Bug Summary

File:build/source/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1252, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679915782 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-27-130437-16335-1 -x c++ /build/source/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/Type.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/AlignedAllocation.h"
27#include "clang/Basic/DiagnosticSema.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Basic/TokenKinds.h"
31#include "clang/Basic/TypeTraits.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/SemaLambda.h"
41#include "clang/Sema/Template.h"
42#include "clang/Sema/TemplateDeduction.h"
43#include "llvm/ADT/APInt.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/TypeSize.h"
47#include <optional>
48using namespace clang;
49using namespace sema;
50
51/// Handle the result of the special case name lookup for inheriting
52/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
53/// constructor names in member using declarations, even if 'X' is not the
54/// name of the corresponding type.
55ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
56 SourceLocation NameLoc,
57 IdentifierInfo &Name) {
58 NestedNameSpecifier *NNS = SS.getScopeRep();
59
60 // Convert the nested-name-specifier into a type.
61 QualType Type;
62 switch (NNS->getKind()) {
63 case NestedNameSpecifier::TypeSpec:
64 case NestedNameSpecifier::TypeSpecWithTemplate:
65 Type = QualType(NNS->getAsType(), 0);
66 break;
67
68 case NestedNameSpecifier::Identifier:
69 // Strip off the last layer of the nested-name-specifier and build a
70 // typename type for it.
71 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 71, __extension__ __PRETTY_FUNCTION__
))
;
72 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
73 NNS->getAsIdentifier());
74 break;
75
76 case NestedNameSpecifier::Global:
77 case NestedNameSpecifier::Super:
78 case NestedNameSpecifier::Namespace:
79 case NestedNameSpecifier::NamespaceAlias:
80 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 80)
;
81 }
82
83 // This reference to the type is located entirely at the location of the
84 // final identifier in the qualified-id.
85 return CreateParsedType(Type,
86 Context.getTrivialTypeSourceInfo(Type, NameLoc));
87}
88
89ParsedType Sema::getConstructorName(IdentifierInfo &II,
90 SourceLocation NameLoc,
91 Scope *S, CXXScopeSpec &SS,
92 bool EnteringContext) {
93 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
94 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 95, __extension__ __PRETTY_FUNCTION__
))
95 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 95, __extension__ __PRETTY_FUNCTION__
))
;
96
97 // When naming a constructor as a member of a dependent context (eg, in a
98 // friend declaration or an inherited constructor declaration), form an
99 // unresolved "typename" type.
100 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
101 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
102 return ParsedType::make(T);
103 }
104
105 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
106 return ParsedType();
107
108 // Find the injected-class-name declaration. Note that we make no attempt to
109 // diagnose cases where the injected-class-name is shadowed: the only
110 // declaration that can validly shadow the injected-class-name is a
111 // non-static data member, and if the class contains both a non-static data
112 // member and a constructor then it is ill-formed (we check that in
113 // CheckCompletedCXXClass).
114 CXXRecordDecl *InjectedClassName = nullptr;
115 for (NamedDecl *ND : CurClass->lookup(&II)) {
116 auto *RD = dyn_cast<CXXRecordDecl>(ND);
117 if (RD && RD->isInjectedClassName()) {
118 InjectedClassName = RD;
119 break;
120 }
121 }
122 if (!InjectedClassName) {
123 if (!CurClass->isInvalidDecl()) {
124 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
125 // properly. Work around it here for now.
126 Diag(SS.getLastQualifierNameLoc(),
127 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
128 }
129 return ParsedType();
130 }
131
132 QualType T = Context.getTypeDeclType(InjectedClassName);
133 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
134 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
135
136 return ParsedType::make(T);
137}
138
139ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
140 IdentifierInfo &II,
141 SourceLocation NameLoc,
142 Scope *S, CXXScopeSpec &SS,
143 ParsedType ObjectTypePtr,
144 bool EnteringContext) {
145 // Determine where to perform name lookup.
146
147 // FIXME: This area of the standard is very messy, and the current
148 // wording is rather unclear about which scopes we search for the
149 // destructor name; see core issues 399 and 555. Issue 399 in
150 // particular shows where the current description of destructor name
151 // lookup is completely out of line with existing practice, e.g.,
152 // this appears to be ill-formed:
153 //
154 // namespace N {
155 // template <typename T> struct S {
156 // ~S();
157 // };
158 // }
159 //
160 // void f(N::S<int>* s) {
161 // s->N::S<int>::~S();
162 // }
163 //
164 // See also PR6358 and PR6359.
165 //
166 // For now, we accept all the cases in which the name given could plausibly
167 // be interpreted as a correct destructor name, issuing off-by-default
168 // extension diagnostics on the cases that don't strictly conform to the
169 // C++20 rules. This basically means we always consider looking in the
170 // nested-name-specifier prefix, the complete nested-name-specifier, and
171 // the scope, and accept if we find the expected type in any of the three
172 // places.
173
174 if (SS.isInvalid())
175 return nullptr;
176
177 // Whether we've failed with a diagnostic already.
178 bool Failed = false;
179
180 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
181 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
182
183 // If we have an object type, it's because we are in a
184 // pseudo-destructor-expression or a member access expression, and
185 // we know what type we're looking for.
186 QualType SearchType =
187 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
188
189 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
190 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
191 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
192 if (!Type)
193 return false;
194
195 if (SearchType.isNull() || SearchType->isDependentType())
196 return true;
197
198 QualType T = Context.getTypeDeclType(Type);
199 return Context.hasSameUnqualifiedType(T, SearchType);
200 };
201
202 unsigned NumAcceptableResults = 0;
203 for (NamedDecl *D : Found) {
204 if (IsAcceptableResult(D))
205 ++NumAcceptableResults;
206
207 // Don't list a class twice in the lookup failure diagnostic if it's
208 // found by both its injected-class-name and by the name in the enclosing
209 // scope.
210 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
211 if (RD->isInjectedClassName())
212 D = cast<NamedDecl>(RD->getParent());
213
214 if (FoundDeclSet.insert(D).second)
215 FoundDecls.push_back(D);
216 }
217
218 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
219 // results, and all non-matching results if we have a search type. It's not
220 // clear what the right behavior is if destructor lookup hits an ambiguity,
221 // but other compilers do generally accept at least some kinds of
222 // ambiguity.
223 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
224 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
225 LookupResult::Filter F = Found.makeFilter();
226 while (F.hasNext()) {
227 NamedDecl *D = F.next();
228 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
229 Diag(D->getLocation(), diag::note_destructor_type_here)
230 << Context.getTypeDeclType(TD);
231 else
232 Diag(D->getLocation(), diag::note_destructor_nontype_here);
233
234 if (!IsAcceptableResult(D))
235 F.erase();
236 }
237 F.done();
238 }
239
240 if (Found.isAmbiguous())
241 Failed = true;
242
243 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
244 if (IsAcceptableResult(Type)) {
245 QualType T = Context.getTypeDeclType(Type);
246 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
247 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
248 Context.getTrivialTypeSourceInfo(T, NameLoc));
249 }
250 }
251
252 return nullptr;
253 };
254
255 bool IsDependent = false;
256
257 auto LookupInObjectType = [&]() -> ParsedType {
258 if (Failed || SearchType.isNull())
259 return nullptr;
260
261 IsDependent |= SearchType->isDependentType();
262
263 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
264 DeclContext *LookupCtx = computeDeclContext(SearchType);
265 if (!LookupCtx)
266 return nullptr;
267 LookupQualifiedName(Found, LookupCtx);
268 return CheckLookupResult(Found);
269 };
270
271 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
272 if (Failed)
273 return nullptr;
274
275 IsDependent |= isDependentScopeSpecifier(LookupSS);
276 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
277 if (!LookupCtx)
278 return nullptr;
279
280 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
281 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
282 Failed = true;
283 return nullptr;
284 }
285 LookupQualifiedName(Found, LookupCtx);
286 return CheckLookupResult(Found);
287 };
288
289 auto LookupInScope = [&]() -> ParsedType {
290 if (Failed || !S)
291 return nullptr;
292
293 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
294 LookupName(Found, S);
295 return CheckLookupResult(Found);
296 };
297
298 // C++2a [basic.lookup.qual]p6:
299 // In a qualified-id of the form
300 //
301 // nested-name-specifier[opt] type-name :: ~ type-name
302 //
303 // the second type-name is looked up in the same scope as the first.
304 //
305 // We interpret this as meaning that if you do a dual-scope lookup for the
306 // first name, you also do a dual-scope lookup for the second name, per
307 // C++ [basic.lookup.classref]p4:
308 //
309 // If the id-expression in a class member access is a qualified-id of the
310 // form
311 //
312 // class-name-or-namespace-name :: ...
313 //
314 // the class-name-or-namespace-name following the . or -> is first looked
315 // up in the class of the object expression and the name, if found, is used.
316 // Otherwise, it is looked up in the context of the entire
317 // postfix-expression.
318 //
319 // This looks in the same scopes as for an unqualified destructor name:
320 //
321 // C++ [basic.lookup.classref]p3:
322 // If the unqualified-id is ~ type-name, the type-name is looked up
323 // in the context of the entire postfix-expression. If the type T
324 // of the object expression is of a class type C, the type-name is
325 // also looked up in the scope of class C. At least one of the
326 // lookups shall find a name that refers to cv T.
327 //
328 // FIXME: The intent is unclear here. Should type-name::~type-name look in
329 // the scope anyway if it finds a non-matching name declared in the class?
330 // If both lookups succeed and find a dependent result, which result should
331 // we retain? (Same question for p->~type-name().)
332
333 if (NestedNameSpecifier *Prefix =
334 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
335 // This is
336 //
337 // nested-name-specifier type-name :: ~ type-name
338 //
339 // Look for the second type-name in the nested-name-specifier.
340 CXXScopeSpec PrefixSS;
341 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
342 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
343 return T;
344 } else {
345 // This is one of
346 //
347 // type-name :: ~ type-name
348 // ~ type-name
349 //
350 // Look in the scope and (if any) the object type.
351 if (ParsedType T = LookupInScope())
352 return T;
353 if (ParsedType T = LookupInObjectType())
354 return T;
355 }
356
357 if (Failed)
358 return nullptr;
359
360 if (IsDependent) {
361 // We didn't find our type, but that's OK: it's dependent anyway.
362
363 // FIXME: What if we have no nested-name-specifier?
364 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
365 SS.getWithLocInContext(Context),
366 II, NameLoc);
367 return ParsedType::make(T);
368 }
369
370 // The remaining cases are all non-standard extensions imitating the behavior
371 // of various other compilers.
372 unsigned NumNonExtensionDecls = FoundDecls.size();
373
374 if (SS.isSet()) {
375 // For compatibility with older broken C++ rules and existing code,
376 //
377 // nested-name-specifier :: ~ type-name
378 //
379 // also looks for type-name within the nested-name-specifier.
380 if (ParsedType T = LookupInNestedNameSpec(SS)) {
381 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
382 << SS.getRange()
383 << FixItHint::CreateInsertion(SS.getEndLoc(),
384 ("::" + II.getName()).str());
385 return T;
386 }
387
388 // For compatibility with other compilers and older versions of Clang,
389 //
390 // nested-name-specifier type-name :: ~ type-name
391 //
392 // also looks for type-name in the scope. Unfortunately, we can't
393 // reasonably apply this fallback for dependent nested-name-specifiers.
394 if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
395 if (ParsedType T = LookupInScope()) {
396 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
397 << FixItHint::CreateRemoval(SS.getRange());
398 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
399 << GetTypeFromParser(T);
400 return T;
401 }
402 }
403 }
404
405 // We didn't find anything matching; tell the user what we did find (if
406 // anything).
407
408 // Don't tell the user about declarations we shouldn't have found.
409 FoundDecls.resize(NumNonExtensionDecls);
410
411 // List types before non-types.
412 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
413 [](NamedDecl *A, NamedDecl *B) {
414 return isa<TypeDecl>(A->getUnderlyingDecl()) >
415 isa<TypeDecl>(B->getUnderlyingDecl());
416 });
417
418 // Suggest a fixit to properly name the destroyed type.
419 auto MakeFixItHint = [&]{
420 const CXXRecordDecl *Destroyed = nullptr;
421 // FIXME: If we have a scope specifier, suggest its last component?
422 if (!SearchType.isNull())
423 Destroyed = SearchType->getAsCXXRecordDecl();
424 else if (S)
425 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
426 if (Destroyed)
427 return FixItHint::CreateReplacement(SourceRange(NameLoc),
428 Destroyed->getNameAsString());
429 return FixItHint();
430 };
431
432 if (FoundDecls.empty()) {
433 // FIXME: Attempt typo-correction?
434 Diag(NameLoc, diag::err_undeclared_destructor_name)
435 << &II << MakeFixItHint();
436 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
437 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
438 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 439, __extension__ __PRETTY_FUNCTION__
))
439 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 439, __extension__ __PRETTY_FUNCTION__
))
;
440 QualType T = Context.getTypeDeclType(TD);
441 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
442 << T << SearchType << MakeFixItHint();
443 } else {
444 Diag(NameLoc, diag::err_destructor_expr_nontype)
445 << &II << MakeFixItHint();
446 }
447 } else {
448 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
449 : diag::err_destructor_expr_mismatch)
450 << &II << SearchType << MakeFixItHint();
451 }
452
453 for (NamedDecl *FoundD : FoundDecls) {
454 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
455 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
456 << Context.getTypeDeclType(TD);
457 else
458 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
459 << FoundD;
460 }
461
462 return nullptr;
463}
464
465ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
466 ParsedType ObjectType) {
467 if (DS.getTypeSpecType() == DeclSpec::TST_error)
468 return nullptr;
469
470 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
471 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
472 return nullptr;
473 }
474
475 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 476, __extension__ __PRETTY_FUNCTION__
))
476 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 476, __extension__ __PRETTY_FUNCTION__
))
;
477 QualType T = BuildDecltypeType(DS.getRepAsExpr());
478
479 // If we know the type of the object, check that the correct destructor
480 // type was named now; we can give better diagnostics this way.
481 QualType SearchType = GetTypeFromParser(ObjectType);
482 if (!SearchType.isNull() && !SearchType->isDependentType() &&
483 !Context.hasSameUnqualifiedType(T, SearchType)) {
484 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
485 << T << SearchType;
486 return nullptr;
487 }
488
489 return ParsedType::make(T);
490}
491
492bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
493 const UnqualifiedId &Name, bool IsUDSuffix) {
494 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 494, __extension__ __PRETTY_FUNCTION__
))
;
495 if (!IsUDSuffix) {
496 // [over.literal] p8
497 //
498 // double operator""_Bq(long double); // OK: not a reserved identifier
499 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
500 IdentifierInfo *II = Name.Identifier;
501 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
502 SourceLocation Loc = Name.getEndLoc();
503 if (isReservedInAllContexts(Status) &&
504 !PP.getSourceManager().isInSystemHeader(Loc)) {
505 Diag(Loc, diag::warn_reserved_extern_symbol)
506 << II << static_cast<int>(Status)
507 << FixItHint::CreateReplacement(
508 Name.getSourceRange(),
509 (StringRef("operator\"\"") + II->getName()).str());
510 }
511 }
512
513 if (!SS.isValid())
514 return false;
515
516 switch (SS.getScopeRep()->getKind()) {
517 case NestedNameSpecifier::Identifier:
518 case NestedNameSpecifier::TypeSpec:
519 case NestedNameSpecifier::TypeSpecWithTemplate:
520 // Per C++11 [over.literal]p2, literal operators can only be declared at
521 // namespace scope. Therefore, this unqualified-id cannot name anything.
522 // Reject it early, because we have no AST representation for this in the
523 // case where the scope is dependent.
524 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
525 << SS.getScopeRep();
526 return true;
527
528 case NestedNameSpecifier::Global:
529 case NestedNameSpecifier::Super:
530 case NestedNameSpecifier::Namespace:
531 case NestedNameSpecifier::NamespaceAlias:
532 return false;
533 }
534
535 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 535)
;
536}
537
538/// Build a C++ typeid expression with a type operand.
539ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
540 SourceLocation TypeidLoc,
541 TypeSourceInfo *Operand,
542 SourceLocation RParenLoc) {
543 // C++ [expr.typeid]p4:
544 // The top-level cv-qualifiers of the lvalue expression or the type-id
545 // that is the operand of typeid are always ignored.
546 // If the type of the type-id is a class type or a reference to a class
547 // type, the class shall be completely-defined.
548 Qualifiers Quals;
549 QualType T
550 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
551 Quals);
552 if (T->getAs<RecordType>() &&
553 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
554 return ExprError();
555
556 if (T->isVariablyModifiedType())
557 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
558
559 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
560 return ExprError();
561
562 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
563 SourceRange(TypeidLoc, RParenLoc));
564}
565
566/// Build a C++ typeid expression with an expression operand.
567ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
568 SourceLocation TypeidLoc,
569 Expr *E,
570 SourceLocation RParenLoc) {
571 bool WasEvaluated = false;
572 if (E && !E->isTypeDependent()) {
573 if (E->hasPlaceholderType()) {
574 ExprResult result = CheckPlaceholderExpr(E);
575 if (result.isInvalid()) return ExprError();
576 E = result.get();
577 }
578
579 QualType T = E->getType();
580 if (const RecordType *RecordT = T->getAs<RecordType>()) {
581 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
582 // C++ [expr.typeid]p3:
583 // [...] If the type of the expression is a class type, the class
584 // shall be completely-defined.
585 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
586 return ExprError();
587
588 // C++ [expr.typeid]p3:
589 // When typeid is applied to an expression other than an glvalue of a
590 // polymorphic class type [...] [the] expression is an unevaluated
591 // operand. [...]
592 if (RecordD->isPolymorphic() && E->isGLValue()) {
593 if (isUnevaluatedContext()) {
594 // The operand was processed in unevaluated context, switch the
595 // context and recheck the subexpression.
596 ExprResult Result = TransformToPotentiallyEvaluated(E);
597 if (Result.isInvalid())
598 return ExprError();
599 E = Result.get();
600 }
601
602 // We require a vtable to query the type at run time.
603 MarkVTableUsed(TypeidLoc, RecordD);
604 WasEvaluated = true;
605 }
606 }
607
608 ExprResult Result = CheckUnevaluatedOperand(E);
609 if (Result.isInvalid())
610 return ExprError();
611 E = Result.get();
612
613 // C++ [expr.typeid]p4:
614 // [...] If the type of the type-id is a reference to a possibly
615 // cv-qualified type, the result of the typeid expression refers to a
616 // std::type_info object representing the cv-unqualified referenced
617 // type.
618 Qualifiers Quals;
619 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
620 if (!Context.hasSameType(T, UnqualT)) {
621 T = UnqualT;
622 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
623 }
624 }
625
626 if (E->getType()->isVariablyModifiedType())
627 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
628 << E->getType());
629 else if (!inTemplateInstantiation() &&
630 E->HasSideEffects(Context, WasEvaluated)) {
631 // The expression operand for typeid is in an unevaluated expression
632 // context, so side effects could result in unintended consequences.
633 Diag(E->getExprLoc(), WasEvaluated
634 ? diag::warn_side_effects_typeid
635 : diag::warn_side_effects_unevaluated_context);
636 }
637
638 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
639 SourceRange(TypeidLoc, RParenLoc));
640}
641
642/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
643ExprResult
644Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
645 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
646 // typeid is not supported in OpenCL.
647 if (getLangOpts().OpenCLCPlusPlus) {
648 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
649 << "typeid");
650 }
651
652 // Find the std::type_info type.
653 if (!getStdNamespace())
654 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
655
656 if (!CXXTypeInfoDecl) {
657 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
658 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
659 LookupQualifiedName(R, getStdNamespace());
660 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
661 // Microsoft's typeinfo doesn't have type_info in std but in the global
662 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
663 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
664 LookupQualifiedName(R, Context.getTranslationUnitDecl());
665 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
666 }
667 if (!CXXTypeInfoDecl)
668 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
669 }
670
671 if (!getLangOpts().RTTI) {
672 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
673 }
674
675 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
676
677 if (isType) {
678 // The operand is a type; handle it as such.
679 TypeSourceInfo *TInfo = nullptr;
680 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
681 &TInfo);
682 if (T.isNull())
683 return ExprError();
684
685 if (!TInfo)
686 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
687
688 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
689 }
690
691 // The operand is an expression.
692 ExprResult Result =
693 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
694
695 if (!getLangOpts().RTTIData && !Result.isInvalid())
696 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
697 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
698 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
699 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
700 DiagnosticOptions::MSVC);
701 return Result;
702}
703
704/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
705/// a single GUID.
706static void
707getUuidAttrOfType(Sema &SemaRef, QualType QT,
708 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
709 // Optionally remove one level of pointer, reference or array indirection.
710 const Type *Ty = QT.getTypePtr();
711 if (QT->isPointerType() || QT->isReferenceType())
712 Ty = QT->getPointeeType().getTypePtr();
713 else if (QT->isArrayType())
714 Ty = Ty->getBaseElementTypeUnsafe();
715
716 const auto *TD = Ty->getAsTagDecl();
717 if (!TD)
718 return;
719
720 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
721 UuidAttrs.insert(Uuid);
722 return;
723 }
724
725 // __uuidof can grab UUIDs from template arguments.
726 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
727 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
728 for (const TemplateArgument &TA : TAL.asArray()) {
729 const UuidAttr *UuidForTA = nullptr;
730 if (TA.getKind() == TemplateArgument::Type)
731 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
732 else if (TA.getKind() == TemplateArgument::Declaration)
733 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
734
735 if (UuidForTA)
736 UuidAttrs.insert(UuidForTA);
737 }
738 }
739}
740
741/// Build a Microsoft __uuidof expression with a type operand.
742ExprResult Sema::BuildCXXUuidof(QualType Type,
743 SourceLocation TypeidLoc,
744 TypeSourceInfo *Operand,
745 SourceLocation RParenLoc) {
746 MSGuidDecl *Guid = nullptr;
747 if (!Operand->getType()->isDependentType()) {
748 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
749 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
750 if (UuidAttrs.empty())
751 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
752 if (UuidAttrs.size() > 1)
753 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
754 Guid = UuidAttrs.back()->getGuidDecl();
755 }
756
757 return new (Context)
758 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
759}
760
761/// Build a Microsoft __uuidof expression with an expression operand.
762ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
763 Expr *E, SourceLocation RParenLoc) {
764 MSGuidDecl *Guid = nullptr;
765 if (!E->getType()->isDependentType()) {
766 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
767 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
768 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
769 } else {
770 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
771 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
772 if (UuidAttrs.empty())
773 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
774 if (UuidAttrs.size() > 1)
775 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
776 Guid = UuidAttrs.back()->getGuidDecl();
777 }
778 }
779
780 return new (Context)
781 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
782}
783
784/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
785ExprResult
786Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
787 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
788 QualType GuidType = Context.getMSGuidType();
789 GuidType.addConst();
790
791 if (isType) {
792 // The operand is a type; handle it as such.
793 TypeSourceInfo *TInfo = nullptr;
794 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
795 &TInfo);
796 if (T.isNull())
797 return ExprError();
798
799 if (!TInfo)
800 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
801
802 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
803 }
804
805 // The operand is an expression.
806 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
807}
808
809/// ActOnCXXBoolLiteral - Parse {true,false} literals.
810ExprResult
811Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
812 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 813, __extension__ __PRETTY_FUNCTION__
))
813 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 813, __extension__ __PRETTY_FUNCTION__
))
;
814 return new (Context)
815 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
816}
817
818/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
819ExprResult
820Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
821 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
822}
823
824/// ActOnCXXThrow - Parse throw expressions.
825ExprResult
826Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
827 bool IsThrownVarInScope = false;
828 if (Ex) {
829 // C++0x [class.copymove]p31:
830 // When certain criteria are met, an implementation is allowed to omit the
831 // copy/move construction of a class object [...]
832 //
833 // - in a throw-expression, when the operand is the name of a
834 // non-volatile automatic object (other than a function or catch-
835 // clause parameter) whose scope does not extend beyond the end of the
836 // innermost enclosing try-block (if there is one), the copy/move
837 // operation from the operand to the exception object (15.1) can be
838 // omitted by constructing the automatic object directly into the
839 // exception object
840 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
841 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
842 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
843 for( ; S; S = S->getParent()) {
844 if (S->isDeclScope(Var)) {
845 IsThrownVarInScope = true;
846 break;
847 }
848
849 // FIXME: Many of the scope checks here seem incorrect.
850 if (S->getFlags() &
851 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
852 Scope::ObjCMethodScope | Scope::TryScope))
853 break;
854 }
855 }
856 }
857 }
858
859 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
860}
861
862ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
863 bool IsThrownVarInScope) {
864 // Don't report an error if 'throw' is used in system headers.
865 if (!getLangOpts().CXXExceptions &&
866 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
867 // Delay error emission for the OpenMP device code.
868 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
869 }
870
871 // Exceptions aren't allowed in CUDA device code.
872 if (getLangOpts().CUDA)
873 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
874 << "throw" << CurrentCUDATarget();
875
876 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
877 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
878
879 if (Ex && !Ex->isTypeDependent()) {
880 // Initialize the exception result. This implicitly weeds out
881 // abstract types or types with inaccessible copy constructors.
882
883 // C++0x [class.copymove]p31:
884 // When certain criteria are met, an implementation is allowed to omit the
885 // copy/move construction of a class object [...]
886 //
887 // - in a throw-expression, when the operand is the name of a
888 // non-volatile automatic object (other than a function or
889 // catch-clause
890 // parameter) whose scope does not extend beyond the end of the
891 // innermost enclosing try-block (if there is one), the copy/move
892 // operation from the operand to the exception object (15.1) can be
893 // omitted by constructing the automatic object directly into the
894 // exception object
895 NamedReturnInfo NRInfo =
896 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
897
898 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
899 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
900 return ExprError();
901
902 InitializedEntity Entity =
903 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
904 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
905 if (Res.isInvalid())
906 return ExprError();
907 Ex = Res.get();
908 }
909
910 // PPC MMA non-pointer types are not allowed as throw expr types.
911 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
912 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
913
914 return new (Context)
915 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
916}
917
918static void
919collectPublicBases(CXXRecordDecl *RD,
920 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
921 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
922 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
923 bool ParentIsPublic) {
924 for (const CXXBaseSpecifier &BS : RD->bases()) {
925 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
926 bool NewSubobject;
927 // Virtual bases constitute the same subobject. Non-virtual bases are
928 // always distinct subobjects.
929 if (BS.isVirtual())
930 NewSubobject = VBases.insert(BaseDecl).second;
931 else
932 NewSubobject = true;
933
934 if (NewSubobject)
935 ++SubobjectsSeen[BaseDecl];
936
937 // Only add subobjects which have public access throughout the entire chain.
938 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
939 if (PublicPath)
940 PublicSubobjectsSeen.insert(BaseDecl);
941
942 // Recurse on to each base subobject.
943 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
944 PublicPath);
945 }
946}
947
948static void getUnambiguousPublicSubobjects(
949 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
950 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
951 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
952 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
953 SubobjectsSeen[RD] = 1;
954 PublicSubobjectsSeen.insert(RD);
955 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
956 /*ParentIsPublic=*/true);
957
958 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
959 // Skip ambiguous objects.
960 if (SubobjectsSeen[PublicSubobject] > 1)
961 continue;
962
963 Objects.push_back(PublicSubobject);
964 }
965}
966
967/// CheckCXXThrowOperand - Validate the operand of a throw.
968bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
969 QualType ExceptionObjectTy, Expr *E) {
970 // If the type of the exception would be an incomplete type or a pointer
971 // to an incomplete type other than (cv) void the program is ill-formed.
972 QualType Ty = ExceptionObjectTy;
973 bool isPointer = false;
974 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
975 Ty = Ptr->getPointeeType();
976 isPointer = true;
977 }
978 if (!isPointer || !Ty->isVoidType()) {
979 if (RequireCompleteType(ThrowLoc, Ty,
980 isPointer ? diag::err_throw_incomplete_ptr
981 : diag::err_throw_incomplete,
982 E->getSourceRange()))
983 return true;
984
985 if (!isPointer && Ty->isSizelessType()) {
986 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
987 return true;
988 }
989
990 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
991 diag::err_throw_abstract_type, E))
992 return true;
993 }
994
995 // If the exception has class type, we need additional handling.
996 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
997 if (!RD)
998 return false;
999
1000 // If we are throwing a polymorphic class type or pointer thereof,
1001 // exception handling will make use of the vtable.
1002 MarkVTableUsed(ThrowLoc, RD);
1003
1004 // If a pointer is thrown, the referenced object will not be destroyed.
1005 if (isPointer)
1006 return false;
1007
1008 // If the class has a destructor, we must be able to call it.
1009 if (!RD->hasIrrelevantDestructor()) {
1010 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1011 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1012 CheckDestructorAccess(E->getExprLoc(), Destructor,
1013 PDiag(diag::err_access_dtor_exception) << Ty);
1014 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1015 return true;
1016 }
1017 }
1018
1019 // The MSVC ABI creates a list of all types which can catch the exception
1020 // object. This list also references the appropriate copy constructor to call
1021 // if the object is caught by value and has a non-trivial copy constructor.
1022 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1023 // We are only interested in the public, unambiguous bases contained within
1024 // the exception object. Bases which are ambiguous or otherwise
1025 // inaccessible are not catchable types.
1026 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1027 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1028
1029 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1030 // Attempt to lookup the copy constructor. Various pieces of machinery
1031 // will spring into action, like template instantiation, which means this
1032 // cannot be a simple walk of the class's decls. Instead, we must perform
1033 // lookup and overload resolution.
1034 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1035 if (!CD || CD->isDeleted())
1036 continue;
1037
1038 // Mark the constructor referenced as it is used by this throw expression.
1039 MarkFunctionReferenced(E->getExprLoc(), CD);
1040
1041 // Skip this copy constructor if it is trivial, we don't need to record it
1042 // in the catchable type data.
1043 if (CD->isTrivial())
1044 continue;
1045
1046 // The copy constructor is non-trivial, create a mapping from this class
1047 // type to this constructor.
1048 // N.B. The selection of copy constructor is not sensitive to this
1049 // particular throw-site. Lookup will be performed at the catch-site to
1050 // ensure that the copy constructor is, in fact, accessible (via
1051 // friendship or any other means).
1052 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1053
1054 // We don't keep the instantiated default argument expressions around so
1055 // we must rebuild them here.
1056 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1057 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1058 return true;
1059 }
1060 }
1061 }
1062
1063 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1064 // the runtime with no ability for the compiler to request additional
1065 // alignment. Warn if the exception type requires alignment beyond the minimum
1066 // guaranteed by the target C++ runtime.
1067 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1068 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1069 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1070 if (ExnObjAlign < TypeAlign) {
1071 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1072 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1073 << Ty << (unsigned)TypeAlign.getQuantity()
1074 << (unsigned)ExnObjAlign.getQuantity();
1075 }
1076 }
1077
1078 return false;
1079}
1080
1081static QualType adjustCVQualifiersForCXXThisWithinLambda(
1082 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1083 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1084
1085 QualType ClassType = ThisTy->getPointeeType();
1086 LambdaScopeInfo *CurLSI = nullptr;
1087 DeclContext *CurDC = CurSemaContext;
1088
1089 // Iterate through the stack of lambdas starting from the innermost lambda to
1090 // the outermost lambda, checking if '*this' is ever captured by copy - since
1091 // that could change the cv-qualifiers of the '*this' object.
1092 // The object referred to by '*this' starts out with the cv-qualifiers of its
1093 // member function. We then start with the innermost lambda and iterate
1094 // outward checking to see if any lambda performs a by-copy capture of '*this'
1095 // - and if so, any nested lambda must respect the 'constness' of that
1096 // capturing lamdbda's call operator.
1097 //
1098
1099 // Since the FunctionScopeInfo stack is representative of the lexical
1100 // nesting of the lambda expressions during initial parsing (and is the best
1101 // place for querying information about captures about lambdas that are
1102 // partially processed) and perhaps during instantiation of function templates
1103 // that contain lambda expressions that need to be transformed BUT not
1104 // necessarily during instantiation of a nested generic lambda's function call
1105 // operator (which might even be instantiated at the end of the TU) - at which
1106 // time the DeclContext tree is mature enough to query capture information
1107 // reliably - we use a two pronged approach to walk through all the lexically
1108 // enclosing lambda expressions:
1109 //
1110 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1111 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1112 // enclosed by the call-operator of the LSI below it on the stack (while
1113 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1114 // the stack represents the innermost lambda.
1115 //
1116 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1117 // represents a lambda's call operator. If it does, we must be instantiating
1118 // a generic lambda's call operator (represented by the Current LSI, and
1119 // should be the only scenario where an inconsistency between the LSI and the
1120 // DeclContext should occur), so climb out the DeclContexts if they
1121 // represent lambdas, while querying the corresponding closure types
1122 // regarding capture information.
1123
1124 // 1) Climb down the function scope info stack.
1125 for (int I = FunctionScopes.size();
1126 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1127 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1128 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1129 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1130 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1131
1132 if (!CurLSI->isCXXThisCaptured())
1133 continue;
1134
1135 auto C = CurLSI->getCXXThisCapture();
1136
1137 if (C.isCopyCapture()) {
1138 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1139 if (!CurLSI->Mutable)
1140 ClassType.addConst();
1141 return ASTCtx.getPointerType(ClassType);
1142 }
1143 }
1144
1145 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1146 // can happen during instantiation of its nested generic lambda call
1147 // operator); 2. if we're in a lambda scope (lambda body).
1148 if (CurLSI && isLambdaCallOperator(CurDC)) {
1149 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
1150 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
1151 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
1152 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
1153 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
;
1154 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1154, __extension__ __PRETTY_FUNCTION__
))
;
1155
1156 auto IsThisCaptured =
1157 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1158 IsConst = false;
1159 IsByCopy = false;
1160 for (auto &&C : Closure->captures()) {
1161 if (C.capturesThis()) {
1162 if (C.getCaptureKind() == LCK_StarThis)
1163 IsByCopy = true;
1164 if (Closure->getLambdaCallOperator()->isConst())
1165 IsConst = true;
1166 return true;
1167 }
1168 }
1169 return false;
1170 };
1171
1172 bool IsByCopyCapture = false;
1173 bool IsConstCapture = false;
1174 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1175 while (Closure &&
1176 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1177 if (IsByCopyCapture) {
1178 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1179 if (IsConstCapture)
1180 ClassType.addConst();
1181 return ASTCtx.getPointerType(ClassType);
1182 }
1183 Closure = isLambdaCallOperator(Closure->getParent())
1184 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1185 : nullptr;
1186 }
1187 }
1188 return ASTCtx.getPointerType(ClassType);
1189}
1190
1191QualType Sema::getCurrentThisType() {
1192 DeclContext *DC = getFunctionLevelDeclContext();
1193 QualType ThisTy = CXXThisTypeOverride;
1194
1195 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1196 if (method && method->isInstance())
1197 ThisTy = method->getThisType();
1198 }
1199
1200 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1201 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1202
1203 // This is a lambda call operator that is being instantiated as a default
1204 // initializer. DC must point to the enclosing class type, so we can recover
1205 // the 'this' type from it.
1206 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1207 // There are no cv-qualifiers for 'this' within default initializers,
1208 // per [expr.prim.general]p4.
1209 ThisTy = Context.getPointerType(ClassTy);
1210 }
1211
1212 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1213 // might need to be adjusted if the lambda or any of its enclosing lambda's
1214 // captures '*this' by copy.
1215 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1216 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1217 CurContext, Context);
1218 return ThisTy;
1219}
1220
1221Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1222 Decl *ContextDecl,
1223 Qualifiers CXXThisTypeQuals,
1224 bool Enabled)
1225 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1226{
1227 if (!Enabled || !ContextDecl)
1228 return;
1229
1230 CXXRecordDecl *Record = nullptr;
1231 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1232 Record = Template->getTemplatedDecl();
1233 else
1234 Record = cast<CXXRecordDecl>(ContextDecl);
1235
1236 QualType T = S.Context.getRecordType(Record);
1237 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1238
1239 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1240
1241 this->Enabled = true;
1242}
1243
1244
1245Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1246 if (Enabled) {
1247 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1248 }
1249}
1250
1251static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1252 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
24
Called C++ object pointer is null
1253 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1253, __extension__ __PRETTY_FUNCTION__))
;
1254 // [=, this] {}; // until C++20: Error: this when = is the default
1255 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1256 !Sema.getLangOpts().CPlusPlus20)
1257 return;
1258 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1259 << FixItHint::CreateInsertion(
1260 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1261}
1262
1263bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1264 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1265 const bool ByCopy) {
1266 // We don't need to capture this in an unevaluated context.
1267 if (isUnevaluatedContext() && !Explicit)
1268 return true;
1269
1270 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1270, __extension__ __PRETTY_FUNCTION__
))
;
6
'?' condition is true
1271
1272 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
6.1
'FunctionScopeIndexToStopAt' is null
7
'?' condition is false
1273 ? *FunctionScopeIndexToStopAt 1274 : FunctionScopes.size() - 1; 1275 1276 // Check that we can capture the *enclosing object* (referred to by '*this') 1277 // by the capturing-entity/closure (lambda/block/etc) at 1278 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1279 1280 // Note: The *enclosing object* can only be captured by-value by a 1281 // closure that is a lambda, using the explicit notation: 1282 // [*this] { ... }. 1283 // Every other capture of the *enclosing object* results in its by-reference 1284 // capture. 1285 1286 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1287 // stack), we can capture the *enclosing object* only if: 1288 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1289 // - or, 'L' has an implicit capture. 1290 // AND 1291 // -- there is no enclosing closure 1292 // -- or, there is some enclosing closure 'E' that has already captured the 1293 // *enclosing object*, and every intervening closure (if any) between 'E' 1294 // and 'L' can implicitly capture the *enclosing object*. 1295 // -- or, every enclosing closure can implicitly capture the 1296 // *enclosing object* 1297 1298 1299 unsigned NumCapturingClosures = 0; 1300 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
8
Assuming 'idx' is >= 0
9
Loop condition is true. Entering loop body
1301 if (CapturingScopeInfo *CSI
10.1
'CSI' is non-null
=
11
Taking true branch
1302 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
10
Assuming the object is a 'CastReturnType'
1303 if (CSI->CXXThisCaptureIndex != 0) {
12
Assuming field 'CXXThisCaptureIndex' is equal to 0
13
Taking false branch
1304 // 'this' is already being captured; there isn't anything more to do. 1305 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1306 break; 1307 } 1308 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
14
Assuming 'CSI' is not a 'CastReturnType'
15
'LSI' initialized to a null pointer value
1309 if (LSI
15.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1310 // This context can't implicitly capture 'this'; fail out. 1311 if (BuildAndDiagnose) { 1312 Diag(Loc, diag::err_this_capture) 1313 << (Explicit && idx == MaxFunctionScopesIndex); 1314 if (!Explicit) 1315 buildLambdaThisCaptureFixit(*this, LSI); 1316 } 1317 return true; 1318 } 1319 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
16
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1320 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
17
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1321 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
18
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1322 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
19
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1323 (Explicit
19.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1324 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1325 // iteration through can be an explicit capture, all enclosing closures, 1326 // if any, must perform implicit captures. 1327 1328 // This closure can capture 'this'; continue looking upwards. 1329 NumCapturingClosures++; 1330 continue; 1331 } 1332 // This context can't implicitly capture 'this'; fail out. 1333 if (BuildAndDiagnose
19.2
'BuildAndDiagnose' is true
)
20
Taking true branch
1334 Diag(Loc, diag::err_this_capture) 1335 << (Explicit
20.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1336 1337 if (!Explicit
20.2
'Explicit' is false
)
21
Taking true branch
1338 buildLambdaThisCaptureFixit(*this, LSI);
22
Passing null pointer value via 2nd parameter 'LSI'
23
Calling 'buildLambdaThisCaptureFixit'
1339 return true; 1340 } 1341 break; 1342 } 1343 if (!BuildAndDiagnose) return false; 1344 1345 // If we got here, then the closure at MaxFunctionScopesIndex on the 1346 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1347 // (including implicit by-reference captures in any enclosing closures). 1348 1349 // In the loop below, respect the ByCopy flag only for the closure requesting 1350 // the capture (i.e. first iteration through the loop below). Ignore it for 1351 // all enclosing closure's up to NumCapturingClosures (since they must be 1352 // implicitly capturing the *enclosing object* by reference (see loop 1353 // above)). 1354 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1357, __extension__ __PRETTY_FUNCTION__
))
1355 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1357, __extension__ __PRETTY_FUNCTION__
))
1356 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1357, __extension__ __PRETTY_FUNCTION__
))
1357 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1357, __extension__ __PRETTY_FUNCTION__
))
; 1358 QualType ThisTy = getCurrentThisType(); 1359 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1360 --idx, --NumCapturingClosures) { 1361 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1362 1363 // The type of the corresponding data member (not a 'this' pointer if 'by 1364 // copy'). 1365 QualType CaptureType = ThisTy; 1366 if (ByCopy) { 1367 // If we are capturing the object referred to by '*this' by copy, ignore 1368 // any cv qualifiers inherited from the type of the member function for 1369 // the type of the closure-type's corresponding data member and any use 1370 // of 'this'. 1371 CaptureType = ThisTy->getPointeeType(); 1372 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1373 } 1374 1375 bool isNested = NumCapturingClosures > 1; 1376 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1377 } 1378 return false; 1379} 1380 1381ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1382 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1383 /// is a non-lvalue expression whose value is the address of the object for 1384 /// which the function is called. 1385 1386 QualType ThisTy = getCurrentThisType(); 1387 if (ThisTy.isNull())
1
Taking false branch
1388 return Diag(Loc, diag::err_invalid_this_use); 1389 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1390} 1391 1392Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1393 bool IsImplicit) { 1394 if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) {
3
Assuming field 'HLSL' is 0
1395 auto *This = new (Context) 1396 CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit); 1397 This->setValueKind(ExprValueKind::VK_LValue); 1398 MarkThisReferenced(This); 1399 return This; 1400 } 1401 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1402 MarkThisReferenced(This);
4
Calling 'Sema::MarkThisReferenced'
1403 return This; 1404} 1405 1406void Sema::MarkThisReferenced(CXXThisExpr *This) { 1407 CheckCXXThisCapture(This->getExprLoc());
5
Calling 'Sema::CheckCXXThisCapture'
1408} 1409 1410bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1411 // If we're outside the body of a member function, then we'll have a specified 1412 // type for 'this'. 1413 if (CXXThisTypeOverride.isNull()) 1414 return false; 1415 1416 // Determine whether we're looking into a class that's currently being 1417 // defined. 1418 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1419 return Class && Class->isBeingDefined(); 1420} 1421 1422/// Parse construction of a specified type. 1423/// Can be interpreted either as function-style casting ("int(x)") 1424/// or class type construction ("ClassType(x,y,z)") 1425/// or creation of a value-initialized type ("int()"). 1426ExprResult 1427Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1428 SourceLocation LParenOrBraceLoc, 1429 MultiExprArg exprs, 1430 SourceLocation RParenOrBraceLoc, 1431 bool ListInitialization) { 1432 if (!TypeRep) 1433 return ExprError(); 1434 1435 TypeSourceInfo *TInfo; 1436 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1437 if (!TInfo) 1438 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1439 1440 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1441 RParenOrBraceLoc, ListInitialization); 1442 // Avoid creating a non-type-dependent expression that contains typos. 1443 // Non-type-dependent expressions are liable to be discarded without 1444 // checking for embedded typos. 1445 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1446 !Result.get()->isTypeDependent()) 1447 Result = CorrectDelayedTyposInExpr(Result.get()); 1448 else if (Result.isInvalid()) 1449 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1450 RParenOrBraceLoc, exprs, Ty); 1451 return Result; 1452} 1453 1454ExprResult 1455Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1456 SourceLocation LParenOrBraceLoc, 1457 MultiExprArg Exprs, 1458 SourceLocation RParenOrBraceLoc, 1459 bool ListInitialization) { 1460 QualType Ty = TInfo->getType(); 1461 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1462 1463 assert((!ListInitialization || Exprs.size() == 1) &&(static_cast <bool> ((!ListInitialization || Exprs.size
() == 1) && "List initialization must have exactly one expression."
) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
1464 "List initialization must have exactly one expression.")(static_cast <bool> ((!ListInitialization || Exprs.size
() == 1) && "List initialization must have exactly one expression."
) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
; 1465 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1466 1467 InitializedEntity Entity = 1468 InitializedEntity::InitializeTemporary(Context, TInfo); 1469 InitializationKind Kind = 1470 Exprs.size() 1471 ? ListInitialization 1472 ? InitializationKind::CreateDirectList( 1473 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1474 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1475 RParenOrBraceLoc) 1476 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1477 RParenOrBraceLoc); 1478 1479 // C++1z [expr.type.conv]p1: 1480 // If the type is a placeholder for a deduced class type, [...perform class 1481 // template argument deduction...] 1482 // C++2b: 1483 // Otherwise, if the type contains a placeholder type, it is replaced by the 1484 // type determined by placeholder type deduction. 1485 DeducedType *Deduced = Ty->getContainedDeducedType(); 1486 if (Deduced && !Deduced->isDeduced() && 1487 isa<DeducedTemplateSpecializationType>(Deduced)) { 1488 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1489 Kind, Exprs); 1490 if (Ty.isNull()) 1491 return ExprError(); 1492 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1493 } else if (Deduced && !Deduced->isDeduced()) { 1494 MultiExprArg Inits = Exprs; 1495 if (ListInitialization) { 1496 auto *ILE = cast<InitListExpr>(Exprs[0]); 1497 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1498 } 1499 1500 if (Inits.empty()) 1501 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1502 << Ty << FullRange); 1503 if (Inits.size() > 1) { 1504 Expr *FirstBad = Inits[1]; 1505 return ExprError(Diag(FirstBad->getBeginLoc(), 1506 diag::err_auto_expr_init_multiple_expressions) 1507 << Ty << FullRange); 1508 } 1509 if (getLangOpts().CPlusPlus2b) { 1510 if (Ty->getAs<AutoType>()) 1511 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1512 } 1513 Expr *Deduce = Inits[0]; 1514 if (isa<InitListExpr>(Deduce)) 1515 return ExprError( 1516 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1517 << ListInitialization << Ty << FullRange); 1518 QualType DeducedType; 1519 TemplateDeductionInfo Info(Deduce->getExprLoc()); 1520 TemplateDeductionResult Result = 1521 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); 1522 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 1523 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1524 << Ty << Deduce->getType() << FullRange 1525 << Deduce->getSourceRange()); 1526 if (DeducedType.isNull()) { 1527 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 1527, __extension__ __PRETTY_FUNCTION__))
; 1528 return ExprError(); 1529 } 1530 1531 Ty = DeducedType; 1532 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1533 } 1534 1535 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1536 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1537 // directly. We work around this by dropping the locations of the braces. 1538 SourceRange Locs = ListInitialization 1539 ? SourceRange() 1540 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1541 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1542 TInfo, Locs.getBegin(), Exprs, 1543 Locs.getEnd()); 1544 } 1545 1546 // C++ [expr.type.conv]p1: 1547 // If the expression list is a parenthesized single expression, the type 1548 // conversion expression is equivalent (in definedness, and if defined in 1549 // meaning) to the corresponding cast expression. 1550 if (Exprs.size() == 1 && !ListInitialization && 1551 !isa<InitListExpr>(Exprs[0])) { 1552 Expr *Arg = Exprs[0]; 1553 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1554 RParenOrBraceLoc); 1555 } 1556 1557 // For an expression of the form T(), T shall not be an array type. 1558 QualType ElemTy = Ty; 1559 if (Ty->isArrayType()) { 1560 if (!ListInitialization) 1561 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1562 << FullRange); 1563 ElemTy = Context.getBaseElementType(Ty); 1564 } 1565 1566 // Only construct objects with object types. 1567 // The standard doesn't explicitly forbid function types here, but that's an 1568 // obvious oversight, as there's no way to dynamically construct a function 1569 // in general. 1570 if (Ty->isFunctionType()) 1571 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1572 << Ty << FullRange); 1573 1574 // C++17 [expr.type.conv]p2: 1575 // If the type is cv void and the initializer is (), the expression is a 1576 // prvalue of the specified type that performs no initialization. 1577 if (!Ty->isVoidType() && 1578 RequireCompleteType(TyBeginLoc, ElemTy, 1579 diag::err_invalid_incomplete_type_use, FullRange)) 1580 return ExprError(); 1581 1582 // Otherwise, the expression is a prvalue of the specified type whose 1583 // result object is direct-initialized (11.6) with the initializer. 1584 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1585 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1586 1587 if (Result.isInvalid()) 1588 return Result; 1589 1590 Expr *Inner = Result.get(); 1591 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1592 Inner = BTE->getSubExpr(); 1593 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1594 !isa<CXXScalarValueInitExpr>(Inner)) { 1595 // If we created a CXXTemporaryObjectExpr, that node also represents the 1596 // functional cast. Otherwise, create an explicit cast to represent 1597 // the syntactic form of a functional-style cast that was used here. 1598 // 1599 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1600 // would give a more consistent AST representation than using a 1601 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1602 // is sometimes handled by initialization and sometimes not. 1603 QualType ResultType = Result.get()->getType(); 1604 SourceRange Locs = ListInitialization 1605 ? SourceRange() 1606 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1607 Result = CXXFunctionalCastExpr::Create( 1608 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1609 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1610 Locs.getBegin(), Locs.getEnd()); 1611 } 1612 1613 return Result; 1614} 1615 1616bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1617 // [CUDA] Ignore this function, if we can't call it. 1618 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1619 if (getLangOpts().CUDA) { 1620 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1621 // If it's not callable at all, it's not the right function. 1622 if (CallPreference < CFP_WrongSide) 1623 return false; 1624 if (CallPreference == CFP_WrongSide) { 1625 // Maybe. We have to check if there are better alternatives. 1626 DeclContext::lookup_result R = 1627 Method->getDeclContext()->lookup(Method->getDeclName()); 1628 for (const auto *D : R) { 1629 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1630 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1631 return false; 1632 } 1633 } 1634 // We've found no better variants. 1635 } 1636 } 1637 1638 SmallVector<const FunctionDecl*, 4> PreventedBy; 1639 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1640 1641 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1642 return Result; 1643 1644 // In case of CUDA, return true if none of the 1-argument deallocator 1645 // functions are actually callable. 1646 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1647 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1648, __extension__ __PRETTY_FUNCTION__
))
1648 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1648, __extension__ __PRETTY_FUNCTION__
))
; 1649 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1650 }); 1651} 1652 1653/// Determine whether the given function is a non-placement 1654/// deallocation function. 1655static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1656 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1657 return S.isUsualDeallocationFunction(Method); 1658 1659 if (FD->getOverloadedOperator() != OO_Delete && 1660 FD->getOverloadedOperator() != OO_Array_Delete) 1661 return false; 1662 1663 unsigned UsualParams = 1; 1664 1665 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1666 S.Context.hasSameUnqualifiedType( 1667 FD->getParamDecl(UsualParams)->getType(), 1668 S.Context.getSizeType())) 1669 ++UsualParams; 1670 1671 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1672 S.Context.hasSameUnqualifiedType( 1673 FD->getParamDecl(UsualParams)->getType(), 1674 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1675 ++UsualParams; 1676 1677 return UsualParams == FD->getNumParams(); 1678} 1679 1680namespace { 1681 struct UsualDeallocFnInfo { 1682 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1683 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1684 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1685 Destroying(false), HasSizeT(false), HasAlignValT(false), 1686 CUDAPref(Sema::CFP_Native) { 1687 // A function template declaration is never a usual deallocation function. 1688 if (!FD) 1689 return; 1690 unsigned NumBaseParams = 1; 1691 if (FD->isDestroyingOperatorDelete()) { 1692 Destroying = true; 1693 ++NumBaseParams; 1694 } 1695 1696 if (NumBaseParams < FD->getNumParams() && 1697 S.Context.hasSameUnqualifiedType( 1698 FD->getParamDecl(NumBaseParams)->getType(), 1699 S.Context.getSizeType())) { 1700 ++NumBaseParams; 1701 HasSizeT = true; 1702 } 1703 1704 if (NumBaseParams < FD->getNumParams() && 1705 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1706 ++NumBaseParams; 1707 HasAlignValT = true; 1708 } 1709 1710 // In CUDA, determine how much we'd like / dislike to call this. 1711 if (S.getLangOpts().CUDA) 1712 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) 1713 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1714 } 1715 1716 explicit operator bool() const { return FD; } 1717 1718 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1719 bool WantAlign) const { 1720 // C++ P0722: 1721 // A destroying operator delete is preferred over a non-destroying 1722 // operator delete. 1723 if (Destroying != Other.Destroying) 1724 return Destroying; 1725 1726 // C++17 [expr.delete]p10: 1727 // If the type has new-extended alignment, a function with a parameter 1728 // of type std::align_val_t is preferred; otherwise a function without 1729 // such a parameter is preferred 1730 if (HasAlignValT != Other.HasAlignValT) 1731 return HasAlignValT == WantAlign; 1732 1733 if (HasSizeT != Other.HasSizeT) 1734 return HasSizeT == WantSize; 1735 1736 // Use CUDA call preference as a tiebreaker. 1737 return CUDAPref > Other.CUDAPref; 1738 } 1739 1740 DeclAccessPair Found; 1741 FunctionDecl *FD; 1742 bool Destroying, HasSizeT, HasAlignValT; 1743 Sema::CUDAFunctionPreference CUDAPref; 1744 }; 1745} 1746 1747/// Determine whether a type has new-extended alignment. This may be called when 1748/// the type is incomplete (for a delete-expression with an incomplete pointee 1749/// type), in which case it will conservatively return false if the alignment is 1750/// not known. 1751static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1752 return S.getLangOpts().AlignedAllocation && 1753 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1754 S.getASTContext().getTargetInfo().getNewAlign(); 1755} 1756 1757/// Select the correct "usual" deallocation function to use from a selection of 1758/// deallocation functions (either global or class-scope). 1759static UsualDeallocFnInfo resolveDeallocationOverload( 1760 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1761 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1762 UsualDeallocFnInfo Best; 1763 1764 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1765 UsualDeallocFnInfo Info(S, I.getPair()); 1766 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1767 Info.CUDAPref == Sema::CFP_Never) 1768 continue; 1769 1770 if (!Best) { 1771 Best = Info; 1772 if (BestFns) 1773 BestFns->push_back(Info); 1774 continue; 1775 } 1776 1777 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1778 continue; 1779 1780 // If more than one preferred function is found, all non-preferred 1781 // functions are eliminated from further consideration. 1782 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1783 BestFns->clear(); 1784 1785 Best = Info; 1786 if (BestFns) 1787 BestFns->push_back(Info); 1788 } 1789 1790 return Best; 1791} 1792 1793/// Determine whether a given type is a class for which 'delete[]' would call 1794/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1795/// we need to store the array size (even if the type is 1796/// trivially-destructible). 1797static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1798 QualType allocType) { 1799 const RecordType *record = 1800 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1801 if (!record) return false; 1802 1803 // Try to find an operator delete[] in class scope. 1804 1805 DeclarationName deleteName = 1806 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1807 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1808 S.LookupQualifiedName(ops, record->getDecl()); 1809 1810 // We're just doing this for information. 1811 ops.suppressDiagnostics(); 1812 1813 // Very likely: there's no operator delete[]. 1814 if (ops.empty()) return false; 1815 1816 // If it's ambiguous, it should be illegal to call operator delete[] 1817 // on this thing, so it doesn't matter if we allocate extra space or not. 1818 if (ops.isAmbiguous()) return false; 1819 1820 // C++17 [expr.delete]p10: 1821 // If the deallocation functions have class scope, the one without a 1822 // parameter of type std::size_t is selected. 1823 auto Best = resolveDeallocationOverload( 1824 S, ops, /*WantSize*/false, 1825 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1826 return Best && Best.HasSizeT; 1827} 1828 1829/// Parsed a C++ 'new' expression (C++ 5.3.4). 1830/// 1831/// E.g.: 1832/// @code new (memory) int[size][4] @endcode 1833/// or 1834/// @code ::new Foo(23, "hello") @endcode 1835/// 1836/// \param StartLoc The first location of the expression. 1837/// \param UseGlobal True if 'new' was prefixed with '::'. 1838/// \param PlacementLParen Opening paren of the placement arguments. 1839/// \param PlacementArgs Placement new arguments. 1840/// \param PlacementRParen Closing paren of the placement arguments. 1841/// \param TypeIdParens If the type is in parens, the source range. 1842/// \param D The type to be allocated, as well as array dimensions. 1843/// \param Initializer The initializing expression or initializer-list, or null 1844/// if there is none. 1845ExprResult 1846Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1847 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1848 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1849 Declarator &D, Expr *Initializer) { 1850 std::optional<Expr *> ArraySize; 1851 // If the specified type is an array, unwrap it and save the expression. 1852 if (D.getNumTypeObjects() > 0 && 1853 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1854 DeclaratorChunk &Chunk = D.getTypeObject(0); 1855 if (D.getDeclSpec().hasAutoTypeSpec()) 1856 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1857 << D.getSourceRange()); 1858 if (Chunk.Arr.hasStatic) 1859 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1860 << D.getSourceRange()); 1861 if (!Chunk.Arr.NumElts && !Initializer) 1862 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1863 << D.getSourceRange()); 1864 1865 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1866 D.DropFirstTypeObject(); 1867 } 1868 1869 // Every dimension shall be of constant size. 1870 if (ArraySize) { 1871 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1872 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1873 break; 1874 1875 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1876 if (Expr *NumElts = (Expr *)Array.NumElts) { 1877 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1878 // FIXME: GCC permits constant folding here. We should either do so consistently 1879 // or not do so at all, rather than changing behavior in C++14 onwards. 1880 if (getLangOpts().CPlusPlus14) { 1881 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1882 // shall be a converted constant expression (5.19) of type std::size_t 1883 // and shall evaluate to a strictly positive value. 1884 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1885 Array.NumElts 1886 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1887 CCEK_ArrayBound) 1888 .get(); 1889 } else { 1890 Array.NumElts = 1891 VerifyIntegerConstantExpression( 1892 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1893 .get(); 1894 } 1895 if (!Array.NumElts) 1896 return ExprError(); 1897 } 1898 } 1899 } 1900 } 1901 1902 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1903 QualType AllocType = TInfo->getType(); 1904 if (D.isInvalidType()) 1905 return ExprError(); 1906 1907 SourceRange DirectInitRange; 1908 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1909 DirectInitRange = List->getSourceRange(); 1910 1911 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1912 PlacementLParen, PlacementArgs, PlacementRParen, 1913 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1914 Initializer); 1915} 1916 1917static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1918 Expr *Init) { 1919 if (!Init) 1920 return true; 1921 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1922 return PLE->getNumExprs() == 0; 1923 if (isa<ImplicitValueInitExpr>(Init)) 1924 return true; 1925 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1926 return !CCE->isListInitialization() && 1927 CCE->getConstructor()->isDefaultConstructor(); 1928 else if (Style == CXXNewExpr::ListInit) { 1929 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1930, __extension__ __PRETTY_FUNCTION__
))
1930 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1930, __extension__ __PRETTY_FUNCTION__
))
; 1931 return true; 1932 } 1933 return false; 1934} 1935 1936bool 1937Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1938 if (!getLangOpts().AlignedAllocationUnavailable) 1939 return false; 1940 if (FD.isDefined()) 1941 return false; 1942 std::optional<unsigned> AlignmentParam; 1943 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1944 AlignmentParam) 1945 return true; 1946 return false; 1947} 1948 1949// Emit a diagnostic if an aligned allocation/deallocation function that is not 1950// implemented in the standard library is selected. 1951void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1952 SourceLocation Loc) { 1953 if (isUnavailableAlignedAllocationFunction(FD)) { 1954 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1955 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1956 getASTContext().getTargetInfo().getPlatformName()); 1957 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1958 1959 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1960 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1961 Diag(Loc, diag::err_aligned_allocation_unavailable) 1962 << IsDelete << FD.getType().getAsString() << OSName 1963 << OSVersion.getAsString() << OSVersion.empty(); 1964 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1965 } 1966} 1967 1968ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1969 SourceLocation PlacementLParen, 1970 MultiExprArg PlacementArgs, 1971 SourceLocation PlacementRParen, 1972 SourceRange TypeIdParens, QualType AllocType, 1973 TypeSourceInfo *AllocTypeInfo, 1974 std::optional<Expr *> ArraySize, 1975 SourceRange DirectInitRange, Expr *Initializer) { 1976 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1977 SourceLocation StartLoc = Range.getBegin(); 1978 1979 CXXNewExpr::InitializationStyle initStyle; 1980 if (DirectInitRange.isValid()) { 1981 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1981, __extension__ __PRETTY_FUNCTION__
))
; 1982 initStyle = CXXNewExpr::CallInit; 1983 } else if (Initializer && isa<InitListExpr>(Initializer)) 1984 initStyle = CXXNewExpr::ListInit; 1985 else { 1986 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1988, __extension__ __PRETTY_FUNCTION__
))
1987 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1988, __extension__ __PRETTY_FUNCTION__
))
1988 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1988, __extension__ __PRETTY_FUNCTION__
))
; 1989 initStyle = CXXNewExpr::NoInit; 1990 } 1991 1992 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 1993 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1994 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1994, __extension__ __PRETTY_FUNCTION__
))
; 1995 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 1996 } 1997 1998 // C++11 [expr.new]p15: 1999 // A new-expression that creates an object of type T initializes that 2000 // object as follows: 2001 InitializationKind Kind 2002 // - If the new-initializer is omitted, the object is default- 2003 // initialized (8.5); if no initialization is performed, 2004 // the object has indeterminate value 2005 = initStyle == CXXNewExpr::NoInit 2006 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 2007 // - Otherwise, the new-initializer is interpreted according to 2008 // the 2009 // initialization rules of 8.5 for direct-initialization. 2010 : initStyle == CXXNewExpr::ListInit 2011 ? InitializationKind::CreateDirectList( 2012 TypeRange.getBegin(), Initializer->getBeginLoc(), 2013 Initializer->getEndLoc()) 2014 : InitializationKind::CreateDirect(TypeRange.getBegin(), 2015 DirectInitRange.getBegin(), 2016 DirectInitRange.getEnd()); 2017 2018 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2019 auto *Deduced = AllocType->getContainedDeducedType(); 2020 if (Deduced && !Deduced->isDeduced() && 2021 isa<DeducedTemplateSpecializationType>(Deduced)) { 2022 if (ArraySize) 2023 return ExprError( 2024 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2025 diag::err_deduced_class_template_compound_type) 2026 << /*array*/ 2 2027 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2028 2029 InitializedEntity Entity 2030 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2031 AllocType = DeduceTemplateSpecializationFromInitializer( 2032 AllocTypeInfo, Entity, Kind, Exprs); 2033 if (AllocType.isNull()) 2034 return ExprError(); 2035 } else if (Deduced && !Deduced->isDeduced()) { 2036 MultiExprArg Inits = Exprs; 2037 bool Braced = (initStyle == CXXNewExpr::ListInit); 2038 if (Braced) { 2039 auto *ILE = cast<InitListExpr>(Exprs[0]); 2040 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2041 } 2042 2043 if (initStyle == CXXNewExpr::NoInit || Inits.empty()) 2044 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2045 << AllocType << TypeRange); 2046 if (Inits.size() > 1) { 2047 Expr *FirstBad = Inits[1]; 2048 return ExprError(Diag(FirstBad->getBeginLoc(), 2049 diag::err_auto_new_ctor_multiple_expressions) 2050 << AllocType << TypeRange); 2051 } 2052 if (Braced && !getLangOpts().CPlusPlus17) 2053 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2054 << AllocType << TypeRange; 2055 Expr *Deduce = Inits[0]; 2056 if (isa<InitListExpr>(Deduce)) 2057 return ExprError( 2058 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2059 << Braced << AllocType << TypeRange); 2060 QualType DeducedType; 2061 TemplateDeductionInfo Info(Deduce->getExprLoc()); 2062 TemplateDeductionResult Result = 2063 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); 2064 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 2065 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2066 << AllocType << Deduce->getType() << TypeRange 2067 << Deduce->getSourceRange()); 2068 if (DeducedType.isNull()) { 2069 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 2069, __extension__ __PRETTY_FUNCTION__))
; 2070 return ExprError(); 2071 } 2072 AllocType = DeducedType; 2073 } 2074 2075 // Per C++0x [expr.new]p5, the type being constructed may be a 2076 // typedef of an array type. 2077 if (!ArraySize) { 2078 if (const ConstantArrayType *Array 2079 = Context.getAsConstantArrayType(AllocType)) { 2080 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2081 Context.getSizeType(), 2082 TypeRange.getEnd()); 2083 AllocType = Array->getElementType(); 2084 } 2085 } 2086 2087 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2088 return ExprError(); 2089 2090 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) 2091 return ExprError(); 2092 2093 // In ARC, infer 'retaining' for the allocated 2094 if (getLangOpts().ObjCAutoRefCount && 2095 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2096 AllocType->isObjCLifetimeType()) { 2097 AllocType = Context.getLifetimeQualifiedType(AllocType, 2098 AllocType->getObjCARCImplicitLifetime()); 2099 } 2100 2101 QualType ResultType = Context.getPointerType(AllocType); 2102 2103 if (ArraySize && *ArraySize && 2104 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2105 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2106 if (result.isInvalid()) return ExprError(); 2107 ArraySize = result.get(); 2108 } 2109 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2110 // integral or enumeration type with a non-negative value." 2111 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2112 // enumeration type, or a class type for which a single non-explicit 2113 // conversion function to integral or unscoped enumeration type exists. 2114 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2115 // std::size_t. 2116 std::optional<uint64_t> KnownArraySize; 2117 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2118 ExprResult ConvertedSize; 2119 if (getLangOpts().CPlusPlus14) { 2120 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2120, __extension__ __PRETTY_FUNCTION__
))
; 2121 2122 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2123 AA_Converting); 2124 2125 if (!ConvertedSize.isInvalid() && 2126 (*ArraySize)->getType()->getAs<RecordType>()) 2127 // Diagnose the compatibility of this conversion. 2128 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2129 << (*ArraySize)->getType() << 0 << "'size_t'"; 2130 } else { 2131 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2132 protected: 2133 Expr *ArraySize; 2134 2135 public: 2136 SizeConvertDiagnoser(Expr *ArraySize) 2137 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2138 ArraySize(ArraySize) {} 2139 2140 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2141 QualType T) override { 2142 return S.Diag(Loc, diag::err_array_size_not_integral) 2143 << S.getLangOpts().CPlusPlus11 << T; 2144 } 2145 2146 SemaDiagnosticBuilder diagnoseIncomplete( 2147 Sema &S, SourceLocation Loc, QualType T) override { 2148 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2149 << T << ArraySize->getSourceRange(); 2150 } 2151 2152 SemaDiagnosticBuilder diagnoseExplicitConv( 2153 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2154 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2155 } 2156 2157 SemaDiagnosticBuilder noteExplicitConv( 2158 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2159 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2160 << ConvTy->isEnumeralType() << ConvTy; 2161 } 2162 2163 SemaDiagnosticBuilder diagnoseAmbiguous( 2164 Sema &S, SourceLocation Loc, QualType T) override { 2165 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2166 } 2167 2168 SemaDiagnosticBuilder noteAmbiguous( 2169 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2170 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2171 << ConvTy->isEnumeralType() << ConvTy; 2172 } 2173 2174 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2175 QualType T, 2176 QualType ConvTy) override { 2177 return S.Diag(Loc, 2178 S.getLangOpts().CPlusPlus11 2179 ? diag::warn_cxx98_compat_array_size_conversion 2180 : diag::ext_array_size_conversion) 2181 << T << ConvTy->isEnumeralType() << ConvTy; 2182 } 2183 } SizeDiagnoser(*ArraySize); 2184 2185 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2186 SizeDiagnoser); 2187 } 2188 if (ConvertedSize.isInvalid()) 2189 return ExprError(); 2190 2191 ArraySize = ConvertedSize.get(); 2192 QualType SizeType = (*ArraySize)->getType(); 2193 2194 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2195 return ExprError(); 2196 2197 // C++98 [expr.new]p7: 2198 // The expression in a direct-new-declarator shall have integral type 2199 // with a non-negative value. 2200 // 2201 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2202 // per CWG1464. Otherwise, if it's not a constant, we must have an 2203 // unparenthesized array type. 2204 2205 // We've already performed any required implicit conversion to integer or 2206 // unscoped enumeration type. 2207 // FIXME: Per CWG1464, we are required to check the value prior to 2208 // converting to size_t. This will never find a negative array size in 2209 // C++14 onwards, because Value is always unsigned here! 2210 if (std::optional<llvm::APSInt> Value = 2211 (*ArraySize)->getIntegerConstantExpr(Context)) { 2212 if (Value->isSigned() && Value->isNegative()) { 2213 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2214 diag::err_typecheck_negative_array_size) 2215 << (*ArraySize)->getSourceRange()); 2216 } 2217 2218 if (!AllocType->isDependentType()) { 2219 unsigned ActiveSizeBits = 2220 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2221 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2222 return ExprError( 2223 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2224 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2225 } 2226 2227 KnownArraySize = Value->getZExtValue(); 2228 } else if (TypeIdParens.isValid()) { 2229 // Can't have dynamic array size when the type-id is in parentheses. 2230 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2231 << (*ArraySize)->getSourceRange() 2232 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2233 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2234 2235 TypeIdParens = SourceRange(); 2236 } 2237 2238 // Note that we do *not* convert the argument in any way. It can 2239 // be signed, larger than size_t, whatever. 2240 } 2241 2242 FunctionDecl *OperatorNew = nullptr; 2243 FunctionDecl *OperatorDelete = nullptr; 2244 unsigned Alignment = 2245 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2246 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2247 bool PassAlignment = getLangOpts().AlignedAllocation && 2248 Alignment > NewAlignment; 2249 2250 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2251 if (!AllocType->isDependentType() && 2252 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2253 FindAllocationFunctions( 2254 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2255 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, 2256 OperatorNew, OperatorDelete)) 2257 return ExprError(); 2258 2259 // If this is an array allocation, compute whether the usual array 2260 // deallocation function for the type has a size_t parameter. 2261 bool UsualArrayDeleteWantsSize = false; 2262 if (ArraySize && !AllocType->isDependentType()) 2263 UsualArrayDeleteWantsSize = 2264 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2265 2266 SmallVector<Expr *, 8> AllPlaceArgs; 2267 if (OperatorNew) { 2268 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2269 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2270 : VariadicDoesNotApply; 2271 2272 // We've already converted the placement args, just fill in any default 2273 // arguments. Skip the first parameter because we don't have a corresponding 2274 // argument. Skip the second parameter too if we're passing in the 2275 // alignment; we've already filled it in. 2276 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2277 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2278 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2279 CallType)) 2280 return ExprError(); 2281 2282 if (!AllPlaceArgs.empty()) 2283 PlacementArgs = AllPlaceArgs; 2284 2285 // We would like to perform some checking on the given `operator new` call, 2286 // but the PlacementArgs does not contain the implicit arguments, 2287 // namely allocation size and maybe allocation alignment, 2288 // so we need to conjure them. 2289 2290 QualType SizeTy = Context.getSizeType(); 2291 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2292 2293 llvm::APInt SingleEltSize( 2294 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2295 2296 // How many bytes do we want to allocate here? 2297 std::optional<llvm::APInt> AllocationSize; 2298 if (!ArraySize && !AllocType->isDependentType()) { 2299 // For non-array operator new, we only want to allocate one element. 2300 AllocationSize = SingleEltSize; 2301 } else if (KnownArraySize && !AllocType->isDependentType()) { 2302 // For array operator new, only deal with static array size case. 2303 bool Overflow; 2304 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2305 .umul_ov(SingleEltSize, Overflow); 2306 (void)Overflow; 2307 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2309, __extension__ __PRETTY_FUNCTION__
))
2308 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2309, __extension__ __PRETTY_FUNCTION__
))
2309 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2309, __extension__ __PRETTY_FUNCTION__
))
; 2310 } 2311 2312 IntegerLiteral AllocationSizeLiteral( 2313 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), 2314 SizeTy, SourceLocation()); 2315 // Otherwise, if we failed to constant-fold the allocation size, we'll 2316 // just give up and pass-in something opaque, that isn't a null pointer. 2317 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2318 OK_Ordinary, /*SourceExpr=*/nullptr); 2319 2320 // Let's synthesize the alignment argument in case we will need it. 2321 // Since we *really* want to allocate these on stack, this is slightly ugly 2322 // because there might not be a `std::align_val_t` type. 2323 EnumDecl *StdAlignValT = getStdAlignValT(); 2324 QualType AlignValT = 2325 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2326 IntegerLiteral AlignmentLiteral( 2327 Context, 2328 llvm::APInt(Context.getTypeSize(SizeTy), 2329 Alignment / Context.getCharWidth()), 2330 SizeTy, SourceLocation()); 2331 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2332 CK_IntegralCast, &AlignmentLiteral, 2333 VK_PRValue, FPOptionsOverride()); 2334 2335 // Adjust placement args by prepending conjured size and alignment exprs. 2336 llvm::SmallVector<Expr *, 8> CallArgs; 2337 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2338 CallArgs.emplace_back(AllocationSize 2339 ? static_cast<Expr *>(&AllocationSizeLiteral) 2340 : &OpaqueAllocationSize); 2341 if (PassAlignment) 2342 CallArgs.emplace_back(&DesiredAlignment); 2343 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2344 2345 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2346 2347 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2348 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2349 2350 // Warn if the type is over-aligned and is being allocated by (unaligned) 2351 // global operator new. 2352 if (PlacementArgs.empty() && !PassAlignment && 2353 (OperatorNew->isImplicit() || 2354 (OperatorNew->getBeginLoc().isValid() && 2355 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2356 if (Alignment > NewAlignment) 2357 Diag(StartLoc, diag::warn_overaligned_type) 2358 << AllocType 2359 << unsigned(Alignment / Context.getCharWidth()) 2360 << unsigned(NewAlignment / Context.getCharWidth()); 2361 } 2362 } 2363 2364 // Array 'new' can't have any initializers except empty parentheses. 2365 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2366 // dialect distinction. 2367 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2368 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2369 Exprs.back()->getEndLoc()); 2370 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2371 return ExprError(); 2372 } 2373 2374 // If we can perform the initialization, and we've not already done so, 2375 // do it now. 2376 if (!AllocType->isDependentType() && 2377 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2378 // The type we initialize is the complete type, including the array bound. 2379 QualType InitType; 2380 if (KnownArraySize) 2381 InitType = Context.getConstantArrayType( 2382 AllocType, 2383 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2384 *KnownArraySize), 2385 *ArraySize, ArrayType::Normal, 0); 2386 else if (ArraySize) 2387 InitType = 2388 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2389 else 2390 InitType = AllocType; 2391 2392 InitializedEntity Entity 2393 = InitializedEntity::InitializeNew(StartLoc, InitType); 2394 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2395 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2396 if (FullInit.isInvalid()) 2397 return ExprError(); 2398 2399 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2400 // we don't want the initialized object to be destructed. 2401 // FIXME: We should not create these in the first place. 2402 if (CXXBindTemporaryExpr *Binder = 2403 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2404 FullInit = Binder->getSubExpr(); 2405 2406 Initializer = FullInit.get(); 2407 2408 // FIXME: If we have a KnownArraySize, check that the array bound of the 2409 // initializer is no greater than that constant value. 2410 2411 if (ArraySize && !*ArraySize) { 2412 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2413 if (CAT) { 2414 // FIXME: Track that the array size was inferred rather than explicitly 2415 // specified. 2416 ArraySize = IntegerLiteral::Create( 2417 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2418 } else { 2419 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2420 << Initializer->getSourceRange(); 2421 } 2422 } 2423 } 2424 2425 // Mark the new and delete operators as referenced. 2426 if (OperatorNew) { 2427 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2428 return ExprError(); 2429 MarkFunctionReferenced(StartLoc, OperatorNew); 2430 } 2431 if (OperatorDelete) { 2432 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2433 return ExprError(); 2434 MarkFunctionReferenced(StartLoc, OperatorDelete); 2435 } 2436 2437 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2438 PassAlignment, UsualArrayDeleteWantsSize, 2439 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2440 Initializer, ResultType, AllocTypeInfo, Range, 2441 DirectInitRange); 2442} 2443 2444/// Checks that a type is suitable as the allocated type 2445/// in a new-expression. 2446bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2447 SourceRange R) { 2448 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2449 // abstract class type or array thereof. 2450 if (AllocType->isFunctionType()) 2451 return Diag(Loc, diag::err_bad_new_type) 2452 << AllocType << 0 << R; 2453 else if (AllocType->isReferenceType()) 2454 return Diag(Loc, diag::err_bad_new_type) 2455 << AllocType << 1 << R; 2456 else if (!AllocType->isDependentType() && 2457 RequireCompleteSizedType( 2458 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2459 return true; 2460 else if (RequireNonAbstractType(Loc, AllocType, 2461 diag::err_allocation_of_abstract_type)) 2462 return true; 2463 else if (AllocType->isVariablyModifiedType()) 2464 return Diag(Loc, diag::err_variably_modified_new_type) 2465 << AllocType; 2466 else if (AllocType.getAddressSpace() != LangAS::Default && 2467 !getLangOpts().OpenCLCPlusPlus) 2468 return Diag(Loc, diag::err_address_space_qualified_new) 2469 << AllocType.getUnqualifiedType() 2470 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2471 else if (getLangOpts().ObjCAutoRefCount) { 2472 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2473 QualType BaseAllocType = Context.getBaseElementType(AT); 2474 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2475 BaseAllocType->isObjCLifetimeType()) 2476 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2477 << BaseAllocType; 2478 } 2479 } 2480 2481 return false; 2482} 2483 2484static bool resolveAllocationOverload( 2485 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2486 bool &PassAlignment, FunctionDecl *&Operator, 2487 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2488 OverloadCandidateSet Candidates(R.getNameLoc(), 2489 OverloadCandidateSet::CSK_Normal); 2490 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2491 Alloc != AllocEnd; ++Alloc) { 2492 // Even member operator new/delete are implicitly treated as 2493 // static, so don't use AddMemberCandidate. 2494 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2495 2496 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2497 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2498 /*ExplicitTemplateArgs=*/nullptr, Args, 2499 Candidates, 2500 /*SuppressUserConversions=*/false); 2501 continue; 2502 } 2503 2504 FunctionDecl *Fn = cast<FunctionDecl>(D); 2505 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2506 /*SuppressUserConversions=*/false); 2507 } 2508 2509 // Do the resolution. 2510 OverloadCandidateSet::iterator Best; 2511 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2512 case OR_Success: { 2513 // Got one! 2514 FunctionDecl *FnDecl = Best->Function; 2515 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2516 Best->FoundDecl) == Sema::AR_inaccessible) 2517 return true; 2518 2519 Operator = FnDecl; 2520 return false; 2521 } 2522 2523 case OR_No_Viable_Function: 2524 // C++17 [expr.new]p13: 2525 // If no matching function is found and the allocated object type has 2526 // new-extended alignment, the alignment argument is removed from the 2527 // argument list, and overload resolution is performed again. 2528 if (PassAlignment) { 2529 PassAlignment = false; 2530 AlignArg = Args[1]; 2531 Args.erase(Args.begin() + 1); 2532 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2533 Operator, &Candidates, AlignArg, 2534 Diagnose); 2535 } 2536 2537 // MSVC will fall back on trying to find a matching global operator new 2538 // if operator new[] cannot be found. Also, MSVC will leak by not 2539 // generating a call to operator delete or operator delete[], but we 2540 // will not replicate that bug. 2541 // FIXME: Find out how this interacts with the std::align_val_t fallback 2542 // once MSVC implements it. 2543 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2544 S.Context.getLangOpts().MSVCCompat) { 2545 R.clear(); 2546 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2547 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2548 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2549 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2550 Operator, /*Candidates=*/nullptr, 2551 /*AlignArg=*/nullptr, Diagnose); 2552 } 2553 2554 if (Diagnose) { 2555 // If this is an allocation of the form 'new (p) X' for some object 2556 // pointer p (or an expression that will decay to such a pointer), 2557 // diagnose the missing inclusion of <new>. 2558 if (!R.isClassLookup() && Args.size() == 2 && 2559 (Args[1]->getType()->isObjectPointerType() || 2560 Args[1]->getType()->isArrayType())) { 2561 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2562 << R.getLookupName() << Range; 2563 // Listing the candidates is unlikely to be useful; skip it. 2564 return true; 2565 } 2566 2567 // Finish checking all candidates before we note any. This checking can 2568 // produce additional diagnostics so can't be interleaved with our 2569 // emission of notes. 2570 // 2571 // For an aligned allocation, separately check the aligned and unaligned 2572 // candidates with their respective argument lists. 2573 SmallVector<OverloadCandidate*, 32> Cands; 2574 SmallVector<OverloadCandidate*, 32> AlignedCands; 2575 llvm::SmallVector<Expr*, 4> AlignedArgs; 2576 if (AlignedCandidates) { 2577 auto IsAligned = [](OverloadCandidate &C) { 2578 return C.Function->getNumParams() > 1 && 2579 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2580 }; 2581 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2582 2583 AlignedArgs.reserve(Args.size() + 1); 2584 AlignedArgs.push_back(Args[0]); 2585 AlignedArgs.push_back(AlignArg); 2586 AlignedArgs.append(Args.begin() + 1, Args.end()); 2587 AlignedCands = AlignedCandidates->CompleteCandidates( 2588 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2589 2590 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2591 R.getNameLoc(), IsUnaligned); 2592 } else { 2593 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2594 R.getNameLoc()); 2595 } 2596 2597 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2598 << R.getLookupName() << Range; 2599 if (AlignedCandidates) 2600 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2601 R.getNameLoc()); 2602 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2603 } 2604 return true; 2605 2606 case OR_Ambiguous: 2607 if (Diagnose) { 2608 Candidates.NoteCandidates( 2609 PartialDiagnosticAt(R.getNameLoc(), 2610 S.PDiag(diag::err_ovl_ambiguous_call) 2611 << R.getLookupName() << Range), 2612 S, OCD_AmbiguousCandidates, Args); 2613 } 2614 return true; 2615 2616 case OR_Deleted: { 2617 if (Diagnose) { 2618 Candidates.NoteCandidates( 2619 PartialDiagnosticAt(R.getNameLoc(), 2620 S.PDiag(diag::err_ovl_deleted_call) 2621 << R.getLookupName() << Range), 2622 S, OCD_AllCandidates, Args); 2623 } 2624 return true; 2625 } 2626 } 2627 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2627)
; 2628} 2629 2630bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2631 AllocationFunctionScope NewScope, 2632 AllocationFunctionScope DeleteScope, 2633 QualType AllocType, bool IsArray, 2634 bool &PassAlignment, MultiExprArg PlaceArgs, 2635 FunctionDecl *&OperatorNew, 2636 FunctionDecl *&OperatorDelete, 2637 bool Diagnose) { 2638 // --- Choosing an allocation function --- 2639 // C++ 5.3.4p8 - 14 & 18 2640 // 1) If looking in AFS_Global scope for allocation functions, only look in 2641 // the global scope. Else, if AFS_Class, only look in the scope of the 2642 // allocated class. If AFS_Both, look in both. 2643 // 2) If an array size is given, look for operator new[], else look for 2644 // operator new. 2645 // 3) The first argument is always size_t. Append the arguments from the 2646 // placement form. 2647 2648 SmallVector<Expr*, 8> AllocArgs; 2649 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2650 2651 // We don't care about the actual value of these arguments. 2652 // FIXME: Should the Sema create the expression and embed it in the syntax 2653 // tree? Or should the consumer just recalculate the value? 2654 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2655 IntegerLiteral Size( 2656 Context, 2657 llvm::APInt::getZero( 2658 Context.getTargetInfo().getPointerWidth(LangAS::Default)), 2659 Context.getSizeType(), SourceLocation()); 2660 AllocArgs.push_back(&Size); 2661 2662 QualType AlignValT = Context.VoidTy; 2663 if (PassAlignment) { 2664 DeclareGlobalNewDelete(); 2665 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2666 } 2667 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2668 if (PassAlignment) 2669 AllocArgs.push_back(&Align); 2670 2671 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2672 2673 // C++ [expr.new]p8: 2674 // If the allocated type is a non-array type, the allocation 2675 // function's name is operator new and the deallocation function's 2676 // name is operator delete. If the allocated type is an array 2677 // type, the allocation function's name is operator new[] and the 2678 // deallocation function's name is operator delete[]. 2679 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2680 IsArray ? OO_Array_New : OO_New); 2681 2682 QualType AllocElemType = Context.getBaseElementType(AllocType); 2683 2684 // Find the allocation function. 2685 { 2686 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2687 2688 // C++1z [expr.new]p9: 2689 // If the new-expression begins with a unary :: operator, the allocation 2690 // function's name is looked up in the global scope. Otherwise, if the 2691 // allocated type is a class type T or array thereof, the allocation 2692 // function's name is looked up in the scope of T. 2693 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2694 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2695 2696 // We can see ambiguity here if the allocation function is found in 2697 // multiple base classes. 2698 if (R.isAmbiguous()) 2699 return true; 2700 2701 // If this lookup fails to find the name, or if the allocated type is not 2702 // a class type, the allocation function's name is looked up in the 2703 // global scope. 2704 if (R.empty()) { 2705 if (NewScope == AFS_Class) 2706 return true; 2707 2708 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2709 } 2710 2711 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2712 if (PlaceArgs.empty()) { 2713 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2714 } else { 2715 Diag(StartLoc, diag::err_openclcxx_placement_new); 2716 } 2717 return true; 2718 } 2719 2720 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2720, __extension__ __PRETTY_FUNCTION__
))
; 2721 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2721, __extension__ __PRETTY_FUNCTION__
))
; 2722 2723 // We do our own custom access checks below. 2724 R.suppressDiagnostics(); 2725 2726 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2727 OperatorNew, /*Candidates=*/nullptr, 2728 /*AlignArg=*/nullptr, Diagnose)) 2729 return true; 2730 } 2731 2732 // We don't need an operator delete if we're running under -fno-exceptions. 2733 if (!getLangOpts().Exceptions) { 2734 OperatorDelete = nullptr; 2735 return false; 2736 } 2737 2738 // Note, the name of OperatorNew might have been changed from array to 2739 // non-array by resolveAllocationOverload. 2740 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2741 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2742 ? OO_Array_Delete 2743 : OO_Delete); 2744 2745 // C++ [expr.new]p19: 2746 // 2747 // If the new-expression begins with a unary :: operator, the 2748 // deallocation function's name is looked up in the global 2749 // scope. Otherwise, if the allocated type is a class type T or an 2750 // array thereof, the deallocation function's name is looked up in 2751 // the scope of T. If this lookup fails to find the name, or if 2752 // the allocated type is not a class type or array thereof, the 2753 // deallocation function's name is looked up in the global scope. 2754 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2755 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2756 auto *RD = 2757 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2758 LookupQualifiedName(FoundDelete, RD); 2759 } 2760 if (FoundDelete.isAmbiguous()) 2761 return true; // FIXME: clean up expressions? 2762 2763 // Filter out any destroying operator deletes. We can't possibly call such a 2764 // function in this context, because we're handling the case where the object 2765 // was not successfully constructed. 2766 // FIXME: This is not covered by the language rules yet. 2767 { 2768 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2769 while (Filter.hasNext()) { 2770 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2771 if (FD && FD->isDestroyingOperatorDelete()) 2772 Filter.erase(); 2773 } 2774 Filter.done(); 2775 } 2776 2777 bool FoundGlobalDelete = FoundDelete.empty(); 2778 if (FoundDelete.empty()) { 2779 FoundDelete.clear(LookupOrdinaryName); 2780 2781 if (DeleteScope == AFS_Class) 2782 return true; 2783 2784 DeclareGlobalNewDelete(); 2785 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2786 } 2787 2788 FoundDelete.suppressDiagnostics(); 2789 2790 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2791 2792 // Whether we're looking for a placement operator delete is dictated 2793 // by whether we selected a placement operator new, not by whether 2794 // we had explicit placement arguments. This matters for things like 2795 // struct A { void *operator new(size_t, int = 0); ... }; 2796 // A *a = new A() 2797 // 2798 // We don't have any definition for what a "placement allocation function" 2799 // is, but we assume it's any allocation function whose 2800 // parameter-declaration-clause is anything other than (size_t). 2801 // 2802 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2803 // This affects whether an exception from the constructor of an overaligned 2804 // type uses the sized or non-sized form of aligned operator delete. 2805 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2806 OperatorNew->isVariadic(); 2807 2808 if (isPlacementNew) { 2809 // C++ [expr.new]p20: 2810 // A declaration of a placement deallocation function matches the 2811 // declaration of a placement allocation function if it has the 2812 // same number of parameters and, after parameter transformations 2813 // (8.3.5), all parameter types except the first are 2814 // identical. [...] 2815 // 2816 // To perform this comparison, we compute the function type that 2817 // the deallocation function should have, and use that type both 2818 // for template argument deduction and for comparison purposes. 2819 QualType ExpectedFunctionType; 2820 { 2821 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2822 2823 SmallVector<QualType, 4> ArgTypes; 2824 ArgTypes.push_back(Context.VoidPtrTy); 2825 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2826 ArgTypes.push_back(Proto->getParamType(I)); 2827 2828 FunctionProtoType::ExtProtoInfo EPI; 2829 // FIXME: This is not part of the standard's rule. 2830 EPI.Variadic = Proto->isVariadic(); 2831 2832 ExpectedFunctionType 2833 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2834 } 2835 2836 for (LookupResult::iterator D = FoundDelete.begin(), 2837 DEnd = FoundDelete.end(); 2838 D != DEnd; ++D) { 2839 FunctionDecl *Fn = nullptr; 2840 if (FunctionTemplateDecl *FnTmpl = 2841 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2842 // Perform template argument deduction to try to match the 2843 // expected function type. 2844 TemplateDeductionInfo Info(StartLoc); 2845 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2846 Info)) 2847 continue; 2848 } else 2849 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2850 2851 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2852 ExpectedFunctionType, 2853 /*AdjustExcpetionSpec*/true), 2854 ExpectedFunctionType)) 2855 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2856 } 2857 2858 if (getLangOpts().CUDA) 2859 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2860 Matches); 2861 } else { 2862 // C++1y [expr.new]p22: 2863 // For a non-placement allocation function, the normal deallocation 2864 // function lookup is used 2865 // 2866 // Per [expr.delete]p10, this lookup prefers a member operator delete 2867 // without a size_t argument, but prefers a non-member operator delete 2868 // with a size_t where possible (which it always is in this case). 2869 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2870 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2871 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2872 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2873 &BestDeallocFns); 2874 if (Selected) 2875 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2876 else { 2877 // If we failed to select an operator, all remaining functions are viable 2878 // but ambiguous. 2879 for (auto Fn : BestDeallocFns) 2880 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2881 } 2882 } 2883 2884 // C++ [expr.new]p20: 2885 // [...] If the lookup finds a single matching deallocation 2886 // function, that function will be called; otherwise, no 2887 // deallocation function will be called. 2888 if (Matches.size() == 1) { 2889 OperatorDelete = Matches[0].second; 2890 2891 // C++1z [expr.new]p23: 2892 // If the lookup finds a usual deallocation function (3.7.4.2) 2893 // with a parameter of type std::size_t and that function, considered 2894 // as a placement deallocation function, would have been 2895 // selected as a match for the allocation function, the program 2896 // is ill-formed. 2897 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2898 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2899 UsualDeallocFnInfo Info(*this, 2900 DeclAccessPair::make(OperatorDelete, AS_public)); 2901 // Core issue, per mail to core reflector, 2016-10-09: 2902 // If this is a member operator delete, and there is a corresponding 2903 // non-sized member operator delete, this isn't /really/ a sized 2904 // deallocation function, it just happens to have a size_t parameter. 2905 bool IsSizedDelete = Info.HasSizeT; 2906 if (IsSizedDelete && !FoundGlobalDelete) { 2907 auto NonSizedDelete = 2908 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2909 /*WantAlign*/Info.HasAlignValT); 2910 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2911 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2912 IsSizedDelete = false; 2913 } 2914 2915 if (IsSizedDelete) { 2916 SourceRange R = PlaceArgs.empty() 2917 ? SourceRange() 2918 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2919 PlaceArgs.back()->getEndLoc()); 2920 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2921 if (!OperatorDelete->isImplicit()) 2922 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2923 << DeleteName; 2924 } 2925 } 2926 2927 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2928 Matches[0].first); 2929 } else if (!Matches.empty()) { 2930 // We found multiple suitable operators. Per [expr.new]p20, that means we 2931 // call no 'operator delete' function, but we should at least warn the user. 2932 // FIXME: Suppress this warning if the construction cannot throw. 2933 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2934 << DeleteName << AllocElemType; 2935 2936 for (auto &Match : Matches) 2937 Diag(Match.second->getLocation(), 2938 diag::note_member_declared_here) << DeleteName; 2939 } 2940 2941 return false; 2942} 2943 2944/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2945/// delete. These are: 2946/// @code 2947/// // C++03: 2948/// void* operator new(std::size_t) throw(std::bad_alloc); 2949/// void* operator new[](std::size_t) throw(std::bad_alloc); 2950/// void operator delete(void *) throw(); 2951/// void operator delete[](void *) throw(); 2952/// // C++11: 2953/// void* operator new(std::size_t); 2954/// void* operator new[](std::size_t); 2955/// void operator delete(void *) noexcept; 2956/// void operator delete[](void *) noexcept; 2957/// // C++1y: 2958/// void* operator new(std::size_t); 2959/// void* operator new[](std::size_t); 2960/// void operator delete(void *) noexcept; 2961/// void operator delete[](void *) noexcept; 2962/// void operator delete(void *, std::size_t) noexcept; 2963/// void operator delete[](void *, std::size_t) noexcept; 2964/// @endcode 2965/// Note that the placement and nothrow forms of new are *not* implicitly 2966/// declared. Their use requires including \<new\>. 2967void Sema::DeclareGlobalNewDelete() { 2968 if (GlobalNewDeleteDeclared) 2969 return; 2970 2971 // The implicitly declared new and delete operators 2972 // are not supported in OpenCL. 2973 if (getLangOpts().OpenCLCPlusPlus) 2974 return; 2975 2976 // C++ [basic.stc.dynamic.general]p2: 2977 // The library provides default definitions for the global allocation 2978 // and deallocation functions. Some global allocation and deallocation 2979 // functions are replaceable ([new.delete]); these are attached to the 2980 // global module ([module.unit]). 2981 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 2982 PushGlobalModuleFragment(SourceLocation()); 2983 2984 // C++ [basic.std.dynamic]p2: 2985 // [...] The following allocation and deallocation functions (18.4) are 2986 // implicitly declared in global scope in each translation unit of a 2987 // program 2988 // 2989 // C++03: 2990 // void* operator new(std::size_t) throw(std::bad_alloc); 2991 // void* operator new[](std::size_t) throw(std::bad_alloc); 2992 // void operator delete(void*) throw(); 2993 // void operator delete[](void*) throw(); 2994 // C++11: 2995 // void* operator new(std::size_t); 2996 // void* operator new[](std::size_t); 2997 // void operator delete(void*) noexcept; 2998 // void operator delete[](void*) noexcept; 2999 // C++1y: 3000 // void* operator new(std::size_t); 3001 // void* operator new[](std::size_t); 3002 // void operator delete(void*) noexcept; 3003 // void operator delete[](void*) noexcept; 3004 // void operator delete(void*, std::size_t) noexcept; 3005 // void operator delete[](void*, std::size_t) noexcept; 3006 // 3007 // These implicit declarations introduce only the function names operator 3008 // new, operator new[], operator delete, operator delete[]. 3009 // 3010 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 3011 // "std" or "bad_alloc" as necessary to form the exception specification. 3012 // However, we do not make these implicit declarations visible to name 3013 // lookup. 3014 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 3015 // The "std::bad_alloc" class has not yet been declared, so build it 3016 // implicitly. 3017 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 3018 getOrCreateStdNamespace(), 3019 SourceLocation(), SourceLocation(), 3020 &PP.getIdentifierTable().get("bad_alloc"), 3021 nullptr); 3022 getStdBadAlloc()->setImplicit(true); 3023 3024 // The implicitly declared "std::bad_alloc" should live in global module 3025 // fragment. 3026 if (TheGlobalModuleFragment) { 3027 getStdBadAlloc()->setModuleOwnershipKind( 3028 Decl::ModuleOwnershipKind::ReachableWhenImported); 3029 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); 3030 } 3031 } 3032 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 3033 // The "std::align_val_t" enum class has not yet been declared, so build it 3034 // implicitly. 3035 auto *AlignValT = EnumDecl::Create( 3036 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 3037 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 3038 3039 // The implicitly declared "std::align_val_t" should live in global module 3040 // fragment. 3041 if (TheGlobalModuleFragment) { 3042 AlignValT->setModuleOwnershipKind( 3043 Decl::ModuleOwnershipKind::ReachableWhenImported); 3044 AlignValT->setLocalOwningModule(TheGlobalModuleFragment); 3045 } 3046 3047 AlignValT->setIntegerType(Context.getSizeType()); 3048 AlignValT->setPromotionType(Context.getSizeType()); 3049 AlignValT->setImplicit(true); 3050 3051 StdAlignValT = AlignValT; 3052 } 3053 3054 GlobalNewDeleteDeclared = true; 3055 3056 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3057 QualType SizeT = Context.getSizeType(); 3058 3059 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3060 QualType Return, QualType Param) { 3061 llvm::SmallVector<QualType, 3> Params; 3062 Params.push_back(Param); 3063 3064 // Create up to four variants of the function (sized/aligned). 3065 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3066 (Kind == OO_Delete || Kind == OO_Array_Delete); 3067 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3068 3069 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3070 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3071 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3072 if (Sized) 3073 Params.push_back(SizeT); 3074 3075 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3076 if (Aligned) 3077 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3078 3079 DeclareGlobalAllocationFunction( 3080 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3081 3082 if (Aligned) 3083 Params.pop_back(); 3084 } 3085 } 3086 }; 3087 3088 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3089 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3090 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3091 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3092 3093 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3094 PopGlobalModuleFragment(); 3095} 3096 3097/// DeclareGlobalAllocationFunction - Declares a single implicit global 3098/// allocation function if it doesn't already exist. 3099void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3100 QualType Return, 3101 ArrayRef<QualType> Params) { 3102 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3103 3104 // Check if this function is already declared. 3105 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3106 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3107 Alloc != AllocEnd; ++Alloc) { 3108 // Only look at non-template functions, as it is the predefined, 3109 // non-templated allocation function we are trying to declare here. 3110 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3111 if (Func->getNumParams() == Params.size()) { 3112 llvm::SmallVector<QualType, 3> FuncParams; 3113 for (auto *P : Func->parameters()) 3114 FuncParams.push_back( 3115 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3116 if (llvm::ArrayRef(FuncParams) == Params) { 3117 // Make the function visible to name lookup, even if we found it in 3118 // an unimported module. It either is an implicitly-declared global 3119 // allocation function, or is suppressing that function. 3120 Func->setVisibleDespiteOwningModule(); 3121 return; 3122 } 3123 } 3124 } 3125 } 3126 3127 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3128 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3129 3130 QualType BadAllocType; 3131 bool HasBadAllocExceptionSpec 3132 = (Name.getCXXOverloadedOperator() == OO_New || 3133 Name.getCXXOverloadedOperator() == OO_Array_New); 3134 if (HasBadAllocExceptionSpec) { 3135 if (!getLangOpts().CPlusPlus11) { 3136 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3137 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3137, __extension__ __PRETTY_FUNCTION__
))
; 3138 EPI.ExceptionSpec.Type = EST_Dynamic; 3139 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); 3140 } 3141 if (getLangOpts().NewInfallible) { 3142 EPI.ExceptionSpec.Type = EST_DynamicNone; 3143 } 3144 } else { 3145 EPI.ExceptionSpec = 3146 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3147 } 3148 3149 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3150 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3151 FunctionDecl *Alloc = FunctionDecl::Create( 3152 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3153 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3154 true); 3155 Alloc->setImplicit(); 3156 // Global allocation functions should always be visible. 3157 Alloc->setVisibleDespiteOwningModule(); 3158 3159 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3160 Alloc->addAttr( 3161 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3162 3163 // C++ [basic.stc.dynamic.general]p2: 3164 // The library provides default definitions for the global allocation 3165 // and deallocation functions. Some global allocation and deallocation 3166 // functions are replaceable ([new.delete]); these are attached to the 3167 // global module ([module.unit]). 3168 // 3169 // In the language wording, these functions are attched to the global 3170 // module all the time. But in the implementation, the global module 3171 // is only meaningful when we're in a module unit. So here we attach 3172 // these allocation functions to global module conditionally. 3173 if (TheGlobalModuleFragment) { 3174 Alloc->setModuleOwnershipKind( 3175 Decl::ModuleOwnershipKind::ReachableWhenImported); 3176 Alloc->setLocalOwningModule(TheGlobalModuleFragment); 3177 } 3178 3179 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3180 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3181 ? VisibilityAttr::Hidden 3182 : VisibilityAttr::Default)); 3183 3184 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3185 for (QualType T : Params) { 3186 ParamDecls.push_back(ParmVarDecl::Create( 3187 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3188 /*TInfo=*/nullptr, SC_None, nullptr)); 3189 ParamDecls.back()->setImplicit(); 3190 } 3191 Alloc->setParams(ParamDecls); 3192 if (ExtraAttr) 3193 Alloc->addAttr(ExtraAttr); 3194 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3195 Context.getTranslationUnitDecl()->addDecl(Alloc); 3196 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3197 }; 3198 3199 if (!LangOpts.CUDA) 3200 CreateAllocationFunctionDecl(nullptr); 3201 else { 3202 // Host and device get their own declaration so each can be 3203 // defined or re-declared independently. 3204 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3205 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3206 } 3207} 3208 3209FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3210 bool CanProvideSize, 3211 bool Overaligned, 3212 DeclarationName Name) { 3213 DeclareGlobalNewDelete(); 3214 3215 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3216 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3217 3218 // FIXME: It's possible for this to result in ambiguity, through a 3219 // user-declared variadic operator delete or the enable_if attribute. We 3220 // should probably not consider those cases to be usual deallocation 3221 // functions. But for now we just make an arbitrary choice in that case. 3222 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3223 Overaligned); 3224 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3224, __extension__ __PRETTY_FUNCTION__
))
; 3225 return Result.FD; 3226} 3227 3228FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3229 CXXRecordDecl *RD) { 3230 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3231 3232 FunctionDecl *OperatorDelete = nullptr; 3233 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3234 return nullptr; 3235 if (OperatorDelete) 3236 return OperatorDelete; 3237 3238 // If there's no class-specific operator delete, look up the global 3239 // non-array delete. 3240 return FindUsualDeallocationFunction( 3241 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3242 Name); 3243} 3244 3245bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3246 DeclarationName Name, 3247 FunctionDecl *&Operator, bool Diagnose, 3248 bool WantSize, bool WantAligned) { 3249 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3250 // Try to find operator delete/operator delete[] in class scope. 3251 LookupQualifiedName(Found, RD); 3252 3253 if (Found.isAmbiguous()) 3254 return true; 3255 3256 Found.suppressDiagnostics(); 3257 3258 bool Overaligned = 3259 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3260 3261 // C++17 [expr.delete]p10: 3262 // If the deallocation functions have class scope, the one without a 3263 // parameter of type std::size_t is selected. 3264 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3265 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, 3266 /*WantAlign*/ Overaligned, &Matches); 3267 3268 // If we could find an overload, use it. 3269 if (Matches.size() == 1) { 3270 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3271 3272 // FIXME: DiagnoseUseOfDecl? 3273 if (Operator->isDeleted()) { 3274 if (Diagnose) { 3275 Diag(StartLoc, diag::err_deleted_function_use); 3276 NoteDeletedFunction(Operator); 3277 } 3278 return true; 3279 } 3280 3281 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3282 Matches[0].Found, Diagnose) == AR_inaccessible) 3283 return true; 3284 3285 return false; 3286 } 3287 3288 // We found multiple suitable operators; complain about the ambiguity. 3289 // FIXME: The standard doesn't say to do this; it appears that the intent 3290 // is that this should never happen. 3291 if (!Matches.empty()) { 3292 if (Diagnose) { 3293 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3294 << Name << RD; 3295 for (auto &Match : Matches) 3296 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3297 } 3298 return true; 3299 } 3300 3301 // We did find operator delete/operator delete[] declarations, but 3302 // none of them were suitable. 3303 if (!Found.empty()) { 3304 if (Diagnose) { 3305 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3306 << Name << RD; 3307 3308 for (NamedDecl *D : Found) 3309 Diag(D->getUnderlyingDecl()->getLocation(), 3310 diag::note_member_declared_here) << Name; 3311 } 3312 return true; 3313 } 3314 3315 Operator = nullptr; 3316 return false; 3317} 3318 3319namespace { 3320/// Checks whether delete-expression, and new-expression used for 3321/// initializing deletee have the same array form. 3322class MismatchingNewDeleteDetector { 3323public: 3324 enum MismatchResult { 3325 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3326 NoMismatch, 3327 /// Indicates that variable is initialized with mismatching form of \a new. 3328 VarInitMismatches, 3329 /// Indicates that member is initialized with mismatching form of \a new. 3330 MemberInitMismatches, 3331 /// Indicates that 1 or more constructors' definitions could not been 3332 /// analyzed, and they will be checked again at the end of translation unit. 3333 AnalyzeLater 3334 }; 3335 3336 /// \param EndOfTU True, if this is the final analysis at the end of 3337 /// translation unit. False, if this is the initial analysis at the point 3338 /// delete-expression was encountered. 3339 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3340 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3341 HasUndefinedConstructors(false) {} 3342 3343 /// Checks whether pointee of a delete-expression is initialized with 3344 /// matching form of new-expression. 3345 /// 3346 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3347 /// point where delete-expression is encountered, then a warning will be 3348 /// issued immediately. If return value is \c AnalyzeLater at the point where 3349 /// delete-expression is seen, then member will be analyzed at the end of 3350 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3351 /// couldn't be analyzed. If at least one constructor initializes the member 3352 /// with matching type of new, the return value is \c NoMismatch. 3353 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3354 /// Analyzes a class member. 3355 /// \param Field Class member to analyze. 3356 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3357 /// for deleting the \p Field. 3358 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3359 FieldDecl *Field; 3360 /// List of mismatching new-expressions used for initialization of the pointee 3361 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3362 /// Indicates whether delete-expression was in array form. 3363 bool IsArrayForm; 3364 3365private: 3366 const bool EndOfTU; 3367 /// Indicates that there is at least one constructor without body. 3368 bool HasUndefinedConstructors; 3369 /// Returns \c CXXNewExpr from given initialization expression. 3370 /// \param E Expression used for initializing pointee in delete-expression. 3371 /// E can be a single-element \c InitListExpr consisting of new-expression. 3372 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3373 /// Returns whether member is initialized with mismatching form of 3374 /// \c new either by the member initializer or in-class initialization. 3375 /// 3376 /// If bodies of all constructors are not visible at the end of translation 3377 /// unit or at least one constructor initializes member with the matching 3378 /// form of \c new, mismatch cannot be proven, and this function will return 3379 /// \c NoMismatch. 3380 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3381 /// Returns whether variable is initialized with mismatching form of 3382 /// \c new. 3383 /// 3384 /// If variable is initialized with matching form of \c new or variable is not 3385 /// initialized with a \c new expression, this function will return true. 3386 /// If variable is initialized with mismatching form of \c new, returns false. 3387 /// \param D Variable to analyze. 3388 bool hasMatchingVarInit(const DeclRefExpr *D); 3389 /// Checks whether the constructor initializes pointee with mismatching 3390 /// form of \c new. 3391 /// 3392 /// Returns true, if member is initialized with matching form of \c new in 3393 /// member initializer list. Returns false, if member is initialized with the 3394 /// matching form of \c new in this constructor's initializer or given 3395 /// constructor isn't defined at the point where delete-expression is seen, or 3396 /// member isn't initialized by the constructor. 3397 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3398 /// Checks whether member is initialized with matching form of 3399 /// \c new in member initializer list. 3400 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3401 /// Checks whether member is initialized with mismatching form of \c new by 3402 /// in-class initializer. 3403 MismatchResult analyzeInClassInitializer(); 3404}; 3405} 3406 3407MismatchingNewDeleteDetector::MismatchResult 3408MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3409 NewExprs.clear(); 3410 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3410, __extension__ __PRETTY_FUNCTION__
))
; 3411 IsArrayForm = DE->isArrayForm(); 3412 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3413 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3414 return analyzeMemberExpr(ME); 3415 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3416 if (!hasMatchingVarInit(D)) 3417 return VarInitMismatches; 3418 } 3419 return NoMismatch; 3420} 3421 3422const CXXNewExpr * 3423MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3424 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3424, __extension__ __PRETTY_FUNCTION__
))
; 3425 E = E->IgnoreParenImpCasts(); 3426 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3427 if (ILE->getNumInits() == 1) 3428 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3429 } 3430 3431 return dyn_cast_or_null<const CXXNewExpr>(E); 3432} 3433 3434bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3435 const CXXCtorInitializer *CI) { 3436 const CXXNewExpr *NE = nullptr; 3437 if (Field == CI->getMember() && 3438 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3439 if (NE->isArray() == IsArrayForm) 3440 return true; 3441 else 3442 NewExprs.push_back(NE); 3443 } 3444 return false; 3445} 3446 3447bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3448 const CXXConstructorDecl *CD) { 3449 if (CD->isImplicit()) 3450 return false; 3451 const FunctionDecl *Definition = CD; 3452 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3453 HasUndefinedConstructors = true; 3454 return EndOfTU; 3455 } 3456 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3457 if (hasMatchingNewInCtorInit(CI)) 3458 return true; 3459 } 3460 return false; 3461} 3462 3463MismatchingNewDeleteDetector::MismatchResult 3464MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3465 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3465, __extension__ __PRETTY_FUNCTION__
))
; 3466 const Expr *InitExpr = Field->getInClassInitializer(); 3467 if (!InitExpr) 3468 return EndOfTU ? NoMismatch : AnalyzeLater; 3469 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3470 if (NE->isArray() != IsArrayForm) { 3471 NewExprs.push_back(NE); 3472 return MemberInitMismatches; 3473 } 3474 } 3475 return NoMismatch; 3476} 3477 3478MismatchingNewDeleteDetector::MismatchResult 3479MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3480 bool DeleteWasArrayForm) { 3481 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3481, __extension__ __PRETTY_FUNCTION__
))
; 3482 this->Field = Field; 3483 IsArrayForm = DeleteWasArrayForm; 3484 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3485 for (const auto *CD : RD->ctors()) { 3486 if (hasMatchingNewInCtor(CD)) 3487 return NoMismatch; 3488 } 3489 if (HasUndefinedConstructors) 3490 return EndOfTU ? NoMismatch : AnalyzeLater; 3491 if (!NewExprs.empty()) 3492 return MemberInitMismatches; 3493 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3494 : NoMismatch; 3495} 3496 3497MismatchingNewDeleteDetector::MismatchResult 3498MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3499 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3499, __extension__ __PRETTY_FUNCTION__
))
; 3500 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3501 return analyzeField(F, IsArrayForm); 3502 return NoMismatch; 3503} 3504 3505bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3506 const CXXNewExpr *NE = nullptr; 3507 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3508 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3509 NE->isArray() != IsArrayForm) { 3510 NewExprs.push_back(NE); 3511 } 3512 } 3513 return NewExprs.empty(); 3514} 3515 3516static void 3517DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3518 const MismatchingNewDeleteDetector &Detector) { 3519 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3520 FixItHint H; 3521 if (!Detector.IsArrayForm) 3522 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3523 else { 3524 SourceLocation RSquare = Lexer::findLocationAfterToken( 3525 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3526 SemaRef.getLangOpts(), true); 3527 if (RSquare.isValid()) 3528 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3529 } 3530 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3531 << Detector.IsArrayForm << H; 3532 3533 for (const auto *NE : Detector.NewExprs) 3534 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3535 << Detector.IsArrayForm; 3536} 3537 3538void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3539 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3540 return; 3541 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3542 switch (Detector.analyzeDeleteExpr(DE)) { 3543 case MismatchingNewDeleteDetector::VarInitMismatches: 3544 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3545 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3546 break; 3547 } 3548 case MismatchingNewDeleteDetector::AnalyzeLater: { 3549 DeleteExprs[Detector.Field].push_back( 3550 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3551 break; 3552 } 3553 case MismatchingNewDeleteDetector::NoMismatch: 3554 break; 3555 } 3556} 3557 3558void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3559 bool DeleteWasArrayForm) { 3560 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3561 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3562 case MismatchingNewDeleteDetector::VarInitMismatches: 3563 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3563)
; 3564 case MismatchingNewDeleteDetector::AnalyzeLater: 3565 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3566)
3566 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3566)
; 3567 case MismatchingNewDeleteDetector::MemberInitMismatches: 3568 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3569 break; 3570 case MismatchingNewDeleteDetector::NoMismatch: 3571 break; 3572 } 3573} 3574 3575/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3576/// @code ::delete ptr; @endcode 3577/// or 3578/// @code delete [] ptr; @endcode 3579ExprResult 3580Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3581 bool ArrayForm, Expr *ExE) { 3582 // C++ [expr.delete]p1: 3583 // The operand shall have a pointer type, or a class type having a single 3584 // non-explicit conversion function to a pointer type. The result has type 3585 // void. 3586 // 3587 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3588 3589 ExprResult Ex = ExE; 3590 FunctionDecl *OperatorDelete = nullptr; 3591 bool ArrayFormAsWritten = ArrayForm; 3592 bool UsualArrayDeleteWantsSize = false; 3593 3594 if (!Ex.get()->isTypeDependent()) { 3595 // Perform lvalue-to-rvalue cast, if needed. 3596 Ex = DefaultLvalueConversion(Ex.get()); 3597 if (Ex.isInvalid()) 3598 return ExprError(); 3599 3600 QualType Type = Ex.get()->getType(); 3601 3602 class DeleteConverter : public ContextualImplicitConverter { 3603 public: 3604 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3605 3606 bool match(QualType ConvType) override { 3607 // FIXME: If we have an operator T* and an operator void*, we must pick 3608 // the operator T*. 3609 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3610 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3611 return true; 3612 return false; 3613 } 3614 3615 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3616 QualType T) override { 3617 return S.Diag(Loc, diag::err_delete_operand) << T; 3618 } 3619 3620 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3621 QualType T) override { 3622 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3623 } 3624 3625 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3626 QualType T, 3627 QualType ConvTy) override { 3628 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3629 } 3630 3631 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3632 QualType ConvTy) override { 3633 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3634 << ConvTy; 3635 } 3636 3637 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3638 QualType T) override { 3639 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3640 } 3641 3642 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3643 QualType ConvTy) override { 3644 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3645 << ConvTy; 3646 } 3647 3648 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3649 QualType T, 3650 QualType ConvTy) override { 3651 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3651)
; 3652 } 3653 } Converter; 3654 3655 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3656 if (Ex.isInvalid()) 3657 return ExprError(); 3658 Type = Ex.get()->getType(); 3659 if (!Converter.match(Type)) 3660 // FIXME: PerformContextualImplicitConversion should return ExprError 3661 // itself in this case. 3662 return ExprError(); 3663 3664 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3665 QualType PointeeElem = Context.getBaseElementType(Pointee); 3666 3667 if (Pointee.getAddressSpace() != LangAS::Default && 3668 !getLangOpts().OpenCLCPlusPlus) 3669 return Diag(Ex.get()->getBeginLoc(), 3670 diag::err_address_space_qualified_delete) 3671 << Pointee.getUnqualifiedType() 3672 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3673 3674 CXXRecordDecl *PointeeRD = nullptr; 3675 if (Pointee->isVoidType() && !isSFINAEContext()) { 3676 // The C++ standard bans deleting a pointer to a non-object type, which 3677 // effectively bans deletion of "void*". However, most compilers support 3678 // this, so we treat it as a warning unless we're in a SFINAE context. 3679 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3680 << Type << Ex.get()->getSourceRange(); 3681 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3682 Pointee->isSizelessType()) { 3683 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3684 << Type << Ex.get()->getSourceRange()); 3685 } else if (!Pointee->isDependentType()) { 3686 // FIXME: This can result in errors if the definition was imported from a 3687 // module but is hidden. 3688 if (!RequireCompleteType(StartLoc, Pointee, 3689 diag::warn_delete_incomplete, Ex.get())) { 3690 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3691 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3692 } 3693 } 3694 3695 if (Pointee->isArrayType() && !ArrayForm) { 3696 Diag(StartLoc, diag::warn_delete_array_type) 3697 << Type << Ex.get()->getSourceRange() 3698 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3699 ArrayForm = true; 3700 } 3701 3702 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3703 ArrayForm ? OO_Array_Delete : OO_Delete); 3704 3705 if (PointeeRD) { 3706 if (!UseGlobal && 3707 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3708 OperatorDelete)) 3709 return ExprError(); 3710 3711 // If we're allocating an array of records, check whether the 3712 // usual operator delete[] has a size_t parameter. 3713 if (ArrayForm) { 3714 // If the user specifically asked to use the global allocator, 3715 // we'll need to do the lookup into the class. 3716 if (UseGlobal) 3717 UsualArrayDeleteWantsSize = 3718 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3719 3720 // Otherwise, the usual operator delete[] should be the 3721 // function we just found. 3722 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3723 UsualArrayDeleteWantsSize = 3724 UsualDeallocFnInfo(*this, 3725 DeclAccessPair::make(OperatorDelete, AS_public)) 3726 .HasSizeT; 3727 } 3728 3729 if (!PointeeRD->hasIrrelevantDestructor()) 3730 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3731 MarkFunctionReferenced(StartLoc, 3732 const_cast<CXXDestructorDecl*>(Dtor)); 3733 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3734 return ExprError(); 3735 } 3736 3737 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3738 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3739 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3740 SourceLocation()); 3741 } 3742 3743 if (!OperatorDelete) { 3744 if (getLangOpts().OpenCLCPlusPlus) { 3745 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3746 return ExprError(); 3747 } 3748 3749 bool IsComplete = isCompleteType(StartLoc, Pointee); 3750 bool CanProvideSize = 3751 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3752 Pointee.isDestructedType()); 3753 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3754 3755 // Look for a global declaration. 3756 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3757 Overaligned, DeleteName); 3758 } 3759 3760 MarkFunctionReferenced(StartLoc, OperatorDelete); 3761 3762 // Check access and ambiguity of destructor if we're going to call it. 3763 // Note that this is required even for a virtual delete. 3764 bool IsVirtualDelete = false; 3765 if (PointeeRD) { 3766 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3767 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3768 PDiag(diag::err_access_dtor) << PointeeElem); 3769 IsVirtualDelete = Dtor->isVirtual(); 3770 } 3771 } 3772 3773 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3774 3775 // Convert the operand to the type of the first parameter of operator 3776 // delete. This is only necessary if we selected a destroying operator 3777 // delete that we are going to call (non-virtually); converting to void* 3778 // is trivial and left to AST consumers to handle. 3779 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3780 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3781 Qualifiers Qs = Pointee.getQualifiers(); 3782 if (Qs.hasCVRQualifiers()) { 3783 // Qualifiers are irrelevant to this conversion; we're only looking 3784 // for access and ambiguity. 3785 Qs.removeCVRQualifiers(); 3786 QualType Unqual = Context.getPointerType( 3787 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3788 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3789 } 3790 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3791 if (Ex.isInvalid()) 3792 return ExprError(); 3793 } 3794 } 3795 3796 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3797 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3798 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3799 AnalyzeDeleteExprMismatch(Result); 3800 return Result; 3801} 3802 3803static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3804 bool IsDelete, 3805 FunctionDecl *&Operator) { 3806 3807 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3808 IsDelete ? OO_Delete : OO_New); 3809 3810 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3811 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3812 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3812, __extension__ __PRETTY_FUNCTION__
))
; 3813 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3813, __extension__ __PRETTY_FUNCTION__
))
; 3814 3815 // We do our own custom access checks below. 3816 R.suppressDiagnostics(); 3817 3818 SmallVector<Expr *, 8> Args(TheCall->arguments()); 3819 OverloadCandidateSet Candidates(R.getNameLoc(), 3820 OverloadCandidateSet::CSK_Normal); 3821 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3822 FnOvl != FnOvlEnd; ++FnOvl) { 3823 // Even member operator new/delete are implicitly treated as 3824 // static, so don't use AddMemberCandidate. 3825 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3826 3827 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3828 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3829 /*ExplicitTemplateArgs=*/nullptr, Args, 3830 Candidates, 3831 /*SuppressUserConversions=*/false); 3832 continue; 3833 } 3834 3835 FunctionDecl *Fn = cast<FunctionDecl>(D); 3836 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3837 /*SuppressUserConversions=*/false); 3838 } 3839 3840 SourceRange Range = TheCall->getSourceRange(); 3841 3842 // Do the resolution. 3843 OverloadCandidateSet::iterator Best; 3844 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3845 case OR_Success: { 3846 // Got one! 3847 FunctionDecl *FnDecl = Best->Function; 3848 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3849, __extension__ __PRETTY_FUNCTION__
))
3849 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3849, __extension__ __PRETTY_FUNCTION__
))
; 3850 3851 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3852 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3853 << (IsDelete ? 1 : 0) << Range; 3854 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3855 << R.getLookupName() << FnDecl->getSourceRange(); 3856 return true; 3857 } 3858 3859 Operator = FnDecl; 3860 return false; 3861 } 3862 3863 case OR_No_Viable_Function: 3864 Candidates.NoteCandidates( 3865 PartialDiagnosticAt(R.getNameLoc(), 3866 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3867 << R.getLookupName() << Range), 3868 S, OCD_AllCandidates, Args); 3869 return true; 3870 3871 case OR_Ambiguous: 3872 Candidates.NoteCandidates( 3873 PartialDiagnosticAt(R.getNameLoc(), 3874 S.PDiag(diag::err_ovl_ambiguous_call) 3875 << R.getLookupName() << Range), 3876 S, OCD_AmbiguousCandidates, Args); 3877 return true; 3878 3879 case OR_Deleted: { 3880 Candidates.NoteCandidates( 3881 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3882 << R.getLookupName() << Range), 3883 S, OCD_AllCandidates, Args); 3884 return true; 3885 } 3886 } 3887 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3887)
; 3888} 3889 3890ExprResult 3891Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3892 bool IsDelete) { 3893 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3894 if (!getLangOpts().CPlusPlus) { 3895 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3896 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3897 << "C++"; 3898 return ExprError(); 3899 } 3900 // CodeGen assumes it can find the global new and delete to call, 3901 // so ensure that they are declared. 3902 DeclareGlobalNewDelete(); 3903 3904 FunctionDecl *OperatorNewOrDelete = nullptr; 3905 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3906 OperatorNewOrDelete)) 3907 return ExprError(); 3908 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3908, __extension__ __PRETTY_FUNCTION__
))
; 3909 3910 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3911 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3912 3913 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3914 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3915 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3916 InitializedEntity Entity = 3917 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3918 ExprResult Arg = PerformCopyInitialization( 3919 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3920 if (Arg.isInvalid()) 3921 return ExprError(); 3922 TheCall->setArg(i, Arg.get()); 3923 } 3924 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3925 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3926, __extension__ __PRETTY_FUNCTION__
))
3926 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3926, __extension__ __PRETTY_FUNCTION__
))
; 3927 Callee->setType(OperatorNewOrDelete->getType()); 3928 3929 return TheCallResult; 3930} 3931 3932void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3933 bool IsDelete, bool CallCanBeVirtual, 3934 bool WarnOnNonAbstractTypes, 3935 SourceLocation DtorLoc) { 3936 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3937 return; 3938 3939 // C++ [expr.delete]p3: 3940 // In the first alternative (delete object), if the static type of the 3941 // object to be deleted is different from its dynamic type, the static 3942 // type shall be a base class of the dynamic type of the object to be 3943 // deleted and the static type shall have a virtual destructor or the 3944 // behavior is undefined. 3945 // 3946 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3947 // Note: a final class cannot be derived from, no issue there 3948 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3949 return; 3950 3951 // If the superclass is in a system header, there's nothing that can be done. 3952 // The `delete` (where we emit the warning) can be in a system header, 3953 // what matters for this warning is where the deleted type is defined. 3954 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3955 return; 3956 3957 QualType ClassType = dtor->getThisType()->getPointeeType(); 3958 if (PointeeRD->isAbstract()) { 3959 // If the class is abstract, we warn by default, because we're 3960 // sure the code has undefined behavior. 3961 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3962 << ClassType; 3963 } else if (WarnOnNonAbstractTypes) { 3964 // Otherwise, if this is not an array delete, it's a bit suspect, 3965 // but not necessarily wrong. 3966 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3967 << ClassType; 3968 } 3969 if (!IsDelete) { 3970 std::string TypeStr; 3971 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3972 Diag(DtorLoc, diag::note_delete_non_virtual) 3973 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3974 } 3975} 3976 3977Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3978 SourceLocation StmtLoc, 3979 ConditionKind CK) { 3980 ExprResult E = 3981 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3982 if (E.isInvalid()) 3983 return ConditionError(); 3984 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3985 CK == ConditionKind::ConstexprIf); 3986} 3987 3988/// Check the use of the given variable as a C++ condition in an if, 3989/// while, do-while, or switch statement. 3990ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3991 SourceLocation StmtLoc, 3992 ConditionKind CK) { 3993 if (ConditionVar->isInvalidDecl()) 3994 return ExprError(); 3995 3996 QualType T = ConditionVar->getType(); 3997 3998 // C++ [stmt.select]p2: 3999 // The declarator shall not specify a function or an array. 4000 if (T->isFunctionType()) 4001 return ExprError(Diag(ConditionVar->getLocation(), 4002 diag::err_invalid_use_of_function_type) 4003 << ConditionVar->getSourceRange()); 4004 else if (T->isArrayType()) 4005 return ExprError(Diag(ConditionVar->getLocation(), 4006 diag::err_invalid_use_of_array_type) 4007 << ConditionVar->getSourceRange()); 4008 4009 ExprResult Condition = BuildDeclRefExpr( 4010 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 4011 ConditionVar->getLocation()); 4012 4013 switch (CK) { 4014 case ConditionKind::Boolean: 4015 return CheckBooleanCondition(StmtLoc, Condition.get()); 4016 4017 case ConditionKind::ConstexprIf: 4018 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 4019 4020 case ConditionKind::Switch: 4021 return CheckSwitchCondition(StmtLoc, Condition.get()); 4022 } 4023 4024 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 4024)
; 4025} 4026 4027/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 4028ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 4029 // C++11 6.4p4: 4030 // The value of a condition that is an initialized declaration in a statement 4031 // other than a switch statement is the value of the declared variable 4032 // implicitly converted to type bool. If that conversion is ill-formed, the 4033 // program is ill-formed. 4034 // The value of a condition that is an expression is the value of the 4035 // expression, implicitly converted to bool. 4036 // 4037 // C++2b 8.5.2p2 4038 // If the if statement is of the form if constexpr, the value of the condition 4039 // is contextually converted to bool and the converted expression shall be 4040 // a constant expression. 4041 // 4042 4043 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 4044 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 4045 return E; 4046 4047 // FIXME: Return this value to the caller so they don't need to recompute it. 4048 llvm::APSInt Cond; 4049 E = VerifyIntegerConstantExpression( 4050 E.get(), &Cond, 4051 diag::err_constexpr_if_condition_expression_is_not_constant); 4052 return E; 4053} 4054 4055/// Helper function to determine whether this is the (deprecated) C++ 4056/// conversion from a string literal to a pointer to non-const char or 4057/// non-const wchar_t (for narrow and wide string literals, 4058/// respectively). 4059bool 4060Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 4061 // Look inside the implicit cast, if it exists. 4062 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 4063 From = Cast->getSubExpr(); 4064 4065 // A string literal (2.13.4) that is not a wide string literal can 4066 // be converted to an rvalue of type "pointer to char"; a wide 4067 // string literal can be converted to an rvalue of type "pointer 4068 // to wchar_t" (C++ 4.2p2). 4069 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 4070 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 4071 if (const BuiltinType *ToPointeeType 4072 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4073 // This conversion is considered only when there is an 4074 // explicit appropriate pointer target type (C++ 4.2p2). 4075 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4076 switch (StrLit->getKind()) { 4077 case StringLiteral::UTF8: 4078 case StringLiteral::UTF16: 4079 case StringLiteral::UTF32: 4080 // We don't allow UTF literals to be implicitly converted 4081 break; 4082 case StringLiteral::Ordinary: 4083 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4084 ToPointeeType->getKind() == BuiltinType::Char_S); 4085 case StringLiteral::Wide: 4086 return Context.typesAreCompatible(Context.getWideCharType(), 4087 QualType(ToPointeeType, 0)); 4088 } 4089 } 4090 } 4091 4092 return false; 4093} 4094 4095static ExprResult BuildCXXCastArgument(Sema &S, 4096 SourceLocation CastLoc, 4097 QualType Ty, 4098 CastKind Kind, 4099 CXXMethodDecl *Method, 4100 DeclAccessPair FoundDecl, 4101 bool HadMultipleCandidates, 4102 Expr *From) { 4103 switch (Kind) { 4104 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4104)
; 4105 case CK_ConstructorConversion: { 4106 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4107 SmallVector<Expr*, 8> ConstructorArgs; 4108 4109 if (S.RequireNonAbstractType(CastLoc, Ty, 4110 diag::err_allocation_of_abstract_type)) 4111 return ExprError(); 4112 4113 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4114 ConstructorArgs)) 4115 return ExprError(); 4116 4117 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4118 InitializedEntity::InitializeTemporary(Ty)); 4119 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4120 return ExprError(); 4121 4122 ExprResult Result = S.BuildCXXConstructExpr( 4123 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4124 ConstructorArgs, HadMultipleCandidates, 4125 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4126 CXXConstructExpr::CK_Complete, SourceRange()); 4127 if (Result.isInvalid()) 4128 return ExprError(); 4129 4130 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4131 } 4132 4133 case CK_UserDefinedConversion: { 4134 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4134, __extension__ __PRETTY_FUNCTION__
))
; 4135 4136 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4137 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4138 return ExprError(); 4139 4140 // Create an implicit call expr that calls it. 4141 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4142 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4143 HadMultipleCandidates); 4144 if (Result.isInvalid()) 4145 return ExprError(); 4146 // Record usage of conversion in an implicit cast. 4147 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4148 CK_UserDefinedConversion, Result.get(), 4149 nullptr, Result.get()->getValueKind(), 4150 S.CurFPFeatureOverrides()); 4151 4152 return S.MaybeBindToTemporary(Result.get()); 4153 } 4154 } 4155} 4156 4157/// PerformImplicitConversion - Perform an implicit conversion of the 4158/// expression From to the type ToType using the pre-computed implicit 4159/// conversion sequence ICS. Returns the converted 4160/// expression. Action is the kind of conversion we're performing, 4161/// used in the error message. 4162ExprResult 4163Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4164 const ImplicitConversionSequence &ICS, 4165 AssignmentAction Action, 4166 CheckedConversionKind CCK) { 4167 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4168 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4169 return From; 4170 4171 switch (ICS.getKind()) { 4172 case ImplicitConversionSequence::StandardConversion: { 4173 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4174 Action, CCK); 4175 if (Res.isInvalid()) 4176 return ExprError(); 4177 From = Res.get(); 4178 break; 4179 } 4180 4181 case ImplicitConversionSequence::UserDefinedConversion: { 4182 4183 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4184 CastKind CastKind; 4185 QualType BeforeToType; 4186 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4186, __extension__ __PRETTY_FUNCTION__
))
; 4187 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4188 CastKind = CK_UserDefinedConversion; 4189 4190 // If the user-defined conversion is specified by a conversion function, 4191 // the initial standard conversion sequence converts the source type to 4192 // the implicit object parameter of the conversion function. 4193 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4194 } else { 4195 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4196 CastKind = CK_ConstructorConversion; 4197 // Do no conversion if dealing with ... for the first conversion. 4198 if (!ICS.UserDefined.EllipsisConversion) { 4199 // If the user-defined conversion is specified by a constructor, the 4200 // initial standard conversion sequence converts the source type to 4201 // the type required by the argument of the constructor 4202 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4203 } 4204 } 4205 // Watch out for ellipsis conversion. 4206 if (!ICS.UserDefined.EllipsisConversion) { 4207 ExprResult Res = 4208 PerformImplicitConversion(From, BeforeToType, 4209 ICS.UserDefined.Before, AA_Converting, 4210 CCK); 4211 if (Res.isInvalid()) 4212 return ExprError(); 4213 From = Res.get(); 4214 } 4215 4216 ExprResult CastArg = BuildCXXCastArgument( 4217 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4218 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4219 ICS.UserDefined.HadMultipleCandidates, From); 4220 4221 if (CastArg.isInvalid()) 4222 return ExprError(); 4223 4224 From = CastArg.get(); 4225 4226 // C++ [over.match.oper]p7: 4227 // [...] the second standard conversion sequence of a user-defined 4228 // conversion sequence is not applied. 4229 if (CCK == CCK_ForBuiltinOverloadedOp) 4230 return From; 4231 4232 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4233 AA_Converting, CCK); 4234 } 4235 4236 case ImplicitConversionSequence::AmbiguousConversion: 4237 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4238 PDiag(diag::err_typecheck_ambiguous_condition) 4239 << From->getSourceRange()); 4240 return ExprError(); 4241 4242 case ImplicitConversionSequence::EllipsisConversion: 4243 case ImplicitConversionSequence::StaticObjectArgumentConversion: 4244 llvm_unreachable("bad conversion")::llvm::llvm_unreachable_internal("bad conversion", "clang/lib/Sema/SemaExprCXX.cpp"
, 4244)
; 4245 4246 case ImplicitConversionSequence::BadConversion: 4247 Sema::AssignConvertType ConvTy = 4248 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4249 bool Diagnosed = DiagnoseAssignmentResult( 4250 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4251 ToType, From->getType(), From, Action); 4252 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4252, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed; 4253 return ExprError(); 4254 } 4255 4256 // Everything went well. 4257 return From; 4258} 4259 4260/// PerformImplicitConversion - Perform an implicit conversion of the 4261/// expression From to the type ToType by following the standard 4262/// conversion sequence SCS. Returns the converted 4263/// expression. Flavor is the context in which we're performing this 4264/// conversion, for use in error messages. 4265ExprResult 4266Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4267 const StandardConversionSequence& SCS, 4268 AssignmentAction Action, 4269 CheckedConversionKind CCK) { 4270 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4271 4272 // Overall FIXME: we are recomputing too many types here and doing far too 4273 // much extra work. What this means is that we need to keep track of more 4274 // information that is computed when we try the implicit conversion initially, 4275 // so that we don't need to recompute anything here. 4276 QualType FromType = From->getType(); 4277 4278 if (SCS.CopyConstructor) { 4279 // FIXME: When can ToType be a reference type? 4280 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4280, __extension__ __PRETTY_FUNCTION__))
; 4281 if (SCS.Second == ICK_Derived_To_Base) { 4282 SmallVector<Expr*, 8> ConstructorArgs; 4283 if (CompleteConstructorCall( 4284 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4285 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4286 return ExprError(); 4287 return BuildCXXConstructExpr( 4288 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4289 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4290 ConstructorArgs, /*HadMultipleCandidates*/ false, 4291 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4292 CXXConstructExpr::CK_Complete, SourceRange()); 4293 } 4294 return BuildCXXConstructExpr( 4295 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4296 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4297 From, /*HadMultipleCandidates*/ false, 4298 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4299 CXXConstructExpr::CK_Complete, SourceRange()); 4300 } 4301 4302 // Resolve overloaded function references. 4303 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4304 DeclAccessPair Found; 4305 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4306 true, Found); 4307 if (!Fn) 4308 return ExprError(); 4309 4310 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4311 return ExprError(); 4312 4313 From = FixOverloadedFunctionReference(From, Found, Fn); 4314 4315 // We might get back another placeholder expression if we resolved to a 4316 // builtin. 4317 ExprResult Checked = CheckPlaceholderExpr(From); 4318 if (Checked.isInvalid()) 4319 return ExprError(); 4320 4321 From = Checked.get(); 4322 FromType = From->getType(); 4323 } 4324 4325 // If we're converting to an atomic type, first convert to the corresponding 4326 // non-atomic type. 4327 QualType ToAtomicType; 4328 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4329 ToAtomicType = ToType; 4330 ToType = ToAtomic->getValueType(); 4331 } 4332 4333 QualType InitialFromType = FromType; 4334 // Perform the first implicit conversion. 4335 switch (SCS.First) { 4336 case ICK_Identity: 4337 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4338 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4339 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4340 From, /*BasePath=*/nullptr, VK_PRValue, 4341 FPOptionsOverride()); 4342 } 4343 break; 4344 4345 case ICK_Lvalue_To_Rvalue: { 4346 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4346, __extension__ __PRETTY_FUNCTION__
))
; 4347 ExprResult FromRes = DefaultLvalueConversion(From); 4348 if (FromRes.isInvalid()) 4349 return ExprError(); 4350 4351 From = FromRes.get(); 4352 FromType = From->getType(); 4353 break; 4354 } 4355 4356 case ICK_Array_To_Pointer: 4357 FromType = Context.getArrayDecayedType(FromType); 4358 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4359 /*BasePath=*/nullptr, CCK) 4360 .get(); 4361 break; 4362 4363 case ICK_Function_To_Pointer: 4364 FromType = Context.getPointerType(FromType); 4365 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4366 VK_PRValue, /*BasePath=*/nullptr, CCK) 4367 .get(); 4368 break; 4369 4370 default: 4371 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4371)
; 4372 } 4373 4374 // Perform the second implicit conversion 4375 switch (SCS.Second) { 4376 case ICK_Identity: 4377 // C++ [except.spec]p5: 4378 // [For] assignment to and initialization of pointers to functions, 4379 // pointers to member functions, and references to functions: the 4380 // target entity shall allow at least the exceptions allowed by the 4381 // source value in the assignment or initialization. 4382 switch (Action) { 4383 case AA_Assigning: 4384 case AA_Initializing: 4385 // Note, function argument passing and returning are initialization. 4386 case AA_Passing: 4387 case AA_Returning: 4388 case AA_Sending: 4389 case AA_Passing_CFAudited: 4390 if (CheckExceptionSpecCompatibility(From, ToType)) 4391 return ExprError(); 4392 break; 4393 4394 case AA_Casting: 4395 case AA_Converting: 4396 // Casts and implicit conversions are not initialization, so are not 4397 // checked for exception specification mismatches. 4398 break; 4399 } 4400 // Nothing else to do. 4401 break; 4402 4403 case ICK_Integral_Promotion: 4404 case ICK_Integral_Conversion: 4405 if (ToType->isBooleanType()) { 4406 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4408, __extension__ __PRETTY_FUNCTION__
))
4407 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4408, __extension__ __PRETTY_FUNCTION__
))
4408 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4408, __extension__ __PRETTY_FUNCTION__
))
; 4409 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4410 /*BasePath=*/nullptr, CCK) 4411 .get(); 4412 } else { 4413 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4414 /*BasePath=*/nullptr, CCK) 4415 .get(); 4416 } 4417 break; 4418 4419 case ICK_Floating_Promotion: 4420 case ICK_Floating_Conversion: 4421 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4422 /*BasePath=*/nullptr, CCK) 4423 .get(); 4424 break; 4425 4426 case ICK_Complex_Promotion: 4427 case ICK_Complex_Conversion: { 4428 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4429 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4430 CastKind CK; 4431 if (FromEl->isRealFloatingType()) { 4432 if (ToEl->isRealFloatingType()) 4433 CK = CK_FloatingComplexCast; 4434 else 4435 CK = CK_FloatingComplexToIntegralComplex; 4436 } else if (ToEl->isRealFloatingType()) { 4437 CK = CK_IntegralComplexToFloatingComplex; 4438 } else { 4439 CK = CK_IntegralComplexCast; 4440 } 4441 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4442 CCK) 4443 .get(); 4444 break; 4445 } 4446 4447 case ICK_Floating_Integral: 4448 if (ToType->isRealFloatingType()) 4449 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4450 /*BasePath=*/nullptr, CCK) 4451 .get(); 4452 else 4453 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4454 /*BasePath=*/nullptr, CCK) 4455 .get(); 4456 break; 4457 4458 case ICK_Compatible_Conversion: 4459 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4460 /*BasePath=*/nullptr, CCK).get(); 4461 break; 4462 4463 case ICK_Writeback_Conversion: 4464 case ICK_Pointer_Conversion: { 4465 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4466 // Diagnose incompatible Objective-C conversions 4467 if (Action == AA_Initializing || Action == AA_Assigning) 4468 Diag(From->getBeginLoc(), 4469 diag::ext_typecheck_convert_incompatible_pointer) 4470 << ToType << From->getType() << Action << From->getSourceRange() 4471 << 0; 4472 else 4473 Diag(From->getBeginLoc(), 4474 diag::ext_typecheck_convert_incompatible_pointer) 4475 << From->getType() << ToType << Action << From->getSourceRange() 4476 << 0; 4477 4478 if (From->getType()->isObjCObjectPointerType() && 4479 ToType->isObjCObjectPointerType()) 4480 EmitRelatedResultTypeNote(From); 4481 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4482 !CheckObjCARCUnavailableWeakConversion(ToType, 4483 From->getType())) { 4484 if (Action == AA_Initializing) 4485 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4486 else 4487 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4488 << (Action == AA_Casting) << From->getType() << ToType 4489 << From->getSourceRange(); 4490 } 4491 4492 // Defer address space conversion to the third conversion. 4493 QualType FromPteeType = From->getType()->getPointeeType(); 4494 QualType ToPteeType = ToType->getPointeeType(); 4495 QualType NewToType = ToType; 4496 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4497 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4498 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4499 NewToType = Context.getAddrSpaceQualType(NewToType, 4500 FromPteeType.getAddressSpace()); 4501 if (ToType->isObjCObjectPointerType()) 4502 NewToType = Context.getObjCObjectPointerType(NewToType); 4503 else if (ToType->isBlockPointerType()) 4504 NewToType = Context.getBlockPointerType(NewToType); 4505 else 4506 NewToType = Context.getPointerType(NewToType); 4507 } 4508 4509 CastKind Kind; 4510 CXXCastPath BasePath; 4511 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4512 return ExprError(); 4513 4514 // Make sure we extend blocks if necessary. 4515 // FIXME: doing this here is really ugly. 4516 if (Kind == CK_BlockPointerToObjCPointerCast) { 4517 ExprResult E = From; 4518 (void) PrepareCastToObjCObjectPointer(E); 4519 From = E.get(); 4520 } 4521 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4522 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4523 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4524 .get(); 4525 break; 4526 } 4527 4528 case ICK_Pointer_Member: { 4529 CastKind Kind; 4530 CXXCastPath BasePath; 4531 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4532 return ExprError(); 4533 if (CheckExceptionSpecCompatibility(From, ToType)) 4534 return ExprError(); 4535 4536 // We may not have been able to figure out what this member pointer resolved 4537 // to up until this exact point. Attempt to lock-in it's inheritance model. 4538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4539 (void)isCompleteType(From->getExprLoc(), From->getType()); 4540 (void)isCompleteType(From->getExprLoc(), ToType); 4541 } 4542 4543 From = 4544 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4545 break; 4546 } 4547 4548 case ICK_Boolean_Conversion: 4549 // Perform half-to-boolean conversion via float. 4550 if (From->getType()->isHalfType()) { 4551 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4552 FromType = Context.FloatTy; 4553 } 4554 4555 From = ImpCastExprToType(From, Context.BoolTy, 4556 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4557 /*BasePath=*/nullptr, CCK) 4558 .get(); 4559 break; 4560 4561 case ICK_Derived_To_Base: { 4562 CXXCastPath BasePath; 4563 if (CheckDerivedToBaseConversion( 4564 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4565 From->getSourceRange(), &BasePath, CStyle)) 4566 return ExprError(); 4567 4568 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4569 CK_DerivedToBase, From->getValueKind(), 4570 &BasePath, CCK).get(); 4571 break; 4572 } 4573 4574 case ICK_Vector_Conversion: 4575 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4576 /*BasePath=*/nullptr, CCK) 4577 .get(); 4578 break; 4579 4580 case ICK_SVE_Vector_Conversion: 4581 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4582 /*BasePath=*/nullptr, CCK) 4583 .get(); 4584 break; 4585 4586 case ICK_Vector_Splat: { 4587 // Vector splat from any arithmetic type to a vector. 4588 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4589 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4590 /*BasePath=*/nullptr, CCK) 4591 .get(); 4592 break; 4593 } 4594 4595 case ICK_Complex_Real: 4596 // Case 1. x -> _Complex y 4597 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4598 QualType ElType = ToComplex->getElementType(); 4599 bool isFloatingComplex = ElType->isRealFloatingType(); 4600 4601 // x -> y 4602 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4603 // do nothing 4604 } else if (From->getType()->isRealFloatingType()) { 4605 From = ImpCastExprToType(From, ElType, 4606 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4607 } else { 4608 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4608, __extension__ __PRETTY_FUNCTION__
))
; 4609 From = ImpCastExprToType(From, ElType, 4610 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4611 } 4612 // y -> _Complex y 4613 From = ImpCastExprToType(From, ToType, 4614 isFloatingComplex ? CK_FloatingRealToComplex 4615 : CK_IntegralRealToComplex).get(); 4616 4617 // Case 2. _Complex x -> y 4618 } else { 4619 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4620 QualType ElType = FromComplex->getElementType(); 4621 bool isFloatingComplex = ElType->isRealFloatingType(); 4622 4623 // _Complex x -> x 4624 From = ImpCastExprToType(From, ElType, 4625 isFloatingComplex ? CK_FloatingComplexToReal 4626 : CK_IntegralComplexToReal, 4627 VK_PRValue, /*BasePath=*/nullptr, CCK) 4628 .get(); 4629 4630 // x -> y 4631 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4632 // do nothing 4633 } else if (ToType->isRealFloatingType()) { 4634 From = ImpCastExprToType(From, ToType, 4635 isFloatingComplex ? CK_FloatingCast 4636 : CK_IntegralToFloating, 4637 VK_PRValue, /*BasePath=*/nullptr, CCK) 4638 .get(); 4639 } else { 4640 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4640, __extension__ __PRETTY_FUNCTION__))
; 4641 From = ImpCastExprToType(From, ToType, 4642 isFloatingComplex ? CK_FloatingToIntegral 4643 : CK_IntegralCast, 4644 VK_PRValue, /*BasePath=*/nullptr, CCK) 4645 .get(); 4646 } 4647 } 4648 break; 4649 4650 case ICK_Block_Pointer_Conversion: { 4651 LangAS AddrSpaceL = 4652 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4653 LangAS AddrSpaceR = 4654 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4655 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4656, __extension__ __PRETTY_FUNCTION__
))
4656 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4656, __extension__ __PRETTY_FUNCTION__
))
; 4657 CastKind Kind = 4658 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4659 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4660 VK_PRValue, /*BasePath=*/nullptr, CCK) 4661 .get(); 4662 break; 4663 } 4664 4665 case ICK_TransparentUnionConversion: { 4666 ExprResult FromRes = From; 4667 Sema::AssignConvertType ConvTy = 4668 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4669 if (FromRes.isInvalid()) 4670 return ExprError(); 4671 From = FromRes.get(); 4672 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4673, __extension__ __PRETTY_FUNCTION__
))
4673 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4673, __extension__ __PRETTY_FUNCTION__
))
; 4674 (void)ConvTy; 4675 break; 4676 } 4677 4678 case ICK_Zero_Event_Conversion: 4679 case ICK_Zero_Queue_Conversion: 4680 From = ImpCastExprToType(From, ToType, 4681 CK_ZeroToOCLOpaqueType, 4682 From->getValueKind()).get(); 4683 break; 4684 4685 case ICK_Lvalue_To_Rvalue: 4686 case ICK_Array_To_Pointer: 4687 case ICK_Function_To_Pointer: 4688 case ICK_Function_Conversion: 4689 case ICK_Qualification: 4690 case ICK_Num_Conversion_Kinds: 4691 case ICK_C_Only_Conversion: 4692 case ICK_Incompatible_Pointer_Conversion: 4693 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4693)
; 4694 } 4695 4696 switch (SCS.Third) { 4697 case ICK_Identity: 4698 // Nothing to do. 4699 break; 4700 4701 case ICK_Function_Conversion: 4702 // If both sides are functions (or pointers/references to them), there could 4703 // be incompatible exception declarations. 4704 if (CheckExceptionSpecCompatibility(From, ToType)) 4705 return ExprError(); 4706 4707 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4708 /*BasePath=*/nullptr, CCK) 4709 .get(); 4710 break; 4711 4712 case ICK_Qualification: { 4713 ExprValueKind VK = From->getValueKind(); 4714 CastKind CK = CK_NoOp; 4715 4716 if (ToType->isReferenceType() && 4717 ToType->getPointeeType().getAddressSpace() != 4718 From->getType().getAddressSpace()) 4719 CK = CK_AddressSpaceConversion; 4720 4721 if (ToType->isPointerType() && 4722 ToType->getPointeeType().getAddressSpace() != 4723 From->getType()->getPointeeType().getAddressSpace()) 4724 CK = CK_AddressSpaceConversion; 4725 4726 if (!isCast(CCK) && 4727 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4728 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4729 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4730 << InitialFromType << ToType; 4731 } 4732 4733 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4734 /*BasePath=*/nullptr, CCK) 4735 .get(); 4736 4737 if (SCS.DeprecatedStringLiteralToCharPtr && 4738 !getLangOpts().WritableStrings) { 4739 Diag(From->getBeginLoc(), 4740 getLangOpts().CPlusPlus11 4741 ? diag::ext_deprecated_string_literal_conversion 4742 : diag::warn_deprecated_string_literal_conversion) 4743 << ToType.getNonReferenceType(); 4744 } 4745 4746 break; 4747 } 4748 4749 default: 4750 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4750)
; 4751 } 4752 4753 // If this conversion sequence involved a scalar -> atomic conversion, perform 4754 // that conversion now. 4755 if (!ToAtomicType.isNull()) { 4756 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4757, __extension__ __PRETTY_FUNCTION__
))
4757 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4757, __extension__ __PRETTY_FUNCTION__
))
; 4758 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4759 VK_PRValue, nullptr, CCK) 4760 .get(); 4761 } 4762 4763 // Materialize a temporary if we're implicitly converting to a reference 4764 // type. This is not required by the C++ rules but is necessary to maintain 4765 // AST invariants. 4766 if (ToType->isReferenceType() && From->isPRValue()) { 4767 ExprResult Res = TemporaryMaterializationConversion(From); 4768 if (Res.isInvalid()) 4769 return ExprError(); 4770 From = Res.get(); 4771 } 4772 4773 // If this conversion sequence succeeded and involved implicitly converting a 4774 // _Nullable type to a _Nonnull one, complain. 4775 if (!isCast(CCK)) 4776 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4777 From->getBeginLoc()); 4778 4779 return From; 4780} 4781 4782/// Check the completeness of a type in a unary type trait. 4783/// 4784/// If the particular type trait requires a complete type, tries to complete 4785/// it. If completing the type fails, a diagnostic is emitted and false 4786/// returned. If completing the type succeeds or no completion was required, 4787/// returns true. 4788static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4789 SourceLocation Loc, 4790 QualType ArgTy) { 4791 // C++0x [meta.unary.prop]p3: 4792 // For all of the class templates X declared in this Clause, instantiating 4793 // that template with a template argument that is a class template 4794 // specialization may result in the implicit instantiation of the template 4795 // argument if and only if the semantics of X require that the argument 4796 // must be a complete type. 4797 // We apply this rule to all the type trait expressions used to implement 4798 // these class templates. We also try to follow any GCC documented behavior 4799 // in these expressions to ensure portability of standard libraries. 4800 switch (UTT) { 4801 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4801)
; 4802 // is_complete_type somewhat obviously cannot require a complete type. 4803 case UTT_IsCompleteType: 4804 // Fall-through 4805 4806 // These traits are modeled on the type predicates in C++0x 4807 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4808 // requiring a complete type, as whether or not they return true cannot be 4809 // impacted by the completeness of the type. 4810 case UTT_IsVoid: 4811 case UTT_IsIntegral: 4812 case UTT_IsFloatingPoint: 4813 case UTT_IsArray: 4814 case UTT_IsBoundedArray: 4815 case UTT_IsPointer: 4816 case UTT_IsNullPointer: 4817 case UTT_IsReferenceable: 4818 case UTT_IsLvalueReference: 4819 case UTT_IsRvalueReference: 4820 case UTT_IsMemberFunctionPointer: 4821 case UTT_IsMemberObjectPointer: 4822 case UTT_IsEnum: 4823 case UTT_IsScopedEnum: 4824 case UTT_IsUnion: 4825 case UTT_IsClass: 4826 case UTT_IsFunction: 4827 case UTT_IsReference: 4828 case UTT_IsArithmetic: 4829 case UTT_IsFundamental: 4830 case UTT_IsObject: 4831 case UTT_IsScalar: 4832 case UTT_IsCompound: 4833 case UTT_IsMemberPointer: 4834 // Fall-through 4835 4836 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4837 // which requires some of its traits to have the complete type. However, 4838 // the completeness of the type cannot impact these traits' semantics, and 4839 // so they don't require it. This matches the comments on these traits in 4840 // Table 49. 4841 case UTT_IsConst: 4842 case UTT_IsVolatile: 4843 case UTT_IsSigned: 4844 case UTT_IsUnboundedArray: 4845 case UTT_IsUnsigned: 4846 4847 // This type trait always returns false, checking the type is moot. 4848 case UTT_IsInterfaceClass: 4849 return true; 4850 4851 // C++14 [meta.unary.prop]: 4852 // If T is a non-union class type, T shall be a complete type. 4853 case UTT_IsEmpty: 4854 case UTT_IsPolymorphic: 4855 case UTT_IsAbstract: 4856 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4857 if (!RD->isUnion()) 4858 return !S.RequireCompleteType( 4859 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4860 return true; 4861 4862 // C++14 [meta.unary.prop]: 4863 // If T is a class type, T shall be a complete type. 4864 case UTT_IsFinal: 4865 case UTT_IsSealed: 4866 if (ArgTy->getAsCXXRecordDecl()) 4867 return !S.RequireCompleteType( 4868 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4869 return true; 4870 4871 // LWG3823: T shall be an array type, a complete type, or cv void. 4872 case UTT_IsAggregate: 4873 if (ArgTy->isArrayType() || ArgTy->isVoidType()) 4874 return true; 4875 4876 return !S.RequireCompleteType( 4877 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4878 4879 // C++1z [meta.unary.prop]: 4880 // remove_all_extents_t<T> shall be a complete type or cv void. 4881 case UTT_IsTrivial: 4882 case UTT_IsTriviallyCopyable: 4883 case UTT_IsStandardLayout: 4884 case UTT_IsPOD: 4885 case UTT_IsLiteral: 4886 // By analogy, is_trivially_relocatable imposes the same constraints. 4887 case UTT_IsTriviallyRelocatable: 4888 case UTT_CanPassInRegs: 4889 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4890 // or an array of unknown bound. But GCC actually imposes the same constraints 4891 // as above. 4892 case UTT_HasNothrowAssign: 4893 case UTT_HasNothrowMoveAssign: 4894 case UTT_HasNothrowConstructor: 4895 case UTT_HasNothrowCopy: 4896 case UTT_HasTrivialAssign: 4897 case UTT_HasTrivialMoveAssign: 4898 case UTT_HasTrivialDefaultConstructor: 4899 case UTT_HasTrivialMoveConstructor: 4900 case UTT_HasTrivialCopy: 4901 case UTT_HasTrivialDestructor: 4902 case UTT_HasVirtualDestructor: 4903 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4904 [[fallthrough]]; 4905 4906 // C++1z [meta.unary.prop]: 4907 // T shall be a complete type, cv void, or an array of unknown bound. 4908 case UTT_IsDestructible: 4909 case UTT_IsNothrowDestructible: 4910 case UTT_IsTriviallyDestructible: 4911 case UTT_HasUniqueObjectRepresentations: 4912 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4913 return true; 4914 4915 return !S.RequireCompleteType( 4916 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4917 } 4918} 4919 4920static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4921 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4922 bool (CXXRecordDecl::*HasTrivial)() const, 4923 bool (CXXRecordDecl::*HasNonTrivial)() const, 4924 bool (CXXMethodDecl::*IsDesiredOp)() const) 4925{ 4926 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4927 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4928 return true; 4929 4930 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4931 DeclarationNameInfo NameInfo(Name, KeyLoc); 4932 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4933 if (Self.LookupQualifiedName(Res, RD)) { 4934 bool FoundOperator = false; 4935 Res.suppressDiagnostics(); 4936 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4937 Op != OpEnd; ++Op) { 4938 if (isa<FunctionTemplateDecl>(*Op)) 4939 continue; 4940 4941 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4942 if((Operator->*IsDesiredOp)()) { 4943 FoundOperator = true; 4944 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4945 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4946 if (!CPT || !CPT->isNothrow()) 4947 return false; 4948 } 4949 } 4950 return FoundOperator; 4951 } 4952 return false; 4953} 4954 4955static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4956 SourceLocation KeyLoc, QualType T) { 4957 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4957, __extension__ __PRETTY_FUNCTION__
))
; 4958 4959 ASTContext &C = Self.Context; 4960 switch(UTT) { 4961 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4961)
; 4962 // Type trait expressions corresponding to the primary type category 4963 // predicates in C++0x [meta.unary.cat]. 4964 case UTT_IsVoid: 4965 return T->isVoidType(); 4966 case UTT_IsIntegral: 4967 return T->isIntegralType(C); 4968 case UTT_IsFloatingPoint: 4969 return T->isFloatingType(); 4970 case UTT_IsArray: 4971 return T->isArrayType(); 4972 case UTT_IsBoundedArray: 4973 if (!T->isVariableArrayType()) { 4974 return T->isArrayType() && !T->isIncompleteArrayType(); 4975 } 4976 4977 Self.Diag(KeyLoc, diag::err_vla_unsupported) 4978 << 1 << tok::kw___is_bounded_array; 4979 return false; 4980 case UTT_IsUnboundedArray: 4981 if (!T->isVariableArrayType()) { 4982 return T->isIncompleteArrayType(); 4983 } 4984 4985 Self.Diag(KeyLoc, diag::err_vla_unsupported) 4986 << 1 << tok::kw___is_unbounded_array; 4987 return false; 4988 case UTT_IsPointer: 4989 return T->isAnyPointerType(); 4990 case UTT_IsNullPointer: 4991 return T->isNullPtrType(); 4992 case UTT_IsLvalueReference: 4993 return T->isLValueReferenceType(); 4994 case UTT_IsRvalueReference: 4995 return T->isRValueReferenceType(); 4996 case UTT_IsMemberFunctionPointer: 4997 return T->isMemberFunctionPointerType(); 4998 case UTT_IsMemberObjectPointer: 4999 return T->isMemberDataPointerType(); 5000 case UTT_IsEnum: 5001 return T->isEnumeralType(); 5002 case UTT_IsScopedEnum: 5003 return T->isScopedEnumeralType(); 5004 case UTT_IsUnion: 5005 return T->isUnionType(); 5006 case UTT_IsClass: 5007 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 5008 case UTT_IsFunction: 5009 return T->isFunctionType(); 5010 5011 // Type trait expressions which correspond to the convenient composition 5012 // predicates in C++0x [meta.unary.comp]. 5013 case UTT_IsReference: 5014 return T->isReferenceType(); 5015 case UTT_IsArithmetic: 5016 return T->isArithmeticType() && !T->isEnumeralType(); 5017 case UTT_IsFundamental: 5018 return T->isFundamentalType(); 5019 case UTT_IsObject: 5020 return T->isObjectType(); 5021 case UTT_IsScalar: 5022 // Note: semantic analysis depends on Objective-C lifetime types to be 5023 // considered scalar types. However, such types do not actually behave 5024 // like scalar types at run time (since they may require retain/release 5025 // operations), so we report them as non-scalar. 5026 if (T->isObjCLifetimeType()) { 5027 switch (T.getObjCLifetime()) { 5028 case Qualifiers::OCL_None: 5029 case Qualifiers::OCL_ExplicitNone: 5030 return true; 5031 5032 case Qualifiers::OCL_Strong: 5033 case Qualifiers::OCL_Weak: 5034 case Qualifiers::OCL_Autoreleasing: 5035 return false; 5036 } 5037 } 5038 5039 return T->isScalarType(); 5040 case UTT_IsCompound: 5041 return T->isCompoundType(); 5042 case UTT_IsMemberPointer: 5043 return T->isMemberPointerType(); 5044 5045 // Type trait expressions which correspond to the type property predicates 5046 // in C++0x [meta.unary.prop]. 5047 case UTT_IsConst: 5048 return T.isConstQualified(); 5049 case UTT_IsVolatile: 5050 return T.isVolatileQualified(); 5051 case UTT_IsTrivial: 5052 return T.isTrivialType(C); 5053 case UTT_IsTriviallyCopyable: 5054 return T.isTriviallyCopyableType(C); 5055 case UTT_IsStandardLayout: 5056 return T->isStandardLayoutType(); 5057 case UTT_IsPOD: 5058 return T.isPODType(C); 5059 case UTT_IsLiteral: 5060 return T->isLiteralType(C); 5061 case UTT_IsEmpty: 5062 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5063 return !RD->isUnion() && RD->isEmpty(); 5064 return false; 5065 case UTT_IsPolymorphic: 5066 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5067 return !RD->isUnion() && RD->isPolymorphic(); 5068 return false; 5069 case UTT_IsAbstract: 5070 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5071 return !RD->isUnion() && RD->isAbstract(); 5072 return false; 5073 case UTT_IsAggregate: 5074 // Report vector extensions and complex types as aggregates because they 5075 // support aggregate initialization. GCC mirrors this behavior for vectors 5076 // but not _Complex. 5077 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 5078 T->isAnyComplexType(); 5079 // __is_interface_class only returns true when CL is invoked in /CLR mode and 5080 // even then only when it is used with the 'interface struct ...' syntax 5081 // Clang doesn't support /CLR which makes this type trait moot. 5082 case UTT_IsInterfaceClass: 5083 return false; 5084 case UTT_IsFinal: 5085 case UTT_IsSealed: 5086 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5087 return RD->hasAttr<FinalAttr>(); 5088 return false; 5089 case UTT_IsSigned: 5090 // Enum types should always return false. 5091 // Floating points should always return true. 5092 return T->isFloatingType() || 5093 (T->isSignedIntegerType() && !T->isEnumeralType()); 5094 case UTT_IsUnsigned: 5095 // Enum types should always return false. 5096 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 5097 5098 // Type trait expressions which query classes regarding their construction, 5099 // destruction, and copying. Rather than being based directly on the 5100 // related type predicates in the standard, they are specified by both 5101 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 5102 // specifications. 5103 // 5104 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 5105 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5106 // 5107 // Note that these builtins do not behave as documented in g++: if a class 5108 // has both a trivial and a non-trivial special member of a particular kind, 5109 // they return false! For now, we emulate this behavior. 5110 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5111 // does not correctly compute triviality in the presence of multiple special 5112 // members of the same kind. Revisit this once the g++ bug is fixed. 5113 case UTT_HasTrivialDefaultConstructor: 5114 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5115 // If __is_pod (type) is true then the trait is true, else if type is 5116 // a cv class or union type (or array thereof) with a trivial default 5117 // constructor ([class.ctor]) then the trait is true, else it is false. 5118 if (T.isPODType(C)) 5119 return true; 5120 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5121 return RD->hasTrivialDefaultConstructor() && 5122 !RD->hasNonTrivialDefaultConstructor(); 5123 return false; 5124 case UTT_HasTrivialMoveConstructor: 5125 // This trait is implemented by MSVC 2012 and needed to parse the 5126 // standard library headers. Specifically this is used as the logic 5127 // behind std::is_trivially_move_constructible (20.9.4.3). 5128 if (T.isPODType(C)) 5129 return true; 5130 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5131 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5132 return false; 5133 case UTT_HasTrivialCopy: 5134 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5135 // If __is_pod (type) is true or type is a reference type then 5136 // the trait is true, else if type is a cv class or union type 5137 // with a trivial copy constructor ([class.copy]) then the trait 5138 // is true, else it is false. 5139 if (T.isPODType(C) || T->isReferenceType()) 5140 return true; 5141 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5142 return RD->hasTrivialCopyConstructor() && 5143 !RD->hasNonTrivialCopyConstructor(); 5144 return false; 5145 case UTT_HasTrivialMoveAssign: 5146 // This trait is implemented by MSVC 2012 and needed to parse the 5147 // standard library headers. Specifically it is used as the logic 5148 // behind std::is_trivially_move_assignable (20.9.4.3) 5149 if (T.isPODType(C)) 5150 return true; 5151 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5152 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5153 return false; 5154 case UTT_HasTrivialAssign: 5155 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5156 // If type is const qualified or is a reference type then the 5157 // trait is false. Otherwise if __is_pod (type) is true then the 5158 // trait is true, else if type is a cv class or union type with 5159 // a trivial copy assignment ([class.copy]) then the trait is 5160 // true, else it is false. 5161 // Note: the const and reference restrictions are interesting, 5162 // given that const and reference members don't prevent a class 5163 // from having a trivial copy assignment operator (but do cause 5164 // errors if the copy assignment operator is actually used, q.v. 5165 // [class.copy]p12). 5166 5167 if (T.isConstQualified()) 5168 return false; 5169 if (T.isPODType(C)) 5170 return true; 5171 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5172 return RD->hasTrivialCopyAssignment() && 5173 !RD->hasNonTrivialCopyAssignment(); 5174 return false; 5175 case UTT_IsDestructible: 5176 case UTT_IsTriviallyDestructible: 5177 case UTT_IsNothrowDestructible: 5178 // C++14 [meta.unary.prop]: 5179 // For reference types, is_destructible<T>::value is true. 5180 if (T->isReferenceType()) 5181 return true; 5182 5183 // Objective-C++ ARC: autorelease types don't require destruction. 5184 if (T->isObjCLifetimeType() && 5185 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5186 return true; 5187 5188 // C++14 [meta.unary.prop]: 5189 // For incomplete types and function types, is_destructible<T>::value is 5190 // false. 5191 if (T->isIncompleteType() || T->isFunctionType()) 5192 return false; 5193 5194 // A type that requires destruction (via a non-trivial destructor or ARC 5195 // lifetime semantics) is not trivially-destructible. 5196 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5197 return false; 5198 5199 // C++14 [meta.unary.prop]: 5200 // For object types and given U equal to remove_all_extents_t<T>, if the 5201 // expression std::declval<U&>().~U() is well-formed when treated as an 5202 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5203 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5204 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5205 if (!Destructor) 5206 return false; 5207 // C++14 [dcl.fct.def.delete]p2: 5208 // A program that refers to a deleted function implicitly or 5209 // explicitly, other than to declare it, is ill-formed. 5210 if (Destructor->isDeleted()) 5211 return false; 5212 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5213 return false; 5214 if (UTT == UTT_IsNothrowDestructible) { 5215 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5216 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5217 if (!CPT || !CPT->isNothrow()) 5218 return false; 5219 } 5220 } 5221 return true; 5222 5223 case UTT_HasTrivialDestructor: 5224 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5225 // If __is_pod (type) is true or type is a reference type 5226 // then the trait is true, else if type is a cv class or union 5227 // type (or array thereof) with a trivial destructor 5228 // ([class.dtor]) then the trait is true, else it is 5229 // false. 5230 if (T.isPODType(C) || T->isReferenceType()) 5231 return true; 5232 5233 // Objective-C++ ARC: autorelease types don't require destruction. 5234 if (T->isObjCLifetimeType() && 5235 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5236 return true; 5237 5238 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5239 return RD->hasTrivialDestructor(); 5240 return false; 5241 // TODO: Propagate nothrowness for implicitly declared special members. 5242 case UTT_HasNothrowAssign: 5243 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5244 // If type is const qualified or is a reference type then the 5245 // trait is false. Otherwise if __has_trivial_assign (type) 5246 // is true then the trait is true, else if type is a cv class 5247 // or union type with copy assignment operators that are known 5248 // not to throw an exception then the trait is true, else it is 5249 // false. 5250 if (C.getBaseElementType(T).isConstQualified()) 5251 return false; 5252 if (T->isReferenceType()) 5253 return false; 5254 if (T.isPODType(C) || T->isObjCLifetimeType()) 5255 return true; 5256 5257 if (const RecordType *RT = T->getAs<RecordType>()) 5258 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5259 &CXXRecordDecl::hasTrivialCopyAssignment, 5260 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5261 &CXXMethodDecl::isCopyAssignmentOperator); 5262 return false; 5263 case UTT_HasNothrowMoveAssign: 5264 // This trait is implemented by MSVC 2012 and needed to parse the 5265 // standard library headers. Specifically this is used as the logic 5266 // behind std::is_nothrow_move_assignable (20.9.4.3). 5267 if (T.isPODType(C)) 5268 return true; 5269 5270 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5271 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5272 &CXXRecordDecl::hasTrivialMoveAssignment, 5273 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5274 &CXXMethodDecl::isMoveAssignmentOperator); 5275 return false; 5276 case UTT_HasNothrowCopy: 5277 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5278 // If __has_trivial_copy (type) is true then the trait is true, else 5279 // if type is a cv class or union type with copy constructors that are 5280 // known not to throw an exception then the trait is true, else it is 5281 // false. 5282 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5283 return true; 5284 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5285 if (RD->hasTrivialCopyConstructor() && 5286 !RD->hasNonTrivialCopyConstructor()) 5287 return true; 5288 5289 bool FoundConstructor = false; 5290 unsigned FoundTQs; 5291 for (const auto *ND : Self.LookupConstructors(RD)) { 5292 // A template constructor is never a copy constructor. 5293 // FIXME: However, it may actually be selected at the actual overload 5294 // resolution point. 5295 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5296 continue; 5297 // UsingDecl itself is not a constructor 5298 if (isa<UsingDecl>(ND)) 5299 continue; 5300 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5301 if (Constructor->isCopyConstructor(FoundTQs)) { 5302 FoundConstructor = true; 5303 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5304 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5305 if (!CPT) 5306 return false; 5307 // TODO: check whether evaluating default arguments can throw. 5308 // For now, we'll be conservative and assume that they can throw. 5309 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5310 return false; 5311 } 5312 } 5313 5314 return FoundConstructor; 5315 } 5316 return false; 5317 case UTT_HasNothrowConstructor: 5318 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5319 // If __has_trivial_constructor (type) is true then the trait is 5320 // true, else if type is a cv class or union type (or array 5321 // thereof) with a default constructor that is known not to 5322 // throw an exception then the trait is true, else it is false. 5323 if (T.isPODType(C) || T->isObjCLifetimeType()) 5324 return true; 5325 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5326 if (RD->hasTrivialDefaultConstructor() && 5327 !RD->hasNonTrivialDefaultConstructor()) 5328 return true; 5329 5330 bool FoundConstructor = false; 5331 for (const auto *ND : Self.LookupConstructors(RD)) { 5332 // FIXME: In C++0x, a constructor template can be a default constructor. 5333 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5334 continue; 5335 // UsingDecl itself is not a constructor 5336 if (isa<UsingDecl>(ND)) 5337 continue; 5338 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5339 if (Constructor->isDefaultConstructor()) { 5340 FoundConstructor = true; 5341 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5342 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5343 if (!CPT) 5344 return false; 5345 // FIXME: check whether evaluating default arguments can throw. 5346 // For now, we'll be conservative and assume that they can throw. 5347 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5348 return false; 5349 } 5350 } 5351 return FoundConstructor; 5352 } 5353 return false; 5354 case UTT_HasVirtualDestructor: 5355 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5356 // If type is a class type with a virtual destructor ([class.dtor]) 5357 // then the trait is true, else it is false. 5358 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5359 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5360 return Destructor->isVirtual(); 5361 return false; 5362 5363 // These type trait expressions are modeled on the specifications for the 5364 // Embarcadero C++0x type trait functions: 5365 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5366 case UTT_IsCompleteType: 5367 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5368 // Returns True if and only if T is a complete type at the point of the 5369 // function call. 5370 return !T->isIncompleteType(); 5371 case UTT_HasUniqueObjectRepresentations: 5372 return C.hasUniqueObjectRepresentations(T); 5373 case UTT_IsTriviallyRelocatable: 5374 return T.isTriviallyRelocatableType(C); 5375 case UTT_IsReferenceable: 5376 return T.isReferenceable(); 5377 case UTT_CanPassInRegs: 5378 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) 5379 return RD->canPassInRegisters(); 5380 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T; 5381 return false; 5382 } 5383} 5384 5385static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5386 QualType RhsT, SourceLocation KeyLoc); 5387 5388static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5389 ArrayRef<TypeSourceInfo *> Args, 5390 SourceLocation RParenLoc) { 5391 if (Kind <= UTT_Last) 5392 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5393 5394 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5395 // traits to avoid duplication. 5396 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5397 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5398 Args[1]->getType(), RParenLoc); 5399 5400 switch (Kind) { 5401 case clang::BTT_ReferenceBindsToTemporary: 5402 case clang::TT_IsConstructible: 5403 case clang::TT_IsNothrowConstructible: 5404 case clang::TT_IsTriviallyConstructible: { 5405 // C++11 [meta.unary.prop]: 5406 // is_trivially_constructible is defined as: 5407 // 5408 // is_constructible<T, Args...>::value is true and the variable 5409 // definition for is_constructible, as defined below, is known to call 5410 // no operation that is not trivial. 5411 // 5412 // The predicate condition for a template specialization 5413 // is_constructible<T, Args...> shall be satisfied if and only if the 5414 // following variable definition would be well-formed for some invented 5415 // variable t: 5416 // 5417 // T t(create<Args>()...); 5418 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5418, __extension__
__PRETTY_FUNCTION__))
; 5419 5420 // Precondition: T and all types in the parameter pack Args shall be 5421 // complete types, (possibly cv-qualified) void, or arrays of 5422 // unknown bound. 5423 for (const auto *TSI : Args) { 5424 QualType ArgTy = TSI->getType(); 5425 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5426 continue; 5427 5428 if (S.RequireCompleteType(KWLoc, ArgTy, 5429 diag::err_incomplete_type_used_in_type_trait_expr)) 5430 return false; 5431 } 5432 5433 // Make sure the first argument is not incomplete nor a function type. 5434 QualType T = Args[0]->getType(); 5435 if (T->isIncompleteType() || T->isFunctionType()) 5436 return false; 5437 5438 // Make sure the first argument is not an abstract type. 5439 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5440 if (RD && RD->isAbstract()) 5441 return false; 5442 5443 llvm::BumpPtrAllocator OpaqueExprAllocator; 5444 SmallVector<Expr *, 2> ArgExprs; 5445 ArgExprs.reserve(Args.size() - 1); 5446 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5447 QualType ArgTy = Args[I]->getType(); 5448 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5449 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5450 ArgExprs.push_back( 5451 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5452 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5453 ArgTy.getNonLValueExprType(S.Context), 5454 Expr::getValueKindForType(ArgTy))); 5455 } 5456 5457 // Perform the initialization in an unevaluated context within a SFINAE 5458 // trap at translation unit scope. 5459 EnterExpressionEvaluationContext Unevaluated( 5460 S, Sema::ExpressionEvaluationContext::Unevaluated); 5461 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5462 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5463 InitializedEntity To( 5464 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5465 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5466 RParenLoc)); 5467 InitializationSequence Init(S, To, InitKind, ArgExprs); 5468 if (Init.Failed()) 5469 return false; 5470 5471 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5472 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5473 return false; 5474 5475 if (Kind == clang::TT_IsConstructible) 5476 return true; 5477 5478 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5479 if (!T->isReferenceType()) 5480 return false; 5481 5482 return !Init.isDirectReferenceBinding(); 5483 } 5484 5485 if (Kind == clang::TT_IsNothrowConstructible) 5486 return S.canThrow(Result.get()) == CT_Cannot; 5487 5488 if (Kind == clang::TT_IsTriviallyConstructible) { 5489 // Under Objective-C ARC and Weak, if the destination has non-trivial 5490 // Objective-C lifetime, this is a non-trivial construction. 5491 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5492 return false; 5493 5494 // The initialization succeeded; now make sure there are no non-trivial 5495 // calls. 5496 return !Result.get()->hasNonTrivialCall(S.Context); 5497 } 5498 5499 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5499)
; 5500 return false; 5501 } 5502 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5502)
; 5503 } 5504 5505 return false; 5506} 5507 5508namespace { 5509void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, 5510 SourceLocation KWLoc) { 5511 TypeTrait Replacement; 5512 switch (Kind) { 5513 case UTT_HasNothrowAssign: 5514 case UTT_HasNothrowMoveAssign: 5515 Replacement = BTT_IsNothrowAssignable; 5516 break; 5517 case UTT_HasNothrowCopy: 5518 case UTT_HasNothrowConstructor: 5519 Replacement = TT_IsNothrowConstructible; 5520 break; 5521 case UTT_HasTrivialAssign: 5522 case UTT_HasTrivialMoveAssign: 5523 Replacement = BTT_IsTriviallyAssignable; 5524 break; 5525 case UTT_HasTrivialCopy: 5526 Replacement = UTT_IsTriviallyCopyable; 5527 break; 5528 case UTT_HasTrivialDefaultConstructor: 5529 case UTT_HasTrivialMoveConstructor: 5530 Replacement = TT_IsTriviallyConstructible; 5531 break; 5532 case UTT_HasTrivialDestructor: 5533 Replacement = UTT_IsTriviallyDestructible; 5534 break; 5535 default: 5536 return; 5537 } 5538 S.Diag(KWLoc, diag::warn_deprecated_builtin) 5539 << getTraitSpelling(Kind) << getTraitSpelling(Replacement); 5540} 5541} 5542 5543bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { 5544 if (Arity && N != Arity) { 5545 Diag(Loc, diag::err_type_trait_arity) 5546 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); 5547 return false; 5548 } 5549 5550 if (!Arity && N == 0) { 5551 Diag(Loc, diag::err_type_trait_arity) 5552 << 1 << 1 << 1 << (int)N << SourceRange(Loc); 5553 return false; 5554 } 5555 return true; 5556} 5557 5558ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5559 ArrayRef<TypeSourceInfo *> Args, 5560 SourceLocation RParenLoc) { 5561 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) 5562 return ExprError(); 5563 QualType ResultType = Context.getLogicalOperationType(); 5564 5565 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5566 *this, Kind, KWLoc, Args[0]->getType())) 5567 return ExprError(); 5568 5569 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); 5570 5571 bool Dependent = false; 5572 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5573 if (Args[I]->getType()->isDependentType()) { 5574 Dependent = true; 5575 break; 5576 } 5577 } 5578 5579 bool Result = false; 5580 if (!Dependent) 5581 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5582 5583 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5584 RParenLoc, Result); 5585} 5586 5587ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5588 ArrayRef<ParsedType> Args, 5589 SourceLocation RParenLoc) { 5590 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5591 ConvertedArgs.reserve(Args.size()); 5592 5593 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5594 TypeSourceInfo *TInfo; 5595 QualType T = GetTypeFromParser(Args[I], &TInfo); 5596 if (!TInfo) 5597 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5598 5599 ConvertedArgs.push_back(TInfo); 5600 } 5601 5602 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5603} 5604 5605static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5606 QualType RhsT, SourceLocation KeyLoc) { 5607 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5608, __extension__ __PRETTY_FUNCTION__
))
5608 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5608, __extension__ __PRETTY_FUNCTION__
))
; 5609 5610 switch(BTT) { 5611 case BTT_IsBaseOf: { 5612 // C++0x [meta.rel]p2 5613 // Base is a base class of Derived without regard to cv-qualifiers or 5614 // Base and Derived are not unions and name the same class type without 5615 // regard to cv-qualifiers. 5616 5617 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5618 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5619 if (!rhsRecord || !lhsRecord) { 5620 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5621 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5622 if (!LHSObjTy || !RHSObjTy) 5623 return false; 5624 5625 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5626 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5627 if (!BaseInterface || !DerivedInterface) 5628 return false; 5629 5630 if (Self.RequireCompleteType( 5631 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5632 return false; 5633 5634 return BaseInterface->isSuperClassOf(DerivedInterface); 5635 } 5636 5637 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5638, __extension__ __PRETTY_FUNCTION__
))
5638 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5638, __extension__ __PRETTY_FUNCTION__
))
; 5639 5640 // Unions are never base classes, and never have base classes. 5641 // It doesn't matter if they are complete or not. See PR#41843 5642 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5643 return false; 5644 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5645 return false; 5646 5647 if (lhsRecord == rhsRecord) 5648 return true; 5649 5650 // C++0x [meta.rel]p2: 5651 // If Base and Derived are class types and are different types 5652 // (ignoring possible cv-qualifiers) then Derived shall be a 5653 // complete type. 5654 if (Self.RequireCompleteType(KeyLoc, RhsT, 5655 diag::err_incomplete_type_used_in_type_trait_expr)) 5656 return false; 5657 5658 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5659 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5660 } 5661 case BTT_IsSame: 5662 return Self.Context.hasSameType(LhsT, RhsT); 5663 case BTT_TypeCompatible: { 5664 // GCC ignores cv-qualifiers on arrays for this builtin. 5665 Qualifiers LhsQuals, RhsQuals; 5666 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5667 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5668 return Self.Context.typesAreCompatible(Lhs, Rhs); 5669 } 5670 case BTT_IsConvertible: 5671 case BTT_IsConvertibleTo: { 5672 // C++0x [meta.rel]p4: 5673 // Given the following function prototype: 5674 // 5675 // template <class T> 5676 // typename add_rvalue_reference<T>::type create(); 5677 // 5678 // the predicate condition for a template specialization 5679 // is_convertible<From, To> shall be satisfied if and only if 5680 // the return expression in the following code would be 5681 // well-formed, including any implicit conversions to the return 5682 // type of the function: 5683 // 5684 // To test() { 5685 // return create<From>(); 5686 // } 5687 // 5688 // Access checking is performed as if in a context unrelated to To and 5689 // From. Only the validity of the immediate context of the expression 5690 // of the return-statement (including conversions to the return type) 5691 // is considered. 5692 // 5693 // We model the initialization as a copy-initialization of a temporary 5694 // of the appropriate type, which for this expression is identical to the 5695 // return statement (since NRVO doesn't apply). 5696 5697 // Functions aren't allowed to return function or array types. 5698 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5699 return false; 5700 5701 // A return statement in a void function must have void type. 5702 if (RhsT->isVoidType()) 5703 return LhsT->isVoidType(); 5704 5705 // A function definition requires a complete, non-abstract return type. 5706 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5707 return false; 5708 5709 // Compute the result of add_rvalue_reference. 5710 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5711 LhsT = Self.Context.getRValueReferenceType(LhsT); 5712 5713 // Build a fake source and destination for initialization. 5714 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5715 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5716 Expr::getValueKindForType(LhsT)); 5717 Expr *FromPtr = &From; 5718 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5719 SourceLocation())); 5720 5721 // Perform the initialization in an unevaluated context within a SFINAE 5722 // trap at translation unit scope. 5723 EnterExpressionEvaluationContext Unevaluated( 5724 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5725 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5726 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5727 InitializationSequence Init(Self, To, Kind, FromPtr); 5728 if (Init.Failed()) 5729 return false; 5730 5731 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5732 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5733 } 5734 5735 case BTT_IsAssignable: 5736 case BTT_IsNothrowAssignable: 5737 case BTT_IsTriviallyAssignable: { 5738 // C++11 [meta.unary.prop]p3: 5739 // is_trivially_assignable is defined as: 5740 // is_assignable<T, U>::value is true and the assignment, as defined by 5741 // is_assignable, is known to call no operation that is not trivial 5742 // 5743 // is_assignable is defined as: 5744 // The expression declval<T>() = declval<U>() is well-formed when 5745 // treated as an unevaluated operand (Clause 5). 5746 // 5747 // For both, T and U shall be complete types, (possibly cv-qualified) 5748 // void, or arrays of unknown bound. 5749 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5750 Self.RequireCompleteType(KeyLoc, LhsT, 5751 diag::err_incomplete_type_used_in_type_trait_expr)) 5752 return false; 5753 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5754 Self.RequireCompleteType(KeyLoc, RhsT, 5755 diag::err_incomplete_type_used_in_type_trait_expr)) 5756 return false; 5757 5758 // cv void is never assignable. 5759 if (LhsT->isVoidType() || RhsT->isVoidType()) 5760 return false; 5761 5762 // Build expressions that emulate the effect of declval<T>() and 5763 // declval<U>(). 5764 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5765 LhsT = Self.Context.getRValueReferenceType(LhsT); 5766 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5767 RhsT = Self.Context.getRValueReferenceType(RhsT); 5768 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5769 Expr::getValueKindForType(LhsT)); 5770 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5771 Expr::getValueKindForType(RhsT)); 5772 5773 // Attempt the assignment in an unevaluated context within a SFINAE 5774 // trap at translation unit scope. 5775 EnterExpressionEvaluationContext Unevaluated( 5776 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5777 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5778 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5779 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5780 &Rhs); 5781 if (Result.isInvalid()) 5782 return false; 5783 5784 // Treat the assignment as unused for the purpose of -Wdepr