Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1246, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 65, __extension__ __PRETTY_FUNCTION__
))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (isReservedInAllContexts(Status) &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->hasPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (!CurLSI->Mutable)
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140 // can happen during instantiation of its nested generic lambda call
1141 // operator); 2. if we're in a lambda scope (lambda body).
1142 if (CurLSI && isLambdaCallOperator(CurDC)) {
1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1144 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1145 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1147 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
;
1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1148, __extension__ __PRETTY_FUNCTION__
))
;
1149
1150 auto IsThisCaptured =
1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152 IsConst = false;
1153 IsByCopy = false;
1154 for (auto &&C : Closure->captures()) {
1155 if (C.capturesThis()) {
1156 if (C.getCaptureKind() == LCK_StarThis)
1157 IsByCopy = true;
1158 if (Closure->getLambdaCallOperator()->isConst())
1159 IsConst = true;
1160 return true;
1161 }
1162 }
1163 return false;
1164 };
1165
1166 bool IsByCopyCapture = false;
1167 bool IsConstCapture = false;
1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169 while (Closure &&
1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171 if (IsByCopyCapture) {
1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173 if (IsConstCapture)
1174 ClassType.addConst();
1175 return ASTCtx.getPointerType(ClassType);
1176 }
1177 Closure = isLambdaCallOperator(Closure->getParent())
1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179 : nullptr;
1180 }
1181 }
1182 return ASTCtx.getPointerType(ClassType);
1183}
1184
1185QualType Sema::getCurrentThisType() {
1186 DeclContext *DC = getFunctionLevelDeclContext();
1187 QualType ThisTy = CXXThisTypeOverride;
1188
1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190 if (method && method->isInstance())
1191 ThisTy = method->getThisType();
1192 }
1193
1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196
1197 // This is a lambda call operator that is being instantiated as a default
1198 // initializer. DC must point to the enclosing class type, so we can recover
1199 // the 'this' type from it.
1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201 // There are no cv-qualifiers for 'this' within default initializers,
1202 // per [expr.prim.general]p4.
1203 ThisTy = Context.getPointerType(ClassTy);
1204 }
1205
1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207 // might need to be adjusted if the lambda or any of its enclosing lambda's
1208 // captures '*this' by copy.
1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211 CurContext, Context);
1212 return ThisTy;
1213}
1214
1215Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216 Decl *ContextDecl,
1217 Qualifiers CXXThisTypeQuals,
1218 bool Enabled)
1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220{
1221 if (!Enabled || !ContextDecl)
1222 return;
1223
1224 CXXRecordDecl *Record = nullptr;
1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226 Record = Template->getTemplatedDecl();
1227 else
1228 Record = cast<CXXRecordDecl>(ContextDecl);
1229
1230 QualType T = S.Context.getRecordType(Record);
1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232
1233 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234
1235 this->Enabled = true;
1236}
1237
1238
1239Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240 if (Enabled) {
1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242 }
1243}
1244
1245static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
22
Called C++ object pointer is null
1247 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 // [=, this] {}; // until C++20: Error: this when = is the default
1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250 !Sema.getLangOpts().CPlusPlus20)
1251 return;
1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253 << FixItHint::CreateInsertion(
1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255}
1256
1257bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259 const bool ByCopy) {
1260 // We don't need to capture this in an unevaluated context.
1261 if (isUnevaluatedContext() && !Explicit)
1262 return true;
1263
1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1264, __extension__ __PRETTY_FUNCTION__
))
;
5
'?' condition is true
1265
1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
5.1
'FunctionScopeIndexToStopAt' is null
6
'?' condition is false
1267 ? *FunctionScopeIndexToStopAt 1268 : FunctionScopes.size() - 1; 1269 1270 // Check that we can capture the *enclosing object* (referred to by '*this') 1271 // by the capturing-entity/closure (lambda/block/etc) at 1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1273 1274 // Note: The *enclosing object* can only be captured by-value by a 1275 // closure that is a lambda, using the explicit notation: 1276 // [*this] { ... }. 1277 // Every other capture of the *enclosing object* results in its by-reference 1278 // capture. 1279 1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1281 // stack), we can capture the *enclosing object* only if: 1282 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1283 // - or, 'L' has an implicit capture. 1284 // AND 1285 // -- there is no enclosing closure 1286 // -- or, there is some enclosing closure 'E' that has already captured the 1287 // *enclosing object*, and every intervening closure (if any) between 'E' 1288 // and 'L' can implicitly capture the *enclosing object*. 1289 // -- or, every enclosing closure can implicitly capture the 1290 // *enclosing object* 1291 1292 1293 unsigned NumCapturingClosures = 0; 1294 for (int idx = MaxFunctionScopesIndex; idx
6.1
'idx' is >= 0
>= 0; idx--) {
7
Loop condition is true. Entering loop body
1295 if (CapturingScopeInfo *CSI
8.1
'CSI' is non-null
=
9
Taking true branch
1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
8
Assuming the object is a 'CapturingScopeInfo'
1297 if (CSI->CXXThisCaptureIndex != 0) {
10
Assuming field 'CXXThisCaptureIndex' is equal to 0
11
Taking false branch
1298 // 'this' is already being captured; there isn't anything more to do. 1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1300 break; 1301 } 1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
12
Assuming 'CSI' is not a 'LambdaScopeInfo'
13
'LSI' initialized to a null pointer value
1303 if (LSI
13.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1304 // This context can't implicitly capture 'this'; fail out. 1305 if (BuildAndDiagnose) { 1306 Diag(Loc, diag::err_this_capture) 1307 << (Explicit && idx == MaxFunctionScopesIndex); 1308 if (!Explicit) 1309 buildLambdaThisCaptureFixit(*this, LSI); 1310 } 1311 return true; 1312 } 1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
14
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
15
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
16
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
17
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1317 (Explicit
17.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1319 // iteration through can be an explicit capture, all enclosing closures, 1320 // if any, must perform implicit captures. 1321 1322 // This closure can capture 'this'; continue looking upwards. 1323 NumCapturingClosures++; 1324 continue; 1325 } 1326 // This context can't implicitly capture 'this'; fail out. 1327 if (BuildAndDiagnose
17.2
'BuildAndDiagnose' is true
)
18
Taking true branch
1328 Diag(Loc, diag::err_this_capture) 1329 << (Explicit
18.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1330 1331 if (!Explicit
18.2
'Explicit' is false
)
19
Taking true branch
1332 buildLambdaThisCaptureFixit(*this, LSI);
20
Passing null pointer value via 2nd parameter 'LSI'
21
Calling 'buildLambdaThisCaptureFixit'
1333 return true; 1334 } 1335 break; 1336 } 1337 if (!BuildAndDiagnose) return false; 1338 1339 // If we got here, then the closure at MaxFunctionScopesIndex on the 1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1341 // (including implicit by-reference captures in any enclosing closures). 1342 1343 // In the loop below, respect the ByCopy flag only for the closure requesting 1344 // the capture (i.e. first iteration through the loop below). Ignore it for 1345 // all enclosing closure's up to NumCapturingClosures (since they must be 1346 // implicitly capturing the *enclosing object* by reference (see loop 1347 // above)). 1348 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1349 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1350 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1351 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
; 1352 QualType ThisTy = getCurrentThisType(); 1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1354 --idx, --NumCapturingClosures) { 1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1356 1357 // The type of the corresponding data member (not a 'this' pointer if 'by 1358 // copy'). 1359 QualType CaptureType = ThisTy; 1360 if (ByCopy) { 1361 // If we are capturing the object referred to by '*this' by copy, ignore 1362 // any cv qualifiers inherited from the type of the member function for 1363 // the type of the closure-type's corresponding data member and any use 1364 // of 'this'. 1365 CaptureType = ThisTy->getPointeeType(); 1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1367 } 1368 1369 bool isNested = NumCapturingClosures > 1; 1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1371 } 1372 return false; 1373} 1374 1375ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1377 /// is a non-lvalue expression whose value is the address of the object for 1378 /// which the function is called. 1379 1380 QualType ThisTy = getCurrentThisType(); 1381 if (ThisTy.isNull())
1
Taking false branch
1382 return Diag(Loc, diag::err_invalid_this_use); 1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1384} 1385 1386Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1387 bool IsImplicit) { 1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1389 MarkThisReferenced(This);
3
Calling 'Sema::MarkThisReferenced'
1390 return This; 1391} 1392 1393void Sema::MarkThisReferenced(CXXThisExpr *This) { 1394 CheckCXXThisCapture(This->getExprLoc());
4
Calling 'Sema::CheckCXXThisCapture'
1395} 1396 1397bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1398 // If we're outside the body of a member function, then we'll have a specified 1399 // type for 'this'. 1400 if (CXXThisTypeOverride.isNull()) 1401 return false; 1402 1403 // Determine whether we're looking into a class that's currently being 1404 // defined. 1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1406 return Class && Class->isBeingDefined(); 1407} 1408 1409/// Parse construction of a specified type. 1410/// Can be interpreted either as function-style casting ("int(x)") 1411/// or class type construction ("ClassType(x,y,z)") 1412/// or creation of a value-initialized type ("int()"). 1413ExprResult 1414Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1415 SourceLocation LParenOrBraceLoc, 1416 MultiExprArg exprs, 1417 SourceLocation RParenOrBraceLoc, 1418 bool ListInitialization) { 1419 if (!TypeRep) 1420 return ExprError(); 1421 1422 TypeSourceInfo *TInfo; 1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1424 if (!TInfo) 1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1426 1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1428 RParenOrBraceLoc, ListInitialization); 1429 // Avoid creating a non-type-dependent expression that contains typos. 1430 // Non-type-dependent expressions are liable to be discarded without 1431 // checking for embedded typos. 1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1433 !Result.get()->isTypeDependent()) 1434 Result = CorrectDelayedTyposInExpr(Result.get()); 1435 else if (Result.isInvalid()) 1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1437 RParenOrBraceLoc, exprs, Ty); 1438 return Result; 1439} 1440 1441ExprResult 1442Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1443 SourceLocation LParenOrBraceLoc, 1444 MultiExprArg Exprs, 1445 SourceLocation RParenOrBraceLoc, 1446 bool ListInitialization) { 1447 QualType Ty = TInfo->getType(); 1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1449 1450 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
; 1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1454 1455 InitializedEntity Entity = 1456 InitializedEntity::InitializeTemporary(Context, TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 // C++2b: 1471 // Otherwise, if the type contains a placeholder type, it is replaced by the 1472 // type determined by placeholder type deduction. 1473 DeducedType *Deduced = Ty->getContainedDeducedType(); 1474 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1475 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1476 Kind, Exprs); 1477 if (Ty.isNull()) 1478 return ExprError(); 1479 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1480 } else if (Deduced) { 1481 MultiExprArg Inits = Exprs; 1482 if (ListInitialization) { 1483 auto *ILE = cast<InitListExpr>(Exprs[0]); 1484 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1485 } 1486 1487 if (Inits.empty()) 1488 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1489 << Ty << FullRange); 1490 if (Inits.size() > 1) { 1491 Expr *FirstBad = Inits[1]; 1492 return ExprError(Diag(FirstBad->getBeginLoc(), 1493 diag::err_auto_expr_init_multiple_expressions) 1494 << Ty << FullRange); 1495 } 1496 if (getLangOpts().CPlusPlus2b) { 1497 if (Ty->getAs<AutoType>()) 1498 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1499 } 1500 Expr *Deduce = Inits[0]; 1501 if (isa<InitListExpr>(Deduce)) 1502 return ExprError( 1503 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1504 << ListInitialization << Ty << FullRange); 1505 QualType DeducedType; 1506 if (DeduceAutoType(TInfo, Deduce, DeducedType) == DAR_Failed) 1507 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1508 << Ty << Deduce->getType() << FullRange 1509 << Deduce->getSourceRange()); 1510 if (DeducedType.isNull()) 1511 return ExprError(); 1512 1513 Ty = DeducedType; 1514 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1515 } 1516 1517 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1518 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1519 // directly. We work around this by dropping the locations of the braces. 1520 SourceRange Locs = ListInitialization 1521 ? SourceRange() 1522 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1523 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1524 TInfo, Locs.getBegin(), Exprs, 1525 Locs.getEnd()); 1526 } 1527 1528 // C++ [expr.type.conv]p1: 1529 // If the expression list is a parenthesized single expression, the type 1530 // conversion expression is equivalent (in definedness, and if defined in 1531 // meaning) to the corresponding cast expression. 1532 if (Exprs.size() == 1 && !ListInitialization && 1533 !isa<InitListExpr>(Exprs[0])) { 1534 Expr *Arg = Exprs[0]; 1535 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1536 RParenOrBraceLoc); 1537 } 1538 1539 // For an expression of the form T(), T shall not be an array type. 1540 QualType ElemTy = Ty; 1541 if (Ty->isArrayType()) { 1542 if (!ListInitialization) 1543 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1544 << FullRange); 1545 ElemTy = Context.getBaseElementType(Ty); 1546 } 1547 1548 // Only construct objects with object types. 1549 // The standard doesn't explicitly forbid function types here, but that's an 1550 // obvious oversight, as there's no way to dynamically construct a function 1551 // in general. 1552 if (Ty->isFunctionType()) 1553 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1554 << Ty << FullRange); 1555 1556 // C++17 [expr.type.conv]p2: 1557 // If the type is cv void and the initializer is (), the expression is a 1558 // prvalue of the specified type that performs no initialization. 1559 if (!Ty->isVoidType() && 1560 RequireCompleteType(TyBeginLoc, ElemTy, 1561 diag::err_invalid_incomplete_type_use, FullRange)) 1562 return ExprError(); 1563 1564 // Otherwise, the expression is a prvalue of the specified type whose 1565 // result object is direct-initialized (11.6) with the initializer. 1566 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1567 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1568 1569 if (Result.isInvalid()) 1570 return Result; 1571 1572 Expr *Inner = Result.get(); 1573 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1574 Inner = BTE->getSubExpr(); 1575 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1576 !isa<CXXScalarValueInitExpr>(Inner)) { 1577 // If we created a CXXTemporaryObjectExpr, that node also represents the 1578 // functional cast. Otherwise, create an explicit cast to represent 1579 // the syntactic form of a functional-style cast that was used here. 1580 // 1581 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1582 // would give a more consistent AST representation than using a 1583 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1584 // is sometimes handled by initialization and sometimes not. 1585 QualType ResultType = Result.get()->getType(); 1586 SourceRange Locs = ListInitialization 1587 ? SourceRange() 1588 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1589 Result = CXXFunctionalCastExpr::Create( 1590 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1591 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1592 Locs.getBegin(), Locs.getEnd()); 1593 } 1594 1595 return Result; 1596} 1597 1598bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1599 // [CUDA] Ignore this function, if we can't call it. 1600 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1601 if (getLangOpts().CUDA) { 1602 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1603 // If it's not callable at all, it's not the right function. 1604 if (CallPreference < CFP_WrongSide) 1605 return false; 1606 if (CallPreference == CFP_WrongSide) { 1607 // Maybe. We have to check if there are better alternatives. 1608 DeclContext::lookup_result R = 1609 Method->getDeclContext()->lookup(Method->getDeclName()); 1610 for (const auto *D : R) { 1611 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1612 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1613 return false; 1614 } 1615 } 1616 // We've found no better variants. 1617 } 1618 } 1619 1620 SmallVector<const FunctionDecl*, 4> PreventedBy; 1621 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1622 1623 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1624 return Result; 1625 1626 // In case of CUDA, return true if none of the 1-argument deallocator 1627 // functions are actually callable. 1628 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1629 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
1630 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
; 1631 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1632 }); 1633} 1634 1635/// Determine whether the given function is a non-placement 1636/// deallocation function. 1637static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1638 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1639 return S.isUsualDeallocationFunction(Method); 1640 1641 if (FD->getOverloadedOperator() != OO_Delete && 1642 FD->getOverloadedOperator() != OO_Array_Delete) 1643 return false; 1644 1645 unsigned UsualParams = 1; 1646 1647 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1648 S.Context.hasSameUnqualifiedType( 1649 FD->getParamDecl(UsualParams)->getType(), 1650 S.Context.getSizeType())) 1651 ++UsualParams; 1652 1653 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1654 S.Context.hasSameUnqualifiedType( 1655 FD->getParamDecl(UsualParams)->getType(), 1656 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1657 ++UsualParams; 1658 1659 return UsualParams == FD->getNumParams(); 1660} 1661 1662namespace { 1663 struct UsualDeallocFnInfo { 1664 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1665 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1666 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1667 Destroying(false), HasSizeT(false), HasAlignValT(false), 1668 CUDAPref(Sema::CFP_Native) { 1669 // A function template declaration is never a usual deallocation function. 1670 if (!FD) 1671 return; 1672 unsigned NumBaseParams = 1; 1673 if (FD->isDestroyingOperatorDelete()) { 1674 Destroying = true; 1675 ++NumBaseParams; 1676 } 1677 1678 if (NumBaseParams < FD->getNumParams() && 1679 S.Context.hasSameUnqualifiedType( 1680 FD->getParamDecl(NumBaseParams)->getType(), 1681 S.Context.getSizeType())) { 1682 ++NumBaseParams; 1683 HasSizeT = true; 1684 } 1685 1686 if (NumBaseParams < FD->getNumParams() && 1687 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1688 ++NumBaseParams; 1689 HasAlignValT = true; 1690 } 1691 1692 // In CUDA, determine how much we'd like / dislike to call this. 1693 if (S.getLangOpts().CUDA) 1694 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) 1695 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1696 } 1697 1698 explicit operator bool() const { return FD; } 1699 1700 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1701 bool WantAlign) const { 1702 // C++ P0722: 1703 // A destroying operator delete is preferred over a non-destroying 1704 // operator delete. 1705 if (Destroying != Other.Destroying) 1706 return Destroying; 1707 1708 // C++17 [expr.delete]p10: 1709 // If the type has new-extended alignment, a function with a parameter 1710 // of type std::align_val_t is preferred; otherwise a function without 1711 // such a parameter is preferred 1712 if (HasAlignValT != Other.HasAlignValT) 1713 return HasAlignValT == WantAlign; 1714 1715 if (HasSizeT != Other.HasSizeT) 1716 return HasSizeT == WantSize; 1717 1718 // Use CUDA call preference as a tiebreaker. 1719 return CUDAPref > Other.CUDAPref; 1720 } 1721 1722 DeclAccessPair Found; 1723 FunctionDecl *FD; 1724 bool Destroying, HasSizeT, HasAlignValT; 1725 Sema::CUDAFunctionPreference CUDAPref; 1726 }; 1727} 1728 1729/// Determine whether a type has new-extended alignment. This may be called when 1730/// the type is incomplete (for a delete-expression with an incomplete pointee 1731/// type), in which case it will conservatively return false if the alignment is 1732/// not known. 1733static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1734 return S.getLangOpts().AlignedAllocation && 1735 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1736 S.getASTContext().getTargetInfo().getNewAlign(); 1737} 1738 1739/// Select the correct "usual" deallocation function to use from a selection of 1740/// deallocation functions (either global or class-scope). 1741static UsualDeallocFnInfo resolveDeallocationOverload( 1742 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1743 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1744 UsualDeallocFnInfo Best; 1745 1746 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1747 UsualDeallocFnInfo Info(S, I.getPair()); 1748 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1749 Info.CUDAPref == Sema::CFP_Never) 1750 continue; 1751 1752 if (!Best) { 1753 Best = Info; 1754 if (BestFns) 1755 BestFns->push_back(Info); 1756 continue; 1757 } 1758 1759 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1760 continue; 1761 1762 // If more than one preferred function is found, all non-preferred 1763 // functions are eliminated from further consideration. 1764 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1765 BestFns->clear(); 1766 1767 Best = Info; 1768 if (BestFns) 1769 BestFns->push_back(Info); 1770 } 1771 1772 return Best; 1773} 1774 1775/// Determine whether a given type is a class for which 'delete[]' would call 1776/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1777/// we need to store the array size (even if the type is 1778/// trivially-destructible). 1779static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1780 QualType allocType) { 1781 const RecordType *record = 1782 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1783 if (!record) return false; 1784 1785 // Try to find an operator delete[] in class scope. 1786 1787 DeclarationName deleteName = 1788 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1789 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1790 S.LookupQualifiedName(ops, record->getDecl()); 1791 1792 // We're just doing this for information. 1793 ops.suppressDiagnostics(); 1794 1795 // Very likely: there's no operator delete[]. 1796 if (ops.empty()) return false; 1797 1798 // If it's ambiguous, it should be illegal to call operator delete[] 1799 // on this thing, so it doesn't matter if we allocate extra space or not. 1800 if (ops.isAmbiguous()) return false; 1801 1802 // C++17 [expr.delete]p10: 1803 // If the deallocation functions have class scope, the one without a 1804 // parameter of type std::size_t is selected. 1805 auto Best = resolveDeallocationOverload( 1806 S, ops, /*WantSize*/false, 1807 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1808 return Best && Best.HasSizeT; 1809} 1810 1811/// Parsed a C++ 'new' expression (C++ 5.3.4). 1812/// 1813/// E.g.: 1814/// @code new (memory) int[size][4] @endcode 1815/// or 1816/// @code ::new Foo(23, "hello") @endcode 1817/// 1818/// \param StartLoc The first location of the expression. 1819/// \param UseGlobal True if 'new' was prefixed with '::'. 1820/// \param PlacementLParen Opening paren of the placement arguments. 1821/// \param PlacementArgs Placement new arguments. 1822/// \param PlacementRParen Closing paren of the placement arguments. 1823/// \param TypeIdParens If the type is in parens, the source range. 1824/// \param D The type to be allocated, as well as array dimensions. 1825/// \param Initializer The initializing expression or initializer-list, or null 1826/// if there is none. 1827ExprResult 1828Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1829 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1830 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1831 Declarator &D, Expr *Initializer) { 1832 Optional<Expr *> ArraySize; 1833 // If the specified type is an array, unwrap it and save the expression. 1834 if (D.getNumTypeObjects() > 0 && 1835 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1836 DeclaratorChunk &Chunk = D.getTypeObject(0); 1837 if (D.getDeclSpec().hasAutoTypeSpec()) 1838 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1839 << D.getSourceRange()); 1840 if (Chunk.Arr.hasStatic) 1841 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1842 << D.getSourceRange()); 1843 if (!Chunk.Arr.NumElts && !Initializer) 1844 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1845 << D.getSourceRange()); 1846 1847 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1848 D.DropFirstTypeObject(); 1849 } 1850 1851 // Every dimension shall be of constant size. 1852 if (ArraySize) { 1853 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1854 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1855 break; 1856 1857 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1858 if (Expr *NumElts = (Expr *)Array.NumElts) { 1859 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1860 // FIXME: GCC permits constant folding here. We should either do so consistently 1861 // or not do so at all, rather than changing behavior in C++14 onwards. 1862 if (getLangOpts().CPlusPlus14) { 1863 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1864 // shall be a converted constant expression (5.19) of type std::size_t 1865 // and shall evaluate to a strictly positive value. 1866 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1867 Array.NumElts 1868 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1869 CCEK_ArrayBound) 1870 .get(); 1871 } else { 1872 Array.NumElts = 1873 VerifyIntegerConstantExpression( 1874 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1875 .get(); 1876 } 1877 if (!Array.NumElts) 1878 return ExprError(); 1879 } 1880 } 1881 } 1882 } 1883 1884 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1885 QualType AllocType = TInfo->getType(); 1886 if (D.isInvalidType()) 1887 return ExprError(); 1888 1889 SourceRange DirectInitRange; 1890 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1891 DirectInitRange = List->getSourceRange(); 1892 1893 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1894 PlacementLParen, PlacementArgs, PlacementRParen, 1895 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1896 Initializer); 1897} 1898 1899static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1900 Expr *Init) { 1901 if (!Init) 1902 return true; 1903 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1904 return PLE->getNumExprs() == 0; 1905 if (isa<ImplicitValueInitExpr>(Init)) 1906 return true; 1907 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1908 return !CCE->isListInitialization() && 1909 CCE->getConstructor()->isDefaultConstructor(); 1910 else if (Style == CXXNewExpr::ListInit) { 1911 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1912, __extension__ __PRETTY_FUNCTION__
))
1912 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1912, __extension__ __PRETTY_FUNCTION__
))
; 1913 return true; 1914 } 1915 return false; 1916} 1917 1918bool 1919Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1920 if (!getLangOpts().AlignedAllocationUnavailable) 1921 return false; 1922 if (FD.isDefined()) 1923 return false; 1924 Optional<unsigned> AlignmentParam; 1925 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1926 AlignmentParam.hasValue()) 1927 return true; 1928 return false; 1929} 1930 1931// Emit a diagnostic if an aligned allocation/deallocation function that is not 1932// implemented in the standard library is selected. 1933void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1934 SourceLocation Loc) { 1935 if (isUnavailableAlignedAllocationFunction(FD)) { 1936 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1937 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1938 getASTContext().getTargetInfo().getPlatformName()); 1939 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1940 1941 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1942 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1943 Diag(Loc, diag::err_aligned_allocation_unavailable) 1944 << IsDelete << FD.getType().getAsString() << OSName 1945 << OSVersion.getAsString() << OSVersion.empty(); 1946 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1947 } 1948} 1949 1950ExprResult 1951Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1952 SourceLocation PlacementLParen, 1953 MultiExprArg PlacementArgs, 1954 SourceLocation PlacementRParen, 1955 SourceRange TypeIdParens, 1956 QualType AllocType, 1957 TypeSourceInfo *AllocTypeInfo, 1958 Optional<Expr *> ArraySize, 1959 SourceRange DirectInitRange, 1960 Expr *Initializer) { 1961 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1962 SourceLocation StartLoc = Range.getBegin(); 1963 1964 CXXNewExpr::InitializationStyle initStyle; 1965 if (DirectInitRange.isValid()) { 1966 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
; 1967 initStyle = CXXNewExpr::CallInit; 1968 } else if (Initializer && isa<InitListExpr>(Initializer)) 1969 initStyle = CXXNewExpr::ListInit; 1970 else { 1971 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
1972 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
1973 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1973, __extension__ __PRETTY_FUNCTION__
))
; 1974 initStyle = CXXNewExpr::NoInit; 1975 } 1976 1977 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 1978 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1979 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1979, __extension__ __PRETTY_FUNCTION__
))
; 1980 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 1981 } 1982 1983 // C++11 [expr.new]p15: 1984 // A new-expression that creates an object of type T initializes that 1985 // object as follows: 1986 InitializationKind Kind 1987 // - If the new-initializer is omitted, the object is default- 1988 // initialized (8.5); if no initialization is performed, 1989 // the object has indeterminate value 1990 = initStyle == CXXNewExpr::NoInit 1991 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1992 // - Otherwise, the new-initializer is interpreted according to 1993 // the 1994 // initialization rules of 8.5 for direct-initialization. 1995 : initStyle == CXXNewExpr::ListInit 1996 ? InitializationKind::CreateDirectList( 1997 TypeRange.getBegin(), Initializer->getBeginLoc(), 1998 Initializer->getEndLoc()) 1999 : InitializationKind::CreateDirect(TypeRange.getBegin(), 2000 DirectInitRange.getBegin(), 2001 DirectInitRange.getEnd()); 2002 2003 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2004 auto *Deduced = AllocType->getContainedDeducedType(); 2005 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 2006 if (ArraySize) 2007 return ExprError( 2008 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2009 diag::err_deduced_class_template_compound_type) 2010 << /*array*/ 2 2011 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2012 2013 InitializedEntity Entity 2014 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2015 AllocType = DeduceTemplateSpecializationFromInitializer( 2016 AllocTypeInfo, Entity, Kind, Exprs); 2017 if (AllocType.isNull()) 2018 return ExprError(); 2019 } else if (Deduced) { 2020 MultiExprArg Inits = Exprs; 2021 bool Braced = (initStyle == CXXNewExpr::ListInit); 2022 if (Braced) { 2023 auto *ILE = cast<InitListExpr>(Exprs[0]); 2024 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2025 } 2026 2027 if (initStyle == CXXNewExpr::NoInit || Inits.empty()) 2028 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2029 << AllocType << TypeRange); 2030 if (Inits.size() > 1) { 2031 Expr *FirstBad = Inits[1]; 2032 return ExprError(Diag(FirstBad->getBeginLoc(), 2033 diag::err_auto_new_ctor_multiple_expressions) 2034 << AllocType << TypeRange); 2035 } 2036 if (Braced && !getLangOpts().CPlusPlus17) 2037 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2038 << AllocType << TypeRange; 2039 Expr *Deduce = Inits[0]; 2040 if (isa<InitListExpr>(Deduce)) 2041 return ExprError( 2042 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2043 << Braced << AllocType << TypeRange); 2044 QualType DeducedType; 2045 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2046 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2047 << AllocType << Deduce->getType() 2048 << TypeRange << Deduce->getSourceRange()); 2049 if (DeducedType.isNull()) 2050 return ExprError(); 2051 AllocType = DeducedType; 2052 } 2053 2054 // Per C++0x [expr.new]p5, the type being constructed may be a 2055 // typedef of an array type. 2056 if (!ArraySize) { 2057 if (const ConstantArrayType *Array 2058 = Context.getAsConstantArrayType(AllocType)) { 2059 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2060 Context.getSizeType(), 2061 TypeRange.getEnd()); 2062 AllocType = Array->getElementType(); 2063 } 2064 } 2065 2066 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2067 return ExprError(); 2068 2069 // In ARC, infer 'retaining' for the allocated 2070 if (getLangOpts().ObjCAutoRefCount && 2071 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2072 AllocType->isObjCLifetimeType()) { 2073 AllocType = Context.getLifetimeQualifiedType(AllocType, 2074 AllocType->getObjCARCImplicitLifetime()); 2075 } 2076 2077 QualType ResultType = Context.getPointerType(AllocType); 2078 2079 if (ArraySize && *ArraySize && 2080 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2081 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2082 if (result.isInvalid()) return ExprError(); 2083 ArraySize = result.get(); 2084 } 2085 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2086 // integral or enumeration type with a non-negative value." 2087 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2088 // enumeration type, or a class type for which a single non-explicit 2089 // conversion function to integral or unscoped enumeration type exists. 2090 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2091 // std::size_t. 2092 llvm::Optional<uint64_t> KnownArraySize; 2093 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2094 ExprResult ConvertedSize; 2095 if (getLangOpts().CPlusPlus14) { 2096 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2096, __extension__ __PRETTY_FUNCTION__
))
; 2097 2098 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2099 AA_Converting); 2100 2101 if (!ConvertedSize.isInvalid() && 2102 (*ArraySize)->getType()->getAs<RecordType>()) 2103 // Diagnose the compatibility of this conversion. 2104 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2105 << (*ArraySize)->getType() << 0 << "'size_t'"; 2106 } else { 2107 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2108 protected: 2109 Expr *ArraySize; 2110 2111 public: 2112 SizeConvertDiagnoser(Expr *ArraySize) 2113 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2114 ArraySize(ArraySize) {} 2115 2116 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2117 QualType T) override { 2118 return S.Diag(Loc, diag::err_array_size_not_integral) 2119 << S.getLangOpts().CPlusPlus11 << T; 2120 } 2121 2122 SemaDiagnosticBuilder diagnoseIncomplete( 2123 Sema &S, SourceLocation Loc, QualType T) override { 2124 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2125 << T << ArraySize->getSourceRange(); 2126 } 2127 2128 SemaDiagnosticBuilder diagnoseExplicitConv( 2129 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2130 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2131 } 2132 2133 SemaDiagnosticBuilder noteExplicitConv( 2134 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2135 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2136 << ConvTy->isEnumeralType() << ConvTy; 2137 } 2138 2139 SemaDiagnosticBuilder diagnoseAmbiguous( 2140 Sema &S, SourceLocation Loc, QualType T) override { 2141 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2142 } 2143 2144 SemaDiagnosticBuilder noteAmbiguous( 2145 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2146 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2147 << ConvTy->isEnumeralType() << ConvTy; 2148 } 2149 2150 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2151 QualType T, 2152 QualType ConvTy) override { 2153 return S.Diag(Loc, 2154 S.getLangOpts().CPlusPlus11 2155 ? diag::warn_cxx98_compat_array_size_conversion 2156 : diag::ext_array_size_conversion) 2157 << T << ConvTy->isEnumeralType() << ConvTy; 2158 } 2159 } SizeDiagnoser(*ArraySize); 2160 2161 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2162 SizeDiagnoser); 2163 } 2164 if (ConvertedSize.isInvalid()) 2165 return ExprError(); 2166 2167 ArraySize = ConvertedSize.get(); 2168 QualType SizeType = (*ArraySize)->getType(); 2169 2170 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2171 return ExprError(); 2172 2173 // C++98 [expr.new]p7: 2174 // The expression in a direct-new-declarator shall have integral type 2175 // with a non-negative value. 2176 // 2177 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2178 // per CWG1464. Otherwise, if it's not a constant, we must have an 2179 // unparenthesized array type. 2180 2181 // We've already performed any required implicit conversion to integer or 2182 // unscoped enumeration type. 2183 // FIXME: Per CWG1464, we are required to check the value prior to 2184 // converting to size_t. This will never find a negative array size in 2185 // C++14 onwards, because Value is always unsigned here! 2186 if (Optional<llvm::APSInt> Value = 2187 (*ArraySize)->getIntegerConstantExpr(Context)) { 2188 if (Value->isSigned() && Value->isNegative()) { 2189 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2190 diag::err_typecheck_negative_array_size) 2191 << (*ArraySize)->getSourceRange()); 2192 } 2193 2194 if (!AllocType->isDependentType()) { 2195 unsigned ActiveSizeBits = 2196 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2197 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2198 return ExprError( 2199 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2200 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2201 } 2202 2203 KnownArraySize = Value->getZExtValue(); 2204 } else if (TypeIdParens.isValid()) { 2205 // Can't have dynamic array size when the type-id is in parentheses. 2206 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2207 << (*ArraySize)->getSourceRange() 2208 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2209 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2210 2211 TypeIdParens = SourceRange(); 2212 } 2213 2214 // Note that we do *not* convert the argument in any way. It can 2215 // be signed, larger than size_t, whatever. 2216 } 2217 2218 FunctionDecl *OperatorNew = nullptr; 2219 FunctionDecl *OperatorDelete = nullptr; 2220 unsigned Alignment = 2221 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2222 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2223 bool PassAlignment = getLangOpts().AlignedAllocation && 2224 Alignment > NewAlignment; 2225 2226 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2227 if (!AllocType->isDependentType() && 2228 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2229 FindAllocationFunctions( 2230 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2231 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2232 OperatorNew, OperatorDelete)) 2233 return ExprError(); 2234 2235 // If this is an array allocation, compute whether the usual array 2236 // deallocation function for the type has a size_t parameter. 2237 bool UsualArrayDeleteWantsSize = false; 2238 if (ArraySize && !AllocType->isDependentType()) 2239 UsualArrayDeleteWantsSize = 2240 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2241 2242 SmallVector<Expr *, 8> AllPlaceArgs; 2243 if (OperatorNew) { 2244 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2245 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2246 : VariadicDoesNotApply; 2247 2248 // We've already converted the placement args, just fill in any default 2249 // arguments. Skip the first parameter because we don't have a corresponding 2250 // argument. Skip the second parameter too if we're passing in the 2251 // alignment; we've already filled it in. 2252 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2253 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2254 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2255 CallType)) 2256 return ExprError(); 2257 2258 if (!AllPlaceArgs.empty()) 2259 PlacementArgs = AllPlaceArgs; 2260 2261 // We would like to perform some checking on the given `operator new` call, 2262 // but the PlacementArgs does not contain the implicit arguments, 2263 // namely allocation size and maybe allocation alignment, 2264 // so we need to conjure them. 2265 2266 QualType SizeTy = Context.getSizeType(); 2267 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2268 2269 llvm::APInt SingleEltSize( 2270 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2271 2272 // How many bytes do we want to allocate here? 2273 llvm::Optional<llvm::APInt> AllocationSize; 2274 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2275 // For non-array operator new, we only want to allocate one element. 2276 AllocationSize = SingleEltSize; 2277 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2278 // For array operator new, only deal with static array size case. 2279 bool Overflow; 2280 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2281 .umul_ov(SingleEltSize, Overflow); 2282 (void)Overflow; 2283 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
2284 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
2285 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2285, __extension__ __PRETTY_FUNCTION__
))
; 2286 } 2287 2288 IntegerLiteral AllocationSizeLiteral( 2289 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)), 2290 SizeTy, SourceLocation()); 2291 // Otherwise, if we failed to constant-fold the allocation size, we'll 2292 // just give up and pass-in something opaque, that isn't a null pointer. 2293 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2294 OK_Ordinary, /*SourceExpr=*/nullptr); 2295 2296 // Let's synthesize the alignment argument in case we will need it. 2297 // Since we *really* want to allocate these on stack, this is slightly ugly 2298 // because there might not be a `std::align_val_t` type. 2299 EnumDecl *StdAlignValT = getStdAlignValT(); 2300 QualType AlignValT = 2301 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2302 IntegerLiteral AlignmentLiteral( 2303 Context, 2304 llvm::APInt(Context.getTypeSize(SizeTy), 2305 Alignment / Context.getCharWidth()), 2306 SizeTy, SourceLocation()); 2307 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2308 CK_IntegralCast, &AlignmentLiteral, 2309 VK_PRValue, FPOptionsOverride()); 2310 2311 // Adjust placement args by prepending conjured size and alignment exprs. 2312 llvm::SmallVector<Expr *, 8> CallArgs; 2313 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2314 CallArgs.emplace_back(AllocationSize.hasValue() 2315 ? static_cast<Expr *>(&AllocationSizeLiteral) 2316 : &OpaqueAllocationSize); 2317 if (PassAlignment) 2318 CallArgs.emplace_back(&DesiredAlignment); 2319 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2320 2321 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2322 2323 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2324 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2325 2326 // Warn if the type is over-aligned and is being allocated by (unaligned) 2327 // global operator new. 2328 if (PlacementArgs.empty() && !PassAlignment && 2329 (OperatorNew->isImplicit() || 2330 (OperatorNew->getBeginLoc().isValid() && 2331 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2332 if (Alignment > NewAlignment) 2333 Diag(StartLoc, diag::warn_overaligned_type) 2334 << AllocType 2335 << unsigned(Alignment / Context.getCharWidth()) 2336 << unsigned(NewAlignment / Context.getCharWidth()); 2337 } 2338 } 2339 2340 // Array 'new' can't have any initializers except empty parentheses. 2341 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2342 // dialect distinction. 2343 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2344 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2345 Exprs.back()->getEndLoc()); 2346 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2347 return ExprError(); 2348 } 2349 2350 // If we can perform the initialization, and we've not already done so, 2351 // do it now. 2352 if (!AllocType->isDependentType() && 2353 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2354 // The type we initialize is the complete type, including the array bound. 2355 QualType InitType; 2356 if (KnownArraySize) 2357 InitType = Context.getConstantArrayType( 2358 AllocType, 2359 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2360 *KnownArraySize), 2361 *ArraySize, ArrayType::Normal, 0); 2362 else if (ArraySize) 2363 InitType = 2364 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2365 else 2366 InitType = AllocType; 2367 2368 InitializedEntity Entity 2369 = InitializedEntity::InitializeNew(StartLoc, InitType); 2370 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2371 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2372 if (FullInit.isInvalid()) 2373 return ExprError(); 2374 2375 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2376 // we don't want the initialized object to be destructed. 2377 // FIXME: We should not create these in the first place. 2378 if (CXXBindTemporaryExpr *Binder = 2379 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2380 FullInit = Binder->getSubExpr(); 2381 2382 Initializer = FullInit.get(); 2383 2384 // FIXME: If we have a KnownArraySize, check that the array bound of the 2385 // initializer is no greater than that constant value. 2386 2387 if (ArraySize && !*ArraySize) { 2388 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2389 if (CAT) { 2390 // FIXME: Track that the array size was inferred rather than explicitly 2391 // specified. 2392 ArraySize = IntegerLiteral::Create( 2393 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2394 } else { 2395 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2396 << Initializer->getSourceRange(); 2397 } 2398 } 2399 } 2400 2401 // Mark the new and delete operators as referenced. 2402 if (OperatorNew) { 2403 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2404 return ExprError(); 2405 MarkFunctionReferenced(StartLoc, OperatorNew); 2406 } 2407 if (OperatorDelete) { 2408 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2409 return ExprError(); 2410 MarkFunctionReferenced(StartLoc, OperatorDelete); 2411 } 2412 2413 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2414 PassAlignment, UsualArrayDeleteWantsSize, 2415 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2416 Initializer, ResultType, AllocTypeInfo, Range, 2417 DirectInitRange); 2418} 2419 2420/// Checks that a type is suitable as the allocated type 2421/// in a new-expression. 2422bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2423 SourceRange R) { 2424 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2425 // abstract class type or array thereof. 2426 if (AllocType->isFunctionType()) 2427 return Diag(Loc, diag::err_bad_new_type) 2428 << AllocType << 0 << R; 2429 else if (AllocType->isReferenceType()) 2430 return Diag(Loc, diag::err_bad_new_type) 2431 << AllocType << 1 << R; 2432 else if (!AllocType->isDependentType() && 2433 RequireCompleteSizedType( 2434 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2435 return true; 2436 else if (RequireNonAbstractType(Loc, AllocType, 2437 diag::err_allocation_of_abstract_type)) 2438 return true; 2439 else if (AllocType->isVariablyModifiedType()) 2440 return Diag(Loc, diag::err_variably_modified_new_type) 2441 << AllocType; 2442 else if (AllocType.getAddressSpace() != LangAS::Default && 2443 !getLangOpts().OpenCLCPlusPlus) 2444 return Diag(Loc, diag::err_address_space_qualified_new) 2445 << AllocType.getUnqualifiedType() 2446 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2447 else if (getLangOpts().ObjCAutoRefCount) { 2448 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2449 QualType BaseAllocType = Context.getBaseElementType(AT); 2450 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2451 BaseAllocType->isObjCLifetimeType()) 2452 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2453 << BaseAllocType; 2454 } 2455 } 2456 2457 return false; 2458} 2459 2460static bool resolveAllocationOverload( 2461 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2462 bool &PassAlignment, FunctionDecl *&Operator, 2463 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2464 OverloadCandidateSet Candidates(R.getNameLoc(), 2465 OverloadCandidateSet::CSK_Normal); 2466 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2467 Alloc != AllocEnd; ++Alloc) { 2468 // Even member operator new/delete are implicitly treated as 2469 // static, so don't use AddMemberCandidate. 2470 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2471 2472 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2473 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2474 /*ExplicitTemplateArgs=*/nullptr, Args, 2475 Candidates, 2476 /*SuppressUserConversions=*/false); 2477 continue; 2478 } 2479 2480 FunctionDecl *Fn = cast<FunctionDecl>(D); 2481 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2482 /*SuppressUserConversions=*/false); 2483 } 2484 2485 // Do the resolution. 2486 OverloadCandidateSet::iterator Best; 2487 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2488 case OR_Success: { 2489 // Got one! 2490 FunctionDecl *FnDecl = Best->Function; 2491 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2492 Best->FoundDecl) == Sema::AR_inaccessible) 2493 return true; 2494 2495 Operator = FnDecl; 2496 return false; 2497 } 2498 2499 case OR_No_Viable_Function: 2500 // C++17 [expr.new]p13: 2501 // If no matching function is found and the allocated object type has 2502 // new-extended alignment, the alignment argument is removed from the 2503 // argument list, and overload resolution is performed again. 2504 if (PassAlignment) { 2505 PassAlignment = false; 2506 AlignArg = Args[1]; 2507 Args.erase(Args.begin() + 1); 2508 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2509 Operator, &Candidates, AlignArg, 2510 Diagnose); 2511 } 2512 2513 // MSVC will fall back on trying to find a matching global operator new 2514 // if operator new[] cannot be found. Also, MSVC will leak by not 2515 // generating a call to operator delete or operator delete[], but we 2516 // will not replicate that bug. 2517 // FIXME: Find out how this interacts with the std::align_val_t fallback 2518 // once MSVC implements it. 2519 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2520 S.Context.getLangOpts().MSVCCompat) { 2521 R.clear(); 2522 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2523 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2524 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2525 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2526 Operator, /*Candidates=*/nullptr, 2527 /*AlignArg=*/nullptr, Diagnose); 2528 } 2529 2530 if (Diagnose) { 2531 // If this is an allocation of the form 'new (p) X' for some object 2532 // pointer p (or an expression that will decay to such a pointer), 2533 // diagnose the missing inclusion of <new>. 2534 if (!R.isClassLookup() && Args.size() == 2 && 2535 (Args[1]->getType()->isObjectPointerType() || 2536 Args[1]->getType()->isArrayType())) { 2537 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2538 << R.getLookupName() << Range; 2539 // Listing the candidates is unlikely to be useful; skip it. 2540 return true; 2541 } 2542 2543 // Finish checking all candidates before we note any. This checking can 2544 // produce additional diagnostics so can't be interleaved with our 2545 // emission of notes. 2546 // 2547 // For an aligned allocation, separately check the aligned and unaligned 2548 // candidates with their respective argument lists. 2549 SmallVector<OverloadCandidate*, 32> Cands; 2550 SmallVector<OverloadCandidate*, 32> AlignedCands; 2551 llvm::SmallVector<Expr*, 4> AlignedArgs; 2552 if (AlignedCandidates) { 2553 auto IsAligned = [](OverloadCandidate &C) { 2554 return C.Function->getNumParams() > 1 && 2555 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2556 }; 2557 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2558 2559 AlignedArgs.reserve(Args.size() + 1); 2560 AlignedArgs.push_back(Args[0]); 2561 AlignedArgs.push_back(AlignArg); 2562 AlignedArgs.append(Args.begin() + 1, Args.end()); 2563 AlignedCands = AlignedCandidates->CompleteCandidates( 2564 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2565 2566 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2567 R.getNameLoc(), IsUnaligned); 2568 } else { 2569 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2570 R.getNameLoc()); 2571 } 2572 2573 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2574 << R.getLookupName() << Range; 2575 if (AlignedCandidates) 2576 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2577 R.getNameLoc()); 2578 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2579 } 2580 return true; 2581 2582 case OR_Ambiguous: 2583 if (Diagnose) { 2584 Candidates.NoteCandidates( 2585 PartialDiagnosticAt(R.getNameLoc(), 2586 S.PDiag(diag::err_ovl_ambiguous_call) 2587 << R.getLookupName() << Range), 2588 S, OCD_AmbiguousCandidates, Args); 2589 } 2590 return true; 2591 2592 case OR_Deleted: { 2593 if (Diagnose) { 2594 Candidates.NoteCandidates( 2595 PartialDiagnosticAt(R.getNameLoc(), 2596 S.PDiag(diag::err_ovl_deleted_call) 2597 << R.getLookupName() << Range), 2598 S, OCD_AllCandidates, Args); 2599 } 2600 return true; 2601 } 2602 } 2603 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2603)
; 2604} 2605 2606bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2607 AllocationFunctionScope NewScope, 2608 AllocationFunctionScope DeleteScope, 2609 QualType AllocType, bool IsArray, 2610 bool &PassAlignment, MultiExprArg PlaceArgs, 2611 FunctionDecl *&OperatorNew, 2612 FunctionDecl *&OperatorDelete, 2613 bool Diagnose) { 2614 // --- Choosing an allocation function --- 2615 // C++ 5.3.4p8 - 14 & 18 2616 // 1) If looking in AFS_Global scope for allocation functions, only look in 2617 // the global scope. Else, if AFS_Class, only look in the scope of the 2618 // allocated class. If AFS_Both, look in both. 2619 // 2) If an array size is given, look for operator new[], else look for 2620 // operator new. 2621 // 3) The first argument is always size_t. Append the arguments from the 2622 // placement form. 2623 2624 SmallVector<Expr*, 8> AllocArgs; 2625 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2626 2627 // We don't care about the actual value of these arguments. 2628 // FIXME: Should the Sema create the expression and embed it in the syntax 2629 // tree? Or should the consumer just recalculate the value? 2630 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2631 IntegerLiteral Size( 2632 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2633 Context.getSizeType(), SourceLocation()); 2634 AllocArgs.push_back(&Size); 2635 2636 QualType AlignValT = Context.VoidTy; 2637 if (PassAlignment) { 2638 DeclareGlobalNewDelete(); 2639 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2640 } 2641 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2642 if (PassAlignment) 2643 AllocArgs.push_back(&Align); 2644 2645 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2646 2647 // C++ [expr.new]p8: 2648 // If the allocated type is a non-array type, the allocation 2649 // function's name is operator new and the deallocation function's 2650 // name is operator delete. If the allocated type is an array 2651 // type, the allocation function's name is operator new[] and the 2652 // deallocation function's name is operator delete[]. 2653 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2654 IsArray ? OO_Array_New : OO_New); 2655 2656 QualType AllocElemType = Context.getBaseElementType(AllocType); 2657 2658 // Find the allocation function. 2659 { 2660 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2661 2662 // C++1z [expr.new]p9: 2663 // If the new-expression begins with a unary :: operator, the allocation 2664 // function's name is looked up in the global scope. Otherwise, if the 2665 // allocated type is a class type T or array thereof, the allocation 2666 // function's name is looked up in the scope of T. 2667 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2668 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2669 2670 // We can see ambiguity here if the allocation function is found in 2671 // multiple base classes. 2672 if (R.isAmbiguous()) 2673 return true; 2674 2675 // If this lookup fails to find the name, or if the allocated type is not 2676 // a class type, the allocation function's name is looked up in the 2677 // global scope. 2678 if (R.empty()) { 2679 if (NewScope == AFS_Class) 2680 return true; 2681 2682 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2683 } 2684 2685 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2686 if (PlaceArgs.empty()) { 2687 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2688 } else { 2689 Diag(StartLoc, diag::err_openclcxx_placement_new); 2690 } 2691 return true; 2692 } 2693 2694 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2694, __extension__ __PRETTY_FUNCTION__
))
; 2695 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2695, __extension__ __PRETTY_FUNCTION__
))
; 2696 2697 // We do our own custom access checks below. 2698 R.suppressDiagnostics(); 2699 2700 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2701 OperatorNew, /*Candidates=*/nullptr, 2702 /*AlignArg=*/nullptr, Diagnose)) 2703 return true; 2704 } 2705 2706 // We don't need an operator delete if we're running under -fno-exceptions. 2707 if (!getLangOpts().Exceptions) { 2708 OperatorDelete = nullptr; 2709 return false; 2710 } 2711 2712 // Note, the name of OperatorNew might have been changed from array to 2713 // non-array by resolveAllocationOverload. 2714 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2715 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2716 ? OO_Array_Delete 2717 : OO_Delete); 2718 2719 // C++ [expr.new]p19: 2720 // 2721 // If the new-expression begins with a unary :: operator, the 2722 // deallocation function's name is looked up in the global 2723 // scope. Otherwise, if the allocated type is a class type T or an 2724 // array thereof, the deallocation function's name is looked up in 2725 // the scope of T. If this lookup fails to find the name, or if 2726 // the allocated type is not a class type or array thereof, the 2727 // deallocation function's name is looked up in the global scope. 2728 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2729 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2730 auto *RD = 2731 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2732 LookupQualifiedName(FoundDelete, RD); 2733 } 2734 if (FoundDelete.isAmbiguous()) 2735 return true; // FIXME: clean up expressions? 2736 2737 // Filter out any destroying operator deletes. We can't possibly call such a 2738 // function in this context, because we're handling the case where the object 2739 // was not successfully constructed. 2740 // FIXME: This is not covered by the language rules yet. 2741 { 2742 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2743 while (Filter.hasNext()) { 2744 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2745 if (FD && FD->isDestroyingOperatorDelete()) 2746 Filter.erase(); 2747 } 2748 Filter.done(); 2749 } 2750 2751 bool FoundGlobalDelete = FoundDelete.empty(); 2752 if (FoundDelete.empty()) { 2753 FoundDelete.clear(LookupOrdinaryName); 2754 2755 if (DeleteScope == AFS_Class) 2756 return true; 2757 2758 DeclareGlobalNewDelete(); 2759 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2760 } 2761 2762 FoundDelete.suppressDiagnostics(); 2763 2764 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2765 2766 // Whether we're looking for a placement operator delete is dictated 2767 // by whether we selected a placement operator new, not by whether 2768 // we had explicit placement arguments. This matters for things like 2769 // struct A { void *operator new(size_t, int = 0); ... }; 2770 // A *a = new A() 2771 // 2772 // We don't have any definition for what a "placement allocation function" 2773 // is, but we assume it's any allocation function whose 2774 // parameter-declaration-clause is anything other than (size_t). 2775 // 2776 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2777 // This affects whether an exception from the constructor of an overaligned 2778 // type uses the sized or non-sized form of aligned operator delete. 2779 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2780 OperatorNew->isVariadic(); 2781 2782 if (isPlacementNew) { 2783 // C++ [expr.new]p20: 2784 // A declaration of a placement deallocation function matches the 2785 // declaration of a placement allocation function if it has the 2786 // same number of parameters and, after parameter transformations 2787 // (8.3.5), all parameter types except the first are 2788 // identical. [...] 2789 // 2790 // To perform this comparison, we compute the function type that 2791 // the deallocation function should have, and use that type both 2792 // for template argument deduction and for comparison purposes. 2793 QualType ExpectedFunctionType; 2794 { 2795 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2796 2797 SmallVector<QualType, 4> ArgTypes; 2798 ArgTypes.push_back(Context.VoidPtrTy); 2799 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2800 ArgTypes.push_back(Proto->getParamType(I)); 2801 2802 FunctionProtoType::ExtProtoInfo EPI; 2803 // FIXME: This is not part of the standard's rule. 2804 EPI.Variadic = Proto->isVariadic(); 2805 2806 ExpectedFunctionType 2807 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2808 } 2809 2810 for (LookupResult::iterator D = FoundDelete.begin(), 2811 DEnd = FoundDelete.end(); 2812 D != DEnd; ++D) { 2813 FunctionDecl *Fn = nullptr; 2814 if (FunctionTemplateDecl *FnTmpl = 2815 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2816 // Perform template argument deduction to try to match the 2817 // expected function type. 2818 TemplateDeductionInfo Info(StartLoc); 2819 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2820 Info)) 2821 continue; 2822 } else 2823 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2824 2825 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2826 ExpectedFunctionType, 2827 /*AdjustExcpetionSpec*/true), 2828 ExpectedFunctionType)) 2829 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2830 } 2831 2832 if (getLangOpts().CUDA) 2833 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2834 Matches); 2835 } else { 2836 // C++1y [expr.new]p22: 2837 // For a non-placement allocation function, the normal deallocation 2838 // function lookup is used 2839 // 2840 // Per [expr.delete]p10, this lookup prefers a member operator delete 2841 // without a size_t argument, but prefers a non-member operator delete 2842 // with a size_t where possible (which it always is in this case). 2843 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2844 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2845 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2846 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2847 &BestDeallocFns); 2848 if (Selected) 2849 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2850 else { 2851 // If we failed to select an operator, all remaining functions are viable 2852 // but ambiguous. 2853 for (auto Fn : BestDeallocFns) 2854 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2855 } 2856 } 2857 2858 // C++ [expr.new]p20: 2859 // [...] If the lookup finds a single matching deallocation 2860 // function, that function will be called; otherwise, no 2861 // deallocation function will be called. 2862 if (Matches.size() == 1) { 2863 OperatorDelete = Matches[0].second; 2864 2865 // C++1z [expr.new]p23: 2866 // If the lookup finds a usual deallocation function (3.7.4.2) 2867 // with a parameter of type std::size_t and that function, considered 2868 // as a placement deallocation function, would have been 2869 // selected as a match for the allocation function, the program 2870 // is ill-formed. 2871 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2872 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2873 UsualDeallocFnInfo Info(*this, 2874 DeclAccessPair::make(OperatorDelete, AS_public)); 2875 // Core issue, per mail to core reflector, 2016-10-09: 2876 // If this is a member operator delete, and there is a corresponding 2877 // non-sized member operator delete, this isn't /really/ a sized 2878 // deallocation function, it just happens to have a size_t parameter. 2879 bool IsSizedDelete = Info.HasSizeT; 2880 if (IsSizedDelete && !FoundGlobalDelete) { 2881 auto NonSizedDelete = 2882 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2883 /*WantAlign*/Info.HasAlignValT); 2884 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2885 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2886 IsSizedDelete = false; 2887 } 2888 2889 if (IsSizedDelete) { 2890 SourceRange R = PlaceArgs.empty() 2891 ? SourceRange() 2892 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2893 PlaceArgs.back()->getEndLoc()); 2894 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2895 if (!OperatorDelete->isImplicit()) 2896 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2897 << DeleteName; 2898 } 2899 } 2900 2901 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2902 Matches[0].first); 2903 } else if (!Matches.empty()) { 2904 // We found multiple suitable operators. Per [expr.new]p20, that means we 2905 // call no 'operator delete' function, but we should at least warn the user. 2906 // FIXME: Suppress this warning if the construction cannot throw. 2907 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2908 << DeleteName << AllocElemType; 2909 2910 for (auto &Match : Matches) 2911 Diag(Match.second->getLocation(), 2912 diag::note_member_declared_here) << DeleteName; 2913 } 2914 2915 return false; 2916} 2917 2918/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2919/// delete. These are: 2920/// @code 2921/// // C++03: 2922/// void* operator new(std::size_t) throw(std::bad_alloc); 2923/// void* operator new[](std::size_t) throw(std::bad_alloc); 2924/// void operator delete(void *) throw(); 2925/// void operator delete[](void *) throw(); 2926/// // C++11: 2927/// void* operator new(std::size_t); 2928/// void* operator new[](std::size_t); 2929/// void operator delete(void *) noexcept; 2930/// void operator delete[](void *) noexcept; 2931/// // C++1y: 2932/// void* operator new(std::size_t); 2933/// void* operator new[](std::size_t); 2934/// void operator delete(void *) noexcept; 2935/// void operator delete[](void *) noexcept; 2936/// void operator delete(void *, std::size_t) noexcept; 2937/// void operator delete[](void *, std::size_t) noexcept; 2938/// @endcode 2939/// Note that the placement and nothrow forms of new are *not* implicitly 2940/// declared. Their use requires including \<new\>. 2941void Sema::DeclareGlobalNewDelete() { 2942 if (GlobalNewDeleteDeclared) 2943 return; 2944 2945 // The implicitly declared new and delete operators 2946 // are not supported in OpenCL. 2947 if (getLangOpts().OpenCLCPlusPlus) 2948 return; 2949 2950 // C++ [basic.std.dynamic]p2: 2951 // [...] The following allocation and deallocation functions (18.4) are 2952 // implicitly declared in global scope in each translation unit of a 2953 // program 2954 // 2955 // C++03: 2956 // void* operator new(std::size_t) throw(std::bad_alloc); 2957 // void* operator new[](std::size_t) throw(std::bad_alloc); 2958 // void operator delete(void*) throw(); 2959 // void operator delete[](void*) throw(); 2960 // C++11: 2961 // void* operator new(std::size_t); 2962 // void* operator new[](std::size_t); 2963 // void operator delete(void*) noexcept; 2964 // void operator delete[](void*) noexcept; 2965 // C++1y: 2966 // void* operator new(std::size_t); 2967 // void* operator new[](std::size_t); 2968 // void operator delete(void*) noexcept; 2969 // void operator delete[](void*) noexcept; 2970 // void operator delete(void*, std::size_t) noexcept; 2971 // void operator delete[](void*, std::size_t) noexcept; 2972 // 2973 // These implicit declarations introduce only the function names operator 2974 // new, operator new[], operator delete, operator delete[]. 2975 // 2976 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2977 // "std" or "bad_alloc" as necessary to form the exception specification. 2978 // However, we do not make these implicit declarations visible to name 2979 // lookup. 2980 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2981 // The "std::bad_alloc" class has not yet been declared, so build it 2982 // implicitly. 2983 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2984 getOrCreateStdNamespace(), 2985 SourceLocation(), SourceLocation(), 2986 &PP.getIdentifierTable().get("bad_alloc"), 2987 nullptr); 2988 getStdBadAlloc()->setImplicit(true); 2989 } 2990 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2991 // The "std::align_val_t" enum class has not yet been declared, so build it 2992 // implicitly. 2993 auto *AlignValT = EnumDecl::Create( 2994 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2995 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2996 AlignValT->setIntegerType(Context.getSizeType()); 2997 AlignValT->setPromotionType(Context.getSizeType()); 2998 AlignValT->setImplicit(true); 2999 StdAlignValT = AlignValT; 3000 } 3001 3002 GlobalNewDeleteDeclared = true; 3003 3004 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3005 QualType SizeT = Context.getSizeType(); 3006 3007 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3008 QualType Return, QualType Param) { 3009 llvm::SmallVector<QualType, 3> Params; 3010 Params.push_back(Param); 3011 3012 // Create up to four variants of the function (sized/aligned). 3013 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3014 (Kind == OO_Delete || Kind == OO_Array_Delete); 3015 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3016 3017 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3018 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3019 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3020 if (Sized) 3021 Params.push_back(SizeT); 3022 3023 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3024 if (Aligned) 3025 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3026 3027 DeclareGlobalAllocationFunction( 3028 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3029 3030 if (Aligned) 3031 Params.pop_back(); 3032 } 3033 } 3034 }; 3035 3036 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3037 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3038 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3039 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3040} 3041 3042/// DeclareGlobalAllocationFunction - Declares a single implicit global 3043/// allocation function if it doesn't already exist. 3044void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3045 QualType Return, 3046 ArrayRef<QualType> Params) { 3047 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3048 3049 // Check if this function is already declared. 3050 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3051 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3052 Alloc != AllocEnd; ++Alloc) { 3053 // Only look at non-template functions, as it is the predefined, 3054 // non-templated allocation function we are trying to declare here. 3055 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3056 if (Func->getNumParams() == Params.size()) { 3057 llvm::SmallVector<QualType, 3> FuncParams; 3058 for (auto *P : Func->parameters()) 3059 FuncParams.push_back( 3060 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3061 if (llvm::makeArrayRef(FuncParams) == Params) { 3062 // Make the function visible to name lookup, even if we found it in 3063 // an unimported module. It either is an implicitly-declared global 3064 // allocation function, or is suppressing that function. 3065 Func->setVisibleDespiteOwningModule(); 3066 return; 3067 } 3068 } 3069 } 3070 } 3071 3072 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3073 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3074 3075 QualType BadAllocType; 3076 bool HasBadAllocExceptionSpec 3077 = (Name.getCXXOverloadedOperator() == OO_New || 3078 Name.getCXXOverloadedOperator() == OO_Array_New); 3079 if (HasBadAllocExceptionSpec) { 3080 if (!getLangOpts().CPlusPlus11) { 3081 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3082 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3082, __extension__ __PRETTY_FUNCTION__
))
; 3083 EPI.ExceptionSpec.Type = EST_Dynamic; 3084 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3085 } 3086 if (getLangOpts().NewInfallible) { 3087 EPI.ExceptionSpec.Type = EST_DynamicNone; 3088 } 3089 } else { 3090 EPI.ExceptionSpec = 3091 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3092 } 3093 3094 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3095 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3096 FunctionDecl *Alloc = FunctionDecl::Create( 3097 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3098 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3099 true); 3100 Alloc->setImplicit(); 3101 // Global allocation functions should always be visible. 3102 Alloc->setVisibleDespiteOwningModule(); 3103 3104 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3105 Alloc->addAttr( 3106 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3107 3108 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3109 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3110 ? VisibilityAttr::Hidden 3111 : VisibilityAttr::Default)); 3112 3113 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3114 for (QualType T : Params) { 3115 ParamDecls.push_back(ParmVarDecl::Create( 3116 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3117 /*TInfo=*/nullptr, SC_None, nullptr)); 3118 ParamDecls.back()->setImplicit(); 3119 } 3120 Alloc->setParams(ParamDecls); 3121 if (ExtraAttr) 3122 Alloc->addAttr(ExtraAttr); 3123 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3124 Context.getTranslationUnitDecl()->addDecl(Alloc); 3125 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3126 }; 3127 3128 if (!LangOpts.CUDA) 3129 CreateAllocationFunctionDecl(nullptr); 3130 else { 3131 // Host and device get their own declaration so each can be 3132 // defined or re-declared independently. 3133 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3134 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3135 } 3136} 3137 3138FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3139 bool CanProvideSize, 3140 bool Overaligned, 3141 DeclarationName Name) { 3142 DeclareGlobalNewDelete(); 3143 3144 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3145 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3146 3147 // FIXME: It's possible for this to result in ambiguity, through a 3148 // user-declared variadic operator delete or the enable_if attribute. We 3149 // should probably not consider those cases to be usual deallocation 3150 // functions. But for now we just make an arbitrary choice in that case. 3151 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3152 Overaligned); 3153 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3153, __extension__ __PRETTY_FUNCTION__
))
; 3154 return Result.FD; 3155} 3156 3157FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3158 CXXRecordDecl *RD) { 3159 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3160 3161 FunctionDecl *OperatorDelete = nullptr; 3162 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3163 return nullptr; 3164 if (OperatorDelete) 3165 return OperatorDelete; 3166 3167 // If there's no class-specific operator delete, look up the global 3168 // non-array delete. 3169 return FindUsualDeallocationFunction( 3170 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3171 Name); 3172} 3173 3174bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3175 DeclarationName Name, 3176 FunctionDecl *&Operator, bool Diagnose) { 3177 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3178 // Try to find operator delete/operator delete[] in class scope. 3179 LookupQualifiedName(Found, RD); 3180 3181 if (Found.isAmbiguous()) 3182 return true; 3183 3184 Found.suppressDiagnostics(); 3185 3186 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3187 3188 // C++17 [expr.delete]p10: 3189 // If the deallocation functions have class scope, the one without a 3190 // parameter of type std::size_t is selected. 3191 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3192 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3193 /*WantAlign*/ Overaligned, &Matches); 3194 3195 // If we could find an overload, use it. 3196 if (Matches.size() == 1) { 3197 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3198 3199 // FIXME: DiagnoseUseOfDecl? 3200 if (Operator->isDeleted()) { 3201 if (Diagnose) { 3202 Diag(StartLoc, diag::err_deleted_function_use); 3203 NoteDeletedFunction(Operator); 3204 } 3205 return true; 3206 } 3207 3208 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3209 Matches[0].Found, Diagnose) == AR_inaccessible) 3210 return true; 3211 3212 return false; 3213 } 3214 3215 // We found multiple suitable operators; complain about the ambiguity. 3216 // FIXME: The standard doesn't say to do this; it appears that the intent 3217 // is that this should never happen. 3218 if (!Matches.empty()) { 3219 if (Diagnose) { 3220 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3221 << Name << RD; 3222 for (auto &Match : Matches) 3223 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3224 } 3225 return true; 3226 } 3227 3228 // We did find operator delete/operator delete[] declarations, but 3229 // none of them were suitable. 3230 if (!Found.empty()) { 3231 if (Diagnose) { 3232 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3233 << Name << RD; 3234 3235 for (NamedDecl *D : Found) 3236 Diag(D->getUnderlyingDecl()->getLocation(), 3237 diag::note_member_declared_here) << Name; 3238 } 3239 return true; 3240 } 3241 3242 Operator = nullptr; 3243 return false; 3244} 3245 3246namespace { 3247/// Checks whether delete-expression, and new-expression used for 3248/// initializing deletee have the same array form. 3249class MismatchingNewDeleteDetector { 3250public: 3251 enum MismatchResult { 3252 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3253 NoMismatch, 3254 /// Indicates that variable is initialized with mismatching form of \a new. 3255 VarInitMismatches, 3256 /// Indicates that member is initialized with mismatching form of \a new. 3257 MemberInitMismatches, 3258 /// Indicates that 1 or more constructors' definitions could not been 3259 /// analyzed, and they will be checked again at the end of translation unit. 3260 AnalyzeLater 3261 }; 3262 3263 /// \param EndOfTU True, if this is the final analysis at the end of 3264 /// translation unit. False, if this is the initial analysis at the point 3265 /// delete-expression was encountered. 3266 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3267 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3268 HasUndefinedConstructors(false) {} 3269 3270 /// Checks whether pointee of a delete-expression is initialized with 3271 /// matching form of new-expression. 3272 /// 3273 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3274 /// point where delete-expression is encountered, then a warning will be 3275 /// issued immediately. If return value is \c AnalyzeLater at the point where 3276 /// delete-expression is seen, then member will be analyzed at the end of 3277 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3278 /// couldn't be analyzed. If at least one constructor initializes the member 3279 /// with matching type of new, the return value is \c NoMismatch. 3280 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3281 /// Analyzes a class member. 3282 /// \param Field Class member to analyze. 3283 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3284 /// for deleting the \p Field. 3285 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3286 FieldDecl *Field; 3287 /// List of mismatching new-expressions used for initialization of the pointee 3288 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3289 /// Indicates whether delete-expression was in array form. 3290 bool IsArrayForm; 3291 3292private: 3293 const bool EndOfTU; 3294 /// Indicates that there is at least one constructor without body. 3295 bool HasUndefinedConstructors; 3296 /// Returns \c CXXNewExpr from given initialization expression. 3297 /// \param E Expression used for initializing pointee in delete-expression. 3298 /// E can be a single-element \c InitListExpr consisting of new-expression. 3299 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3300 /// Returns whether member is initialized with mismatching form of 3301 /// \c new either by the member initializer or in-class initialization. 3302 /// 3303 /// If bodies of all constructors are not visible at the end of translation 3304 /// unit or at least one constructor initializes member with the matching 3305 /// form of \c new, mismatch cannot be proven, and this function will return 3306 /// \c NoMismatch. 3307 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3308 /// Returns whether variable is initialized with mismatching form of 3309 /// \c new. 3310 /// 3311 /// If variable is initialized with matching form of \c new or variable is not 3312 /// initialized with a \c new expression, this function will return true. 3313 /// If variable is initialized with mismatching form of \c new, returns false. 3314 /// \param D Variable to analyze. 3315 bool hasMatchingVarInit(const DeclRefExpr *D); 3316 /// Checks whether the constructor initializes pointee with mismatching 3317 /// form of \c new. 3318 /// 3319 /// Returns true, if member is initialized with matching form of \c new in 3320 /// member initializer list. Returns false, if member is initialized with the 3321 /// matching form of \c new in this constructor's initializer or given 3322 /// constructor isn't defined at the point where delete-expression is seen, or 3323 /// member isn't initialized by the constructor. 3324 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3325 /// Checks whether member is initialized with matching form of 3326 /// \c new in member initializer list. 3327 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3328 /// Checks whether member is initialized with mismatching form of \c new by 3329 /// in-class initializer. 3330 MismatchResult analyzeInClassInitializer(); 3331}; 3332} 3333 3334MismatchingNewDeleteDetector::MismatchResult 3335MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3336 NewExprs.clear(); 3337 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3337, __extension__ __PRETTY_FUNCTION__
))
; 3338 IsArrayForm = DE->isArrayForm(); 3339 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3340 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3341 return analyzeMemberExpr(ME); 3342 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3343 if (!hasMatchingVarInit(D)) 3344 return VarInitMismatches; 3345 } 3346 return NoMismatch; 3347} 3348 3349const CXXNewExpr * 3350MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3351 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3351, __extension__ __PRETTY_FUNCTION__
))
; 3352 E = E->IgnoreParenImpCasts(); 3353 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3354 if (ILE->getNumInits() == 1) 3355 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3356 } 3357 3358 return dyn_cast_or_null<const CXXNewExpr>(E); 3359} 3360 3361bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3362 const CXXCtorInitializer *CI) { 3363 const CXXNewExpr *NE = nullptr; 3364 if (Field == CI->getMember() && 3365 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3366 if (NE->isArray() == IsArrayForm) 3367 return true; 3368 else 3369 NewExprs.push_back(NE); 3370 } 3371 return false; 3372} 3373 3374bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3375 const CXXConstructorDecl *CD) { 3376 if (CD->isImplicit()) 3377 return false; 3378 const FunctionDecl *Definition = CD; 3379 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3380 HasUndefinedConstructors = true; 3381 return EndOfTU; 3382 } 3383 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3384 if (hasMatchingNewInCtorInit(CI)) 3385 return true; 3386 } 3387 return false; 3388} 3389 3390MismatchingNewDeleteDetector::MismatchResult 3391MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3392 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3392, __extension__ __PRETTY_FUNCTION__
))
; 3393 const Expr *InitExpr = Field->getInClassInitializer(); 3394 if (!InitExpr) 3395 return EndOfTU ? NoMismatch : AnalyzeLater; 3396 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3397 if (NE->isArray() != IsArrayForm) { 3398 NewExprs.push_back(NE); 3399 return MemberInitMismatches; 3400 } 3401 } 3402 return NoMismatch; 3403} 3404 3405MismatchingNewDeleteDetector::MismatchResult 3406MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3407 bool DeleteWasArrayForm) { 3408 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3408, __extension__ __PRETTY_FUNCTION__
))
; 3409 this->Field = Field; 3410 IsArrayForm = DeleteWasArrayForm; 3411 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3412 for (const auto *CD : RD->ctors()) { 3413 if (hasMatchingNewInCtor(CD)) 3414 return NoMismatch; 3415 } 3416 if (HasUndefinedConstructors) 3417 return EndOfTU ? NoMismatch : AnalyzeLater; 3418 if (!NewExprs.empty()) 3419 return MemberInitMismatches; 3420 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3421 : NoMismatch; 3422} 3423 3424MismatchingNewDeleteDetector::MismatchResult 3425MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3426 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3426, __extension__ __PRETTY_FUNCTION__
))
; 3427 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3428 return analyzeField(F, IsArrayForm); 3429 return NoMismatch; 3430} 3431 3432bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3433 const CXXNewExpr *NE = nullptr; 3434 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3435 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3436 NE->isArray() != IsArrayForm) { 3437 NewExprs.push_back(NE); 3438 } 3439 } 3440 return NewExprs.empty(); 3441} 3442 3443static void 3444DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3445 const MismatchingNewDeleteDetector &Detector) { 3446 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3447 FixItHint H; 3448 if (!Detector.IsArrayForm) 3449 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3450 else { 3451 SourceLocation RSquare = Lexer::findLocationAfterToken( 3452 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3453 SemaRef.getLangOpts(), true); 3454 if (RSquare.isValid()) 3455 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3456 } 3457 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3458 << Detector.IsArrayForm << H; 3459 3460 for (const auto *NE : Detector.NewExprs) 3461 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3462 << Detector.IsArrayForm; 3463} 3464 3465void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3466 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3467 return; 3468 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3469 switch (Detector.analyzeDeleteExpr(DE)) { 3470 case MismatchingNewDeleteDetector::VarInitMismatches: 3471 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3472 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3473 break; 3474 } 3475 case MismatchingNewDeleteDetector::AnalyzeLater: { 3476 DeleteExprs[Detector.Field].push_back( 3477 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3478 break; 3479 } 3480 case MismatchingNewDeleteDetector::NoMismatch: 3481 break; 3482 } 3483} 3484 3485void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3486 bool DeleteWasArrayForm) { 3487 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3488 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3489 case MismatchingNewDeleteDetector::VarInitMismatches: 3490 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3490)
; 3491 case MismatchingNewDeleteDetector::AnalyzeLater: 3492 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3493)
3493 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3493)
; 3494 case MismatchingNewDeleteDetector::MemberInitMismatches: 3495 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3496 break; 3497 case MismatchingNewDeleteDetector::NoMismatch: 3498 break; 3499 } 3500} 3501 3502/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3503/// @code ::delete ptr; @endcode 3504/// or 3505/// @code delete [] ptr; @endcode 3506ExprResult 3507Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3508 bool ArrayForm, Expr *ExE) { 3509 // C++ [expr.delete]p1: 3510 // The operand shall have a pointer type, or a class type having a single 3511 // non-explicit conversion function to a pointer type. The result has type 3512 // void. 3513 // 3514 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3515 3516 ExprResult Ex = ExE; 3517 FunctionDecl *OperatorDelete = nullptr; 3518 bool ArrayFormAsWritten = ArrayForm; 3519 bool UsualArrayDeleteWantsSize = false; 3520 3521 if (!Ex.get()->isTypeDependent()) { 3522 // Perform lvalue-to-rvalue cast, if needed. 3523 Ex = DefaultLvalueConversion(Ex.get()); 3524 if (Ex.isInvalid()) 3525 return ExprError(); 3526 3527 QualType Type = Ex.get()->getType(); 3528 3529 class DeleteConverter : public ContextualImplicitConverter { 3530 public: 3531 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3532 3533 bool match(QualType ConvType) override { 3534 // FIXME: If we have an operator T* and an operator void*, we must pick 3535 // the operator T*. 3536 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3537 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3538 return true; 3539 return false; 3540 } 3541 3542 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3543 QualType T) override { 3544 return S.Diag(Loc, diag::err_delete_operand) << T; 3545 } 3546 3547 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3548 QualType T) override { 3549 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3550 } 3551 3552 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3553 QualType T, 3554 QualType ConvTy) override { 3555 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3556 } 3557 3558 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3559 QualType ConvTy) override { 3560 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3561 << ConvTy; 3562 } 3563 3564 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3565 QualType T) override { 3566 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3567 } 3568 3569 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3570 QualType ConvTy) override { 3571 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3572 << ConvTy; 3573 } 3574 3575 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3576 QualType T, 3577 QualType ConvTy) override { 3578 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3578)
; 3579 } 3580 } Converter; 3581 3582 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3583 if (Ex.isInvalid()) 3584 return ExprError(); 3585 Type = Ex.get()->getType(); 3586 if (!Converter.match(Type)) 3587 // FIXME: PerformContextualImplicitConversion should return ExprError 3588 // itself in this case. 3589 return ExprError(); 3590 3591 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3592 QualType PointeeElem = Context.getBaseElementType(Pointee); 3593 3594 if (Pointee.getAddressSpace() != LangAS::Default && 3595 !getLangOpts().OpenCLCPlusPlus) 3596 return Diag(Ex.get()->getBeginLoc(), 3597 diag::err_address_space_qualified_delete) 3598 << Pointee.getUnqualifiedType() 3599 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3600 3601 CXXRecordDecl *PointeeRD = nullptr; 3602 if (Pointee->isVoidType() && !isSFINAEContext()) { 3603 // The C++ standard bans deleting a pointer to a non-object type, which 3604 // effectively bans deletion of "void*". However, most compilers support 3605 // this, so we treat it as a warning unless we're in a SFINAE context. 3606 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3607 << Type << Ex.get()->getSourceRange(); 3608 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3609 Pointee->isSizelessType()) { 3610 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3611 << Type << Ex.get()->getSourceRange()); 3612 } else if (!Pointee->isDependentType()) { 3613 // FIXME: This can result in errors if the definition was imported from a 3614 // module but is hidden. 3615 if (!RequireCompleteType(StartLoc, Pointee, 3616 diag::warn_delete_incomplete, Ex.get())) { 3617 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3618 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3619 } 3620 } 3621 3622 if (Pointee->isArrayType() && !ArrayForm) { 3623 Diag(StartLoc, diag::warn_delete_array_type) 3624 << Type << Ex.get()->getSourceRange() 3625 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3626 ArrayForm = true; 3627 } 3628 3629 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3630 ArrayForm ? OO_Array_Delete : OO_Delete); 3631 3632 if (PointeeRD) { 3633 if (!UseGlobal && 3634 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3635 OperatorDelete)) 3636 return ExprError(); 3637 3638 // If we're allocating an array of records, check whether the 3639 // usual operator delete[] has a size_t parameter. 3640 if (ArrayForm) { 3641 // If the user specifically asked to use the global allocator, 3642 // we'll need to do the lookup into the class. 3643 if (UseGlobal) 3644 UsualArrayDeleteWantsSize = 3645 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3646 3647 // Otherwise, the usual operator delete[] should be the 3648 // function we just found. 3649 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3650 UsualArrayDeleteWantsSize = 3651 UsualDeallocFnInfo(*this, 3652 DeclAccessPair::make(OperatorDelete, AS_public)) 3653 .HasSizeT; 3654 } 3655 3656 if (!PointeeRD->hasIrrelevantDestructor()) 3657 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3658 MarkFunctionReferenced(StartLoc, 3659 const_cast<CXXDestructorDecl*>(Dtor)); 3660 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3661 return ExprError(); 3662 } 3663 3664 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3665 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3666 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3667 SourceLocation()); 3668 } 3669 3670 if (!OperatorDelete) { 3671 if (getLangOpts().OpenCLCPlusPlus) { 3672 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3673 return ExprError(); 3674 } 3675 3676 bool IsComplete = isCompleteType(StartLoc, Pointee); 3677 bool CanProvideSize = 3678 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3679 Pointee.isDestructedType()); 3680 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3681 3682 // Look for a global declaration. 3683 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3684 Overaligned, DeleteName); 3685 } 3686 3687 MarkFunctionReferenced(StartLoc, OperatorDelete); 3688 3689 // Check access and ambiguity of destructor if we're going to call it. 3690 // Note that this is required even for a virtual delete. 3691 bool IsVirtualDelete = false; 3692 if (PointeeRD) { 3693 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3694 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3695 PDiag(diag::err_access_dtor) << PointeeElem); 3696 IsVirtualDelete = Dtor->isVirtual(); 3697 } 3698 } 3699 3700 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3701 3702 // Convert the operand to the type of the first parameter of operator 3703 // delete. This is only necessary if we selected a destroying operator 3704 // delete that we are going to call (non-virtually); converting to void* 3705 // is trivial and left to AST consumers to handle. 3706 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3707 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3708 Qualifiers Qs = Pointee.getQualifiers(); 3709 if (Qs.hasCVRQualifiers()) { 3710 // Qualifiers are irrelevant to this conversion; we're only looking 3711 // for access and ambiguity. 3712 Qs.removeCVRQualifiers(); 3713 QualType Unqual = Context.getPointerType( 3714 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3715 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3716 } 3717 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3718 if (Ex.isInvalid()) 3719 return ExprError(); 3720 } 3721 } 3722 3723 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3724 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3725 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3726 AnalyzeDeleteExprMismatch(Result); 3727 return Result; 3728} 3729 3730static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3731 bool IsDelete, 3732 FunctionDecl *&Operator) { 3733 3734 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3735 IsDelete ? OO_Delete : OO_New); 3736 3737 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3738 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3739 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3739, __extension__ __PRETTY_FUNCTION__
))
; 3740 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
; 3741 3742 // We do our own custom access checks below. 3743 R.suppressDiagnostics(); 3744 3745 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3746 OverloadCandidateSet Candidates(R.getNameLoc(), 3747 OverloadCandidateSet::CSK_Normal); 3748 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3749 FnOvl != FnOvlEnd; ++FnOvl) { 3750 // Even member operator new/delete are implicitly treated as 3751 // static, so don't use AddMemberCandidate. 3752 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3753 3754 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3755 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3756 /*ExplicitTemplateArgs=*/nullptr, Args, 3757 Candidates, 3758 /*SuppressUserConversions=*/false); 3759 continue; 3760 } 3761 3762 FunctionDecl *Fn = cast<FunctionDecl>(D); 3763 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3764 /*SuppressUserConversions=*/false); 3765 } 3766 3767 SourceRange Range = TheCall->getSourceRange(); 3768 3769 // Do the resolution. 3770 OverloadCandidateSet::iterator Best; 3771 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3772 case OR_Success: { 3773 // Got one! 3774 FunctionDecl *FnDecl = Best->Function; 3775 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3776, __extension__ __PRETTY_FUNCTION__
))
3776 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3776, __extension__ __PRETTY_FUNCTION__
))
; 3777 3778 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3779 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3780 << (IsDelete ? 1 : 0) << Range; 3781 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3782 << R.getLookupName() << FnDecl->getSourceRange(); 3783 return true; 3784 } 3785 3786 Operator = FnDecl; 3787 return false; 3788 } 3789 3790 case OR_No_Viable_Function: 3791 Candidates.NoteCandidates( 3792 PartialDiagnosticAt(R.getNameLoc(), 3793 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3794 << R.getLookupName() << Range), 3795 S, OCD_AllCandidates, Args); 3796 return true; 3797 3798 case OR_Ambiguous: 3799 Candidates.NoteCandidates( 3800 PartialDiagnosticAt(R.getNameLoc(), 3801 S.PDiag(diag::err_ovl_ambiguous_call) 3802 << R.getLookupName() << Range), 3803 S, OCD_AmbiguousCandidates, Args); 3804 return true; 3805 3806 case OR_Deleted: { 3807 Candidates.NoteCandidates( 3808 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3809 << R.getLookupName() << Range), 3810 S, OCD_AllCandidates, Args); 3811 return true; 3812 } 3813 } 3814 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3814)
; 3815} 3816 3817ExprResult 3818Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3819 bool IsDelete) { 3820 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3821 if (!getLangOpts().CPlusPlus) { 3822 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3823 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3824 << "C++"; 3825 return ExprError(); 3826 } 3827 // CodeGen assumes it can find the global new and delete to call, 3828 // so ensure that they are declared. 3829 DeclareGlobalNewDelete(); 3830 3831 FunctionDecl *OperatorNewOrDelete = nullptr; 3832 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3833 OperatorNewOrDelete)) 3834 return ExprError(); 3835 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3835, __extension__ __PRETTY_FUNCTION__
))
; 3836 3837 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3838 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3839 3840 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3841 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3842 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3843 InitializedEntity Entity = 3844 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3845 ExprResult Arg = PerformCopyInitialization( 3846 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3847 if (Arg.isInvalid()) 3848 return ExprError(); 3849 TheCall->setArg(i, Arg.get()); 3850 } 3851 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3852 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3853, __extension__ __PRETTY_FUNCTION__
))
3853 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3853, __extension__ __PRETTY_FUNCTION__
))
; 3854 Callee->setType(OperatorNewOrDelete->getType()); 3855 3856 return TheCallResult; 3857} 3858 3859void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3860 bool IsDelete, bool CallCanBeVirtual, 3861 bool WarnOnNonAbstractTypes, 3862 SourceLocation DtorLoc) { 3863 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3864 return; 3865 3866 // C++ [expr.delete]p3: 3867 // In the first alternative (delete object), if the static type of the 3868 // object to be deleted is different from its dynamic type, the static 3869 // type shall be a base class of the dynamic type of the object to be 3870 // deleted and the static type shall have a virtual destructor or the 3871 // behavior is undefined. 3872 // 3873 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3874 // Note: a final class cannot be derived from, no issue there 3875 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3876 return; 3877 3878 // If the superclass is in a system header, there's nothing that can be done. 3879 // The `delete` (where we emit the warning) can be in a system header, 3880 // what matters for this warning is where the deleted type is defined. 3881 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3882 return; 3883 3884 QualType ClassType = dtor->getThisType()->getPointeeType(); 3885 if (PointeeRD->isAbstract()) { 3886 // If the class is abstract, we warn by default, because we're 3887 // sure the code has undefined behavior. 3888 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3889 << ClassType; 3890 } else if (WarnOnNonAbstractTypes) { 3891 // Otherwise, if this is not an array delete, it's a bit suspect, 3892 // but not necessarily wrong. 3893 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3894 << ClassType; 3895 } 3896 if (!IsDelete) { 3897 std::string TypeStr; 3898 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3899 Diag(DtorLoc, diag::note_delete_non_virtual) 3900 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3901 } 3902} 3903 3904Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3905 SourceLocation StmtLoc, 3906 ConditionKind CK) { 3907 ExprResult E = 3908 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3909 if (E.isInvalid()) 3910 return ConditionError(); 3911 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3912 CK == ConditionKind::ConstexprIf); 3913} 3914 3915/// Check the use of the given variable as a C++ condition in an if, 3916/// while, do-while, or switch statement. 3917ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3918 SourceLocation StmtLoc, 3919 ConditionKind CK) { 3920 if (ConditionVar->isInvalidDecl()) 3921 return ExprError(); 3922 3923 QualType T = ConditionVar->getType(); 3924 3925 // C++ [stmt.select]p2: 3926 // The declarator shall not specify a function or an array. 3927 if (T->isFunctionType()) 3928 return ExprError(Diag(ConditionVar->getLocation(), 3929 diag::err_invalid_use_of_function_type) 3930 << ConditionVar->getSourceRange()); 3931 else if (T->isArrayType()) 3932 return ExprError(Diag(ConditionVar->getLocation(), 3933 diag::err_invalid_use_of_array_type) 3934 << ConditionVar->getSourceRange()); 3935 3936 ExprResult Condition = BuildDeclRefExpr( 3937 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3938 ConditionVar->getLocation()); 3939 3940 switch (CK) { 3941 case ConditionKind::Boolean: 3942 return CheckBooleanCondition(StmtLoc, Condition.get()); 3943 3944 case ConditionKind::ConstexprIf: 3945 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3946 3947 case ConditionKind::Switch: 3948 return CheckSwitchCondition(StmtLoc, Condition.get()); 3949 } 3950 3951 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3951)
; 3952} 3953 3954/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3955ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3956 // C++11 6.4p4: 3957 // The value of a condition that is an initialized declaration in a statement 3958 // other than a switch statement is the value of the declared variable 3959 // implicitly converted to type bool. If that conversion is ill-formed, the 3960 // program is ill-formed. 3961 // The value of a condition that is an expression is the value of the 3962 // expression, implicitly converted to bool. 3963 // 3964 // C++2b 8.5.2p2 3965 // If the if statement is of the form if constexpr, the value of the condition 3966 // is contextually converted to bool and the converted expression shall be 3967 // a constant expression. 3968 // 3969 3970 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3971 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3972 return E; 3973 3974 // FIXME: Return this value to the caller so they don't need to recompute it. 3975 llvm::APSInt Cond; 3976 E = VerifyIntegerConstantExpression( 3977 E.get(), &Cond, 3978 diag::err_constexpr_if_condition_expression_is_not_constant); 3979 return E; 3980} 3981 3982/// Helper function to determine whether this is the (deprecated) C++ 3983/// conversion from a string literal to a pointer to non-const char or 3984/// non-const wchar_t (for narrow and wide string literals, 3985/// respectively). 3986bool 3987Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3988 // Look inside the implicit cast, if it exists. 3989 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3990 From = Cast->getSubExpr(); 3991 3992 // A string literal (2.13.4) that is not a wide string literal can 3993 // be converted to an rvalue of type "pointer to char"; a wide 3994 // string literal can be converted to an rvalue of type "pointer 3995 // to wchar_t" (C++ 4.2p2). 3996 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3997 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3998 if (const BuiltinType *ToPointeeType 3999 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4000 // This conversion is considered only when there is an 4001 // explicit appropriate pointer target type (C++ 4.2p2). 4002 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4003 switch (StrLit->getKind()) { 4004 case StringLiteral::UTF8: 4005 case StringLiteral::UTF16: 4006 case StringLiteral::UTF32: 4007 // We don't allow UTF literals to be implicitly converted 4008 break; 4009 case StringLiteral::Ascii: 4010 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4011 ToPointeeType->getKind() == BuiltinType::Char_S); 4012 case StringLiteral::Wide: 4013 return Context.typesAreCompatible(Context.getWideCharType(), 4014 QualType(ToPointeeType, 0)); 4015 } 4016 } 4017 } 4018 4019 return false; 4020} 4021 4022static ExprResult BuildCXXCastArgument(Sema &S, 4023 SourceLocation CastLoc, 4024 QualType Ty, 4025 CastKind Kind, 4026 CXXMethodDecl *Method, 4027 DeclAccessPair FoundDecl, 4028 bool HadMultipleCandidates, 4029 Expr *From) { 4030 switch (Kind) { 4031 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4031)
; 4032 case CK_ConstructorConversion: { 4033 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4034 SmallVector<Expr*, 8> ConstructorArgs; 4035 4036 if (S.RequireNonAbstractType(CastLoc, Ty, 4037 diag::err_allocation_of_abstract_type)) 4038 return ExprError(); 4039 4040 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4041 ConstructorArgs)) 4042 return ExprError(); 4043 4044 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4045 InitializedEntity::InitializeTemporary(Ty)); 4046 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4047 return ExprError(); 4048 4049 ExprResult Result = S.BuildCXXConstructExpr( 4050 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4051 ConstructorArgs, HadMultipleCandidates, 4052 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4053 CXXConstructExpr::CK_Complete, SourceRange()); 4054 if (Result.isInvalid()) 4055 return ExprError(); 4056 4057 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4058 } 4059 4060 case CK_UserDefinedConversion: { 4061 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4061, __extension__ __PRETTY_FUNCTION__
))
; 4062 4063 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4064 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4065 return ExprError(); 4066 4067 // Create an implicit call expr that calls it. 4068 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4069 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4070 HadMultipleCandidates); 4071 if (Result.isInvalid()) 4072 return ExprError(); 4073 // Record usage of conversion in an implicit cast. 4074 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4075 CK_UserDefinedConversion, Result.get(), 4076 nullptr, Result.get()->getValueKind(), 4077 S.CurFPFeatureOverrides()); 4078 4079 return S.MaybeBindToTemporary(Result.get()); 4080 } 4081 } 4082} 4083 4084/// PerformImplicitConversion - Perform an implicit conversion of the 4085/// expression From to the type ToType using the pre-computed implicit 4086/// conversion sequence ICS. Returns the converted 4087/// expression. Action is the kind of conversion we're performing, 4088/// used in the error message. 4089ExprResult 4090Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4091 const ImplicitConversionSequence &ICS, 4092 AssignmentAction Action, 4093 CheckedConversionKind CCK) { 4094 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4095 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4096 return From; 4097 4098 switch (ICS.getKind()) { 4099 case ImplicitConversionSequence::StandardConversion: { 4100 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4101 Action, CCK); 4102 if (Res.isInvalid()) 4103 return ExprError(); 4104 From = Res.get(); 4105 break; 4106 } 4107 4108 case ImplicitConversionSequence::UserDefinedConversion: { 4109 4110 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4111 CastKind CastKind; 4112 QualType BeforeToType; 4113 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4113, __extension__ __PRETTY_FUNCTION__
))
; 4114 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4115 CastKind = CK_UserDefinedConversion; 4116 4117 // If the user-defined conversion is specified by a conversion function, 4118 // the initial standard conversion sequence converts the source type to 4119 // the implicit object parameter of the conversion function. 4120 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4121 } else { 4122 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4123 CastKind = CK_ConstructorConversion; 4124 // Do no conversion if dealing with ... for the first conversion. 4125 if (!ICS.UserDefined.EllipsisConversion) { 4126 // If the user-defined conversion is specified by a constructor, the 4127 // initial standard conversion sequence converts the source type to 4128 // the type required by the argument of the constructor 4129 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4130 } 4131 } 4132 // Watch out for ellipsis conversion. 4133 if (!ICS.UserDefined.EllipsisConversion) { 4134 ExprResult Res = 4135 PerformImplicitConversion(From, BeforeToType, 4136 ICS.UserDefined.Before, AA_Converting, 4137 CCK); 4138 if (Res.isInvalid()) 4139 return ExprError(); 4140 From = Res.get(); 4141 } 4142 4143 ExprResult CastArg = BuildCXXCastArgument( 4144 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4145 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4146 ICS.UserDefined.HadMultipleCandidates, From); 4147 4148 if (CastArg.isInvalid()) 4149 return ExprError(); 4150 4151 From = CastArg.get(); 4152 4153 // C++ [over.match.oper]p7: 4154 // [...] the second standard conversion sequence of a user-defined 4155 // conversion sequence is not applied. 4156 if (CCK == CCK_ForBuiltinOverloadedOp) 4157 return From; 4158 4159 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4160 AA_Converting, CCK); 4161 } 4162 4163 case ImplicitConversionSequence::AmbiguousConversion: 4164 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4165 PDiag(diag::err_typecheck_ambiguous_condition) 4166 << From->getSourceRange()); 4167 return ExprError(); 4168 4169 case ImplicitConversionSequence::EllipsisConversion: 4170 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4170)
; 4171 4172 case ImplicitConversionSequence::BadConversion: 4173 Sema::AssignConvertType ConvTy = 4174 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4175 bool Diagnosed = DiagnoseAssignmentResult( 4176 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4177 ToType, From->getType(), From, Action); 4178 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4178, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed; 4179 return ExprError(); 4180 } 4181 4182 // Everything went well. 4183 return From; 4184} 4185 4186/// PerformImplicitConversion - Perform an implicit conversion of the 4187/// expression From to the type ToType by following the standard 4188/// conversion sequence SCS. Returns the converted 4189/// expression. Flavor is the context in which we're performing this 4190/// conversion, for use in error messages. 4191ExprResult 4192Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4193 const StandardConversionSequence& SCS, 4194 AssignmentAction Action, 4195 CheckedConversionKind CCK) { 4196 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4197 4198 // Overall FIXME: we are recomputing too many types here and doing far too 4199 // much extra work. What this means is that we need to keep track of more 4200 // information that is computed when we try the implicit conversion initially, 4201 // so that we don't need to recompute anything here. 4202 QualType FromType = From->getType(); 4203 4204 if (SCS.CopyConstructor) { 4205 // FIXME: When can ToType be a reference type? 4206 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4206, __extension__ __PRETTY_FUNCTION__))
; 4207 if (SCS.Second == ICK_Derived_To_Base) { 4208 SmallVector<Expr*, 8> ConstructorArgs; 4209 if (CompleteConstructorCall( 4210 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4211 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4212 return ExprError(); 4213 return BuildCXXConstructExpr( 4214 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4215 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4216 ConstructorArgs, /*HadMultipleCandidates*/ false, 4217 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4218 CXXConstructExpr::CK_Complete, SourceRange()); 4219 } 4220 return BuildCXXConstructExpr( 4221 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4222 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4223 From, /*HadMultipleCandidates*/ false, 4224 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4225 CXXConstructExpr::CK_Complete, SourceRange()); 4226 } 4227 4228 // Resolve overloaded function references. 4229 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4230 DeclAccessPair Found; 4231 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4232 true, Found); 4233 if (!Fn) 4234 return ExprError(); 4235 4236 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4237 return ExprError(); 4238 4239 From = FixOverloadedFunctionReference(From, Found, Fn); 4240 4241 // We might get back another placeholder expression if we resolved to a 4242 // builtin. 4243 ExprResult Checked = CheckPlaceholderExpr(From); 4244 if (Checked.isInvalid()) 4245 return ExprError(); 4246 4247 From = Checked.get(); 4248 FromType = From->getType(); 4249 } 4250 4251 // If we're converting to an atomic type, first convert to the corresponding 4252 // non-atomic type. 4253 QualType ToAtomicType; 4254 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4255 ToAtomicType = ToType; 4256 ToType = ToAtomic->getValueType(); 4257 } 4258 4259 QualType InitialFromType = FromType; 4260 // Perform the first implicit conversion. 4261 switch (SCS.First) { 4262 case ICK_Identity: 4263 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4264 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4265 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4266 From, /*BasePath=*/nullptr, VK_PRValue, 4267 FPOptionsOverride()); 4268 } 4269 break; 4270 4271 case ICK_Lvalue_To_Rvalue: { 4272 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4272, __extension__ __PRETTY_FUNCTION__
))
; 4273 ExprResult FromRes = DefaultLvalueConversion(From); 4274 if (FromRes.isInvalid()) 4275 return ExprError(); 4276 4277 From = FromRes.get(); 4278 FromType = From->getType(); 4279 break; 4280 } 4281 4282 case ICK_Array_To_Pointer: 4283 FromType = Context.getArrayDecayedType(FromType); 4284 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4285 /*BasePath=*/nullptr, CCK) 4286 .get(); 4287 break; 4288 4289 case ICK_Function_To_Pointer: 4290 FromType = Context.getPointerType(FromType); 4291 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4292 VK_PRValue, /*BasePath=*/nullptr, CCK) 4293 .get(); 4294 break; 4295 4296 default: 4297 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4297)
; 4298 } 4299 4300 // Perform the second implicit conversion 4301 switch (SCS.Second) { 4302 case ICK_Identity: 4303 // C++ [except.spec]p5: 4304 // [For] assignment to and initialization of pointers to functions, 4305 // pointers to member functions, and references to functions: the 4306 // target entity shall allow at least the exceptions allowed by the 4307 // source value in the assignment or initialization. 4308 switch (Action) { 4309 case AA_Assigning: 4310 case AA_Initializing: 4311 // Note, function argument passing and returning are initialization. 4312 case AA_Passing: 4313 case AA_Returning: 4314 case AA_Sending: 4315 case AA_Passing_CFAudited: 4316 if (CheckExceptionSpecCompatibility(From, ToType)) 4317 return ExprError(); 4318 break; 4319 4320 case AA_Casting: 4321 case AA_Converting: 4322 // Casts and implicit conversions are not initialization, so are not 4323 // checked for exception specification mismatches. 4324 break; 4325 } 4326 // Nothing else to do. 4327 break; 4328 4329 case ICK_Integral_Promotion: 4330 case ICK_Integral_Conversion: 4331 if (ToType->isBooleanType()) { 4332 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
4333 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
4334 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4334, __extension__ __PRETTY_FUNCTION__
))
; 4335 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4336 /*BasePath=*/nullptr, CCK) 4337 .get(); 4338 } else { 4339 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4340 /*BasePath=*/nullptr, CCK) 4341 .get(); 4342 } 4343 break; 4344 4345 case ICK_Floating_Promotion: 4346 case ICK_Floating_Conversion: 4347 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4348 /*BasePath=*/nullptr, CCK) 4349 .get(); 4350 break; 4351 4352 case ICK_Complex_Promotion: 4353 case ICK_Complex_Conversion: { 4354 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4355 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4356 CastKind CK; 4357 if (FromEl->isRealFloatingType()) { 4358 if (ToEl->isRealFloatingType()) 4359 CK = CK_FloatingComplexCast; 4360 else 4361 CK = CK_FloatingComplexToIntegralComplex; 4362 } else if (ToEl->isRealFloatingType()) { 4363 CK = CK_IntegralComplexToFloatingComplex; 4364 } else { 4365 CK = CK_IntegralComplexCast; 4366 } 4367 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4368 CCK) 4369 .get(); 4370 break; 4371 } 4372 4373 case ICK_Floating_Integral: 4374 if (ToType->isRealFloatingType()) 4375 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4376 /*BasePath=*/nullptr, CCK) 4377 .get(); 4378 else 4379 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4380 /*BasePath=*/nullptr, CCK) 4381 .get(); 4382 break; 4383 4384 case ICK_Compatible_Conversion: 4385 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4386 /*BasePath=*/nullptr, CCK).get(); 4387 break; 4388 4389 case ICK_Writeback_Conversion: 4390 case ICK_Pointer_Conversion: { 4391 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4392 // Diagnose incompatible Objective-C conversions 4393 if (Action == AA_Initializing || Action == AA_Assigning) 4394 Diag(From->getBeginLoc(), 4395 diag::ext_typecheck_convert_incompatible_pointer) 4396 << ToType << From->getType() << Action << From->getSourceRange() 4397 << 0; 4398 else 4399 Diag(From->getBeginLoc(), 4400 diag::ext_typecheck_convert_incompatible_pointer) 4401 << From->getType() << ToType << Action << From->getSourceRange() 4402 << 0; 4403 4404 if (From->getType()->isObjCObjectPointerType() && 4405 ToType->isObjCObjectPointerType()) 4406 EmitRelatedResultTypeNote(From); 4407 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4408 !CheckObjCARCUnavailableWeakConversion(ToType, 4409 From->getType())) { 4410 if (Action == AA_Initializing) 4411 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4412 else 4413 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4414 << (Action == AA_Casting) << From->getType() << ToType 4415 << From->getSourceRange(); 4416 } 4417 4418 // Defer address space conversion to the third conversion. 4419 QualType FromPteeType = From->getType()->getPointeeType(); 4420 QualType ToPteeType = ToType->getPointeeType(); 4421 QualType NewToType = ToType; 4422 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4423 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4424 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4425 NewToType = Context.getAddrSpaceQualType(NewToType, 4426 FromPteeType.getAddressSpace()); 4427 if (ToType->isObjCObjectPointerType()) 4428 NewToType = Context.getObjCObjectPointerType(NewToType); 4429 else if (ToType->isBlockPointerType()) 4430 NewToType = Context.getBlockPointerType(NewToType); 4431 else 4432 NewToType = Context.getPointerType(NewToType); 4433 } 4434 4435 CastKind Kind; 4436 CXXCastPath BasePath; 4437 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4438 return ExprError(); 4439 4440 // Make sure we extend blocks if necessary. 4441 // FIXME: doing this here is really ugly. 4442 if (Kind == CK_BlockPointerToObjCPointerCast) { 4443 ExprResult E = From; 4444 (void) PrepareCastToObjCObjectPointer(E); 4445 From = E.get(); 4446 } 4447 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4448 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4449 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4450 .get(); 4451 break; 4452 } 4453 4454 case ICK_Pointer_Member: { 4455 CastKind Kind; 4456 CXXCastPath BasePath; 4457 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4458 return ExprError(); 4459 if (CheckExceptionSpecCompatibility(From, ToType)) 4460 return ExprError(); 4461 4462 // We may not have been able to figure out what this member pointer resolved 4463 // to up until this exact point. Attempt to lock-in it's inheritance model. 4464 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4465 (void)isCompleteType(From->getExprLoc(), From->getType()); 4466 (void)isCompleteType(From->getExprLoc(), ToType); 4467 } 4468 4469 From = 4470 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4471 break; 4472 } 4473 4474 case ICK_Boolean_Conversion: 4475 // Perform half-to-boolean conversion via float. 4476 if (From->getType()->isHalfType()) { 4477 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4478 FromType = Context.FloatTy; 4479 } 4480 4481 From = ImpCastExprToType(From, Context.BoolTy, 4482 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4483 /*BasePath=*/nullptr, CCK) 4484 .get(); 4485 break; 4486 4487 case ICK_Derived_To_Base: { 4488 CXXCastPath BasePath; 4489 if (CheckDerivedToBaseConversion( 4490 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4491 From->getSourceRange(), &BasePath, CStyle)) 4492 return ExprError(); 4493 4494 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4495 CK_DerivedToBase, From->getValueKind(), 4496 &BasePath, CCK).get(); 4497 break; 4498 } 4499 4500 case ICK_Vector_Conversion: 4501 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4502 /*BasePath=*/nullptr, CCK) 4503 .get(); 4504 break; 4505 4506 case ICK_SVE_Vector_Conversion: 4507 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4508 /*BasePath=*/nullptr, CCK) 4509 .get(); 4510 break; 4511 4512 case ICK_Vector_Splat: { 4513 // Vector splat from any arithmetic type to a vector. 4514 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4515 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4516 /*BasePath=*/nullptr, CCK) 4517 .get(); 4518 break; 4519 } 4520 4521 case ICK_Complex_Real: 4522 // Case 1. x -> _Complex y 4523 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4524 QualType ElType = ToComplex->getElementType(); 4525 bool isFloatingComplex = ElType->isRealFloatingType(); 4526 4527 // x -> y 4528 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4529 // do nothing 4530 } else if (From->getType()->isRealFloatingType()) { 4531 From = ImpCastExprToType(From, ElType, 4532 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4533 } else { 4534 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
; 4535 From = ImpCastExprToType(From, ElType, 4536 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4537 } 4538 // y -> _Complex y 4539 From = ImpCastExprToType(From, ToType, 4540 isFloatingComplex ? CK_FloatingRealToComplex 4541 : CK_IntegralRealToComplex).get(); 4542 4543 // Case 2. _Complex x -> y 4544 } else { 4545 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4546 QualType ElType = FromComplex->getElementType(); 4547 bool isFloatingComplex = ElType->isRealFloatingType(); 4548 4549 // _Complex x -> x 4550 From = ImpCastExprToType(From, ElType, 4551 isFloatingComplex ? CK_FloatingComplexToReal 4552 : CK_IntegralComplexToReal, 4553 VK_PRValue, /*BasePath=*/nullptr, CCK) 4554 .get(); 4555 4556 // x -> y 4557 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4558 // do nothing 4559 } else if (ToType->isRealFloatingType()) { 4560 From = ImpCastExprToType(From, ToType, 4561 isFloatingComplex ? CK_FloatingCast 4562 : CK_IntegralToFloating, 4563 VK_PRValue, /*BasePath=*/nullptr, CCK) 4564 .get(); 4565 } else { 4566 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4566, __extension__ __PRETTY_FUNCTION__))
; 4567 From = ImpCastExprToType(From, ToType, 4568 isFloatingComplex ? CK_FloatingToIntegral 4569 : CK_IntegralCast, 4570 VK_PRValue, /*BasePath=*/nullptr, CCK) 4571 .get(); 4572 } 4573 } 4574 break; 4575 4576 case ICK_Block_Pointer_Conversion: { 4577 LangAS AddrSpaceL = 4578 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4579 LangAS AddrSpaceR = 4580 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4581 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4582, __extension__ __PRETTY_FUNCTION__
))
4582 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4582, __extension__ __PRETTY_FUNCTION__
))
; 4583 CastKind Kind = 4584 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4585 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4586 VK_PRValue, /*BasePath=*/nullptr, CCK) 4587 .get(); 4588 break; 4589 } 4590 4591 case ICK_TransparentUnionConversion: { 4592 ExprResult FromRes = From; 4593 Sema::AssignConvertType ConvTy = 4594 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4595 if (FromRes.isInvalid()) 4596 return ExprError(); 4597 From = FromRes.get(); 4598 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4599, __extension__ __PRETTY_FUNCTION__
))
4599 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4599, __extension__ __PRETTY_FUNCTION__
))
; 4600 (void)ConvTy; 4601 break; 4602 } 4603 4604 case ICK_Zero_Event_Conversion: 4605 case ICK_Zero_Queue_Conversion: 4606 From = ImpCastExprToType(From, ToType, 4607 CK_ZeroToOCLOpaqueType, 4608 From->getValueKind()).get(); 4609 break; 4610 4611 case ICK_Lvalue_To_Rvalue: 4612 case ICK_Array_To_Pointer: 4613 case ICK_Function_To_Pointer: 4614 case ICK_Function_Conversion: 4615 case ICK_Qualification: 4616 case ICK_Num_Conversion_Kinds: 4617 case ICK_C_Only_Conversion: 4618 case ICK_Incompatible_Pointer_Conversion: 4619 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4619)
; 4620 } 4621 4622 switch (SCS.Third) { 4623 case ICK_Identity: 4624 // Nothing to do. 4625 break; 4626 4627 case ICK_Function_Conversion: 4628 // If both sides are functions (or pointers/references to them), there could 4629 // be incompatible exception declarations. 4630 if (CheckExceptionSpecCompatibility(From, ToType)) 4631 return ExprError(); 4632 4633 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4634 /*BasePath=*/nullptr, CCK) 4635 .get(); 4636 break; 4637 4638 case ICK_Qualification: { 4639 ExprValueKind VK = From->getValueKind(); 4640 CastKind CK = CK_NoOp; 4641 4642 if (ToType->isReferenceType() && 4643 ToType->getPointeeType().getAddressSpace() != 4644 From->getType().getAddressSpace()) 4645 CK = CK_AddressSpaceConversion; 4646 4647 if (ToType->isPointerType() && 4648 ToType->getPointeeType().getAddressSpace() != 4649 From->getType()->getPointeeType().getAddressSpace()) 4650 CK = CK_AddressSpaceConversion; 4651 4652 if (!isCast(CCK) && 4653 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4654 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4655 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4656 << InitialFromType << ToType; 4657 } 4658 4659 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4660 /*BasePath=*/nullptr, CCK) 4661 .get(); 4662 4663 if (SCS.DeprecatedStringLiteralToCharPtr && 4664 !getLangOpts().WritableStrings) { 4665 Diag(From->getBeginLoc(), 4666 getLangOpts().CPlusPlus11 4667 ? diag::ext_deprecated_string_literal_conversion 4668 : diag::warn_deprecated_string_literal_conversion) 4669 << ToType.getNonReferenceType(); 4670 } 4671 4672 break; 4673 } 4674 4675 default: 4676 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4676)
; 4677 } 4678 4679 // If this conversion sequence involved a scalar -> atomic conversion, perform 4680 // that conversion now. 4681 if (!ToAtomicType.isNull()) { 4682 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4683, __extension__ __PRETTY_FUNCTION__
))
4683 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4683, __extension__ __PRETTY_FUNCTION__
))
; 4684 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4685 VK_PRValue, nullptr, CCK) 4686 .get(); 4687 } 4688 4689 // Materialize a temporary if we're implicitly converting to a reference 4690 // type. This is not required by the C++ rules but is necessary to maintain 4691 // AST invariants. 4692 if (ToType->isReferenceType() && From->isPRValue()) { 4693 ExprResult Res = TemporaryMaterializationConversion(From); 4694 if (Res.isInvalid()) 4695 return ExprError(); 4696 From = Res.get(); 4697 } 4698 4699 // If this conversion sequence succeeded and involved implicitly converting a 4700 // _Nullable type to a _Nonnull one, complain. 4701 if (!isCast(CCK)) 4702 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4703 From->getBeginLoc()); 4704 4705 return From; 4706} 4707 4708/// Check the completeness of a type in a unary type trait. 4709/// 4710/// If the particular type trait requires a complete type, tries to complete 4711/// it. If completing the type fails, a diagnostic is emitted and false 4712/// returned. If completing the type succeeds or no completion was required, 4713/// returns true. 4714static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4715 SourceLocation Loc, 4716 QualType ArgTy) { 4717 // C++0x [meta.unary.prop]p3: 4718 // For all of the class templates X declared in this Clause, instantiating 4719 // that template with a template argument that is a class template 4720 // specialization may result in the implicit instantiation of the template 4721 // argument if and only if the semantics of X require that the argument 4722 // must be a complete type. 4723 // We apply this rule to all the type trait expressions used to implement 4724 // these class templates. We also try to follow any GCC documented behavior 4725 // in these expressions to ensure portability of standard libraries. 4726 switch (UTT) { 4727 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4727)
; 4728 // is_complete_type somewhat obviously cannot require a complete type. 4729 case UTT_IsCompleteType: 4730 // Fall-through 4731 4732 // These traits are modeled on the type predicates in C++0x 4733 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4734 // requiring a complete type, as whether or not they return true cannot be 4735 // impacted by the completeness of the type. 4736 case UTT_IsVoid: 4737 case UTT_IsIntegral: 4738 case UTT_IsFloatingPoint: 4739 case UTT_IsArray: 4740 case UTT_IsPointer: 4741 case UTT_IsLvalueReference: 4742 case UTT_IsRvalueReference: 4743 case UTT_IsMemberFunctionPointer: 4744 case UTT_IsMemberObjectPointer: 4745 case UTT_IsEnum: 4746 case UTT_IsUnion: 4747 case UTT_IsClass: 4748 case UTT_IsFunction: 4749 case UTT_IsReference: 4750 case UTT_IsArithmetic: 4751 case UTT_IsFundamental: 4752 case UTT_IsObject: 4753 case UTT_IsScalar: 4754 case UTT_IsCompound: 4755 case UTT_IsMemberPointer: 4756 // Fall-through 4757 4758 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4759 // which requires some of its traits to have the complete type. However, 4760 // the completeness of the type cannot impact these traits' semantics, and 4761 // so they don't require it. This matches the comments on these traits in 4762 // Table 49. 4763 case UTT_IsConst: 4764 case UTT_IsVolatile: 4765 case UTT_IsSigned: 4766 case UTT_IsUnsigned: 4767 4768 // This type trait always returns false, checking the type is moot. 4769 case UTT_IsInterfaceClass: 4770 return true; 4771 4772 // C++14 [meta.unary.prop]: 4773 // If T is a non-union class type, T shall be a complete type. 4774 case UTT_IsEmpty: 4775 case UTT_IsPolymorphic: 4776 case UTT_IsAbstract: 4777 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4778 if (!RD->isUnion()) 4779 return !S.RequireCompleteType( 4780 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4781 return true; 4782 4783 // C++14 [meta.unary.prop]: 4784 // If T is a class type, T shall be a complete type. 4785 case UTT_IsFinal: 4786 case UTT_IsSealed: 4787 if (ArgTy->getAsCXXRecordDecl()) 4788 return !S.RequireCompleteType( 4789 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4790 return true; 4791 4792 // C++1z [meta.unary.prop]: 4793 // remove_all_extents_t<T> shall be a complete type or cv void. 4794 case UTT_IsAggregate: 4795 case UTT_IsTrivial: 4796 case UTT_IsTriviallyCopyable: 4797 case UTT_IsStandardLayout: 4798 case UTT_IsPOD: 4799 case UTT_IsLiteral: 4800 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4801 // or an array of unknown bound. But GCC actually imposes the same constraints 4802 // as above. 4803 case UTT_HasNothrowAssign: 4804 case UTT_HasNothrowMoveAssign: 4805 case UTT_HasNothrowConstructor: 4806 case UTT_HasNothrowCopy: 4807 case UTT_HasTrivialAssign: 4808 case UTT_HasTrivialMoveAssign: 4809 case UTT_HasTrivialDefaultConstructor: 4810 case UTT_HasTrivialMoveConstructor: 4811 case UTT_HasTrivialCopy: 4812 case UTT_HasTrivialDestructor: 4813 case UTT_HasVirtualDestructor: 4814 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4815 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 4816 4817 // C++1z [meta.unary.prop]: 4818 // T shall be a complete type, cv void, or an array of unknown bound. 4819 case UTT_IsDestructible: 4820 case UTT_IsNothrowDestructible: 4821 case UTT_IsTriviallyDestructible: 4822 case UTT_HasUniqueObjectRepresentations: 4823 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4824 return true; 4825 4826 return !S.RequireCompleteType( 4827 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4828 } 4829} 4830 4831static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4832 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4833 bool (CXXRecordDecl::*HasTrivial)() const, 4834 bool (CXXRecordDecl::*HasNonTrivial)() const, 4835 bool (CXXMethodDecl::*IsDesiredOp)() const) 4836{ 4837 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4838 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4839 return true; 4840 4841 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4842 DeclarationNameInfo NameInfo(Name, KeyLoc); 4843 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4844 if (Self.LookupQualifiedName(Res, RD)) { 4845 bool FoundOperator = false; 4846 Res.suppressDiagnostics(); 4847 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4848 Op != OpEnd; ++Op) { 4849 if (isa<FunctionTemplateDecl>(*Op)) 4850 continue; 4851 4852 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4853 if((Operator->*IsDesiredOp)()) { 4854 FoundOperator = true; 4855 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4856 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4857 if (!CPT || !CPT->isNothrow()) 4858 return false; 4859 } 4860 } 4861 return FoundOperator; 4862 } 4863 return false; 4864} 4865 4866static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4867 SourceLocation KeyLoc, QualType T) { 4868 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4868, __extension__ __PRETTY_FUNCTION__
))
; 4869 4870 ASTContext &C = Self.Context; 4871 switch(UTT) { 4872 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4872)
; 4873 // Type trait expressions corresponding to the primary type category 4874 // predicates in C++0x [meta.unary.cat]. 4875 case UTT_IsVoid: 4876 return T->isVoidType(); 4877 case UTT_IsIntegral: 4878 return T->isIntegralType(C); 4879 case UTT_IsFloatingPoint: 4880 return T->isFloatingType(); 4881 case UTT_IsArray: 4882 return T->isArrayType(); 4883 case UTT_IsPointer: 4884 return T->isAnyPointerType(); 4885 case UTT_IsLvalueReference: 4886 return T->isLValueReferenceType(); 4887 case UTT_IsRvalueReference: 4888 return T->isRValueReferenceType(); 4889 case UTT_IsMemberFunctionPointer: 4890 return T->isMemberFunctionPointerType(); 4891 case UTT_IsMemberObjectPointer: 4892 return T->isMemberDataPointerType(); 4893 case UTT_IsEnum: 4894 return T->isEnumeralType(); 4895 case UTT_IsUnion: 4896 return T->isUnionType(); 4897 case UTT_IsClass: 4898 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4899 case UTT_IsFunction: 4900 return T->isFunctionType(); 4901 4902 // Type trait expressions which correspond to the convenient composition 4903 // predicates in C++0x [meta.unary.comp]. 4904 case UTT_IsReference: 4905 return T->isReferenceType(); 4906 case UTT_IsArithmetic: 4907 return T->isArithmeticType() && !T->isEnumeralType(); 4908 case UTT_IsFundamental: 4909 return T->isFundamentalType(); 4910 case UTT_IsObject: 4911 return T->isObjectType(); 4912 case UTT_IsScalar: 4913 // Note: semantic analysis depends on Objective-C lifetime types to be 4914 // considered scalar types. However, such types do not actually behave 4915 // like scalar types at run time (since they may require retain/release 4916 // operations), so we report them as non-scalar. 4917 if (T->isObjCLifetimeType()) { 4918 switch (T.getObjCLifetime()) { 4919 case Qualifiers::OCL_None: 4920 case Qualifiers::OCL_ExplicitNone: 4921 return true; 4922 4923 case Qualifiers::OCL_Strong: 4924 case Qualifiers::OCL_Weak: 4925 case Qualifiers::OCL_Autoreleasing: 4926 return false; 4927 } 4928 } 4929 4930 return T->isScalarType(); 4931 case UTT_IsCompound: 4932 return T->isCompoundType(); 4933 case UTT_IsMemberPointer: 4934 return T->isMemberPointerType(); 4935 4936 // Type trait expressions which correspond to the type property predicates 4937 // in C++0x [meta.unary.prop]. 4938 case UTT_IsConst: 4939 return T.isConstQualified(); 4940 case UTT_IsVolatile: 4941 return T.isVolatileQualified(); 4942 case UTT_IsTrivial: 4943 return T.isTrivialType(C); 4944 case UTT_IsTriviallyCopyable: 4945 return T.isTriviallyCopyableType(C); 4946 case UTT_IsStandardLayout: 4947 return T->isStandardLayoutType(); 4948 case UTT_IsPOD: 4949 return T.isPODType(C); 4950 case UTT_IsLiteral: 4951 return T->isLiteralType(C); 4952 case UTT_IsEmpty: 4953 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4954 return !RD->isUnion() && RD->isEmpty(); 4955 return false; 4956 case UTT_IsPolymorphic: 4957 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4958 return !RD->isUnion() && RD->isPolymorphic(); 4959 return false; 4960 case UTT_IsAbstract: 4961 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4962 return !RD->isUnion() && RD->isAbstract(); 4963 return false; 4964 case UTT_IsAggregate: 4965 // Report vector extensions and complex types as aggregates because they 4966 // support aggregate initialization. GCC mirrors this behavior for vectors 4967 // but not _Complex. 4968 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4969 T->isAnyComplexType(); 4970 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4971 // even then only when it is used with the 'interface struct ...' syntax 4972 // Clang doesn't support /CLR which makes this type trait moot. 4973 case UTT_IsInterfaceClass: 4974 return false; 4975 case UTT_IsFinal: 4976 case UTT_IsSealed: 4977 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4978 return RD->hasAttr<FinalAttr>(); 4979 return false; 4980 case UTT_IsSigned: 4981 // Enum types should always return false. 4982 // Floating points should always return true. 4983 return T->isFloatingType() || 4984 (T->isSignedIntegerType() && !T->isEnumeralType()); 4985 case UTT_IsUnsigned: 4986 // Enum types should always return false. 4987 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4988 4989 // Type trait expressions which query classes regarding their construction, 4990 // destruction, and copying. Rather than being based directly on the 4991 // related type predicates in the standard, they are specified by both 4992 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4993 // specifications. 4994 // 4995 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4996 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4997 // 4998 // Note that these builtins do not behave as documented in g++: if a class 4999 // has both a trivial and a non-trivial special member of a particular kind, 5000 // they return false! For now, we emulate this behavior. 5001 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5002 // does not correctly compute triviality in the presence of multiple special 5003 // members of the same kind. Revisit this once the g++ bug is fixed. 5004 case UTT_HasTrivialDefaultConstructor: 5005 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5006 // If __is_pod (type) is true then the trait is true, else if type is 5007 // a cv class or union type (or array thereof) with a trivial default 5008 // constructor ([class.ctor]) then the trait is true, else it is false. 5009 if (T.isPODType(C)) 5010 return true; 5011 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5012 return RD->hasTrivialDefaultConstructor() && 5013 !RD->hasNonTrivialDefaultConstructor(); 5014 return false; 5015 case UTT_HasTrivialMoveConstructor: 5016 // This trait is implemented by MSVC 2012 and needed to parse the 5017 // standard library headers. Specifically this is used as the logic 5018 // behind std::is_trivially_move_constructible (20.9.4.3). 5019 if (T.isPODType(C)) 5020 return true; 5021 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5022 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5023 return false; 5024 case UTT_HasTrivialCopy: 5025 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5026 // If __is_pod (type) is true or type is a reference type then 5027 // the trait is true, else if type is a cv class or union type 5028 // with a trivial copy constructor ([class.copy]) then the trait 5029 // is true, else it is false. 5030 if (T.isPODType(C) || T->isReferenceType()) 5031 return true; 5032 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5033 return RD->hasTrivialCopyConstructor() && 5034 !RD->hasNonTrivialCopyConstructor(); 5035 return false; 5036 case UTT_HasTrivialMoveAssign: 5037 // This trait is implemented by MSVC 2012 and needed to parse the 5038 // standard library headers. Specifically it is used as the logic 5039 // behind std::is_trivially_move_assignable (20.9.4.3) 5040 if (T.isPODType(C)) 5041 return true; 5042 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5043 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5044 return false; 5045 case UTT_HasTrivialAssign: 5046 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5047 // If type is const qualified or is a reference type then the 5048 // trait is false. Otherwise if __is_pod (type) is true then the 5049 // trait is true, else if type is a cv class or union type with 5050 // a trivial copy assignment ([class.copy]) then the trait is 5051 // true, else it is false. 5052 // Note: the const and reference restrictions are interesting, 5053 // given that const and reference members don't prevent a class 5054 // from having a trivial copy assignment operator (but do cause 5055 // errors if the copy assignment operator is actually used, q.v. 5056 // [class.copy]p12). 5057 5058 if (T.isConstQualified()) 5059 return false; 5060 if (T.isPODType(C)) 5061 return true; 5062 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5063 return RD->hasTrivialCopyAssignment() && 5064 !RD->hasNonTrivialCopyAssignment(); 5065 return false; 5066 case UTT_IsDestructible: 5067 case UTT_IsTriviallyDestructible: 5068 case UTT_IsNothrowDestructible: 5069 // C++14 [meta.unary.prop]: 5070 // For reference types, is_destructible<T>::value is true. 5071 if (T->isReferenceType()) 5072 return true; 5073 5074 // Objective-C++ ARC: autorelease types don't require destruction. 5075 if (T->isObjCLifetimeType() && 5076 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5077 return true; 5078 5079 // C++14 [meta.unary.prop]: 5080 // For incomplete types and function types, is_destructible<T>::value is 5081 // false. 5082 if (T->isIncompleteType() || T->isFunctionType()) 5083 return false; 5084 5085 // A type that requires destruction (via a non-trivial destructor or ARC 5086 // lifetime semantics) is not trivially-destructible. 5087 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5088 return false; 5089 5090 // C++14 [meta.unary.prop]: 5091 // For object types and given U equal to remove_all_extents_t<T>, if the 5092 // expression std::declval<U&>().~U() is well-formed when treated as an 5093 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5094 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5095 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5096 if (!Destructor) 5097 return false; 5098 // C++14 [dcl.fct.def.delete]p2: 5099 // A program that refers to a deleted function implicitly or 5100 // explicitly, other than to declare it, is ill-formed. 5101 if (Destructor->isDeleted()) 5102 return false; 5103 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5104 return false; 5105 if (UTT == UTT_IsNothrowDestructible) { 5106 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5107 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5108 if (!CPT || !CPT->isNothrow()) 5109 return false; 5110 } 5111 } 5112 return true; 5113 5114 case UTT_HasTrivialDestructor: 5115 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5116 // If __is_pod (type) is true or type is a reference type 5117 // then the trait is true, else if type is a cv class or union 5118 // type (or array thereof) with a trivial destructor 5119 // ([class.dtor]) then the trait is true, else it is 5120 // false. 5121 if (T.isPODType(C) || T->isReferenceType()) 5122 return true; 5123 5124 // Objective-C++ ARC: autorelease types don't require destruction. 5125 if (T->isObjCLifetimeType() && 5126 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5127 return true; 5128 5129 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5130 return RD->hasTrivialDestructor(); 5131 return false; 5132 // TODO: Propagate nothrowness for implicitly declared special members. 5133 case UTT_HasNothrowAssign: 5134 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5135 // If type is const qualified or is a reference type then the 5136 // trait is false. Otherwise if __has_trivial_assign (type) 5137 // is true then the trait is true, else if type is a cv class 5138 // or union type with copy assignment operators that are known 5139 // not to throw an exception then the trait is true, else it is 5140 // false. 5141 if (C.getBaseElementType(T).isConstQualified()) 5142 return false; 5143 if (T->isReferenceType()) 5144 return false; 5145 if (T.isPODType(C) || T->isObjCLifetimeType()) 5146 return true; 5147 5148 if (const RecordType *RT = T->getAs<RecordType>()) 5149 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5150 &CXXRecordDecl::hasTrivialCopyAssignment, 5151 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5152 &CXXMethodDecl::isCopyAssignmentOperator); 5153 return false; 5154 case UTT_HasNothrowMoveAssign: 5155 // This trait is implemented by MSVC 2012 and needed to parse the 5156 // standard library headers. Specifically this is used as the logic 5157 // behind std::is_nothrow_move_assignable (20.9.4.3). 5158 if (T.isPODType(C)) 5159 return true; 5160 5161 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5162 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5163 &CXXRecordDecl::hasTrivialMoveAssignment, 5164 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5165 &CXXMethodDecl::isMoveAssignmentOperator); 5166 return false; 5167 case UTT_HasNothrowCopy: 5168 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5169 // If __has_trivial_copy (type) is true then the trait is true, else 5170 // if type is a cv class or union type with copy constructors that are 5171 // known not to throw an exception then the trait is true, else it is 5172 // false. 5173 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5174 return true; 5175 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5176 if (RD->hasTrivialCopyConstructor() && 5177 !RD->hasNonTrivialCopyConstructor()) 5178 return true; 5179 5180 bool FoundConstructor = false; 5181 unsigned FoundTQs; 5182 for (const auto *ND : Self.LookupConstructors(RD)) { 5183 // A template constructor is never a copy constructor. 5184 // FIXME: However, it may actually be selected at the actual overload 5185 // resolution point. 5186 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5187 continue; 5188 // UsingDecl itself is not a constructor 5189 if (isa<UsingDecl>(ND)) 5190 continue; 5191 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5192 if (Constructor->isCopyConstructor(FoundTQs)) { 5193 FoundConstructor = true; 5194 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5195 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5196 if (!CPT) 5197 return false; 5198 // TODO: check whether evaluating default arguments can throw. 5199 // For now, we'll be conservative and assume that they can throw. 5200 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5201 return false; 5202 } 5203 } 5204 5205 return FoundConstructor; 5206 } 5207 return false; 5208 case UTT_HasNothrowConstructor: 5209 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5210 // If __has_trivial_constructor (type) is true then the trait is 5211 // true, else if type is a cv class or union type (or array 5212 // thereof) with a default constructor that is known not to 5213 // throw an exception then the trait is true, else it is false. 5214 if (T.isPODType(C) || T->isObjCLifetimeType()) 5215 return true; 5216 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5217 if (RD->hasTrivialDefaultConstructor() && 5218 !RD->hasNonTrivialDefaultConstructor()) 5219 return true; 5220 5221 bool FoundConstructor = false; 5222 for (const auto *ND : Self.LookupConstructors(RD)) { 5223 // FIXME: In C++0x, a constructor template can be a default constructor. 5224 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5225 continue; 5226 // UsingDecl itself is not a constructor 5227 if (isa<UsingDecl>(ND)) 5228 continue; 5229 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5230 if (Constructor->isDefaultConstructor()) { 5231 FoundConstructor = true; 5232 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5233 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5234 if (!CPT) 5235 return false; 5236 // FIXME: check whether evaluating default arguments can throw. 5237 // For now, we'll be conservative and assume that they can throw. 5238 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5239 return false; 5240 } 5241 } 5242 return FoundConstructor; 5243 } 5244 return false; 5245 case UTT_HasVirtualDestructor: 5246 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5247 // If type is a class type with a virtual destructor ([class.dtor]) 5248 // then the trait is true, else it is false. 5249 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5250 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5251 return Destructor->isVirtual(); 5252 return false; 5253 5254 // These type trait expressions are modeled on the specifications for the 5255 // Embarcadero C++0x type trait functions: 5256 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5257 case UTT_IsCompleteType: 5258 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5259 // Returns True if and only if T is a complete type at the point of the 5260 // function call. 5261 return !T->isIncompleteType(); 5262 case UTT_HasUniqueObjectRepresentations: 5263 return C.hasUniqueObjectRepresentations(T); 5264 } 5265} 5266 5267static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5268 QualType RhsT, SourceLocation KeyLoc); 5269 5270static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5271 ArrayRef<TypeSourceInfo *> Args, 5272 SourceLocation RParenLoc) { 5273 if (Kind <= UTT_Last) 5274 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5275 5276 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5277 // traits to avoid duplication. 5278 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5279 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5280 Args[1]->getType(), RParenLoc); 5281 5282 switch (Kind) { 5283 case clang::BTT_ReferenceBindsToTemporary: 5284 case clang::TT_IsConstructible: 5285 case clang::TT_IsNothrowConstructible: 5286 case clang::TT_IsTriviallyConstructible: { 5287 // C++11 [meta.unary.prop]: 5288 // is_trivially_constructible is defined as: 5289 // 5290 // is_constructible<T, Args...>::value is true and the variable 5291 // definition for is_constructible, as defined below, is known to call 5292 // no operation that is not trivial. 5293 // 5294 // The predicate condition for a template specialization 5295 // is_constructible<T, Args...> shall be satisfied if and only if the 5296 // following variable definition would be well-formed for some invented 5297 // variable t: 5298 // 5299 // T t(create<Args>()...); 5300 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5300, __extension__
__PRETTY_FUNCTION__))
; 5301 5302 // Precondition: T and all types in the parameter pack Args shall be 5303 // complete types, (possibly cv-qualified) void, or arrays of 5304 // unknown bound. 5305 for (const auto *TSI : Args) { 5306 QualType ArgTy = TSI->getType(); 5307 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5308 continue; 5309 5310 if (S.RequireCompleteType(KWLoc, ArgTy, 5311 diag::err_incomplete_type_used_in_type_trait_expr)) 5312 return false; 5313 } 5314 5315 // Make sure the first argument is not incomplete nor a function type. 5316 QualType T = Args[0]->getType(); 5317 if (T->isIncompleteType() || T->isFunctionType()) 5318 return false; 5319 5320 // Make sure the first argument is not an abstract type. 5321 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5322 if (RD && RD->isAbstract()) 5323 return false; 5324 5325 llvm::BumpPtrAllocator OpaqueExprAllocator; 5326 SmallVector<Expr *, 2> ArgExprs; 5327 ArgExprs.reserve(Args.size() - 1); 5328 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5329 QualType ArgTy = Args[I]->getType(); 5330 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5331 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5332 ArgExprs.push_back( 5333 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5334 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5335 ArgTy.getNonLValueExprType(S.Context), 5336 Expr::getValueKindForType(ArgTy))); 5337 } 5338 5339 // Perform the initialization in an unevaluated context within a SFINAE 5340 // trap at translation unit scope. 5341 EnterExpressionEvaluationContext Unevaluated( 5342 S, Sema::ExpressionEvaluationContext::Unevaluated); 5343 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5344 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5345 InitializedEntity To( 5346 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5347 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5348 RParenLoc)); 5349 InitializationSequence Init(S, To, InitKind, ArgExprs); 5350 if (Init.Failed()) 5351 return false; 5352 5353 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5354 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5355 return false; 5356 5357 if (Kind == clang::TT_IsConstructible) 5358 return true; 5359 5360 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5361 if (!T->isReferenceType()) 5362 return false; 5363 5364 return !Init.isDirectReferenceBinding(); 5365 } 5366 5367 if (Kind == clang::TT_IsNothrowConstructible) 5368 return S.canThrow(Result.get()) == CT_Cannot; 5369 5370 if (Kind == clang::TT_IsTriviallyConstructible) { 5371 // Under Objective-C ARC and Weak, if the destination has non-trivial 5372 // Objective-C lifetime, this is a non-trivial construction. 5373 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5374 return false; 5375 5376 // The initialization succeeded; now make sure there are no non-trivial 5377 // calls. 5378 return !Result.get()->hasNonTrivialCall(S.Context); 5379 } 5380 5381 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5381)
; 5382 return false; 5383 } 5384 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5384)
; 5385 } 5386 5387 return false; 5388} 5389 5390ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5391 ArrayRef<TypeSourceInfo *> Args, 5392 SourceLocation RParenLoc) { 5393 QualType ResultType = Context.getLogicalOperationType(); 5394 5395 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5396 *this, Kind, KWLoc, Args[0]->getType())) 5397 return ExprError(); 5398 5399 bool Dependent = false; 5400 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5401 if (Args[I]->getType()->isDependentType()) { 5402 Dependent = true; 5403 break; 5404 } 5405 } 5406 5407 bool Result = false; 5408 if (!Dependent) 5409 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5410 5411 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5412 RParenLoc, Result); 5413} 5414 5415ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5416 ArrayRef<ParsedType> Args, 5417 SourceLocation RParenLoc) { 5418 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5419 ConvertedArgs.reserve(Args.size()); 5420 5421 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5422 TypeSourceInfo *TInfo; 5423 QualType T = GetTypeFromParser(Args[I], &TInfo); 5424 if (!TInfo) 5425 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5426 5427 ConvertedArgs.push_back(TInfo); 5428 } 5429 5430 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5431} 5432 5433static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5434 QualType RhsT, SourceLocation KeyLoc) { 5435 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5436, __extension__ __PRETTY_FUNCTION__
))
5436 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5436, __extension__ __PRETTY_FUNCTION__
))
; 5437 5438 switch(BTT) { 5439 case BTT_IsBaseOf: { 5440 // C++0x [meta.rel]p2 5441 // Base is a base class of Derived without regard to cv-qualifiers or 5442 // Base and Derived are not unions and name the same class type without 5443 // regard to cv-qualifiers. 5444 5445 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5446 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5447 if (!rhsRecord || !lhsRecord) { 5448 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5449 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5450 if (!LHSObjTy || !RHSObjTy) 5451 return false; 5452 5453 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5454 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5455 if (!BaseInterface || !DerivedInterface) 5456 return false; 5457 5458 if (Self.RequireCompleteType( 5459 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5460 return false; 5461 5462 return BaseInterface->isSuperClassOf(DerivedInterface); 5463 } 5464 5465 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5466, __extension__ __PRETTY_FUNCTION__
))
5466 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5466, __extension__ __PRETTY_FUNCTION__
))
; 5467 5468 // Unions are never base classes, and never have base classes. 5469 // It doesn't matter if they are complete or not. See PR#41843 5470 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5471 return false; 5472 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5473 return false; 5474 5475 if (lhsRecord == rhsRecord) 5476 return true; 5477 5478 // C++0x [meta.rel]p2: 5479 // If Base and Derived are class types and are different types 5480 // (ignoring possible cv-qualifiers) then Derived shall be a 5481 // complete type. 5482 if (Self.RequireCompleteType(KeyLoc, RhsT, 5483 diag::err_incomplete_type_used_in_type_trait_expr)) 5484 return false; 5485 5486 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5487 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5488 } 5489 case BTT_IsSame: 5490 return Self.Context.hasSameType(LhsT, RhsT); 5491 case BTT_TypeCompatible: { 5492 // GCC ignores cv-qualifiers on arrays for this builtin. 5493 Qualifiers LhsQuals, RhsQuals; 5494 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5495 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5496 return Self.Context.typesAreCompatible(Lhs, Rhs); 5497 } 5498 case BTT_IsConvertible: 5499 case BTT_IsConvertibleTo: { 5500 // C++0x [meta.rel]p4: 5501 // Given the following function prototype: 5502 // 5503 // template <class T> 5504 // typename add_rvalue_reference<T>::type create(); 5505 // 5506 // the predicate condition for a template specialization 5507 // is_convertible<From, To> shall be satisfied if and only if 5508 // the return expression in the following code would be 5509 // well-formed, including any implicit conversions to the return 5510 // type of the function: 5511 // 5512 // To test() { 5513 // return create<From>(); 5514 // } 5515 // 5516 // Access checking is performed as if in a context unrelated to To and 5517 // From. Only the validity of the immediate context of the expression 5518 // of the return-statement (including conversions to the return type) 5519 // is considered. 5520 // 5521 // We model the initialization as a copy-initialization of a temporary 5522 // of the appropriate type, which for this expression is identical to the 5523 // return statement (since NRVO doesn't apply). 5524 5525 // Functions aren't allowed to return function or array types. 5526 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5527 return false; 5528 5529 // A return statement in a void function must have void type. 5530 if (RhsT->isVoidType()) 5531 return LhsT->isVoidType(); 5532 5533 // A function definition requires a complete, non-abstract return type. 5534 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5535 return false; 5536 5537 // Compute the result of add_rvalue_reference. 5538 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5539 LhsT = Self.Context.getRValueReferenceType(LhsT); 5540 5541 // Build a fake source and destination for initialization. 5542 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5543 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5544 Expr::getValueKindForType(LhsT)); 5545 Expr *FromPtr = &From; 5546 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5547 SourceLocation())); 5548 5549 // Perform the initialization in an unevaluated context within a SFINAE 5550 // trap at translation unit scope. 5551 EnterExpressionEvaluationContext Unevaluated( 5552 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5553 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5554 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5555 InitializationSequence Init(Self, To, Kind, FromPtr); 5556 if (Init.Failed()) 5557 return false; 5558 5559 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5560 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5561 } 5562 5563 case BTT_IsAssignable: 5564 case BTT_IsNothrowAssignable: 5565 case BTT_IsTriviallyAssignable: { 5566 // C++11 [meta.unary.prop]p3: 5567 // is_trivially_assignable is defined as: 5568 // is_assignable<T, U>::value is true and the assignment, as defined by 5569 // is_assignable, is known to call no operation that is not trivial 5570 // 5571 // is_assignable is defined as: 5572 // The expression declval<T>() = declval<U>() is well-formed when 5573 // treated as an unevaluated operand (Clause 5). 5574 // 5575 // For both, T and U shall be complete types, (possibly cv-qualified) 5576 // void, or arrays of unknown bound. 5577 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5578 Self.RequireCompleteType(KeyLoc, LhsT, 5579 diag::err_incomplete_type_used_in_type_trait_expr)) 5580 return false; 5581 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5582 Self.RequireCompleteType(KeyLoc, RhsT, 5583 diag::err_incomplete_type_used_in_type_trait_expr)) 5584 return false; 5585 5586 // cv void is never assignable. 5587 if (LhsT->isVoidType() || RhsT->isVoidType()) 5588 return false; 5589 5590 // Build expressions that emulate the effect of declval<T>() and 5591 // declval<U>(). 5592 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5593 LhsT = Self.Context.getRValueReferenceType(LhsT); 5594 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5595 RhsT = Self.Context.getRValueReferenceType(RhsT); 5596 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5597 Expr::getValueKindForType(LhsT)); 5598 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5599 Expr::getValueKindForType(RhsT)); 5600 5601 // Attempt the assignment in an unevaluated context within a SFINAE 5602 // trap at translation unit scope. 5603 EnterExpressionEvaluationContext Unevaluated( 5604 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5605 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5606 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5607 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5608 &Rhs); 5609 if (Result.isInvalid()) 5610 return false; 5611 5612 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5613 Self.CheckUnusedVolatileAssignment(Result.get()); 5614 5615 if (SFINAE.hasErrorOccurred()) 5616 return false; 5617 5618 if (BTT == BTT_IsAssignable) 5619 return true; 5620 5621 if (BTT == BTT_IsNothrowAssignable) 5622 return Self.canThrow(Result.get()) == CT_Cannot; 5623 5624 if (BTT == BTT_IsTriviallyAssignable) { 5625 // Under Objective-C ARC and Weak, if the destination has non-trivial 5626 // Objective-C lifetime, this is a non-trivial assignment. 5627 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5628 return false; 5629 5630 return !Result.get()->hasNonTrivialCall(Self.Context); 5631 } 5632 5633 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5633)
; 5634 return false; 5635 } 5636 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5636)
; 5637 } 5638 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5638)
; 5639} 5640 5641ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5642 SourceLocation KWLoc, 5643 ParsedType Ty, 5644 Expr* DimExpr, 5645 SourceLocation RParen) { 5646 TypeSourceInfo *TSInfo; 5647 QualType T = GetTypeFromParser(Ty, &TSInfo); 5648 if (!TSInfo) 5649 TSInfo = Context.getTrivialTypeSourceInfo(T); 5650 5651 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5652} 5653 5654static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5655 QualType T, Expr *DimExpr, 5656 SourceLocation KeyLoc) { 5657 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5657, __extension__ __PRETTY_FUNCTION__
))
; 5658 5659 switch(ATT) { 5660 case ATT_ArrayRank: 5661 if (T->isArrayType()) { 5662 unsigned Dim = 0; 5663 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5664 ++Dim; 5665 T = AT->getElementType(); 5666 } 5667 return Dim; 5668 } 5669 return 0; 5670 5671 case ATT_ArrayExtent: { 5672 llvm::APSInt Value; 5673 uint64_t Dim; 5674 if (Self.VerifyIntegerConstantExpression( 5675 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5676 .isInvalid()) 5677 return 0; 5678 if (Value.isSigned() && Value.isNegative()) { 5679 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5680 << DimExpr->getSourceRange(); 5681 return 0; 5682 } 5683 Dim = Value.getLimitedValue(); 5684 5685 if (T->isArrayType()) { 5686 unsigned D = 0; 5687 bool Matched = false; 5688 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5689 if (Dim == D) { 5690 Matched = true; 5691 break; 5692 } 5693 ++D; 5694 T = AT->getElementType(); 5695 } 5696 5697 if (Matched && T->isArrayType()) { 5698 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5699 return CAT->getSize().getLimitedValue(); 5700 } 5701 } 5702 return 0; 5703 } 5704 } 5705 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5705)
; 5706} 5707 5708ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5709 SourceLocation KWLoc, 5710 TypeSourceInfo *TSInfo, 5711 Expr* DimExpr, 5712 SourceLocation RParen) { 5713 QualType T = TSInfo->getType(); 5714 5715 // FIXME: This should likely be tracked as an APInt to remove any host 5716 // assumptions about the width of size_t on the target. 5717 uint64_t Value = 0; 5718 if (!T->isDependentType()) 5719 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5720 5721 // While the specification for these traits from the Embarcadero C++ 5722 // compiler's documentation says the return type is 'unsigned int', Clang 5723 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5724 // compiler, there is no difference. On several other platforms this is an 5725 // important distinction. 5726 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5727 RParen, Context.getSizeType()); 5728} 5729 5730ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5731 SourceLocation KWLoc, 5732 Expr *Queried, 5733 SourceLocation RParen) { 5734 // If error parsing the expression, ignore. 5735 if (!Queried) 5736 return ExprError(); 5737 5738 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5739 5740 return Result; 5741} 5742 5743static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5744 switch (ET) { 5745 case ET_IsLValueExpr: return E->isLValue(); 5746 case ET_IsRValueExpr: 5747 return E->isPRValue(); 5748 } 5749 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5749)
; 5750} 5751 5752ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5753 SourceLocation KWLoc, 5754 Expr *Queried, 5755 SourceLocation RParen) { 5756 if (Queried->isTypeDependent()) { 5757 // Delay type-checking for type-dependent expressions. 5758 } else if (Queried->hasPlaceholderType()) { 5759 ExprResult PE = CheckPlaceholderExpr(Queried); 5760 if (PE.isInvalid()) return ExprError(); 5761 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5762 } 5763 5764 bool Value = EvaluateExpressionTrait(ET, Queried); 5765 5766 return new (Context) 5767 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5768} 5769 5770QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5771 ExprValueKind &VK, 5772 SourceLocation Loc, 5773 bool isIndirect) { 5774 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5775, __extension__ __PRETTY_FUNCTION__
))
5775 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5775, __extension__ __PRETTY_FUNCTION__
))
; 5776 5777 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5778 // temporary materialization conversion otherwise. 5779 if (isIndirect) 5780 LHS = DefaultLvalueConversion(LHS.get()); 5781 else if (LHS.get()->isPRValue()) 5782 LHS = TemporaryMaterializationConversion(LHS.get()); 5783 if (LHS.isInvalid()) 5784 return QualType(); 5785 5786 // The RHS always undergoes lvalue conversions. 5787 RHS = DefaultLvalueConversion(RHS.get()); 5788 if (RHS.isInvalid()) return QualType(); 5789 5790 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5791 // C++ 5.5p2 5792 // The binary operator .* [p3: ->*] binds its second operand, which shall 5793 // be of type "pointer to member of T" (where T is a completely-defined 5794 // class type) [...] 5795 QualType RHSType = RHS.get()->getType(); 5796 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5797 if (!MemPtr) { 5798 Diag(Loc, diag::err_bad_memptr_rhs) 5799 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5800 return QualType(); 5801 } 5802 5803 QualType Class(MemPtr->getClass(), 0); 5804 5805 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5806 // member pointer points must be completely-defined. However, there is no 5807 // reason for this semantic distinction, and the rule is not enforced by 5808 // other compilers. Therefore, we do not check this property, as it is 5809 // likely to be considered a defect. 5810 5811 // C++ 5.5p2 5812 // [...] to its first operand, which shall be of class T or of a class of 5813 // which T is an unambiguous and accessible base class. [p3: a pointer to 5814 // such a class] 5815 QualType LHSType = LHS.get()->getType(); 5816 if (isIndirect) { 5817 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5818 LHSType = Ptr->getPointeeType(); 5819 else { 5820 Diag(Loc, diag::err_bad_memptr_lhs) 5821 << OpSpelling << 1 << LHSType 5822 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5823 return QualType(); 5824 } 5825 } 5826 5827 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5828 // If we want to check the hierarchy, we need a complete type. 5829 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5830 OpSpelling, (int)isIndirect)) { 5831 return QualType(); 5832 } 5833 5834 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5835 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5836 << (int)isIndirect << LHS.get()->getType(); 5837 return QualType(); 5838 } 5839 5840 CXXCastPath BasePath; 5841 if (CheckDerivedToBaseConversion( 5842 LHSType, Class, Loc, 5843 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5844 &BasePath)) 5845 return QualType(); 5846 5847 // Cast LHS to type of use. 5848 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5849 if (isIndirect) 5850 UseType = Context.getPointerType(UseType); 5851 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5852 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5853 &BasePath); 5854 } 5855 5856 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5857 // Diagnose use of pointer-to-member type which when used as 5858 // the functional cast in a pointer-to-member expression. 5859 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5860 return QualType(); 5861 } 5862 5863 // C++ 5.5p2 5864 // The result is an object or a function of the type specified by the 5865 // second operand. 5866 // The cv qualifiers are the union of those in the pointer and the left side, 5867 // in accordance with 5.5p5 and 5.2.5. 5868 QualType Result = MemPtr->getPointeeType(); 5869 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5870 5871 // C++0x [expr.mptr.oper]p6: 5872 // In a .* expression whose object expression is an rvalue, the program is 5873 // ill-formed if the second operand is a pointer to member function with 5874 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5875 // expression is an lvalue, the program is ill-formed if the second operand 5876 // is a pointer to member function with ref-qualifier &&. 5877 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5878 switch (Proto->getRefQualifier()) { 5879 case RQ_None: 5880 // Do nothing 5881 break; 5882 5883 case RQ_LValue: 5884 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5885 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5886 // is (exactly) 'const'. 5887 if (Proto->isConst() && !Proto->isVolatile()) 5888 Diag(Loc, getLangOpts().CPlusPlus20 5889 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5890 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5891 else 5892 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5893 << RHSType << 1 << LHS.get()->getSourceRange(); 5894 } 5895 break; 5896 5897 case RQ_RValue: 5898 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5899 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5900 << RHSType << 0 << LHS.get()->getSourceRange(); 5901 break; 5902 } 5903 } 5904 5905 // C++ [expr.mptr.oper]p6: 5906 // The result of a .* expression whose second operand is a pointer 5907 // to a data member is of the same value category as its 5908 // first operand. The result of a .* expression whose second 5909 // operand is a pointer to a member function is a prvalue. The 5910 // result of an ->* expression is an lvalue if its second operand 5911 // is a pointer to data member and a prvalue otherwise. 5912 if (Result->isFunctionType()) { 5913 VK = VK_PRValue; 5914 return Context.BoundMemberTy; 5915 } else if (isIndirect) { 5916 VK = VK_LValue; 5917 } else { 5918 VK = LHS.get()->getValueKind(); 5919 } 5920 5921 return Result; 5922} 5923 5924/// Try to convert a type to another according to C++11 5.16p3. 5925/// 5926/// This is part of the parameter validation for the ? operator. If either 5927/// value operand is a class type, the two operands are attempted to be 5928/// converted to each other. This function does the conversion in one direction. 5929/// It returns true if the program is ill-formed and has already been diagnosed 5930/// as such. 5931static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5932 SourceLocation QuestionLoc, 5933 bool &HaveConversion, 5934 QualType &ToType) { 5935 HaveConversion = false; 5936 ToType = To->getType(); 5937 5938 InitializationKind Kind = 5939 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5940 // C++11 5.16p3 5941 // The process for determining whether an operand expression E1 of type T1 5942 // can be converted to match an operand expression E2 of type T2 is defined 5943 // as follows: 5944 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5945 // implicitly converted to type "lvalue reference to T2", subject to the 5946 // constraint that in the conversion the reference must bind directly to 5947 // an lvalue. 5948 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5949 // implicitly converted to the type "rvalue reference to R2", subject to 5950 // the constraint that the reference must bind directly. 5951 if (To->isGLValue()) { 5952 QualType T = Self.Context.getReferenceQualifiedType(To); 5953 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5954 5955 InitializationSequence InitSeq(Self, Entity, Kind, From); 5956 if (InitSeq.isDirectReferenceBinding()) { 5957 ToType = T; 5958 HaveConversion = true; 5959 return false; 5960 } 5961 5962 if (InitSeq.isAmbiguous()) 5963 return InitSeq.Diagnose(Self, Entity, Kind, From); 5964 } 5965 5966 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5967 // -- if E1 and E2 have class type, and the underlying class types are 5968 // the same or one is a base class of the other: 5969 QualType FTy = From->getType(); 5970 QualType TTy = To->getType(); 5971 const RecordType *FRec = FTy->getAs<RecordType>(); 5972 const RecordType *TRec = TTy->getAs<RecordType>(); 5973 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5974 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5975 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5976 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5977 // E1 can be converted to match E2 if the class of T2 is the 5978 // same type as, or a base class of, the class of T1, and 5979 // [cv2 > cv1]. 5980 if (FRec == TRec || FDerivedFromT) { 5981 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5982 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5983 InitializationSequence InitSeq(Self, Entity, Kind, From); 5984 if (InitSeq) { 5985 HaveConversion = true; 5986 return false; 5987 } 5988 5989 if (InitSeq.isAmbiguous()) 5990 return InitSeq.Diagnose(Self, Entity, Kind, From); 5991 } 5992 } 5993 5994 return false; 5995 } 5996 5997 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5998 // implicitly converted to the type that expression E2 would have 5999 // if E2 were converted to an rvalue (or the type it has, if E2 is 6000 // an rvalue). 6001 // 6002 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 6003 // to the array-to-pointer or function-to-pointer conversions. 6004 TTy = TTy.getNonLValueExprType(Self.Context); 6005 6006 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6007 InitializationSequence InitSeq(Self, Entity, Kind, From); 6008 HaveConversion = !InitSeq.Failed(); 6009 ToType = TTy; 6010 if (InitSeq.isAmbiguous()) 6011 return InitSeq.Diagnose(Self, Entity, Kind, From); 6012 6013 return false; 6014} 6015 6016/// Try to find a common type for two according to C++0x 5.16p5. 6017/// 6018/// This is part of the parameter validation for the ? operator. If either 6019/// value operand is a class type, overload resolution is used to find a 6020/// conversion to a common type. 6021static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 6022 SourceLocation QuestionLoc) { 6023 Expr *Args[2] = { LHS.get(), RHS.get() }; 6024 OverloadCandidateSet CandidateSet(QuestionLoc, 6025 OverloadCandidateSet::CSK_Operator); 6026 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 6027 CandidateSet); 6028 6029 OverloadCandidateSet::iterator Best; 6030 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 6031 case OR_Success: { 6032 // We found a match. Perform the conversions on the arguments and move on. 6033 ExprResult LHSRes = Self.PerformImplicitConversion( 6034 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 6035 Sema::AA_Converting); 6036 if (LHSRes.isInvalid()) 6037 break; 6038 LHS = LHSRes; 6039 6040 ExprResult RHSRes = Self.PerformImplicitConversion( 6041 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 6042 Sema::AA_Converting); 6043 if (RHSRes.isInvalid()) 6044 break; 6045 RHS = RHSRes; 6046 if (Best->Function) 6047 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 6048 return false; 6049 } 6050 6051 case OR_No_Viable_Function: 6052 6053 // Emit a better diagnostic if one of the expressions is a null pointer 6054 // constant and the other is a pointer type. In this case, the user most 6055 // likely forgot to take the address of the other expression. 6056 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6057 return true; 6058 6059 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6060 << LHS.get()->getType() << RHS.get()->getType() 6061 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6062 return true; 6063 6064 case OR_Ambiguous: 6065 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6066 << LHS.get()->getType() << RHS.get()->getType() 6067 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6068 // FIXME: Print the possible common types by printing the return types of 6069 // the viable candidates. 6070 break; 6071 6072 case OR_Deleted: 6073 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "clang/lib/Sema/SemaExprCXX.cpp", 6073)
; 6074 } 6075 return true; 6076} 6077 6078/// Perform an "extended" implicit conversion as returned by 6079/// TryClassUnification. 6080static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6081 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6082 InitializationKind Kind = 6083 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6084 Expr *Arg = E.get(); 6085 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6086 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6087 if (Result.isInvalid()) 6088 return true; 6089 6090 E = Result; 6091 return false; 6092} 6093 6094// Check the condition operand of ?: to see if it is valid for the GCC 6095// extension. 6096static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6097 QualType CondTy) { 6098 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6099 return false; 6100 const QualType EltTy = 6101 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6102 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() &&
"Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6102, __extension__ __PRETTY_FUNCTION__
))
; 6103 return EltTy->isIntegralType(Ctx); 6104} 6105 6106QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6107 ExprResult &RHS, 6108 SourceLocation QuestionLoc) { 6109 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6110 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6111 6112 QualType CondType = Cond.get()->getType(); 6113 const auto *CondVT = CondType->castAs<VectorType>(); 6114 QualType CondElementTy = CondVT->getElementType(); 6115 unsigned CondElementCount = CondVT->getNumElements(); 6116 QualType LHSType = LHS.get()->getType(); 6117 const auto *LHSVT = LHSType->getAs<VectorType>(); 6118 QualType RHSType = RHS.get()->getType(); 6119 const auto *RHSVT = RHSType->getAs<VectorType>(); 6120 6121 QualType ResultType; 6122 6123 6124 if (LHSVT && RHSVT) { 6125 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6126 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6127 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6128 return {}; 6129 } 6130 6131 // If both are vector types, they must be the same type. 6132 if (!Context.hasSameType(LHSType, RHSType)) { 6133 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6134 << LHSType << RHSType; 6135 return {}; 6136 } 6137 ResultType = LHSType; 6138 } else if (LHSVT || RHSVT) { 6139 ResultType = CheckVectorOperands( 6140 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6141 /*AllowBoolConversions*/ false, 6142 /*AllowBoolOperation*/ true, 6143 /*ReportInvalid*/ true); 6144 if (ResultType.isNull()) 6145 return {}; 6146 } else { 6147 // Both are scalar. 6148 QualType ResultElementTy; 6149 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6150 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6151 6152 if (Context.hasSameType(LHSType, RHSType)) 6153 ResultElementTy = LHSType; 6154 else 6155 ResultElementTy = 6156 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6157 6158 if (ResultElementTy->isEnumeralType()) { 6159 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6160 << ResultElementTy; 6161 return {}; 6162 } 6163 if (CondType->isExtVectorType()) 6164 ResultType = 6165 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6166 else 6167 ResultType = Context.getVectorType( 6168 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6169 6170 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6171 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6172 } 6173 6174 assert(!ResultType.isNull() && ResultType->isVectorType() &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
6175 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
6176 "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6176, __extension__ __PRETTY_FUNCTION__
))
; 6177 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6178 QualType ResultElementTy = ResultVectorTy->getElementType(); 6179 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6180 6181 if (ResultElementCount != CondElementCount) { 6182 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6183 << ResultType; 6184 return {}; 6185 } 6186 6187 if (Context.getTypeSize(ResultElementTy) != 6188 Context.getTypeSize(CondElementTy)) { 6189 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6190 << ResultType; 6191 return {}; 6192 } 6193 6194 return ResultType; 6195} 6196 6197/// Check the operands of ?: under C++ semantics. 6198/// 6199/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6200/// extension. In this case, LHS == Cond. (But they're not aliases.) 6201/// 6202/// This function also implements GCC's vector extension and the 6203/// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6204/// permit the use of a?b:c where the type of a is that of a integer vector with 6205/// the same number of elements and size as the vectors of b and c. If one of 6206/// either b or c is a scalar it is implicitly converted to match the type of 6207/// the vector. Otherwise the expression is ill-formed. If both b and c are 6208/// scalars, then b and c are checked and converted to the type of a if 6209/// possible. 6210/// 6211/// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6212/// For the GCC extension, the ?: operator is evaluated as 6213/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6214/// For the OpenCL extensions, the ?: operator is evaluated as 6215/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6216/// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6217QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6218 ExprResult &RHS, ExprValueKind &VK, 6219 ExprObjectKind &OK, 6220 SourceLocation QuestionLoc) { 6221 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6222 // pointers. 6223 6224 // Assume r-value. 6225 VK = VK_PRValue; 6226 OK = OK_Ordinary; 6227 bool IsVectorConditional = 6228 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6229 6230 // C++11 [expr.cond]p1 6231 // The first expression is contextually converted to bool. 6232 if (!Cond.get()->isTypeDependent()) { 6233 ExprResult CondRes = IsVectorConditional 6234 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6235 : CheckCXXBooleanCondition(Cond.get()); 6236 if (CondRes.isInvalid()) 6237 return QualType(); 6238 Cond = CondRes; 6239 } else { 6240 // To implement C++, the first expression typically doesn't alter the result 6241 // type of the conditional, however the GCC compatible vector extension 6242 // changes the result type to be that of the conditional. Since we cannot 6243 // know if this is a vector extension here, delay the conversion of the 6244 // LHS/RHS below until later. 6245 return Context.DependentTy; 6246 } 6247 6248 6249 // Either of the arguments dependent? 6250 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6251 return Context.DependentTy; 6252 6253 // C++11 [expr.cond]p2 6254 // If either the second or the third operand has type (cv) void, ... 6255 QualType LTy = LHS.get()->getType(); 6256 QualType RTy = RHS.get()->getType(); 6257 bool LVoid = LTy->isVoidType(); 6258 bool RVoid = RTy->isVoidType(); 6259 if (LVoid || RVoid) { 6260 // ... one of the following shall hold: 6261 // -- The second or the third operand (but not both) is a (possibly 6262 // parenthesized) throw-expression; the result is of the type 6263 // and value category of the other. 6264 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6265 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6266 6267 // Void expressions aren't legal in the vector-conditional expressions. 6268 if (IsVectorConditional) { 6269 SourceRange DiagLoc = 6270 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6271 bool IsThrow = LVoid ? LThrow : RThrow; 6272 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6273 << DiagLoc << IsThrow; 6274 return QualType(); 6275 } 6276 6277 if (LThrow != RThrow) { 6278 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6279 VK = NonThrow->getValueKind(); 6280 // DR (no number yet): the result is a bit-field if the 6281 // non-throw-expression operand is a bit-field. 6282 OK = NonThrow->getObjectKind(); 6283 return NonThrow->getType(); 6284 } 6285 6286 // -- Both the second and third operands have type void; the result is of 6287 // type void and is a prvalue. 6288 if (LVoid && RVoid) 6289 return Context.VoidTy; 6290 6291 // Neither holds, error. 6292 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6293 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6294 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6295 return QualType(); 6296 } 6297 6298 // Neither is void. 6299 if (IsVectorConditional) 6300 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6301 6302 // C++11 [expr.cond]p3 6303 // Otherwise, if the second and third operand have different types, and 6304 // either has (cv) class type [...] an attempt is made to convert each of 6305 // those operands to the type of the other. 6306 if (!Context.hasSameType(LTy, RTy) && 6307 (LTy->isRecordType() || RTy->isRecordType())) { 6308 // These return true if a single direction is already ambiguous. 6309 QualType L2RType, R2LType; 6310 bool HaveL2R, HaveR2L; 6311 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6312 return QualType(); 6313 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6314 return QualType(); 6315 6316 // If both can be converted, [...] the program is ill-formed. 6317 if (HaveL2R && HaveR2L) { 6318 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6319 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6320 return QualType(); 6321 } 6322 6323 // If exactly one conversion is possible, that conversion is applied to 6324 // the chosen operand and the converted operands are used in place of the 6325 // original operands for the remainder of this section. 6326 if (HaveL2R) { 6327 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6328 return QualType(); 6329 LTy = LHS.get()->getType(); 6330 } else if (HaveR2L) { 6331 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6332 return QualType(); 6333 RTy = RHS.get()->getType(); 6334 } 6335 } 6336 6337 // C++11 [expr.cond]p3 6338 // if both are glvalues of the same value category and the same type except 6339 // for cv-qualification, an attempt is made to convert each of those 6340 // operands to the type of the other. 6341 // FIXME: 6342 // Resolving a defect in P0012R1: we extend this to cover all cases where 6343 // one of the operands is reference-compatible with the other, in order 6344 // to support conditionals between functions differing in noexcept. This 6345 // will similarly cover difference in array bounds after P0388R4. 6346 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6347 // that instead? 6348 ExprValueKind LVK = LHS.get()->getValueKind(); 6349 ExprValueKind RVK = RHS.get()->getValueKind(); 6350 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6351 // DerivedToBase was already handled by the class-specific case above. 6352 // FIXME: Should we allow ObjC conversions here? 6353 const ReferenceConversions AllowedConversions = 6354 ReferenceConversions::Qualification | 6355 ReferenceConversions::NestedQualification | 6356 ReferenceConversions::Function; 6357 6358 ReferenceConversions RefConv; 6359 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6360 Ref_Compatible && 6361 !(RefConv & ~AllowedConversions) && 6362 // [...] subject to the constraint that the reference must bind 6363 // directly [...] 6364 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6365 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6366 RTy = RHS.get()->getType(); 6367 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6368 Ref_Compatible && 6369 !(RefConv & ~AllowedConversions) && 6370 !LHS.get()->refersToBitField() && 6371 !LHS.get()->refersToVectorElement()) { 6372 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6373 LTy = LHS.get()->getType(); 6374 } 6375 } 6376 6377 // C++11 [expr.cond]p4 6378 // If the second and third operands are glvalues of the same value 6379 // category and have the same type, the result is of that type and 6380 // value category and it is a bit-field if the second or the third 6381 // operand is a bit-field, or if both are bit-fields. 6382 // We only extend this to bitfields, not to the crazy other kinds of 6383 // l-values. 6384 bool Same = Context.hasSameType(LTy, RTy); 6385 if (Same && LVK == RVK && LVK != VK_PRValue && 6386 LHS.get()->isOrdinaryOrBitFieldObject() && 6387 RHS.get()->isOrdinaryOrBitFieldObject()) { 6388 VK = LHS.get()->getValueKind(); 6389 if (LHS.get()->getObjectKind() == OK_BitField || 6390 RHS.get()->getObjectKind() == OK_BitField) 6391 OK = OK_BitField; 6392 6393 // If we have function pointer types, unify them anyway to unify their 6394 // exception specifications, if any. 6395 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6396 Qualifiers Qs = LTy.getQualifiers(); 6397 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6398 /*ConvertArgs*/false); 6399 LTy = Context.getQualifiedType(LTy, Qs); 6400 6401 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6402, __extension__ __PRETTY_FUNCTION__
))
6402 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6402, __extension__ __PRETTY_FUNCTION__
))
; 6403 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")(static_cast <bool> (Context.hasSameType(LTy, RTy) &&
"bad composite pointer type") ? void (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6403, __extension__ __PRETTY_FUNCTION__
))
; 6404 } 6405 6406 return LTy; 6407 } 6408 6409 // C++11 [expr.cond]p5 6410 // Otherwise, the result is a prvalue. If the second and third operands 6411 // do not have the same type, and either has (cv) class type, ... 6412 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6413 // ... overload resolution is used to determine the conversions (if any) 6414 // to be applied to the operands. If the overload resolution fails, the 6415 // program is ill-formed. 6416 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6417 return QualType(); 6418 } 6419 6420 // C++11 [expr.cond]p6 6421 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6422 // conversions are performed on the second and third operands. 6423 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6424 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6425 if (LHS.isInvalid() || RHS.isInvalid()) 6426 return QualType(); 6427 LTy = LHS.get()->getType(); 6428 RTy = RHS.get()->getType(); 6429 6430 // After those conversions, one of the following shall hold: 6431 // -- The second and third operands have the same type; the result 6432 // is of that type. If the operands have class type, the result 6433 // is a prvalue temporary of the result type, which is 6434 // copy-initialized from either the second operand or the third 6435 // operand depending on the value of the first operand. 6436 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6437 if (LTy->isRecordType()) { 6438 // The operands have class type. Make a temporary copy. 6439 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6440 6441 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6442 SourceLocation(), 6443 LHS); 6444 if (LHSCopy.isInvalid()) 6445 return QualType(); 6446 6447 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6448 SourceLocation(), 6449 RHS); 6450 if (RHSCopy.isInvalid()) 6451 return QualType(); 6452 6453 LHS = LHSCopy; 6454 RHS = RHSCopy; 6455 } 6456 6457 // If we have function pointer types, unify them anyway to unify their 6458 // exception specifications, if any. 6459 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6460 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6461 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
6462 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
; 6463 } 6464 6465 return LTy; 6466 } 6467 6468 // Extension: conditional operator involving vector types. 6469 if (LTy->isVectorType() || RTy->isVectorType()) 6470 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, 6471 /*AllowBothBool*/ true, 6472 /*AllowBoolConversions*/ false, 6473 /*AllowBoolOperation*/ false, 6474 /*ReportInvalid*/ true); 6475 6476 // -- The second and third operands have arithmetic or enumeration type; 6477 // the usual arithmetic conversions are performed to bring them to a 6478 // common type, and the result is of that type. 6479 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6480 QualType ResTy = 6481 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6482 if (LHS.isInvalid() || RHS.isInvalid()) 6483 return QualType(); 6484 if (ResTy.isNull()) { 6485 Diag(QuestionLoc, 6486 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6487 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6488 return QualType(); 6489 } 6490 6491 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6492 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6493 6494 return ResTy; 6495 } 6496 6497 // -- The second and third operands have pointer type, or one has pointer 6498 // type and the other is a null pointer constant, or both are null 6499 // pointer constants, at least one of which is non-integral; pointer 6500 // conversions and qualification conversions are performed to bring them 6501 // to their composite pointer type. The result is of the composite 6502 // pointer type. 6503 // -- The second and third operands have pointer to member type, or one has 6504 // pointer to member type and the other is a null pointer constant; 6505 // pointer to member conversions and qualification conversions are 6506 // performed to bring them to a common type, whose cv-qualification 6507 // shall match the cv-qualification of either the second or the third 6508 // operand. The result is of the common type. 6509 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6510 if (!Composite.isNull()) 6511 return Composite; 6512 6513 // Similarly, attempt to find composite type of two objective-c pointers. 6514 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6515 if (LHS.isInvalid() || RHS.isInvalid()) 6516 return QualType(); 6517 if (!Composite.isNull()) 6518 return Composite; 6519 6520 // Check if we are using a null with a non-pointer type. 6521 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6522 return QualType(); 6523 6524 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6525 << LHS.get()->getType() << RHS.get()->getType() 6526 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6527 return QualType(); 6528} 6529 6530static FunctionProtoType::ExceptionSpecInfo 6531mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6532 FunctionProtoType::ExceptionSpecInfo ESI2, 6533 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6534 ExceptionSpecificationType EST1 = ESI1.Type; 6535 ExceptionSpecificationType EST2 = ESI2.Type; 6536 6537 // If either of them can throw anything, that is the result. 6538 if (EST1 == EST_None) return ESI1; 6539 if (EST2 == EST_None) return ESI2; 6540 if (EST1 == EST_MSAny) return ESI1; 6541 if (EST2 == EST_MSAny) return ESI2; 6542 if (EST1 == EST_NoexceptFalse) return ESI1; 6543 if (EST2 == EST_NoexceptFalse) return ESI2; 6544 6545 // If either of them is non-throwing, the result is the other. 6546 if (EST1 == EST_NoThrow) return ESI2; 6547 if (EST2 == EST_NoThrow) return ESI1; 6548 if (EST1 == EST_DynamicNone) return ESI2; 6549 if (EST2 == EST_DynamicNone) return ESI1; 6550 if (EST1 == EST_BasicNoexcept) return ESI2; 6551 if (EST2 == EST_BasicNoexcept) return ESI1; 6552 if (EST1 == EST_NoexceptTrue) return ESI2; 6553 if (EST2 == EST_NoexceptTrue) return ESI1; 6554 6555 // If we're left with value-dependent computed noexcept expressions, we're 6556 // stuck. Before C++17, we can just drop the exception specification entirely, 6557 // since it's not actually part of the canonical type. And this should never 6558 // happen in C++17, because it would mean we were computing the composite 6559 // pointer type of dependent types, which should never happen. 6560 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6561 assert(!S.getLangOpts().CPlusPlus17 &&(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6562, __extension__ __PRETTY_FUNCTION__
))
6562 "computing composite pointer type of dependent types")(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6562, __extension__ __PRETTY_FUNCTION__
))
; 6563 return FunctionProtoType::ExceptionSpecInfo(); 6564 } 6565 6566 // Switch over the possibilities so that people adding new values know to 6567 // update this function. 6568 switch (EST1) { 6569 case EST_None: 6570 case EST_DynamicNone: 6571 case EST_MSAny: 6572 case EST_BasicNoexcept: 6573 case EST_DependentNoexcept: 6574 case EST_NoexceptFalse: 6575 case EST_NoexceptTrue: 6576 case EST_NoThrow: 6577 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "clang/lib/Sema/SemaExprCXX.cpp"
, 6577)
; 6578 6579 case EST_Dynamic: { 6580 // This is the fun case: both exception specifications are dynamic. Form 6581 // the union of the two lists. 6582 assert(EST2 == EST_Dynamic && "other cases should already be handled")(static_cast <bool> (EST2 == EST_Dynamic && "other cases should already be handled"
) ? void (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6582, __extension__ __PRETTY_FUNCTION__
))
; 6583 llvm::SmallPtrSet<QualType, 8> Found; 6584 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6585 for (QualType E : Exceptions) 6586 if (Found.insert(S.Context.getCanonicalType(E)).second) 6587 ExceptionTypeStorage.push_back(E); 6588 6589 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6590 Result.Exceptions = ExceptionTypeStorage; 6591 return Result; 6592 } 6593 6594 case EST_Unevaluated: 6595 case EST_Uninstantiated: 6596 case EST_Unparsed: 6597 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "clang/lib/Sema/SemaExprCXX.cpp", 6597)
; 6598 } 6599 6600 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "clang/lib/Sema/SemaExprCXX.cpp", 6600)
; 6601} 6602 6603/// Find a merged pointer type and convert the two expressions to it. 6604/// 6605/// This finds the composite pointer type for \p E1 and \p E2 according to 6606/// C++2a [expr.type]p3. It converts both expressions to this type and returns 6607/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6608/// is \c true). 6609/// 6610/// \param Loc The location of the operator requiring these two expressions to 6611/// be converted to the composite pointer type. 6612/// 6613/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6614QualType Sema::FindCompositePointerType(SourceLocation Loc, 6615 Expr *&E1, Expr *&E2, 6616 bool ConvertArgs) { 6617 assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6617, __extension__ __PRETTY_FUNCTION__
))
; 6618 6619 // C++1z [expr]p14: 6620 // The composite pointer type of two operands p1 and p2 having types T1 6621 // and T2 6622 QualType T1 = E1->getType(), T2 = E2->getType(); 6623 6624 // where at least one is a pointer or pointer to member type or 6625 // std::nullptr_t is: 6626 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6627 T1->isNullPtrType(); 6628 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6629 T2->isNullPtrType(); 6630 if (!T1IsPointerLike && !T2IsPointerLike) 6631 return QualType(); 6632 6633 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6634 // This can't actually happen, following the standard, but we also use this 6635 // to implement the end of [expr.conv], which hits this case. 6636 // 6637 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6638 if (T1IsPointerLike && 6639 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6640 if (ConvertArgs) 6641 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6642 ? CK_NullToMemberPointer 6643 : CK_NullToPointer).get(); 6644 return T1; 6645 } 6646 if (T2IsPointerLike && 6647 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6648 if (ConvertArgs) 6649 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6650 ? CK_NullToMemberPointer 6651 : CK_NullToPointer).get(); 6652 return T2; 6653 } 6654 6655 // Now both have to be pointers or member pointers. 6656 if (!T1IsPointerLike || !T2IsPointerLike) 6657 return QualType(); 6658 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
6659 "nullptr_t should be a null pointer constant")(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
; 6660 6661 struct Step { 6662 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6663 // Qualifiers to apply under the step kind. 6664 Qualifiers Quals; 6665 /// The class for a pointer-to-member; a constant array type with a bound 6666 /// (if any) for an array. 6667 const Type *ClassOrBound; 6668 6669 Step(Kind K, const Type *ClassOrBound = nullptr) 6670 : K(K), ClassOrBound(ClassOrBound) {} 6671 QualType rebuild(ASTContext &Ctx, QualType T) const { 6672 T = Ctx.getQualifiedType(T, Quals); 6673 switch (K) { 6674 case Pointer: 6675 return Ctx.getPointerType(T); 6676 case MemberPointer: 6677 return Ctx.getMemberPointerType(T, ClassOrBound); 6678 case ObjCPointer: 6679 return Ctx.getObjCObjectPointerType(T); 6680 case Array: 6681 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6682 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6683 ArrayType::Normal, 0); 6684 else 6685 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6686 } 6687 llvm_unreachable("unknown step kind")::llvm::llvm_unreachable_internal("unknown step kind", "clang/lib/Sema/SemaExprCXX.cpp"
, 6687)
; 6688 } 6689 }; 6690 6691 SmallVector<Step, 8> Steps; 6692 6693 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6694 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6695 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6696 // respectively; 6697 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6698 // to member of C2 of type cv2 U2" for some non-function type U, where 6699 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6700 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6701 // respectively; 6702 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6703 // T2; 6704 // 6705 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6706 // and to prepare to form the cv-combined type if so. 6707 QualType Composite1 = T1; 6708 QualType Composite2 = T2; 6709 unsigned NeedConstBefore = 0; 6710 while (true) { 6711 assert(!Composite1.isNull() && !Composite2.isNull())(static_cast <bool> (!Composite1.isNull() && !Composite2
.isNull()) ? void (0) : __assert_fail ("!Composite1.isNull() && !Composite2.isNull()"
, "clang/lib/Sema/SemaExprCXX.cpp", 6711, __extension__ __PRETTY_FUNCTION__
))
; 6712 6713 Qualifiers Q1, Q2; 6714 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6715 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6716 6717 // Top-level qualifiers are ignored. Merge at all lower levels. 6718 if (!Steps.empty()) { 6719 // Find the qualifier union: (approximately) the unique minimal set of 6720 // qualifiers that is compatible with both types. 6721 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6722 Q2.getCVRUQualifiers()); 6723 6724 // Under one level of pointer or pointer-to-member, we can change to an 6725 // unambiguous compatible address space. 6726 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6727 Quals.setAddressSpace(Q1.getAddressSpace()); 6728 } else if (Steps.size() == 1) { 6729 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6730 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6731 if (MaybeQ1 == MaybeQ2) { 6732 // Exception for ptr size address spaces. Should be able to choose 6733 // either address space during comparison. 6734 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 6735 isPtrSizeAddressSpace(Q2.getAddressSpace())) 6736 MaybeQ1 = true; 6737 else 6738 return QualType(); // No unique best address space. 6739 } 6740 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6741 : Q2.getAddressSpace()); 6742 } else { 6743 return QualType(); 6744 } 6745 6746 // FIXME: In C, we merge __strong and none to __strong at the top level. 6747 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6748 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6749 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6750 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6750
, __extension__ __PRETTY_FUNCTION__))
; 6751 else 6752 return QualType(); 6753 6754 // Mismatched lifetime qualifiers never compatibly include each other. 6755 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6756 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6757 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6758 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6758
, __extension__ __PRETTY_FUNCTION__))
; 6759 else 6760 return QualType(); 6761 6762 Steps.back().Quals = Quals; 6763 if (Q1 != Quals || Q2 != Quals) 6764 NeedConstBefore = Steps.size() - 1; 6765 } 6766 6767 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6768 6769 const ArrayType *Arr1, *Arr2; 6770 if ((Arr1 = Context.getAsArrayType(Composite1)) && 6771 (Arr2 = Context.getAsArrayType(Composite2))) { 6772 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 6773 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 6774 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 6775 Composite1 = Arr1->getElementType(); 6776 Composite2 = Arr2->getElementType(); 6777 Steps.emplace_back(Step::Array, CAT1); 6778 continue; 6779 } 6780 bool IAT1 = isa<IncompleteArrayType>(Arr1); 6781 bool IAT2 = isa<IncompleteArrayType>(Arr2); 6782 if ((IAT1 && IAT2) || 6783 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 6784 ((bool)CAT1 != (bool)CAT2) && 6785 (Steps.empty() || Steps.back().K != Step::Array))) { 6786 // In C++20 onwards, we can unify an array of N T with an array of 6787 // a different or unknown bound. But we can't form an array whose 6788 // element type is an array of unknown bound by doing so. 6789 Composite1 = Arr1->getElementType(); 6790 Composite2 = Arr2->getElementType(); 6791 Steps.emplace_back(Step::Array); 6792 if (CAT1 || CAT2) 6793 NeedConstBefore = Steps.size(); 6794 continue; 6795 } 6796 } 6797 6798 const PointerType *Ptr1, *Ptr2; 6799 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6800 (Ptr2 = Composite2->getAs<PointerType>())) { 6801 Composite1 = Ptr1->getPointeeType(); 6802 Composite2 = Ptr2->getPointeeType(); 6803 Steps.emplace_back(Step::Pointer); 6804 continue; 6805 } 6806 6807 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6808 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6809 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6810 Composite1 = ObjPtr1->getPointeeType(); 6811 Composite2 = ObjPtr2->getPointeeType(); 6812 Steps.emplace_back(Step::ObjCPointer); 6813 continue; 6814 } 6815 6816 const MemberPointerType *MemPtr1, *MemPtr2; 6817 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6818 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6819 Composite1 = MemPtr1->getPointeeType(); 6820 Composite2 = MemPtr2->getPointeeType(); 6821 6822 // At the top level, we can perform a base-to-derived pointer-to-member 6823 // conversion: 6824 // 6825 // - [...] where C1 is reference-related to C2 or C2 is 6826 // reference-related to C1 6827 // 6828 // (Note that the only kinds of reference-relatedness in scope here are 6829 // "same type or derived from".) At any other level, the class must 6830 // exactly match. 6831 const Type *Class = nullptr; 6832 QualType Cls1(MemPtr1->getClass(), 0); 6833 QualType Cls2(MemPtr2->getClass(), 0); 6834 if (Context.hasSameType(Cls1, Cls2)) 6835 Class = MemPtr1->getClass(); 6836 else if (Steps.empty()) 6837 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6838 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6839 if (!Class) 6840 return QualType(); 6841 6842 Steps.emplace_back(Step::MemberPointer, Class); 6843 continue; 6844 } 6845 6846 // Special case: at the top level, we can decompose an Objective-C pointer 6847 // and a 'cv void *'. Unify the qualifiers. 6848 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6849 Composite2->isObjCObjectPointerType()) || 6850 (Composite1->isObjCObjectPointerType() && 6851 Composite2->isVoidPointerType()))) { 6852 Composite1 = Composite1->getPointeeType(); 6853 Composite2 = Composite2->getPointeeType(); 6854 Steps.emplace_back(Step::Pointer); 6855 continue; 6856 } 6857 6858 // FIXME: block pointer types? 6859 6860 // Cannot unwrap any more types. 6861 break; 6862 } 6863 6864 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6865 // "pointer to function", where the function types are otherwise the same, 6866 // "pointer to function"; 6867 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6868 // type is "pointer to member of C2 of type noexcept function", and C1 6869 // is reference-related to C2 or C2 is reference-related to C1, where 6870 // the function types are otherwise the same, "pointer to member of C2 of 6871 // type function" or "pointer to member of C1 of type function", 6872 // respectively; 6873 // 6874 // We also support 'noreturn' here, so as a Clang extension we generalize the 6875 // above to: 6876 // 6877 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6878 // "pointer to member function" and the pointee types can be unified 6879 // by a function pointer conversion, that conversion is applied 6880 // before checking the following rules. 6881 // 6882 // We've already unwrapped down to the function types, and we want to merge 6883 // rather than just convert, so do this ourselves rather than calling 6884 // IsFunctionConversion. 6885 // 6886 // FIXME: In order to match the standard wording as closely as possible, we 6887 // currently only do this under a single level of pointers. Ideally, we would 6888 // allow this in general, and set NeedConstBefore to the relevant depth on 6889 // the side(s) where we changed anything. If we permit that, we should also 6890 // consider this conversion when determining type similarity and model it as 6891 // a qualification conversion. 6892 if (Steps.size() == 1) { 6893 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6894 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6895 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6896 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6897 6898 // The result is noreturn if both operands are. 6899 bool Noreturn = 6900 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6901 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6902 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6903 6904 // The result is nothrow if both operands are. 6905 SmallVector<QualType, 8> ExceptionTypeStorage; 6906 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6907 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6908 ExceptionTypeStorage); 6909 6910 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6911 FPT1->getParamTypes(), EPI1); 6912 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6913 FPT2->getParamTypes(), EPI2); 6914 } 6915 } 6916 } 6917 6918 // There are some more conversions we can perform under exactly one pointer. 6919 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6920 !Context.hasSameType(Composite1, Composite2)) { 6921 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6922 // "pointer to cv2 T", where T is an object type or void, 6923 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6924 if (Composite1->isVoidType() && Composite2->isObjectType()) 6925 Composite2 = Composite1; 6926 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6927 Composite1 = Composite2; 6928 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6929 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6930 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6931 // T1, respectively; 6932 // 6933 // The "similar type" handling covers all of this except for the "T1 is a 6934 // base class of T2" case in the definition of reference-related. 6935 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6936 Composite1 = Composite2; 6937 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6938 Composite2 = Composite1; 6939 } 6940 6941 // At this point, either the inner types are the same or we have failed to 6942 // find a composite pointer type. 6943 if (!Context.hasSameType(Composite1, Composite2)) 6944 return QualType(); 6945 6946 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6947 // differing qualifier. 6948 for (unsigned I = 0; I != NeedConstBefore; ++I) 6949 Steps[I].Quals.addConst(); 6950 6951 // Rebuild the composite type. 6952 QualType Composite = Composite1; 6953 for (auto &S : llvm::reverse(Steps)) 6954 Composite = S.rebuild(Context, Composite); 6955 6956 if (ConvertArgs) { 6957 // Convert the expressions to the composite pointer type. 6958 InitializedEntity Entity = 6959 InitializedEntity::InitializeTemporary(Composite); 6960 InitializationKind Kind = 6961 InitializationKind::CreateCopy(Loc, SourceLocation()); 6962 6963 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6964 if (!E1ToC) 6965 return QualType(); 6966 6967 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6968 if (!E2ToC) 6969 return QualType(); 6970 6971 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6972 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6973 if (E1Result.isInvalid()) 6974 return QualType(); 6975 E1 = E1Result.get(); 6976 6977 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6978 if (E2Result.isInvalid()) 6979 return QualType(); 6980 E2 = E2Result.get(); 6981 } 6982 6983 return Composite; 6984} 6985 6986ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6987 if (!E) 6988 return ExprError(); 6989 6990 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")(static_cast <bool> (!isa<CXXBindTemporaryExpr>(E
) && "Double-bound temporary?") ? void (0) : __assert_fail
("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6990, __extension__ __PRETTY_FUNCTION__
))
; 6991 6992 // If the result is a glvalue, we shouldn't bind it. 6993 if (E->isGLValue()) 6994 return E; 6995 6996 // In ARC, calls that return a retainable type can return retained, 6997 // in which case we have to insert a consuming cast. 6998 if (getLangOpts().ObjCAutoRefCount && 6999 E->getType()->isObjCRetainableType()) { 7000 7001 bool ReturnsRetained; 7002 7003 // For actual calls, we compute this by examining the type of the 7004 // called value. 7005 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 7006 Expr *Callee = Call->getCallee()->IgnoreParens(); 7007 QualType T = Callee->getType(); 7008 7009 if (T == Context.BoundMemberTy) { 7010 // Handle pointer-to-members. 7011 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 7012 T = BinOp->getRHS()->getType(); 7013 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 7014 T = Mem->getMemberDecl()->getType(); 7015 } 7016 7017 if (const PointerType *Ptr = T->getAs<PointerType>()) 7018 T = Ptr->getPointeeType(); 7019 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 7020 T = Ptr->getPointeeType(); 7021 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 7022 T = MemPtr->getPointeeType(); 7023 7024 auto *FTy = T->castAs<FunctionType>(); 7025 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 7026 7027 // ActOnStmtExpr arranges things so that StmtExprs of retainable 7028 // type always produce a +1 object. 7029 } else if (isa<StmtExpr>(E)) { 7030 ReturnsRetained = true; 7031 7032 // We hit this case with the lambda conversion-to-block optimization; 7033 // we don't want any extra casts here. 7034 } else if (isa<CastExpr>(E) && 7035 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 7036 return E; 7037 7038 // For message sends and property references, we try to find an 7039 // actual method. FIXME: we should infer retention by selector in 7040 // cases where we don't have an actual method. 7041 } else { 7042 ObjCMethodDecl *D = nullptr; 7043 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 7044 D = Send->getMethodDecl(); 7045 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 7046 D = BoxedExpr->getBoxingMethod(); 7047 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 7048 // Don't do reclaims if we're using the zero-element array 7049 // constant. 7050 if (ArrayLit->getNumElements() == 0 && 7051 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7052 return E; 7053 7054 D = ArrayLit->getArrayWithObjectsMethod(); 7055 } else if (ObjCDictionaryLiteral *DictLit 7056 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7057 // Don't do reclaims if we're using the zero-element dictionary 7058 // constant. 7059 if (DictLit->getNumElements() == 0 && 7060 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7061 return E; 7062 7063 D = DictLit->getDictWithObjectsMethod(); 7064 } 7065 7066 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7067 7068 // Don't do reclaims on performSelector calls; despite their 7069 // return type, the invoked method doesn't necessarily actually 7070 // return an object. 7071 if (!ReturnsRetained && 7072 D && D->getMethodFamily() == OMF_performSelector) 7073 return E; 7074 } 7075 7076 // Don't reclaim an object of Class type. 7077 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7078 return E; 7079 7080 Cleanup.setExprNeedsCleanups(true); 7081 7082 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7083 : CK_ARCReclaimReturnedObject); 7084 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7085 VK_PRValue, FPOptionsOverride()); 7086 } 7087 7088 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7089 Cleanup.setExprNeedsCleanups(true); 7090 7091 if (!getLangOpts().CPlusPlus) 7092 return E; 7093 7094 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7095 // a fast path for the common case that the type is directly a RecordType. 7096 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7097 const RecordType *RT = nullptr; 7098 while (!RT) { 7099 switch (T->getTypeClass()) { 7100 case Type::Record: 7101 RT = cast<RecordType>(T); 7102 break; 7103 case Type::ConstantArray: 7104 case Type::IncompleteArray: 7105 case Type::VariableArray: 7106 case Type::DependentSizedArray: 7107 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7108 break; 7109 default: 7110 return E; 7111 } 7112 } 7113 7114 // That should be enough to guarantee that this type is complete, if we're 7115 // not processing a decltype expression. 7116 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7117 if (RD->isInvalidDecl() || RD->isDependentContext()) 7118 return E; 7119 7120 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7121 ExpressionEvaluationContextRecord::EK_Decltype; 7122 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7123 7124 if (Destructor) { 7125 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7126 CheckDestructorAccess(E->getExprLoc(), Destructor, 7127 PDiag(diag::err_access_dtor_temp) 7128 << E->getType()); 7129 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7130 return ExprError(); 7131 7132 // If destructor is trivial, we can avoid the extra copy. 7133 if (Destructor->isTrivial()) 7134 return E; 7135 7136 // We need a cleanup, but we don't need to remember the temporary. 7137 Cleanup.setExprNeedsCleanups(true); 7138 } 7139 7140 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7141 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7142 7143 if (IsDecltype) 7144 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7145 7146 return Bind; 7147} 7148 7149ExprResult 7150Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7151 if (SubExpr.isInvalid()) 7152 return ExprError(); 7153 7154 return MaybeCreateExprWithCleanups(SubExpr.get()); 7155} 7156 7157Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7158 assert(SubExpr && "subexpression can't be null!")(static_cast <bool> (SubExpr && "subexpression can't be null!"
) ? void (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7158, __extension__ __PRETTY_FUNCTION__
))
; 7159 7160 CleanupVarDeclMarking(); 7161 7162 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7163 assert(ExprCleanupObjects.size() >= FirstCleanup)(static_cast <bool> (ExprCleanupObjects.size() >= FirstCleanup
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7163, __extension__ __PRETTY_FUNCTION__
))
; 7164 assert(Cleanup.exprNeedsCleanups() ||(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7165, __extension__ __PRETTY_FUNCTION__
))
7165 ExprCleanupObjects.size() == FirstCleanup)(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7165, __extension__ __PRETTY_FUNCTION__
))
; 7166 if (!Cleanup.exprNeedsCleanups()) 7167 return SubExpr; 7168 7169 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7170 ExprCleanupObjects.size() - FirstCleanup); 7171 7172 auto *E = ExprWithCleanups::Create( 7173 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7174 DiscardCleanupsInEvaluationContext(); 7175 7176 return E; 7177} 7178 7179Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7180 assert(SubStmt && "sub-statement can't be null!")(static_cast <bool> (SubStmt && "sub-statement can't be null!"
) ? void (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7180, __extension__ __PRETTY_FUNCTION__
))
; 7181 7182 CleanupVarDeclMarking(); 7183 7184 if (!Cleanup.exprNeedsCleanups()) 7185 return SubStmt; 7186 7187 // FIXME: In order to attach the temporaries, wrap the statement into 7188 // a StmtExpr; currently this is only used for asm statements. 7189 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7190 // a new AsmStmtWithTemporaries. 7191 CompoundStmt *CompStmt = CompoundStmt::Create( 7192 Context, SubStmt, SourceLocation(), SourceLocation()); 7193 Expr *E = new (Context) 7194 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7195 /*FIXME TemplateDepth=*/0); 7196 return MaybeCreateExprWithCleanups(E); 7197} 7198 7199/// Process the expression contained within a decltype. For such expressions, 7200/// certain semantic checks on temporaries are delayed until this point, and 7201/// are omitted for the 'topmost' call in the decltype expression. If the 7202/// topmost call bound a temporary, strip that temporary off the expression. 7203ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7204 assert(ExprEvalContexts.back().ExprContext ==(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
7205 ExpressionEvaluationContextRecord::EK_Decltype &&(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
7206 "not in a decltype expression")(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7206, __extension__ __PRETTY_FUNCTION__
))
; 7207 7208 ExprResult Result = CheckPlaceholderExpr(E); 7209 if (Result.isInvalid()) 7210 return ExprError(); 7211 E = Result.get(); 7212 7213 // C++11 [expr.call]p11: 7214 // If a function call is a prvalue of object type, 7215 // -- if the function call is either 7216 // -- the operand of a decltype-specifier, or 7217 // -- the right operand of a comma operator that is the operand of a 7218 // decltype-specifier, 7219 // a temporary object is not introduced for the prvalue. 7220 7221 // Recursively rebuild ParenExprs and comma expressions to strip out the 7222 // outermost CXXBindTemporaryExpr, if any. 7223 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7224 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7225 if (SubExpr.isInvalid()) 7226 return ExprError(); 7227 if (SubExpr.get() == PE->getSubExpr()) 7228 return E; 7229 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7230 } 7231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7232 if (BO->getOpcode() == BO_Comma) { 7233 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7234 if (RHS.isInvalid()) 7235 return ExprError(); 7236 if (RHS.get() == BO->getRHS()) 7237 return E; 7238 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7239 BO->getType(), BO->getValueKind(), 7240 BO->getObjectKind(), BO->getOperatorLoc(), 7241 BO->getFPFeatures(getLangOpts())); 7242 } 7243 } 7244 7245 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7246 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7247 : nullptr; 7248 if (TopCall) 7249 E = TopCall; 7250 else 7251 TopBind = nullptr; 7252 7253 // Disable the special decltype handling now. 7254 ExprEvalContexts.back().ExprContext = 7255 ExpressionEvaluationContextRecord::EK_Other; 7256 7257 Result = CheckUnevaluatedOperand(E); 7258 if (Result.isInvalid()) 7259 return ExprError(); 7260 E = Result.get(); 7261 7262 // In MS mode, don't perform any extra checking of call return types within a 7263 // decltype expression. 7264 if (getLangOpts().MSVCCompat) 7265 return E; 7266 7267 // Perform the semantic checks we delayed until this point. 7268 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7269 I != N; ++I) { 7270 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7271 if (Call == TopCall) 7272 continue; 7273 7274 if (CheckCallReturnType(Call->getCallReturnType(Context), 7275 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7276 return ExprError(); 7277 } 7278 7279 // Now all relevant types are complete, check the destructors are accessible 7280 // and non-deleted, and annotate them on the temporaries. 7281 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7282 I != N; ++I) { 7283 CXXBindTemporaryExpr *Bind = 7284 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7285 if (Bind == TopBind) 7286 continue; 7287 7288 CXXTemporary *Temp = Bind->getTemporary(); 7289 7290 CXXRecordDecl *RD = 7291 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7292 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7293 Temp->setDestructor(Destructor); 7294 7295 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7296 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7297 PDiag(diag::err_access_dtor_temp) 7298 << Bind->getType()); 7299 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7300 return ExprError(); 7301 7302 // We need a cleanup, but we don't need to remember the temporary. 7303 Cleanup.setExprNeedsCleanups(true); 7304 } 7305 7306 // Possibly strip off the top CXXBindTemporaryExpr. 7307 return E; 7308} 7309 7310/// Note a set of 'operator->' functions that were used for a member access. 7311static void noteOperatorArrows(Sema &S, 7312 ArrayRef<FunctionDecl *> OperatorArrows) { 7313 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7314 // FIXME: Make this configurable? 7315 unsigned Limit = 9; 7316 if (OperatorArrows.size() > Limit) { 7317 // Produce Limit-1 normal notes and one 'skipping' note. 7318 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7319 SkipCount = OperatorArrows.size() - (Limit - 1); 7320 } 7321 7322 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7323 if (I == SkipStart) { 7324 S.Diag(OperatorArrows[I]->getLocation(), 7325 diag::note_operator_arrows_suppressed) 7326 << SkipCount; 7327 I += SkipCount; 7328 } else { 7329 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7330 << OperatorArrows[I]->getCallResultType(); 7331 ++I; 7332 } 7333 } 7334} 7335 7336ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7337 SourceLocation OpLoc, 7338 tok::TokenKind OpKind, 7339 ParsedType &ObjectType, 7340 bool &MayBePseudoDestructor) { 7341 // Since this might be a postfix expression, get rid of ParenListExprs. 7342 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7343 if (Result.isInvalid()) return ExprError(); 7344 Base = Result.get(); 7345 7346 Result = CheckPlaceholderExpr(Base); 7347 if (Result.isInvalid()) return ExprError(); 7348 Base = Result.get(); 7349 7350 QualType BaseType = Base->getType(); 7351 MayBePseudoDestructor = false; 7352 if (BaseType->isDependentType()) { 7353 // If we have a pointer to a dependent type and are using the -> operator, 7354 // the object type is the type that the pointer points to. We might still 7355 // have enough information about that type to do something useful. 7356 if (OpKind == tok::arrow) 7357 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7358 BaseType = Ptr->getPointeeType(); 7359 7360 ObjectType = ParsedType::make(BaseType); 7361 MayBePseudoDestructor = true; 7362 return Base; 7363 } 7364 7365 // C++ [over.match.oper]p8: 7366 // [...] When operator->returns, the operator-> is applied to the value 7367 // returned, with the original second operand. 7368 if (OpKind == tok::arrow) { 7369 QualType StartingType = BaseType; 7370 bool NoArrowOperatorFound = false; 7371 bool FirstIteration = true; 7372 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7373 // The set of types we've considered so far. 7374 llvm::SmallPtrSet<CanQualType,8> CTypes; 7375 SmallVector<FunctionDecl*, 8> OperatorArrows; 7376 CTypes.insert(Context.getCanonicalType(BaseType)); 7377 7378 while (BaseType->isRecordType()) { 7379 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7380 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7381 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7382 noteOperatorArrows(*this, OperatorArrows); 7383 Diag(OpLoc, diag::note_operator_arrow_depth) 7384 << getLangOpts().ArrowDepth; 7385 return ExprError(); 7386 } 7387 7388 Result = BuildOverloadedArrowExpr( 7389 S, Base, OpLoc, 7390 // When in a template specialization and on the first loop iteration, 7391 // potentially give the default diagnostic (with the fixit in a 7392 // separate note) instead of having the error reported back to here 7393 // and giving a diagnostic with a fixit attached to the error itself. 7394 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7395 ? nullptr 7396 : &NoArrowOperatorFound); 7397 if (Result.isInvalid()) { 7398 if (NoArrowOperatorFound) { 7399 if (FirstIteration) { 7400 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7401 << BaseType << 1 << Base->getSourceRange() 7402 << FixItHint::CreateReplacement(OpLoc, "."); 7403 OpKind = tok::period; 7404 break; 7405 } 7406 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7407 << BaseType << Base->getSourceRange(); 7408 CallExpr *CE = dyn_cast<CallExpr>(Base); 7409 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7410 Diag(CD->getBeginLoc(), 7411 diag::note_member_reference_arrow_from_operator_arrow); 7412 } 7413 } 7414 return ExprError(); 7415 } 7416 Base = Result.get(); 7417 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7418 OperatorArrows.push_back(OpCall->getDirectCallee()); 7419 BaseType = Base->getType(); 7420 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7421 if (!CTypes.insert(CBaseType).second) { 7422 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7423 noteOperatorArrows(*this, OperatorArrows); 7424 return ExprError(); 7425 } 7426 FirstIteration = false; 7427 } 7428 7429 if (OpKind == tok::arrow) { 7430 if (BaseType->isPointerType()) 7431 BaseType = BaseType->getPointeeType(); 7432 else if (auto *AT = Context.getAsArrayType(BaseType)) 7433 BaseType = AT->getElementType(); 7434 } 7435 } 7436 7437 // Objective-C properties allow "." access on Objective-C pointer types, 7438 // so adjust the base type to the object type itself. 7439 if (BaseType->isObjCObjectPointerType()) 7440 BaseType = BaseType->getPointeeType(); 7441 7442 // C++ [basic.lookup.classref]p2: 7443 // [...] If the type of the object expression is of pointer to scalar 7444 // type, the unqualified-id is looked up in the context of the complete 7445 // postfix-expression. 7446 // 7447 // This also indicates that we could be parsing a pseudo-destructor-name. 7448 // Note that Objective-C class and object types can be pseudo-destructor 7449 // expressions or normal member (ivar or property) access expressions, and 7450 // it's legal for the type to be incomplete if this is a pseudo-destructor 7451 // call. We'll do more incomplete-type checks later in the lookup process, 7452 // so just skip this check for ObjC types. 7453 if (!BaseType->isRecordType()) { 7454 ObjectType = ParsedType::make(BaseType); 7455 MayBePseudoDestructor = true; 7456 return Base; 7457 } 7458 7459 // The object type must be complete (or dependent), or 7460 // C++11 [expr.prim.general]p3: 7461 // Unlike the object expression in other contexts, *this is not required to 7462 // be of complete type for purposes of class member access (5.2.5) outside 7463 // the member function body. 7464 if (!BaseType->isDependentType() && 7465 !isThisOutsideMemberFunctionBody(BaseType) && 7466 RequireCompleteType(OpLoc, BaseType, 7467 diag::err_incomplete_member_access)) { 7468 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7469 } 7470 7471 // C++ [basic.lookup.classref]p2: 7472 // If the id-expression in a class member access (5.2.5) is an 7473 // unqualified-id, and the type of the object expression is of a class 7474 // type C (or of pointer to a class type C), the unqualified-id is looked 7475 // up in the scope of class C. [...] 7476 ObjectType = ParsedType::make(BaseType); 7477 return Base; 7478} 7479 7480static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7481 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7482 if (Base->hasPlaceholderType()) { 7483 ExprResult result = S.CheckPlaceholderExpr(Base); 7484 if (result.isInvalid()) return true; 7485 Base = result.get(); 7486 } 7487 ObjectType = Base->getType(); 7488 7489 // C++ [expr.pseudo]p2: 7490 // The left-hand side of the dot operator shall be of scalar type. The 7491 // left-hand side of the arrow operator shall be of pointer to scalar type. 7492 // This scalar type is the object type. 7493 // Note that this is rather different from the normal handling for the 7494 // arrow operator. 7495 if (OpKind == tok::arrow) { 7496 // The operator requires a prvalue, so perform lvalue conversions. 7497 // Only do this if we might plausibly end with a pointer, as otherwise 7498 // this was likely to be intended to be a '.'. 7499 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7500 ObjectType->isFunctionType()) { 7501 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7502 if (BaseResult.isInvalid()) 7503 return true; 7504 Base = BaseResult.get(); 7505 ObjectType = Base->getType(); 7506 } 7507 7508 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7509 ObjectType = Ptr->getPointeeType(); 7510 } else if (!Base->isTypeDependent()) { 7511 // The user wrote "p->" when they probably meant "p."; fix it. 7512 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7513 << ObjectType << true 7514 << FixItHint::CreateReplacement(OpLoc, "."); 7515 if (S.isSFINAEContext()) 7516 return true; 7517 7518 OpKind = tok::period; 7519 } 7520 } 7521 7522 return false; 7523} 7524 7525/// Check if it's ok to try and recover dot pseudo destructor calls on 7526/// pointer objects. 7527static bool 7528canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7529 QualType DestructedType) { 7530 // If this is a record type, check if its destructor is callable. 7531 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7532 if (RD->hasDefinition()) 7533 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7534 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7535 return false; 7536 } 7537 7538 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7539 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7540 DestructedType->isVectorType(); 7541} 7542 7543ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7544 SourceLocation OpLoc, 7545 tok::TokenKind OpKind, 7546 const CXXScopeSpec &SS, 7547 TypeSourceInfo *ScopeTypeInfo, 7548 SourceLocation CCLoc, 7549 SourceLocation TildeLoc, 7550 PseudoDestructorTypeStorage Destructed) { 7551 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7552 7553 QualType ObjectType; 7554 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7555 return ExprError(); 7556 7557 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7558 !ObjectType->isVectorType()) { 7559 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7560 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7561 else { 7562 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7563 << ObjectType << Base->getSourceRange(); 7564 return ExprError(); 7565 } 7566 } 7567 7568 // C++ [expr.pseudo]p2: 7569 // [...] The cv-unqualified versions of the object type and of the type 7570 // designated by the pseudo-destructor-name shall be the same type. 7571 if (DestructedTypeInfo) { 7572 QualType DestructedType = DestructedTypeInfo->getType(); 7573 SourceLocation DestructedTypeStart 7574 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7575 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7576 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7577 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7578 // Foo *foo; 7579 // foo.~Foo(); 7580 if (OpKind == tok::period && ObjectType->isPointerType() && 7581 Context.hasSameUnqualifiedType(DestructedType, 7582 ObjectType->getPointeeType())) { 7583 auto Diagnostic = 7584 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7585 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7586 7587 // Issue a fixit only when the destructor is valid. 7588 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7589 *this, DestructedType)) 7590 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7591 7592 // Recover by setting the object type to the destructed type and the 7593 // operator to '->'. 7594 ObjectType = DestructedType; 7595 OpKind = tok::arrow; 7596 } else { 7597 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7598 << ObjectType << DestructedType << Base->getSourceRange() 7599 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7600 7601 // Recover by setting the destructed type to the object type. 7602 DestructedType = ObjectType; 7603 DestructedTypeInfo = 7604 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7605 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7606 } 7607 } else if (DestructedType.getObjCLifetime() != 7608 ObjectType.getObjCLifetime()) { 7609 7610 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7611 // Okay: just pretend that the user provided the correctly-qualified 7612 // type. 7613 } else { 7614 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7615 << ObjectType << DestructedType << Base->getSourceRange() 7616 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7617 } 7618 7619 // Recover by setting the destructed type to the object type. 7620 DestructedType = ObjectType; 7621 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7622 DestructedTypeStart); 7623 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7624 } 7625 } 7626 } 7627 7628 // C++ [expr.pseudo]p2: 7629 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7630 // form 7631 // 7632 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7633 // 7634 // shall designate the same scalar type. 7635 if (ScopeTypeInfo) { 7636 QualType ScopeType = ScopeTypeInfo->getType(); 7637 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7638 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7639 7640 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7641 diag::err_pseudo_dtor_type_mismatch) 7642 << ObjectType << ScopeType << Base->getSourceRange() 7643 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7644 7645 ScopeType = QualType(); 7646 ScopeTypeInfo = nullptr; 7647 } 7648 } 7649 7650 Expr *Result 7651 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7652 OpKind == tok::arrow, OpLoc, 7653 SS.getWithLocInContext(Context), 7654 ScopeTypeInfo, 7655 CCLoc, 7656 TildeLoc, 7657 Destructed); 7658 7659 return Result; 7660} 7661 7662ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7663 SourceLocation OpLoc, 7664 tok::TokenKind OpKind, 7665 CXXScopeSpec &SS, 7666 UnqualifiedId &FirstTypeName, 7667 SourceLocation CCLoc, 7668 SourceLocation TildeLoc, 7669 UnqualifiedId &SecondTypeName) { 7670 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
7671 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
7672 "Invalid first type name in pseudo-destructor")(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
; 7673 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
7674 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
7675 "Invalid second type name in pseudo-destructor")(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7675, __extension__ __PRETTY_FUNCTION__
))
; 7676 7677 QualType ObjectType; 7678 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7679 return ExprError(); 7680 7681 // Compute the object type that we should use for name lookup purposes. Only 7682 // record types and dependent types matter. 7683 ParsedType ObjectTypePtrForLookup; 7684 if (!SS.isSet()) { 7685 if (ObjectType->isRecordType()) 7686 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7687 else if (ObjectType->isDependentType()) 7688 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7689 } 7690 7691 // Convert the name of the type being destructed (following the ~) into a 7692 // type (with source-location information). 7693 QualType DestructedType; 7694 TypeSourceInfo *DestructedTypeInfo = nullptr; 7695 PseudoDestructorTypeStorage Destructed; 7696 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7697 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7698 SecondTypeName.StartLocation, 7699 S, &SS, true, false, ObjectTypePtrForLookup, 7700 /*IsCtorOrDtorName*/true); 7701 if (!T && 7702 ((SS.isSet() && !computeDeclContext(SS, false)) || 7703 (!SS.isSet() && ObjectType->isDependentType()))) { 7704 // The name of the type being destroyed is a dependent name, and we 7705 // couldn't find anything useful in scope. Just store the identifier and 7706 // it's location, and we'll perform (qualified) name lookup again at 7707 // template instantiation time. 7708 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7709 SecondTypeName.StartLocation); 7710 } else if (!T) { 7711 Diag(SecondTypeName.StartLocation, 7712 diag::err_pseudo_dtor_destructor_non_type) 7713 << SecondTypeName.Identifier << ObjectType; 7714 if (isSFINAEContext()) 7715 return ExprError(); 7716 7717 // Recover by assuming we had the right type all along. 7718 DestructedType = ObjectType; 7719 } else 7720 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7721 } else { 7722 // Resolve the template-id to a type. 7723 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7724 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7725 TemplateId->NumArgs); 7726 TypeResult T = ActOnTemplateIdType(S, 7727 SS, 7728 TemplateId->TemplateKWLoc, 7729 TemplateId->Template, 7730 TemplateId->Name, 7731 TemplateId->TemplateNameLoc, 7732 TemplateId->LAngleLoc, 7733 TemplateArgsPtr, 7734 TemplateId->RAngleLoc, 7735 /*IsCtorOrDtorName*/true); 7736 if (T.isInvalid() || !T.get()) { 7737 // Recover by assuming we had the right type all along. 7738 DestructedType = ObjectType; 7739 } else 7740 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7741 } 7742 7743 // If we've performed some kind of recovery, (re-)build the type source 7744 // information. 7745 if (!DestructedType.isNull()) { 7746 if (!DestructedTypeInfo) 7747 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7748 SecondTypeName.StartLocation); 7749 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7750 } 7751 7752 // Convert the name of the scope type (the type prior to '::') into a type. 7753 TypeSourceInfo *ScopeTypeInfo = nullptr; 7754 QualType ScopeType; 7755 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7756 FirstTypeName.Identifier) { 7757 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7758 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7759 FirstTypeName.StartLocation, 7760 S, &SS, true, false, ObjectTypePtrForLookup, 7761 /*IsCtorOrDtorName*/true); 7762 if (!T) { 7763 Diag(FirstTypeName.StartLocation, 7764 diag::err_pseudo_dtor_destructor_non_type) 7765 << FirstTypeName.Identifier << ObjectType; 7766 7767 if (isSFINAEContext()) 7768 return ExprError(); 7769 7770 // Just drop this type. It's unnecessary anyway. 7771 ScopeType = QualType(); 7772 } else 7773 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7774 } else { 7775 // Resolve the template-id to a type. 7776 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7777 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7778 TemplateId->NumArgs); 7779 TypeResult T = ActOnTemplateIdType(S, 7780 SS, 7781 TemplateId->TemplateKWLoc, 7782 TemplateId->Template, 7783 TemplateId->Name, 7784 TemplateId->TemplateNameLoc, 7785 TemplateId->LAngleLoc, 7786 TemplateArgsPtr, 7787 TemplateId->RAngleLoc, 7788 /*IsCtorOrDtorName*/true); 7789 if (T.isInvalid() || !T.get()) { 7790 // Recover by dropping this type. 7791 ScopeType = QualType(); 7792 } else 7793 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7794 } 7795 } 7796 7797 if (!ScopeType.isNull() && !ScopeTypeInfo) 7798 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7799 FirstTypeName.StartLocation); 7800 7801 7802 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7803 ScopeTypeInfo, CCLoc, TildeLoc, 7804 Destructed); 7805} 7806 7807ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7808 SourceLocation OpLoc, 7809 tok::TokenKind OpKind, 7810 SourceLocation TildeLoc, 7811 const DeclSpec& DS) { 7812 QualType ObjectType; 7813 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7814 return ExprError(); 7815 7816 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7817 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7818 return true; 7819 } 7820 7821 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 7822 7823 TypeLocBuilder TLB; 7824 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7825 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 7826 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 7827 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7828 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7829 7830 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7831 nullptr, SourceLocation(), TildeLoc, 7832 Destructed); 7833} 7834 7835ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7836 CXXConversionDecl *Method, 7837 bool HadMultipleCandidates) { 7838 // Convert the expression to match the conversion function's implicit object 7839 // parameter. 7840 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7841 FoundDecl, Method); 7842 if (Exp.isInvalid()) 7843 return true; 7844 7845 if (Method->getParent()->isLambda() && 7846 Method->getConversionType()->isBlockPointerType()) { 7847 // This is a lambda conversion to block pointer; check if the argument 7848 // was a LambdaExpr. 7849 Expr *SubE = E; 7850 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7851 if (CE && CE->getCastKind() == CK_NoOp) 7852 SubE = CE->getSubExpr(); 7853 SubE = SubE->IgnoreParens(); 7854 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7855 SubE = BE->getSubExpr(); 7856 if (isa<LambdaExpr>(SubE)) { 7857 // For the conversion to block pointer on a lambda expression, we 7858 // construct a special BlockLiteral instead; this doesn't really make 7859 // a difference in ARC, but outside of ARC the resulting block literal 7860 // follows the normal lifetime rules for block literals instead of being 7861 // autoreleased. 7862 PushExpressionEvaluationContext( 7863 ExpressionEvaluationContext::PotentiallyEvaluated); 7864 ExprResult BlockExp = BuildBlockForLambdaConversion( 7865 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7866 PopExpressionEvaluationContext(); 7867 7868 // FIXME: This note should be produced by a CodeSynthesisContext. 7869 if (BlockExp.isInvalid()) 7870 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7871 return BlockExp; 7872 } 7873 } 7874 7875 MemberExpr *ME = 7876 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7877 NestedNameSpecifierLoc(), SourceLocation(), Method, 7878 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7879 HadMultipleCandidates, DeclarationNameInfo(), 7880 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 7881 7882 QualType ResultType = Method->getReturnType(); 7883 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7884 ResultType = ResultType.getNonLValueExprType(Context); 7885 7886 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7887 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7888 CurFPFeatureOverrides()); 7889 7890 if (CheckFunctionCall(Method, CE, 7891 Method->getType()->castAs<FunctionProtoType>())) 7892 return ExprError(); 7893 7894 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 7895} 7896 7897ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7898 SourceLocation RParen) { 7899 // If the operand is an unresolved lookup expression, the expression is ill- 7900 // formed per [over.over]p1, because overloaded function names cannot be used 7901 // without arguments except in explicit contexts. 7902 ExprResult R = CheckPlaceholderExpr(Operand); 7903 if (R.isInvalid()) 7904 return R; 7905 7906 R = CheckUnevaluatedOperand(R.get()); 7907 if (R.isInvalid()) 7908 return ExprError(); 7909 7910 Operand = R.get(); 7911 7912 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7913 Operand->HasSideEffects(Context, false)) { 7914 // The expression operand for noexcept is in an unevaluated expression 7915 // context, so side effects could result in unintended consequences. 7916 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7917 } 7918 7919 CanThrowResult CanThrow = canThrow(Operand); 7920 return new (Context) 7921 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7922} 7923 7924ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7925 Expr *Operand, SourceLocation RParen) { 7926 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7927} 7928 7929static void MaybeDecrementCount( 7930 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 7931 DeclRefExpr *LHS = nullptr; 7932 bool IsCompoundAssign = false; 7933 bool isIncrementDecrementUnaryOp = false; 7934 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7935 if (BO->getLHS()->getType()->isDependentType() || 7936 BO->getRHS()->getType()->isDependentType()) { 7937 if (BO->getOpcode() != BO_Assign) 7938 return; 7939 } else if (!BO->isAssignmentOp()) 7940 return; 7941 else 7942 IsCompoundAssign = BO->isCompoundAssignmentOp(); 7943 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 7944 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 7945 if (COCE->getOperator() != OO_Equal) 7946 return; 7947 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 7948 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 7949 if (!UO->isIncrementDecrementOp()) 7950 return; 7951 isIncrementDecrementUnaryOp = true; 7952 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 7953 } 7954 if (!LHS) 7955 return; 7956 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 7957 if (!VD) 7958 return; 7959 // Don't decrement RefsMinusAssignments if volatile variable with compound 7960 // assignment (+=, ...) or increment/decrement unary operator to avoid 7961 // potential unused-but-set-variable warning. 7962 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && 7963 VD->getType().isVolatileQualified()) 7964 return; 7965 auto iter = RefsMinusAssignments.find(VD); 7966 if (iter == RefsMinusAssignments.end()) 7967 return; 7968 iter->getSecond()--; 7969} 7970 7971/// Perform the conversions required for an expression used in a 7972/// context that ignores the result. 7973ExprResult Sema::IgnoredValueConversions(Expr *E) { 7974 MaybeDecrementCount(E, RefsMinusAssignments); 7975 7976 if (E->hasPlaceholderType()) { 7977 ExprResult result = CheckPlaceholderExpr(E); 7978 if (result.isInvalid()) return E; 7979 E = result.get(); 7980 } 7981 7982 // C99 6.3.2.1: 7983 // [Except in specific positions,] an lvalue that does not have 7984 // array type is converted to the value stored in the 7985 // designated object (and is no longer an lvalue). 7986 if (E->isPRValue()) { 7987 // In C, function designators (i.e. expressions of function type) 7988 // are r-values, but we still want to do function-to-pointer decay 7989 // on them. This is both technically correct and convenient for 7990 // some clients. 7991 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7992 return DefaultFunctionArrayConversion(E); 7993 7994 return E; 7995 } 7996 7997 if (getLangOpts().CPlusPlus) { 7998 // The C++11 standard defines the notion of a discarded-value expression; 7999 // normally, we don't need to do anything to handle it, but if it is a 8000 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 8001 // conversion. 8002 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 8003 ExprResult Res = DefaultLvalueConversion(E); 8004 if (Res.isInvalid()) 8005 return E; 8006 E = Res.get(); 8007 } else { 8008 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8009 // it occurs as a discarded-value expression. 8010 CheckUnusedVolatileAssignment(E); 8011 } 8012 8013 // C++1z: 8014 // If the expression is a prvalue after this optional conversion, the 8015 // temporary materialization conversion is applied. 8016 // 8017 // We skip this step: IR generation is able to synthesize the storage for 8018 // itself in the aggregate case, and adding the extra node to the AST is 8019 // just clutter. 8020 // FIXME: We don't emit lifetime markers for the temporaries due to this. 8021 // FIXME: Do any other AST consumers care about this? 8022 return E; 8023 } 8024 8025 // GCC seems to also exclude expressions of incomplete enum type. 8026 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 8027 if (!T->getDecl()->isComplete()) { 8028 // FIXME: stupid workaround for a codegen bug! 8029 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 8030 return E; 8031 } 8032 } 8033 8034 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 8035 if (Res.isInvalid()) 8036 return E; 8037 E = Res.get(); 8038 8039 if (!E->getType()->isVoidType()) 8040 RequireCompleteType(E->getExprLoc(), E->getType(), 8041 diag::err_incomplete_type); 8042 return E; 8043} 8044 8045ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 8046 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8047 // it occurs as an unevaluated operand. 8048 CheckUnusedVolatileAssignment(E); 8049 8050 return E; 8051} 8052 8053// If we can unambiguously determine whether Var can never be used 8054// in a constant expression, return true. 8055// - if the variable and its initializer are non-dependent, then 8056// we can unambiguously check if the variable is a constant expression. 8057// - if the initializer is not value dependent - we can determine whether 8058// it can be used to initialize a constant expression. If Init can not 8059// be used to initialize a constant expression we conclude that Var can 8060// never be a constant expression. 8061// - FXIME: if the initializer is dependent, we can still do some analysis and 8062// identify certain cases unambiguously as non-const by using a Visitor: 8063// - such as those that involve odr-use of a ParmVarDecl, involve a new 8064// delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 8065static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 8066 ASTContext &Context) { 8067 if (isa<ParmVarDecl>(Var)) return true; 8068 const VarDecl *DefVD = nullptr; 8069 8070 // If there is no initializer - this can not be a constant expression. 8071 if (!Var->getAnyInitializer(DefVD)) return true; 8072 assert(DefVD)(static_cast <bool> (DefVD) ? void (0) : __assert_fail (
"DefVD", "clang/lib/Sema/SemaExprCXX.cpp", 8072, __extension__
__PRETTY_FUNCTION__))
; 8073 if (DefVD->isWeak()) return false; 8074 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 8075 8076 Expr *Init = cast<Expr>(Eval->Value); 8077 8078 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8079 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8080 // of value-dependent expressions, and use it here to determine whether the 8081 // initializer is a potential constant expression. 8082 return false; 8083 } 8084 8085 return !Var->isUsableInConstantExpressions(Context); 8086} 8087 8088/// Check if the current lambda has any potential captures 8089/// that must be captured by any of its enclosing lambdas that are ready to 8090/// capture. If there is a lambda that can capture a nested 8091/// potential-capture, go ahead and do so. Also, check to see if any 8092/// variables are uncaptureable or do not involve an odr-use so do not 8093/// need to be captured. 8094 8095static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8096 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8097 8098 assert(!S.isUnevaluatedContext())(static_cast <bool> (!S.isUnevaluatedContext()) ? void (
0) : __assert_fail ("!S.isUnevaluatedContext()", "clang/lib/Sema/SemaExprCXX.cpp"
, 8098, __extension__ __PRETTY_FUNCTION__))
; 8099 assert(S.CurContext->isDependentContext())(static_cast <bool> (S.CurContext->isDependentContext
()) ? void (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "clang/lib/Sema/SemaExprCXX.cpp", 8099, __extension__ __PRETTY_FUNCTION__
))
; 8100#ifndef NDEBUG 8101 DeclContext *DC = S.CurContext; 8102 while (DC && isa<CapturedDecl>(DC)) 8103 DC = DC->getParent(); 8104 assert((static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
8105 CurrentLSI->CallOperator == DC &&(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
8106 "The current call operator must be synchronized with Sema's CurContext")(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8106, __extension__ __PRETTY_FUNCTION__
))
; 8107#endif // NDEBUG 8108 8109 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8110 8111 // All the potentially captureable variables in the current nested 8112 // lambda (within a generic outer lambda), must be captured by an 8113 // outer lambda that is enclosed within a non-dependent context. 8114 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8115 // If the variable is clearly identified as non-odr-used and the full 8116 // expression is not instantiation dependent, only then do we not 8117 // need to check enclosing lambda's for speculative captures. 8118 // For e.g.: 8119 // Even though 'x' is not odr-used, it should be captured. 8120 // int test() { 8121 // const int x = 10; 8122 // auto L = [=](auto a) { 8123 // (void) +x + a; 8124 // }; 8125 // } 8126 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8127 !IsFullExprInstantiationDependent) 8128 return; 8129 8130 // If we have a capture-capable lambda for the variable, go ahead and 8131 // capture the variable in that lambda (and all its enclosing lambdas). 8132 if (const Optional<unsigned> Index = 8133 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8134 S.FunctionScopes, Var, S)) 8135 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 8136 Index.getValue()); 8137 const bool IsVarNeverAConstantExpression = 8138 VariableCanNeverBeAConstantExpression(Var, S.Context); 8139 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8140 // This full expression is not instantiation dependent or the variable 8141 // can not be used in a constant expression - which means 8142 // this variable must be odr-used here, so diagnose a 8143 // capture violation early, if the variable is un-captureable. 8144 // This is purely for diagnosing errors early. Otherwise, this 8145 // error would get diagnosed when the lambda becomes capture ready. 8146 QualType CaptureType, DeclRefType; 8147 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8148 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8149 /*EllipsisLoc*/ SourceLocation(), 8150 /*BuildAndDiagnose*/false, CaptureType, 8151 DeclRefType, nullptr)) { 8152 // We will never be able to capture this variable, and we need 8153 // to be able to in any and all instantiations, so diagnose it. 8154 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8155 /*EllipsisLoc*/ SourceLocation(), 8156 /*BuildAndDiagnose*/true, CaptureType, 8157 DeclRefType, nullptr); 8158 } 8159 } 8160 }); 8161 8162 // Check if 'this' needs to be captured. 8163 if (CurrentLSI->hasPotentialThisCapture()) { 8164 // If we have a capture-capable lambda for 'this', go ahead and capture 8165 // 'this' in that lambda (and all its enclosing lambdas). 8166 if (const Optional<unsigned> Index = 8167 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8168 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8169 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 8170 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8171 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8172 &FunctionScopeIndexOfCapturableLambda); 8173 } 8174 } 8175 8176 // Reset all the potential captures at the end of each full-expression. 8177 CurrentLSI->clearPotentialCaptures(); 8178} 8179 8180static ExprResult attemptRecovery(Sema &SemaRef, 8181 const TypoCorrectionConsumer &Consumer, 8182 const TypoCorrection &TC) { 8183 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8184 Consumer.getLookupResult().getLookupKind()); 8185 const CXXScopeSpec *SS = Consumer.getSS(); 8186 CXXScopeSpec NewSS; 8187 8188 // Use an approprate CXXScopeSpec for building the expr. 8189 if (auto *NNS = TC.getCorrectionSpecifier()) 8190 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8191 else if (SS && !TC.WillReplaceSpecifier()) 8192 NewSS = *SS; 8193 8194 if (auto *ND = TC.getFoundDecl()) { 8195 R.setLookupName(ND->getDeclName()); 8196 R.addDecl(ND); 8197 if (ND->isCXXClassMember()) { 8198 // Figure out the correct naming class to add to the LookupResult. 8199 CXXRecordDecl *Record = nullptr; 8200 if (auto *NNS = TC.getCorrectionSpecifier()) 8201 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8202 if (!Record) 8203 Record = 8204 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8205 if (Record) 8206 R.setNamingClass(Record); 8207 8208 // Detect and handle the case where the decl might be an implicit 8209 // member. 8210 bool MightBeImplicitMember; 8211 if (!Consumer.isAddressOfOperand()) 8212 MightBeImplicitMember = true; 8213 else if (!NewSS.isEmpty()) 8214 MightBeImplicitMember = false; 8215 else if (R.isOverloadedResult()) 8216 MightBeImplicitMember = false; 8217 else if (R.isUnresolvableResult()) 8218 MightBeImplicitMember = true; 8219 else 8220 MightBeImplicitMember = isa<FieldDecl>(ND) || 8221 isa<IndirectFieldDecl>(ND) || 8222 isa<MSPropertyDecl>(ND); 8223 8224 if (MightBeImplicitMember) 8225 return SemaRef.BuildPossibleImplicitMemberExpr( 8226 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8227 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8228 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8229 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8230 Ivar->getIdentifier()); 8231 } 8232 } 8233 8234 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8235 /*AcceptInvalidDecl*/ true); 8236} 8237 8238namespace { 8239class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8240 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8241 8242public: 8243 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8244 : TypoExprs(TypoExprs) {} 8245 bool VisitTypoExpr(TypoExpr *TE) { 8246 TypoExprs.insert(TE); 8247 return true; 8248 } 8249}; 8250 8251class TransformTypos : public TreeTransform<TransformTypos> { 8252 typedef TreeTransform<TransformTypos> BaseTransform; 8253 8254 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8255 // process of being initialized. 8256 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8257 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8258 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8259 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8260 8261 /// Emit diagnostics for all of the TypoExprs encountered. 8262 /// 8263 /// If the TypoExprs were successfully corrected, then the diagnostics should 8264 /// suggest the corrections. Otherwise the diagnostics will not suggest 8265 /// anything (having been passed an empty TypoCorrection). 8266 /// 8267 /// If we've failed to correct due to ambiguous corrections, we need to 8268 /// be sure to pass empty corrections and replacements. Otherwise it's 8269 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8270 /// and we don't want to report those diagnostics. 8271 void EmitAllDiagnostics(bool IsAmbiguous) { 8272 for (TypoExpr *TE : TypoExprs) { 8273 auto &State = SemaRef.getTypoExprState(TE); 8274 if (State.DiagHandler) { 8275 TypoCorrection TC = IsAmbiguous 8276 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8277 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8278 8279 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8280 // TypoCorrection, replacing the existing decls. This ensures the right 8281 // NamedDecl is used in diagnostics e.g. in the case where overload 8282 // resolution was used to select one from several possible decls that 8283 // had been stored in the TypoCorrection. 8284 if (auto *ND = getDeclFromExpr( 8285 Replacement.isInvalid() ? nullptr : Replacement.get())) 8286 TC.setCorrectionDecl(ND); 8287 8288 State.DiagHandler(TC); 8289 } 8290 SemaRef.clearDelayedTypo(TE); 8291 } 8292 } 8293 8294 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8295 /// We allow advancement of the correction stream by removing it from the 8296 /// TransformCache which allows `TransformTypoExpr` to advance during the 8297 /// next transformation attempt. 8298 /// 8299 /// Any substitution attempts for the previous TypoExprs (which must have been 8300 /// finished) will need to be retried since it's possible that they will now 8301 /// be invalid given the latest advancement. 8302 /// 8303 /// We need to be sure that we're making progress - it's possible that the 8304 /// tree is so malformed that the transform never makes it to the 8305 /// `TransformTypoExpr`. 8306 /// 8307 /// Returns true if there are any untried correction combinations. 8308 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8309 for (auto TE : TypoExprs) { 8310 auto &State = SemaRef.getTypoExprState(TE); 8311 TransformCache.erase(TE); 8312 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8313 return false; 8314 if (!State.Consumer->finished()) 8315 return true; 8316 State.Consumer->resetCorrectionStream(); 8317 } 8318 return false; 8319 } 8320 8321 NamedDecl *getDeclFromExpr(Expr *E) { 8322 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8323 E = OverloadResolution[OE]; 8324 8325 if (!E) 8326 return nullptr; 8327 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8328 return DRE->getFoundDecl(); 8329 if (auto *ME = dyn_cast<MemberExpr>(E)) 8330 return ME->getFoundDecl(); 8331 // FIXME: Add any other expr types that could be be seen by the delayed typo 8332 // correction TreeTransform for which the corresponding TypoCorrection could 8333 // contain multiple decls. 8334 return nullptr; 8335 } 8336 8337 ExprResult TryTransform(Expr *E) { 8338 Sema::SFINAETrap Trap(SemaRef); 8339 ExprResult Res = TransformExpr(E); 8340 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8341 return ExprError(); 8342 8343 return ExprFilter(Res.get()); 8344 } 8345 8346 // Since correcting typos may intoduce new TypoExprs, this function 8347 // checks for new TypoExprs and recurses if it finds any. Note that it will 8348 // only succeed if it is able to correct all typos in the given expression. 8349 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8350 if (Res.isInvalid()) { 8351 return Res; 8352 } 8353 // Check to see if any new TypoExprs were created. If so, we need to recurse 8354 // to check their validity. 8355 Expr *FixedExpr = Res.get(); 8356 8357 auto SavedTypoExprs = std::move(TypoExprs); 8358 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8359 TypoExprs.clear(); 8360 AmbiguousTypoExprs.clear(); 8361 8362 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8363 if (!TypoExprs.empty()) { 8364 // Recurse to handle newly created TypoExprs. If we're not able to 8365 // handle them, discard these TypoExprs. 8366 ExprResult RecurResult = 8367 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8368 if (RecurResult.isInvalid()) { 8369 Res = ExprError(); 8370 // Recursive corrections didn't work, wipe them away and don't add 8371 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8372 // since we don't want to clear them twice. Note: it's possible the 8373 // TypoExprs were created recursively and thus won't be in our 8374 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8375 auto &SemaTypoExprs = SemaRef.TypoExprs; 8376 for (auto TE : TypoExprs) { 8377 TransformCache.erase(TE); 8378 SemaRef.clearDelayedTypo(TE); 8379 8380 auto SI = find(SemaTypoExprs, TE); 8381 if (SI != SemaTypoExprs.end()) { 8382 SemaTypoExprs.erase(SI); 8383 } 8384 } 8385 } else { 8386 // TypoExpr is valid: add newly created TypoExprs since we were 8387 // able to correct them. 8388 Res = RecurResult; 8389 SavedTypoExprs.set_union(TypoExprs); 8390 } 8391 } 8392 8393 TypoExprs = std::move(SavedTypoExprs); 8394 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8395 8396 return Res; 8397 } 8398 8399 // Try to transform the given expression, looping through the correction 8400 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8401 // 8402 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8403 // true and this method immediately will return an `ExprError`. 8404 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8405 ExprResult Res; 8406 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8407 SemaRef.TypoExprs.clear(); 8408 8409 while (true) { 8410 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8411 8412 // Recursion encountered an ambiguous correction. This means that our 8413 // correction itself is ambiguous, so stop now. 8414 if (IsAmbiguous) 8415 break; 8416 8417 // If the transform is still valid after checking for any new typos, 8418 // it's good to go. 8419 if (!Res.isInvalid()) 8420 break; 8421 8422 // The transform was invalid, see if we have any TypoExprs with untried 8423 // correction candidates. 8424 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8425 break; 8426 } 8427 8428 // If we found a valid result, double check to make sure it's not ambiguous. 8429 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8430 auto SavedTransformCache = 8431 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8432 8433 // Ensure none of the TypoExprs have multiple typo correction candidates 8434 // with the same edit length that pass all the checks and filters. 8435 while (!AmbiguousTypoExprs.empty()) { 8436 auto TE = AmbiguousTypoExprs.back(); 8437 8438 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8439 // and invalidating our TypoExprState, so always fetch it instead of storing. 8440 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8441 8442 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8443 TypoCorrection Next; 8444 do { 8445 // Fetch the next correction by erasing the typo from the cache and calling 8446 // `TryTransform` which will iterate through corrections in 8447 // `TransformTypoExpr`. 8448 TransformCache.erase(TE); 8449 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8450 8451 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8452 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8453 SavedTransformCache.erase(TE); 8454 Res = ExprError(); 8455 IsAmbiguous = true; 8456 break; 8457 } 8458 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8459 Next.getEditDistance(false) == TC.getEditDistance(false)); 8460 8461 if (IsAmbiguous) 8462 break; 8463 8464 AmbiguousTypoExprs.remove(TE); 8465 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8466 TransformCache[TE] = SavedTransformCache[TE]; 8467 } 8468 TransformCache = std::move(SavedTransformCache); 8469 } 8470 8471 // Wipe away any newly created TypoExprs that we don't know about. Since we 8472 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8473 // possible if a `TypoExpr` is created during a transformation but then 8474 // fails before we can discover it. 8475 auto &SemaTypoExprs = SemaRef.TypoExprs; 8476 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8477 auto TE = *Iterator; 8478 auto FI = find(TypoExprs, TE); 8479 if (FI != TypoExprs.end()) { 8480 Iterator++; 8481 continue; 8482 } 8483 SemaRef.clearDelayedTypo(TE); 8484 Iterator = SemaTypoExprs.erase(Iterator); 8485 } 8486 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8487 8488 return Res; 8489 } 8490 8491public: 8492 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8493 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8494 8495 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8496 MultiExprArg Args, 8497 SourceLocation RParenLoc, 8498 Expr *ExecConfig = nullptr) { 8499 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8500 RParenLoc, ExecConfig); 8501 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8502 if (Result.isUsable()) { 8503 Expr *ResultCall = Result.get(); 8504 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8505 ResultCall = BE->getSubExpr(); 8506 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8507 OverloadResolution[OE] = CE->getCallee(); 8508 } 8509 } 8510 return Result; 8511 } 8512 8513 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8514 8515 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8516 8517 ExprResult Transform(Expr *E) { 8518 bool IsAmbiguous = false; 8519 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8520 8521 if (!Res.isUsable()) 8522 FindTypoExprs(TypoExprs).TraverseStmt(E); 8523 8524 EmitAllDiagnostics(IsAmbiguous); 8525 8526 return Res; 8527 } 8528 8529 ExprResult TransformTypoExpr(TypoExpr *E) { 8530 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8531 // cached transformation result if there is one and the TypoExpr isn't the 8532 // first one that was encountered. 8533 auto &CacheEntry = TransformCache[E]; 8534 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8535 return CacheEntry; 8536 } 8537 8538 auto &State = SemaRef.getTypoExprState(E); 8539 assert(State.Consumer && "Cannot transform a cleared TypoExpr")(static_cast <bool> (State.Consumer && "Cannot transform a cleared TypoExpr"
) ? void (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8539, __extension__ __PRETTY_FUNCTION__
))
; 8540 8541 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8542 // typo correction and return it. 8543 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8544 if (InitDecl && TC.getFoundDecl() == InitDecl) 8545 continue; 8546 // FIXME: If we would typo-correct to an invalid declaration, it's 8547 // probably best to just suppress all errors from this typo correction. 8548 ExprResult NE = State.RecoveryHandler ? 8549 State.RecoveryHandler(SemaRef, E, TC) : 8550 attemptRecovery(SemaRef, *State.Consumer, TC); 8551 if (!NE.isInvalid()) { 8552 // Check whether there may be a second viable correction with the same 8553 // edit distance; if so, remember this TypoExpr may have an ambiguous 8554 // correction so it can be more thoroughly vetted later. 8555 TypoCorrection Next; 8556 if ((Next = State.Consumer->peekNextCorrection()) && 8557 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8558 AmbiguousTypoExprs.insert(E); 8559 } else { 8560 AmbiguousTypoExprs.remove(E); 8561 } 8562 assert(!NE.isUnset() &&(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8563, __extension__ __PRETTY_FUNCTION__
))
8563 "Typo was transformed into a valid-but-null ExprResult")(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8563, __extension__ __PRETTY_FUNCTION__
))
; 8564 return CacheEntry = NE; 8565 } 8566 } 8567 return CacheEntry = ExprError(); 8568 } 8569}; 8570} 8571 8572ExprResult 8573Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8574 bool RecoverUncorrectedTypos, 8575 llvm::function_ref<ExprResult(Expr *)> Filter) { 8576 // If the current evaluation context indicates there are uncorrected typos 8577 // and the current expression isn't guaranteed to not have typos, try to 8578 // resolve any TypoExpr nodes that might be in the expression. 8579 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8580 (E->isTypeDependent() || E->isValueDependent() || 8581 E->isInstantiationDependent())) { 8582 auto TyposResolved = DelayedTypos.size(); 8583 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8584 TyposResolved -= DelayedTypos.size(); 8585 if (Result.isInvalid() || Result.get() != E) { 8586 ExprEvalContexts.back().NumTypos -= TyposResolved; 8587 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8588 struct TyposReplace : TreeTransform<TyposReplace> { 8589 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8590 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8591 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8592 E->getEndLoc(), {}); 8593 } 8594 } TT(*this); 8595 return TT.TransformExpr(E); 8596 } 8597 return Result; 8598 } 8599 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")(static_cast <bool> (TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? void (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8599, __extension__ __PRETTY_FUNCTION__
))
; 8600 } 8601 return E; 8602} 8603 8604ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8605 bool DiscardedValue, 8606 bool IsConstexpr) { 8607 ExprResult FullExpr = FE; 8608 8609 if (!FullExpr.get()) 8610 return ExprError(); 8611 8612 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8613 return ExprError(); 8614 8615 if (DiscardedValue) { 8616 // Top-level expressions default to 'id' when we're in a debugger. 8617 if (getLangOpts().DebuggerCastResultToId && 8618 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8619 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8620 if (FullExpr.isInvalid()) 8621 return ExprError(); 8622 } 8623 8624 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8625 if (FullExpr.isInvalid()) 8626 return ExprError(); 8627 8628 FullExpr = IgnoredValueConversions(FullExpr.get()); 8629 if (FullExpr.isInvalid()) 8630 return ExprError(); 8631 8632 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8633 } 8634 8635 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8636 /*RecoverUncorrectedTypos=*/true); 8637 if (FullExpr.isInvalid()) 8638 return ExprError(); 8639 8640 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8641 8642 // At the end of this full expression (which could be a deeply nested 8643 // lambda), if there is a potential capture within the nested lambda, 8644 // have the outer capture-able lambda try and capture it. 8645 // Consider the following code: 8646 // void f(int, int); 8647 // void f(const int&, double); 8648 // void foo() { 8649 // const int x = 10, y = 20; 8650 // auto L = [=](auto a) { 8651 // auto M = [=](auto b) { 8652 // f(x, b); <-- requires x to be captured by L and M 8653 // f(y, a); <-- requires y to be captured by L, but not all Ms 8654 // }; 8655 // }; 8656 // } 8657 8658 // FIXME: Also consider what happens for something like this that involves 8659 // the gnu-extension statement-expressions or even lambda-init-captures: 8660 // void f() { 8661 // const int n = 0; 8662 // auto L = [&](auto a) { 8663 // +n + ({ 0; a; }); 8664 // }; 8665 // } 8666 // 8667 // Here, we see +n, and then the full-expression 0; ends, so we don't 8668 // capture n (and instead remove it from our list of potential captures), 8669 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8670 // for us to see that we need to capture n after all. 8671 8672 LambdaScopeInfo *const CurrentLSI = 8673 getCurLambda(/*IgnoreCapturedRegions=*/true); 8674 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8675 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8676 // for an example of the code that might cause this asynchrony. 8677 // By ensuring we are in the context of a lambda's call operator 8678 // we can fix the bug (we only need to check whether we need to capture 8679 // if we are within a lambda's body); but per the comments in that 8680 // PR, a proper fix would entail : 8681 // "Alternative suggestion: 8682 // - Add to Sema an integer holding the smallest (outermost) scope 8683 // index that we are *lexically* within, and save/restore/set to 8684 // FunctionScopes.size() in InstantiatingTemplate's 8685 // constructor/destructor. 8686 // - Teach the handful of places that iterate over FunctionScopes to 8687 // stop at the outermost enclosing lexical scope." 8688 DeclContext *DC = CurContext; 8689 while (DC && isa<CapturedDecl>(DC)) 8690 DC = DC->getParent(); 8691 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8692 if (IsInLambdaDeclContext && CurrentLSI && 8693 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8694 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8695 *this); 8696 return MaybeCreateExprWithCleanups(FullExpr); 8697} 8698 8699StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8700 if (!FullStmt) return StmtError(); 8701 8702 return MaybeCreateStmtWithCleanups(FullStmt); 8703} 8704 8705Sema::IfExistsResult 8706Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8707 CXXScopeSpec &SS, 8708 const DeclarationNameInfo &TargetNameInfo) { 8709 DeclarationName TargetName = TargetNameInfo.getName(); 8710 if (!TargetName) 8711 return IER_DoesNotExist; 8712 8713 // If the name itself is dependent, then the result is dependent. 8714 if (TargetName.isDependentName()) 8715 return IER_Dependent; 8716 8717 // Do the redeclaration lookup in the current scope. 8718 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8719 Sema::NotForRedeclaration); 8720 LookupParsedName(R, S, &SS); 8721 R.suppressDiagnostics(); 8722 8723 switch (R.getResultKind()) { 8724 case LookupResult::Found: 8725 case LookupResult::FoundOverloaded: 8726 case LookupResult::FoundUnresolvedValue: 8727 case LookupResult::Ambiguous: 8728 return IER_Exists; 8729 8730 case LookupResult::NotFound: 8731 return IER_DoesNotExist; 8732 8733 case LookupResult::NotFoundInCurrentInstantiation: 8734 return IER_Dependent; 8735 } 8736 8737 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "clang/lib/Sema/SemaExprCXX.cpp", 8737)
; 8738} 8739 8740Sema::IfExistsResult 8741Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8742 bool IsIfExists, CXXScopeSpec &SS, 8743 UnqualifiedId &Name) { 8744 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8745 8746 // Check for an unexpanded parameter pack. 8747 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8748 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8749 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8750 return IER_Error; 8751 8752 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8753} 8754 8755concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8756 return BuildExprRequirement(E, /*IsSimple=*/true, 8757 /*NoexceptLoc=*/SourceLocation(), 8758 /*ReturnTypeRequirement=*/{}); 8759} 8760 8761concepts::Requirement * 8762Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8763 SourceLocation NameLoc, IdentifierInfo *TypeName, 8764 TemplateIdAnnotation *TemplateId) { 8765 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8766, __extension__ __PRETTY_FUNCTION__
))
8766 "Exactly one of TypeName and TemplateId must be specified.")(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8766, __extension__ __PRETTY_FUNCTION__
))
; 8767 TypeSourceInfo *TSI = nullptr; 8768 if (TypeName) { 8769 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8770 SS.getWithLocInContext(Context), *TypeName, 8771 NameLoc, &TSI, /*DeducedTSTContext=*/false); 8772 if (T.isNull()) 8773 return nullptr; 8774 } else { 8775 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8776 TemplateId->NumArgs); 8777 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8778 TemplateId->TemplateKWLoc, 8779 TemplateId->Template, TemplateId->Name, 8780 TemplateId->TemplateNameLoc, 8781 TemplateId->LAngleLoc, ArgsPtr, 8782 TemplateId->RAngleLoc); 8783 if (T.isInvalid()) 8784 return nullptr; 8785 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8786 return nullptr; 8787 } 8788 return BuildTypeRequirement(TSI); 8789} 8790 8791concepts::Requirement * 8792Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8793 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8794 /*ReturnTypeRequirement=*/{}); 8795} 8796 8797concepts::Requirement * 8798Sema::ActOnCompoundRequirement( 8799 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8800 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8801 // C++2a [expr.prim.req.compound] p1.3.3 8802 // [..] the expression is deduced against an invented function template 8803 // F [...] F is a void function template with a single type template 8804 // parameter T declared with the constrained-parameter. Form a new 8805 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8806 // around the constrained-parameter. F has a single parameter whose 8807 // type-specifier is cv T followed by the abstract-declarator. [...] 8808 // 8809 // The cv part is done in the calling function - we get the concept with 8810 // arguments and the abstract declarator with the correct CV qualification and 8811 // have to synthesize T and the single parameter of F. 8812 auto &II = Context.Idents.get("expr-type"); 8813 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8814 SourceLocation(), 8815 SourceLocation(), Depth, 8816 /*Index=*/0, &II, 8817 /*Typename=*/true, 8818 /*ParameterPack=*/false, 8819 /*HasTypeConstraint=*/true); 8820 8821 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8822 /*EllipsisLoc=*/SourceLocation(), 8823 /*AllowUnexpandedPack=*/true)) 8824 // Just produce a requirement with no type requirements. 8825 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8826 8827 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8828 SourceLocation(), 8829 ArrayRef<NamedDecl *>(TParam), 8830 SourceLocation(), 8831 /*RequiresClause=*/nullptr); 8832 return BuildExprRequirement( 8833 E, /*IsSimple=*/false, NoexceptLoc, 8834 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8835} 8836 8837concepts::ExprRequirement * 8838Sema::BuildExprRequirement( 8839 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8840 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8841 auto Status = concepts::ExprRequirement::SS_Satisfied; 8842 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8843 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8844 Status = concepts::ExprRequirement::SS_Dependent; 8845 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8846 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8847 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8848 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8849 else if (ReturnTypeRequirement.isTypeConstraint()) { 8850 // C++2a [expr.prim.req]p1.3.3 8851 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8852 // be satisfied. 8853 TemplateParameterList *TPL = 8854 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8855 QualType MatchedType = 8856 Context.getReferenceQualifiedType(E).getCanonicalType(); 8857 llvm::SmallVector<TemplateArgument, 1> Args; 8858 Args.push_back(TemplateArgument(MatchedType)); 8859 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8860 MultiLevelTemplateArgumentList MLTAL(TAL); 8861 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8862 MLTAL.addOuterRetainedLevel(); 8863 Expr *IDC = 8864 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8865 ->getImmediatelyDeclaredConstraint(); 8866 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8867 assert(!Constraint.isInvalid() &&(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
8868 "Substitution cannot fail as it is simply putting a type template "(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
8869 "argument into a concept specialization expression's parameter.")(static_cast <bool> (!Constraint.isInvalid() &&
"Substitution cannot fail as it is simply putting a type template "
"argument into a concept specialization expression's parameter."
) ? void (0) : __assert_fail ("!Constraint.isInvalid() && \"Substitution cannot fail as it is simply putting a type template \" \"argument into a concept specialization expression's parameter.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
; 8870 8871 SubstitutedConstraintExpr = 8872 cast<ConceptSpecializationExpr>(Constraint.get()); 8873 if (!SubstitutedConstraintExpr->isSatisfied()) 8874 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8875 } 8876 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8877 ReturnTypeRequirement, Status, 8878 SubstitutedConstraintExpr); 8879} 8880 8881concepts::ExprRequirement * 8882Sema::BuildExprRequirement( 8883 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8884 bool IsSimple, SourceLocation NoexceptLoc, 8885 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8886 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8887 IsSimple, NoexceptLoc, 8888 ReturnTypeRequirement); 8889} 8890 8891concepts::TypeRequirement * 8892Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8893 return new (Context) concepts::TypeRequirement(Type); 8894} 8895 8896concepts::TypeRequirement * 8897Sema::BuildTypeRequirement( 8898 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8899 return new (Context) concepts::TypeRequirement(SubstDiag); 8900} 8901 8902concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8903 return BuildNestedRequirement(Constraint); 8904} 8905 8906concepts::NestedRequirement * 8907Sema::BuildNestedRequirement(Expr *Constraint) { 8908 ConstraintSatisfaction Satisfaction; 8909 if (!Constraint->isInstantiationDependent() && 8910 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8911 Constraint->getSourceRange(), Satisfaction)) 8912 return nullptr; 8913 return new (Context) concepts::NestedRequirement(Context, Constraint, 8914 Satisfaction); 8915} 8916 8917concepts::NestedRequirement * 8918Sema::BuildNestedRequirement( 8919 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8920 return new (Context) concepts::NestedRequirement(SubstDiag); 8921} 8922 8923RequiresExprBodyDecl * 8924Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8925 ArrayRef<ParmVarDecl *> LocalParameters, 8926 Scope *BodyScope) { 8927 assert(BodyScope)(static_cast <bool> (BodyScope) ? void (0) : __assert_fail
("BodyScope", "clang/lib/Sema/SemaExprCXX.cpp", 8927, __extension__
__PRETTY_FUNCTION__))
; 8928 8929 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8930 RequiresKWLoc); 8931 8932 PushDeclContext(BodyScope, Body); 8933 8934 for (ParmVarDecl *Param : LocalParameters) { 8935 if (Param->hasDefaultArg()) 8936 // C++2a [expr.prim.req] p4 8937 // [...] A local parameter of a requires-expression shall not have a 8938 // default argument. [...] 8939 Diag(Param->getDefaultArgRange().getBegin(), 8940 diag::err_requires_expr_local_parameter_default_argument); 8941 // Ignore default argument and move on 8942 8943 Param->setDeclContext(Body); 8944 // If this has an identifier, add it to the scope stack. 8945 if (Param->getIdentifier()) { 8946 CheckShadow(BodyScope, Param); 8947 PushOnScopeChains(Param, BodyScope); 8948 } 8949 } 8950 return Body; 8951} 8952 8953void Sema::ActOnFinishRequiresExpr() { 8954 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8954, __extension__ __PRETTY_FUNCTION__
))
; 8955 CurContext = CurContext->getLexicalParent(); 8956 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8956, __extension__ __PRETTY_FUNCTION__
))
; 8957} 8958 8959ExprResult 8960Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8961 RequiresExprBodyDecl *Body, 8962 ArrayRef<ParmVarDecl *> LocalParameters, 8963 ArrayRef<concepts::Requirement *> Requirements, 8964 SourceLocation ClosingBraceLoc) { 8965 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8966 Requirements, ClosingBraceLoc); 8967 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8968 return ExprError(); 8969 return RE; 8970}