActOnPopScope(SourceLocation Loc, Scope *S);
2980 void ActOnTranslationUnitScope(Scope *S);
2981
2982 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2983 RecordDecl *&AnonRecord);
2984 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2985 MultiTemplateParamsArg TemplateParams,
2986 bool IsExplicitInstantiation,
2987 RecordDecl *&AnonRecord);
2988
2989 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2990 AccessSpecifier AS,
2991 RecordDecl *Record,
2992 const PrintingPolicy &Policy);
2993
2994 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2995 RecordDecl *Record);
2996
2997 /// Common ways to introduce type names without a tag for use in diagnostics.
2998 /// Keep in sync with err_tag_reference_non_tag.
2999 enum NonTagKind {
3000 NTK_NonStruct,
3001 NTK_NonClass,
3002 NTK_NonUnion,
3003 NTK_NonEnum,
3004 NTK_Typedef,
3005 NTK_TypeAlias,
3006 NTK_Template,
3007 NTK_TypeAliasTemplate,
3008 NTK_TemplateTemplateArgument,
3009 };
3010
3011 /// Given a non-tag type declaration, returns an enum useful for indicating
3012 /// what kind of non-tag type this is.
3013 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3014
3015 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3016 TagTypeKind NewTag, bool isDefinition,
3017 SourceLocation NewTagLoc,
3018 const IdentifierInfo *Name);
3019
3020 enum TagUseKind {
3021 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3022 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3023 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3024 TUK_Friend // Friend declaration: 'friend struct foo;'
3025 };
3026
3027 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3028 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3029 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3030 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3031 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3032 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3033 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3034 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3035 SkipBodyInfo *SkipBody = nullptr);
3036
3037 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3038 unsigned TagSpec, SourceLocation TagLoc,
3039 CXXScopeSpec &SS, IdentifierInfo *Name,
3040 SourceLocation NameLoc,
3041 const ParsedAttributesView &Attr,
3042 MultiTemplateParamsArg TempParamLists);
3043
3044 TypeResult ActOnDependentTag(Scope *S,
3045 unsigned TagSpec,
3046 TagUseKind TUK,
3047 const CXXScopeSpec &SS,
3048 IdentifierInfo *Name,
3049 SourceLocation TagLoc,
3050 SourceLocation NameLoc);
3051
3052 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3053 IdentifierInfo *ClassName,
3054 SmallVectorImpl<Decl *> &Decls);
3055 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3056 Declarator &D, Expr *BitfieldWidth);
3057
3058 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3059 Declarator &D, Expr *BitfieldWidth,
3060 InClassInitStyle InitStyle,
3061 AccessSpecifier AS);
3062 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3063 SourceLocation DeclStart, Declarator &D,
3064 Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS,
3067 const ParsedAttr &MSPropertyAttr);
3068
3069 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3070 TypeSourceInfo *TInfo,
3071 RecordDecl *Record, SourceLocation Loc,
3072 bool Mutable, Expr *BitfieldWidth,
3073 InClassInitStyle InitStyle,
3074 SourceLocation TSSL,
3075 AccessSpecifier AS, NamedDecl *PrevDecl,
3076 Declarator *D = nullptr);
3077
3078 bool CheckNontrivialField(FieldDecl *FD);
3079 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3080
3081 enum TrivialABIHandling {
3082 /// The triviality of a method unaffected by "trivial_abi".
3083 TAH_IgnoreTrivialABI,
3084
3085 /// The triviality of a method affected by "trivial_abi".
3086 TAH_ConsiderTrivialABI
3087 };
3088
3089 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3090 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3091 bool Diagnose = false);
3092
3093 /// For a defaulted function, the kind of defaulted function that it is.
3094 class DefaultedFunctionKind {
3095 CXXSpecialMember SpecialMember : 8;
3096 DefaultedComparisonKind Comparison : 8;
3097
3098 public:
3099 DefaultedFunctionKind()
3100 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3101 }
3102 DefaultedFunctionKind(CXXSpecialMember CSM)
3103 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3104 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3105 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3106
3107 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3108 bool isComparison() const {
3109 return Comparison != DefaultedComparisonKind::None;
3110 }
3111
3112 explicit operator bool() const {
3113 return isSpecialMember() || isComparison();
3114 }
3115
3116 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3117 DefaultedComparisonKind asComparison() const { return Comparison; }
3118
3119 /// Get the index of this function kind for use in diagnostics.
3120 unsigned getDiagnosticIndex() const {
3121 static_assert(CXXInvalid > CXXDestructor,
3122 "invalid should have highest index");
3123 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3124 "none should be equal to zero");
3125 return SpecialMember + (unsigned)Comparison;
3126 }
3127 };
3128
3129 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3130
3131 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3132 return getDefaultedFunctionKind(MD).asSpecialMember();
3133 }
3134 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3135 return getDefaultedFunctionKind(FD).asComparison();
3136 }
3137
3138 void ActOnLastBitfield(SourceLocation DeclStart,
3139 SmallVectorImpl<Decl *> &AllIvarDecls);
3140 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3141 Declarator &D, Expr *BitfieldWidth,
3142 tok::ObjCKeywordKind visibility);
3143
3144 // This is used for both record definitions and ObjC interface declarations.
3145 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3146 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3147 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3148
3149 /// ActOnTagStartDefinition - Invoked when we have entered the
3150 /// scope of a tag's definition (e.g., for an enumeration, class,
3151 /// struct, or union).
3152 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3153
3154 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3155 /// Differently from C++, actually parse the body and reject / error out
3156 /// in case of a structural mismatch.
3157 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3158 SkipBodyInfo &SkipBody);
3159
3160 typedef void *SkippedDefinitionContext;
3161
3162 /// Invoked when we enter a tag definition that we're skipping.
3163 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3164
3165 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3166
3167 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3168 /// C++ record definition's base-specifiers clause and are starting its
3169 /// member declarations.
3170 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3171 SourceLocation FinalLoc,
3172 bool IsFinalSpelledSealed,
3173 bool IsAbstract,
3174 SourceLocation LBraceLoc);
3175
3176 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3177 /// the definition of a tag (enumeration, class, struct, or union).
3178 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3179 SourceRange BraceRange);
3180
3181 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3182
3183 void ActOnObjCContainerFinishDefinition();
3184
3185 /// Invoked when we must temporarily exit the objective-c container
3186 /// scope for parsing/looking-up C constructs.
3187 ///
3188 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3189 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3190 void ActOnObjCReenterContainerContext(DeclContext *DC);
3191
3192 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3193 /// error parsing the definition of a tag.
3194 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3195
3196 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3197 EnumConstantDecl *LastEnumConst,
3198 SourceLocation IdLoc,
3199 IdentifierInfo *Id,
3200 Expr *val);
3201 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3202 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3203 QualType EnumUnderlyingTy, bool IsFixed,
3204 const EnumDecl *Prev);
3205
3206 /// Determine whether the body of an anonymous enumeration should be skipped.
3207 /// \param II The name of the first enumerator.
3208 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3209 SourceLocation IILoc);
3210
3211 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3212 SourceLocation IdLoc, IdentifierInfo *Id,
3213 const ParsedAttributesView &Attrs,
3214 SourceLocation EqualLoc, Expr *Val);
3215 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3216 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3217 const ParsedAttributesView &Attr);
3218
3219 /// Set the current declaration context until it gets popped.
3220 void PushDeclContext(Scope *S, DeclContext *DC);
3221 void PopDeclContext();
3222
3223 /// EnterDeclaratorContext - Used when we must lookup names in the context
3224 /// of a declarator's nested name specifier.
3225 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3226 void ExitDeclaratorContext(Scope *S);
3227
3228 /// Enter a template parameter scope, after it's been associated with a particular
3229 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3230 /// in the correct order.
3231 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3232
3233 /// Push the parameters of D, which must be a function, into scope.
3234 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3235 void ActOnExitFunctionContext();
3236
3237 DeclContext *getFunctionLevelDeclContext();
3238
3239 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3240 /// to the function decl for the function being parsed. If we're currently
3241 /// in a 'block', this returns the containing context.
3242 FunctionDecl *getCurFunctionDecl();
3243
3244 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3245 /// the method decl for the method being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 ObjCMethodDecl *getCurMethodDecl();
3248
3249 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3250 /// or C function we're in, otherwise return null. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 NamedDecl *getCurFunctionOrMethodDecl();
3253
3254 /// Add this decl to the scope shadowed decl chains.
3255 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3256
3257 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3258 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3259 /// true if 'D' belongs to the given declaration context.
3260 ///
3261 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3262 /// enclosing namespace set of the context, rather than contained
3263 /// directly within it.
3264 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3265 bool AllowInlineNamespace = false);
3266
3267 /// Finds the scope corresponding to the given decl context, if it
3268 /// happens to be an enclosing scope. Otherwise return NULL.
3269 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3270
3271 /// Subroutines of ActOnDeclarator().
3272 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3273 TypeSourceInfo *TInfo);
3274 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3275
3276 /// Describes the kind of merge to perform for availability
3277 /// attributes (including "deprecated", "unavailable", and "availability").
3278 enum AvailabilityMergeKind {
3279 /// Don't merge availability attributes at all.
3280 AMK_None,
3281 /// Merge availability attributes for a redeclaration, which requires
3282 /// an exact match.
3283 AMK_Redeclaration,
3284 /// Merge availability attributes for an override, which requires
3285 /// an exact match or a weakening of constraints.
3286 AMK_Override,
3287 /// Merge availability attributes for an implementation of
3288 /// a protocol requirement.
3289 AMK_ProtocolImplementation,
3290 /// Merge availability attributes for an implementation of
3291 /// an optional protocol requirement.
3292 AMK_OptionalProtocolImplementation
3293 };
3294
3295 /// Describes the kind of priority given to an availability attribute.
3296 ///
3297 /// The sum of priorities deteremines the final priority of the attribute.
3298 /// The final priority determines how the attribute will be merged.
3299 /// An attribute with a lower priority will always remove higher priority
3300 /// attributes for the specified platform when it is being applied. An
3301 /// attribute with a higher priority will not be applied if the declaration
3302 /// already has an availability attribute with a lower priority for the
3303 /// specified platform. The final prirority values are not expected to match
3304 /// the values in this enumeration, but instead should be treated as a plain
3305 /// integer value. This enumeration just names the priority weights that are
3306 /// used to calculate that final vaue.
3307 enum AvailabilityPriority : int {
3308 /// The availability attribute was specified explicitly next to the
3309 /// declaration.
3310 AP_Explicit = 0,
3311
3312 /// The availability attribute was applied using '#pragma clang attribute'.
3313 AP_PragmaClangAttribute = 1,
3314
3315 /// The availability attribute for a specific platform was inferred from
3316 /// an availability attribute for another platform.
3317 AP_InferredFromOtherPlatform = 2
3318 };
3319
3320 /// Attribute merging methods. Return true if a new attribute was added.
3321 AvailabilityAttr *
3322 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3323 IdentifierInfo *Platform, bool Implicit,
3324 VersionTuple Introduced, VersionTuple Deprecated,
3325 VersionTuple Obsoleted, bool IsUnavailable,
3326 StringRef Message, bool IsStrict, StringRef Replacement,
3327 AvailabilityMergeKind AMK, int Priority);
3328 TypeVisibilityAttr *
3329 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3330 TypeVisibilityAttr::VisibilityType Vis);
3331 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3332 VisibilityAttr::VisibilityType Vis);
3333 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3334 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3335 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3336 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3337 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3338 const AttributeCommonInfo &CI,
3339 bool BestCase,
3340 MSInheritanceModel Model);
3341 ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3342 StringRef NewUserDiagnostic);
3343 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3344 IdentifierInfo *Format, int FormatIdx,
3345 int FirstArg);
3346 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3347 StringRef Name);
3348 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3349 StringRef Name);
3350 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3351 const AttributeCommonInfo &CI,
3352 const IdentifierInfo *Ident);
3353 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3354 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3355 StringRef Name);
3356 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3357 const AttributeCommonInfo &CI);
3358 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3359 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3360 const InternalLinkageAttr &AL);
3361 WebAssemblyImportNameAttr *mergeImportNameAttr(
3362 Decl *D, const WebAssemblyImportNameAttr &AL);
3363 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3364 Decl *D, const WebAssemblyImportModuleAttr &AL);
3365 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3366 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3367 const EnforceTCBLeafAttr &AL);
3368 BTFTagAttr *mergeBTFTagAttr(Decl *D, const BTFTagAttr &AL);
3369
3370 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3371 AvailabilityMergeKind AMK = AMK_Redeclaration);
3372 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3373 LookupResult &OldDecls);
3374 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3375 bool MergeTypeWithOld);
3376 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3377 Scope *S, bool MergeTypeWithOld);
3378 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3379 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3380 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3381 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3382 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3383 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3384 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3385
3386 // AssignmentAction - This is used by all the assignment diagnostic functions
3387 // to represent what is actually causing the operation
3388 enum AssignmentAction {
3389 AA_Assigning,
3390 AA_Passing,
3391 AA_Returning,
3392 AA_Converting,
3393 AA_Initializing,
3394 AA_Sending,
3395 AA_Casting,
3396 AA_Passing_CFAudited
3397 };
3398
3399 /// C++ Overloading.
3400 enum OverloadKind {
3401 /// This is a legitimate overload: the existing declarations are
3402 /// functions or function templates with different signatures.
3403 Ovl_Overload,
3404
3405 /// This is not an overload because the signature exactly matches
3406 /// an existing declaration.
3407 Ovl_Match,
3408
3409 /// This is not an overload because the lookup results contain a
3410 /// non-function.
3411 Ovl_NonFunction
3412 };
3413 OverloadKind CheckOverload(Scope *S,
3414 FunctionDecl *New,
3415 const LookupResult &OldDecls,
3416 NamedDecl *&OldDecl,
3417 bool IsForUsingDecl);
3418 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3419 bool ConsiderCudaAttrs = true,
3420 bool ConsiderRequiresClauses = true);
3421
3422 enum class AllowedExplicit {
3423 /// Allow no explicit functions to be used.
3424 None,
3425 /// Allow explicit conversion functions but not explicit constructors.
3426 Conversions,
3427 /// Allow both explicit conversion functions and explicit constructors.
3428 All
3429 };
3430
3431 ImplicitConversionSequence
3432 TryImplicitConversion(Expr *From, QualType ToType,
3433 bool SuppressUserConversions,
3434 AllowedExplicit AllowExplicit,
3435 bool InOverloadResolution,
3436 bool CStyle,
3437 bool AllowObjCWritebackConversion);
3438
3439 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3440 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3441 bool IsComplexPromotion(QualType FromType, QualType ToType);
3442 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3443 bool InOverloadResolution,
3444 QualType& ConvertedType, bool &IncompatibleObjC);
3445 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3448 QualType &ConvertedType);
3449 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3450 QualType& ConvertedType);
3451 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3452 const FunctionProtoType *NewType,
3453 unsigned *ArgPos = nullptr);
3454 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3455 QualType FromType, QualType ToType);
3456
3457 void maybeExtendBlockObject(ExprResult &E);
3458 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3459 bool CheckPointerConversion(Expr *From, QualType ToType,
3460 CastKind &Kind,
3461 CXXCastPath& BasePath,
3462 bool IgnoreBaseAccess,
3463 bool Diagnose = true);
3464 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3465 bool InOverloadResolution,
3466 QualType &ConvertedType);
3467 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3468 CastKind &Kind,
3469 CXXCastPath &BasePath,
3470 bool IgnoreBaseAccess);
3471 bool IsQualificationConversion(QualType FromType, QualType ToType,
3472 bool CStyle, bool &ObjCLifetimeConversion);
3473 bool IsFunctionConversion(QualType FromType, QualType ToType,
3474 QualType &ResultTy);
3475 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3476 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3477
3478 bool CanPerformAggregateInitializationForOverloadResolution(
3479 const InitializedEntity &Entity, InitListExpr *From);
3480
3481 bool IsStringInit(Expr *Init, const ArrayType *AT);
3482
3483 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3484 ExprResult Init);
3485 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3486 SourceLocation EqualLoc,
3487 ExprResult Init,
3488 bool TopLevelOfInitList = false,
3489 bool AllowExplicit = false);
3490 ExprResult PerformObjectArgumentInitialization(Expr *From,
3491 NestedNameSpecifier *Qualifier,
3492 NamedDecl *FoundDecl,
3493 CXXMethodDecl *Method);
3494
3495 /// Check that the lifetime of the initializer (and its subobjects) is
3496 /// sufficient for initializing the entity, and perform lifetime extension
3497 /// (when permitted) if not.
3498 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3499
3500 ExprResult PerformContextuallyConvertToBool(Expr *From);
3501 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3502
3503 /// Contexts in which a converted constant expression is required.
3504 enum CCEKind {
3505 CCEK_CaseValue, ///< Expression in a case label.
3506 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3507 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3508 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3509 CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
3510 CCEK_Noexcept ///< Condition in a noexcept(bool) specifier.
3511 };
3512 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3513 llvm::APSInt &Value, CCEKind CCE);
3514 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3515 APValue &Value, CCEKind CCE,
3516 NamedDecl *Dest = nullptr);
3517
3518 /// Abstract base class used to perform a contextual implicit
3519 /// conversion from an expression to any type passing a filter.
3520 class ContextualImplicitConverter {
3521 public:
3522 bool Suppress;
3523 bool SuppressConversion;
3524
3525 ContextualImplicitConverter(bool Suppress = false,
3526 bool SuppressConversion = false)
3527 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3528
3529 /// Determine whether the specified type is a valid destination type
3530 /// for this conversion.
3531 virtual bool match(QualType T) = 0;
3532
3533 /// Emits a diagnostic complaining that the expression does not have
3534 /// integral or enumeration type.
3535 virtual SemaDiagnosticBuilder
3536 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3537
3538 /// Emits a diagnostic when the expression has incomplete class type.
3539 virtual SemaDiagnosticBuilder
3540 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3541
3542 /// Emits a diagnostic when the only matching conversion function
3543 /// is explicit.
3544 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3545 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3546
3547 /// Emits a note for the explicit conversion function.
3548 virtual SemaDiagnosticBuilder
3549 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3550
3551 /// Emits a diagnostic when there are multiple possible conversion
3552 /// functions.
3553 virtual SemaDiagnosticBuilder
3554 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3555
3556 /// Emits a note for one of the candidate conversions.
3557 virtual SemaDiagnosticBuilder
3558 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3559
3560 /// Emits a diagnostic when we picked a conversion function
3561 /// (for cases when we are not allowed to pick a conversion function).
3562 virtual SemaDiagnosticBuilder diagnoseConversion(
3563 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3564
3565 virtual ~ContextualImplicitConverter() {}
3566 };
3567
3568 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3569 bool AllowScopedEnumerations;
3570
3571 public:
3572 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3573 bool Suppress, bool SuppressConversion)
3574 : ContextualImplicitConverter(Suppress, SuppressConversion),
3575 AllowScopedEnumerations(AllowScopedEnumerations) {}
3576
3577 /// Match an integral or (possibly scoped) enumeration type.
3578 bool match(QualType T) override;
3579
3580 SemaDiagnosticBuilder
3581 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3582 return diagnoseNotInt(S, Loc, T);
3583 }
3584
3585 /// Emits a diagnostic complaining that the expression does not have
3586 /// integral or enumeration type.
3587 virtual SemaDiagnosticBuilder
3588 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3589 };
3590
3591 /// Perform a contextual implicit conversion.
3592 ExprResult PerformContextualImplicitConversion(
3593 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3594
3595
3596 enum ObjCSubscriptKind {
3597 OS_Array,
3598 OS_Dictionary,
3599 OS_Error
3600 };
3601 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3602
3603 // Note that LK_String is intentionally after the other literals, as
3604 // this is used for diagnostics logic.
3605 enum ObjCLiteralKind {
3606 LK_Array,
3607 LK_Dictionary,
3608 LK_Numeric,
3609 LK_Boxed,
3610 LK_String,
3611 LK_Block,
3612 LK_None
3613 };
3614 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3615
3616 ExprResult PerformObjectMemberConversion(Expr *From,
3617 NestedNameSpecifier *Qualifier,
3618 NamedDecl *FoundDecl,
3619 NamedDecl *Member);
3620
3621 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3622 // TODO: make this is a typesafe union.
3623 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3624 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3625
3626 using ADLCallKind = CallExpr::ADLCallKind;
3627
3628 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3629 ArrayRef<Expr *> Args,
3630 OverloadCandidateSet &CandidateSet,
3631 bool SuppressUserConversions = false,
3632 bool PartialOverloading = false,
3633 bool AllowExplicit = true,
3634 bool AllowExplicitConversion = false,
3635 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3636 ConversionSequenceList EarlyConversions = None,
3637 OverloadCandidateParamOrder PO = {});
3638 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3639 ArrayRef<Expr *> Args,
3640 OverloadCandidateSet &CandidateSet,
3641 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3642 bool SuppressUserConversions = false,
3643 bool PartialOverloading = false,
3644 bool FirstArgumentIsBase = false);
3645 void AddMethodCandidate(DeclAccessPair FoundDecl,
3646 QualType ObjectType,
3647 Expr::Classification ObjectClassification,
3648 ArrayRef<Expr *> Args,
3649 OverloadCandidateSet& CandidateSet,
3650 bool SuppressUserConversion = false,
3651 OverloadCandidateParamOrder PO = {});
3652 void AddMethodCandidate(CXXMethodDecl *Method,
3653 DeclAccessPair FoundDecl,
3654 CXXRecordDecl *ActingContext, QualType ObjectType,
3655 Expr::Classification ObjectClassification,
3656 ArrayRef<Expr *> Args,
3657 OverloadCandidateSet& CandidateSet,
3658 bool SuppressUserConversions = false,
3659 bool PartialOverloading = false,
3660 ConversionSequenceList EarlyConversions = None,
3661 OverloadCandidateParamOrder PO = {});
3662 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3663 DeclAccessPair FoundDecl,
3664 CXXRecordDecl *ActingContext,
3665 TemplateArgumentListInfo *ExplicitTemplateArgs,
3666 QualType ObjectType,
3667 Expr::Classification ObjectClassification,
3668 ArrayRef<Expr *> Args,
3669 OverloadCandidateSet& CandidateSet,
3670 bool SuppressUserConversions = false,
3671 bool PartialOverloading = false,
3672 OverloadCandidateParamOrder PO = {});
3673 void AddTemplateOverloadCandidate(
3674 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3675 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3676 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3677 bool PartialOverloading = false, bool AllowExplicit = true,
3678 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3679 OverloadCandidateParamOrder PO = {});
3680 bool CheckNonDependentConversions(
3681 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3682 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3683 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3684 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3685 Expr::Classification ObjectClassification = {},
3686 OverloadCandidateParamOrder PO = {});
3687 void AddConversionCandidate(
3688 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3689 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3690 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3691 bool AllowExplicit, bool AllowResultConversion = true);
3692 void AddTemplateConversionCandidate(
3693 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3694 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3695 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3696 bool AllowExplicit, bool AllowResultConversion = true);
3697 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3698 DeclAccessPair FoundDecl,
3699 CXXRecordDecl *ActingContext,
3700 const FunctionProtoType *Proto,
3701 Expr *Object, ArrayRef<Expr *> Args,
3702 OverloadCandidateSet& CandidateSet);
3703 void AddNonMemberOperatorCandidates(
3704 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3705 OverloadCandidateSet &CandidateSet,
3706 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3707 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3708 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3709 OverloadCandidateSet &CandidateSet,
3710 OverloadCandidateParamOrder PO = {});
3711 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3712 OverloadCandidateSet& CandidateSet,
3713 bool IsAssignmentOperator = false,
3714 unsigned NumContextualBoolArguments = 0);
3715 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3716 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3717 OverloadCandidateSet& CandidateSet);
3718 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3719 SourceLocation Loc,
3720 ArrayRef<Expr *> Args,
3721 TemplateArgumentListInfo *ExplicitTemplateArgs,
3722 OverloadCandidateSet& CandidateSet,
3723 bool PartialOverloading = false);
3724
3725 // Emit as a 'note' the specific overload candidate
3726 void NoteOverloadCandidate(
3727 NamedDecl *Found, FunctionDecl *Fn,
3728 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3729 QualType DestType = QualType(), bool TakingAddress = false);
3730
3731 // Emit as a series of 'note's all template and non-templates identified by
3732 // the expression Expr
3733 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3734 bool TakingAddress = false);
3735
3736 /// Check the enable_if expressions on the given function. Returns the first
3737 /// failing attribute, or NULL if they were all successful.
3738 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3739 ArrayRef<Expr *> Args,
3740 bool MissingImplicitThis = false);
3741
3742 /// Find the failed Boolean condition within a given Boolean
3743 /// constant expression, and describe it with a string.
3744 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3745
3746 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3747 /// non-ArgDependent DiagnoseIfAttrs.
3748 ///
3749 /// Argument-dependent diagnose_if attributes should be checked each time a
3750 /// function is used as a direct callee of a function call.
3751 ///
3752 /// Returns true if any errors were emitted.
3753 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3754 const Expr *ThisArg,
3755 ArrayRef<const Expr *> Args,
3756 SourceLocation Loc);
3757
3758 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3759 /// ArgDependent DiagnoseIfAttrs.
3760 ///
3761 /// Argument-independent diagnose_if attributes should be checked on every use
3762 /// of a function.
3763 ///
3764 /// Returns true if any errors were emitted.
3765 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3766 SourceLocation Loc);
3767
3768 /// Returns whether the given function's address can be taken or not,
3769 /// optionally emitting a diagnostic if the address can't be taken.
3770 ///
3771 /// Returns false if taking the address of the function is illegal.
3772 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3773 bool Complain = false,
3774 SourceLocation Loc = SourceLocation());
3775
3776 // [PossiblyAFunctionType] --> [Return]
3777 // NonFunctionType --> NonFunctionType
3778 // R (A) --> R(A)
3779 // R (*)(A) --> R (A)
3780 // R (&)(A) --> R (A)
3781 // R (S::*)(A) --> R (A)
3782 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3783
3784 FunctionDecl *
3785 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3786 QualType TargetType,
3787 bool Complain,
3788 DeclAccessPair &Found,
3789 bool *pHadMultipleCandidates = nullptr);
3790
3791 FunctionDecl *
3792 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3793
3794 bool resolveAndFixAddressOfSingleOverloadCandidate(
3795 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3796
3797 FunctionDecl *
3798 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3799 bool Complain = false,
3800 DeclAccessPair *Found = nullptr);
3801
3802 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3803 ExprResult &SrcExpr,
3804 bool DoFunctionPointerConverion = false,
3805 bool Complain = false,
3806 SourceRange OpRangeForComplaining = SourceRange(),
3807 QualType DestTypeForComplaining = QualType(),
3808 unsigned DiagIDForComplaining = 0);
3809
3810
3811 Expr *FixOverloadedFunctionReference(Expr *E,
3812 DeclAccessPair FoundDecl,
3813 FunctionDecl *Fn);
3814 ExprResult FixOverloadedFunctionReference(ExprResult,
3815 DeclAccessPair FoundDecl,
3816 FunctionDecl *Fn);
3817
3818 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3819 ArrayRef<Expr *> Args,
3820 OverloadCandidateSet &CandidateSet,
3821 bool PartialOverloading = false);
3822 void AddOverloadedCallCandidates(
3823 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3824 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3825
3826 // An enum used to represent the different possible results of building a
3827 // range-based for loop.
3828 enum ForRangeStatus {
3829 FRS_Success,
3830 FRS_NoViableFunction,
3831 FRS_DiagnosticIssued
3832 };
3833
3834 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3835 SourceLocation RangeLoc,
3836 const DeclarationNameInfo &NameInfo,
3837 LookupResult &MemberLookup,
3838 OverloadCandidateSet *CandidateSet,
3839 Expr *Range, ExprResult *CallExpr);
3840
3841 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3842 UnresolvedLookupExpr *ULE,
3843 SourceLocation LParenLoc,
3844 MultiExprArg Args,
3845 SourceLocation RParenLoc,
3846 Expr *ExecConfig,
3847 bool AllowTypoCorrection=true,
3848 bool CalleesAddressIsTaken=false);
3849
3850 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3851 MultiExprArg Args, SourceLocation RParenLoc,
3852 OverloadCandidateSet *CandidateSet,
3853 ExprResult *Result);
3854
3855 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3856 NestedNameSpecifierLoc NNSLoc,
3857 DeclarationNameInfo DNI,
3858 const UnresolvedSetImpl &Fns,
3859 bool PerformADL = true);
3860
3861 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3862 UnaryOperatorKind Opc,
3863 const UnresolvedSetImpl &Fns,
3864 Expr *input, bool RequiresADL = true);
3865
3866 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3867 OverloadedOperatorKind Op,
3868 const UnresolvedSetImpl &Fns,
3869 ArrayRef<Expr *> Args, bool RequiresADL = true);
3870 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3871 BinaryOperatorKind Opc,
3872 const UnresolvedSetImpl &Fns,
3873 Expr *LHS, Expr *RHS,
3874 bool RequiresADL = true,
3875 bool AllowRewrittenCandidates = true,
3876 FunctionDecl *DefaultedFn = nullptr);
3877 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3878 const UnresolvedSetImpl &Fns,
3879 Expr *LHS, Expr *RHS,
3880 FunctionDecl *DefaultedFn);
3881
3882 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3883 SourceLocation RLoc,
3884 Expr *Base,Expr *Idx);
3885
3886 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3887 SourceLocation LParenLoc,
3888 MultiExprArg Args,
3889 SourceLocation RParenLoc,
3890 bool AllowRecovery = false);
3891 ExprResult
3892 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3893 MultiExprArg Args,
3894 SourceLocation RParenLoc);
3895
3896 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3897 SourceLocation OpLoc,
3898 bool *NoArrowOperatorFound = nullptr);
3899
3900 /// CheckCallReturnType - Checks that a call expression's return type is
3901 /// complete. Returns true on failure. The location passed in is the location
3902 /// that best represents the call.
3903 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3904 CallExpr *CE, FunctionDecl *FD);
3905
3906 /// Helpers for dealing with blocks and functions.
3907 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3908 bool CheckParameterNames);
3909 void CheckCXXDefaultArguments(FunctionDecl *FD);
3910 void CheckExtraCXXDefaultArguments(Declarator &D);
3911 Scope *getNonFieldDeclScope(Scope *S);
3912
3913 /// \name Name lookup
3914 ///
3915 /// These routines provide name lookup that is used during semantic
3916 /// analysis to resolve the various kinds of names (identifiers,
3917 /// overloaded operator names, constructor names, etc.) into zero or
3918 /// more declarations within a particular scope. The major entry
3919 /// points are LookupName, which performs unqualified name lookup,
3920 /// and LookupQualifiedName, which performs qualified name lookup.
3921 ///
3922 /// All name lookup is performed based on some specific criteria,
3923 /// which specify what names will be visible to name lookup and how
3924 /// far name lookup should work. These criteria are important both
3925 /// for capturing language semantics (certain lookups will ignore
3926 /// certain names, for example) and for performance, since name
3927 /// lookup is often a bottleneck in the compilation of C++. Name
3928 /// lookup criteria is specified via the LookupCriteria enumeration.
3929 ///
3930 /// The results of name lookup can vary based on the kind of name
3931 /// lookup performed, the current language, and the translation
3932 /// unit. In C, for example, name lookup will either return nothing
3933 /// (no entity found) or a single declaration. In C++, name lookup
3934 /// can additionally refer to a set of overloaded functions or
3935 /// result in an ambiguity. All of the possible results of name
3936 /// lookup are captured by the LookupResult class, which provides
3937 /// the ability to distinguish among them.
3938 //@{
3939
3940 /// Describes the kind of name lookup to perform.
3941 enum LookupNameKind {
3942 /// Ordinary name lookup, which finds ordinary names (functions,
3943 /// variables, typedefs, etc.) in C and most kinds of names
3944 /// (functions, variables, members, types, etc.) in C++.
3945 LookupOrdinaryName = 0,
3946 /// Tag name lookup, which finds the names of enums, classes,
3947 /// structs, and unions.
3948 LookupTagName,
3949 /// Label name lookup.
3950 LookupLabel,
3951 /// Member name lookup, which finds the names of
3952 /// class/struct/union members.
3953 LookupMemberName,
3954 /// Look up of an operator name (e.g., operator+) for use with
3955 /// operator overloading. This lookup is similar to ordinary name
3956 /// lookup, but will ignore any declarations that are class members.
3957 LookupOperatorName,
3958 /// Look up a name following ~ in a destructor name. This is an ordinary
3959 /// lookup, but prefers tags to typedefs.
3960 LookupDestructorName,
3961 /// Look up of a name that precedes the '::' scope resolution
3962 /// operator in C++. This lookup completely ignores operator, object,
3963 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3964 LookupNestedNameSpecifierName,
3965 /// Look up a namespace name within a C++ using directive or
3966 /// namespace alias definition, ignoring non-namespace names (C++
3967 /// [basic.lookup.udir]p1).
3968 LookupNamespaceName,
3969 /// Look up all declarations in a scope with the given name,
3970 /// including resolved using declarations. This is appropriate
3971 /// for checking redeclarations for a using declaration.
3972 LookupUsingDeclName,
3973 /// Look up an ordinary name that is going to be redeclared as a
3974 /// name with linkage. This lookup ignores any declarations that
3975 /// are outside of the current scope unless they have linkage. See
3976 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3977 LookupRedeclarationWithLinkage,
3978 /// Look up a friend of a local class. This lookup does not look
3979 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3980 LookupLocalFriendName,
3981 /// Look up the name of an Objective-C protocol.
3982 LookupObjCProtocolName,
3983 /// Look up implicit 'self' parameter of an objective-c method.
3984 LookupObjCImplicitSelfParam,
3985 /// Look up the name of an OpenMP user-defined reduction operation.
3986 LookupOMPReductionName,
3987 /// Look up the name of an OpenMP user-defined mapper.
3988 LookupOMPMapperName,
3989 /// Look up any declaration with any name.
3990 LookupAnyName
3991 };
3992
3993 /// Specifies whether (or how) name lookup is being performed for a
3994 /// redeclaration (vs. a reference).
3995 enum RedeclarationKind {
3996 /// The lookup is a reference to this name that is not for the
3997 /// purpose of redeclaring the name.
3998 NotForRedeclaration = 0,
3999 /// The lookup results will be used for redeclaration of a name,
4000 /// if an entity by that name already exists and is visible.
4001 ForVisibleRedeclaration,
4002 /// The lookup results will be used for redeclaration of a name
4003 /// with external linkage; non-visible lookup results with external linkage
4004 /// may also be found.
4005 ForExternalRedeclaration
4006 };
4007
4008 RedeclarationKind forRedeclarationInCurContext() {
4009 // A declaration with an owning module for linkage can never link against
4010 // anything that is not visible. We don't need to check linkage here; if
4011 // the context has internal linkage, redeclaration lookup won't find things
4012 // from other TUs, and we can't safely compute linkage yet in general.
4013 if (cast<Decl>(CurContext)
4014 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4015 return ForVisibleRedeclaration;
4016 return ForExternalRedeclaration;
4017 }
4018
4019 /// The possible outcomes of name lookup for a literal operator.
4020 enum LiteralOperatorLookupResult {
4021 /// The lookup resulted in an error.
4022 LOLR_Error,
4023 /// The lookup found no match but no diagnostic was issued.
4024 LOLR_ErrorNoDiagnostic,
4025 /// The lookup found a single 'cooked' literal operator, which
4026 /// expects a normal literal to be built and passed to it.
4027 LOLR_Cooked,
4028 /// The lookup found a single 'raw' literal operator, which expects
4029 /// a string literal containing the spelling of the literal token.
4030 LOLR_Raw,
4031 /// The lookup found an overload set of literal operator templates,
4032 /// which expect the characters of the spelling of the literal token to be
4033 /// passed as a non-type template argument pack.
4034 LOLR_Template,
4035 /// The lookup found an overload set of literal operator templates,
4036 /// which expect the character type and characters of the spelling of the
4037 /// string literal token to be passed as template arguments.
4038 LOLR_StringTemplatePack,
4039 };
4040
4041 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4042 CXXSpecialMember SM,
4043 bool ConstArg,
4044 bool VolatileArg,
4045 bool RValueThis,
4046 bool ConstThis,
4047 bool VolatileThis);
4048
4049 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4050 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4051 TypoRecoveryCallback;
4052
4053private:
4054 bool CppLookupName(LookupResult &R, Scope *S);
4055
4056 struct TypoExprState {
4057 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4058 TypoDiagnosticGenerator DiagHandler;
4059 TypoRecoveryCallback RecoveryHandler;
4060 TypoExprState();
4061 TypoExprState(TypoExprState &&other) noexcept;
4062 TypoExprState &operator=(TypoExprState &&other) noexcept;
4063 };
4064
4065 /// The set of unhandled TypoExprs and their associated state.
4066 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4067
4068 /// Creates a new TypoExpr AST node.
4069 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4070 TypoDiagnosticGenerator TDG,
4071 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4072
4073 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4074 //
4075 // The boolean value will be true to indicate that the namespace was loaded
4076 // from an AST/PCH file, or false otherwise.
4077 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4078
4079 /// Whether we have already loaded known namespaces from an extenal
4080 /// source.
4081 bool LoadedExternalKnownNamespaces;
4082
4083 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4084 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4085 /// should be skipped entirely.
4086 std::unique_ptr<TypoCorrectionConsumer>
4087 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4088 Sema::LookupNameKind LookupKind, Scope *S,
4089 CXXScopeSpec *SS,
4090 CorrectionCandidateCallback &CCC,
4091 DeclContext *MemberContext, bool EnteringContext,
4092 const ObjCObjectPointerType *OPT,
4093 bool ErrorRecovery);
4094
4095public:
4096 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4097
4098 /// Clears the state of the given TypoExpr.
4099 void clearDelayedTypo(TypoExpr *TE);
4100
4101 /// Look up a name, looking for a single declaration. Return
4102 /// null if the results were absent, ambiguous, or overloaded.
4103 ///
4104 /// It is preferable to use the elaborated form and explicitly handle
4105 /// ambiguity and overloaded.
4106 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4107 SourceLocation Loc,
4108 LookupNameKind NameKind,
4109 RedeclarationKind Redecl
4110 = NotForRedeclaration);
4111 bool LookupBuiltin(LookupResult &R);
4112 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4113 bool LookupName(LookupResult &R, Scope *S,
4114 bool AllowBuiltinCreation = false);
4115 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4116 bool InUnqualifiedLookup = false);
4117 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4118 CXXScopeSpec &SS);
4119 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4120 bool AllowBuiltinCreation = false,
4121 bool EnteringContext = false);
4122 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4123 RedeclarationKind Redecl
4124 = NotForRedeclaration);
4125 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4126
4127 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4128 UnresolvedSetImpl &Functions);
4129
4130 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4131 SourceLocation GnuLabelLoc = SourceLocation());
4132
4133 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4134 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4136 unsigned Quals);
4137 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4138 bool RValueThis, unsigned ThisQuals);
4139 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4140 unsigned Quals);
4141 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4142 bool RValueThis, unsigned ThisQuals);
4143 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4144
4145 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4146 bool IsUDSuffix);
4147 LiteralOperatorLookupResult
4148 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4149 bool AllowRaw, bool AllowTemplate,
4150 bool AllowStringTemplate, bool DiagnoseMissing,
4151 StringLiteral *StringLit = nullptr);
4152 bool isKnownName(StringRef name);
4153
4154 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4155 enum class FunctionEmissionStatus {
4156 Emitted,
4157 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4158 OMPDiscarded, // Discarded due to OpenMP hostness
4159 TemplateDiscarded, // Discarded due to uninstantiated templates
4160 Unknown,
4161 };
4162 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4163 bool Final = false);
4164
4165 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4166 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4167
4168 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4169 ArrayRef<Expr *> Args, ADLResult &Functions);
4170
4171 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4172 VisibleDeclConsumer &Consumer,
4173 bool IncludeGlobalScope = true,
4174 bool LoadExternal = true);
4175 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4176 VisibleDeclConsumer &Consumer,
4177 bool IncludeGlobalScope = true,
4178 bool IncludeDependentBases = false,
4179 bool LoadExternal = true);
4180
4181 enum CorrectTypoKind {
4182 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4183 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4184 };
4185
4186 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4187 Sema::LookupNameKind LookupKind,
4188 Scope *S, CXXScopeSpec *SS,
4189 CorrectionCandidateCallback &CCC,
4190 CorrectTypoKind Mode,
4191 DeclContext *MemberContext = nullptr,
4192 bool EnteringContext = false,
4193 const ObjCObjectPointerType *OPT = nullptr,
4194 bool RecordFailure = true);
4195
4196 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4197 Sema::LookupNameKind LookupKind, Scope *S,
4198 CXXScopeSpec *SS,
4199 CorrectionCandidateCallback &CCC,
4200 TypoDiagnosticGenerator TDG,
4201 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4202 DeclContext *MemberContext = nullptr,
4203 bool EnteringContext = false,
4204 const ObjCObjectPointerType *OPT = nullptr);
4205
4206 /// Process any TypoExprs in the given Expr and its children,
4207 /// generating diagnostics as appropriate and returning a new Expr if there
4208 /// were typos that were all successfully corrected and ExprError if one or
4209 /// more typos could not be corrected.
4210 ///
4211 /// \param E The Expr to check for TypoExprs.
4212 ///
4213 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4214 /// initializer.
4215 ///
4216 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4217 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4218 ///
4219 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4220 /// it is an acceptable/usable result from a single combination of typo
4221 /// corrections. As long as the filter returns ExprError, different
4222 /// combinations of corrections will be tried until all are exhausted.
4223 ExprResult CorrectDelayedTyposInExpr(
4224 Expr *E, VarDecl *InitDecl = nullptr,
4225 bool RecoverUncorrectedTypos = false,
4226 llvm::function_ref<ExprResult(Expr *)> Filter =
4227 [](Expr *E) -> ExprResult { return E; });
4228
4229 ExprResult CorrectDelayedTyposInExpr(
4230 ExprResult ER, VarDecl *InitDecl = nullptr,
4231 bool RecoverUncorrectedTypos = false,
4232 llvm::function_ref<ExprResult(Expr *)> Filter =
4233 [](Expr *E) -> ExprResult { return E; }) {
4234 return ER.isInvalid()
4235 ? ER
4236 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4237 RecoverUncorrectedTypos, Filter);
4238 }
4239
4240 void diagnoseTypo(const TypoCorrection &Correction,
4241 const PartialDiagnostic &TypoDiag,
4242 bool ErrorRecovery = true);
4243
4244 void diagnoseTypo(const TypoCorrection &Correction,
4245 const PartialDiagnostic &TypoDiag,
4246 const PartialDiagnostic &PrevNote,
4247 bool ErrorRecovery = true);
4248
4249 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4250
4251 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4252 ArrayRef<Expr *> Args,
4253 AssociatedNamespaceSet &AssociatedNamespaces,
4254 AssociatedClassSet &AssociatedClasses);
4255
4256 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4257 bool ConsiderLinkage, bool AllowInlineNamespace);
4258
4259 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4260
4261 void DiagnoseAmbiguousLookup(LookupResult &Result);
4262 //@}
4263
4264 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4265 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4266 ArrayRef<Expr *> SubExprs,
4267 QualType T = QualType());
4268
4269 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4270 SourceLocation IdLoc,
4271 bool TypoCorrection = false);
4272 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4273 SourceLocation Loc);
4274 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4275 Scope *S, bool ForRedeclaration,
4276 SourceLocation Loc);
4277 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4278 Scope *S);
4279 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4280 FunctionDecl *FD);
4281 void AddKnownFunctionAttributes(FunctionDecl *FD);
4282
4283 // More parsing and symbol table subroutines.
4284
4285 void ProcessPragmaWeak(Scope *S, Decl *D);
4286 // Decl attributes - this routine is the top level dispatcher.
4287 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4288 // Helper for delayed processing of attributes.
4289 void ProcessDeclAttributeDelayed(Decl *D,
4290 const ParsedAttributesView &AttrList);
4291 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4292 bool IncludeCXX11Attributes = true);
4293 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4294 const ParsedAttributesView &AttrList);
4295
4296 void checkUnusedDeclAttributes(Declarator &D);
4297
4298 /// Handles semantic checking for features that are common to all attributes,
4299 /// such as checking whether a parameter was properly specified, or the
4300 /// correct number of arguments were passed, etc. Returns true if the
4301 /// attribute has been diagnosed.
4302 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4303 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4304
4305 /// Determine if type T is a valid subject for a nonnull and similar
4306 /// attributes. By default, we look through references (the behavior used by
4307 /// nonnull), but if the second parameter is true, then we treat a reference
4308 /// type as valid.
4309 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4310
4311 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4312 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4313 const FunctionDecl *FD = nullptr);
4314 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4315 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4316 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4317 StringRef &Str,
4318 SourceLocation *ArgLocation = nullptr);
4319 llvm::Error isValidSectionSpecifier(StringRef Str);
4320 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4321 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkMSInheritanceAttrOnDefinition(
4323 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4324 MSInheritanceModel SemanticSpelling);
4325
4326 void CheckAlignasUnderalignment(Decl *D);
4327
4328 /// Adjust the calling convention of a method to be the ABI default if it
4329 /// wasn't specified explicitly. This handles method types formed from
4330 /// function type typedefs and typename template arguments.
4331 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4332 SourceLocation Loc);
4333
4334 // Check if there is an explicit attribute, but only look through parens.
4335 // The intent is to look for an attribute on the current declarator, but not
4336 // one that came from a typedef.
4337 bool hasExplicitCallingConv(QualType T);
4338
4339 /// Get the outermost AttributedType node that sets a calling convention.
4340 /// Valid types should not have multiple attributes with different CCs.
4341 const AttributedType *getCallingConvAttributedType(QualType T) const;
4342
4343 /// Process the attributes before creating an attributed statement. Returns
4344 /// the semantic attributes that have been processed.
4345 void ProcessStmtAttributes(Stmt *Stmt,
4346 const ParsedAttributesWithRange &InAttrs,
4347 SmallVectorImpl<const Attr *> &OutAttrs);
4348
4349 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4350 ObjCMethodDecl *MethodDecl,
4351 bool IsProtocolMethodDecl);
4352
4353 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4354 ObjCMethodDecl *Overridden,
4355 bool IsProtocolMethodDecl);
4356
4357 /// WarnExactTypedMethods - This routine issues a warning if method
4358 /// implementation declaration matches exactly that of its declaration.
4359 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4360 ObjCMethodDecl *MethodDecl,
4361 bool IsProtocolMethodDecl);
4362
4363 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4364
4365 /// CheckImplementationIvars - This routine checks if the instance variables
4366 /// listed in the implelementation match those listed in the interface.
4367 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4368 ObjCIvarDecl **Fields, unsigned nIvars,
4369 SourceLocation Loc);
4370
4371 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4372 /// remains unimplemented in the class or category \@implementation.
4373 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4374 ObjCContainerDecl* IDecl,
4375 bool IncompleteImpl = false);
4376
4377 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4378 /// which must be implemented by this implementation.
4379 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4380 ObjCContainerDecl *CDecl,
4381 bool SynthesizeProperties);
4382
4383 /// Diagnose any null-resettable synthesized setters.
4384 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4385
4386 /// DefaultSynthesizeProperties - This routine default synthesizes all
4387 /// properties which must be synthesized in the class's \@implementation.
4388 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4389 ObjCInterfaceDecl *IDecl,
4390 SourceLocation AtEnd);
4391 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4392
4393 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4394 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4395 /// declared in class 'IFace'.
4396 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4397 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4398
4399 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4400 /// backs the property is not used in the property's accessor.
4401 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4402 const ObjCImplementationDecl *ImplD);
4403
4404 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4405 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4406 /// It also returns ivar's property on success.
4407 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4408 const ObjCPropertyDecl *&PDecl) const;
4409
4410 /// Called by ActOnProperty to handle \@property declarations in
4411 /// class extensions.
4412 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4413 SourceLocation AtLoc,
4414 SourceLocation LParenLoc,
4415 FieldDeclarator &FD,
4416 Selector GetterSel,
4417 SourceLocation GetterNameLoc,
4418 Selector SetterSel,
4419 SourceLocation SetterNameLoc,
4420 const bool isReadWrite,
4421 unsigned &Attributes,
4422 const unsigned AttributesAsWritten,
4423 QualType T,
4424 TypeSourceInfo *TSI,
4425 tok::ObjCKeywordKind MethodImplKind);
4426
4427 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4428 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4429 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4430 ObjCContainerDecl *CDecl,
4431 SourceLocation AtLoc,
4432 SourceLocation LParenLoc,
4433 FieldDeclarator &FD,
4434 Selector GetterSel,
4435 SourceLocation GetterNameLoc,
4436 Selector SetterSel,
4437 SourceLocation SetterNameLoc,
4438 const bool isReadWrite,
4439 const unsigned Attributes,
4440 const unsigned AttributesAsWritten,
4441 QualType T,
4442 TypeSourceInfo *TSI,
4443 tok::ObjCKeywordKind MethodImplKind,
4444 DeclContext *lexicalDC = nullptr);
4445
4446 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4447 /// warning) when atomic property has one but not the other user-declared
4448 /// setter or getter.
4449 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4450 ObjCInterfaceDecl* IDecl);
4451
4452 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4453
4454 void DiagnoseMissingDesignatedInitOverrides(
4455 const ObjCImplementationDecl *ImplD,
4456 const ObjCInterfaceDecl *IFD);
4457
4458 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4459
4460 enum MethodMatchStrategy {
4461 MMS_loose,
4462 MMS_strict
4463 };
4464
4465 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4466 /// true, or false, accordingly.
4467 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4468 const ObjCMethodDecl *PrevMethod,
4469 MethodMatchStrategy strategy = MMS_strict);
4470
4471 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4472 /// or protocol against those declared in their implementations.
4473 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4474 const SelectorSet &ClsMap,
4475 SelectorSet &InsMapSeen,
4476 SelectorSet &ClsMapSeen,
4477 ObjCImplDecl* IMPDecl,
4478 ObjCContainerDecl* IDecl,
4479 bool &IncompleteImpl,
4480 bool ImmediateClass,
4481 bool WarnCategoryMethodImpl=false);
4482
4483 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4484 /// category matches with those implemented in its primary class and
4485 /// warns each time an exact match is found.
4486 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4487
4488 /// Add the given method to the list of globally-known methods.
4489 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4490
4491 /// Returns default addr space for method qualifiers.
4492 LangAS getDefaultCXXMethodAddrSpace() const;
4493
4494private:
4495 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4496 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4497 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4498
4499 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4500 /// optionally warns if there are multiple signatures.
4501 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4502 bool receiverIdOrClass,
4503 bool instance);
4504
4505public:
4506 /// - Returns instance or factory methods in global method pool for
4507 /// given selector. It checks the desired kind first, if none is found, and
4508 /// parameter checkTheOther is set, it then checks the other kind. If no such
4509 /// method or only one method is found, function returns false; otherwise, it
4510 /// returns true.
4511 bool
4512 CollectMultipleMethodsInGlobalPool(Selector Sel,
4513 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4514 bool InstanceFirst, bool CheckTheOther,
4515 const ObjCObjectType *TypeBound = nullptr);
4516
4517 bool
4518 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4519 SourceRange R, bool receiverIdOrClass,
4520 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4521
4522 void
4523 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4524 Selector Sel, SourceRange R,
4525 bool receiverIdOrClass);
4526
4527private:
4528 /// - Returns a selector which best matches given argument list or
4529 /// nullptr if none could be found
4530 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4531 bool IsInstance,
4532 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4533
4534
4535 /// Record the typo correction failure and return an empty correction.
4536 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4537 bool RecordFailure = true) {
4538 if (RecordFailure)
4539 TypoCorrectionFailures[Typo].insert(TypoLoc);
4540 return TypoCorrection();
4541 }
4542
4543public:
4544 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4545 /// unit are added to a global pool. This allows us to efficiently associate
4546 /// a selector with a method declaraation for purposes of typechecking
4547 /// messages sent to "id" (where the class of the object is unknown).
4548 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4549 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4550 }
4551
4552 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4553 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4554 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4555 }
4556
4557 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4558 /// pool.
4559 void AddAnyMethodToGlobalPool(Decl *D);
4560
4561 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4562 /// there are multiple signatures.
4563 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4564 bool receiverIdOrClass=false) {
4565 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4566 /*instance*/true);
4567 }
4568
4569 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4570 /// there are multiple signatures.
4571 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4572 bool receiverIdOrClass=false) {
4573 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4574 /*instance*/false);
4575 }
4576
4577 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4578 QualType ObjectType=QualType());
4579 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4580 /// implementation.
4581 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4582
4583 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4584 /// initialization.
4585 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4586 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4587
4588 //===--------------------------------------------------------------------===//
4589 // Statement Parsing Callbacks: SemaStmt.cpp.
4590public:
4591 class FullExprArg {
4592 public:
4593 FullExprArg() : E(nullptr) { }
4594 FullExprArg(Sema &actions) : E(nullptr) { }
4595
4596 ExprResult release() {
4597 return E;
4598 }
4599
4600 Expr *get() const { return E; }
4601
4602 Expr *operator->() {
4603 return E;
4604 }
4605
4606 private:
4607 // FIXME: No need to make the entire Sema class a friend when it's just
4608 // Sema::MakeFullExpr that needs access to the constructor below.
4609 friend class Sema;
4610
4611 explicit FullExprArg(Expr *expr) : E(expr) {}
4612
4613 Expr *E;
4614 };
4615
4616 FullExprArg MakeFullExpr(Expr *Arg) {
4617 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4618 }
4619 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4620 return FullExprArg(
4621 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4622 }
4623 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4624 ExprResult FE =
4625 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4626 /*DiscardedValue*/ true);
4627 return FullExprArg(FE.get());
4628 }
4629
4630 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4631 StmtResult ActOnExprStmtError();
4632
4633 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4634 bool HasLeadingEmptyMacro = false);
4635
4636 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4637 void ActOnAfterCompoundStatementLeadingPragmas();
4638 void ActOnFinishOfCompoundStmt();
4639 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4640 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4641
4642 /// A RAII object to enter scope of a compound statement.
4643 class CompoundScopeRAII {
4644 public:
4645 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4646 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4647 }
4648
4649 ~CompoundScopeRAII() {
4650 S.ActOnFinishOfCompoundStmt();
4651 }
4652
4653 private:
4654 Sema &S;
4655 };
4656
4657 /// An RAII helper that pops function a function scope on exit.
4658 struct FunctionScopeRAII {
4659 Sema &S;
4660 bool Active;
4661 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4662 ~FunctionScopeRAII() {
4663 if (Active)
4664 S.PopFunctionScopeInfo();
4665 }
4666 void disable() { Active = false; }
4667 };
4668
4669 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4670 SourceLocation StartLoc,
4671 SourceLocation EndLoc);
4672 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4673 StmtResult ActOnForEachLValueExpr(Expr *E);
4674 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4675 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4676 SourceLocation DotDotDotLoc, ExprResult RHS,
4677 SourceLocation ColonLoc);
4678 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4679
4680 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4681 SourceLocation ColonLoc,
4682 Stmt *SubStmt, Scope *CurScope);
4683 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4684 SourceLocation ColonLoc, Stmt *SubStmt);
4685
4686 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4687 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4688 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4689 Stmt *SubStmt);
4690
4691 class ConditionResult;
4692 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4693 SourceLocation LParenLoc, Stmt *InitStmt,
4694 ConditionResult Cond, SourceLocation RParenLoc,
4695 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4696 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4697 SourceLocation LParenLoc, Stmt *InitStmt,
4698 ConditionResult Cond, SourceLocation RParenLoc,
4699 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4700 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4701 SourceLocation LParenLoc, Stmt *InitStmt,
4702 ConditionResult Cond,
4703 SourceLocation RParenLoc);
4704 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4705 Stmt *Switch, Stmt *Body);
4706 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4707 ConditionResult Cond, SourceLocation RParenLoc,
4708 Stmt *Body);
4709 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4710 SourceLocation WhileLoc, SourceLocation CondLParen,
4711 Expr *Cond, SourceLocation CondRParen);
4712
4713 StmtResult ActOnForStmt(SourceLocation ForLoc,
4714 SourceLocation LParenLoc,
4715 Stmt *First,
4716 ConditionResult Second,
4717 FullExprArg Third,
4718 SourceLocation RParenLoc,
4719 Stmt *Body);
4720 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4721 Expr *collection);
4722 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4723 Stmt *First, Expr *collection,
4724 SourceLocation RParenLoc);
4725 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4726
4727 enum BuildForRangeKind {
4728 /// Initial building of a for-range statement.
4729 BFRK_Build,
4730 /// Instantiation or recovery rebuild of a for-range statement. Don't
4731 /// attempt any typo-correction.
4732 BFRK_Rebuild,
4733 /// Determining whether a for-range statement could be built. Avoid any
4734 /// unnecessary or irreversible actions.
4735 BFRK_Check
4736 };
4737
4738 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4739 SourceLocation CoawaitLoc,
4740 Stmt *InitStmt,
4741 Stmt *LoopVar,
4742 SourceLocation ColonLoc, Expr *Collection,
4743 SourceLocation RParenLoc,
4744 BuildForRangeKind Kind);
4745 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4746 SourceLocation CoawaitLoc,
4747 Stmt *InitStmt,
4748 SourceLocation ColonLoc,
4749 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4750 Expr *Cond, Expr *Inc,
4751 Stmt *LoopVarDecl,
4752 SourceLocation RParenLoc,
4753 BuildForRangeKind Kind);
4754 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4755
4756 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4757 SourceLocation LabelLoc,
4758 LabelDecl *TheDecl);
4759 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4760 SourceLocation StarLoc,
4761 Expr *DestExp);
4762 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4763 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4764
4765 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4766 CapturedRegionKind Kind, unsigned NumParams);
4767 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4768 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4769 CapturedRegionKind Kind,
4770 ArrayRef<CapturedParamNameType> Params,
4771 unsigned OpenMPCaptureLevel = 0);
4772 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4773 void ActOnCapturedRegionError();
4774 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4775 SourceLocation Loc,
4776 unsigned NumParams);
4777
4778 struct NamedReturnInfo {
4779 const VarDecl *Candidate;
4780
4781 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4782 Status S;
4783
4784 bool isMoveEligible() const { return S != None; };
4785 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4786 };
4787 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4788 NamedReturnInfo getNamedReturnInfo(
4789 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4790 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4791 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4792 QualType ReturnType);
4793
4794 ExprResult
4795 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4796 const NamedReturnInfo &NRInfo, Expr *Value,
4797 bool SupressSimplerImplicitMoves = false);
4798
4799 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4800 Scope *CurScope);
4801 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4802 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4803 NamedReturnInfo &NRInfo,
4804 bool SupressSimplerImplicitMoves);
4805
4806 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4807 bool IsVolatile, unsigned NumOutputs,
4808 unsigned NumInputs, IdentifierInfo **Names,
4809 MultiExprArg Constraints, MultiExprArg Exprs,
4810 Expr *AsmString, MultiExprArg Clobbers,
4811 unsigned NumLabels,
4812 SourceLocation RParenLoc);
4813
4814 void FillInlineAsmIdentifierInfo(Expr *Res,
4815 llvm::InlineAsmIdentifierInfo &Info);
4816 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4817 SourceLocation TemplateKWLoc,
4818 UnqualifiedId &Id,
4819 bool IsUnevaluatedContext);
4820 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4821 unsigned &Offset, SourceLocation AsmLoc);
4822 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4823 SourceLocation AsmLoc);
4824 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4825 ArrayRef<Token> AsmToks,
4826 StringRef AsmString,
4827 unsigned NumOutputs, unsigned NumInputs,
4828 ArrayRef<StringRef> Constraints,
4829 ArrayRef<StringRef> Clobbers,
4830 ArrayRef<Expr*> Exprs,
4831 SourceLocation EndLoc);
4832 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4833 SourceLocation Location,
4834 bool AlwaysCreate);
4835
4836 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4837 SourceLocation StartLoc,
4838 SourceLocation IdLoc, IdentifierInfo *Id,
4839 bool Invalid = false);
4840
4841 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4842
4843 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4844 Decl *Parm, Stmt *Body);
4845
4846 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4847
4848 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4849 MultiStmtArg Catch, Stmt *Finally);
4850
4851 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4852 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4853 Scope *CurScope);
4854 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4855 Expr *operand);
4856 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4857 Expr *SynchExpr,
4858 Stmt *SynchBody);
4859
4860 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4861
4862 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4863 SourceLocation StartLoc,
4864 SourceLocation IdLoc,
4865 IdentifierInfo *Id);
4866
4867 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4868
4869 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4870 Decl *ExDecl, Stmt *HandlerBlock);
4871 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4872 ArrayRef<Stmt *> Handlers);
4873
4874 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4875 SourceLocation TryLoc, Stmt *TryBlock,
4876 Stmt *Handler);
4877 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4878 Expr *FilterExpr,
4879 Stmt *Block);
4880 void ActOnStartSEHFinallyBlock();
4881 void ActOnAbortSEHFinallyBlock();
4882 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4883 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4884
4885 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4886
4887 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4888
4889 /// If it's a file scoped decl that must warn if not used, keep track
4890 /// of it.
4891 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4892
4893 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4894 /// whose result is unused, warn.
4895 void DiagnoseUnusedExprResult(const Stmt *S);
4896 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4897 void DiagnoseUnusedDecl(const NamedDecl *ND);
4898
4899 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4900 /// variable.
4901 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4902
4903 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4904 /// statement as a \p Body, and it is located on the same line.
4905 ///
4906 /// This helps prevent bugs due to typos, such as:
4907 /// if (condition);
4908 /// do_stuff();
4909 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4910 const Stmt *Body,
4911 unsigned DiagID);
4912
4913 /// Warn if a for/while loop statement \p S, which is followed by
4914 /// \p PossibleBody, has a suspicious null statement as a body.
4915 void DiagnoseEmptyLoopBody(const Stmt *S,
4916 const Stmt *PossibleBody);
4917
4918 /// Warn if a value is moved to itself.
4919 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4920 SourceLocation OpLoc);
4921
4922 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4923 /// _Nonnull one.
4924 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4925 SourceLocation Loc);
4926
4927 /// Warn when implicitly casting 0 to nullptr.
4928 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4929
4930 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4931 return DelayedDiagnostics.push(pool);
4932 }
4933 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4934
4935 typedef ProcessingContextState ParsingClassState;
4936 ParsingClassState PushParsingClass() {
4937 ParsingClassDepth++;
4938 return DelayedDiagnostics.pushUndelayed();
4939 }
4940 void PopParsingClass(ParsingClassState state) {
4941 ParsingClassDepth--;
4942 DelayedDiagnostics.popUndelayed(state);
4943 }
4944
4945 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4946
4947 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4948 const ObjCInterfaceDecl *UnknownObjCClass,
4949 bool ObjCPropertyAccess,
4950 bool AvoidPartialAvailabilityChecks = false,
4951 ObjCInterfaceDecl *ClassReceiver = nullptr);
4952
4953 bool makeUnavailableInSystemHeader(SourceLocation loc,
4954 UnavailableAttr::ImplicitReason reason);
4955
4956 /// Issue any -Wunguarded-availability warnings in \c FD
4957 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4958
4959 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4960
4961 //===--------------------------------------------------------------------===//
4962 // Expression Parsing Callbacks: SemaExpr.cpp.
4963
4964 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4965 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4966 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4967 bool ObjCPropertyAccess = false,
4968 bool AvoidPartialAvailabilityChecks = false,
4969 ObjCInterfaceDecl *ClassReciever = nullptr);
4970 void NoteDeletedFunction(FunctionDecl *FD);
4971 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4972 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4973 ObjCMethodDecl *Getter,
4974 SourceLocation Loc);
4975 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4976 ArrayRef<Expr *> Args);
4977
4978 void PushExpressionEvaluationContext(
4979 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4980 ExpressionEvaluationContextRecord::ExpressionKind Type =
4981 ExpressionEvaluationContextRecord::EK_Other);
4982 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4983 void PushExpressionEvaluationContext(
4984 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4985 ExpressionEvaluationContextRecord::ExpressionKind Type =
4986 ExpressionEvaluationContextRecord::EK_Other);
4987 void PopExpressionEvaluationContext();
4988
4989 void DiscardCleanupsInEvaluationContext();
4990
4991 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4992 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4993
4994 ExprResult CheckUnevaluatedOperand(Expr *E);
4995 void CheckUnusedVolatileAssignment(Expr *E);
4996
4997 ExprResult ActOnConstantExpression(ExprResult Res);
4998
4999 // Functions for marking a declaration referenced. These functions also
5000 // contain the relevant logic for marking if a reference to a function or
5001 // variable is an odr-use (in the C++11 sense). There are separate variants
5002 // for expressions referring to a decl; these exist because odr-use marking
5003 // needs to be delayed for some constant variables when we build one of the
5004 // named expressions.
5005 //
5006 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5007 // should usually be true. This only needs to be set to false if the lack of
5008 // odr-use cannot be determined from the current context (for instance,
5009 // because the name denotes a virtual function and was written without an
5010 // explicit nested-name-specifier).
5011 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5012 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5013 bool MightBeOdrUse = true);
5014 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5015 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5016 void MarkMemberReferenced(MemberExpr *E);
5017 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5018 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5019 unsigned CapturingScopeIndex);
5020
5021 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5022 void CleanupVarDeclMarking();
5023
5024 enum TryCaptureKind {
5025 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5026 };
5027
5028 /// Try to capture the given variable.
5029 ///
5030 /// \param Var The variable to capture.
5031 ///
5032 /// \param Loc The location at which the capture occurs.
5033 ///
5034 /// \param Kind The kind of capture, which may be implicit (for either a
5035 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5036 ///
5037 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5038 /// an explicit lambda capture.
5039 ///
5040 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5041 /// captures or diagnose errors. If false, this routine merely check whether
5042 /// the capture can occur without performing the capture itself or complaining
5043 /// if the variable cannot be captured.
5044 ///
5045 /// \param CaptureType Will be set to the type of the field used to capture
5046 /// this variable in the innermost block or lambda. Only valid when the
5047 /// variable can be captured.
5048 ///
5049 /// \param DeclRefType Will be set to the type of a reference to the capture
5050 /// from within the current scope. Only valid when the variable can be
5051 /// captured.
5052 ///
5053 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5054 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5055 /// This is useful when enclosing lambdas must speculatively capture
5056 /// variables that may or may not be used in certain specializations of
5057 /// a nested generic lambda.
5058 ///
5059 /// \returns true if an error occurred (i.e., the variable cannot be
5060 /// captured) and false if the capture succeeded.
5061 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5062 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5063 QualType &CaptureType,
5064 QualType &DeclRefType,
5065 const unsigned *const FunctionScopeIndexToStopAt);
5066
5067 /// Try to capture the given variable.
5068 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5069 TryCaptureKind Kind = TryCapture_Implicit,
5070 SourceLocation EllipsisLoc = SourceLocation());
5071
5072 /// Checks if the variable must be captured.
5073 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5074
5075 /// Given a variable, determine the type that a reference to that
5076 /// variable will have in the given scope.
5077 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5078
5079 /// Mark all of the declarations referenced within a particular AST node as
5080 /// referenced. Used when template instantiation instantiates a non-dependent
5081 /// type -- entities referenced by the type are now referenced.
5082 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5083 void MarkDeclarationsReferencedInExpr(Expr *E,
5084 bool SkipLocalVariables = false);
5085
5086 /// Try to recover by turning the given expression into a
5087 /// call. Returns true if recovery was attempted or an error was
5088 /// emitted; this may also leave the ExprResult invalid.
5089 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5090 bool ForceComplain = false,
5091 bool (*IsPlausibleResult)(QualType) = nullptr);
5092
5093 /// Figure out if an expression could be turned into a call.
5094 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5095 UnresolvedSetImpl &NonTemplateOverloads);
5096
5097 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5098 /// conversion.
5099 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5100
5101 /// Conditionally issue a diagnostic based on the current
5102 /// evaluation context.
5103 ///
5104 /// \param Statement If Statement is non-null, delay reporting the
5105 /// diagnostic until the function body is parsed, and then do a basic
5106 /// reachability analysis to determine if the statement is reachable.
5107 /// If it is unreachable, the diagnostic will not be emitted.
5108 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5109 const PartialDiagnostic &PD);
5110 /// Similar, but diagnostic is only produced if all the specified statements
5111 /// are reachable.
5112 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5113 const PartialDiagnostic &PD);
5114
5115 // Primary Expressions.
5116 SourceRange getExprRange(Expr *E) const;
5117
5118 ExprResult ActOnIdExpression(
5119 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5120 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5121 CorrectionCandidateCallback *CCC = nullptr,
5122 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5123
5124 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5125 TemplateArgumentListInfo &Buffer,
5126 DeclarationNameInfo &NameInfo,
5127 const TemplateArgumentListInfo *&TemplateArgs);
5128
5129 bool DiagnoseDependentMemberLookup(LookupResult &R);
5130
5131 bool
5132 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5133 CorrectionCandidateCallback &CCC,
5134 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5135 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5136
5137 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5138 IdentifierInfo *II);
5139 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5140
5141 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5142 IdentifierInfo *II,
5143 bool AllowBuiltinCreation=false);
5144
5145 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5146 SourceLocation TemplateKWLoc,
5147 const DeclarationNameInfo &NameInfo,
5148 bool isAddressOfOperand,
5149 const TemplateArgumentListInfo *TemplateArgs);
5150
5151 /// If \p D cannot be odr-used in the current expression evaluation context,
5152 /// return a reason explaining why. Otherwise, return NOUR_None.
5153 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5154
5155 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5156 SourceLocation Loc,
5157 const CXXScopeSpec *SS = nullptr);
5158 DeclRefExpr *
5159 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5160 const DeclarationNameInfo &NameInfo,
5161 const CXXScopeSpec *SS = nullptr,
5162 NamedDecl *FoundD = nullptr,
5163 SourceLocation TemplateKWLoc = SourceLocation(),
5164 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5165 DeclRefExpr *
5166 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5167 const DeclarationNameInfo &NameInfo,
5168 NestedNameSpecifierLoc NNS,
5169 NamedDecl *FoundD = nullptr,
5170 SourceLocation TemplateKWLoc = SourceLocation(),
5171 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5172
5173 ExprResult
5174 BuildAnonymousStructUnionMemberReference(
5175 const CXXScopeSpec &SS,
5176 SourceLocation nameLoc,
5177 IndirectFieldDecl *indirectField,
5178 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5179 Expr *baseObjectExpr = nullptr,
5180 SourceLocation opLoc = SourceLocation());
5181
5182 ExprResult BuildPossibleImplicitMemberExpr(
5183 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5184 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5185 UnresolvedLookupExpr *AsULE = nullptr);
5186 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5187 SourceLocation TemplateKWLoc,
5188 LookupResult &R,
5189 const TemplateArgumentListInfo *TemplateArgs,
5190 bool IsDefiniteInstance,
5191 const Scope *S);
5192 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5193 const LookupResult &R,
5194 bool HasTrailingLParen);
5195
5196 ExprResult
5197 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5198 const DeclarationNameInfo &NameInfo,
5199 bool IsAddressOfOperand, const Scope *S,
5200 TypeSourceInfo **RecoveryTSI = nullptr);
5201
5202 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5203 SourceLocation TemplateKWLoc,
5204 const DeclarationNameInfo &NameInfo,
5205 const TemplateArgumentListInfo *TemplateArgs);
5206
5207 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5208 LookupResult &R,
5209 bool NeedsADL,
5210 bool AcceptInvalidDecl = false);
5211 ExprResult BuildDeclarationNameExpr(
5212 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5213 NamedDecl *FoundD = nullptr,
5214 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5215 bool AcceptInvalidDecl = false);
5216
5217 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5218 DeclarationNameInfo &SuffixInfo,
5219 ArrayRef<Expr *> Args,
5220 SourceLocation LitEndLoc,
5221 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5222
5223 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5224 PredefinedExpr::IdentKind IK);
5225 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5226 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5227
5228 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5229 SourceLocation LParen,
5230 SourceLocation RParen,
5231 TypeSourceInfo *TSI);
5232 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5233 SourceLocation LParen,
5234 SourceLocation RParen,
5235 ParsedType ParsedTy);
5236
5237 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5238
5239 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5240 ExprResult ActOnCharacterConstant(const Token &Tok,
5241 Scope *UDLScope = nullptr);
5242 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5243 ExprResult ActOnParenListExpr(SourceLocation L,
5244 SourceLocation R,
5245 MultiExprArg Val);
5246
5247 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5248 /// fragments (e.g. "foo" "bar" L"baz").
5249 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5250 Scope *UDLScope = nullptr);
5251
5252 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5253 SourceLocation DefaultLoc,
5254 SourceLocation RParenLoc,
5255 Expr *ControllingExpr,
5256 ArrayRef<ParsedType> ArgTypes,
5257 ArrayRef<Expr *> ArgExprs);
5258 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5259 SourceLocation DefaultLoc,
5260 SourceLocation RParenLoc,
5261 Expr *ControllingExpr,
5262 ArrayRef<TypeSourceInfo *> Types,
5263 ArrayRef<Expr *> Exprs);
5264
5265 // Binary/Unary Operators. 'Tok' is the token for the operator.
5266 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5267 Expr *InputExpr);
5268 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5269 UnaryOperatorKind Opc, Expr *Input);
5270 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5271 tok::TokenKind Op, Expr *Input);
5272
5273 bool isQualifiedMemberAccess(Expr *E);
5274 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5275
5276 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5277 SourceLocation OpLoc,
5278 UnaryExprOrTypeTrait ExprKind,
5279 SourceRange R);
5280 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5281 UnaryExprOrTypeTrait ExprKind);
5282 ExprResult
5283 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5284 UnaryExprOrTypeTrait ExprKind,
5285 bool IsType, void *TyOrEx,
5286 SourceRange ArgRange);
5287
5288 ExprResult CheckPlaceholderExpr(Expr *E);
5289 bool CheckVecStepExpr(Expr *E);
5290
5291 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5292 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5293 SourceRange ExprRange,
5294 UnaryExprOrTypeTrait ExprKind);
5295 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5296 SourceLocation OpLoc,
5297 IdentifierInfo &Name,
5298 SourceLocation NameLoc,
5299 SourceLocation RParenLoc);
5300 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5301 tok::TokenKind Kind, Expr *Input);
5302
5303 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5304 Expr *Idx, SourceLocation RLoc);
5305 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5306 Expr *Idx, SourceLocation RLoc);
5307
5308 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5309 Expr *ColumnIdx,
5310 SourceLocation RBLoc);
5311
5312 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5313 Expr *LowerBound,
5314 SourceLocation ColonLocFirst,
5315 SourceLocation ColonLocSecond,
5316 Expr *Length, Expr *Stride,
5317 SourceLocation RBLoc);
5318 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5319 SourceLocation RParenLoc,
5320 ArrayRef<Expr *> Dims,
5321 ArrayRef<SourceRange> Brackets);
5322
5323 /// Data structure for iterator expression.
5324 struct OMPIteratorData {
5325 IdentifierInfo *DeclIdent = nullptr;
5326 SourceLocation DeclIdentLoc;
5327 ParsedType Type;
5328 OMPIteratorExpr::IteratorRange Range;
5329 SourceLocation AssignLoc;
5330 SourceLocation ColonLoc;
5331 SourceLocation SecColonLoc;
5332 };
5333
5334 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5335 SourceLocation LLoc, SourceLocation RLoc,
5336 ArrayRef<OMPIteratorData> Data);
5337
5338 // This struct is for use by ActOnMemberAccess to allow
5339 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5340 // changing the access operator from a '.' to a '->' (to see if that is the
5341 // change needed to fix an error about an unknown member, e.g. when the class
5342 // defines a custom operator->).
5343 struct ActOnMemberAccessExtraArgs {
5344 Scope *S;
5345 UnqualifiedId &Id;
5346 Decl *ObjCImpDecl;
5347 };
5348
5349 ExprResult BuildMemberReferenceExpr(
5350 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5351 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5352 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5353 const TemplateArgumentListInfo *TemplateArgs,
5354 const Scope *S,
5355 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5356
5357 ExprResult
5358 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5359 bool IsArrow, const CXXScopeSpec &SS,
5360 SourceLocation TemplateKWLoc,
5361 NamedDecl *FirstQualifierInScope, LookupResult &R,
5362 const TemplateArgumentListInfo *TemplateArgs,
5363 const Scope *S,
5364 bool SuppressQualifierCheck = false,
5365 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5366
5367 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5368 SourceLocation OpLoc,
5369 const CXXScopeSpec &SS, FieldDecl *Field,
5370 DeclAccessPair FoundDecl,
5371 const DeclarationNameInfo &MemberNameInfo);
5372
5373 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5374
5375 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5376 const CXXScopeSpec &SS,
5377 const LookupResult &R);
5378
5379 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5380 bool IsArrow, SourceLocation OpLoc,
5381 const CXXScopeSpec &SS,
5382 SourceLocation TemplateKWLoc,
5383 NamedDecl *FirstQualifierInScope,
5384 const DeclarationNameInfo &NameInfo,
5385 const TemplateArgumentListInfo *TemplateArgs);
5386
5387 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5388 SourceLocation OpLoc,
5389 tok::TokenKind OpKind,
5390 CXXScopeSpec &SS,
5391 SourceLocation TemplateKWLoc,
5392 UnqualifiedId &Member,
5393 Decl *ObjCImpDecl);
5394
5395 MemberExpr *
5396 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5397 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5398 ValueDecl *Member, DeclAccessPair FoundDecl,
5399 bool HadMultipleCandidates,
5400 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5401 ExprValueKind VK, ExprObjectKind OK,
5402 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5403 MemberExpr *
5404 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5405 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5406 ValueDecl *Member, DeclAccessPair FoundDecl,
5407 bool HadMultipleCandidates,
5408 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5409 ExprValueKind VK, ExprObjectKind OK,
5410 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5411
5412 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5413 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5414 FunctionDecl *FDecl,
5415 const FunctionProtoType *Proto,
5416 ArrayRef<Expr *> Args,
5417 SourceLocation RParenLoc,
5418 bool ExecConfig = false);
5419 void CheckStaticArrayArgument(SourceLocation CallLoc,
5420 ParmVarDecl *Param,
5421 const Expr *ArgExpr);
5422
5423 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5424 /// This provides the location of the left/right parens and a list of comma
5425 /// locations.
5426 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5427 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5428 Expr *ExecConfig = nullptr);
5429 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5430 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5431 Expr *ExecConfig = nullptr,
5432 bool IsExecConfig = false,
5433 bool AllowRecovery = false);
5434 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5435 MultiExprArg CallArgs);
5436 enum class AtomicArgumentOrder { API, AST };
5437 ExprResult
5438 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5439 SourceLocation RParenLoc, MultiExprArg Args,
5440 AtomicExpr::AtomicOp Op,
5441 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5442 ExprResult
5443 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5444 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5445 Expr *Config = nullptr, bool IsExecConfig = false,
5446 ADLCallKind UsesADL = ADLCallKind::NotADL);
5447
5448 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5449 MultiExprArg ExecConfig,
5450 SourceLocation GGGLoc);
5451
5452 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5453 Declarator &D, ParsedType &Ty,
5454 SourceLocation RParenLoc, Expr *CastExpr);
5455 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5456 TypeSourceInfo *Ty,
5457 SourceLocation RParenLoc,
5458 Expr *Op);
5459 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5460
5461 /// Build an altivec or OpenCL literal.
5462 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5463 SourceLocation RParenLoc, Expr *E,
5464 TypeSourceInfo *TInfo);
5465
5466 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5467
5468 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5469 ParsedType Ty,
5470 SourceLocation RParenLoc,
5471 Expr *InitExpr);
5472
5473 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5474 TypeSourceInfo *TInfo,
5475 SourceLocation RParenLoc,
5476 Expr *LiteralExpr);
5477
5478 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5479 MultiExprArg InitArgList,
5480 SourceLocation RBraceLoc);
5481
5482 ExprResult BuildInitList(SourceLocation LBraceLoc,
5483 MultiExprArg InitArgList,
5484 SourceLocation RBraceLoc);
5485
5486 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5487 SourceLocation EqualOrColonLoc,
5488 bool GNUSyntax,
5489 ExprResult Init);
5490
5491private:
5492 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5493
5494public:
5495 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5496 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5497 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5498 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5499 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5500 Expr *LHSExpr, Expr *RHSExpr);
5501 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5502 UnresolvedSetImpl &Functions);
5503
5504 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5505
5506 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5507 /// in the case of a the GNU conditional expr extension.
5508 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5509 SourceLocation ColonLoc,
5510 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5511
5512 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5513 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5514 LabelDecl *TheDecl);
5515
5516 void ActOnStartStmtExpr();
5517 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5518 SourceLocation RPLoc);
5519 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5520 SourceLocation RPLoc, unsigned TemplateDepth);
5521 // Handle the final expression in a statement expression.
5522 ExprResult ActOnStmtExprResult(ExprResult E);
5523 void ActOnStmtExprError();
5524
5525 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5526 struct OffsetOfComponent {
5527 SourceLocation LocStart, LocEnd;
5528 bool isBrackets; // true if [expr], false if .ident
5529 union {
5530 IdentifierInfo *IdentInfo;
5531 Expr *E;
5532 } U;
5533 };
5534
5535 /// __builtin_offsetof(type, a.b[123][456].c)
5536 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5537 TypeSourceInfo *TInfo,
5538 ArrayRef<OffsetOfComponent> Components,
5539 SourceLocation RParenLoc);
5540 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5541 SourceLocation BuiltinLoc,
5542 SourceLocation TypeLoc,
5543 ParsedType ParsedArgTy,
5544 ArrayRef<OffsetOfComponent> Components,
5545 SourceLocation RParenLoc);
5546
5547 // __builtin_choose_expr(constExpr, expr1, expr2)
5548 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5549 Expr *CondExpr, Expr *LHSExpr,
5550 Expr *RHSExpr, SourceLocation RPLoc);
5551
5552 // __builtin_va_arg(expr, type)
5553 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5554 SourceLocation RPLoc);
5555 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5556 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5557
5558 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5559 // __builtin_COLUMN()
5560 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5561 SourceLocation BuiltinLoc,
5562 SourceLocation RPLoc);
5563
5564 // Build a potentially resolved SourceLocExpr.
5565 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5566 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5567 DeclContext *ParentContext);
5568
5569 // __null
5570 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5571
5572 bool CheckCaseExpression(Expr *E);
5573
5574 /// Describes the result of an "if-exists" condition check.
5575 enum IfExistsResult {
5576 /// The symbol exists.
5577 IER_Exists,
5578
5579 /// The symbol does not exist.
5580 IER_DoesNotExist,
5581
5582 /// The name is a dependent name, so the results will differ
5583 /// from one instantiation to the next.
5584 IER_Dependent,
5585
5586 /// An error occurred.
5587 IER_Error
5588 };
5589
5590 IfExistsResult
5591 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5592 const DeclarationNameInfo &TargetNameInfo);
5593
5594 IfExistsResult
5595 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5596 bool IsIfExists, CXXScopeSpec &SS,
5597 UnqualifiedId &Name);
5598
5599 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5600 bool IsIfExists,
5601 NestedNameSpecifierLoc QualifierLoc,
5602 DeclarationNameInfo NameInfo,
5603 Stmt *Nested);
5604 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5605 bool IsIfExists,
5606 CXXScopeSpec &SS, UnqualifiedId &Name,
5607 Stmt *Nested);
5608
5609 //===------------------------- "Block" Extension ------------------------===//
5610
5611 /// ActOnBlockStart - This callback is invoked when a block literal is
5612 /// started.
5613 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5614
5615 /// ActOnBlockArguments - This callback allows processing of block arguments.
5616 /// If there are no arguments, this is still invoked.
5617 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5618 Scope *CurScope);
5619
5620 /// ActOnBlockError - If there is an error parsing a block, this callback
5621 /// is invoked to pop the information about the block from the action impl.
5622 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5623
5624 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5625 /// literal was successfully completed. ^(int x){...}
5626 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5627 Scope *CurScope);
5628
5629 //===---------------------------- Clang Extensions ----------------------===//
5630
5631 /// __builtin_convertvector(...)
5632 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5633 SourceLocation BuiltinLoc,
5634 SourceLocation RParenLoc);
5635
5636 //===---------------------------- OpenCL Features -----------------------===//
5637
5638 /// __builtin_astype(...)
5639 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5640 SourceLocation BuiltinLoc,
5641 SourceLocation RParenLoc);
5642 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5643 SourceLocation BuiltinLoc,
5644 SourceLocation RParenLoc);
5645
5646 //===---------------------------- C++ Features --------------------------===//
5647
5648 // Act on C++ namespaces
5649 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5650 SourceLocation NamespaceLoc,
5651 SourceLocation IdentLoc, IdentifierInfo *Ident,
5652 SourceLocation LBrace,
5653 const ParsedAttributesView &AttrList,
5654 UsingDirectiveDecl *&UsingDecl);
5655 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5656
5657 NamespaceDecl *getStdNamespace() const;
5658 NamespaceDecl *getOrCreateStdNamespace();
5659
5660 NamespaceDecl *lookupStdExperimentalNamespace();
5661
5662 CXXRecordDecl *getStdBadAlloc() const;
5663 EnumDecl *getStdAlignValT() const;
5664
5665private:
5666 // A cache representing if we've fully checked the various comparison category
5667 // types stored in ASTContext. The bit-index corresponds to the integer value
5668 // of a ComparisonCategoryType enumerator.
5669 llvm::SmallBitVector FullyCheckedComparisonCategories;
5670
5671 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5672 CXXScopeSpec &SS,
5673 ParsedType TemplateTypeTy,
5674 IdentifierInfo *MemberOrBase);
5675
5676public:
5677 enum class ComparisonCategoryUsage {
5678 /// The '<=>' operator was used in an expression and a builtin operator
5679 /// was selected.
5680 OperatorInExpression,
5681 /// A defaulted 'operator<=>' needed the comparison category. This
5682 /// typically only applies to 'std::strong_ordering', due to the implicit
5683 /// fallback return value.
5684 DefaultedOperator,
5685 };
5686
5687 /// Lookup the specified comparison category types in the standard
5688 /// library, an check the VarDecls possibly returned by the operator<=>
5689 /// builtins for that type.
5690 ///
5691 /// \return The type of the comparison category type corresponding to the
5692 /// specified Kind, or a null type if an error occurs
5693 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5694 SourceLocation Loc,
5695 ComparisonCategoryUsage Usage);
5696
5697 /// Tests whether Ty is an instance of std::initializer_list and, if
5698 /// it is and Element is not NULL, assigns the element type to Element.
5699 bool isStdInitializerList(QualType Ty, QualType *Element);
5700
5701 /// Looks for the std::initializer_list template and instantiates it
5702 /// with Element, or emits an error if it's not found.
5703 ///
5704 /// \returns The instantiated template, or null on error.
5705 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5706
5707 /// Determine whether Ctor is an initializer-list constructor, as
5708 /// defined in [dcl.init.list]p2.
5709 bool isInitListConstructor(const FunctionDecl *Ctor);
5710
5711 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5712 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5713 SourceLocation IdentLoc,
5714 IdentifierInfo *NamespcName,
5715 const ParsedAttributesView &AttrList);
5716
5717 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5718
5719 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5720 SourceLocation NamespaceLoc,
5721 SourceLocation AliasLoc,
5722 IdentifierInfo *Alias,
5723 CXXScopeSpec &SS,
5724 SourceLocation IdentLoc,
5725 IdentifierInfo *Ident);
5726
5727 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5728 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5729 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5730 const LookupResult &PreviousDecls,
5731 UsingShadowDecl *&PrevShadow);
5732 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5733 NamedDecl *Target,
5734 UsingShadowDecl *PrevDecl);
5735
5736 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5737 bool HasTypenameKeyword,
5738 const CXXScopeSpec &SS,
5739 SourceLocation NameLoc,
5740 const LookupResult &Previous);
5741 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5742 const CXXScopeSpec &SS,
5743 const DeclarationNameInfo &NameInfo,
5744 SourceLocation NameLoc,
5745 const LookupResult *R = nullptr,
5746 const UsingDecl *UD = nullptr);
5747
5748 NamedDecl *BuildUsingDeclaration(
5749 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5750 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5751 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5752 const ParsedAttributesView &AttrList, bool IsInstantiation,
5753 bool IsUsingIfExists);
5754 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5755 SourceLocation UsingLoc,
5756 SourceLocation EnumLoc,
5757 SourceLocation NameLoc, EnumDecl *ED);
5758 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5759 ArrayRef<NamedDecl *> Expansions);
5760
5761 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5762
5763 /// Given a derived-class using shadow declaration for a constructor and the
5764 /// correspnding base class constructor, find or create the implicit
5765 /// synthesized derived class constructor to use for this initialization.
5766 CXXConstructorDecl *
5767 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5768 ConstructorUsingShadowDecl *DerivedShadow);
5769
5770 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5771 SourceLocation UsingLoc,
5772 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5773 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5774 const ParsedAttributesView &AttrList);
5775 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5776 SourceLocation UsingLoc,
5777 SourceLocation EnumLoc, const DeclSpec &);
5778 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5779 MultiTemplateParamsArg TemplateParams,
5780 SourceLocation UsingLoc, UnqualifiedId &Name,
5781 const ParsedAttributesView &AttrList,
5782 TypeResult Type, Decl *DeclFromDeclSpec);
5783
5784 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5785 /// including handling of its default argument expressions.
5786 ///
5787 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5788 ExprResult
5789 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5790 NamedDecl *FoundDecl,
5791 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5792 bool HadMultipleCandidates, bool IsListInitialization,
5793 bool IsStdInitListInitialization,
5794 bool RequiresZeroInit, unsigned ConstructKind,
5795 SourceRange ParenRange);
5796
5797 /// Build a CXXConstructExpr whose constructor has already been resolved if
5798 /// it denotes an inherited constructor.
5799 ExprResult
5800 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5801 CXXConstructorDecl *Constructor, bool Elidable,
5802 MultiExprArg Exprs,
5803 bool HadMultipleCandidates, bool IsListInitialization,
5804 bool IsStdInitListInitialization,
5805 bool RequiresZeroInit, unsigned ConstructKind,
5806 SourceRange ParenRange);
5807
5808 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5809 // the constructor can be elidable?
5810 ExprResult
5811 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5812 NamedDecl *FoundDecl,
5813 CXXConstructorDecl *Constructor, bool Elidable,
5814 MultiExprArg Exprs, bool HadMultipleCandidates,
5815 bool IsListInitialization,
5816 bool IsStdInitListInitialization, bool RequiresZeroInit,
5817 unsigned ConstructKind, SourceRange ParenRange);
5818
5819 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5820
5821
5822 /// Instantiate or parse a C++ default argument expression as necessary.
5823 /// Return true on error.
5824 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5825 ParmVarDecl *Param);
5826
5827 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5828 /// the default expr if needed.
5829 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5830 FunctionDecl *FD,
5831 ParmVarDecl *Param);
5832
5833 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5834 /// constructed variable.
5835 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5836
5837 /// Helper class that collects exception specifications for
5838 /// implicitly-declared special member functions.
5839 class ImplicitExceptionSpecification {
5840 // Pointer to allow copying
5841 Sema *Self;
5842 // We order exception specifications thus:
5843 // noexcept is the most restrictive, but is only used in C++11.
5844 // throw() comes next.
5845 // Then a throw(collected exceptions)
5846 // Finally no specification, which is expressed as noexcept(false).
5847 // throw(...) is used instead if any called function uses it.
5848 ExceptionSpecificationType ComputedEST;
5849 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5850 SmallVector<QualType, 4> Exceptions;
5851
5852 void ClearExceptions() {
5853 ExceptionsSeen.clear();
5854 Exceptions.clear();
5855 }
5856
5857 public:
5858 explicit ImplicitExceptionSpecification(Sema &Self)
5859 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5860 if (!Self.getLangOpts().CPlusPlus11)
5861 ComputedEST = EST_DynamicNone;
5862 }
5863
5864 /// Get the computed exception specification type.
5865 ExceptionSpecificationType getExceptionSpecType() const {
5866 assert(!isComputedNoexcept(ComputedEST) &&(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
5867 "noexcept(expr) should not be a possible result")(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
;
5868 return ComputedEST;
5869 }
5870
5871 /// The number of exceptions in the exception specification.
5872 unsigned size() const { return Exceptions.size(); }
5873
5874 /// The set of exceptions in the exception specification.
5875 const QualType *data() const { return Exceptions.data(); }
5876
5877 /// Integrate another called method into the collected data.
5878 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5879
5880 /// Integrate an invoked expression into the collected data.
5881 void CalledExpr(Expr *E) { CalledStmt(E); }
5882
5883 /// Integrate an invoked statement into the collected data.
5884 void CalledStmt(Stmt *S);
5885
5886 /// Overwrite an EPI's exception specification with this
5887 /// computed exception specification.
5888 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5889 FunctionProtoType::ExceptionSpecInfo ESI;
5890 ESI.Type = getExceptionSpecType();
5891 if (ESI.Type == EST_Dynamic) {
5892 ESI.Exceptions = Exceptions;
5893 } else if (ESI.Type == EST_None) {
5894 /// C++11 [except.spec]p14:
5895 /// The exception-specification is noexcept(false) if the set of
5896 /// potential exceptions of the special member function contains "any"
5897 ESI.Type = EST_NoexceptFalse;
5898 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5899 tok::kw_false).get();
5900 }
5901 return ESI;
5902 }
5903 };
5904
5905 /// Evaluate the implicit exception specification for a defaulted
5906 /// special member function.
5907 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5908
5909 /// Check the given noexcept-specifier, convert its expression, and compute
5910 /// the appropriate ExceptionSpecificationType.
5911 ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
5912 ExceptionSpecificationType &EST);
5913
5914 /// Check the given exception-specification and update the
5915 /// exception specification information with the results.
5916 void checkExceptionSpecification(bool IsTopLevel,
5917 ExceptionSpecificationType EST,
5918 ArrayRef<ParsedType> DynamicExceptions,
5919 ArrayRef<SourceRange> DynamicExceptionRanges,
5920 Expr *NoexceptExpr,
5921 SmallVectorImpl<QualType> &Exceptions,
5922 FunctionProtoType::ExceptionSpecInfo &ESI);
5923
5924 /// Determine if we're in a case where we need to (incorrectly) eagerly
5925 /// parse an exception specification to work around a libstdc++ bug.
5926 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5927
5928 /// Add an exception-specification to the given member function
5929 /// (or member function template). The exception-specification was parsed
5930 /// after the method itself was declared.
5931 void actOnDelayedExceptionSpecification(Decl *Method,
5932 ExceptionSpecificationType EST,
5933 SourceRange SpecificationRange,
5934 ArrayRef<ParsedType> DynamicExceptions,
5935 ArrayRef<SourceRange> DynamicExceptionRanges,
5936 Expr *NoexceptExpr);
5937
5938 class InheritedConstructorInfo;
5939
5940 /// Determine if a special member function should have a deleted
5941 /// definition when it is defaulted.
5942 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5943 InheritedConstructorInfo *ICI = nullptr,
5944 bool Diagnose = false);
5945
5946 /// Produce notes explaining why a defaulted function was defined as deleted.
5947 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5948
5949 /// Declare the implicit default constructor for the given class.
5950 ///
5951 /// \param ClassDecl The class declaration into which the implicit
5952 /// default constructor will be added.
5953 ///
5954 /// \returns The implicitly-declared default constructor.
5955 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5956 CXXRecordDecl *ClassDecl);
5957
5958 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5959 /// defining this constructor as the default constructor.
5960 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5961 CXXConstructorDecl *Constructor);
5962
5963 /// Declare the implicit destructor for the given class.
5964 ///
5965 /// \param ClassDecl The class declaration into which the implicit
5966 /// destructor will be added.
5967 ///
5968 /// \returns The implicitly-declared destructor.
5969 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5970
5971 /// DefineImplicitDestructor - Checks for feasibility of
5972 /// defining this destructor as the default destructor.
5973 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5974 CXXDestructorDecl *Destructor);
5975
5976 /// Build an exception spec for destructors that don't have one.
5977 ///
5978 /// C++11 says that user-defined destructors with no exception spec get one
5979 /// that looks as if the destructor was implicitly declared.
5980 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5981
5982 /// Define the specified inheriting constructor.
5983 void DefineInheritingConstructor(SourceLocation UseLoc,
5984 CXXConstructorDecl *Constructor);
5985
5986 /// Declare the implicit copy constructor for the given class.
5987 ///
5988 /// \param ClassDecl The class declaration into which the implicit
5989 /// copy constructor will be added.
5990 ///
5991 /// \returns The implicitly-declared copy constructor.
5992 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5993
5994 /// DefineImplicitCopyConstructor - Checks for feasibility of
5995 /// defining this constructor as the copy constructor.
5996 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5997 CXXConstructorDecl *Constructor);
5998
5999 /// Declare the implicit move constructor for the given class.
6000 ///
6001 /// \param ClassDecl The Class declaration into which the implicit
6002 /// move constructor will be added.
6003 ///
6004 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6005 /// declared.
6006 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6007
6008 /// DefineImplicitMoveConstructor - Checks for feasibility of
6009 /// defining this constructor as the move constructor.
6010 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6011 CXXConstructorDecl *Constructor);
6012
6013 /// Declare the implicit copy assignment operator for the given class.
6014 ///
6015 /// \param ClassDecl The class declaration into which the implicit
6016 /// copy assignment operator will be added.
6017 ///
6018 /// \returns The implicitly-declared copy assignment operator.
6019 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6020
6021 /// Defines an implicitly-declared copy assignment operator.
6022 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6023 CXXMethodDecl *MethodDecl);
6024
6025 /// Declare the implicit move assignment operator for the given class.
6026 ///
6027 /// \param ClassDecl The Class declaration into which the implicit
6028 /// move assignment operator will be added.
6029 ///
6030 /// \returns The implicitly-declared move assignment operator, or NULL if it
6031 /// wasn't declared.
6032 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6033
6034 /// Defines an implicitly-declared move assignment operator.
6035 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6036 CXXMethodDecl *MethodDecl);
6037
6038 /// Force the declaration of any implicitly-declared members of this
6039 /// class.
6040 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6041
6042 /// Check a completed declaration of an implicit special member.
6043 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6044
6045 /// Determine whether the given function is an implicitly-deleted
6046 /// special member function.
6047 bool isImplicitlyDeleted(FunctionDecl *FD);
6048
6049 /// Check whether 'this' shows up in the type of a static member
6050 /// function after the (naturally empty) cv-qualifier-seq would be.
6051 ///
6052 /// \returns true if an error occurred.
6053 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6054
6055 /// Whether this' shows up in the exception specification of a static
6056 /// member function.
6057 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6058
6059 /// Check whether 'this' shows up in the attributes of the given
6060 /// static member function.
6061 ///
6062 /// \returns true if an error occurred.
6063 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6064
6065 /// MaybeBindToTemporary - If the passed in expression has a record type with
6066 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6067 /// it simply returns the passed in expression.
6068 ExprResult MaybeBindToTemporary(Expr *E);
6069
6070 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6071 /// invocation.
6072 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6073
6074 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6075 QualType DeclInitType, MultiExprArg ArgsPtr,
6076 SourceLocation Loc,
6077 SmallVectorImpl<Expr *> &ConvertedArgs,
6078 bool AllowExplicit = false,
6079 bool IsListInitialization = false);
6080
6081 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6082 SourceLocation NameLoc,
6083 IdentifierInfo &Name);
6084
6085 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6086 Scope *S, CXXScopeSpec &SS,
6087 bool EnteringContext);
6088 ParsedType getDestructorName(SourceLocation TildeLoc,
6089 IdentifierInfo &II, SourceLocation NameLoc,
6090 Scope *S, CXXScopeSpec &SS,
6091 ParsedType ObjectType,
6092 bool EnteringContext);
6093
6094 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6095 ParsedType ObjectType);
6096
6097 // Checks that reinterpret casts don't have undefined behavior.
6098 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6099 bool IsDereference, SourceRange Range);
6100
6101 // Checks that the vector type should be initialized from a scalar
6102 // by splatting the value rather than populating a single element.
6103 // This is the case for AltiVecVector types as well as with
6104 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6105 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6106
6107 // Checks if the -faltivec-src-compat=gcc option is specified.
6108 // If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
6109 // treated the same way as they are when trying to initialize
6110 // these vectors on gcc (an error is emitted).
6111 bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
6112 QualType SrcTy);
6113
6114 /// ActOnCXXNamedCast - Parse
6115 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6116 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6117 tok::TokenKind Kind,
6118 SourceLocation LAngleBracketLoc,
6119 Declarator &D,
6120 SourceLocation RAngleBracketLoc,
6121 SourceLocation LParenLoc,
6122 Expr *E,
6123 SourceLocation RParenLoc);
6124
6125 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6126 tok::TokenKind Kind,
6127 TypeSourceInfo *Ty,
6128 Expr *E,
6129 SourceRange AngleBrackets,
6130 SourceRange Parens);
6131
6132 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6133 ExprResult Operand,
6134 SourceLocation RParenLoc);
6135
6136 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6137 Expr *Operand, SourceLocation RParenLoc);
6138
6139 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6140 SourceLocation TypeidLoc,
6141 TypeSourceInfo *Operand,
6142 SourceLocation RParenLoc);
6143 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6144 SourceLocation TypeidLoc,
6145 Expr *Operand,
6146 SourceLocation RParenLoc);
6147
6148 /// ActOnCXXTypeid - Parse typeid( something ).
6149 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6150 SourceLocation LParenLoc, bool isType,
6151 void *TyOrExpr,
6152 SourceLocation RParenLoc);
6153
6154 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6155 SourceLocation TypeidLoc,
6156 TypeSourceInfo *Operand,
6157 SourceLocation RParenLoc);
6158 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6159 SourceLocation TypeidLoc,
6160 Expr *Operand,
6161 SourceLocation RParenLoc);
6162
6163 /// ActOnCXXUuidof - Parse __uuidof( something ).
6164 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6165 SourceLocation LParenLoc, bool isType,
6166 void *TyOrExpr,
6167 SourceLocation RParenLoc);
6168
6169 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6170 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6171 tok::TokenKind Operator,
6172 SourceLocation EllipsisLoc, Expr *RHS,
6173 SourceLocation RParenLoc);
6174 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6175 SourceLocation LParenLoc, Expr *LHS,
6176 BinaryOperatorKind Operator,
6177 SourceLocation EllipsisLoc, Expr *RHS,
6178 SourceLocation RParenLoc,
6179 Optional<unsigned> NumExpansions);
6180 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6181 BinaryOperatorKind Operator);
6182
6183 //// ActOnCXXThis - Parse 'this' pointer.
6184 ExprResult ActOnCXXThis(SourceLocation loc);
6185
6186 /// Build a CXXThisExpr and mark it referenced in the current context.
6187 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6188 void MarkThisReferenced(CXXThisExpr *This);
6189
6190 /// Try to retrieve the type of the 'this' pointer.
6191 ///
6192 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6193 QualType getCurrentThisType();
6194
6195 /// When non-NULL, the C++ 'this' expression is allowed despite the
6196 /// current context not being a non-static member function. In such cases,
6197 /// this provides the type used for 'this'.
6198 QualType CXXThisTypeOverride;
6199
6200 /// RAII object used to temporarily allow the C++ 'this' expression
6201 /// to be used, with the given qualifiers on the current class type.
6202 class CXXThisScopeRAII {
6203 Sema &S;
6204 QualType OldCXXThisTypeOverride;
6205 bool Enabled;
6206
6207 public:
6208 /// Introduce a new scope where 'this' may be allowed (when enabled),
6209 /// using the given declaration (which is either a class template or a
6210 /// class) along with the given qualifiers.
6211 /// along with the qualifiers placed on '*this'.
6212 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6213 bool Enabled = true);
6214
6215 ~CXXThisScopeRAII();
6216 };
6217
6218 /// Make sure the value of 'this' is actually available in the current
6219 /// context, if it is a potentially evaluated context.
6220 ///
6221 /// \param Loc The location at which the capture of 'this' occurs.
6222 ///
6223 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6224 /// capture list.
6225 ///
6226 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6227 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6228 /// This is useful when enclosing lambdas must speculatively capture
6229 /// 'this' that may or may not be used in certain specializations of
6230 /// a nested generic lambda (depending on whether the name resolves to
6231 /// a non-static member function or a static function).
6232 /// \return returns 'true' if failed, 'false' if success.
6233 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6234 bool BuildAndDiagnose = true,
6235 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6236 bool ByCopy = false);
6237
6238 /// Determine whether the given type is the type of *this that is used
6239 /// outside of the body of a member function for a type that is currently
6240 /// being defined.
6241 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6242
6243 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6244 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6245
6246
6247 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6248 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6249
6250 ExprResult
6251 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6252 SourceLocation AtLoc, SourceLocation RParen);
6253
6254 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6255 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6256
6257 //// ActOnCXXThrow - Parse throw expressions.
6258 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6259 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6260 bool IsThrownVarInScope);
6261 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6262
6263 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6264 /// Can be interpreted either as function-style casting ("int(x)")
6265 /// or class type construction ("ClassType(x,y,z)")
6266 /// or creation of a value-initialized type ("int()").
6267 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6268 SourceLocation LParenOrBraceLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenOrBraceLoc,
6271 bool ListInitialization);
6272
6273 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6274 SourceLocation LParenLoc,
6275 MultiExprArg Exprs,
6276 SourceLocation RParenLoc,
6277 bool ListInitialization);
6278
6279 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6280 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens, Declarator &D,
6285 Expr *Initializer);
6286 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6287 SourceLocation PlacementLParen,
6288 MultiExprArg PlacementArgs,
6289 SourceLocation PlacementRParen,
6290 SourceRange TypeIdParens,
6291 QualType AllocType,
6292 TypeSourceInfo *AllocTypeInfo,
6293 Optional<Expr *> ArraySize,
6294 SourceRange DirectInitRange,
6295 Expr *Initializer);
6296
6297 /// Determine whether \p FD is an aligned allocation or deallocation
6298 /// function that is unavailable.
6299 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6300
6301 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6302 /// function that is unavailable.
6303 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6304 SourceLocation Loc);
6305
6306 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6307 SourceRange R);
6308
6309 /// The scope in which to find allocation functions.
6310 enum AllocationFunctionScope {
6311 /// Only look for allocation functions in the global scope.
6312 AFS_Global,
6313 /// Only look for allocation functions in the scope of the
6314 /// allocated class.
6315 AFS_Class,
6316 /// Look for allocation functions in both the global scope
6317 /// and in the scope of the allocated class.
6318 AFS_Both
6319 };
6320
6321 /// Finds the overloads of operator new and delete that are appropriate
6322 /// for the allocation.
6323 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6324 AllocationFunctionScope NewScope,
6325 AllocationFunctionScope DeleteScope,
6326 QualType AllocType, bool IsArray,
6327 bool &PassAlignment, MultiExprArg PlaceArgs,
6328 FunctionDecl *&OperatorNew,
6329 FunctionDecl *&OperatorDelete,
6330 bool Diagnose = true);
6331 void DeclareGlobalNewDelete();
6332 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6333 ArrayRef<QualType> Params);
6334
6335 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6336 DeclarationName Name, FunctionDecl* &Operator,
6337 bool Diagnose = true);
6338 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6339 bool CanProvideSize,
6340 bool Overaligned,
6341 DeclarationName Name);
6342 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6343 CXXRecordDecl *RD);
6344
6345 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6346 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6347 bool UseGlobal, bool ArrayForm,
6348 Expr *Operand);
6349 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6350 bool IsDelete, bool CallCanBeVirtual,
6351 bool WarnOnNonAbstractTypes,
6352 SourceLocation DtorLoc);
6353
6354 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6355 Expr *Operand, SourceLocation RParen);
6356 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6357 SourceLocation RParen);
6358
6359 /// Parsed one of the type trait support pseudo-functions.
6360 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6361 ArrayRef<ParsedType> Args,
6362 SourceLocation RParenLoc);
6363 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6364 ArrayRef<TypeSourceInfo *> Args,
6365 SourceLocation RParenLoc);
6366
6367 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6368 /// pseudo-functions.
6369 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 ParsedType LhsTy,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6376 SourceLocation KWLoc,
6377 TypeSourceInfo *TSInfo,
6378 Expr *DimExpr,
6379 SourceLocation RParen);
6380
6381 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6382 /// pseudo-functions.
6383 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6384 SourceLocation KWLoc,
6385 Expr *Queried,
6386 SourceLocation RParen);
6387
6388 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6389 SourceLocation KWLoc,
6390 Expr *Queried,
6391 SourceLocation RParen);
6392
6393 ExprResult ActOnStartCXXMemberReference(Scope *S,
6394 Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 ParsedType &ObjectType,
6398 bool &MayBePseudoDestructor);
6399
6400 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6401 SourceLocation OpLoc,
6402 tok::TokenKind OpKind,
6403 const CXXScopeSpec &SS,
6404 TypeSourceInfo *ScopeType,
6405 SourceLocation CCLoc,
6406 SourceLocation TildeLoc,
6407 PseudoDestructorTypeStorage DestroyedType);
6408
6409 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6410 SourceLocation OpLoc,
6411 tok::TokenKind OpKind,
6412 CXXScopeSpec &SS,
6413 UnqualifiedId &FirstTypeName,
6414 SourceLocation CCLoc,
6415 SourceLocation TildeLoc,
6416 UnqualifiedId &SecondTypeName);
6417
6418 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6419 SourceLocation OpLoc,
6420 tok::TokenKind OpKind,
6421 SourceLocation TildeLoc,
6422 const DeclSpec& DS);
6423
6424 /// MaybeCreateExprWithCleanups - If the current full-expression
6425 /// requires any cleanups, surround it with a ExprWithCleanups node.
6426 /// Otherwise, just returns the passed-in expression.
6427 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6428 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6429 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6430
6431 MaterializeTemporaryExpr *
6432 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6433 bool BoundToLvalueReference);
6434
6435 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6436 return ActOnFinishFullExpr(
6437 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6438 }
6439 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6440 bool DiscardedValue, bool IsConstexpr = false);
6441 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6442
6443 // Marks SS invalid if it represents an incomplete type.
6444 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6445 // Complete an enum decl, maybe without a scope spec.
6446 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6447 CXXScopeSpec *SS = nullptr);
6448
6449 DeclContext *computeDeclContext(QualType T);
6450 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6451 bool EnteringContext = false);
6452 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6453 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6454
6455 /// The parser has parsed a global nested-name-specifier '::'.
6456 ///
6457 /// \param CCLoc The location of the '::'.
6458 ///
6459 /// \param SS The nested-name-specifier, which will be updated in-place
6460 /// to reflect the parsed nested-name-specifier.
6461 ///
6462 /// \returns true if an error occurred, false otherwise.
6463 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6464
6465 /// The parser has parsed a '__super' nested-name-specifier.
6466 ///
6467 /// \param SuperLoc The location of the '__super' keyword.
6468 ///
6469 /// \param ColonColonLoc The location of the '::'.
6470 ///
6471 /// \param SS The nested-name-specifier, which will be updated in-place
6472 /// to reflect the parsed nested-name-specifier.
6473 ///
6474 /// \returns true if an error occurred, false otherwise.
6475 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6476 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6477
6478 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6479 bool *CanCorrect = nullptr);
6480 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6481
6482 /// Keeps information about an identifier in a nested-name-spec.
6483 ///
6484 struct NestedNameSpecInfo {
6485 /// The type of the object, if we're parsing nested-name-specifier in
6486 /// a member access expression.
6487 ParsedType ObjectType;
6488
6489 /// The identifier preceding the '::'.
6490 IdentifierInfo *Identifier;
6491
6492 /// The location of the identifier.
6493 SourceLocation IdentifierLoc;
6494
6495 /// The location of the '::'.
6496 SourceLocation CCLoc;
6497
6498 /// Creates info object for the most typical case.
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6501 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6502 CCLoc(ColonColonLoc) {
6503 }
6504
6505 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6506 SourceLocation ColonColonLoc, QualType ObjectType)
6507 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6508 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6509 }
6510 };
6511
6512 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6513 NestedNameSpecInfo &IdInfo);
6514
6515 bool BuildCXXNestedNameSpecifier(Scope *S,
6516 NestedNameSpecInfo &IdInfo,
6517 bool EnteringContext,
6518 CXXScopeSpec &SS,
6519 NamedDecl *ScopeLookupResult,
6520 bool ErrorRecoveryLookup,
6521 bool *IsCorrectedToColon = nullptr,
6522 bool OnlyNamespace = false);
6523
6524 /// The parser has parsed a nested-name-specifier 'identifier::'.
6525 ///
6526 /// \param S The scope in which this nested-name-specifier occurs.
6527 ///
6528 /// \param IdInfo Parser information about an identifier in the
6529 /// nested-name-spec.
6530 ///
6531 /// \param EnteringContext Whether we're entering the context nominated by
6532 /// this nested-name-specifier.
6533 ///
6534 /// \param SS The nested-name-specifier, which is both an input
6535 /// parameter (the nested-name-specifier before this type) and an
6536 /// output parameter (containing the full nested-name-specifier,
6537 /// including this new type).
6538 ///
6539 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6540 /// error recovery. In this case do not emit error message.
6541 ///
6542 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6543 /// are allowed. The bool value pointed by this parameter is set to 'true'
6544 /// if the identifier is treated as if it was followed by ':', not '::'.
6545 ///
6546 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6547 ///
6548 /// \returns true if an error occurred, false otherwise.
6549 bool ActOnCXXNestedNameSpecifier(Scope *S,
6550 NestedNameSpecInfo &IdInfo,
6551 bool EnteringContext,
6552 CXXScopeSpec &SS,
6553 bool ErrorRecoveryLookup = false,
6554 bool *IsCorrectedToColon = nullptr,
6555 bool OnlyNamespace = false);
6556
6557 ExprResult ActOnDecltypeExpression(Expr *E);
6558
6559 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6560 const DeclSpec &DS,
6561 SourceLocation ColonColonLoc);
6562
6563 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6564 NestedNameSpecInfo &IdInfo,
6565 bool EnteringContext);
6566
6567 /// The parser has parsed a nested-name-specifier
6568 /// 'template[opt] template-name < template-args >::'.
6569 ///
6570 /// \param S The scope in which this nested-name-specifier occurs.
6571 ///
6572 /// \param SS The nested-name-specifier, which is both an input
6573 /// parameter (the nested-name-specifier before this type) and an
6574 /// output parameter (containing the full nested-name-specifier,
6575 /// including this new type).
6576 ///
6577 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6578 /// \param TemplateName the template name.
6579 /// \param TemplateNameLoc The location of the template name.
6580 /// \param LAngleLoc The location of the opening angle bracket ('<').
6581 /// \param TemplateArgs The template arguments.
6582 /// \param RAngleLoc The location of the closing angle bracket ('>').
6583 /// \param CCLoc The location of the '::'.
6584 ///
6585 /// \param EnteringContext Whether we're entering the context of the
6586 /// nested-name-specifier.
6587 ///
6588 ///
6589 /// \returns true if an error occurred, false otherwise.
6590 bool ActOnCXXNestedNameSpecifier(Scope *S,
6591 CXXScopeSpec &SS,
6592 SourceLocation TemplateKWLoc,
6593 TemplateTy TemplateName,
6594 SourceLocation TemplateNameLoc,
6595 SourceLocation LAngleLoc,
6596 ASTTemplateArgsPtr TemplateArgs,
6597 SourceLocation RAngleLoc,
6598 SourceLocation CCLoc,
6599 bool EnteringContext);
6600
6601 /// Given a C++ nested-name-specifier, produce an annotation value
6602 /// that the parser can use later to reconstruct the given
6603 /// nested-name-specifier.
6604 ///
6605 /// \param SS A nested-name-specifier.
6606 ///
6607 /// \returns A pointer containing all of the information in the
6608 /// nested-name-specifier \p SS.
6609 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6610
6611 /// Given an annotation pointer for a nested-name-specifier, restore
6612 /// the nested-name-specifier structure.
6613 ///
6614 /// \param Annotation The annotation pointer, produced by
6615 /// \c SaveNestedNameSpecifierAnnotation().
6616 ///
6617 /// \param AnnotationRange The source range corresponding to the annotation.
6618 ///
6619 /// \param SS The nested-name-specifier that will be updated with the contents
6620 /// of the annotation pointer.
6621 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6622 SourceRange AnnotationRange,
6623 CXXScopeSpec &SS);
6624
6625 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6626
6627 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6628 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6629 /// After this method is called, according to [C++ 3.4.3p3], names should be
6630 /// looked up in the declarator-id's scope, until the declarator is parsed and
6631 /// ActOnCXXExitDeclaratorScope is called.
6632 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6633 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6634
6635 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6636 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6637 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6638 /// Used to indicate that names should revert to being looked up in the
6639 /// defining scope.
6640 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6641
6642 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6643 /// initializer for the declaration 'Dcl'.
6644 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6645 /// static data member of class X, names should be looked up in the scope of
6646 /// class X.
6647 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6648
6649 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6650 /// initializer for the declaration 'Dcl'.
6651 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6652
6653 /// Create a new lambda closure type.
6654 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6655 TypeSourceInfo *Info,
6656 bool KnownDependent,
6657 LambdaCaptureDefault CaptureDefault);
6658
6659 /// Start the definition of a lambda expression.
6660 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6661 SourceRange IntroducerRange,
6662 TypeSourceInfo *MethodType,
6663 SourceLocation EndLoc,
6664 ArrayRef<ParmVarDecl *> Params,
6665 ConstexprSpecKind ConstexprKind,
6666 Expr *TrailingRequiresClause);
6667
6668 /// Number lambda for linkage purposes if necessary.
6669 void handleLambdaNumbering(
6670 CXXRecordDecl *Class, CXXMethodDecl *Method,
6671 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6672
6673 /// Endow the lambda scope info with the relevant properties.
6674 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6675 CXXMethodDecl *CallOperator,
6676 SourceRange IntroducerRange,
6677 LambdaCaptureDefault CaptureDefault,
6678 SourceLocation CaptureDefaultLoc,
6679 bool ExplicitParams,
6680 bool ExplicitResultType,
6681 bool Mutable);
6682
6683 /// Perform initialization analysis of the init-capture and perform
6684 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6685 /// not being used to initialize a reference.
6686 ParsedType actOnLambdaInitCaptureInitialization(
6687 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6688 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6689 return ParsedType::make(buildLambdaInitCaptureInitialization(
6690 Loc, ByRef, EllipsisLoc, None, Id,
6691 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6692 }
6693 QualType buildLambdaInitCaptureInitialization(
6694 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6695 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6696 Expr *&Init);
6697
6698 /// Create a dummy variable within the declcontext of the lambda's
6699 /// call operator, for name lookup purposes for a lambda init capture.
6700 ///
6701 /// CodeGen handles emission of lambda captures, ignoring these dummy
6702 /// variables appropriately.
6703 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6704 QualType InitCaptureType,
6705 SourceLocation EllipsisLoc,
6706 IdentifierInfo *Id,
6707 unsigned InitStyle, Expr *Init);
6708
6709 /// Add an init-capture to a lambda scope.
6710 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6711
6712 /// Note that we have finished the explicit captures for the
6713 /// given lambda.
6714 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6715
6716 /// \brief This is called after parsing the explicit template parameter list
6717 /// on a lambda (if it exists) in C++2a.
6718 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6719 ArrayRef<NamedDecl *> TParams,
6720 SourceLocation RAngleLoc,
6721 ExprResult RequiresClause);
6722
6723 /// Introduce the lambda parameters into scope.
6724 void addLambdaParameters(
6725 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6726 CXXMethodDecl *CallOperator, Scope *CurScope);
6727
6728 /// Deduce a block or lambda's return type based on the return
6729 /// statements present in the body.
6730 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6731
6732 /// ActOnStartOfLambdaDefinition - This is called just before we start
6733 /// parsing the body of a lambda; it analyzes the explicit captures and
6734 /// arguments, and sets up various data-structures for the body of the
6735 /// lambda.
6736 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6737 Declarator &ParamInfo, Scope *CurScope);
6738
6739 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6740 /// is invoked to pop the information about the lambda.
6741 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6742 bool IsInstantiation = false);
6743
6744 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6745 /// was successfully completed.
6746 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6747 Scope *CurScope);
6748
6749 /// Does copying/destroying the captured variable have side effects?
6750 bool CaptureHasSideEffects(const sema::Capture &From);
6751
6752 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6753 /// diagnostic is emitted.
6754 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6755 const sema::Capture &From);
6756
6757 /// Build a FieldDecl suitable to hold the given capture.
6758 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6759
6760 /// Initialize the given capture with a suitable expression.
6761 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6762 SourceLocation ImplicitCaptureLoc,
6763 bool IsOpenMPMapping = false);
6764
6765 /// Complete a lambda-expression having processed and attached the
6766 /// lambda body.
6767 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6768 sema::LambdaScopeInfo *LSI);
6769
6770 /// Get the return type to use for a lambda's conversion function(s) to
6771 /// function pointer type, given the type of the call operator.
6772 QualType
6773 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6774 CallingConv CC);
6775
6776 /// Define the "body" of the conversion from a lambda object to a
6777 /// function pointer.
6778 ///
6779 /// This routine doesn't actually define a sensible body; rather, it fills
6780 /// in the initialization expression needed to copy the lambda object into
6781 /// the block, and IR generation actually generates the real body of the
6782 /// block pointer conversion.
6783 void DefineImplicitLambdaToFunctionPointerConversion(
6784 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6785
6786 /// Define the "body" of the conversion from a lambda object to a
6787 /// block pointer.
6788 ///
6789 /// This routine doesn't actually define a sensible body; rather, it fills
6790 /// in the initialization expression needed to copy the lambda object into
6791 /// the block, and IR generation actually generates the real body of the
6792 /// block pointer conversion.
6793 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6794 CXXConversionDecl *Conv);
6795
6796 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6797 SourceLocation ConvLocation,
6798 CXXConversionDecl *Conv,
6799 Expr *Src);
6800
6801 /// Check whether the given expression is a valid constraint expression.
6802 /// A diagnostic is emitted if it is not, false is returned, and
6803 /// PossibleNonPrimary will be set to true if the failure might be due to a
6804 /// non-primary expression being used as an atomic constraint.
6805 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6806 bool *PossibleNonPrimary = nullptr,
6807 bool IsTrailingRequiresClause = false);
6808
6809private:
6810 /// Caches pairs of template-like decls whose associated constraints were
6811 /// checked for subsumption and whether or not the first's constraints did in
6812 /// fact subsume the second's.
6813 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6814 /// Caches the normalized associated constraints of declarations (concepts or
6815 /// constrained declarations). If an error occurred while normalizing the
6816 /// associated constraints of the template or concept, nullptr will be cached
6817 /// here.
6818 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6819 NormalizationCache;
6820
6821 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6822 SatisfactionCache;
6823
6824public:
6825 const NormalizedConstraint *
6826 getNormalizedAssociatedConstraints(
6827 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6828
6829 /// \brief Check whether the given declaration's associated constraints are
6830 /// at least as constrained than another declaration's according to the
6831 /// partial ordering of constraints.
6832 ///
6833 /// \param Result If no error occurred, receives the result of true if D1 is
6834 /// at least constrained than D2, and false otherwise.
6835 ///
6836 /// \returns true if an error occurred, false otherwise.
6837 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6838 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6839 bool &Result);
6840
6841 /// If D1 was not at least as constrained as D2, but would've been if a pair
6842 /// of atomic constraints involved had been declared in a concept and not
6843 /// repeated in two separate places in code.
6844 /// \returns true if such a diagnostic was emitted, false otherwise.
6845 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6846 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6847
6848 /// \brief Check whether the given list of constraint expressions are
6849 /// satisfied (as if in a 'conjunction') given template arguments.
6850 /// \param Template the template-like entity that triggered the constraints
6851 /// check (either a concept or a constrained entity).
6852 /// \param ConstraintExprs a list of constraint expressions, treated as if
6853 /// they were 'AND'ed together.
6854 /// \param TemplateArgs the list of template arguments to substitute into the
6855 /// constraint expression.
6856 /// \param TemplateIDRange The source range of the template id that
6857 /// caused the constraints check.
6858 /// \param Satisfaction if true is returned, will contain details of the
6859 /// satisfaction, with enough information to diagnose an unsatisfied
6860 /// expression.
6861 /// \returns true if an error occurred and satisfaction could not be checked,
6862 /// false otherwise.
6863 bool CheckConstraintSatisfaction(
6864 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6865 ArrayRef<TemplateArgument> TemplateArgs,
6866 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6867
6868 /// \brief Check whether the given non-dependent constraint expression is
6869 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6870 /// verdict if successful, emits a diagnostic and returns true if an error
6871 /// occured and satisfaction could not be determined.
6872 ///
6873 /// \returns true if an error occurred, false otherwise.
6874 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6875 ConstraintSatisfaction &Satisfaction);
6876
6877 /// Check whether the given function decl's trailing requires clause is
6878 /// satisfied, if any. Returns false and updates Satisfaction with the
6879 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6880 /// an error occured and satisfaction could not be determined.
6881 ///
6882 /// \returns true if an error occurred, false otherwise.
6883 bool CheckFunctionConstraints(const FunctionDecl *FD,
6884 ConstraintSatisfaction &Satisfaction,
6885 SourceLocation UsageLoc = SourceLocation());
6886
6887
6888 /// \brief Ensure that the given template arguments satisfy the constraints
6889 /// associated with the given template, emitting a diagnostic if they do not.
6890 ///
6891 /// \param Template The template to which the template arguments are being
6892 /// provided.
6893 ///
6894 /// \param TemplateArgs The converted, canonicalized template arguments.
6895 ///
6896 /// \param TemplateIDRange The source range of the template id that
6897 /// caused the constraints check.
6898 ///
6899 /// \returns true if the constrains are not satisfied or could not be checked
6900 /// for satisfaction, false if the constraints are satisfied.
6901 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6902 ArrayRef<TemplateArgument> TemplateArgs,
6903 SourceRange TemplateIDRange);
6904
6905 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6906 /// unsatisfied.
6907 /// \param First whether this is the first time an unsatisfied constraint is
6908 /// diagnosed for this error.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6914 /// unsatisfied.
6915 void
6916 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6917 bool First = true);
6918
6919 // ParseObjCStringLiteral - Parse Objective-C string literals.
6920 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6921 ArrayRef<Expr *> Strings);
6922
6923 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6924
6925 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6926 /// numeric literal expression. Type of the expression will be "NSNumber *"
6927 /// or "id" if NSNumber is unavailable.
6928 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6929 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6930 bool Value);
6931 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6932
6933 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6934 /// '@' prefixed parenthesized expression. The type of the expression will
6935 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6936 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6937 /// "const char *" or C structure with attribute 'objc_boxable'.
6938 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6939
6940 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6941 Expr *IndexExpr,
6942 ObjCMethodDecl *getterMethod,
6943 ObjCMethodDecl *setterMethod);
6944
6945 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6946 MutableArrayRef<ObjCDictionaryElement> Elements);
6947
6948 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6949 TypeSourceInfo *EncodedTypeInfo,
6950 SourceLocation RParenLoc);
6951 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6952 CXXConversionDecl *Method,
6953 bool HadMultipleCandidates);
6954
6955 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6956 SourceLocation EncodeLoc,
6957 SourceLocation LParenLoc,
6958 ParsedType Ty,
6959 SourceLocation RParenLoc);
6960
6961 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6962 ExprResult ParseObjCSelectorExpression(Selector Sel,
6963 SourceLocation AtLoc,
6964 SourceLocation SelLoc,
6965 SourceLocation LParenLoc,
6966 SourceLocation RParenLoc,
6967 bool WarnMultipleSelectors);
6968
6969 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6970 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6971 SourceLocation AtLoc,
6972 SourceLocation ProtoLoc,
6973 SourceLocation LParenLoc,
6974 SourceLocation ProtoIdLoc,
6975 SourceLocation RParenLoc);
6976
6977 //===--------------------------------------------------------------------===//
6978 // C++ Declarations
6979 //
6980 Decl *ActOnStartLinkageSpecification(Scope *S,
6981 SourceLocation ExternLoc,
6982 Expr *LangStr,
6983 SourceLocation LBraceLoc);
6984 Decl *ActOnFinishLinkageSpecification(Scope *S,
6985 Decl *LinkageSpec,
6986 SourceLocation RBraceLoc);
6987
6988
6989 //===--------------------------------------------------------------------===//
6990 // C++ Classes
6991 //
6992 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6993 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6994 const CXXScopeSpec *SS = nullptr);
6995 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6996
6997 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6998 SourceLocation ColonLoc,
6999 const ParsedAttributesView &Attrs);
7000
7001 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
7002 Declarator &D,
7003 MultiTemplateParamsArg TemplateParameterLists,
7004 Expr *BitfieldWidth, const VirtSpecifiers &VS,
7005 InClassInitStyle InitStyle);
7006
7007 void ActOnStartCXXInClassMemberInitializer();
7008 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7009 SourceLocation EqualLoc,
7010 Expr *Init);
7011
7012 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7013 Scope *S,
7014 CXXScopeSpec &SS,
7015 IdentifierInfo *MemberOrBase,
7016 ParsedType TemplateTypeTy,
7017 const DeclSpec &DS,
7018 SourceLocation IdLoc,
7019 SourceLocation LParenLoc,
7020 ArrayRef<Expr *> Args,
7021 SourceLocation RParenLoc,
7022 SourceLocation EllipsisLoc);
7023
7024 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7025 Scope *S,
7026 CXXScopeSpec &SS,
7027 IdentifierInfo *MemberOrBase,
7028 ParsedType TemplateTypeTy,
7029 const DeclSpec &DS,
7030 SourceLocation IdLoc,
7031 Expr *InitList,
7032 SourceLocation EllipsisLoc);
7033
7034 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7035 Scope *S,
7036 CXXScopeSpec &SS,
7037 IdentifierInfo *MemberOrBase,
7038 ParsedType TemplateTypeTy,
7039 const DeclSpec &DS,
7040 SourceLocation IdLoc,
7041 Expr *Init,
7042 SourceLocation EllipsisLoc);
7043
7044 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7045 Expr *Init,
7046 SourceLocation IdLoc);
7047
7048 MemInitResult BuildBaseInitializer(QualType BaseType,
7049 TypeSourceInfo *BaseTInfo,
7050 Expr *Init,
7051 CXXRecordDecl *ClassDecl,
7052 SourceLocation EllipsisLoc);
7053
7054 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7055 Expr *Init,
7056 CXXRecordDecl *ClassDecl);
7057
7058 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7059 CXXCtorInitializer *Initializer);
7060
7061 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7062 ArrayRef<CXXCtorInitializer *> Initializers = None);
7063
7064 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7065
7066
7067 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7068 /// mark all the non-trivial destructors of its members and bases as
7069 /// referenced.
7070 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7071 CXXRecordDecl *Record);
7072
7073 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7074 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7075 /// class. In the Microsoft C++ ABI, this is done any time a class's
7076 /// destructor is referenced.
7077 void MarkVirtualBaseDestructorsReferenced(
7078 SourceLocation Location, CXXRecordDecl *ClassDecl,
7079 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7080
7081 /// Do semantic checks to allow the complete destructor variant to be emitted
7082 /// when the destructor is defined in another translation unit. In the Itanium
7083 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7084 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7085 /// of the checks performed when emitting a regular destructor.
7086 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7087 CXXDestructorDecl *Dtor);
7088
7089 /// The list of classes whose vtables have been used within
7090 /// this translation unit, and the source locations at which the
7091 /// first use occurred.
7092 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7093
7094 /// The list of vtables that are required but have not yet been
7095 /// materialized.
7096 SmallVector<VTableUse, 16> VTableUses;
7097
7098 /// The set of classes whose vtables have been used within
7099 /// this translation unit, and a bit that will be true if the vtable is
7100 /// required to be emitted (otherwise, it should be emitted only if needed
7101 /// by code generation).
7102 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7103
7104 /// Load any externally-stored vtable uses.
7105 void LoadExternalVTableUses();
7106
7107 /// Note that the vtable for the given class was used at the
7108 /// given location.
7109 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7110 bool DefinitionRequired = false);
7111
7112 /// Mark the exception specifications of all virtual member functions
7113 /// in the given class as needed.
7114 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7115 const CXXRecordDecl *RD);
7116
7117 /// MarkVirtualMembersReferenced - Will mark all members of the given
7118 /// CXXRecordDecl referenced.
7119 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7120 bool ConstexprOnly = false);
7121
7122 /// Define all of the vtables that have been used in this
7123 /// translation unit and reference any virtual members used by those
7124 /// vtables.
7125 ///
7126 /// \returns true if any work was done, false otherwise.
7127 bool DefineUsedVTables();
7128
7129 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7130
7131 void ActOnMemInitializers(Decl *ConstructorDecl,
7132 SourceLocation ColonLoc,
7133 ArrayRef<CXXCtorInitializer*> MemInits,
7134 bool AnyErrors);
7135
7136 /// Check class-level dllimport/dllexport attribute. The caller must
7137 /// ensure that referenceDLLExportedClassMethods is called some point later
7138 /// when all outer classes of Class are complete.
7139 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7140 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7141
7142 void referenceDLLExportedClassMethods();
7143
7144 void propagateDLLAttrToBaseClassTemplate(
7145 CXXRecordDecl *Class, Attr *ClassAttr,
7146 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7147 SourceLocation BaseLoc);
7148
7149 /// Add gsl::Pointer attribute to std::container::iterator
7150 /// \param ND The declaration that introduces the name
7151 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7152 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7153
7154 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7155 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7156
7157 /// Add [[gsl::Pointer]] attributes for std:: types.
7158 void inferGslPointerAttribute(TypedefNameDecl *TD);
7159
7160 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7161
7162 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7163 /// conditions that are needed for the attribute to have an effect.
7164 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7165
7166 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7167 Decl *TagDecl, SourceLocation LBrac,
7168 SourceLocation RBrac,
7169 const ParsedAttributesView &AttrList);
7170 void ActOnFinishCXXMemberDecls();
7171 void ActOnFinishCXXNonNestedClass();
7172
7173 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7174 unsigned ActOnReenterTemplateScope(Decl *Template,
7175 llvm::function_ref<Scope *()> EnterScope);
7176 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7177 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7178 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7179 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7180 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7181 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7182 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7183 CachedTokens &Toks);
7184 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7185 bool IsInsideALocalClassWithinATemplateFunction();
7186
7187 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7188 Expr *AssertExpr,
7189 Expr *AssertMessageExpr,
7190 SourceLocation RParenLoc);
7191 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7192 Expr *AssertExpr,
7193 StringLiteral *AssertMessageExpr,
7194 SourceLocation RParenLoc,
7195 bool Failed);
7196
7197 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7198 SourceLocation FriendLoc,
7199 TypeSourceInfo *TSInfo);
7200 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7201 MultiTemplateParamsArg TemplateParams);
7202 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7203 MultiTemplateParamsArg TemplateParams);
7204
7205 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7206 StorageClass& SC);
7207 void CheckConstructor(CXXConstructorDecl *Constructor);
7208 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7209 StorageClass& SC);
7210 bool CheckDestructor(CXXDestructorDecl *Destructor);
7211 void CheckConversionDeclarator(Declarator &D, QualType &R,
7212 StorageClass& SC);
7213 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7214 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7215 StorageClass &SC);
7216 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7217
7218 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7219
7220 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7221 CXXSpecialMember CSM);
7222 void CheckDelayedMemberExceptionSpecs();
7223
7224 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7225 DefaultedComparisonKind DCK);
7226 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7227 FunctionDecl *Spaceship);
7228 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7229 DefaultedComparisonKind DCK);
7230
7231 //===--------------------------------------------------------------------===//
7232 // C++ Derived Classes
7233 //
7234
7235 /// ActOnBaseSpecifier - Parsed a base specifier
7236 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7237 SourceRange SpecifierRange,
7238 bool Virtual, AccessSpecifier Access,
7239 TypeSourceInfo *TInfo,
7240 SourceLocation EllipsisLoc);
7241
7242 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7243 SourceRange SpecifierRange,
7244 ParsedAttributes &Attrs,
7245 bool Virtual, AccessSpecifier Access,
7246 ParsedType basetype,
7247 SourceLocation BaseLoc,
7248 SourceLocation EllipsisLoc);
7249
7250 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7251 MutableArrayRef<CXXBaseSpecifier *> Bases);
7252 void ActOnBaseSpecifiers(Decl *ClassDecl,
7253 MutableArrayRef<CXXBaseSpecifier *> Bases);
7254
7255 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7256 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7257 CXXBasePaths &Paths);
7258
7259 // FIXME: I don't like this name.
7260 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7261
7262 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7263 SourceLocation Loc, SourceRange Range,
7264 CXXCastPath *BasePath = nullptr,
7265 bool IgnoreAccess = false);
7266 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7267 unsigned InaccessibleBaseID,
7268 unsigned AmbiguousBaseConvID,
7269 SourceLocation Loc, SourceRange Range,
7270 DeclarationName Name,
7271 CXXCastPath *BasePath,
7272 bool IgnoreAccess = false);
7273
7274 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7275
7276 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7277 const CXXMethodDecl *Old);
7278
7279 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7280 /// covariant, according to C++ [class.virtual]p5.
7281 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7282 const CXXMethodDecl *Old);
7283
7284 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7285 /// spec is a subset of base spec.
7286 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7287 const CXXMethodDecl *Old);
7288
7289 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7290
7291 /// CheckOverrideControl - Check C++11 override control semantics.
7292 void CheckOverrideControl(NamedDecl *D);
7293
7294 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7295 /// not used in the declaration of an overriding method.
7296 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7297
7298 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7299 /// overrides a virtual member function marked 'final', according to
7300 /// C++11 [class.virtual]p4.
7301 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7302 const CXXMethodDecl *Old);
7303
7304
7305 //===--------------------------------------------------------------------===//
7306 // C++ Access Control
7307 //
7308
7309 enum AccessResult {
7310 AR_accessible,
7311 AR_inaccessible,
7312 AR_dependent,
7313 AR_delayed
7314 };
7315
7316 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7317 NamedDecl *PrevMemberDecl,
7318 AccessSpecifier LexicalAS);
7319
7320 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7321 DeclAccessPair FoundDecl);
7322 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7323 DeclAccessPair FoundDecl);
7324 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7325 SourceRange PlacementRange,
7326 CXXRecordDecl *NamingClass,
7327 DeclAccessPair FoundDecl,
7328 bool Diagnose = true);
7329 AccessResult CheckConstructorAccess(SourceLocation Loc,
7330 CXXConstructorDecl *D,
7331 DeclAccessPair FoundDecl,
7332 const InitializedEntity &Entity,
7333 bool IsCopyBindingRefToTemp = false);
7334 AccessResult CheckConstructorAccess(SourceLocation Loc,
7335 CXXConstructorDecl *D,
7336 DeclAccessPair FoundDecl,
7337 const InitializedEntity &Entity,
7338 const PartialDiagnostic &PDiag);
7339 AccessResult CheckDestructorAccess(SourceLocation Loc,
7340 CXXDestructorDecl *Dtor,
7341 const PartialDiagnostic &PDiag,
7342 QualType objectType = QualType());
7343 AccessResult CheckFriendAccess(NamedDecl *D);
7344 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7345 CXXRecordDecl *NamingClass,
7346 DeclAccessPair Found);
7347 AccessResult
7348 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7349 CXXRecordDecl *DecomposedClass,
7350 DeclAccessPair Field);
7351 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7352 Expr *ObjectExpr,
7353 Expr *ArgExpr,
7354 DeclAccessPair FoundDecl);
7355 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7356 DeclAccessPair FoundDecl);
7357 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7358 QualType Base, QualType Derived,
7359 const CXXBasePath &Path,
7360 unsigned DiagID,
7361 bool ForceCheck = false,
7362 bool ForceUnprivileged = false);
7363 void CheckLookupAccess(const LookupResult &R);
7364 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7365 QualType BaseType);
7366 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7367 DeclAccessPair Found, QualType ObjectType,
7368 SourceLocation Loc,
7369 const PartialDiagnostic &Diag);
7370 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7371 DeclAccessPair Found,
7372 QualType ObjectType) {
7373 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7374 SourceLocation(), PDiag());
7375 }
7376
7377 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7378 const MultiLevelTemplateArgumentList &TemplateArgs);
7379 void PerformDependentDiagnostics(const DeclContext *Pattern,
7380 const MultiLevelTemplateArgumentList &TemplateArgs);
7381
7382 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7383
7384 /// When true, access checking violations are treated as SFINAE
7385 /// failures rather than hard errors.
7386 bool AccessCheckingSFINAE;
7387
7388 enum AbstractDiagSelID {
7389 AbstractNone = -1,
7390 AbstractReturnType,
7391 AbstractParamType,
7392 AbstractVariableType,
7393 AbstractFieldType,
7394 AbstractIvarType,
7395 AbstractSynthesizedIvarType,
7396 AbstractArrayType
7397 };
7398
7399 bool isAbstractType(SourceLocation Loc, QualType T);
7400 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7401 TypeDiagnoser &Diagnoser);
7402 template <typename... Ts>
7403 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7404 const Ts &...Args) {
7405 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7406 return RequireNonAbstractType(Loc, T, Diagnoser);
7407 }
7408
7409 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7410
7411 //===--------------------------------------------------------------------===//
7412 // C++ Overloaded Operators [C++ 13.5]
7413 //
7414
7415 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7416
7417 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7418
7419 //===--------------------------------------------------------------------===//
7420 // C++ Templates [C++ 14]
7421 //
7422 void FilterAcceptableTemplateNames(LookupResult &R,
7423 bool AllowFunctionTemplates = true,
7424 bool AllowDependent = true);
7425 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7426 bool AllowFunctionTemplates = true,
7427 bool AllowDependent = true,
7428 bool AllowNonTemplateFunctions = false);
7429 /// Try to interpret the lookup result D as a template-name.
7430 ///
7431 /// \param D A declaration found by name lookup.
7432 /// \param AllowFunctionTemplates Whether function templates should be
7433 /// considered valid results.
7434 /// \param AllowDependent Whether unresolved using declarations (that might
7435 /// name templates) should be considered valid results.
7436 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7437 bool AllowFunctionTemplates = true,
7438 bool AllowDependent = true);
7439
7440 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7441 /// Whether and why a template name is required in this lookup.
7442 class RequiredTemplateKind {
7443 public:
7444 /// Template name is required if TemplateKWLoc is valid.
7445 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7446 : TemplateKW(TemplateKWLoc) {}
7447 /// Template name is unconditionally required.
7448 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7449
7450 SourceLocation getTemplateKeywordLoc() const {
7451 return TemplateKW.getValueOr(SourceLocation());
7452 }
7453 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7454 bool isRequired() const { return TemplateKW != SourceLocation(); }
7455 explicit operator bool() const { return isRequired(); }
7456
7457 private:
7458 llvm::Optional<SourceLocation> TemplateKW;
7459 };
7460
7461 enum class AssumedTemplateKind {
7462 /// This is not assumed to be a template name.
7463 None,
7464 /// This is assumed to be a template name because lookup found nothing.
7465 FoundNothing,
7466 /// This is assumed to be a template name because lookup found one or more
7467 /// functions (but no function templates).
7468 FoundFunctions,
7469 };
7470 bool LookupTemplateName(
7471 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7472 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7473 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7474 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7475
7476 TemplateNameKind isTemplateName(Scope *S,
7477 CXXScopeSpec &SS,
7478 bool hasTemplateKeyword,
7479 const UnqualifiedId &Name,
7480 ParsedType ObjectType,
7481 bool EnteringContext,
7482 TemplateTy &Template,
7483 bool &MemberOfUnknownSpecialization,
7484 bool Disambiguation = false);
7485
7486 /// Try to resolve an undeclared template name as a type template.
7487 ///
7488 /// Sets II to the identifier corresponding to the template name, and updates
7489 /// Name to a corresponding (typo-corrected) type template name and TNK to
7490 /// the corresponding kind, if possible.
7491 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7492 TemplateNameKind &TNK,
7493 SourceLocation NameLoc,
7494 IdentifierInfo *&II);
7495
7496 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7497 SourceLocation NameLoc,
7498 bool Diagnose = true);
7499
7500 /// Determine whether a particular identifier might be the name in a C++1z
7501 /// deduction-guide declaration.
7502 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7503 SourceLocation NameLoc,
7504 ParsedTemplateTy *Template = nullptr);
7505
7506 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7507 SourceLocation IILoc,
7508 Scope *S,
7509 const CXXScopeSpec *SS,
7510 TemplateTy &SuggestedTemplate,
7511 TemplateNameKind &SuggestedKind);
7512
7513 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7514 NamedDecl *Instantiation,
7515 bool InstantiatedFromMember,
7516 const NamedDecl *Pattern,
7517 const NamedDecl *PatternDef,
7518 TemplateSpecializationKind TSK,
7519 bool Complain = true);
7520
7521 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7522 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7523
7524 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7525 SourceLocation EllipsisLoc,
7526 SourceLocation KeyLoc,
7527 IdentifierInfo *ParamName,
7528 SourceLocation ParamNameLoc,
7529 unsigned Depth, unsigned Position,
7530 SourceLocation EqualLoc,
7531 ParsedType DefaultArg, bool HasTypeConstraint);
7532
7533 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7534 TemplateIdAnnotation *TypeConstraint,
7535 TemplateTypeParmDecl *ConstrainedParameter,
7536 SourceLocation EllipsisLoc);
7537 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7538 TemplateIdAnnotation *TypeConstraint,
7539 TemplateTypeParmDecl *ConstrainedParameter,
7540 SourceLocation EllipsisLoc,
7541 bool AllowUnexpandedPack);
7542
7543 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7544 DeclarationNameInfo NameInfo,
7545 ConceptDecl *NamedConcept,
7546 const TemplateArgumentListInfo *TemplateArgs,
7547 TemplateTypeParmDecl *ConstrainedParameter,
7548 SourceLocation EllipsisLoc);
7549
7550 bool AttachTypeConstraint(AutoTypeLoc TL,
7551 NonTypeTemplateParmDecl *ConstrainedParameter,
7552 SourceLocation EllipsisLoc);
7553
7554 bool RequireStructuralType(QualType T, SourceLocation Loc);
7555
7556 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7557 SourceLocation Loc);
7558 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7559
7560 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7561 unsigned Depth,
7562 unsigned Position,
7563 SourceLocation EqualLoc,
7564 Expr *DefaultArg);
7565 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7566 SourceLocation TmpLoc,
7567 TemplateParameterList *Params,
7568 SourceLocation EllipsisLoc,
7569 IdentifierInfo *ParamName,
7570 SourceLocation ParamNameLoc,
7571 unsigned Depth,
7572 unsigned Position,
7573 SourceLocation EqualLoc,
7574 ParsedTemplateArgument DefaultArg);
7575
7576 TemplateParameterList *
7577 ActOnTemplateParameterList(unsigned Depth,
7578 SourceLocation ExportLoc,
7579 SourceLocation TemplateLoc,
7580 SourceLocation LAngleLoc,
7581 ArrayRef<NamedDecl *> Params,
7582 SourceLocation RAngleLoc,
7583 Expr *RequiresClause);
7584
7585 /// The context in which we are checking a template parameter list.
7586 enum TemplateParamListContext {
7587 TPC_ClassTemplate,
7588 TPC_VarTemplate,
7589 TPC_FunctionTemplate,
7590 TPC_ClassTemplateMember,
7591 TPC_FriendClassTemplate,
7592 TPC_FriendFunctionTemplate,
7593 TPC_FriendFunctionTemplateDefinition,
7594 TPC_TypeAliasTemplate
7595 };
7596
7597 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7598 TemplateParameterList *OldParams,
7599 TemplateParamListContext TPC,
7600 SkipBodyInfo *SkipBody = nullptr);
7601 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7602 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7603 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7604 ArrayRef<TemplateParameterList *> ParamLists,
7605 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7606 bool SuppressDiagnostic = false);
7607
7608 DeclResult CheckClassTemplate(
7609 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7610 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7611 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7612 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7613 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7614 TemplateParameterList **OuterTemplateParamLists,
7615 SkipBodyInfo *SkipBody = nullptr);
7616
7617 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7618 QualType NTTPType,
7619 SourceLocation Loc);
7620
7621 /// Get a template argument mapping the given template parameter to itself,
7622 /// e.g. for X in \c template<int X>, this would return an expression template
7623 /// argument referencing X.
7624 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7625 SourceLocation Location);
7626
7627 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7628 TemplateArgumentListInfo &Out);
7629
7630 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7631
7632 void NoteAllFoundTemplates(TemplateName Name);
7633
7634 QualType CheckTemplateIdType(TemplateName Template,
7635 SourceLocation TemplateLoc,
7636 TemplateArgumentListInfo &TemplateArgs);
7637
7638 TypeResult
7639 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7640 TemplateTy Template, IdentifierInfo *TemplateII,
7641 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7642 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7643 bool IsCtorOrDtorName = false, bool IsClassName = false);
7644
7645 /// Parsed an elaborated-type-specifier that refers to a template-id,
7646 /// such as \c class T::template apply<U>.
7647 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7648 TypeSpecifierType TagSpec,
7649 SourceLocation TagLoc,
7650 CXXScopeSpec &SS,
7651 SourceLocation TemplateKWLoc,
7652 TemplateTy TemplateD,
7653 SourceLocation TemplateLoc,
7654 SourceLocation LAngleLoc,
7655 ASTTemplateArgsPtr TemplateArgsIn,
7656 SourceLocation RAngleLoc);
7657
7658 DeclResult ActOnVarTemplateSpecialization(
7659 Scope *S, Declarator &D, TypeSourceInfo *DI,
7660 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7661 StorageClass SC, bool IsPartialSpecialization);
7662
7663 /// Get the specialization of the given variable template corresponding to
7664 /// the specified argument list, or a null-but-valid result if the arguments
7665 /// are dependent.
7666 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7667 SourceLocation TemplateLoc,
7668 SourceLocation TemplateNameLoc,
7669 const TemplateArgumentListInfo &TemplateArgs);
7670
7671 /// Form a reference to the specialization of the given variable template
7672 /// corresponding to the specified argument list, or a null-but-valid result
7673 /// if the arguments are dependent.
7674 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7675 const DeclarationNameInfo &NameInfo,
7676 VarTemplateDecl *Template,
7677 SourceLocation TemplateLoc,
7678 const TemplateArgumentListInfo *TemplateArgs);
7679
7680 ExprResult
7681 CheckConceptTemplateId(const CXXScopeSpec &SS,
7682 SourceLocation TemplateKWLoc,
7683 const DeclarationNameInfo &ConceptNameInfo,
7684 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7685 const TemplateArgumentListInfo *TemplateArgs);
7686
7687 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7688
7689 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 LookupResult &R,
7692 bool RequiresADL,
7693 const TemplateArgumentListInfo *TemplateArgs);
7694
7695 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7696 SourceLocation TemplateKWLoc,
7697 const DeclarationNameInfo &NameInfo,
7698 const TemplateArgumentListInfo *TemplateArgs);
7699
7700 TemplateNameKind ActOnTemplateName(
7701 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7702 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7703 TemplateTy &Template, bool AllowInjectedClassName = false);
7704
7705 DeclResult ActOnClassTemplateSpecialization(
7706 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7707 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7708 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7709 MultiTemplateParamsArg TemplateParameterLists,
7710 SkipBodyInfo *SkipBody = nullptr);
7711
7712 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7713 TemplateDecl *PrimaryTemplate,
7714 unsigned NumExplicitArgs,
7715 ArrayRef<TemplateArgument> Args);
7716 void CheckTemplatePartialSpecialization(
7717 ClassTemplatePartialSpecializationDecl *Partial);
7718 void CheckTemplatePartialSpecialization(
7719 VarTemplatePartialSpecializationDecl *Partial);
7720
7721 Decl *ActOnTemplateDeclarator(Scope *S,
7722 MultiTemplateParamsArg TemplateParameterLists,
7723 Declarator &D);
7724
7725 bool
7726 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7727 TemplateSpecializationKind NewTSK,
7728 NamedDecl *PrevDecl,
7729 TemplateSpecializationKind PrevTSK,
7730 SourceLocation PrevPtOfInstantiation,
7731 bool &SuppressNew);
7732
7733 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7734 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7735 LookupResult &Previous);
7736
7737 bool CheckFunctionTemplateSpecialization(
7738 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7739 LookupResult &Previous, bool QualifiedFriend = false);
7740 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7741 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7742
7743 DeclResult ActOnExplicitInstantiation(
7744 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7745 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7746 TemplateTy Template, SourceLocation TemplateNameLoc,
7747 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7748 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7749
7750 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7751 SourceLocation TemplateLoc,
7752 unsigned TagSpec, SourceLocation KWLoc,
7753 CXXScopeSpec &SS, IdentifierInfo *Name,
7754 SourceLocation NameLoc,
7755 const ParsedAttributesView &Attr);
7756
7757 DeclResult ActOnExplicitInstantiation(Scope *S,
7758 SourceLocation ExternLoc,
7759 SourceLocation TemplateLoc,
7760 Declarator &D);
7761
7762 TemplateArgumentLoc
7763 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7764 SourceLocation TemplateLoc,
7765 SourceLocation RAngleLoc,
7766 Decl *Param,
7767 SmallVectorImpl<TemplateArgument>
7768 &Converted,
7769 bool &HasDefaultArg);
7770
7771 /// Specifies the context in which a particular template
7772 /// argument is being checked.
7773 enum CheckTemplateArgumentKind {
7774 /// The template argument was specified in the code or was
7775 /// instantiated with some deduced template arguments.
7776 CTAK_Specified,
7777
7778 /// The template argument was deduced via template argument
7779 /// deduction.
7780 CTAK_Deduced,
7781
7782 /// The template argument was deduced from an array bound
7783 /// via template argument deduction.
7784 CTAK_DeducedFromArrayBound
7785 };
7786
7787 bool CheckTemplateArgument(NamedDecl *Param,
7788 TemplateArgumentLoc &Arg,
7789 NamedDecl *Template,
7790 SourceLocation TemplateLoc,
7791 SourceLocation RAngleLoc,
7792 unsigned ArgumentPackIndex,
7793 SmallVectorImpl<TemplateArgument> &Converted,
7794 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7795
7796 /// Check that the given template arguments can be be provided to
7797 /// the given template, converting the arguments along the way.
7798 ///
7799 /// \param Template The template to which the template arguments are being
7800 /// provided.
7801 ///
7802 /// \param TemplateLoc The location of the template name in the source.
7803 ///
7804 /// \param TemplateArgs The list of template arguments. If the template is
7805 /// a template template parameter, this function may extend the set of
7806 /// template arguments to also include substituted, defaulted template
7807 /// arguments.
7808 ///
7809 /// \param PartialTemplateArgs True if the list of template arguments is
7810 /// intentionally partial, e.g., because we're checking just the initial
7811 /// set of template arguments.
7812 ///
7813 /// \param Converted Will receive the converted, canonicalized template
7814 /// arguments.
7815 ///
7816 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7817 /// contain the converted forms of the template arguments as written.
7818 /// Otherwise, \p TemplateArgs will not be modified.
7819 ///
7820 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7821 /// receive true if the cause for the error is the associated constraints of
7822 /// the template not being satisfied by the template arguments.
7823 ///
7824 /// \returns true if an error occurred, false otherwise.
7825 bool CheckTemplateArgumentList(TemplateDecl *Template,
7826 SourceLocation TemplateLoc,
7827 TemplateArgumentListInfo &TemplateArgs,
7828 bool PartialTemplateArgs,
7829 SmallVectorImpl<TemplateArgument> &Converted,
7830 bool UpdateArgsWithConversions = true,
7831 bool *ConstraintsNotSatisfied = nullptr);
7832
7833 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7834 TemplateArgumentLoc &Arg,
7835 SmallVectorImpl<TemplateArgument> &Converted);
7836
7837 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7838 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7839 QualType InstantiatedParamType, Expr *Arg,
7840 TemplateArgument &Converted,
7841 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7842 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7843 TemplateParameterList *Params,
7844 TemplateArgumentLoc &Arg);
7845
7846 ExprResult
7847 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7848 QualType ParamType,
7849 SourceLocation Loc);
7850 ExprResult
7851 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7852 SourceLocation Loc);
7853
7854 /// Enumeration describing how template parameter lists are compared
7855 /// for equality.
7856 enum TemplateParameterListEqualKind {
7857 /// We are matching the template parameter lists of two templates
7858 /// that might be redeclarations.
7859 ///
7860 /// \code
7861 /// template<typename T> struct X;
7862 /// template<typename T> struct X;
7863 /// \endcode
7864 TPL_TemplateMatch,
7865
7866 /// We are matching the template parameter lists of two template
7867 /// template parameters as part of matching the template parameter lists
7868 /// of two templates that might be redeclarations.
7869 ///
7870 /// \code
7871 /// template<template<int I> class TT> struct X;
7872 /// template<template<int Value> class Other> struct X;
7873 /// \endcode
7874 TPL_TemplateTemplateParmMatch,
7875
7876 /// We are matching the template parameter lists of a template
7877 /// template argument against the template parameter lists of a template
7878 /// template parameter.
7879 ///
7880 /// \code
7881 /// template<template<int Value> class Metafun> struct X;
7882 /// template<int Value> struct integer_c;
7883 /// X<integer_c> xic;
7884 /// \endcode
7885 TPL_TemplateTemplateArgumentMatch
7886 };
7887
7888 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7889 TemplateParameterList *Old,
7890 bool Complain,
7891 TemplateParameterListEqualKind Kind,
7892 SourceLocation TemplateArgLoc
7893 = SourceLocation());
7894
7895 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7896
7897 /// Called when the parser has parsed a C++ typename
7898 /// specifier, e.g., "typename T::type".
7899 ///
7900 /// \param S The scope in which this typename type occurs.
7901 /// \param TypenameLoc the location of the 'typename' keyword
7902 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7903 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7904 /// \param IdLoc the location of the identifier.
7905 TypeResult
7906 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7907 const CXXScopeSpec &SS, const IdentifierInfo &II,
7908 SourceLocation IdLoc);
7909
7910 /// Called when the parser has parsed a C++ typename
7911 /// specifier that ends in a template-id, e.g.,
7912 /// "typename MetaFun::template apply<T1, T2>".
7913 ///
7914 /// \param S The scope in which this typename type occurs.
7915 /// \param TypenameLoc the location of the 'typename' keyword
7916 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7917 /// \param TemplateLoc the location of the 'template' keyword, if any.
7918 /// \param TemplateName The template name.
7919 /// \param TemplateII The identifier used to name the template.
7920 /// \param TemplateIILoc The location of the template name.
7921 /// \param LAngleLoc The location of the opening angle bracket ('<').
7922 /// \param TemplateArgs The template arguments.
7923 /// \param RAngleLoc The location of the closing angle bracket ('>').
7924 TypeResult
7925 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7926 const CXXScopeSpec &SS,
7927 SourceLocation TemplateLoc,
7928 TemplateTy TemplateName,
7929 IdentifierInfo *TemplateII,
7930 SourceLocation TemplateIILoc,
7931 SourceLocation LAngleLoc,
7932 ASTTemplateArgsPtr TemplateArgs,
7933 SourceLocation RAngleLoc);
7934
7935 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7936 SourceLocation KeywordLoc,
7937 NestedNameSpecifierLoc QualifierLoc,
7938 const IdentifierInfo &II,
7939 SourceLocation IILoc,
7940 TypeSourceInfo **TSI,
7941 bool DeducedTSTContext);
7942
7943 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7944 SourceLocation KeywordLoc,
7945 NestedNameSpecifierLoc QualifierLoc,
7946 const IdentifierInfo &II,
7947 SourceLocation IILoc,
7948 bool DeducedTSTContext = true);
7949
7950
7951 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7952 SourceLocation Loc,
7953 DeclarationName Name);
7954 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7955
7956 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7957 bool RebuildTemplateParamsInCurrentInstantiation(
7958 TemplateParameterList *Params);
7959
7960 std::string
7961 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7962 const TemplateArgumentList &Args);
7963
7964 std::string
7965 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7966 const TemplateArgument *Args,
7967 unsigned NumArgs);
7968
7969 //===--------------------------------------------------------------------===//
7970 // C++ Concepts
7971 //===--------------------------------------------------------------------===//
7972 Decl *ActOnConceptDefinition(
7973 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7974 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7975
7976 RequiresExprBodyDecl *
7977 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7978 ArrayRef<ParmVarDecl *> LocalParameters,
7979 Scope *BodyScope);
7980 void ActOnFinishRequiresExpr();
7981 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7982 concepts::Requirement *ActOnTypeRequirement(
7983 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7984 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7985 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7986 SourceLocation NoexceptLoc);
7987 concepts::Requirement *
7988 ActOnCompoundRequirement(
7989 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7990 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7991 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7992 concepts::ExprRequirement *
7993 BuildExprRequirement(
7994 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7995 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7996 concepts::ExprRequirement *
7997 BuildExprRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7999 bool IsSatisfied, SourceLocation NoexceptLoc,
8000 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
8001 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
8002 concepts::TypeRequirement *
8003 BuildTypeRequirement(
8004 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8005 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8006 concepts::NestedRequirement *
8007 BuildNestedRequirement(
8008 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8009 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8010 RequiresExprBodyDecl *Body,
8011 ArrayRef<ParmVarDecl *> LocalParameters,
8012 ArrayRef<concepts::Requirement *> Requirements,
8013 SourceLocation ClosingBraceLoc);
8014
8015 //===--------------------------------------------------------------------===//
8016 // C++ Variadic Templates (C++0x [temp.variadic])
8017 //===--------------------------------------------------------------------===//
8018
8019 /// Determine whether an unexpanded parameter pack might be permitted in this
8020 /// location. Useful for error recovery.
8021 bool isUnexpandedParameterPackPermitted();
8022
8023 /// The context in which an unexpanded parameter pack is
8024 /// being diagnosed.
8025 ///
8026 /// Note that the values of this enumeration line up with the first
8027 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8028 enum UnexpandedParameterPackContext {
8029 /// An arbitrary expression.
8030 UPPC_Expression = 0,
8031
8032 /// The base type of a class type.
8033 UPPC_BaseType,
8034
8035 /// The type of an arbitrary declaration.
8036 UPPC_DeclarationType,
8037
8038 /// The type of a data member.
8039 UPPC_DataMemberType,
8040
8041 /// The size of a bit-field.
8042 UPPC_BitFieldWidth,
8043
8044 /// The expression in a static assertion.
8045 UPPC_StaticAssertExpression,
8046
8047 /// The fixed underlying type of an enumeration.
8048 UPPC_FixedUnderlyingType,
8049
8050 /// The enumerator value.
8051 UPPC_EnumeratorValue,
8052
8053 /// A using declaration.
8054 UPPC_UsingDeclaration,
8055
8056 /// A friend declaration.
8057 UPPC_FriendDeclaration,
8058
8059 /// A declaration qualifier.
8060 UPPC_DeclarationQualifier,
8061
8062 /// An initializer.
8063 UPPC_Initializer,
8064
8065 /// A default argument.
8066 UPPC_DefaultArgument,
8067
8068 /// The type of a non-type template parameter.
8069 UPPC_NonTypeTemplateParameterType,
8070
8071 /// The type of an exception.
8072 UPPC_ExceptionType,
8073
8074 /// Partial specialization.
8075 UPPC_PartialSpecialization,
8076
8077 /// Microsoft __if_exists.
8078 UPPC_IfExists,
8079
8080 /// Microsoft __if_not_exists.
8081 UPPC_IfNotExists,
8082
8083 /// Lambda expression.
8084 UPPC_Lambda,
8085
8086 /// Block expression.
8087 UPPC_Block,
8088
8089 /// A type constraint.
8090 UPPC_TypeConstraint,
8091
8092 // A requirement in a requires-expression.
8093 UPPC_Requirement,
8094
8095 // A requires-clause.
8096 UPPC_RequiresClause,
8097 };
8098
8099 /// Diagnose unexpanded parameter packs.
8100 ///
8101 /// \param Loc The location at which we should emit the diagnostic.
8102 ///
8103 /// \param UPPC The context in which we are diagnosing unexpanded
8104 /// parameter packs.
8105 ///
8106 /// \param Unexpanded the set of unexpanded parameter packs.
8107 ///
8108 /// \returns true if an error occurred, false otherwise.
8109 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8110 UnexpandedParameterPackContext UPPC,
8111 ArrayRef<UnexpandedParameterPack> Unexpanded);
8112
8113 /// If the given type contains an unexpanded parameter pack,
8114 /// diagnose the error.
8115 ///
8116 /// \param Loc The source location where a diagnostc should be emitted.
8117 ///
8118 /// \param T The type that is being checked for unexpanded parameter
8119 /// packs.
8120 ///
8121 /// \returns true if an error occurred, false otherwise.
8122 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8123 UnexpandedParameterPackContext UPPC);
8124
8125 /// If the given expression contains an unexpanded parameter
8126 /// pack, diagnose the error.
8127 ///
8128 /// \param E The expression that is being checked for unexpanded
8129 /// parameter packs.
8130 ///
8131 /// \returns true if an error occurred, false otherwise.
8132 bool DiagnoseUnexpandedParameterPack(Expr *E,
8133 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8134
8135 /// If the given requirees-expression contains an unexpanded reference to one
8136 /// of its own parameter packs, diagnose the error.
8137 ///
8138 /// \param RE The requiress-expression that is being checked for unexpanded
8139 /// parameter packs.
8140 ///
8141 /// \returns true if an error occurred, false otherwise.
8142 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8143
8144 /// If the given nested-name-specifier contains an unexpanded
8145 /// parameter pack, diagnose the error.
8146 ///
8147 /// \param SS The nested-name-specifier that is being checked for
8148 /// unexpanded parameter packs.
8149 ///
8150 /// \returns true if an error occurred, false otherwise.
8151 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8152 UnexpandedParameterPackContext UPPC);
8153
8154 /// If the given name contains an unexpanded parameter pack,
8155 /// diagnose the error.
8156 ///
8157 /// \param NameInfo The name (with source location information) that
8158 /// is being checked for unexpanded parameter packs.
8159 ///
8160 /// \returns true if an error occurred, false otherwise.
8161 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8162 UnexpandedParameterPackContext UPPC);
8163
8164 /// If the given template name contains an unexpanded parameter pack,
8165 /// diagnose the error.
8166 ///
8167 /// \param Loc The location of the template name.
8168 ///
8169 /// \param Template The template name that is being checked for unexpanded
8170 /// parameter packs.
8171 ///
8172 /// \returns true if an error occurred, false otherwise.
8173 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8174 TemplateName Template,
8175 UnexpandedParameterPackContext UPPC);
8176
8177 /// If the given template argument contains an unexpanded parameter
8178 /// pack, diagnose the error.
8179 ///
8180 /// \param Arg The template argument that is being checked for unexpanded
8181 /// parameter packs.
8182 ///
8183 /// \returns true if an error occurred, false otherwise.
8184 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8185 UnexpandedParameterPackContext UPPC);
8186
8187 /// Collect the set of unexpanded parameter packs within the given
8188 /// template argument.
8189 ///
8190 /// \param Arg The template argument that will be traversed to find
8191 /// unexpanded parameter packs.
8192 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8193 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8194
8195 /// Collect the set of unexpanded parameter packs within the given
8196 /// template argument.
8197 ///
8198 /// \param Arg The template argument that will be traversed to find
8199 /// unexpanded parameter packs.
8200 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8201 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8202
8203 /// Collect the set of unexpanded parameter packs within the given
8204 /// type.
8205 ///
8206 /// \param T The type that will be traversed to find
8207 /// unexpanded parameter packs.
8208 void collectUnexpandedParameterPacks(QualType T,
8209 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8210
8211 /// Collect the set of unexpanded parameter packs within the given
8212 /// type.
8213 ///
8214 /// \param TL The type that will be traversed to find
8215 /// unexpanded parameter packs.
8216 void collectUnexpandedParameterPacks(TypeLoc TL,
8217 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8218
8219 /// Collect the set of unexpanded parameter packs within the given
8220 /// nested-name-specifier.
8221 ///
8222 /// \param NNS The nested-name-specifier that will be traversed to find
8223 /// unexpanded parameter packs.
8224 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8225 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8226
8227 /// Collect the set of unexpanded parameter packs within the given
8228 /// name.
8229 ///
8230 /// \param NameInfo The name that will be traversed to find
8231 /// unexpanded parameter packs.
8232 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8233 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8234
8235 /// Invoked when parsing a template argument followed by an
8236 /// ellipsis, which creates a pack expansion.
8237 ///
8238 /// \param Arg The template argument preceding the ellipsis, which
8239 /// may already be invalid.
8240 ///
8241 /// \param EllipsisLoc The location of the ellipsis.
8242 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8243 SourceLocation EllipsisLoc);
8244
8245 /// Invoked when parsing a type followed by an ellipsis, which
8246 /// creates a pack expansion.
8247 ///
8248 /// \param Type The type preceding the ellipsis, which will become
8249 /// the pattern of the pack expansion.
8250 ///
8251 /// \param EllipsisLoc The location of the ellipsis.
8252 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8257 SourceLocation EllipsisLoc,
8258 Optional<unsigned> NumExpansions);
8259
8260 /// Construct a pack expansion type from the pattern of the pack
8261 /// expansion.
8262 QualType CheckPackExpansion(QualType Pattern,
8263 SourceRange PatternRange,
8264 SourceLocation EllipsisLoc,
8265 Optional<unsigned> NumExpansions);
8266
8267 /// Invoked when parsing an expression followed by an ellipsis, which
8268 /// creates a pack expansion.
8269 ///
8270 /// \param Pattern The expression preceding the ellipsis, which will become
8271 /// the pattern of the pack expansion.
8272 ///
8273 /// \param EllipsisLoc The location of the ellipsis.
8274 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8275
8276 /// Invoked when parsing an expression followed by an ellipsis, which
8277 /// creates a pack expansion.
8278 ///
8279 /// \param Pattern The expression preceding the ellipsis, which will become
8280 /// the pattern of the pack expansion.
8281 ///
8282 /// \param EllipsisLoc The location of the ellipsis.
8283 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8284 Optional<unsigned> NumExpansions);
8285
8286 /// Determine whether we could expand a pack expansion with the
8287 /// given set of parameter packs into separate arguments by repeatedly
8288 /// transforming the pattern.
8289 ///
8290 /// \param EllipsisLoc The location of the ellipsis that identifies the
8291 /// pack expansion.
8292 ///
8293 /// \param PatternRange The source range that covers the entire pattern of
8294 /// the pack expansion.
8295 ///
8296 /// \param Unexpanded The set of unexpanded parameter packs within the
8297 /// pattern.
8298 ///
8299 /// \param ShouldExpand Will be set to \c true if the transformer should
8300 /// expand the corresponding pack expansions into separate arguments. When
8301 /// set, \c NumExpansions must also be set.
8302 ///
8303 /// \param RetainExpansion Whether the caller should add an unexpanded
8304 /// pack expansion after all of the expanded arguments. This is used
8305 /// when extending explicitly-specified template argument packs per
8306 /// C++0x [temp.arg.explicit]p9.
8307 ///
8308 /// \param NumExpansions The number of separate arguments that will be in
8309 /// the expanded form of the corresponding pack expansion. This is both an
8310 /// input and an output parameter, which can be set by the caller if the
8311 /// number of expansions is known a priori (e.g., due to a prior substitution)
8312 /// and will be set by the callee when the number of expansions is known.
8313 /// The callee must set this value when \c ShouldExpand is \c true; it may
8314 /// set this value in other cases.
8315 ///
8316 /// \returns true if an error occurred (e.g., because the parameter packs
8317 /// are to be instantiated with arguments of different lengths), false
8318 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8319 /// must be set.
8320 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8321 SourceRange PatternRange,
8322 ArrayRef<UnexpandedParameterPack> Unexpanded,
8323 const MultiLevelTemplateArgumentList &TemplateArgs,
8324 bool &ShouldExpand,
8325 bool &RetainExpansion,
8326 Optional<unsigned> &NumExpansions);
8327
8328 /// Determine the number of arguments in the given pack expansion
8329 /// type.
8330 ///
8331 /// This routine assumes that the number of arguments in the expansion is
8332 /// consistent across all of the unexpanded parameter packs in its pattern.
8333 ///
8334 /// Returns an empty Optional if the type can't be expanded.
8335 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8336 const MultiLevelTemplateArgumentList &TemplateArgs);
8337
8338 /// Determine whether the given declarator contains any unexpanded
8339 /// parameter packs.
8340 ///
8341 /// This routine is used by the parser to disambiguate function declarators
8342 /// with an ellipsis prior to the ')', e.g.,
8343 ///
8344 /// \code
8345 /// void f(T...);
8346 /// \endcode
8347 ///
8348 /// To determine whether we have an (unnamed) function parameter pack or
8349 /// a variadic function.
8350 ///
8351 /// \returns true if the declarator contains any unexpanded parameter packs,
8352 /// false otherwise.
8353 bool containsUnexpandedParameterPacks(Declarator &D);
8354
8355 /// Returns the pattern of the pack expansion for a template argument.
8356 ///
8357 /// \param OrigLoc The template argument to expand.
8358 ///
8359 /// \param Ellipsis Will be set to the location of the ellipsis.
8360 ///
8361 /// \param NumExpansions Will be set to the number of expansions that will
8362 /// be generated from this pack expansion, if known a priori.
8363 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8364 TemplateArgumentLoc OrigLoc,
8365 SourceLocation &Ellipsis,
8366 Optional<unsigned> &NumExpansions) const;
8367
8368 /// Given a template argument that contains an unexpanded parameter pack, but
8369 /// which has already been substituted, attempt to determine the number of
8370 /// elements that will be produced once this argument is fully-expanded.
8371 ///
8372 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8373 /// avoid actually expanding the pack where possible.
8374 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8375
8376 //===--------------------------------------------------------------------===//
8377 // C++ Template Argument Deduction (C++ [temp.deduct])
8378 //===--------------------------------------------------------------------===//
8379
8380 /// Adjust the type \p ArgFunctionType to match the calling convention,
8381 /// noreturn, and optionally the exception specification of \p FunctionType.
8382 /// Deduction often wants to ignore these properties when matching function
8383 /// types.
8384 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8385 bool AdjustExceptionSpec = false);
8386
8387 /// Describes the result of template argument deduction.
8388 ///
8389 /// The TemplateDeductionResult enumeration describes the result of
8390 /// template argument deduction, as returned from
8391 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8392 /// structure provides additional information about the results of
8393 /// template argument deduction, e.g., the deduced template argument
8394 /// list (if successful) or the specific template parameters or
8395 /// deduced arguments that were involved in the failure.
8396 enum TemplateDeductionResult {
8397 /// Template argument deduction was successful.
8398 TDK_Success = 0,
8399 /// The declaration was invalid; do nothing.
8400 TDK_Invalid,
8401 /// Template argument deduction exceeded the maximum template
8402 /// instantiation depth (which has already been diagnosed).
8403 TDK_InstantiationDepth,
8404 /// Template argument deduction did not deduce a value
8405 /// for every template parameter.
8406 TDK_Incomplete,
8407 /// Template argument deduction did not deduce a value for every
8408 /// expansion of an expanded template parameter pack.
8409 TDK_IncompletePack,
8410 /// Template argument deduction produced inconsistent
8411 /// deduced values for the given template parameter.
8412 TDK_Inconsistent,
8413 /// Template argument deduction failed due to inconsistent
8414 /// cv-qualifiers on a template parameter type that would
8415 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8416 /// but were given a non-const "X".
8417 TDK_Underqualified,
8418 /// Substitution of the deduced template argument values
8419 /// resulted in an error.
8420 TDK_SubstitutionFailure,
8421 /// After substituting deduced template arguments, a dependent
8422 /// parameter type did not match the corresponding argument.
8423 TDK_DeducedMismatch,
8424 /// After substituting deduced template arguments, an element of
8425 /// a dependent parameter type did not match the corresponding element
8426 /// of the corresponding argument (when deducing from an initializer list).
8427 TDK_DeducedMismatchNested,
8428 /// A non-depnedent component of the parameter did not match the
8429 /// corresponding component of the argument.
8430 TDK_NonDeducedMismatch,
8431 /// When performing template argument deduction for a function
8432 /// template, there were too many call arguments.
8433 TDK_TooManyArguments,
8434 /// When performing template argument deduction for a function
8435 /// template, there were too few call arguments.
8436 TDK_TooFewArguments,
8437 /// The explicitly-specified template arguments were not valid
8438 /// template arguments for the given template.
8439 TDK_InvalidExplicitArguments,
8440 /// Checking non-dependent argument conversions failed.
8441 TDK_NonDependentConversionFailure,
8442 /// The deduced arguments did not satisfy the constraints associated
8443 /// with the template.
8444 TDK_ConstraintsNotSatisfied,
8445 /// Deduction failed; that's all we know.
8446 TDK_MiscellaneousDeductionFailure,
8447 /// CUDA Target attributes do not match.
8448 TDK_CUDATargetMismatch
8449 };
8450
8451 TemplateDeductionResult
8452 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8453 const TemplateArgumentList &TemplateArgs,
8454 sema::TemplateDeductionInfo &Info);
8455
8456 TemplateDeductionResult
8457 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8458 const TemplateArgumentList &TemplateArgs,
8459 sema::TemplateDeductionInfo &Info);
8460
8461 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8462 FunctionTemplateDecl *FunctionTemplate,
8463 TemplateArgumentListInfo &ExplicitTemplateArgs,
8464 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8465 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8466 sema::TemplateDeductionInfo &Info);
8467
8468 /// brief A function argument from which we performed template argument
8469 // deduction for a call.
8470 struct OriginalCallArg {
8471 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8472 unsigned ArgIdx, QualType OriginalArgType)
8473 : OriginalParamType(OriginalParamType),
8474 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8475 OriginalArgType(OriginalArgType) {}
8476
8477 QualType OriginalParamType;
8478 bool DecomposedParam;
8479 unsigned ArgIdx;
8480 QualType OriginalArgType;
8481 };
8482
8483 TemplateDeductionResult FinishTemplateArgumentDeduction(
8484 FunctionTemplateDecl *FunctionTemplate,
8485 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8486 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8487 sema::TemplateDeductionInfo &Info,
8488 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8489 bool PartialOverloading = false,
8490 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8491
8492 TemplateDeductionResult DeduceTemplateArguments(
8493 FunctionTemplateDecl *FunctionTemplate,
8494 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8495 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8496 bool PartialOverloading,
8497 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8498
8499 TemplateDeductionResult
8500 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8501 TemplateArgumentListInfo *ExplicitTemplateArgs,
8502 QualType ArgFunctionType,
8503 FunctionDecl *&Specialization,
8504 sema::TemplateDeductionInfo &Info,
8505 bool IsAddressOfFunction = false);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 QualType ToType,
8510 CXXConversionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info);
8512
8513 TemplateDeductionResult
8514 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8515 TemplateArgumentListInfo *ExplicitTemplateArgs,
8516 FunctionDecl *&Specialization,
8517 sema::TemplateDeductionInfo &Info,
8518 bool IsAddressOfFunction = false);
8519
8520 /// Substitute Replacement for \p auto in \p TypeWithAuto
8521 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8522 /// Substitute Replacement for auto in TypeWithAuto
8523 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8524 QualType Replacement);
8525 /// Completely replace the \c auto in \p TypeWithAuto by
8526 /// \p Replacement. This does not retain any \c auto type sugar.
8527 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8528 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8529 QualType Replacement);
8530
8531 /// Result type of DeduceAutoType.
8532 enum DeduceAutoResult {
8533 DAR_Succeeded,
8534 DAR_Failed,
8535 DAR_FailedAlreadyDiagnosed
8536 };
8537
8538 DeduceAutoResult
8539 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8540 Optional<unsigned> DependentDeductionDepth = None,
8541 bool IgnoreConstraints = false);
8542 DeduceAutoResult
8543 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8544 Optional<unsigned> DependentDeductionDepth = None,
8545 bool IgnoreConstraints = false);
8546 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8547 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8548 bool Diagnose = true);
8549
8550 /// Declare implicit deduction guides for a class template if we've
8551 /// not already done so.
8552 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8553 SourceLocation Loc);
8554
8555 QualType DeduceTemplateSpecializationFromInitializer(
8556 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8557 const InitializationKind &Kind, MultiExprArg Init);
8558
8559 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8560 QualType Type, TypeSourceInfo *TSI,
8561 SourceRange Range, bool DirectInit,
8562 Expr *Init);
8563
8564 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8565
8566 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8567 SourceLocation ReturnLoc,
8568 Expr *&RetExpr, AutoType *AT);
8569
8570 FunctionTemplateDecl *getMoreSpecializedTemplate(
8571 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8572 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8573 unsigned NumCallArguments2, bool Reversed = false);
8574 UnresolvedSetIterator
8575 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8576 TemplateSpecCandidateSet &FailedCandidates,
8577 SourceLocation Loc,
8578 const PartialDiagnostic &NoneDiag,
8579 const PartialDiagnostic &AmbigDiag,
8580 const PartialDiagnostic &CandidateDiag,
8581 bool Complain = true, QualType TargetType = QualType());
8582
8583 ClassTemplatePartialSpecializationDecl *
8584 getMoreSpecializedPartialSpecialization(
8585 ClassTemplatePartialSpecializationDecl *PS1,
8586 ClassTemplatePartialSpecializationDecl *PS2,
8587 SourceLocation Loc);
8588
8589 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8590 sema::TemplateDeductionInfo &Info);
8591
8592 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8593 VarTemplatePartialSpecializationDecl *PS1,
8594 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8595
8596 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8597 sema::TemplateDeductionInfo &Info);
8598
8599 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8600 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8601
8602 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8603 unsigned Depth, llvm::SmallBitVector &Used);
8604
8605 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8606 bool OnlyDeduced,
8607 unsigned Depth,
8608 llvm::SmallBitVector &Used);
8609 void MarkDeducedTemplateParameters(
8610 const FunctionTemplateDecl *FunctionTemplate,
8611 llvm::SmallBitVector &Deduced) {
8612 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8613 }
8614 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8615 const FunctionTemplateDecl *FunctionTemplate,
8616 llvm::SmallBitVector &Deduced);
8617
8618 //===--------------------------------------------------------------------===//
8619 // C++ Template Instantiation
8620 //
8621
8622 MultiLevelTemplateArgumentList
8623 getTemplateInstantiationArgs(NamedDecl *D,
8624 const TemplateArgumentList *Innermost = nullptr,
8625 bool RelativeToPrimary = false,
8626 const FunctionDecl *Pattern = nullptr);
8627
8628 /// A context in which code is being synthesized (where a source location
8629 /// alone is not sufficient to identify the context). This covers template
8630 /// instantiation and various forms of implicitly-generated functions.
8631 struct CodeSynthesisContext {
8632 /// The kind of template instantiation we are performing
8633 enum SynthesisKind {
8634 /// We are instantiating a template declaration. The entity is
8635 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8636 TemplateInstantiation,
8637
8638 /// We are instantiating a default argument for a template
8639 /// parameter. The Entity is the template parameter whose argument is
8640 /// being instantiated, the Template is the template, and the
8641 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8642 /// specified.
8643 DefaultTemplateArgumentInstantiation,
8644
8645 /// We are instantiating a default argument for a function.
8646 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8647 /// provides the template arguments as specified.
8648 DefaultFunctionArgumentInstantiation,
8649
8650 /// We are substituting explicit template arguments provided for
8651 /// a function template. The entity is a FunctionTemplateDecl.
8652 ExplicitTemplateArgumentSubstitution,
8653
8654 /// We are substituting template argument determined as part of
8655 /// template argument deduction for either a class template
8656 /// partial specialization or a function template. The
8657 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8658 /// a TemplateDecl.
8659 DeducedTemplateArgumentSubstitution,
8660
8661 /// We are substituting prior template arguments into a new
8662 /// template parameter. The template parameter itself is either a
8663 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8664 PriorTemplateArgumentSubstitution,
8665
8666 /// We are checking the validity of a default template argument that
8667 /// has been used when naming a template-id.
8668 DefaultTemplateArgumentChecking,
8669
8670 /// We are computing the exception specification for a defaulted special
8671 /// member function.
8672 ExceptionSpecEvaluation,
8673
8674 /// We are instantiating the exception specification for a function
8675 /// template which was deferred until it was needed.
8676 ExceptionSpecInstantiation,
8677
8678 /// We are instantiating a requirement of a requires expression.
8679 RequirementInstantiation,
8680
8681 /// We are checking the satisfaction of a nested requirement of a requires
8682 /// expression.
8683 NestedRequirementConstraintsCheck,
8684
8685 /// We are declaring an implicit special member function.
8686 DeclaringSpecialMember,
8687
8688 /// We are declaring an implicit 'operator==' for a defaulted
8689 /// 'operator<=>'.
8690 DeclaringImplicitEqualityComparison,
8691
8692 /// We are defining a synthesized function (such as a defaulted special
8693 /// member).
8694 DefiningSynthesizedFunction,
8695
8696 // We are checking the constraints associated with a constrained entity or
8697 // the constraint expression of a concept. This includes the checks that
8698 // atomic constraints have the type 'bool' and that they can be constant
8699 // evaluated.
8700 ConstraintsCheck,
8701
8702 // We are substituting template arguments into a constraint expression.
8703 ConstraintSubstitution,
8704
8705 // We are normalizing a constraint expression.
8706 ConstraintNormalization,
8707
8708 // We are substituting into the parameter mapping of an atomic constraint
8709 // during normalization.
8710 ParameterMappingSubstitution,
8711
8712 /// We are rewriting a comparison operator in terms of an operator<=>.
8713 RewritingOperatorAsSpaceship,
8714
8715 /// We are initializing a structured binding.
8716 InitializingStructuredBinding,
8717
8718 /// We are marking a class as __dllexport.
8719 MarkingClassDllexported,
8720
8721 /// Added for Template instantiation observation.
8722 /// Memoization means we are _not_ instantiating a template because
8723 /// it is already instantiated (but we entered a context where we
8724 /// would have had to if it was not already instantiated).
8725 Memoization
8726 } Kind;
8727
8728 /// Was the enclosing context a non-instantiation SFINAE context?
8729 bool SavedInNonInstantiationSFINAEContext;
8730
8731 /// The point of instantiation or synthesis within the source code.
8732 SourceLocation PointOfInstantiation;
8733
8734 /// The entity that is being synthesized.
8735 Decl *Entity;
8736
8737 /// The template (or partial specialization) in which we are
8738 /// performing the instantiation, for substitutions of prior template
8739 /// arguments.
8740 NamedDecl *Template;
8741
8742 /// The list of template arguments we are substituting, if they
8743 /// are not part of the entity.
8744 const TemplateArgument *TemplateArgs;
8745
8746 // FIXME: Wrap this union around more members, or perhaps store the
8747 // kind-specific members in the RAII object owning the context.
8748 union {
8749 /// The number of template arguments in TemplateArgs.
8750 unsigned NumTemplateArgs;
8751
8752 /// The special member being declared or defined.
8753 CXXSpecialMember SpecialMember;
8754 };
8755
8756 ArrayRef<TemplateArgument> template_arguments() const {
8757 assert(Kind != DeclaringSpecialMember)(static_cast <bool> (Kind != DeclaringSpecialMember) ? void
(0) : __assert_fail ("Kind != DeclaringSpecialMember", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 8757, __extension__ __PRETTY_FUNCTION__))
;
8758 return {TemplateArgs, NumTemplateArgs};
8759 }
8760
8761 /// The template deduction info object associated with the
8762 /// substitution or checking of explicit or deduced template arguments.
8763 sema::TemplateDeductionInfo *DeductionInfo;
8764
8765 /// The source range that covers the construct that cause
8766 /// the instantiation, e.g., the template-id that causes a class
8767 /// template instantiation.
8768 SourceRange InstantiationRange;
8769
8770 CodeSynthesisContext()
8771 : Kind(TemplateInstantiation),
8772 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8773 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8774 DeductionInfo(nullptr) {}
8775
8776 /// Determines whether this template is an actual instantiation
8777 /// that should be counted toward the maximum instantiation depth.
8778 bool isInstantiationRecord() const;
8779 };
8780
8781 /// List of active code synthesis contexts.
8782 ///
8783 /// This vector is treated as a stack. As synthesis of one entity requires
8784 /// synthesis of another, additional contexts are pushed onto the stack.
8785 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8786
8787 /// Specializations whose definitions are currently being instantiated.
8788 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8789
8790 /// Non-dependent types used in templates that have already been instantiated
8791 /// by some template instantiation.
8792 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8793
8794 /// Extra modules inspected when performing a lookup during a template
8795 /// instantiation. Computed lazily.
8796 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8797
8798 /// Cache of additional modules that should be used for name lookup
8799 /// within the current template instantiation. Computed lazily; use
8800 /// getLookupModules() to get a complete set.
8801 llvm::DenseSet<Module*> LookupModulesCache;
8802
8803 /// Get the set of additional modules that should be checked during
8804 /// name lookup. A module and its imports become visible when instanting a
8805 /// template defined within it.
8806 llvm::DenseSet<Module*> &getLookupModules();
8807
8808 /// Map from the most recent declaration of a namespace to the most
8809 /// recent visible declaration of that namespace.
8810 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8811
8812 /// Whether we are in a SFINAE context that is not associated with
8813 /// template instantiation.
8814 ///
8815 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8816 /// of a template instantiation or template argument deduction.
8817 bool InNonInstantiationSFINAEContext;
8818
8819 /// The number of \p CodeSynthesisContexts that are not template
8820 /// instantiations and, therefore, should not be counted as part of the
8821 /// instantiation depth.
8822 ///
8823 /// When the instantiation depth reaches the user-configurable limit
8824 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8825 // FIXME: Should we have a similar limit for other forms of synthesis?
8826 unsigned NonInstantiationEntries;
8827
8828 /// The depth of the context stack at the point when the most recent
8829 /// error or warning was produced.
8830 ///
8831 /// This value is used to suppress printing of redundant context stacks
8832 /// when there are multiple errors or warnings in the same instantiation.
8833 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8834 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8835
8836 /// The template instantiation callbacks to trace or track
8837 /// instantiations (objects can be chained).
8838 ///
8839 /// This callbacks is used to print, trace or track template
8840 /// instantiations as they are being constructed.
8841 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8842 TemplateInstCallbacks;
8843
8844 /// The current index into pack expansion arguments that will be
8845 /// used for substitution of parameter packs.
8846 ///
8847 /// The pack expansion index will be -1 to indicate that parameter packs
8848 /// should be instantiated as themselves. Otherwise, the index specifies
8849 /// which argument within the parameter pack will be used for substitution.
8850 int ArgumentPackSubstitutionIndex;
8851
8852 /// RAII object used to change the argument pack substitution index
8853 /// within a \c Sema object.
8854 ///
8855 /// See \c ArgumentPackSubstitutionIndex for more information.
8856 class ArgumentPackSubstitutionIndexRAII {
8857 Sema &Self;
8858 int OldSubstitutionIndex;
8859
8860 public:
8861 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8862 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8863 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8864 }
8865
8866 ~ArgumentPackSubstitutionIndexRAII() {
8867 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8868 }
8869 };
8870
8871 friend class ArgumentPackSubstitutionRAII;
8872
8873 /// For each declaration that involved template argument deduction, the
8874 /// set of diagnostics that were suppressed during that template argument
8875 /// deduction.
8876 ///
8877 /// FIXME: Serialize this structure to the AST file.
8878 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8879 SuppressedDiagnosticsMap;
8880 SuppressedDiagnosticsMap SuppressedDiagnostics;
8881
8882 /// A stack object to be created when performing template
8883 /// instantiation.
8884 ///
8885 /// Construction of an object of type \c InstantiatingTemplate
8886 /// pushes the current instantiation onto the stack of active
8887 /// instantiations. If the size of this stack exceeds the maximum
8888 /// number of recursive template instantiations, construction
8889 /// produces an error and evaluates true.
8890 ///
8891 /// Destruction of this object will pop the named instantiation off
8892 /// the stack.
8893 struct InstantiatingTemplate {
8894 /// Note that we are instantiating a class template,
8895 /// function template, variable template, alias template,
8896 /// or a member thereof.
8897 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8898 Decl *Entity,
8899 SourceRange InstantiationRange = SourceRange());
8900
8901 struct ExceptionSpecification {};
8902 /// Note that we are instantiating an exception specification
8903 /// of a function template.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 FunctionDecl *Entity, ExceptionSpecification,
8906 SourceRange InstantiationRange = SourceRange());
8907
8908 /// Note that we are instantiating a default argument in a
8909 /// template-id.
8910 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8911 TemplateParameter Param, TemplateDecl *Template,
8912 ArrayRef<TemplateArgument> TemplateArgs,
8913 SourceRange InstantiationRange = SourceRange());
8914
8915 /// Note that we are substituting either explicitly-specified or
8916 /// deduced template arguments during function template argument deduction.
8917 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8918 FunctionTemplateDecl *FunctionTemplate,
8919 ArrayRef<TemplateArgument> TemplateArgs,
8920 CodeSynthesisContext::SynthesisKind Kind,
8921 sema::TemplateDeductionInfo &DeductionInfo,
8922 SourceRange InstantiationRange = SourceRange());
8923
8924 /// Note that we are instantiating as part of template
8925 /// argument deduction for a class template declaration.
8926 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8927 TemplateDecl *Template,
8928 ArrayRef<TemplateArgument> TemplateArgs,
8929 sema::TemplateDeductionInfo &DeductionInfo,
8930 SourceRange InstantiationRange = SourceRange());
8931
8932 /// Note that we are instantiating as part of template
8933 /// argument deduction for a class template partial
8934 /// specialization.
8935 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8936 ClassTemplatePartialSpecializationDecl *PartialSpec,
8937 ArrayRef<TemplateArgument> TemplateArgs,
8938 sema::TemplateDeductionInfo &DeductionInfo,
8939 SourceRange InstantiationRange = SourceRange());
8940
8941 /// Note that we are instantiating as part of template
8942 /// argument deduction for a variable template partial
8943 /// specialization.
8944 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8945 VarTemplatePartialSpecializationDecl *PartialSpec,
8946 ArrayRef<TemplateArgument> TemplateArgs,
8947 sema::TemplateDeductionInfo &DeductionInfo,
8948 SourceRange InstantiationRange = SourceRange());
8949
8950 /// Note that we are instantiating a default argument for a function
8951 /// parameter.
8952 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8953 ParmVarDecl *Param,
8954 ArrayRef<TemplateArgument> TemplateArgs,
8955 SourceRange InstantiationRange = SourceRange());
8956
8957 /// Note that we are substituting prior template arguments into a
8958 /// non-type parameter.
8959 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8960 NamedDecl *Template,
8961 NonTypeTemplateParmDecl *Param,
8962 ArrayRef<TemplateArgument> TemplateArgs,
8963 SourceRange InstantiationRange);
8964
8965 /// Note that we are substituting prior template arguments into a
8966 /// template template parameter.
8967 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8968 NamedDecl *Template,
8969 TemplateTemplateParmDecl *Param,
8970 ArrayRef<TemplateArgument> TemplateArgs,
8971 SourceRange InstantiationRange);
8972
8973 /// Note that we are checking the default template argument
8974 /// against the template parameter for a given template-id.
8975 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8976 TemplateDecl *Template,
8977 NamedDecl *Param,
8978 ArrayRef<TemplateArgument> TemplateArgs,
8979 SourceRange InstantiationRange);
8980
8981 struct ConstraintsCheck {};
8982 /// \brief Note that we are checking the constraints associated with some
8983 /// constrained entity (a concept declaration or a template with associated
8984 /// constraints).
8985 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8986 ConstraintsCheck, NamedDecl *Template,
8987 ArrayRef<TemplateArgument> TemplateArgs,
8988 SourceRange InstantiationRange);
8989
8990 struct ConstraintSubstitution {};
8991 /// \brief Note that we are checking a constraint expression associated
8992 /// with a template declaration or as part of the satisfaction check of a
8993 /// concept.
8994 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8995 ConstraintSubstitution, NamedDecl *Template,
8996 sema::TemplateDeductionInfo &DeductionInfo,
8997 SourceRange InstantiationRange);
8998
8999 struct ConstraintNormalization {};
9000 /// \brief Note that we are normalizing a constraint expression.
9001 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9002 ConstraintNormalization, NamedDecl *Template,
9003 SourceRange InstantiationRange);
9004
9005 struct ParameterMappingSubstitution {};
9006 /// \brief Note that we are subtituting into the parameter mapping of an
9007 /// atomic constraint during constraint normalization.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 ParameterMappingSubstitution, NamedDecl *Template,
9010 SourceRange InstantiationRange);
9011
9012 /// \brief Note that we are substituting template arguments into a part of
9013 /// a requirement of a requires expression.
9014 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9015 concepts::Requirement *Req,
9016 sema::TemplateDeductionInfo &DeductionInfo,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// \brief Note that we are checking the satisfaction of the constraint
9020 /// expression inside of a nested requirement.
9021 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9022 concepts::NestedRequirement *Req, ConstraintsCheck,
9023 SourceRange InstantiationRange = SourceRange());
9024
9025 /// Note that we have finished instantiating this template.
9026 void Clear();
9027
9028 ~InstantiatingTemplate() { Clear(); }
9029
9030 /// Determines whether we have exceeded the maximum
9031 /// recursive template instantiations.
9032 bool isInvalid() const { return Invalid; }
9033
9034 /// Determine whether we are already instantiating this
9035 /// specialization in some surrounding active instantiation.
9036 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9037
9038 private:
9039 Sema &SemaRef;
9040 bool Invalid;
9041 bool AlreadyInstantiating;
9042 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9043 SourceRange InstantiationRange);
9044
9045 InstantiatingTemplate(
9046 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9047 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9048 Decl *Entity, NamedDecl *Template = nullptr,
9049 ArrayRef<TemplateArgument> TemplateArgs = None,
9050 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9051
9052 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9053
9054 InstantiatingTemplate&
9055 operator=(const InstantiatingTemplate&) = delete;
9056 };
9057
9058 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9059 void popCodeSynthesisContext();
9060
9061 /// Determine whether we are currently performing template instantiation.
9062 bool inTemplateInstantiation() const {
9063 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9064 }
9065
9066 void PrintContextStack() {
9067 if (!CodeSynthesisContexts.empty() &&
9068 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9069 PrintInstantiationStack();
9070 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9071 }
9072 if (PragmaAttributeCurrentTargetDecl)
9073 PrintPragmaAttributeInstantiationPoint();
9074 }
9075 void PrintInstantiationStack();
9076
9077 void PrintPragmaAttributeInstantiationPoint();
9078
9079 /// Determines whether we are currently in a context where
9080 /// template argument substitution failures are not considered
9081 /// errors.
9082 ///
9083 /// \returns An empty \c Optional if we're not in a SFINAE context.
9084 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9085 /// template-deduction context object, which can be used to capture
9086 /// diagnostics that will be suppressed.
9087 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9088
9089 /// Determines whether we are currently in a context that
9090 /// is not evaluated as per C++ [expr] p5.
9091 bool isUnevaluatedContext() const {
9092 assert(!ExprEvalContexts.empty() &&(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
6
'?' condition is true
9093 "Must be in an expression evaluation context")(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
;
9094 return ExprEvalContexts.back().isUnevaluated();
7
Calling 'ExpressionEvaluationContextRecord::isUnevaluated'
12
Returning from 'ExpressionEvaluationContextRecord::isUnevaluated'
13
Returning zero, which participates in a condition later
9095 }
9096
9097 /// RAII class used to determine whether SFINAE has
9098 /// trapped any errors that occur during template argument
9099 /// deduction.
9100 class SFINAETrap {
9101 Sema &SemaRef;
9102 unsigned PrevSFINAEErrors;
9103 bool PrevInNonInstantiationSFINAEContext;
9104 bool PrevAccessCheckingSFINAE;
9105 bool PrevLastDiagnosticIgnored;
9106
9107 public:
9108 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9109 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9110 PrevInNonInstantiationSFINAEContext(
9111 SemaRef.InNonInstantiationSFINAEContext),
9112 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9113 PrevLastDiagnosticIgnored(
9114 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9115 {
9116 if (!SemaRef.isSFINAEContext())
9117 SemaRef.InNonInstantiationSFINAEContext = true;
9118 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9119 }
9120
9121 ~SFINAETrap() {
9122 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9123 SemaRef.InNonInstantiationSFINAEContext
9124 = PrevInNonInstantiationSFINAEContext;
9125 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9126 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9127 PrevLastDiagnosticIgnored);
9128 }
9129
9130 /// Determine whether any SFINAE errors have been trapped.
9131 bool hasErrorOccurred() const {
9132 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9133 }
9134 };
9135
9136 /// RAII class used to indicate that we are performing provisional
9137 /// semantic analysis to determine the validity of a construct, so
9138 /// typo-correction and diagnostics in the immediate context (not within
9139 /// implicitly-instantiated templates) should be suppressed.
9140 class TentativeAnalysisScope {
9141 Sema &SemaRef;
9142 // FIXME: Using a SFINAETrap for this is a hack.
9143 SFINAETrap Trap;
9144 bool PrevDisableTypoCorrection;
9145 public:
9146 explicit TentativeAnalysisScope(Sema &SemaRef)
9147 : SemaRef(SemaRef), Trap(SemaRef, true),
9148 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9149 SemaRef.DisableTypoCorrection = true;
9150 }
9151 ~TentativeAnalysisScope() {
9152 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9153 }
9154 };
9155
9156 /// The current instantiation scope used to store local
9157 /// variables.
9158 LocalInstantiationScope *CurrentInstantiationScope;
9159
9160 /// Tracks whether we are in a context where typo correction is
9161 /// disabled.
9162 bool DisableTypoCorrection;
9163
9164 /// The number of typos corrected by CorrectTypo.
9165 unsigned TyposCorrected;
9166
9167 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9168 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9169
9170 /// A cache containing identifiers for which typo correction failed and
9171 /// their locations, so that repeated attempts to correct an identifier in a
9172 /// given location are ignored if typo correction already failed for it.
9173 IdentifierSourceLocations TypoCorrectionFailures;
9174
9175 /// Worker object for performing CFG-based warnings.
9176 sema::AnalysisBasedWarnings AnalysisWarnings;
9177 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9178
9179 /// An entity for which implicit template instantiation is required.
9180 ///
9181 /// The source location associated with the declaration is the first place in
9182 /// the source code where the declaration was "used". It is not necessarily
9183 /// the point of instantiation (which will be either before or after the
9184 /// namespace-scope declaration that triggered this implicit instantiation),
9185 /// However, it is the location that diagnostics should generally refer to,
9186 /// because users will need to know what code triggered the instantiation.
9187 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9188
9189 /// The queue of implicit template instantiations that are required
9190 /// but have not yet been performed.
9191 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9192
9193 /// Queue of implicit template instantiations that cannot be performed
9194 /// eagerly.
9195 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9196
9197 class GlobalEagerInstantiationScope {
9198 public:
9199 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9200 : S(S), Enabled(Enabled) {
9201 if (!Enabled) return;
9202
9203 SavedPendingInstantiations.swap(S.PendingInstantiations);
9204 SavedVTableUses.swap(S.VTableUses);
9205 }
9206
9207 void perform() {
9208 if (Enabled) {
9209 S.DefineUsedVTables();
9210 S.PerformPendingInstantiations();
9211 }
9212 }
9213
9214 ~GlobalEagerInstantiationScope() {
9215 if (!Enabled) return;
9216
9217 // Restore the set of pending vtables.
9218 assert(S.VTableUses.empty() &&(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
9219 "VTableUses should be empty before it is discarded.")(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
;
9220 S.VTableUses.swap(SavedVTableUses);
9221
9222 // Restore the set of pending implicit instantiations.
9223 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9224 assert(S.PendingInstantiations.empty() &&(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
9225 "PendingInstantiations should be empty before it is discarded.")(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
;
9226 S.PendingInstantiations.swap(SavedPendingInstantiations);
9227 } else {
9228 // Template instantiations in the PCH may be delayed until the TU.
9229 S.PendingInstantiations.swap(SavedPendingInstantiations);
9230 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9231 SavedPendingInstantiations.begin(),
9232 SavedPendingInstantiations.end());
9233 }
9234 }
9235
9236 private:
9237 Sema &S;
9238 SmallVector<VTableUse, 16> SavedVTableUses;
9239 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9240 bool Enabled;
9241 };
9242
9243 /// The queue of implicit template instantiations that are required
9244 /// and must be performed within the current local scope.
9245 ///
9246 /// This queue is only used for member functions of local classes in
9247 /// templates, which must be instantiated in the same scope as their
9248 /// enclosing function, so that they can reference function-local
9249 /// types, static variables, enumerators, etc.
9250 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9251
9252 class LocalEagerInstantiationScope {
9253 public:
9254 LocalEagerInstantiationScope(Sema &S) : S(S) {
9255 SavedPendingLocalImplicitInstantiations.swap(
9256 S.PendingLocalImplicitInstantiations);
9257 }
9258
9259 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9260
9261 ~LocalEagerInstantiationScope() {
9262 assert(S.PendingLocalImplicitInstantiations.empty() &&(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
9263 "there shouldn't be any pending local implicit instantiations")(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
;
9264 SavedPendingLocalImplicitInstantiations.swap(
9265 S.PendingLocalImplicitInstantiations);
9266 }
9267
9268 private:
9269 Sema &S;
9270 std::deque<PendingImplicitInstantiation>
9271 SavedPendingLocalImplicitInstantiations;
9272 };
9273
9274 /// A helper class for building up ExtParameterInfos.
9275 class ExtParameterInfoBuilder {
9276 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9277 bool HasInteresting = false;
9278
9279 public:
9280 /// Set the ExtParameterInfo for the parameter at the given index,
9281 ///
9282 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9283 assert(Infos.size() <= index)(static_cast <bool> (Infos.size() <= index) ? void (
0) : __assert_fail ("Infos.size() <= index", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9283, __extension__ __PRETTY_FUNCTION__))
;
9284 Infos.resize(index);
9285 Infos.push_back(info);
9286
9287 if (!HasInteresting)
9288 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9289 }
9290
9291 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9292 /// ExtParameterInfo array we've built up.
9293 const FunctionProtoType::ExtParameterInfo *
9294 getPointerOrNull(unsigned numParams) {
9295 if (!HasInteresting) return nullptr;
9296 Infos.resize(numParams);
9297 return Infos.data();
9298 }
9299 };
9300
9301 void PerformPendingInstantiations(bool LocalOnly = false);
9302
9303 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9304 const MultiLevelTemplateArgumentList &TemplateArgs,
9305 SourceLocation Loc, DeclarationName Entity,
9306 bool AllowDeducedTST = false);
9307
9308 QualType SubstType(QualType T,
9309 const MultiLevelTemplateArgumentList &TemplateArgs,
9310 SourceLocation Loc, DeclarationName Entity);
9311
9312 TypeSourceInfo *SubstType(TypeLoc TL,
9313 const MultiLevelTemplateArgumentList &TemplateArgs,
9314 SourceLocation Loc, DeclarationName Entity);
9315
9316 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9317 const MultiLevelTemplateArgumentList &TemplateArgs,
9318 SourceLocation Loc,
9319 DeclarationName Entity,
9320 CXXRecordDecl *ThisContext,
9321 Qualifiers ThisTypeQuals);
9322 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9323 const MultiLevelTemplateArgumentList &Args);
9324 bool SubstExceptionSpec(SourceLocation Loc,
9325 FunctionProtoType::ExceptionSpecInfo &ESI,
9326 SmallVectorImpl<QualType> &ExceptionStorage,
9327 const MultiLevelTemplateArgumentList &Args);
9328 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 int indexAdjustment,
9331 Optional<unsigned> NumExpansions,
9332 bool ExpectParameterPack);
9333 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9334 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9335 const MultiLevelTemplateArgumentList &TemplateArgs,
9336 SmallVectorImpl<QualType> &ParamTypes,
9337 SmallVectorImpl<ParmVarDecl *> *OutParams,
9338 ExtParameterInfoBuilder &ParamInfos);
9339 ExprResult SubstExpr(Expr *E,
9340 const MultiLevelTemplateArgumentList &TemplateArgs);
9341
9342 /// Substitute the given template arguments into a list of
9343 /// expressions, expanding pack expansions if required.
9344 ///
9345 /// \param Exprs The list of expressions to substitute into.
9346 ///
9347 /// \param IsCall Whether this is some form of call, in which case
9348 /// default arguments will be dropped.
9349 ///
9350 /// \param TemplateArgs The set of template arguments to substitute.
9351 ///
9352 /// \param Outputs Will receive all of the substituted arguments.
9353 ///
9354 /// \returns true if an error occurred, false otherwise.
9355 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9356 const MultiLevelTemplateArgumentList &TemplateArgs,
9357 SmallVectorImpl<Expr *> &Outputs);
9358
9359 StmtResult SubstStmt(Stmt *S,
9360 const MultiLevelTemplateArgumentList &TemplateArgs);
9361
9362 TemplateParameterList *
9363 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9364 const MultiLevelTemplateArgumentList &TemplateArgs);
9365
9366 bool
9367 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9368 const MultiLevelTemplateArgumentList &TemplateArgs,
9369 TemplateArgumentListInfo &Outputs);
9370
9371
9372 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9373 const MultiLevelTemplateArgumentList &TemplateArgs);
9374
9375 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9376 /// an implicit 'operator=='.
9377 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9378 FunctionDecl *Spaceship);
9379
9380 ExprResult SubstInitializer(Expr *E,
9381 const MultiLevelTemplateArgumentList &TemplateArgs,
9382 bool CXXDirectInit);
9383
9384 bool
9385 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9386 CXXRecordDecl *Pattern,
9387 const MultiLevelTemplateArgumentList &TemplateArgs);
9388
9389 bool
9390 InstantiateClass(SourceLocation PointOfInstantiation,
9391 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK,
9394 bool Complain = true);
9395
9396 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9397 EnumDecl *Instantiation, EnumDecl *Pattern,
9398 const MultiLevelTemplateArgumentList &TemplateArgs,
9399 TemplateSpecializationKind TSK);
9400
9401 bool InstantiateInClassInitializer(
9402 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9403 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9404
9405 struct LateInstantiatedAttribute {
9406 const Attr *TmplAttr;
9407 LocalInstantiationScope *Scope;
9408 Decl *NewDecl;
9409
9410 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9411 Decl *D)
9412 : TmplAttr(A), Scope(S), NewDecl(D)
9413 { }
9414 };
9415 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9416
9417 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void
9423 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9424 const Decl *Pattern, Decl *Inst,
9425 LateInstantiatedAttrVec *LateAttrs = nullptr,
9426 LocalInstantiationScope *OuterMostScope = nullptr);
9427
9428 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9429
9430 bool usesPartialOrExplicitSpecialization(
9431 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9432
9433 bool
9434 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9435 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9436 TemplateSpecializationKind TSK,
9437 bool Complain = true);
9438
9439 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9440 CXXRecordDecl *Instantiation,
9441 const MultiLevelTemplateArgumentList &TemplateArgs,
9442 TemplateSpecializationKind TSK);
9443
9444 void InstantiateClassTemplateSpecializationMembers(
9445 SourceLocation PointOfInstantiation,
9446 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9447 TemplateSpecializationKind TSK);
9448
9449 NestedNameSpecifierLoc
9450 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9451 const MultiLevelTemplateArgumentList &TemplateArgs);
9452
9453 DeclarationNameInfo
9454 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9455 const MultiLevelTemplateArgumentList &TemplateArgs);
9456 TemplateName
9457 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9458 SourceLocation Loc,
9459 const MultiLevelTemplateArgumentList &TemplateArgs);
9460 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9461 TemplateArgumentListInfo &Result,
9462 const MultiLevelTemplateArgumentList &TemplateArgs);
9463
9464 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9465 ParmVarDecl *Param);
9466 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9467 FunctionDecl *Function);
9468 bool CheckInstantiatedFunctionTemplateConstraints(
9469 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9470 ArrayRef<TemplateArgument> TemplateArgs,
9471 ConstraintSatisfaction &Satisfaction);
9472 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9473 const TemplateArgumentList *Args,
9474 SourceLocation Loc);
9475 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9476 FunctionDecl *Function,
9477 bool Recursive = false,
9478 bool DefinitionRequired = false,
9479 bool AtEndOfTU = false);
9480 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9481 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9482 const TemplateArgumentList &TemplateArgList,
9483 const TemplateArgumentListInfo &TemplateArgsInfo,
9484 SmallVectorImpl<TemplateArgument> &Converted,
9485 SourceLocation PointOfInstantiation,
9486 LateInstantiatedAttrVec *LateAttrs = nullptr,
9487 LocalInstantiationScope *StartingScope = nullptr);
9488 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9489 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9490 const MultiLevelTemplateArgumentList &TemplateArgs);
9491 void
9492 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9493 const MultiLevelTemplateArgumentList &TemplateArgs,
9494 LateInstantiatedAttrVec *LateAttrs,
9495 DeclContext *Owner,
9496 LocalInstantiationScope *StartingScope,
9497 bool InstantiatingVarTemplate = false,
9498 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9499
9500 void InstantiateVariableInitializer(
9501 VarDecl *Var, VarDecl *OldVar,
9502 const MultiLevelTemplateArgumentList &TemplateArgs);
9503 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9504 VarDecl *Var, bool Recursive = false,
9505 bool DefinitionRequired = false,
9506 bool AtEndOfTU = false);
9507
9508 void InstantiateMemInitializers(CXXConstructorDecl *New,
9509 const CXXConstructorDecl *Tmpl,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9513 const MultiLevelTemplateArgumentList &TemplateArgs,
9514 bool FindingInstantiatedContext = false);
9515 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9516 const MultiLevelTemplateArgumentList &TemplateArgs);
9517
9518 // Objective-C declarations.
9519 enum ObjCContainerKind {
9520 OCK_None = -1,
9521 OCK_Interface = 0,
9522 OCK_Protocol,
9523 OCK_Category,
9524 OCK_ClassExtension,
9525 OCK_Implementation,
9526 OCK_CategoryImplementation
9527 };
9528 ObjCContainerKind getObjCContainerKind() const;
9529
9530 DeclResult actOnObjCTypeParam(Scope *S,
9531 ObjCTypeParamVariance variance,
9532 SourceLocation varianceLoc,
9533 unsigned index,
9534 IdentifierInfo *paramName,
9535 SourceLocation paramLoc,
9536 SourceLocation colonLoc,
9537 ParsedType typeBound);
9538
9539 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9540 ArrayRef<Decl *> typeParams,
9541 SourceLocation rAngleLoc);
9542 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9543
9544 Decl *ActOnStartClassInterface(
9545 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9546 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9547 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9548 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9549 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9550 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9551 const ParsedAttributesView &AttrList);
9552
9553 void ActOnSuperClassOfClassInterface(Scope *S,
9554 SourceLocation AtInterfaceLoc,
9555 ObjCInterfaceDecl *IDecl,
9556 IdentifierInfo *ClassName,
9557 SourceLocation ClassLoc,
9558 IdentifierInfo *SuperName,
9559 SourceLocation SuperLoc,
9560 ArrayRef<ParsedType> SuperTypeArgs,
9561 SourceRange SuperTypeArgsRange);
9562
9563 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9564 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9565 IdentifierInfo *SuperName,
9566 SourceLocation SuperLoc);
9567
9568 Decl *ActOnCompatibilityAlias(
9569 SourceLocation AtCompatibilityAliasLoc,
9570 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9571 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9572
9573 bool CheckForwardProtocolDeclarationForCircularDependency(
9574 IdentifierInfo *PName,
9575 SourceLocation &PLoc, SourceLocation PrevLoc,
9576 const ObjCList<ObjCProtocolDecl> &PList);
9577
9578 Decl *ActOnStartProtocolInterface(
9579 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9580 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9581 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9582 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9583
9584 Decl *ActOnStartCategoryInterface(
9585 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9586 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9587 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9588 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9589 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9590 const ParsedAttributesView &AttrList);
9591
9592 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9593 IdentifierInfo *ClassName,
9594 SourceLocation ClassLoc,
9595 IdentifierInfo *SuperClassname,
9596 SourceLocation SuperClassLoc,
9597 const ParsedAttributesView &AttrList);
9598
9599 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9600 IdentifierInfo *ClassName,
9601 SourceLocation ClassLoc,
9602 IdentifierInfo *CatName,
9603 SourceLocation CatLoc,
9604 const ParsedAttributesView &AttrList);
9605
9606 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9607 ArrayRef<Decl *> Decls);
9608
9609 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9610 IdentifierInfo **IdentList,
9611 SourceLocation *IdentLocs,
9612 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9613 unsigned NumElts);
9614
9615 DeclGroupPtrTy
9616 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9617 ArrayRef<IdentifierLocPair> IdentList,
9618 const ParsedAttributesView &attrList);
9619
9620 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9621 ArrayRef<IdentifierLocPair> ProtocolId,
9622 SmallVectorImpl<Decl *> &Protocols);
9623
9624 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9625 SourceLocation ProtocolLoc,
9626 IdentifierInfo *TypeArgId,
9627 SourceLocation TypeArgLoc,
9628 bool SelectProtocolFirst = false);
9629
9630 /// Given a list of identifiers (and their locations), resolve the
9631 /// names to either Objective-C protocol qualifiers or type
9632 /// arguments, as appropriate.
9633 void actOnObjCTypeArgsOrProtocolQualifiers(
9634 Scope *S,
9635 ParsedType baseType,
9636 SourceLocation lAngleLoc,
9637 ArrayRef<IdentifierInfo *> identifiers,
9638 ArrayRef<SourceLocation> identifierLocs,
9639 SourceLocation rAngleLoc,
9640 SourceLocation &typeArgsLAngleLoc,
9641 SmallVectorImpl<ParsedType> &typeArgs,
9642 SourceLocation &typeArgsRAngleLoc,
9643 SourceLocation &protocolLAngleLoc,
9644 SmallVectorImpl<Decl *> &protocols,
9645 SourceLocation &protocolRAngleLoc,
9646 bool warnOnIncompleteProtocols);
9647
9648 /// Build a an Objective-C protocol-qualified 'id' type where no
9649 /// base type was specified.
9650 TypeResult actOnObjCProtocolQualifierType(
9651 SourceLocation lAngleLoc,
9652 ArrayRef<Decl *> protocols,
9653 ArrayRef<SourceLocation> protocolLocs,
9654 SourceLocation rAngleLoc);
9655
9656 /// Build a specialized and/or protocol-qualified Objective-C type.
9657 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9658 Scope *S,
9659 SourceLocation Loc,
9660 ParsedType BaseType,
9661 SourceLocation TypeArgsLAngleLoc,
9662 ArrayRef<ParsedType> TypeArgs,
9663 SourceLocation TypeArgsRAngleLoc,
9664 SourceLocation ProtocolLAngleLoc,
9665 ArrayRef<Decl *> Protocols,
9666 ArrayRef<SourceLocation> ProtocolLocs,
9667 SourceLocation ProtocolRAngleLoc);
9668
9669 /// Build an Objective-C type parameter type.
9670 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9671 SourceLocation ProtocolLAngleLoc,
9672 ArrayRef<ObjCProtocolDecl *> Protocols,
9673 ArrayRef<SourceLocation> ProtocolLocs,
9674 SourceLocation ProtocolRAngleLoc,
9675 bool FailOnError = false);
9676
9677 /// Build an Objective-C object pointer type.
9678 QualType BuildObjCObjectType(QualType BaseType,
9679 SourceLocation Loc,
9680 SourceLocation TypeArgsLAngleLoc,
9681 ArrayRef<TypeSourceInfo *> TypeArgs,
9682 SourceLocation TypeArgsRAngleLoc,
9683 SourceLocation ProtocolLAngleLoc,
9684 ArrayRef<ObjCProtocolDecl *> Protocols,
9685 ArrayRef<SourceLocation> ProtocolLocs,
9686 SourceLocation ProtocolRAngleLoc,
9687 bool FailOnError = false);
9688
9689 /// Ensure attributes are consistent with type.
9690 /// \param [in, out] Attributes The attributes to check; they will
9691 /// be modified to be consistent with \p PropertyTy.
9692 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9693 SourceLocation Loc,
9694 unsigned &Attributes,
9695 bool propertyInPrimaryClass);
9696
9697 /// Process the specified property declaration and create decls for the
9698 /// setters and getters as needed.
9699 /// \param property The property declaration being processed
9700 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9701
9702
9703 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9704 ObjCPropertyDecl *SuperProperty,
9705 const IdentifierInfo *Name,
9706 bool OverridingProtocolProperty);
9707
9708 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9709 ObjCInterfaceDecl *ID);
9710
9711 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9712 ArrayRef<Decl *> allMethods = None,
9713 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9714
9715 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9716 SourceLocation LParenLoc,
9717 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9718 Selector GetterSel, Selector SetterSel,
9719 tok::ObjCKeywordKind MethodImplKind,
9720 DeclContext *lexicalDC = nullptr);
9721
9722 Decl *ActOnPropertyImplDecl(Scope *S,
9723 SourceLocation AtLoc,
9724 SourceLocation PropertyLoc,
9725 bool ImplKind,
9726 IdentifierInfo *PropertyId,
9727 IdentifierInfo *PropertyIvar,
9728 SourceLocation PropertyIvarLoc,
9729 ObjCPropertyQueryKind QueryKind);
9730
9731 enum ObjCSpecialMethodKind {
9732 OSMK_None,
9733 OSMK_Alloc,
9734 OSMK_New,
9735 OSMK_Copy,
9736 OSMK_RetainingInit,
9737 OSMK_NonRetainingInit
9738 };
9739
9740 struct ObjCArgInfo {
9741 IdentifierInfo *Name;
9742 SourceLocation NameLoc;
9743 // The Type is null if no type was specified, and the DeclSpec is invalid
9744 // in this case.
9745 ParsedType Type;
9746 ObjCDeclSpec DeclSpec;
9747
9748 /// ArgAttrs - Attribute list for this argument.
9749 ParsedAttributesView ArgAttrs;
9750 };
9751
9752 Decl *ActOnMethodDeclaration(
9753 Scope *S,
9754 SourceLocation BeginLoc, // location of the + or -.
9755 SourceLocation EndLoc, // location of the ; or {.
9756 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9757 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9758 // optional arguments. The number of types/arguments is obtained
9759 // from the Sel.getNumArgs().
9760 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9761 unsigned CNumArgs, // c-style args
9762 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9763 bool isVariadic, bool MethodDefinition);
9764
9765 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9766 const ObjCObjectPointerType *OPT,
9767 bool IsInstance);
9768 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9769 bool IsInstance);
9770
9771 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9772 bool inferObjCARCLifetime(ValueDecl *decl);
9773
9774 void deduceOpenCLAddressSpace(ValueDecl *decl);
9775
9776 ExprResult
9777 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9778 Expr *BaseExpr,
9779 SourceLocation OpLoc,
9780 DeclarationName MemberName,
9781 SourceLocation MemberLoc,
9782 SourceLocation SuperLoc, QualType SuperType,
9783 bool Super);
9784
9785 ExprResult
9786 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9787 IdentifierInfo &propertyName,
9788 SourceLocation receiverNameLoc,
9789 SourceLocation propertyNameLoc);
9790
9791 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9792
9793 /// Describes the kind of message expression indicated by a message
9794 /// send that starts with an identifier.
9795 enum ObjCMessageKind {
9796 /// The message is sent to 'super'.
9797 ObjCSuperMessage,
9798 /// The message is an instance message.
9799 ObjCInstanceMessage,
9800 /// The message is a class message, and the identifier is a type
9801 /// name.
9802 ObjCClassMessage
9803 };
9804
9805 ObjCMessageKind getObjCMessageKind(Scope *S,
9806 IdentifierInfo *Name,
9807 SourceLocation NameLoc,
9808 bool IsSuper,
9809 bool HasTrailingDot,
9810 ParsedType &ReceiverType);
9811
9812 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9813 Selector Sel,
9814 SourceLocation LBracLoc,
9815 ArrayRef<SourceLocation> SelectorLocs,
9816 SourceLocation RBracLoc,
9817 MultiExprArg Args);
9818
9819 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9820 QualType ReceiverType,
9821 SourceLocation SuperLoc,
9822 Selector Sel,
9823 ObjCMethodDecl *Method,
9824 SourceLocation LBracLoc,
9825 ArrayRef<SourceLocation> SelectorLocs,
9826 SourceLocation RBracLoc,
9827 MultiExprArg Args,
9828 bool isImplicit = false);
9829
9830 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9831 bool isSuperReceiver,
9832 SourceLocation Loc,
9833 Selector Sel,
9834 ObjCMethodDecl *Method,
9835 MultiExprArg Args);
9836
9837 ExprResult ActOnClassMessage(Scope *S,
9838 ParsedType Receiver,
9839 Selector Sel,
9840 SourceLocation LBracLoc,
9841 ArrayRef<SourceLocation> SelectorLocs,
9842 SourceLocation RBracLoc,
9843 MultiExprArg Args);
9844
9845 ExprResult BuildInstanceMessage(Expr *Receiver,
9846 QualType ReceiverType,
9847 SourceLocation SuperLoc,
9848 Selector Sel,
9849 ObjCMethodDecl *Method,
9850 SourceLocation LBracLoc,
9851 ArrayRef<SourceLocation> SelectorLocs,
9852 SourceLocation RBracLoc,
9853 MultiExprArg Args,
9854 bool isImplicit = false);
9855
9856 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9857 QualType ReceiverType,
9858 SourceLocation Loc,
9859 Selector Sel,
9860 ObjCMethodDecl *Method,
9861 MultiExprArg Args);
9862
9863 ExprResult ActOnInstanceMessage(Scope *S,
9864 Expr *Receiver,
9865 Selector Sel,
9866 SourceLocation LBracLoc,
9867 ArrayRef<SourceLocation> SelectorLocs,
9868 SourceLocation RBracLoc,
9869 MultiExprArg Args);
9870
9871 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9872 ObjCBridgeCastKind Kind,
9873 SourceLocation BridgeKeywordLoc,
9874 TypeSourceInfo *TSInfo,
9875 Expr *SubExpr);
9876
9877 ExprResult ActOnObjCBridgedCast(Scope *S,
9878 SourceLocation LParenLoc,
9879 ObjCBridgeCastKind Kind,
9880 SourceLocation BridgeKeywordLoc,
9881 ParsedType Type,
9882 SourceLocation RParenLoc,
9883 Expr *SubExpr);
9884
9885 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9886
9887 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9888
9889 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9890 CastKind &Kind);
9891
9892 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9893 QualType DestType, QualType SrcType,
9894 ObjCInterfaceDecl *&RelatedClass,
9895 ObjCMethodDecl *&ClassMethod,
9896 ObjCMethodDecl *&InstanceMethod,
9897 TypedefNameDecl *&TDNDecl,
9898 bool CfToNs, bool Diagnose = true);
9899
9900 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9901 QualType DestType, QualType SrcType,
9902 Expr *&SrcExpr, bool Diagnose = true);
9903
9904 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9905 bool Diagnose = true);
9906
9907 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9908
9909 /// Check whether the given new method is a valid override of the
9910 /// given overridden method, and set any properties that should be inherited.
9911 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9912 const ObjCMethodDecl *Overridden);
9913
9914 /// Describes the compatibility of a result type with its method.
9915 enum ResultTypeCompatibilityKind {
9916 RTC_Compatible,
9917 RTC_Incompatible,
9918 RTC_Unknown
9919 };
9920
9921 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9922 ObjCMethodDecl *overridden);
9923
9924 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9925 ObjCInterfaceDecl *CurrentClass,
9926 ResultTypeCompatibilityKind RTC);
9927
9928 enum PragmaOptionsAlignKind {
9929 POAK_Native, // #pragma options align=native
9930 POAK_Natural, // #pragma options align=natural
9931 POAK_Packed, // #pragma options align=packed
9932 POAK_Power, // #pragma options align=power
9933 POAK_Mac68k, // #pragma options align=mac68k
9934 POAK_Reset // #pragma options align=reset
9935 };
9936
9937 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9938 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9939 PragmaClangSectionAction Action,
9940 PragmaClangSectionKind SecKind, StringRef SecName);
9941
9942 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9943 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9944 SourceLocation PragmaLoc);
9945
9946 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9947 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9948 StringRef SlotLabel, Expr *Alignment);
9949
9950 enum class PragmaAlignPackDiagnoseKind {
9951 NonDefaultStateAtInclude,
9952 ChangedStateAtExit
9953 };
9954
9955 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9956 SourceLocation IncludeLoc);
9957 void DiagnoseUnterminatedPragmaAlignPack();
9958
9959 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9960 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9961
9962 /// ActOnPragmaMSComment - Called on well formed
9963 /// \#pragma comment(kind, "arg").
9964 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9965 StringRef Arg);
9966
9967 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9968 /// pointers_to_members(representation method[, general purpose
9969 /// representation]).
9970 void ActOnPragmaMSPointersToMembers(
9971 LangOptions::PragmaMSPointersToMembersKind Kind,
9972 SourceLocation PragmaLoc);
9973
9974 /// Called on well formed \#pragma vtordisp().
9975 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9976 SourceLocation PragmaLoc,
9977 MSVtorDispMode Value);
9978
9979 enum PragmaSectionKind {
9980 PSK_DataSeg,
9981 PSK_BSSSeg,
9982 PSK_ConstSeg,
9983 PSK_CodeSeg,
9984 };
9985
9986 bool UnifySection(StringRef SectionName, int SectionFlags,
9987 NamedDecl *TheDecl);
9988 bool UnifySection(StringRef SectionName,
9989 int SectionFlags,
9990 SourceLocation PragmaSectionLocation);
9991
9992 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9993 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9994 PragmaMsStackAction Action,
9995 llvm::StringRef StackSlotLabel,
9996 StringLiteral *SegmentName,
9997 llvm::StringRef PragmaName);
9998
9999 /// Called on well formed \#pragma section().
10000 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
10001 int SectionFlags, StringLiteral *SegmentName);
10002
10003 /// Called on well-formed \#pragma init_seg().
10004 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
10005 StringLiteral *SegmentName);
10006
10007 /// Called on #pragma clang __debug dump II
10008 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10009
10010 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10011 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10012 StringRef Value);
10013
10014 /// Are precise floating point semantics currently enabled?
10015 bool isPreciseFPEnabled() {
10016 return !CurFPFeatures.getAllowFPReassociate() &&
10017 !CurFPFeatures.getNoSignedZero() &&
10018 !CurFPFeatures.getAllowReciprocal() &&
10019 !CurFPFeatures.getAllowApproxFunc();
10020 }
10021
10022 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10023 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10024 PragmaFloatControlKind Value);
10025
10026 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10027 void ActOnPragmaUnused(const Token &Identifier,
10028 Scope *curScope,
10029 SourceLocation PragmaLoc);
10030
10031 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10032 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10033 SourceLocation PragmaLoc);
10034
10035 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10036 SourceLocation Loc);
10037 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10038
10039 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10040 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10041 SourceLocation PragmaLoc,
10042 SourceLocation WeakNameLoc);
10043
10044 /// ActOnPragmaRedefineExtname - Called on well formed
10045 /// \#pragma redefine_extname oldname newname.
10046 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10047 IdentifierInfo* AliasName,
10048 SourceLocation PragmaLoc,
10049 SourceLocation WeakNameLoc,
10050 SourceLocation AliasNameLoc);
10051
10052 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10053 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10054 IdentifierInfo* AliasName,
10055 SourceLocation PragmaLoc,
10056 SourceLocation WeakNameLoc,
10057 SourceLocation AliasNameLoc);
10058
10059 /// ActOnPragmaFPContract - Called on well formed
10060 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10061 /// \#pragma clang fp contract
10062 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10063
10064 /// Called on well formed
10065 /// \#pragma clang fp reassociate
10066 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10067
10068 /// ActOnPragmaFenvAccess - Called on well formed
10069 /// \#pragma STDC FENV_ACCESS
10070 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10071
10072 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10073 void ActOnPragmaFPExceptions(SourceLocation Loc,
10074 LangOptions::FPExceptionModeKind);
10075
10076 /// Called to set constant rounding mode for floating point operations.
10077 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10078
10079 /// Called to set exception behavior for floating point operations.
10080 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10081
10082 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10083 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10084 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10085
10086 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10087 void AddMsStructLayoutForRecord(RecordDecl *RD);
10088
10089 /// PushNamespaceVisibilityAttr - Note that we've entered a
10090 /// namespace with a visibility attribute.
10091 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10092 SourceLocation Loc);
10093
10094 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10095 /// add an appropriate visibility attribute.
10096 void AddPushedVisibilityAttribute(Decl *RD);
10097
10098 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10099 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10100 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10101
10102 /// FreeVisContext - Deallocate and null out VisContext.
10103 void FreeVisContext();
10104
10105 /// AddCFAuditedAttribute - Check whether we're currently within
10106 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10107 /// the appropriate attribute.
10108 void AddCFAuditedAttribute(Decl *D);
10109
10110 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10111 SourceLocation PragmaLoc,
10112 attr::ParsedSubjectMatchRuleSet Rules);
10113 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10114 const IdentifierInfo *Namespace);
10115
10116 /// Called on well-formed '\#pragma clang attribute pop'.
10117 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10118 const IdentifierInfo *Namespace);
10119
10120 /// Adds the attributes that have been specified using the
10121 /// '\#pragma clang attribute push' directives to the given declaration.
10122 void AddPragmaAttributes(Scope *S, Decl *D);
10123
10124 void DiagnoseUnterminatedPragmaAttribute();
10125
10126 /// Called on well formed \#pragma clang optimize.
10127 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10128
10129 /// Get the location for the currently active "\#pragma clang optimize
10130 /// off". If this location is invalid, then the state of the pragma is "on".
10131 SourceLocation getOptimizeOffPragmaLocation() const {
10132 return OptimizeOffPragmaLocation;
10133 }
10134
10135 /// Only called on function definitions; if there is a pragma in scope
10136 /// with the effect of a range-based optnone, consider marking the function
10137 /// with attribute optnone.
10138 void AddRangeBasedOptnone(FunctionDecl *FD);
10139
10140 /// Adds the 'optnone' attribute to the function declaration if there
10141 /// are no conflicts; Loc represents the location causing the 'optnone'
10142 /// attribute to be added (usually because of a pragma).
10143 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10144
10145 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10146 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10147 bool IsPackExpansion);
10148 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10149 bool IsPackExpansion);
10150
10151 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10152 /// declaration.
10153 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10154 Expr *OE);
10155
10156 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10157 /// declaration.
10158 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10159 Expr *ParamExpr);
10160
10161 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10162 /// declaration.
10163 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10164
10165 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10166 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10167 StringRef Annot, MutableArrayRef<Expr *> Args);
10168
10169 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10170 /// declaration.
10171 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10172 Expr *MaxThreads, Expr *MinBlocks);
10173
10174 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10175 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10176 bool InInstantiation = false);
10177
10178 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10179 ParameterABI ABI);
10180
10181 enum class RetainOwnershipKind {NS, CF, OS};
10182 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10183 RetainOwnershipKind K, bool IsTemplateInstantiation);
10184
10185 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10186 /// attribute to a particular declaration.
10187 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10188 Expr *Min, Expr *Max);
10189
10190 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10191 /// particular declaration.
10192 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10193 Expr *Min, Expr *Max);
10194
10195 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10196
10197 //===--------------------------------------------------------------------===//
10198 // C++ Coroutines TS
10199 //
10200 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10201 StringRef Keyword);
10202 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10203 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10204 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10205
10206 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10207 bool IsImplicit = false);
10208 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10209 UnresolvedLookupExpr* Lookup);
10210 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10211 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10212 bool IsImplicit = false);
10213 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10214 bool buildCoroutineParameterMoves(SourceLocation Loc);
10215 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10216 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10217 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10218 SourceLocation FuncLoc);
10219 /// Check that the expression co_await promise.final_suspend() shall not be
10220 /// potentially-throwing.
10221 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10222
10223 //===--------------------------------------------------------------------===//
10224 // OpenMP directives and clauses.
10225 //
10226private:
10227 void *VarDataSharingAttributesStack;
10228
10229 struct DeclareTargetContextInfo {
10230 struct MapInfo {
10231 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10232 SourceLocation Loc;
10233 };
10234 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10235 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10236
10237 /// The 'device_type' as parsed from the clause.
10238 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10239
10240 /// The directive kind, `begin declare target` or `declare target`.
10241 OpenMPDirectiveKind Kind;
10242
10243 /// The directive location.
10244 SourceLocation Loc;
10245
10246 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10247 : Kind(Kind), Loc(Loc) {}
10248 };
10249
10250 /// Number of nested '#pragma omp declare target' directives.
10251 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10252
10253 /// Initialization of data-sharing attributes stack.
10254 void InitDataSharingAttributesStack();
10255 void DestroyDataSharingAttributesStack();
10256 ExprResult
10257 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10258 bool StrictlyPositive = true,
10259 bool SuppressExprDiags = false);
10260 /// Returns OpenMP nesting level for current directive.
10261 unsigned getOpenMPNestingLevel() const;
10262
10263 /// Adjusts the function scopes index for the target-based regions.
10264 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10265 unsigned Level) const;
10266
10267 /// Returns the number of scopes associated with the construct on the given
10268 /// OpenMP level.
10269 int getNumberOfConstructScopes(unsigned Level) const;
10270
10271 /// Push new OpenMP function region for non-capturing function.
10272 void pushOpenMPFunctionRegion();
10273
10274 /// Pop OpenMP function region for non-capturing function.
10275 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10276
10277 /// Analyzes and checks a loop nest for use by a loop transformation.
10278 ///
10279 /// \param Kind The loop transformation directive kind.
10280 /// \param NumLoops How many nested loops the directive is expecting.
10281 /// \param AStmt Associated statement of the transformation directive.
10282 /// \param LoopHelpers [out] The loop analysis result.
10283 /// \param Body [out] The body code nested in \p NumLoops loop.
10284 /// \param OriginalInits [out] Collection of statements and declarations that
10285 /// must have been executed/declared before entering the
10286 /// loop.
10287 ///
10288 /// \return Whether there was any error.
10289 bool checkTransformableLoopNest(
10290 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10291 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10292 Stmt *&Body,
10293 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10294 &OriginalInits);
10295
10296 /// Helper to keep information about the current `omp begin/end declare
10297 /// variant` nesting.
10298 struct OMPDeclareVariantScope {
10299 /// The associated OpenMP context selector.
10300 OMPTraitInfo *TI;
10301
10302 /// The associated OpenMP context selector mangling.
10303 std::string NameSuffix;
10304
10305 OMPDeclareVariantScope(OMPTraitInfo &TI);
10306 };
10307
10308 /// Return the OMPTraitInfo for the surrounding scope, if any.
10309 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10310 return OMPDeclareVariantScopes.empty() ? nullptr
10311 : OMPDeclareVariantScopes.back().TI;
10312 }
10313
10314 /// The current `omp begin/end declare variant` scopes.
10315 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10316
10317 /// The current `omp begin/end assumes` scopes.
10318 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10319
10320 /// All `omp assumes` we encountered so far.
10321 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10322
10323public:
10324 /// The declarator \p D defines a function in the scope \p S which is nested
10325 /// in an `omp begin/end declare variant` scope. In this method we create a
10326 /// declaration for \p D and rename \p D according to the OpenMP context
10327 /// selector of the surrounding scope. Return all base functions in \p Bases.
10328 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10330 SmallVectorImpl<FunctionDecl *> &Bases);
10331
10332 /// Register \p D as specialization of all base functions in \p Bases in the
10333 /// current `omp begin/end declare variant` scope.
10334 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10335 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10336
10337 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10338 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10339
10340 /// Can we exit an OpenMP declare variant scope at the moment.
10341 bool isInOpenMPDeclareVariantScope() const {
10342 return !OMPDeclareVariantScopes.empty();
10343 }
10344
10345 /// Given the potential call expression \p Call, determine if there is a
10346 /// specialization via the OpenMP declare variant mechanism available. If
10347 /// there is, return the specialized call expression, otherwise return the
10348 /// original \p Call.
10349 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10350 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10351 SourceLocation RParenLoc, Expr *ExecConfig);
10352
10353 /// Handle a `omp begin declare variant`.
10354 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10355
10356 /// Handle a `omp end declare variant`.
10357 void ActOnOpenMPEndDeclareVariant();
10358
10359 /// Checks if the variant/multiversion functions are compatible.
10360 bool areMultiversionVariantFunctionsCompatible(
10361 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10362 const PartialDiagnostic &NoProtoDiagID,
10363 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10364 const PartialDiagnosticAt &NoSupportDiagIDAt,
10365 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10366 bool ConstexprSupported, bool CLinkageMayDiffer);
10367
10368 /// Function tries to capture lambda's captured variables in the OpenMP region
10369 /// before the original lambda is captured.
10370 void tryCaptureOpenMPLambdas(ValueDecl *V);
10371
10372 /// Return true if the provided declaration \a VD should be captured by
10373 /// reference.
10374 /// \param Level Relative level of nested OpenMP construct for that the check
10375 /// is performed.
10376 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10377 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10378 unsigned OpenMPCaptureLevel) const;
10379
10380 /// Check if the specified variable is used in one of the private
10381 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10382 /// constructs.
10383 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10384 unsigned StopAt = 0);
10385 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10386 ExprObjectKind OK, SourceLocation Loc);
10387
10388 /// If the current region is a loop-based region, mark the start of the loop
10389 /// construct.
10390 void startOpenMPLoop();
10391
10392 /// If the current region is a range loop-based region, mark the start of the
10393 /// loop construct.
10394 void startOpenMPCXXRangeFor();
10395
10396 /// Check if the specified variable is used in 'private' clause.
10397 /// \param Level Relative level of nested OpenMP construct for that the check
10398 /// is performed.
10399 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10400 unsigned CapLevel) const;
10401
10402 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10403 /// for \p FD based on DSA for the provided corresponding captured declaration
10404 /// \p D.
10405 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10406
10407 /// Check if the specified variable is captured by 'target' directive.
10408 /// \param Level Relative level of nested OpenMP construct for that the check
10409 /// is performed.
10410 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10411 unsigned CaptureLevel) const;
10412
10413 /// Check if the specified global variable must be captured by outer capture
10414 /// regions.
10415 /// \param Level Relative level of nested OpenMP construct for that
10416 /// the check is performed.
10417 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10418 unsigned CaptureLevel) const;
10419
10420 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10421 Expr *Op);
10422 /// Called on start of new data sharing attribute block.
10423 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10424 const DeclarationNameInfo &DirName, Scope *CurScope,
10425 SourceLocation Loc);
10426 /// Start analysis of clauses.
10427 void StartOpenMPClause(OpenMPClauseKind K);
10428 /// End analysis of clauses.
10429 void EndOpenMPClause();
10430 /// Called on end of data sharing attribute block.
10431 void EndOpenMPDSABlock(Stmt *CurDirective);
10432
10433 /// Check if the current region is an OpenMP loop region and if it is,
10434 /// mark loop control variable, used in \p Init for loop initialization, as
10435 /// private by default.
10436 /// \param Init First part of the for loop.
10437 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10438
10439 // OpenMP directives and clauses.
10440 /// Called on correct id-expression from the '#pragma omp
10441 /// threadprivate'.
10442 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10443 const DeclarationNameInfo &Id,
10444 OpenMPDirectiveKind Kind);
10445 /// Called on well-formed '#pragma omp threadprivate'.
10446 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10447 SourceLocation Loc,
10448 ArrayRef<Expr *> VarList);
10449 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10450 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10451 ArrayRef<Expr *> VarList);
10452 /// Called on well-formed '#pragma omp allocate'.
10453 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10454 ArrayRef<Expr *> VarList,
10455 ArrayRef<OMPClause *> Clauses,
10456 DeclContext *Owner = nullptr);
10457
10458 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10459 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10460 OpenMPDirectiveKind DKind,
10461 ArrayRef<StringRef> Assumptions,
10462 bool SkippedClauses);
10463
10464 /// Check if there is an active global `omp begin assumes` directive.
10465 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10466
10467 /// Check if there is an active global `omp assumes` directive.
10468 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10469
10470 /// Called on well-formed '#pragma omp end assumes'.
10471 void ActOnOpenMPEndAssumesDirective();
10472
10473 /// Called on well-formed '#pragma omp requires'.
10474 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10475 ArrayRef<OMPClause *> ClauseList);
10476 /// Check restrictions on Requires directive
10477 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10478 ArrayRef<OMPClause *> Clauses);
10479 /// Check if the specified type is allowed to be used in 'omp declare
10480 /// reduction' construct.
10481 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10482 TypeResult ParsedType);
10483 /// Called on start of '#pragma omp declare reduction'.
10484 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10485 Scope *S, DeclContext *DC, DeclarationName Name,
10486 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10487 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10488 /// Initialize declare reduction construct initializer.
10489 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10490 /// Finish current declare reduction construct initializer.
10491 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10492 /// Initialize declare reduction construct initializer.
10493 /// \return omp_priv variable.
10494 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10495 /// Finish current declare reduction construct initializer.
10496 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10497 VarDecl *OmpPrivParm);
10498 /// Called at the end of '#pragma omp declare reduction'.
10499 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10500 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10501
10502 /// Check variable declaration in 'omp declare mapper' construct.
10503 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10504 /// Check if the specified type is allowed to be used in 'omp declare
10505 /// mapper' construct.
10506 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10507 TypeResult ParsedType);
10508 /// Called on start of '#pragma omp declare mapper'.
10509 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10510 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10511 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10512 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10513 Decl *PrevDeclInScope = nullptr);
10514 /// Build the mapper variable of '#pragma omp declare mapper'.
10515 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10516 QualType MapperType,
10517 SourceLocation StartLoc,
10518 DeclarationName VN);
10519 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10520 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10521
10522 /// Called on the start of target region i.e. '#pragma omp declare target'.
10523 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10524
10525 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10526 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10527
10528 /// Called once a target context is completed, that can be when a
10529 /// '#pragma omp end declare target' was encountered or when a
10530 /// '#pragma omp declare target' without declaration-definition-seq was
10531 /// encountered.
10532 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10533
10534 /// Searches for the provided declaration name for OpenMP declare target
10535 /// directive.
10536 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10537 CXXScopeSpec &ScopeSpec,
10538 const DeclarationNameInfo &Id);
10539
10540 /// Called on correct id-expression from the '#pragma omp declare target'.
10541 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10542 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10543 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10544
10545 /// Check declaration inside target region.
10546 void
10547 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10548 SourceLocation IdLoc = SourceLocation());
10549 /// Finishes analysis of the deferred functions calls that may be declared as
10550 /// host/nohost during device/host compilation.
10551 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10552 const FunctionDecl *Callee,
10553 SourceLocation Loc);
10554 /// Return true inside OpenMP declare target region.
10555 bool isInOpenMPDeclareTargetContext() const {
10556 return !DeclareTargetNesting.empty();
10557 }
10558 /// Return true inside OpenMP target region.
10559 bool isInOpenMPTargetExecutionDirective() const;
10560
10561 /// Return the number of captured regions created for an OpenMP directive.
10562 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10563
10564 /// Initialization of captured region for OpenMP region.
10565 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10566
10567 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10568 /// an OpenMP loop directive.
10569 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10570
10571 /// End of OpenMP region.
10572 ///
10573 /// \param S Statement associated with the current OpenMP region.
10574 /// \param Clauses List of clauses for the current OpenMP region.
10575 ///
10576 /// \returns Statement for finished OpenMP region.
10577 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10578 StmtResult ActOnOpenMPExecutableDirective(
10579 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10580 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10581 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10582 /// Called on well-formed '\#pragma omp parallel' after parsing
10583 /// of the associated statement.
10584 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10585 Stmt *AStmt,
10586 SourceLocation StartLoc,
10587 SourceLocation EndLoc);
10588 using VarsWithInheritedDSAType =
10589 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10590 /// Called on well-formed '\#pragma omp simd' after parsing
10591 /// of the associated statement.
10592 StmtResult
10593 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10594 SourceLocation StartLoc, SourceLocation EndLoc,
10595 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10596 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10597 /// the associated statement.
10598 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10599 Stmt *AStmt, SourceLocation StartLoc,
10600 SourceLocation EndLoc);
10601 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10602 /// and the associated statement.
10603 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10604 Stmt *AStmt, SourceLocation StartLoc,
10605 SourceLocation EndLoc);
10606 /// Called on well-formed '\#pragma omp for' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp for simd' after parsing
10613 /// of the associated statement.
10614 StmtResult
10615 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10616 SourceLocation StartLoc, SourceLocation EndLoc,
10617 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10618 /// Called on well-formed '\#pragma omp sections' after parsing
10619 /// of the associated statement.
10620 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10621 Stmt *AStmt, SourceLocation StartLoc,
10622 SourceLocation EndLoc);
10623 /// Called on well-formed '\#pragma omp section' after parsing of the
10624 /// associated statement.
10625 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10626 SourceLocation EndLoc);
10627 /// Called on well-formed '\#pragma omp single' after parsing of the
10628 /// associated statement.
10629 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10630 Stmt *AStmt, SourceLocation StartLoc,
10631 SourceLocation EndLoc);
10632 /// Called on well-formed '\#pragma omp master' after parsing of the
10633 /// associated statement.
10634 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp critical' after parsing of the
10637 /// associated statement.
10638 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10639 ArrayRef<OMPClause *> Clauses,
10640 Stmt *AStmt, SourceLocation StartLoc,
10641 SourceLocation EndLoc);
10642 /// Called on well-formed '\#pragma omp parallel for' after parsing
10643 /// of the associated statement.
10644 StmtResult ActOnOpenMPParallelForDirective(
10645 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10646 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10647 /// Called on well-formed '\#pragma omp parallel for simd' after
10648 /// parsing of the associated statement.
10649 StmtResult ActOnOpenMPParallelForSimdDirective(
10650 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10651 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10652 /// Called on well-formed '\#pragma omp parallel master' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp parallel sections' after
10659 /// parsing of the associated statement.
10660 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt,
10662 SourceLocation StartLoc,
10663 SourceLocation EndLoc);
10664 /// Called on well-formed '\#pragma omp task' after parsing of the
10665 /// associated statement.
10666 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10667 Stmt *AStmt, SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskyield'.
10670 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp barrier'.
10673 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10674 SourceLocation EndLoc);
10675 /// Called on well-formed '\#pragma omp taskwait'.
10676 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10677 SourceLocation EndLoc);
10678 /// Called on well-formed '\#pragma omp taskgroup'.
10679 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10680 Stmt *AStmt, SourceLocation StartLoc,
10681 SourceLocation EndLoc);
10682 /// Called on well-formed '\#pragma omp flush'.
10683 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10684 SourceLocation StartLoc,
10685 SourceLocation EndLoc);
10686 /// Called on well-formed '\#pragma omp depobj'.
10687 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10688 SourceLocation StartLoc,
10689 SourceLocation EndLoc);
10690 /// Called on well-formed '\#pragma omp scan'.
10691 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10692 SourceLocation StartLoc,
10693 SourceLocation EndLoc);
10694 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10695 /// associated statement.
10696 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10697 Stmt *AStmt, SourceLocation StartLoc,
10698 SourceLocation EndLoc);
10699 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10700 /// associated statement.
10701 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10702 Stmt *AStmt, SourceLocation StartLoc,
10703 SourceLocation EndLoc);
10704 /// Called on well-formed '\#pragma omp target' after parsing of the
10705 /// associated statement.
10706 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10707 Stmt *AStmt, SourceLocation StartLoc,
10708 SourceLocation EndLoc);
10709 /// Called on well-formed '\#pragma omp target data' after parsing of
10710 /// the associated statement.
10711 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10712 Stmt *AStmt, SourceLocation StartLoc,
10713 SourceLocation EndLoc);
10714 /// Called on well-formed '\#pragma omp target enter data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target exit data' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10723 SourceLocation StartLoc,
10724 SourceLocation EndLoc,
10725 Stmt *AStmt);
10726 /// Called on well-formed '\#pragma omp target parallel' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10729 Stmt *AStmt,
10730 SourceLocation StartLoc,
10731 SourceLocation EndLoc);
10732 /// Called on well-formed '\#pragma omp target parallel for' after
10733 /// parsing of the associated statement.
10734 StmtResult ActOnOpenMPTargetParallelForDirective(
10735 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10736 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10737 /// Called on well-formed '\#pragma omp teams' after parsing of the
10738 /// associated statement.
10739 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10740 Stmt *AStmt, SourceLocation StartLoc,
10741 SourceLocation EndLoc);
10742 /// Called on well-formed '\#pragma omp cancellation point'.
10743 StmtResult
10744 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10745 SourceLocation EndLoc,
10746 OpenMPDirectiveKind CancelRegion);
10747 /// Called on well-formed '\#pragma omp cancel'.
10748 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10749 SourceLocation StartLoc,
10750 SourceLocation EndLoc,
10751 OpenMPDirectiveKind CancelRegion);
10752 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10753 /// associated statement.
10754 StmtResult
10755 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10756 SourceLocation StartLoc, SourceLocation EndLoc,
10757 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10758 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10759 /// the associated statement.
10760 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10761 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10762 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10763 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10764 /// associated statement.
10765 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10766 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10767 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10768 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10769 /// the associated statement.
10770 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10771 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10772 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10773 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10774 /// parsing of the associated statement.
10775 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10776 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10777 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10778 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10779 /// parsing of the associated statement.
10780 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10781 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10782 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp distribute' after parsing
10784 /// of the associated statement.
10785 StmtResult
10786 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10787 SourceLocation StartLoc, SourceLocation EndLoc,
10788 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10789 /// Called on well-formed '\#pragma omp target update'.
10790 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10791 SourceLocation StartLoc,
10792 SourceLocation EndLoc,
10793 Stmt *AStmt);
10794 /// Called on well-formed '\#pragma omp distribute parallel for' after
10795 /// parsing of the associated statement.
10796 StmtResult ActOnOpenMPDistributeParallelForDirective(
10797 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10798 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10799 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10800 /// after parsing of the associated statement.
10801 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10802 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10803 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10804 /// Called on well-formed '\#pragma omp distribute simd' after
10805 /// parsing of the associated statement.
10806 StmtResult ActOnOpenMPDistributeSimdDirective(
10807 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10808 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10809 /// Called on well-formed '\#pragma omp target parallel for simd' after
10810 /// parsing of the associated statement.
10811 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10812 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10813 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp target simd' after parsing of
10815 /// the associated statement.
10816 StmtResult
10817 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10818 SourceLocation StartLoc, SourceLocation EndLoc,
10819 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10820 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10821 /// the associated statement.
10822 StmtResult ActOnOpenMPTeamsDistributeDirective(
10823 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10824 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10825 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10826 /// of the associated statement.
10827 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10828 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10829 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10830 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10831 /// after parsing of the associated statement.
10832 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10833 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10834 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10835 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10836 /// after parsing of the associated statement.
10837 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10838 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10839 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10840 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10841 /// associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10843 Stmt *AStmt,
10844 SourceLocation StartLoc,
10845 SourceLocation EndLoc);
10846 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10847 /// of the associated statement.
10848 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10849 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10850 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10851 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10852 /// after parsing of the associated statement.
10853 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10854 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10855 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10856 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10857 /// simd' after parsing of the associated statement.
10858 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10859 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10860 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10861 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10862 /// parsing of the associated statement.
10863 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10864 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10865 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10866 /// Called on well-formed '\#pragma omp interop'.
10867 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10868 SourceLocation StartLoc,
10869 SourceLocation EndLoc);
10870 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10871 // /associated statement.
10872 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10873 Stmt *AStmt, SourceLocation StartLoc,
10874 SourceLocation EndLoc);
10875 /// Called on well-formed '\#pragma omp masked' after parsing of the
10876 // /associated statement.
10877 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10878 Stmt *AStmt, SourceLocation StartLoc,
10879 SourceLocation EndLoc);
10880
10881 /// Checks correctness of linear modifiers.
10882 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10883 SourceLocation LinLoc);
10884 /// Checks that the specified declaration matches requirements for the linear
10885 /// decls.
10886 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10887 OpenMPLinearClauseKind LinKind, QualType Type,
10888 bool IsDeclareSimd = false);
10889
10890 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10891 /// the associated method/function.
10892 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10893 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10894 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10895 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10896 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10897
10898 /// Checks '\#pragma omp declare variant' variant function and original
10899 /// functions after parsing of the associated method/function.
10900 /// \param DG Function declaration to which declare variant directive is
10901 /// applied to.
10902 /// \param VariantRef Expression that references the variant function, which
10903 /// must be used instead of the original one, specified in \p DG.
10904 /// \param TI The trait info object representing the match clause.
10905 /// \returns None, if the function/variant function are not compatible with
10906 /// the pragma, pair of original function/variant ref expression otherwise.
10907 Optional<std::pair<FunctionDecl *, Expr *>>
10908 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10909 OMPTraitInfo &TI, SourceRange SR);
10910
10911 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10912 /// the associated method/function.
10913 /// \param FD Function declaration to which declare variant directive is
10914 /// applied to.
10915 /// \param VariantRef Expression that references the variant function, which
10916 /// must be used instead of the original one, specified in \p DG.
10917 /// \param TI The context traits associated with the function variant.
10918 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10919 OMPTraitInfo &TI, SourceRange SR);
10920
10921 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10922 Expr *Expr,
10923 SourceLocation StartLoc,
10924 SourceLocation LParenLoc,
10925 SourceLocation EndLoc);
10926 /// Called on well-formed 'allocator' clause.
10927 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10928 SourceLocation StartLoc,
10929 SourceLocation LParenLoc,
10930 SourceLocation EndLoc);
10931 /// Called on well-formed 'if' clause.
10932 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10933 Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation NameModifierLoc,
10936 SourceLocation ColonLoc,
10937 SourceLocation EndLoc);
10938 /// Called on well-formed 'final' clause.
10939 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10940 SourceLocation LParenLoc,
10941 SourceLocation EndLoc);
10942 /// Called on well-formed 'num_threads' clause.
10943 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10944 SourceLocation StartLoc,
10945 SourceLocation LParenLoc,
10946 SourceLocation EndLoc);
10947 /// Called on well-formed 'safelen' clause.
10948 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10949 SourceLocation StartLoc,
10950 SourceLocation LParenLoc,
10951 SourceLocation EndLoc);
10952 /// Called on well-formed 'simdlen' clause.
10953 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10954 SourceLocation LParenLoc,
10955 SourceLocation EndLoc);
10956 /// Called on well-form 'sizes' clause.
10957 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10958 SourceLocation StartLoc,
10959 SourceLocation LParenLoc,
10960 SourceLocation EndLoc);
10961 /// Called on well-form 'full' clauses.
10962 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10963 SourceLocation EndLoc);
10964 /// Called on well-form 'partial' clauses.
10965 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10966 SourceLocation LParenLoc,
10967 SourceLocation EndLoc);
10968 /// Called on well-formed 'collapse' clause.
10969 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10970 SourceLocation StartLoc,
10971 SourceLocation LParenLoc,
10972 SourceLocation EndLoc);
10973 /// Called on well-formed 'ordered' clause.
10974 OMPClause *
10975 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10976 SourceLocation LParenLoc = SourceLocation(),
10977 Expr *NumForLoops = nullptr);
10978 /// Called on well-formed 'grainsize' clause.
10979 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10980 SourceLocation LParenLoc,
10981 SourceLocation EndLoc);
10982 /// Called on well-formed 'num_tasks' clause.
10983 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10984 SourceLocation LParenLoc,
10985 SourceLocation EndLoc);
10986 /// Called on well-formed 'hint' clause.
10987 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10988 SourceLocation LParenLoc,
10989 SourceLocation EndLoc);
10990 /// Called on well-formed 'detach' clause.
10991 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10992 SourceLocation LParenLoc,
10993 SourceLocation EndLoc);
10994
10995 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10996 unsigned Argument,
10997 SourceLocation ArgumentLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'default' clause.
11002 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'proc_bind' clause.
11008 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'order' clause.
11014 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019 /// Called on well-formed 'update' clause.
11020 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11021 SourceLocation KindLoc,
11022 SourceLocation StartLoc,
11023 SourceLocation LParenLoc,
11024 SourceLocation EndLoc);
11025
11026 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11027 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11028 SourceLocation StartLoc, SourceLocation LParenLoc,
11029 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11030 SourceLocation EndLoc);
11031 /// Called on well-formed 'schedule' clause.
11032 OMPClause *ActOnOpenMPScheduleClause(
11033 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11034 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11035 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11036 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11037
11038 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'nowait' clause.
11041 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'untied' clause.
11044 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'mergeable' clause.
11047 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'read' clause.
11050 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'write' clause.
11053 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'update' clause.
11056 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'capture' clause.
11059 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'seq_cst' clause.
11062 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'acq_rel' clause.
11065 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'acquire' clause.
11068 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070 /// Called on well-formed 'release' clause.
11071 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11072 SourceLocation EndLoc);
11073 /// Called on well-formed 'relaxed' clause.
11074 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11075 SourceLocation EndLoc);
11076
11077 /// Called on well-formed 'init' clause.
11078 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11079 bool IsTarget, bool IsTargetSync,
11080 SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc,
11083 SourceLocation EndLoc);
11084
11085 /// Called on well-formed 'use' clause.
11086 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11087 SourceLocation LParenLoc,
11088 SourceLocation VarLoc, SourceLocation EndLoc);
11089
11090 /// Called on well-formed 'destroy' clause.
11091 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation VarLoc,
11094 SourceLocation EndLoc);
11095 /// Called on well-formed 'novariants' clause.
11096 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11097 SourceLocation StartLoc,
11098 SourceLocation LParenLoc,
11099 SourceLocation EndLoc);
11100 /// Called on well-formed 'nocontext' clause.
11101 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11102 SourceLocation StartLoc,
11103 SourceLocation LParenLoc,
11104 SourceLocation EndLoc);
11105 /// Called on well-formed 'filter' clause.
11106 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11107 SourceLocation LParenLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'threads' clause.
11110 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'simd' clause.
11113 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115 /// Called on well-formed 'nogroup' clause.
11116 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11117 SourceLocation EndLoc);
11118 /// Called on well-formed 'unified_address' clause.
11119 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11120 SourceLocation EndLoc);
11121
11122 /// Called on well-formed 'unified_address' clause.
11123 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11124 SourceLocation EndLoc);
11125
11126 /// Called on well-formed 'reverse_offload' clause.
11127 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11128 SourceLocation EndLoc);
11129
11130 /// Called on well-formed 'dynamic_allocators' clause.
11131 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11132 SourceLocation EndLoc);
11133
11134 /// Called on well-formed 'atomic_default_mem_order' clause.
11135 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11136 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11137 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11138
11139 OMPClause *ActOnOpenMPVarListClause(
11140 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11141 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11142 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11143 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11144 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11145 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11146 SourceLocation ExtraModifierLoc,
11147 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11148 ArrayRef<SourceLocation> MotionModifiersLoc);
11149 /// Called on well-formed 'inclusive' clause.
11150 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11151 SourceLocation StartLoc,
11152 SourceLocation LParenLoc,
11153 SourceLocation EndLoc);
11154 /// Called on well-formed 'exclusive' clause.
11155 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc,
11157 SourceLocation LParenLoc,
11158 SourceLocation EndLoc);
11159 /// Called on well-formed 'allocate' clause.
11160 OMPClause *
11161 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11162 SourceLocation StartLoc, SourceLocation ColonLoc,
11163 SourceLocation LParenLoc, SourceLocation EndLoc);
11164 /// Called on well-formed 'private' clause.
11165 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11166 SourceLocation StartLoc,
11167 SourceLocation LParenLoc,
11168 SourceLocation EndLoc);
11169 /// Called on well-formed 'firstprivate' clause.
11170 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11171 SourceLocation StartLoc,
11172 SourceLocation LParenLoc,
11173 SourceLocation EndLoc);
11174 /// Called on well-formed 'lastprivate' clause.
11175 OMPClause *ActOnOpenMPLastprivateClause(
11176 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11177 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11178 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11179 /// Called on well-formed 'shared' clause.
11180 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11181 SourceLocation StartLoc,
11182 SourceLocation LParenLoc,
11183 SourceLocation EndLoc);
11184 /// Called on well-formed 'reduction' clause.
11185 OMPClause *ActOnOpenMPReductionClause(
11186 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11187 SourceLocation StartLoc, SourceLocation LParenLoc,
11188 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11189 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11190 const DeclarationNameInfo &ReductionId,
11191 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11192 /// Called on well-formed 'task_reduction' clause.
11193 OMPClause *ActOnOpenMPTaskReductionClause(
11194 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11195 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11196 CXXScopeSpec &ReductionIdScopeSpec,
11197 const DeclarationNameInfo &ReductionId,
11198 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11199 /// Called on well-formed 'in_reduction' clause.
11200 OMPClause *ActOnOpenMPInReductionClause(
11201 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11202 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11203 CXXScopeSpec &ReductionIdScopeSpec,
11204 const DeclarationNameInfo &ReductionId,
11205 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11206 /// Called on well-formed 'linear' clause.
11207 OMPClause *
11208 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11209 SourceLocation StartLoc, SourceLocation LParenLoc,
11210 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11211 SourceLocation ColonLoc, SourceLocation EndLoc);
11212 /// Called on well-formed 'aligned' clause.
11213 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11214 Expr *Alignment,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation ColonLoc,
11218 SourceLocation EndLoc);
11219 /// Called on well-formed 'copyin' clause.
11220 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11221 SourceLocation StartLoc,
11222 SourceLocation LParenLoc,
11223 SourceLocation EndLoc);
11224 /// Called on well-formed 'copyprivate' clause.
11225 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11226 SourceLocation StartLoc,
11227 SourceLocation LParenLoc,
11228 SourceLocation EndLoc);
11229 /// Called on well-formed 'flush' pseudo clause.
11230 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11231 SourceLocation StartLoc,
11232 SourceLocation LParenLoc,
11233 SourceLocation EndLoc);
11234 /// Called on well-formed 'depobj' pseudo clause.
11235 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11236 SourceLocation LParenLoc,
11237 SourceLocation EndLoc);
11238 /// Called on well-formed 'depend' clause.
11239 OMPClause *
11240 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11241 SourceLocation DepLoc, SourceLocation ColonLoc,
11242 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11243 SourceLocation LParenLoc, SourceLocation EndLoc);
11244 /// Called on well-formed 'device' clause.
11245 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11246 Expr *Device, SourceLocation StartLoc,
11247 SourceLocation LParenLoc,
11248 SourceLocation ModifierLoc,
11249 SourceLocation EndLoc);
11250 /// Called on well-formed 'map' clause.
11251 OMPClause *ActOnOpenMPMapClause(
11252 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11253 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11254 CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
11255 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11256 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
11257 const OMPVarListLocTy &Locs, bool NoDiagnose = false,
11258 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11259 /// Called on well-formed 'num_teams' clause.
11260 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'thread_limit' clause.
11264 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11265 SourceLocation StartLoc,
11266 SourceLocation LParenLoc,
11267 SourceLocation EndLoc);
11268 /// Called on well-formed 'priority' clause.
11269 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11270 SourceLocation LParenLoc,
11271 SourceLocation EndLoc);
11272 /// Called on well-formed 'dist_schedule' clause.
11273 OMPClause *ActOnOpenMPDistScheduleClause(
11274 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11276 SourceLocation CommaLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'defaultmap' clause.
11278 OMPClause *ActOnOpenMPDefaultmapClause(
11279 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11280 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11281 SourceLocation KindLoc, SourceLocation EndLoc);
11282 /// Called on well-formed 'to' clause.
11283 OMPClause *
11284 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11285 ArrayRef<SourceLocation> MotionModifiersLoc,
11286 CXXScopeSpec &MapperIdScopeSpec,
11287 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11288 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11289 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11290 /// Called on well-formed 'from' clause.
11291 OMPClause *
11292 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11293 ArrayRef<SourceLocation> MotionModifiersLoc,
11294 CXXScopeSpec &MapperIdScopeSpec,
11295 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11296 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11297 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11298 /// Called on well-formed 'use_device_ptr' clause.
11299 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11300 const OMPVarListLocTy &Locs);
11301 /// Called on well-formed 'use_device_addr' clause.
11302 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11303 const OMPVarListLocTy &Locs);
11304 /// Called on well-formed 'is_device_ptr' clause.
11305 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11306 const OMPVarListLocTy &Locs);
11307 /// Called on well-formed 'nontemporal' clause.
11308 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11309 SourceLocation StartLoc,
11310 SourceLocation LParenLoc,
11311 SourceLocation EndLoc);
11312
11313 /// Data for list of allocators.
11314 struct UsesAllocatorsData {
11315 /// Allocator.
11316 Expr *Allocator = nullptr;
11317 /// Allocator traits.
11318 Expr *AllocatorTraits = nullptr;
11319 /// Locations of '(' and ')' symbols.
11320 SourceLocation LParenLoc, RParenLoc;
11321 };
11322 /// Called on well-formed 'uses_allocators' clause.
11323 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation EndLoc,
11326 ArrayRef<UsesAllocatorsData> Data);
11327 /// Called on well-formed 'affinity' clause.
11328 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11329 SourceLocation LParenLoc,
11330 SourceLocation ColonLoc,
11331 SourceLocation EndLoc, Expr *Modifier,
11332 ArrayRef<Expr *> Locators);
11333
11334 /// The kind of conversion being performed.
11335 enum CheckedConversionKind {
11336 /// An implicit conversion.
11337 CCK_ImplicitConversion,
11338 /// A C-style cast.
11339 CCK_CStyleCast,
11340 /// A functional-style cast.
11341 CCK_FunctionalCast,
11342 /// A cast other than a C-style cast.
11343 CCK_OtherCast,
11344 /// A conversion for an operand of a builtin overloaded operator.
11345 CCK_ForBuiltinOverloadedOp
11346 };
11347
11348 static bool isCast(CheckedConversionKind CCK) {
11349 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11350 CCK == CCK_OtherCast;
11351 }
11352
11353 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11354 /// cast. If there is already an implicit cast, merge into the existing one.
11355 /// If isLvalue, the result of the cast is an lvalue.
11356 ExprResult
11357 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11358 ExprValueKind VK = VK_PRValue,
11359 const CXXCastPath *BasePath = nullptr,
11360 CheckedConversionKind CCK = CCK_ImplicitConversion);
11361
11362 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11363 /// to the conversion from scalar type ScalarTy to the Boolean type.
11364 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11365
11366 /// IgnoredValueConversions - Given that an expression's result is
11367 /// syntactically ignored, perform any conversions that are
11368 /// required.
11369 ExprResult IgnoredValueConversions(Expr *E);
11370
11371 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11372 // functions and arrays to their respective pointers (C99 6.3.2.1).
11373 ExprResult UsualUnaryConversions(Expr *E);
11374
11375 /// CallExprUnaryConversions - a special case of an unary conversion
11376 /// performed on a function designator of a call expression.
11377 ExprResult CallExprUnaryConversions(Expr *E);
11378
11379 // DefaultFunctionArrayConversion - converts functions and arrays
11380 // to their respective pointers (C99 6.3.2.1).
11381 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11382
11383 // DefaultFunctionArrayLvalueConversion - converts functions and
11384 // arrays to their respective pointers and performs the
11385 // lvalue-to-rvalue conversion.
11386 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11387 bool Diagnose = true);
11388
11389 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11390 // the operand. This function is a no-op if the operand has a function type
11391 // or an array type.
11392 ExprResult DefaultLvalueConversion(Expr *E);
11393
11394 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11395 // do not have a prototype. Integer promotions are performed on each
11396 // argument, and arguments that have type float are promoted to double.
11397 ExprResult DefaultArgumentPromotion(Expr *E);
11398
11399 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11400 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11401 /// we don't have xvalues there.
11402 ExprResult TemporaryMaterializationConversion(Expr *E);
11403
11404 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11405 enum VariadicCallType {
11406 VariadicFunction,
11407 VariadicBlock,
11408 VariadicMethod,
11409 VariadicConstructor,
11410 VariadicDoesNotApply
11411 };
11412
11413 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11414 const FunctionProtoType *Proto,
11415 Expr *Fn);
11416
11417 // Used for determining in which context a type is allowed to be passed to a
11418 // vararg function.
11419 enum VarArgKind {
11420 VAK_Valid,
11421 VAK_ValidInCXX11,
11422 VAK_Undefined,
11423 VAK_MSVCUndefined,
11424 VAK_Invalid
11425 };
11426
11427 // Determines which VarArgKind fits an expression.
11428 VarArgKind isValidVarArgType(const QualType &Ty);
11429
11430 /// Check to see if the given expression is a valid argument to a variadic
11431 /// function, issuing a diagnostic if not.
11432 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11433
11434 /// Check whether the given statement can have musttail applied to it,
11435 /// issuing a diagnostic and returning false if not. In the success case,
11436 /// the statement is rewritten to remove implicit nodes from the return
11437 /// value.
11438 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11439
11440private:
11441 /// Check whether the given statement can have musttail applied to it,
11442 /// issuing a diagnostic and returning false if not.
11443 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11444
11445public:
11446 /// Check to see if a given expression could have '.c_str()' called on it.
11447 bool hasCStrMethod(const Expr *E);
11448
11449 /// GatherArgumentsForCall - Collector argument expressions for various
11450 /// form of call prototypes.
11451 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11452 const FunctionProtoType *Proto,
11453 unsigned FirstParam, ArrayRef<Expr *> Args,
11454 SmallVectorImpl<Expr *> &AllArgs,
11455 VariadicCallType CallType = VariadicDoesNotApply,
11456 bool AllowExplicit = false,
11457 bool IsListInitialization = false);
11458
11459 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11460 // will create a runtime trap if the resulting type is not a POD type.
11461 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11462 FunctionDecl *FDecl);
11463
11464 /// Context in which we're performing a usual arithmetic conversion.
11465 enum ArithConvKind {
11466 /// An arithmetic operation.
11467 ACK_Arithmetic,
11468 /// A bitwise operation.
11469 ACK_BitwiseOp,
11470 /// A comparison.
11471 ACK_Comparison,
11472 /// A conditional (?:) operator.
11473 ACK_Conditional,
11474 /// A compound assignment expression.
11475 ACK_CompAssign,
11476 };
11477
11478 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11479 // operands and then handles various conversions that are common to binary
11480 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11481 // routine returns the first non-arithmetic type found. The client is
11482 // responsible for emitting appropriate error diagnostics.
11483 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11484 SourceLocation Loc, ArithConvKind ACK);
11485
11486 /// AssignConvertType - All of the 'assignment' semantic checks return this
11487 /// enum to indicate whether the assignment was allowed. These checks are
11488 /// done for simple assignments, as well as initialization, return from
11489 /// function, argument passing, etc. The query is phrased in terms of a
11490 /// source and destination type.
11491 enum AssignConvertType {
11492 /// Compatible - the types are compatible according to the standard.
11493 Compatible,
11494
11495 /// PointerToInt - The assignment converts a pointer to an int, which we
11496 /// accept as an extension.
11497 PointerToInt,
11498
11499 /// IntToPointer - The assignment converts an int to a pointer, which we
11500 /// accept as an extension.
11501 IntToPointer,
11502
11503 /// FunctionVoidPointer - The assignment is between a function pointer and
11504 /// void*, which the standard doesn't allow, but we accept as an extension.
11505 FunctionVoidPointer,
11506
11507 /// IncompatiblePointer - The assignment is between two pointers types that
11508 /// are not compatible, but we accept them as an extension.
11509 IncompatiblePointer,
11510
11511 /// IncompatibleFunctionPointer - The assignment is between two function
11512 /// pointers types that are not compatible, but we accept them as an
11513 /// extension.
11514 IncompatibleFunctionPointer,
11515
11516 /// IncompatiblePointerSign - The assignment is between two pointers types
11517 /// which point to integers which have a different sign, but are otherwise
11518 /// identical. This is a subset of the above, but broken out because it's by
11519 /// far the most common case of incompatible pointers.
11520 IncompatiblePointerSign,
11521
11522 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11523 /// c/v/r qualifiers, which we accept as an extension.
11524 CompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatiblePointerDiscardsQualifiers - The assignment
11527 /// discards qualifiers that we don't permit to be discarded,
11528 /// like address spaces.
11529 IncompatiblePointerDiscardsQualifiers,
11530
11531 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11532 /// changes address spaces in nested pointer types which is not allowed.
11533 /// For instance, converting __private int ** to __generic int ** is
11534 /// illegal even though __private could be converted to __generic.
11535 IncompatibleNestedPointerAddressSpaceMismatch,
11536
11537 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11538 /// nested pointer types, and the qualifiers other than the first two
11539 /// levels differ e.g. char ** -> const char **, but we accept them as an
11540 /// extension.
11541 IncompatibleNestedPointerQualifiers,
11542
11543 /// IncompatibleVectors - The assignment is between two vector types that
11544 /// have the same size, which we accept as an extension.
11545 IncompatibleVectors,
11546
11547 /// IntToBlockPointer - The assignment converts an int to a block
11548 /// pointer. We disallow this.
11549 IntToBlockPointer,
11550
11551 /// IncompatibleBlockPointer - The assignment is between two block
11552 /// pointers types that are not compatible.
11553 IncompatibleBlockPointer,
11554
11555 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11556 /// id type and something else (that is incompatible with it). For example,
11557 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11558 IncompatibleObjCQualifiedId,
11559
11560 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11561 /// object with __weak qualifier.
11562 IncompatibleObjCWeakRef,
11563
11564 /// Incompatible - We reject this conversion outright, it is invalid to
11565 /// represent it in the AST.
11566 Incompatible
11567 };
11568
11569 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11570 /// assignment conversion type specified by ConvTy. This returns true if the
11571 /// conversion was invalid or false if the conversion was accepted.
11572 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11573 SourceLocation Loc,
11574 QualType DstType, QualType SrcType,
11575 Expr *SrcExpr, AssignmentAction Action,
11576 bool *Complained = nullptr);
11577
11578 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11579 /// enum. If AllowMask is true, then we also allow the complement of a valid
11580 /// value, to be used as a mask.
11581 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11582 bool AllowMask) const;
11583
11584 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11585 /// integer not in the range of enum values.
11586 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11587 Expr *SrcExpr);
11588
11589 /// CheckAssignmentConstraints - Perform type checking for assignment,
11590 /// argument passing, variable initialization, and function return values.
11591 /// C99 6.5.16.
11592 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11593 QualType LHSType,
11594 QualType RHSType);
11595
11596 /// Check assignment constraints and optionally prepare for a conversion of
11597 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11598 /// is true.
11599 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11600 ExprResult &RHS,
11601 CastKind &Kind,
11602 bool ConvertRHS = true);
11603
11604 /// Check assignment constraints for an assignment of RHS to LHSType.
11605 ///
11606 /// \param LHSType The destination type for the assignment.
11607 /// \param RHS The source expression for the assignment.
11608 /// \param Diagnose If \c true, diagnostics may be produced when checking
11609 /// for assignability. If a diagnostic is produced, \p RHS will be
11610 /// set to ExprError(). Note that this function may still return
11611 /// without producing a diagnostic, even for an invalid assignment.
11612 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11613 /// in an audited Core Foundation API and does not need to be checked
11614 /// for ARC retain issues.
11615 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11616 /// conversions necessary to perform the assignment. If \c false,
11617 /// \p Diagnose must also be \c false.
11618 AssignConvertType CheckSingleAssignmentConstraints(
11619 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11620 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11621
11622 // If the lhs type is a transparent union, check whether we
11623 // can initialize the transparent union with the given expression.
11624 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11625 ExprResult &RHS);
11626
11627 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11628
11629 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11630
11631 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11632 AssignmentAction Action,
11633 bool AllowExplicit = false);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const ImplicitConversionSequence& ICS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK
11638 = CCK_ImplicitConversion);
11639 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11640 const StandardConversionSequence& SCS,
11641 AssignmentAction Action,
11642 CheckedConversionKind CCK);
11643
11644 ExprResult PerformQualificationConversion(
11645 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11646 CheckedConversionKind CCK = CCK_ImplicitConversion);
11647
11648 /// the following "Check" methods will return a valid/converted QualType
11649 /// or a null QualType (indicating an error diagnostic was issued).
11650
11651 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11652 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11653 ExprResult &RHS);
11654 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11655 ExprResult &RHS);
11656 QualType CheckPointerToMemberOperands( // C++ 5.5
11657 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11658 SourceLocation OpLoc, bool isIndirect);
11659 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11660 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11661 bool IsDivide);
11662 QualType CheckRemainderOperands( // C99 6.5.5
11663 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11664 bool IsCompAssign = false);
11665 QualType CheckAdditionOperands( // C99 6.5.6
11666 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11667 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11668 QualType CheckSubtractionOperands( // C99 6.5.6
11669 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11670 QualType* CompLHSTy = nullptr);
11671 QualType CheckShiftOperands( // C99 6.5.7
11672 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11673 BinaryOperatorKind Opc, bool IsCompAssign = false);
11674 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11675 QualType CheckCompareOperands( // C99 6.5.8/9
11676 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11677 BinaryOperatorKind Opc);
11678 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11679 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11680 BinaryOperatorKind Opc);
11681 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11682 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11683 BinaryOperatorKind Opc);
11684 // CheckAssignmentOperands is used for both simple and compound assignment.
11685 // For simple assignment, pass both expressions and a null converted type.
11686 // For compound assignment, pass both expressions and the converted type.
11687 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11688 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11689
11690 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11691 UnaryOperatorKind Opcode, Expr *Op);
11692 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11693 BinaryOperatorKind Opcode,
11694 Expr *LHS, Expr *RHS);
11695 ExprResult checkPseudoObjectRValue(Expr *E);
11696 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11697
11698 QualType CheckConditionalOperands( // C99 6.5.15
11699 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11700 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11701 QualType CXXCheckConditionalOperands( // C++ 5.16
11702 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11703 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11704 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11705 ExprResult &RHS,
11706 SourceLocation QuestionLoc);
11707 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11708 bool ConvertArgs = true);
11709 QualType FindCompositePointerType(SourceLocation Loc,
11710 ExprResult &E1, ExprResult &E2,
11711 bool ConvertArgs = true) {
11712 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11713 QualType Composite =
11714 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11715 E1 = E1Tmp;
11716 E2 = E2Tmp;
11717 return Composite;
11718 }
11719
11720 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11721 SourceLocation QuestionLoc);
11722
11723 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11724 SourceLocation QuestionLoc);
11725
11726 void DiagnoseAlwaysNonNullPointer(Expr *E,
11727 Expr::NullPointerConstantKind NullType,
11728 bool IsEqual, SourceRange Range);
11729
11730 /// type checking for vector binary operators.
11731 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11732 SourceLocation Loc, bool IsCompAssign,
11733 bool AllowBothBool, bool AllowBoolConversion);
11734 QualType GetSignedVectorType(QualType V);
11735 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11736 SourceLocation Loc,
11737 BinaryOperatorKind Opc);
11738 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11739 SourceLocation Loc);
11740
11741 /// Type checking for matrix binary operators.
11742 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11743 SourceLocation Loc,
11744 bool IsCompAssign);
11745 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11746 SourceLocation Loc, bool IsCompAssign);
11747
11748 bool isValidSveBitcast(QualType srcType, QualType destType);
11749
11750 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11751
11752 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11753 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11754 bool isLaxVectorConversion(QualType srcType, QualType destType);
11755
11756 /// type checking declaration initializers (C99 6.7.8)
11757 bool CheckForConstantInitializer(Expr *e, QualType t);
11758
11759 // type checking C++ declaration initializers (C++ [dcl.init]).
11760
11761 /// ReferenceCompareResult - Expresses the result of comparing two
11762 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11763 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11764 enum ReferenceCompareResult {
11765 /// Ref_Incompatible - The two types are incompatible, so direct
11766 /// reference binding is not possible.
11767 Ref_Incompatible = 0,
11768 /// Ref_Related - The two types are reference-related, which means
11769 /// that their unqualified forms (T1 and T2) are either the same
11770 /// or T1 is a base class of T2.
11771 Ref_Related,
11772 /// Ref_Compatible - The two types are reference-compatible.
11773 Ref_Compatible
11774 };
11775
11776 // Fake up a scoped enumeration that still contextually converts to bool.
11777 struct ReferenceConversionsScope {
11778 /// The conversions that would be performed on an lvalue of type T2 when
11779 /// binding a reference of type T1 to it, as determined when evaluating
11780 /// whether T1 is reference-compatible with T2.
11781 enum ReferenceConversions {
11782 Qualification = 0x1,
11783 NestedQualification = 0x2,
11784 Function = 0x4,
11785 DerivedToBase = 0x8,
11786 ObjC = 0x10,
11787 ObjCLifetime = 0x20,
11788
11789 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11790 };
11791 };
11792 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11793
11794 ReferenceCompareResult
11795 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11796 ReferenceConversions *Conv = nullptr);
11797
11798 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11799 Expr *CastExpr, CastKind &CastKind,
11800 ExprValueKind &VK, CXXCastPath &Path);
11801
11802 /// Force an expression with unknown-type to an expression of the
11803 /// given type.
11804 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11805
11806 /// Type-check an expression that's being passed to an
11807 /// __unknown_anytype parameter.
11808 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11809 Expr *result, QualType &paramType);
11810
11811 // CheckMatrixCast - Check type constraints for matrix casts.
11812 // We allow casting between matrixes of the same dimensions i.e. when they
11813 // have the same number of rows and column. Returns true if the cast is
11814 // invalid.
11815 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11816 CastKind &Kind);
11817
11818 // CheckVectorCast - check type constraints for vectors.
11819 // Since vectors are an extension, there are no C standard reference for this.
11820 // We allow casting between vectors and integer datatypes of the same size.
11821 // returns true if the cast is invalid
11822 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11823 CastKind &Kind);
11824
11825 /// Prepare `SplattedExpr` for a vector splat operation, adding
11826 /// implicit casts if necessary.
11827 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11828
11829 // CheckExtVectorCast - check type constraints for extended vectors.
11830 // Since vectors are an extension, there are no C standard reference for this.
11831 // We allow casting between vectors and integer datatypes of the same size,
11832 // or vectors and the element type of that vector.
11833 // returns the cast expr
11834 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11835 CastKind &Kind);
11836
11837 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11838 SourceLocation LParenLoc,
11839 Expr *CastExpr,
11840 SourceLocation RParenLoc);
11841
11842 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11843
11844 /// Checks for invalid conversions and casts between
11845 /// retainable pointers and other pointer kinds for ARC and Weak.
11846 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11847 QualType castType, Expr *&op,
11848 CheckedConversionKind CCK,
11849 bool Diagnose = true,
11850 bool DiagnoseCFAudited = false,
11851 BinaryOperatorKind Opc = BO_PtrMemD
11852 );
11853
11854 Expr *stripARCUnbridgedCast(Expr *e);
11855 void diagnoseARCUnbridgedCast(Expr *e);
11856
11857 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11858 QualType ExprType);
11859
11860 /// checkRetainCycles - Check whether an Objective-C message send
11861 /// might create an obvious retain cycle.
11862 void checkRetainCycles(ObjCMessageExpr *msg);
11863 void checkRetainCycles(Expr *receiver, Expr *argument);
11864 void checkRetainCycles(VarDecl *Var, Expr *Init);
11865
11866 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11867 /// to weak/__unsafe_unretained type.
11868 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11869
11870 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11871 /// to weak/__unsafe_unretained expression.
11872 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11873
11874 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11875 /// \param Method - May be null.
11876 /// \param [out] ReturnType - The return type of the send.
11877 /// \return true iff there were any incompatible types.
11878 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11879 MultiExprArg Args, Selector Sel,
11880 ArrayRef<SourceLocation> SelectorLocs,
11881 ObjCMethodDecl *Method, bool isClassMessage,
11882 bool isSuperMessage, SourceLocation lbrac,
11883 SourceLocation rbrac, SourceRange RecRange,
11884 QualType &ReturnType, ExprValueKind &VK);
11885
11886 /// Determine the result of a message send expression based on
11887 /// the type of the receiver, the method expected to receive the message,
11888 /// and the form of the message send.
11889 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11890 ObjCMethodDecl *Method, bool isClassMessage,
11891 bool isSuperMessage);
11892
11893 /// If the given expression involves a message send to a method
11894 /// with a related result type, emit a note describing what happened.
11895 void EmitRelatedResultTypeNote(const Expr *E);
11896
11897 /// Given that we had incompatible pointer types in a return
11898 /// statement, check whether we're in a method with a related result
11899 /// type, and if so, emit a note describing what happened.
11900 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11901
11902 class ConditionResult {
11903 Decl *ConditionVar;
11904 FullExprArg Condition;
11905 bool Invalid;
11906 bool HasKnownValue;
11907 bool KnownValue;
11908
11909 friend class Sema;
11910 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11911 bool IsConstexpr)
11912 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11913 HasKnownValue(IsConstexpr && Condition.get() &&
11914 !Condition.get()->isValueDependent()),
11915 KnownValue(HasKnownValue &&
11916 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11917 explicit ConditionResult(bool Invalid)
11918 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11919 HasKnownValue(false), KnownValue(false) {}
11920
11921 public:
11922 ConditionResult() : ConditionResult(false) {}
11923 bool isInvalid() const { return Invalid; }
11924 std::pair<VarDecl *, Expr *> get() const {
11925 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11926 Condition.get());
11927 }
11928 llvm::Optional<bool> getKnownValue() const {
11929 if (!HasKnownValue)
11930 return None;
11931 return KnownValue;
11932 }
11933 };
11934 static ConditionResult ConditionError() { return ConditionResult(true); }
11935
11936 enum class ConditionKind {
11937 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11938 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11939 Switch ///< An integral condition for a 'switch' statement.
11940 };
11941
11942 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11943 Expr *SubExpr, ConditionKind CK);
11944
11945 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11946 SourceLocation StmtLoc,
11947 ConditionKind CK);
11948
11949 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11950
11951 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11952 SourceLocation StmtLoc,
11953 ConditionKind CK);
11954 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11955
11956 /// CheckBooleanCondition - Diagnose problems involving the use of
11957 /// the given expression as a boolean condition (e.g. in an if
11958 /// statement). Also performs the standard function and array
11959 /// decays, possibly changing the input variable.
11960 ///
11961 /// \param Loc - A location associated with the condition, e.g. the
11962 /// 'if' keyword.
11963 /// \return true iff there were any errors
11964 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11965 bool IsConstexpr = false);
11966
11967 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11968 /// found in an explicit(bool) specifier.
11969 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11970
11971 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11972 /// Returns true if the explicit specifier is now resolved.
11973 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11974
11975 /// DiagnoseAssignmentAsCondition - Given that an expression is
11976 /// being used as a boolean condition, warn if it's an assignment.
11977 void DiagnoseAssignmentAsCondition(Expr *E);
11978
11979 /// Redundant parentheses over an equality comparison can indicate
11980 /// that the user intended an assignment used as condition.
11981 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11982
11983 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11984 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11985
11986 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11987 /// the specified width and sign. If an overflow occurs, detect it and emit
11988 /// the specified diagnostic.
11989 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11990 unsigned NewWidth, bool NewSign,
11991 SourceLocation Loc, unsigned DiagID);
11992
11993 /// Checks that the Objective-C declaration is declared in the global scope.
11994 /// Emits an error and marks the declaration as invalid if it's not declared
11995 /// in the global scope.
11996 bool CheckObjCDeclScope(Decl *D);
11997
11998 /// Abstract base class used for diagnosing integer constant
11999 /// expression violations.
12000 class VerifyICEDiagnoser {
12001 public:
12002 bool Suppress;
12003
12004 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12005
12006 virtual SemaDiagnosticBuilder
12007 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12008 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12009 SourceLocation Loc) = 0;
12010 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12011 virtual ~VerifyICEDiagnoser() {}
12012 };
12013
12014 enum AllowFoldKind {
12015 NoFold,
12016 AllowFold,
12017 };
12018
12019 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12020 /// and reports the appropriate diagnostics. Returns false on success.
12021 /// Can optionally return the value of the expression.
12022 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12023 VerifyICEDiagnoser &Diagnoser,
12024 AllowFoldKind CanFold = NoFold);
12025 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12026 unsigned DiagID,
12027 AllowFoldKind CanFold = NoFold);
12028 ExprResult VerifyIntegerConstantExpression(Expr *E,
12029 llvm::APSInt *Result = nullptr,
12030 AllowFoldKind CanFold = NoFold);
12031 ExprResult VerifyIntegerConstantExpression(Expr *E,
12032 AllowFoldKind CanFold = NoFold) {
12033 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12034 }
12035
12036 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12037 /// the correct width, and that the field type is valid.
12038 /// Returns false on success.
12039 /// Can optionally return whether the bit-field is of width 0
12040 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12041 QualType FieldTy, bool IsMsStruct,
12042 Expr *BitWidth, bool *ZeroWidth = nullptr);
12043
12044private:
12045 unsigned ForceCUDAHostDeviceDepth = 0;
12046
12047public:
12048 /// Increments our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. So long as this count is greater
12050 /// than zero, all functions encountered will be __host__ __device__.
12051 void PushForceCUDAHostDevice();
12052
12053 /// Decrements our count of the number of times we've seen a pragma forcing
12054 /// functions to be __host__ __device__. Returns false if the count is 0
12055 /// before incrementing, so you can emit an error.
12056 bool PopForceCUDAHostDevice();
12057
12058 /// Diagnostics that are emitted only if we discover that the given function
12059 /// must be codegen'ed. Because handling these correctly adds overhead to
12060 /// compilation, this is currently only enabled for CUDA compilations.
12061 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12062 std::vector<PartialDiagnosticAt>>
12063 DeviceDeferredDiags;
12064
12065 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12066 /// key in a hashtable, both the FD and location are hashed.
12067 struct FunctionDeclAndLoc {
12068 CanonicalDeclPtr<FunctionDecl> FD;
12069 SourceLocation Loc;
12070 };
12071
12072 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12073 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12074 /// same deferred diag twice.
12075 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12076
12077 /// An inverse call graph, mapping known-emitted functions to one of their
12078 /// known-emitted callers (plus the location of the call).
12079 ///
12080 /// Functions that we can tell a priori must be emitted aren't added to this
12081 /// map.
12082 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12083 /* Caller = */ FunctionDeclAndLoc>
12084 DeviceKnownEmittedFns;
12085
12086 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12087 /// context is "used as device code".
12088 ///
12089 /// - If CurContext is a __host__ function, does not emit any diagnostics
12090 /// unless \p EmitOnBothSides is true.
12091 /// - If CurContext is a __device__ or __global__ function, emits the
12092 /// diagnostics immediately.
12093 /// - If CurContext is a __host__ __device__ function and we are compiling for
12094 /// the device, creates a diagnostic which is emitted if and when we realize
12095 /// that the function will be codegen'ed.
12096 ///
12097 /// Example usage:
12098 ///
12099 /// // Variable-length arrays are not allowed in CUDA device code.
12100 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12101 /// return ExprError();
12102 /// // Otherwise, continue parsing as normal.
12103 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12104 unsigned DiagID);
12105
12106 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12107 /// context is "used as host code".
12108 ///
12109 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12110 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12111
12112 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12113 /// context is "used as device code".
12114 ///
12115 /// - If CurContext is a `declare target` function or it is known that the
12116 /// function is emitted for the device, emits the diagnostics immediately.
12117 /// - If CurContext is a non-`declare target` function and we are compiling
12118 /// for the device, creates a diagnostic which is emitted if and when we
12119 /// realize that the function will be codegen'ed.
12120 ///
12121 /// Example usage:
12122 ///
12123 /// // Variable-length arrays are not allowed in NVPTX device code.
12124 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12125 /// return ExprError();
12126 /// // Otherwise, continue parsing as normal.
12127 SemaDiagnosticBuilder
12128 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12129
12130 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12131 /// context is "used as host code".
12132 ///
12133 /// - If CurContext is a `declare target` function or it is known that the
12134 /// function is emitted for the host, emits the diagnostics immediately.
12135 /// - If CurContext is a non-host function, just ignore it.
12136 ///
12137 /// Example usage:
12138 ///
12139 /// // Variable-length arrays are not allowed in NVPTX device code.
12140 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12141 /// return ExprError();
12142 /// // Otherwise, continue parsing as normal.
12143 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12144 unsigned DiagID, FunctionDecl *FD);
12145
12146 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12147 FunctionDecl *FD = nullptr);
12148 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12149 const PartialDiagnostic &PD,
12150 FunctionDecl *FD = nullptr) {
12151 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12152 }
12153
12154 /// Check if the expression is allowed to be used in expressions for the
12155 /// offloading devices.
12156 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12157
12158 enum CUDAFunctionTarget {
12159 CFT_Device,
12160 CFT_Global,
12161 CFT_Host,
12162 CFT_HostDevice,
12163 CFT_InvalidTarget
12164 };
12165
12166 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12167 /// function.
12168 ///
12169 /// Use this rather than examining the function's attributes yourself -- you
12170 /// will get it wrong. Returns CFT_Host if D is null.
12171 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12172 bool IgnoreImplicitHDAttr = false);
12173 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12174
12175 enum CUDAVariableTarget {
12176 CVT_Device, /// Emitted on device side with a shadow variable on host side
12177 CVT_Host, /// Emitted on host side only
12178 CVT_Both, /// Emitted on both sides with different addresses
12179 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12180 };
12181 /// Determines whether the given variable is emitted on host or device side.
12182 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12183
12184 /// Gets the CUDA target for the current context.
12185 CUDAFunctionTarget CurrentCUDATarget() {
12186 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12187 }
12188
12189 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12190
12191 // CUDA function call preference. Must be ordered numerically from
12192 // worst to best.
12193 enum CUDAFunctionPreference {
12194 CFP_Never, // Invalid caller/callee combination.
12195 CFP_WrongSide, // Calls from host-device to host or device
12196 // function that do not match current compilation
12197 // mode.
12198 CFP_HostDevice, // Any calls to host/device functions.
12199 CFP_SameSide, // Calls from host-device to host or device
12200 // function matching current compilation mode.
12201 CFP_Native, // host-to-host or device-to-device calls.
12202 };
12203
12204 /// Identifies relative preference of a given Caller/Callee
12205 /// combination, based on their host/device attributes.
12206 /// \param Caller function which needs address of \p Callee.
12207 /// nullptr in case of global context.
12208 /// \param Callee target function
12209 ///
12210 /// \returns preference value for particular Caller/Callee combination.
12211 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12212 const FunctionDecl *Callee);
12213
12214 /// Determines whether Caller may invoke Callee, based on their CUDA
12215 /// host/device attributes. Returns false if the call is not allowed.
12216 ///
12217 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12218 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12219 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12220 const FunctionDecl *Callee) {
12221 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12222 }
12223
12224 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12225 /// depending on FD and the current compilation settings.
12226 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12227 const LookupResult &Previous);
12228
12229 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12230 /// and current compilation settings.
12231 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12232
12233public:
12234 /// Check whether we're allowed to call Callee from the current context.
12235 ///
12236 /// - If the call is never allowed in a semantically-correct program
12237 /// (CFP_Never), emits an error and returns false.
12238 ///
12239 /// - If the call is allowed in semantically-correct programs, but only if
12240 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12241 /// be emitted if and when the caller is codegen'ed, and returns true.
12242 ///
12243 /// Will only create deferred diagnostics for a given SourceLocation once,
12244 /// so you can safely call this multiple times without generating duplicate
12245 /// deferred errors.
12246 ///
12247 /// - Otherwise, returns true without emitting any diagnostics.
12248 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12249
12250 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12251
12252 /// Set __device__ or __host__ __device__ attributes on the given lambda
12253 /// operator() method.
12254 ///
12255 /// CUDA lambdas by default is host device function unless it has explicit
12256 /// host or device attribute.
12257 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12258
12259 /// Finds a function in \p Matches with highest calling priority
12260 /// from \p Caller context and erases all functions with lower
12261 /// calling priority.
12262 void EraseUnwantedCUDAMatches(
12263 const FunctionDecl *Caller,
12264 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12265
12266 /// Given a implicit special member, infer its CUDA target from the
12267 /// calls it needs to make to underlying base/field special members.
12268 /// \param ClassDecl the class for which the member is being created.
12269 /// \param CSM the kind of special member.
12270 /// \param MemberDecl the special member itself.
12271 /// \param ConstRHS true if this is a copy operation with a const object on
12272 /// its RHS.
12273 /// \param Diagnose true if this call should emit diagnostics.
12274 /// \return true if there was an error inferring.
12275 /// The result of this call is implicit CUDA target attribute(s) attached to
12276 /// the member declaration.
12277 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12278 CXXSpecialMember CSM,
12279 CXXMethodDecl *MemberDecl,
12280 bool ConstRHS,
12281 bool Diagnose);
12282
12283 /// \return true if \p CD can be considered empty according to CUDA
12284 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12285 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12286 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12287
12288 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12289 // case of error emits appropriate diagnostic and invalidates \p Var.
12290 //
12291 // \details CUDA allows only empty constructors as initializers for global
12292 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12293 // __shared__ variables whether they are local or not (they all are implicitly
12294 // static in CUDA). One exception is that CUDA allows constant initializers
12295 // for __constant__ and __device__ variables.
12296 void checkAllowedCUDAInitializer(VarDecl *VD);
12297
12298 /// Check whether NewFD is a valid overload for CUDA. Emits
12299 /// diagnostics and invalidates NewFD if not.
12300 void checkCUDATargetOverload(FunctionDecl *NewFD,
12301 const LookupResult &Previous);
12302 /// Copies target attributes from the template TD to the function FD.
12303 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12304
12305 /// Returns the name of the launch configuration function. This is the name
12306 /// of the function that will be called to configure kernel call, with the
12307 /// parameters specified via <<<>>>.
12308 std::string getCudaConfigureFuncName() const;
12309
12310 /// \name Code completion
12311 //@{
12312 /// Describes the context in which code completion occurs.
12313 enum ParserCompletionContext {
12314 /// Code completion occurs at top-level or namespace context.
12315 PCC_Namespace,
12316 /// Code completion occurs within a class, struct, or union.
12317 PCC_Class,
12318 /// Code completion occurs within an Objective-C interface, protocol,
12319 /// or category.
12320 PCC_ObjCInterface,
12321 /// Code completion occurs within an Objective-C implementation or
12322 /// category implementation
12323 PCC_ObjCImplementation,
12324 /// Code completion occurs within the list of instance variables
12325 /// in an Objective-C interface, protocol, category, or implementation.
12326 PCC_ObjCInstanceVariableList,
12327 /// Code completion occurs following one or more template
12328 /// headers.
12329 PCC_Template,
12330 /// Code completion occurs following one or more template
12331 /// headers within a class.
12332 PCC_MemberTemplate,
12333 /// Code completion occurs within an expression.
12334 PCC_Expression,
12335 /// Code completion occurs within a statement, which may
12336 /// also be an expression or a declaration.
12337 PCC_Statement,
12338 /// Code completion occurs at the beginning of the
12339 /// initialization statement (or expression) in a for loop.
12340 PCC_ForInit,
12341 /// Code completion occurs within the condition of an if,
12342 /// while, switch, or for statement.
12343 PCC_Condition,
12344 /// Code completion occurs within the body of a function on a
12345 /// recovery path, where we do not have a specific handle on our position
12346 /// in the grammar.
12347 PCC_RecoveryInFunction,
12348 /// Code completion occurs where only a type is permitted.
12349 PCC_Type,
12350 /// Code completion occurs in a parenthesized expression, which
12351 /// might also be a type cast.
12352 PCC_ParenthesizedExpression,
12353 /// Code completion occurs within a sequence of declaration
12354 /// specifiers within a function, method, or block.
12355 PCC_LocalDeclarationSpecifiers
12356 };
12357
12358 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12359 void CodeCompleteOrdinaryName(Scope *S,
12360 ParserCompletionContext CompletionContext);
12361 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12362 bool AllowNonIdentifiers,
12363 bool AllowNestedNameSpecifiers);
12364
12365 struct CodeCompleteExpressionData;
12366 void CodeCompleteExpression(Scope *S,
12367 const CodeCompleteExpressionData &Data);
12368 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12369 bool IsParenthesized = false);
12370 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12371 SourceLocation OpLoc, bool IsArrow,
12372 bool IsBaseExprStatement,
12373 QualType PreferredType);
12374 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12375 QualType PreferredType);
12376 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12377 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12378 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12379 const VirtSpecifiers *VS = nullptr);
12380 void CodeCompleteBracketDeclarator(Scope *S);
12381 void CodeCompleteCase(Scope *S);
12382 enum class AttributeCompletion {
12383 Attribute,
12384 Scope,
12385 None,
12386 };
12387 void CodeCompleteAttribute(
12388 AttributeCommonInfo::Syntax Syntax,
12389 AttributeCompletion Completion = AttributeCompletion::Attribute,
12390 const IdentifierInfo *Scope = nullptr);
12391 /// Determines the preferred type of the current function argument, by
12392 /// examining the signatures of all possible overloads.
12393 /// Returns null if unknown or ambiguous, or if code completion is off.
12394 ///
12395 /// If the code completion point has been reached, also reports the function
12396 /// signatures that were considered.
12397 ///
12398 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12399 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12400 SourceLocation OpenParLoc);
12401 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12402 SourceLocation Loc,
12403 ArrayRef<Expr *> Args,
12404 SourceLocation OpenParLoc);
12405 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12406 CXXScopeSpec SS,
12407 ParsedType TemplateTypeTy,
12408 ArrayRef<Expr *> ArgExprs,
12409 IdentifierInfo *II,
12410 SourceLocation OpenParLoc);
12411 void CodeCompleteInitializer(Scope *S, Decl *D);
12412 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12413 /// expressions in the initializer list seen so far and \p D is the current
12414 /// Designation being parsed.
12415 void CodeCompleteDesignator(const QualType BaseType,
12416 llvm::ArrayRef<Expr *> InitExprs,
12417 const Designation &D);
12418 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12419
12420 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12421 bool IsUsingDeclaration, QualType BaseType,
12422 QualType PreferredType);
12423 void CodeCompleteUsing(Scope *S);
12424 void CodeCompleteUsingDirective(Scope *S);
12425 void CodeCompleteNamespaceDecl(Scope *S);
12426 void CodeCompleteNamespaceAliasDecl(Scope *S);
12427 void CodeCompleteOperatorName(Scope *S);
12428 void CodeCompleteConstructorInitializer(
12429 Decl *Constructor,
12430 ArrayRef<CXXCtorInitializer *> Initializers);
12431
12432 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12433 bool AfterAmpersand);
12434 void CodeCompleteAfterFunctionEquals(Declarator &D);
12435
12436 void CodeCompleteObjCAtDirective(Scope *S);
12437 void CodeCompleteObjCAtVisibility(Scope *S);
12438 void CodeCompleteObjCAtStatement(Scope *S);
12439 void CodeCompleteObjCAtExpression(Scope *S);
12440 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12441 void CodeCompleteObjCPropertyGetter(Scope *S);
12442 void CodeCompleteObjCPropertySetter(Scope *S);
12443 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12444 bool IsParameter);
12445 void CodeCompleteObjCMessageReceiver(Scope *S);
12446 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12447 ArrayRef<IdentifierInfo *> SelIdents,
12448 bool AtArgumentExpression);
12449 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12450 ArrayRef<IdentifierInfo *> SelIdents,
12451 bool AtArgumentExpression,
12452 bool IsSuper = false);
12453 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12454 ArrayRef<IdentifierInfo *> SelIdents,
12455 bool AtArgumentExpression,
12456 ObjCInterfaceDecl *Super = nullptr);
12457 void CodeCompleteObjCForCollection(Scope *S,
12458 DeclGroupPtrTy IterationVar);
12459 void CodeCompleteObjCSelector(Scope *S,
12460 ArrayRef<IdentifierInfo *> SelIdents);
12461 void CodeCompleteObjCProtocolReferences(
12462 ArrayRef<IdentifierLocPair> Protocols);
12463 void CodeCompleteObjCProtocolDecl(Scope *S);
12464 void CodeCompleteObjCInterfaceDecl(Scope *S);
12465 void CodeCompleteObjCSuperclass(Scope *S,
12466 IdentifierInfo *ClassName,
12467 SourceLocation ClassNameLoc);
12468 void CodeCompleteObjCImplementationDecl(Scope *S);
12469 void CodeCompleteObjCInterfaceCategory(Scope *S,
12470 IdentifierInfo *ClassName,
12471 SourceLocation ClassNameLoc);
12472 void CodeCompleteObjCImplementationCategory(Scope *S,
12473 IdentifierInfo *ClassName,
12474 SourceLocation ClassNameLoc);
12475 void CodeCompleteObjCPropertyDefinition(Scope *S);
12476 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12477 IdentifierInfo *PropertyName);
12478 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12479 ParsedType ReturnType);
12480 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12481 bool IsInstanceMethod,
12482 bool AtParameterName,
12483 ParsedType ReturnType,
12484 ArrayRef<IdentifierInfo *> SelIdents);
12485 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12486 SourceLocation ClassNameLoc,
12487 bool IsBaseExprStatement);
12488 void CodeCompletePreprocessorDirective(bool InConditional);
12489 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12490 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12491 void CodeCompletePreprocessorExpression();
12492 void CodeCompletePreprocessorMacroArgument(Scope *S,
12493 IdentifierInfo *Macro,
12494 MacroInfo *MacroInfo,
12495 unsigned Argument);
12496 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12497 void CodeCompleteNaturalLanguage();
12498 void CodeCompleteAvailabilityPlatformName();
12499 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12500 CodeCompletionTUInfo &CCTUInfo,
12501 SmallVectorImpl<CodeCompletionResult> &Results);
12502 //@}
12503
12504 //===--------------------------------------------------------------------===//
12505 // Extra semantic analysis beyond the C type system
12506
12507public:
12508 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12509 unsigned ByteNo) const;
12510
12511private:
12512 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12513 const ArraySubscriptExpr *ASE=nullptr,
12514 bool AllowOnePastEnd=true, bool IndexNegated=false);
12515 void CheckArrayAccess(const Expr *E);
12516 // Used to grab the relevant information from a FormatAttr and a
12517 // FunctionDeclaration.
12518 struct FormatStringInfo {
12519 unsigned FormatIdx;
12520 unsigned FirstDataArg;
12521 bool HasVAListArg;
12522 };
12523
12524 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12525 FormatStringInfo *FSI);
12526 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12527 const FunctionProtoType *Proto);
12528 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12529 ArrayRef<const Expr *> Args);
12530 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12531 const FunctionProtoType *Proto);
12532 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12533 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12534 ArrayRef<const Expr *> Args,
12535 const FunctionProtoType *Proto, SourceLocation Loc);
12536
12537 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12538 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12539
12540 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12541 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12542 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12543 VariadicCallType CallType);
12544
12545 bool CheckObjCString(Expr *Arg);
12546 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12547
12548 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12549 unsigned BuiltinID, CallExpr *TheCall);
12550
12551 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12552 CallExpr *TheCall);
12553
12554 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12555
12556 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12557 unsigned MaxWidth);
12558 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12559 CallExpr *TheCall);
12560 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12561 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12562 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12565 bool WantCDE);
12566 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12567 CallExpr *TheCall);
12568
12569 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12570 CallExpr *TheCall);
12571 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12572 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12573 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12574 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12580 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12581 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12582 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12583 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12584 ArrayRef<int> ArgNums);
12585 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12586 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12587 ArrayRef<int> ArgNums);
12588 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12589 CallExpr *TheCall);
12590 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12591 CallExpr *TheCall);
12592 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12593 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12594 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12595 CallExpr *TheCall);
12596
12597 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12598 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12599 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12600 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12601 bool SemaBuiltinComplex(CallExpr *TheCall);
12602 bool SemaBuiltinVSX(CallExpr *TheCall);
12603 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12604 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12605
12606public:
12607 // Used by C++ template instantiation.
12608 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12609 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12610 SourceLocation BuiltinLoc,
12611 SourceLocation RParenLoc);
12612
12613private:
12614 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12615 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12616 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12617 bool SemaBuiltinAssume(CallExpr *TheCall);
12618 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12619 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12620 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12621 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12622 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12623 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12624 AtomicExpr::AtomicOp Op);
12625 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12626 bool IsDelete);
12627 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12628 llvm::APSInt &Result);
12629 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12630 int High, bool RangeIsError = true);
12631 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12632 unsigned Multiple);
12633 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12634 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12635 unsigned ArgBits);
12636 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12637 unsigned ArgBits);
12638 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12639 int ArgNum, unsigned ExpectedFieldNum,
12640 bool AllowName);
12641 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12642 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12643
12644 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12645
12646 // Matrix builtin handling.
12647 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12648 ExprResult CallResult);
12649 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12650 ExprResult CallResult);
12651 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12652 ExprResult CallResult);
12653
12654public:
12655 enum FormatStringType {
12656 FST_Scanf,
12657 FST_Printf,
12658 FST_NSString,
12659 FST_Strftime,
12660 FST_Strfmon,
12661 FST_Kprintf,
12662 FST_FreeBSDKPrintf,
12663 FST_OSTrace,
12664 FST_OSLog,
12665 FST_Unknown
12666 };
12667 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12668
12669 bool FormatStringHasSArg(const StringLiteral *FExpr);
12670
12671 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12672
12673private:
12674 bool CheckFormatArguments(const FormatAttr *Format,
12675 ArrayRef<const Expr *> Args,
12676 bool IsCXXMember,
12677 VariadicCallType CallType,
12678 SourceLocation Loc, SourceRange Range,
12679 llvm::SmallBitVector &CheckedVarArgs);
12680 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12681 bool HasVAListArg, unsigned format_idx,
12682 unsigned firstDataArg, FormatStringType Type,
12683 VariadicCallType CallType,
12684 SourceLocation Loc, SourceRange range,
12685 llvm::SmallBitVector &CheckedVarArgs);
12686
12687 void CheckAbsoluteValueFunction(const CallExpr *Call,
12688 const FunctionDecl *FDecl);
12689
12690 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12691
12692 void CheckMemaccessArguments(const CallExpr *Call,
12693 unsigned BId,
12694 IdentifierInfo *FnName);
12695
12696 void CheckStrlcpycatArguments(const CallExpr *Call,
12697 IdentifierInfo *FnName);
12698
12699 void CheckStrncatArguments(const CallExpr *Call,
12700 IdentifierInfo *FnName);
12701
12702 void CheckFreeArguments(const CallExpr *E);
12703
12704 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12705 SourceLocation ReturnLoc,
12706 bool isObjCMethod = false,
12707 const AttrVec *Attrs = nullptr,
12708 const FunctionDecl *FD = nullptr);
12709
12710public:
12711 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12712
12713private:
12714 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12715 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12716 void CheckForIntOverflow(Expr *E);
12717 void CheckUnsequencedOperations(const Expr *E);
12718
12719 /// Perform semantic checks on a completed expression. This will either
12720 /// be a full-expression or a default argument expression.
12721 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12722 bool IsConstexpr = false);
12723
12724 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12725 Expr *Init);
12726
12727 /// Check if there is a field shadowing.
12728 void CheckShadowInheritedFields(const SourceLocation &Loc,
12729 DeclarationName FieldName,
12730 const CXXRecordDecl *RD,
12731 bool DeclIsField = true);
12732
12733 /// Check if the given expression contains 'break' or 'continue'
12734 /// statement that produces control flow different from GCC.
12735 void CheckBreakContinueBinding(Expr *E);
12736
12737 /// Check whether receiver is mutable ObjC container which
12738 /// attempts to add itself into the container
12739 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12740
12741 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12742
12743 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12744 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12745 bool DeleteWasArrayForm);
12746public:
12747 /// Register a magic integral constant to be used as a type tag.
12748 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12749 uint64_t MagicValue, QualType Type,
12750 bool LayoutCompatible, bool MustBeNull);
12751
12752 struct TypeTagData {
12753 TypeTagData() {}
12754
12755 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12756 Type(Type), LayoutCompatible(LayoutCompatible),
12757 MustBeNull(MustBeNull)
12758 {}
12759
12760 QualType Type;
12761
12762 /// If true, \c Type should be compared with other expression's types for
12763 /// layout-compatibility.
12764 unsigned LayoutCompatible : 1;
12765 unsigned MustBeNull : 1;
12766 };
12767
12768 /// A pair of ArgumentKind identifier and magic value. This uniquely
12769 /// identifies the magic value.
12770 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12771
12772private:
12773 /// A map from magic value to type information.
12774 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12775 TypeTagForDatatypeMagicValues;
12776
12777 /// Peform checks on a call of a function with argument_with_type_tag
12778 /// or pointer_with_type_tag attributes.
12779 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12780 const ArrayRef<const Expr *> ExprArgs,
12781 SourceLocation CallSiteLoc);
12782
12783 /// Check if we are taking the address of a packed field
12784 /// as this may be a problem if the pointer value is dereferenced.
12785 void CheckAddressOfPackedMember(Expr *rhs);
12786
12787 /// The parser's current scope.
12788 ///
12789 /// The parser maintains this state here.
12790 Scope *CurScope;
12791
12792 mutable IdentifierInfo *Ident_super;
12793 mutable IdentifierInfo *Ident___float128;
12794
12795 /// Nullability type specifiers.
12796 IdentifierInfo *Ident__Nonnull = nullptr;
12797 IdentifierInfo *Ident__Nullable = nullptr;
12798 IdentifierInfo *Ident__Nullable_result = nullptr;
12799 IdentifierInfo *Ident__Null_unspecified = nullptr;
12800
12801 IdentifierInfo *Ident_NSError = nullptr;
12802
12803 /// The handler for the FileChanged preprocessor events.
12804 ///
12805 /// Used for diagnostics that implement custom semantic analysis for #include
12806 /// directives, like -Wpragma-pack.
12807 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12808
12809protected:
12810 friend class Parser;
12811 friend class InitializationSequence;
12812 friend class ASTReader;
12813 friend class ASTDeclReader;
12814 friend class ASTWriter;
12815
12816public:
12817 /// Retrieve the keyword associated
12818 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12819
12820 /// The struct behind the CFErrorRef pointer.
12821 RecordDecl *CFError = nullptr;
12822 bool isCFError(RecordDecl *D);
12823
12824 /// Retrieve the identifier "NSError".
12825 IdentifierInfo *getNSErrorIdent();
12826
12827 /// Retrieve the parser's current scope.
12828 ///
12829 /// This routine must only be used when it is certain that semantic analysis
12830 /// and the parser are in precisely the same context, which is not the case
12831 /// when, e.g., we are performing any kind of template instantiation.
12832 /// Therefore, the only safe places to use this scope are in the parser
12833 /// itself and in routines directly invoked from the parser and *never* from
12834 /// template substitution or instantiation.
12835 Scope *getCurScope() const { return CurScope; }
12836
12837 void incrementMSManglingNumber() const {
12838 return CurScope->incrementMSManglingNumber();
12839 }
12840
12841 IdentifierInfo *getSuperIdentifier() const;
12842 IdentifierInfo *getFloat128Identifier() const;
12843
12844 Decl *getObjCDeclContext() const;
12845
12846 DeclContext *getCurLexicalContext() const {
12847 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12848 }
12849
12850 const DeclContext *getCurObjCLexicalContext() const {
12851 const DeclContext *DC = getCurLexicalContext();
12852 // A category implicitly has the attribute of the interface.
12853 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12854 DC = CatD->getClassInterface();
12855 return DC;
12856 }
12857
12858 /// Determine the number of levels of enclosing template parameters. This is
12859 /// only usable while parsing. Note that this does not include dependent
12860 /// contexts in which no template parameters have yet been declared, such as
12861 /// in a terse function template or generic lambda before the first 'auto' is
12862 /// encountered.
12863 unsigned getTemplateDepth(Scope *S) const;
12864
12865 /// To be used for checking whether the arguments being passed to
12866 /// function exceeds the number of parameters expected for it.
12867 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12868 bool PartialOverloading = false) {
12869 // We check whether we're just after a comma in code-completion.
12870 if (NumArgs > 0 && PartialOverloading)
12871 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12872 return NumArgs > NumParams;
12873 }
12874
12875 // Emitting members of dllexported classes is delayed until the class
12876 // (including field initializers) is fully parsed.
12877 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12878 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12879
12880private:
12881 int ParsingClassDepth = 0;
12882
12883 class SavePendingParsedClassStateRAII {
12884 public:
12885 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12886
12887 ~SavePendingParsedClassStateRAII() {
12888 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
12889 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
;
12890 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
12891 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
;
12892 swapSavedState();
12893 }
12894
12895 private:
12896 Sema &S;
12897 decltype(DelayedOverridingExceptionSpecChecks)
12898 SavedOverridingExceptionSpecChecks;
12899 decltype(DelayedEquivalentExceptionSpecChecks)
12900 SavedEquivalentExceptionSpecChecks;
12901
12902 void swapSavedState() {
12903 SavedOverridingExceptionSpecChecks.swap(
12904 S.DelayedOverridingExceptionSpecChecks);
12905 SavedEquivalentExceptionSpecChecks.swap(
12906 S.DelayedEquivalentExceptionSpecChecks);
12907 }
12908 };
12909
12910 /// Helper class that collects misaligned member designations and
12911 /// their location info for delayed diagnostics.
12912 struct MisalignedMember {
12913 Expr *E;
12914 RecordDecl *RD;
12915 ValueDecl *MD;
12916 CharUnits Alignment;
12917
12918 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12919 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment)
12921 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12922 explicit MisalignedMember(Expr *E)
12923 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12924
12925 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12926 };
12927 /// Small set of gathered accesses to potentially misaligned members
12928 /// due to the packed attribute.
12929 SmallVector<MisalignedMember, 4> MisalignedMembers;
12930
12931 /// Adds an expression to the set of gathered misaligned members.
12932 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12933 CharUnits Alignment);
12934
12935public:
12936 /// Diagnoses the current set of gathered accesses. This typically
12937 /// happens at full expression level. The set is cleared after emitting the
12938 /// diagnostics.
12939 void DiagnoseMisalignedMembers();
12940
12941 /// This function checks if the expression is in the sef of potentially
12942 /// misaligned members and it is converted to some pointer type T with lower
12943 /// or equal alignment requirements. If so it removes it. This is used when
12944 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12945 /// void*).
12946 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12947
12948 /// This function calls Action when it determines that E designates a
12949 /// misaligned member due to the packed attribute. This is used to emit
12950 /// local diagnostics like in reference binding.
12951 void RefersToMemberWithReducedAlignment(
12952 Expr *E,
12953 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12954 Action);
12955
12956 /// Describes the reason a calling convention specification was ignored, used
12957 /// for diagnostics.
12958 enum class CallingConventionIgnoredReason {
12959 ForThisTarget = 0,
12960 VariadicFunction,
12961 ConstructorDestructor,
12962 BuiltinFunction
12963 };
12964 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12965 /// context is "used as device code".
12966 ///
12967 /// - If CurLexicalContext is a kernel function or it is known that the
12968 /// function will be emitted for the device, emits the diagnostics
12969 /// immediately.
12970 /// - If CurLexicalContext is a function and we are compiling
12971 /// for the device, but we don't know that this function will be codegen'ed
12972 /// for devive yet, creates a diagnostic which is emitted if and when we
12973 /// realize that the function will be codegen'ed.
12974 ///
12975 /// Example usage:
12976 ///
12977 /// Diagnose __float128 type usage only from SYCL device code if the current
12978 /// target doesn't support it
12979 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12980 /// S.getLangOpts().SYCLIsDevice)
12981 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12982 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12983 unsigned DiagID);
12984
12985 /// Check whether we're allowed to call Callee from the current context.
12986 ///
12987 /// - If the call is never allowed in a semantically-correct program
12988 /// emits an error and returns false.
12989 ///
12990 /// - If the call is allowed in semantically-correct programs, but only if
12991 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12992 /// and when the caller is codegen'ed, and returns true.
12993 ///
12994 /// - Otherwise, returns true without emitting any diagnostics.
12995 ///
12996 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12997 /// codegen'ed yet.
12998 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12999};
13000
13001/// RAII object that enters a new expression evaluation context.
13002class EnterExpressionEvaluationContext {
13003 Sema &Actions;
13004 bool Entered = true;
13005
13006public:
13007 EnterExpressionEvaluationContext(
13008 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13009 Decl *LambdaContextDecl = nullptr,
13010 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13011 Sema::ExpressionEvaluationContextRecord::EK_Other,
13012 bool ShouldEnter = true)
13013 : Actions(Actions), Entered(ShouldEnter) {
13014 if (Entered)
13015 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13016 ExprContext);
13017 }
13018 EnterExpressionEvaluationContext(
13019 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13020 Sema::ReuseLambdaContextDecl_t,
13021 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13022 Sema::ExpressionEvaluationContextRecord::EK_Other)
13023 : Actions(Actions) {
13024 Actions.PushExpressionEvaluationContext(
13025 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13026 }
13027
13028 enum InitListTag { InitList };
13029 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13030 bool ShouldEnter = true)
13031 : Actions(Actions), Entered(false) {
13032 // In C++11 onwards, narrowing checks are performed on the contents of
13033 // braced-init-lists, even when they occur within unevaluated operands.
13034 // Therefore we still need to instantiate constexpr functions used in such
13035 // a context.
13036 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13037 Actions.getLangOpts().CPlusPlus11) {
13038 Actions.PushExpressionEvaluationContext(
13039 Sema::ExpressionEvaluationContext::UnevaluatedList);
13040 Entered = true;
13041 }
13042 }
13043
13044 ~EnterExpressionEvaluationContext() {
13045 if (Entered)
13046 Actions.PopExpressionEvaluationContext();
13047 }
13048};
13049
13050DeductionFailureInfo
13051MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13052 sema::TemplateDeductionInfo &Info);
13053
13054/// Contains a late templated function.
13055/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13056struct LateParsedTemplate {
13057 CachedTokens Toks;
13058 /// The template function declaration to be late parsed.
13059 Decl *D;
13060};
13061
13062template <>
13063void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13064 PragmaMsStackAction Action,
13065 llvm::StringRef StackSlotLabel,
13066 AlignPackInfo Value);
13067
13068} // end namespace clang
13069
13070namespace llvm {
13071// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13072// SourceLocation.
13073template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13074 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13075 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13076
13077 static FunctionDeclAndLoc getEmptyKey() {
13078 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13079 }
13080
13081 static FunctionDeclAndLoc getTombstoneKey() {
13082 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13083 }
13084
13085 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13086 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13087 FDL.Loc.getHashValue());
13088 }
13089
13090 static bool isEqual(const FunctionDeclAndLoc &LHS,
13091 const FunctionDeclAndLoc &RHS) {
13092 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13093 }
13094};
13095} // namespace llvm
13096
13097#endif