Bug Summary

File:clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1246, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-26-234817-15343-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp

/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __extension__ __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 488, __extension__ __PRETTY_FUNCTION__))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (Status != ReservedIdentifierStatus::NotReserved &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 807, __extension__ __PRETTY_FUNCTION__))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 807, __extension__ __PRETTY_FUNCTION__))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (CurLSI->CallOperator->isConst())
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140 // can happen during instantiation of its nested generic lambda call
1141 // operator); 2. if we're in a lambda scope (lambda body).
1142 if (CurLSI && isLambdaCallOperator(CurDC)) {
1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
1144 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
1145 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
1147 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
;
1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1148, __extension__ __PRETTY_FUNCTION__))
;
1149
1150 auto IsThisCaptured =
1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152 IsConst = false;
1153 IsByCopy = false;
1154 for (auto &&C : Closure->captures()) {
1155 if (C.capturesThis()) {
1156 if (C.getCaptureKind() == LCK_StarThis)
1157 IsByCopy = true;
1158 if (Closure->getLambdaCallOperator()->isConst())
1159 IsConst = true;
1160 return true;
1161 }
1162 }
1163 return false;
1164 };
1165
1166 bool IsByCopyCapture = false;
1167 bool IsConstCapture = false;
1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169 while (Closure &&
1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171 if (IsByCopyCapture) {
1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173 if (IsConstCapture)
1174 ClassType.addConst();
1175 return ASTCtx.getPointerType(ClassType);
1176 }
1177 Closure = isLambdaCallOperator(Closure->getParent())
1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179 : nullptr;
1180 }
1181 }
1182 return ASTCtx.getPointerType(ClassType);
1183}
1184
1185QualType Sema::getCurrentThisType() {
1186 DeclContext *DC = getFunctionLevelDeclContext();
1187 QualType ThisTy = CXXThisTypeOverride;
1188
1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190 if (method && method->isInstance())
1191 ThisTy = method->getThisType();
1192 }
1193
1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196
1197 // This is a lambda call operator that is being instantiated as a default
1198 // initializer. DC must point to the enclosing class type, so we can recover
1199 // the 'this' type from it.
1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201 // There are no cv-qualifiers for 'this' within default initializers,
1202 // per [expr.prim.general]p4.
1203 ThisTy = Context.getPointerType(ClassTy);
1204 }
1205
1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207 // might need to be adjusted if the lambda or any of its enclosing lambda's
1208 // captures '*this' by copy.
1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211 CurContext, Context);
1212 return ThisTy;
1213}
1214
1215Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216 Decl *ContextDecl,
1217 Qualifiers CXXThisTypeQuals,
1218 bool Enabled)
1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220{
1221 if (!Enabled || !ContextDecl)
1222 return;
1223
1224 CXXRecordDecl *Record = nullptr;
1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226 Record = Template->getTemplatedDecl();
1227 else
1228 Record = cast<CXXRecordDecl>(ContextDecl);
1229
1230 QualType T = S.Context.getRecordType(Record);
1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232
1233 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234
1235 this->Enabled = true;
1236}
1237
1238
1239Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240 if (Enabled) {
1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242 }
1243}
1244
1245static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
32
Called C++ object pointer is null
1247 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 // [=, this] {}; // until C++20: Error: this when = is the default
1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250 !Sema.getLangOpts().CPlusPlus20)
1251 return;
1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253 << FixItHint::CreateInsertion(
1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255}
1256
1257bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259 const bool ByCopy) {
1260 // We don't need to capture this in an unevaluated context.
1261 if (isUnevaluatedContext() && !Explicit)
5
Calling 'Sema::isUnevaluatedContext'
14
Returning from 'Sema::isUnevaluatedContext'
1262 return true;
1263
1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1264, __extension__ __PRETTY_FUNCTION__))
;
15
'?' condition is true
1265
1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
15.1
'FunctionScopeIndexToStopAt' is null
15.1
'FunctionScopeIndexToStopAt' is null
16
'?' condition is false
1267 ? *FunctionScopeIndexToStopAt 1268 : FunctionScopes.size() - 1; 1269 1270 // Check that we can capture the *enclosing object* (referred to by '*this') 1271 // by the capturing-entity/closure (lambda/block/etc) at 1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1273 1274 // Note: The *enclosing object* can only be captured by-value by a 1275 // closure that is a lambda, using the explicit notation: 1276 // [*this] { ... }. 1277 // Every other capture of the *enclosing object* results in its by-reference 1278 // capture. 1279 1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1281 // stack), we can capture the *enclosing object* only if: 1282 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1283 // - or, 'L' has an implicit capture. 1284 // AND 1285 // -- there is no enclosing closure 1286 // -- or, there is some enclosing closure 'E' that has already captured the 1287 // *enclosing object*, and every intervening closure (if any) between 'E' 1288 // and 'L' can implicitly capture the *enclosing object*. 1289 // -- or, every enclosing closure can implicitly capture the 1290 // *enclosing object* 1291 1292 1293 unsigned NumCapturingClosures = 0; 1294 for (int idx = MaxFunctionScopesIndex; idx
16.1
'idx' is >= 0
16.1
'idx' is >= 0
>= 0; idx--) {
17
Loop condition is true. Entering loop body
1295 if (CapturingScopeInfo *CSI
18.1
'CSI' is non-null
18.1
'CSI' is non-null
=
19
Taking true branch
1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
18
Assuming the object is a 'CapturingScopeInfo'
1297 if (CSI->CXXThisCaptureIndex != 0) {
20
Assuming field 'CXXThisCaptureIndex' is equal to 0
21
Taking false branch
1298 // 'this' is already being captured; there isn't anything more to do. 1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1300 break; 1301 } 1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
22
Assuming 'CSI' is not a 'LambdaScopeInfo'
23
'LSI' initialized to a null pointer value
1303 if (LSI
23.1
'LSI' is null
23.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1304 // This context can't implicitly capture 'this'; fail out. 1305 if (BuildAndDiagnose) { 1306 Diag(Loc, diag::err_this_capture) 1307 << (Explicit && idx == MaxFunctionScopesIndex); 1308 if (!Explicit) 1309 buildLambdaThisCaptureFixit(*this, LSI); 1310 } 1311 return true; 1312 } 1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
24
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
25
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
26
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
27
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1317 (Explicit
27.1
'Explicit' is false
27.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1319 // iteration through can be an explicit capture, all enclosing closures, 1320 // if any, must perform implicit captures. 1321 1322 // This closure can capture 'this'; continue looking upwards. 1323 NumCapturingClosures++; 1324 continue; 1325 } 1326 // This context can't implicitly capture 'this'; fail out. 1327 if (BuildAndDiagnose
27.2
'BuildAndDiagnose' is true
27.2
'BuildAndDiagnose' is true
)
28
Taking true branch
1328 Diag(Loc, diag::err_this_capture) 1329 << (Explicit
28.1
'Explicit' is false
28.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1330 1331 if (!Explicit
28.2
'Explicit' is false
28.2
'Explicit' is false
)
29
Taking true branch
1332 buildLambdaThisCaptureFixit(*this, LSI);
30
Passing null pointer value via 2nd parameter 'LSI'
31
Calling 'buildLambdaThisCaptureFixit'
1333 return true; 1334 } 1335 break; 1336 } 1337 if (!BuildAndDiagnose) return false; 1338 1339 // If we got here, then the closure at MaxFunctionScopesIndex on the 1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1341 // (including implicit by-reference captures in any enclosing closures). 1342 1343 // In the loop below, respect the ByCopy flag only for the closure requesting 1344 // the capture (i.e. first iteration through the loop below). Ignore it for 1345 // all enclosing closure's up to NumCapturingClosures (since they must be 1346 // implicitly capturing the *enclosing object* by reference (see loop 1347 // above)). 1348 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1351, __extension__ __PRETTY_FUNCTION__))
1349 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1351, __extension__ __PRETTY_FUNCTION__))
1350 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1351, __extension__ __PRETTY_FUNCTION__))
1351 "*this) by copy")(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1351, __extension__ __PRETTY_FUNCTION__))
; 1352 QualType ThisTy = getCurrentThisType(); 1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1354 --idx, --NumCapturingClosures) { 1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1356 1357 // The type of the corresponding data member (not a 'this' pointer if 'by 1358 // copy'). 1359 QualType CaptureType = ThisTy; 1360 if (ByCopy) { 1361 // If we are capturing the object referred to by '*this' by copy, ignore 1362 // any cv qualifiers inherited from the type of the member function for 1363 // the type of the closure-type's corresponding data member and any use 1364 // of 'this'. 1365 CaptureType = ThisTy->getPointeeType(); 1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1367 } 1368 1369 bool isNested = NumCapturingClosures > 1; 1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1371 } 1372 return false; 1373} 1374 1375ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1377 /// is a non-lvalue expression whose value is the address of the object for 1378 /// which the function is called. 1379 1380 QualType ThisTy = getCurrentThisType(); 1381 if (ThisTy.isNull())
1
Taking false branch
1382 return Diag(Loc, diag::err_invalid_this_use); 1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1384} 1385 1386Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1387 bool IsImplicit) { 1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1389 MarkThisReferenced(This);
3
Calling 'Sema::MarkThisReferenced'
1390 return This; 1391} 1392 1393void Sema::MarkThisReferenced(CXXThisExpr *This) { 1394 CheckCXXThisCapture(This->getExprLoc());
4
Calling 'Sema::CheckCXXThisCapture'
1395} 1396 1397bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1398 // If we're outside the body of a member function, then we'll have a specified 1399 // type for 'this'. 1400 if (CXXThisTypeOverride.isNull()) 1401 return false; 1402 1403 // Determine whether we're looking into a class that's currently being 1404 // defined. 1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1406 return Class && Class->isBeingDefined(); 1407} 1408 1409/// Parse construction of a specified type. 1410/// Can be interpreted either as function-style casting ("int(x)") 1411/// or class type construction ("ClassType(x,y,z)") 1412/// or creation of a value-initialized type ("int()"). 1413ExprResult 1414Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1415 SourceLocation LParenOrBraceLoc, 1416 MultiExprArg exprs, 1417 SourceLocation RParenOrBraceLoc, 1418 bool ListInitialization) { 1419 if (!TypeRep) 1420 return ExprError(); 1421 1422 TypeSourceInfo *TInfo; 1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1424 if (!TInfo) 1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1426 1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1428 RParenOrBraceLoc, ListInitialization); 1429 // Avoid creating a non-type-dependent expression that contains typos. 1430 // Non-type-dependent expressions are liable to be discarded without 1431 // checking for embedded typos. 1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1433 !Result.get()->isTypeDependent()) 1434 Result = CorrectDelayedTyposInExpr(Result.get()); 1435 else if (Result.isInvalid()) 1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1437 RParenOrBraceLoc, exprs, Ty); 1438 return Result; 1439} 1440 1441ExprResult 1442Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1443 SourceLocation LParenOrBraceLoc, 1444 MultiExprArg Exprs, 1445 SourceLocation RParenOrBraceLoc, 1446 bool ListInitialization) { 1447 QualType Ty = TInfo->getType(); 1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1449 1450 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1452, __extension__ __PRETTY_FUNCTION__))
1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1452, __extension__ __PRETTY_FUNCTION__))
1452 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1452, __extension__ __PRETTY_FUNCTION__))
; 1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1454 1455 InitializedEntity Entity = 1456 InitializedEntity::InitializeTemporary(Context, TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // There doesn't seem to be an explicit rule against this but sanity demands 1511 // we only construct objects with object types. 1512 if (Ty->isFunctionType()) 1513 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1514 << Ty << FullRange); 1515 1516 // C++17 [expr.type.conv]p2: 1517 // If the type is cv void and the initializer is (), the expression is a 1518 // prvalue of the specified type that performs no initialization. 1519 if (!Ty->isVoidType() && 1520 RequireCompleteType(TyBeginLoc, ElemTy, 1521 diag::err_invalid_incomplete_type_use, FullRange)) 1522 return ExprError(); 1523 1524 // Otherwise, the expression is a prvalue of the specified type whose 1525 // result object is direct-initialized (11.6) with the initializer. 1526 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1527 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1528 1529 if (Result.isInvalid()) 1530 return Result; 1531 1532 Expr *Inner = Result.get(); 1533 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1534 Inner = BTE->getSubExpr(); 1535 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1536 !isa<CXXScalarValueInitExpr>(Inner)) { 1537 // If we created a CXXTemporaryObjectExpr, that node also represents the 1538 // functional cast. Otherwise, create an explicit cast to represent 1539 // the syntactic form of a functional-style cast that was used here. 1540 // 1541 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1542 // would give a more consistent AST representation than using a 1543 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1544 // is sometimes handled by initialization and sometimes not. 1545 QualType ResultType = Result.get()->getType(); 1546 SourceRange Locs = ListInitialization 1547 ? SourceRange() 1548 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1549 Result = CXXFunctionalCastExpr::Create( 1550 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1551 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1552 Locs.getBegin(), Locs.getEnd()); 1553 } 1554 1555 return Result; 1556} 1557 1558bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1559 // [CUDA] Ignore this function, if we can't call it. 1560 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1561 if (getLangOpts().CUDA) { 1562 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1563 // If it's not callable at all, it's not the right function. 1564 if (CallPreference < CFP_WrongSide) 1565 return false; 1566 if (CallPreference == CFP_WrongSide) { 1567 // Maybe. We have to check if there are better alternatives. 1568 DeclContext::lookup_result R = 1569 Method->getDeclContext()->lookup(Method->getDeclName()); 1570 for (const auto *D : R) { 1571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1572 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1573 return false; 1574 } 1575 } 1576 // We've found no better variants. 1577 } 1578 } 1579 1580 SmallVector<const FunctionDecl*, 4> PreventedBy; 1581 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1582 1583 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1584 return Result; 1585 1586 // In case of CUDA, return true if none of the 1-argument deallocator 1587 // functions are actually callable. 1588 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1589 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1590, __extension__ __PRETTY_FUNCTION__))
1590 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1590, __extension__ __PRETTY_FUNCTION__))
; 1591 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1592 }); 1593} 1594 1595/// Determine whether the given function is a non-placement 1596/// deallocation function. 1597static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1598 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1599 return S.isUsualDeallocationFunction(Method); 1600 1601 if (FD->getOverloadedOperator() != OO_Delete && 1602 FD->getOverloadedOperator() != OO_Array_Delete) 1603 return false; 1604 1605 unsigned UsualParams = 1; 1606 1607 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1608 S.Context.hasSameUnqualifiedType( 1609 FD->getParamDecl(UsualParams)->getType(), 1610 S.Context.getSizeType())) 1611 ++UsualParams; 1612 1613 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1614 S.Context.hasSameUnqualifiedType( 1615 FD->getParamDecl(UsualParams)->getType(), 1616 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1617 ++UsualParams; 1618 1619 return UsualParams == FD->getNumParams(); 1620} 1621 1622namespace { 1623 struct UsualDeallocFnInfo { 1624 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1625 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1626 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1627 Destroying(false), HasSizeT(false), HasAlignValT(false), 1628 CUDAPref(Sema::CFP_Native) { 1629 // A function template declaration is never a usual deallocation function. 1630 if (!FD) 1631 return; 1632 unsigned NumBaseParams = 1; 1633 if (FD->isDestroyingOperatorDelete()) { 1634 Destroying = true; 1635 ++NumBaseParams; 1636 } 1637 1638 if (NumBaseParams < FD->getNumParams() && 1639 S.Context.hasSameUnqualifiedType( 1640 FD->getParamDecl(NumBaseParams)->getType(), 1641 S.Context.getSizeType())) { 1642 ++NumBaseParams; 1643 HasSizeT = true; 1644 } 1645 1646 if (NumBaseParams < FD->getNumParams() && 1647 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1648 ++NumBaseParams; 1649 HasAlignValT = true; 1650 } 1651 1652 // In CUDA, determine how much we'd like / dislike to call this. 1653 if (S.getLangOpts().CUDA) 1654 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1655 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1656 } 1657 1658 explicit operator bool() const { return FD; } 1659 1660 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1661 bool WantAlign) const { 1662 // C++ P0722: 1663 // A destroying operator delete is preferred over a non-destroying 1664 // operator delete. 1665 if (Destroying != Other.Destroying) 1666 return Destroying; 1667 1668 // C++17 [expr.delete]p10: 1669 // If the type has new-extended alignment, a function with a parameter 1670 // of type std::align_val_t is preferred; otherwise a function without 1671 // such a parameter is preferred 1672 if (HasAlignValT != Other.HasAlignValT) 1673 return HasAlignValT == WantAlign; 1674 1675 if (HasSizeT != Other.HasSizeT) 1676 return HasSizeT == WantSize; 1677 1678 // Use CUDA call preference as a tiebreaker. 1679 return CUDAPref > Other.CUDAPref; 1680 } 1681 1682 DeclAccessPair Found; 1683 FunctionDecl *FD; 1684 bool Destroying, HasSizeT, HasAlignValT; 1685 Sema::CUDAFunctionPreference CUDAPref; 1686 }; 1687} 1688 1689/// Determine whether a type has new-extended alignment. This may be called when 1690/// the type is incomplete (for a delete-expression with an incomplete pointee 1691/// type), in which case it will conservatively return false if the alignment is 1692/// not known. 1693static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1694 return S.getLangOpts().AlignedAllocation && 1695 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1696 S.getASTContext().getTargetInfo().getNewAlign(); 1697} 1698 1699/// Select the correct "usual" deallocation function to use from a selection of 1700/// deallocation functions (either global or class-scope). 1701static UsualDeallocFnInfo resolveDeallocationOverload( 1702 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1703 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1704 UsualDeallocFnInfo Best; 1705 1706 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1707 UsualDeallocFnInfo Info(S, I.getPair()); 1708 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1709 Info.CUDAPref == Sema::CFP_Never) 1710 continue; 1711 1712 if (!Best) { 1713 Best = Info; 1714 if (BestFns) 1715 BestFns->push_back(Info); 1716 continue; 1717 } 1718 1719 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1720 continue; 1721 1722 // If more than one preferred function is found, all non-preferred 1723 // functions are eliminated from further consideration. 1724 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1725 BestFns->clear(); 1726 1727 Best = Info; 1728 if (BestFns) 1729 BestFns->push_back(Info); 1730 } 1731 1732 return Best; 1733} 1734 1735/// Determine whether a given type is a class for which 'delete[]' would call 1736/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1737/// we need to store the array size (even if the type is 1738/// trivially-destructible). 1739static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1740 QualType allocType) { 1741 const RecordType *record = 1742 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1743 if (!record) return false; 1744 1745 // Try to find an operator delete[] in class scope. 1746 1747 DeclarationName deleteName = 1748 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1749 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1750 S.LookupQualifiedName(ops, record->getDecl()); 1751 1752 // We're just doing this for information. 1753 ops.suppressDiagnostics(); 1754 1755 // Very likely: there's no operator delete[]. 1756 if (ops.empty()) return false; 1757 1758 // If it's ambiguous, it should be illegal to call operator delete[] 1759 // on this thing, so it doesn't matter if we allocate extra space or not. 1760 if (ops.isAmbiguous()) return false; 1761 1762 // C++17 [expr.delete]p10: 1763 // If the deallocation functions have class scope, the one without a 1764 // parameter of type std::size_t is selected. 1765 auto Best = resolveDeallocationOverload( 1766 S, ops, /*WantSize*/false, 1767 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1768 return Best && Best.HasSizeT; 1769} 1770 1771/// Parsed a C++ 'new' expression (C++ 5.3.4). 1772/// 1773/// E.g.: 1774/// @code new (memory) int[size][4] @endcode 1775/// or 1776/// @code ::new Foo(23, "hello") @endcode 1777/// 1778/// \param StartLoc The first location of the expression. 1779/// \param UseGlobal True if 'new' was prefixed with '::'. 1780/// \param PlacementLParen Opening paren of the placement arguments. 1781/// \param PlacementArgs Placement new arguments. 1782/// \param PlacementRParen Closing paren of the placement arguments. 1783/// \param TypeIdParens If the type is in parens, the source range. 1784/// \param D The type to be allocated, as well as array dimensions. 1785/// \param Initializer The initializing expression or initializer-list, or null 1786/// if there is none. 1787ExprResult 1788Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1789 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1790 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1791 Declarator &D, Expr *Initializer) { 1792 Optional<Expr *> ArraySize; 1793 // If the specified type is an array, unwrap it and save the expression. 1794 if (D.getNumTypeObjects() > 0 && 1795 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1796 DeclaratorChunk &Chunk = D.getTypeObject(0); 1797 if (D.getDeclSpec().hasAutoTypeSpec()) 1798 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1799 << D.getSourceRange()); 1800 if (Chunk.Arr.hasStatic) 1801 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1802 << D.getSourceRange()); 1803 if (!Chunk.Arr.NumElts && !Initializer) 1804 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1805 << D.getSourceRange()); 1806 1807 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1808 D.DropFirstTypeObject(); 1809 } 1810 1811 // Every dimension shall be of constant size. 1812 if (ArraySize) { 1813 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1814 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1815 break; 1816 1817 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1818 if (Expr *NumElts = (Expr *)Array.NumElts) { 1819 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1820 // FIXME: GCC permits constant folding here. We should either do so consistently 1821 // or not do so at all, rather than changing behavior in C++14 onwards. 1822 if (getLangOpts().CPlusPlus14) { 1823 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1824 // shall be a converted constant expression (5.19) of type std::size_t 1825 // and shall evaluate to a strictly positive value. 1826 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1827 Array.NumElts 1828 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1829 CCEK_ArrayBound) 1830 .get(); 1831 } else { 1832 Array.NumElts = 1833 VerifyIntegerConstantExpression( 1834 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1835 .get(); 1836 } 1837 if (!Array.NumElts) 1838 return ExprError(); 1839 } 1840 } 1841 } 1842 } 1843 1844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1845 QualType AllocType = TInfo->getType(); 1846 if (D.isInvalidType()) 1847 return ExprError(); 1848 1849 SourceRange DirectInitRange; 1850 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1851 DirectInitRange = List->getSourceRange(); 1852 1853 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1854 PlacementLParen, PlacementArgs, PlacementRParen, 1855 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1856 Initializer); 1857} 1858 1859static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1860 Expr *Init) { 1861 if (!Init) 1862 return true; 1863 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1864 return PLE->getNumExprs() == 0; 1865 if (isa<ImplicitValueInitExpr>(Init)) 1866 return true; 1867 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1868 return !CCE->isListInitialization() && 1869 CCE->getConstructor()->isDefaultConstructor(); 1870 else if (Style == CXXNewExpr::ListInit) { 1871 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1872, __extension__ __PRETTY_FUNCTION__))
1872 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1872, __extension__ __PRETTY_FUNCTION__))
; 1873 return true; 1874 } 1875 return false; 1876} 1877 1878bool 1879Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1880 if (!getLangOpts().AlignedAllocationUnavailable) 1881 return false; 1882 if (FD.isDefined()) 1883 return false; 1884 Optional<unsigned> AlignmentParam; 1885 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1886 AlignmentParam.hasValue()) 1887 return true; 1888 return false; 1889} 1890 1891// Emit a diagnostic if an aligned allocation/deallocation function that is not 1892// implemented in the standard library is selected. 1893void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1894 SourceLocation Loc) { 1895 if (isUnavailableAlignedAllocationFunction(FD)) { 1896 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1897 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1898 getASTContext().getTargetInfo().getPlatformName()); 1899 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1900 1901 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1902 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1903 Diag(Loc, diag::err_aligned_allocation_unavailable) 1904 << IsDelete << FD.getType().getAsString() << OSName 1905 << OSVersion.getAsString() << OSVersion.empty(); 1906 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1907 } 1908} 1909 1910ExprResult 1911Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1912 SourceLocation PlacementLParen, 1913 MultiExprArg PlacementArgs, 1914 SourceLocation PlacementRParen, 1915 SourceRange TypeIdParens, 1916 QualType AllocType, 1917 TypeSourceInfo *AllocTypeInfo, 1918 Optional<Expr *> ArraySize, 1919 SourceRange DirectInitRange, 1920 Expr *Initializer) { 1921 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1922 SourceLocation StartLoc = Range.getBegin(); 1923 1924 CXXNewExpr::InitializationStyle initStyle; 1925 if (DirectInitRange.isValid()) { 1926 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1926, __extension__ __PRETTY_FUNCTION__))
; 1927 initStyle = CXXNewExpr::CallInit; 1928 } else if (Initializer && isa<InitListExpr>(Initializer)) 1929 initStyle = CXXNewExpr::ListInit; 1930 else { 1931 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1933, __extension__ __PRETTY_FUNCTION__))
1932 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1933, __extension__ __PRETTY_FUNCTION__))
1933 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1933, __extension__ __PRETTY_FUNCTION__))
; 1934 initStyle = CXXNewExpr::NoInit; 1935 } 1936 1937 Expr **Inits = &Initializer; 1938 unsigned NumInits = Initializer ? 1 : 0; 1939 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1940 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 1940, __extension__ __PRETTY_FUNCTION__))
; 1941 Inits = List->getExprs(); 1942 NumInits = List->getNumExprs(); 1943 } 1944 1945 // C++11 [expr.new]p15: 1946 // A new-expression that creates an object of type T initializes that 1947 // object as follows: 1948 InitializationKind Kind 1949 // - If the new-initializer is omitted, the object is default- 1950 // initialized (8.5); if no initialization is performed, 1951 // the object has indeterminate value 1952 = initStyle == CXXNewExpr::NoInit 1953 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1954 // - Otherwise, the new-initializer is interpreted according to 1955 // the 1956 // initialization rules of 8.5 for direct-initialization. 1957 : initStyle == CXXNewExpr::ListInit 1958 ? InitializationKind::CreateDirectList( 1959 TypeRange.getBegin(), Initializer->getBeginLoc(), 1960 Initializer->getEndLoc()) 1961 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1962 DirectInitRange.getBegin(), 1963 DirectInitRange.getEnd()); 1964 1965 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1966 auto *Deduced = AllocType->getContainedDeducedType(); 1967 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1968 if (ArraySize) 1969 return ExprError( 1970 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1971 diag::err_deduced_class_template_compound_type) 1972 << /*array*/ 2 1973 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1974 1975 InitializedEntity Entity 1976 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1977 AllocType = DeduceTemplateSpecializationFromInitializer( 1978 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1979 if (AllocType.isNull()) 1980 return ExprError(); 1981 } else if (Deduced) { 1982 bool Braced = (initStyle == CXXNewExpr::ListInit); 1983 if (NumInits == 1) { 1984 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1985 Inits = p->getInits(); 1986 NumInits = p->getNumInits(); 1987 Braced = true; 1988 } 1989 } 1990 1991 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1992 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1993 << AllocType << TypeRange); 1994 if (NumInits > 1) { 1995 Expr *FirstBad = Inits[1]; 1996 return ExprError(Diag(FirstBad->getBeginLoc(), 1997 diag::err_auto_new_ctor_multiple_expressions) 1998 << AllocType << TypeRange); 1999 } 2000 if (Braced && !getLangOpts().CPlusPlus17) 2001 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2002 << AllocType << TypeRange; 2003 Expr *Deduce = Inits[0]; 2004 QualType DeducedType; 2005 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2006 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2007 << AllocType << Deduce->getType() 2008 << TypeRange << Deduce->getSourceRange()); 2009 if (DeducedType.isNull()) 2010 return ExprError(); 2011 AllocType = DeducedType; 2012 } 2013 2014 // Per C++0x [expr.new]p5, the type being constructed may be a 2015 // typedef of an array type. 2016 if (!ArraySize) { 2017 if (const ConstantArrayType *Array 2018 = Context.getAsConstantArrayType(AllocType)) { 2019 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2020 Context.getSizeType(), 2021 TypeRange.getEnd()); 2022 AllocType = Array->getElementType(); 2023 } 2024 } 2025 2026 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2027 return ExprError(); 2028 2029 // In ARC, infer 'retaining' for the allocated 2030 if (getLangOpts().ObjCAutoRefCount && 2031 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2032 AllocType->isObjCLifetimeType()) { 2033 AllocType = Context.getLifetimeQualifiedType(AllocType, 2034 AllocType->getObjCARCImplicitLifetime()); 2035 } 2036 2037 QualType ResultType = Context.getPointerType(AllocType); 2038 2039 if (ArraySize && *ArraySize && 2040 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2041 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2042 if (result.isInvalid()) return ExprError(); 2043 ArraySize = result.get(); 2044 } 2045 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2046 // integral or enumeration type with a non-negative value." 2047 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2048 // enumeration type, or a class type for which a single non-explicit 2049 // conversion function to integral or unscoped enumeration type exists. 2050 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2051 // std::size_t. 2052 llvm::Optional<uint64_t> KnownArraySize; 2053 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2054 ExprResult ConvertedSize; 2055 if (getLangOpts().CPlusPlus14) { 2056 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2056, __extension__ __PRETTY_FUNCTION__))
; 2057 2058 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2059 AA_Converting); 2060 2061 if (!ConvertedSize.isInvalid() && 2062 (*ArraySize)->getType()->getAs<RecordType>()) 2063 // Diagnose the compatibility of this conversion. 2064 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2065 << (*ArraySize)->getType() << 0 << "'size_t'"; 2066 } else { 2067 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2068 protected: 2069 Expr *ArraySize; 2070 2071 public: 2072 SizeConvertDiagnoser(Expr *ArraySize) 2073 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2074 ArraySize(ArraySize) {} 2075 2076 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2077 QualType T) override { 2078 return S.Diag(Loc, diag::err_array_size_not_integral) 2079 << S.getLangOpts().CPlusPlus11 << T; 2080 } 2081 2082 SemaDiagnosticBuilder diagnoseIncomplete( 2083 Sema &S, SourceLocation Loc, QualType T) override { 2084 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2085 << T << ArraySize->getSourceRange(); 2086 } 2087 2088 SemaDiagnosticBuilder diagnoseExplicitConv( 2089 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2090 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2091 } 2092 2093 SemaDiagnosticBuilder noteExplicitConv( 2094 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2095 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2096 << ConvTy->isEnumeralType() << ConvTy; 2097 } 2098 2099 SemaDiagnosticBuilder diagnoseAmbiguous( 2100 Sema &S, SourceLocation Loc, QualType T) override { 2101 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2102 } 2103 2104 SemaDiagnosticBuilder noteAmbiguous( 2105 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2106 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2107 << ConvTy->isEnumeralType() << ConvTy; 2108 } 2109 2110 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2111 QualType T, 2112 QualType ConvTy) override { 2113 return S.Diag(Loc, 2114 S.getLangOpts().CPlusPlus11 2115 ? diag::warn_cxx98_compat_array_size_conversion 2116 : diag::ext_array_size_conversion) 2117 << T << ConvTy->isEnumeralType() << ConvTy; 2118 } 2119 } SizeDiagnoser(*ArraySize); 2120 2121 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2122 SizeDiagnoser); 2123 } 2124 if (ConvertedSize.isInvalid()) 2125 return ExprError(); 2126 2127 ArraySize = ConvertedSize.get(); 2128 QualType SizeType = (*ArraySize)->getType(); 2129 2130 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2131 return ExprError(); 2132 2133 // C++98 [expr.new]p7: 2134 // The expression in a direct-new-declarator shall have integral type 2135 // with a non-negative value. 2136 // 2137 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2138 // per CWG1464. Otherwise, if it's not a constant, we must have an 2139 // unparenthesized array type. 2140 if (!(*ArraySize)->isValueDependent()) { 2141 // We've already performed any required implicit conversion to integer or 2142 // unscoped enumeration type. 2143 // FIXME: Per CWG1464, we are required to check the value prior to 2144 // converting to size_t. This will never find a negative array size in 2145 // C++14 onwards, because Value is always unsigned here! 2146 if (Optional<llvm::APSInt> Value = 2147 (*ArraySize)->getIntegerConstantExpr(Context)) { 2148 if (Value->isSigned() && Value->isNegative()) { 2149 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2150 diag::err_typecheck_negative_array_size) 2151 << (*ArraySize)->getSourceRange()); 2152 } 2153 2154 if (!AllocType->isDependentType()) { 2155 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2156 Context, AllocType, *Value); 2157 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2158 return ExprError( 2159 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2160 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2161 } 2162 2163 KnownArraySize = Value->getZExtValue(); 2164 } else if (TypeIdParens.isValid()) { 2165 // Can't have dynamic array size when the type-id is in parentheses. 2166 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2167 << (*ArraySize)->getSourceRange() 2168 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2169 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2170 2171 TypeIdParens = SourceRange(); 2172 } 2173 } 2174 2175 // Note that we do *not* convert the argument in any way. It can 2176 // be signed, larger than size_t, whatever. 2177 } 2178 2179 FunctionDecl *OperatorNew = nullptr; 2180 FunctionDecl *OperatorDelete = nullptr; 2181 unsigned Alignment = 2182 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2183 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2184 bool PassAlignment = getLangOpts().AlignedAllocation && 2185 Alignment > NewAlignment; 2186 2187 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2188 if (!AllocType->isDependentType() && 2189 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2190 FindAllocationFunctions( 2191 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2192 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2193 OperatorNew, OperatorDelete)) 2194 return ExprError(); 2195 2196 // If this is an array allocation, compute whether the usual array 2197 // deallocation function for the type has a size_t parameter. 2198 bool UsualArrayDeleteWantsSize = false; 2199 if (ArraySize && !AllocType->isDependentType()) 2200 UsualArrayDeleteWantsSize = 2201 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2202 2203 SmallVector<Expr *, 8> AllPlaceArgs; 2204 if (OperatorNew) { 2205 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2206 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2207 : VariadicDoesNotApply; 2208 2209 // We've already converted the placement args, just fill in any default 2210 // arguments. Skip the first parameter because we don't have a corresponding 2211 // argument. Skip the second parameter too if we're passing in the 2212 // alignment; we've already filled it in. 2213 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2214 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2215 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2216 CallType)) 2217 return ExprError(); 2218 2219 if (!AllPlaceArgs.empty()) 2220 PlacementArgs = AllPlaceArgs; 2221 2222 // We would like to perform some checking on the given `operator new` call, 2223 // but the PlacementArgs does not contain the implicit arguments, 2224 // namely allocation size and maybe allocation alignment, 2225 // so we need to conjure them. 2226 2227 QualType SizeTy = Context.getSizeType(); 2228 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2229 2230 llvm::APInt SingleEltSize( 2231 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2232 2233 // How many bytes do we want to allocate here? 2234 llvm::Optional<llvm::APInt> AllocationSize; 2235 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2236 // For non-array operator new, we only want to allocate one element. 2237 AllocationSize = SingleEltSize; 2238 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2239 // For array operator new, only deal with static array size case. 2240 bool Overflow; 2241 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2242 .umul_ov(SingleEltSize, Overflow); 2243 (void)Overflow; 2244 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2246, __extension__ __PRETTY_FUNCTION__))
2245 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2246, __extension__ __PRETTY_FUNCTION__))
2246 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2246, __extension__ __PRETTY_FUNCTION__))
; 2247 } 2248 2249 IntegerLiteral AllocationSizeLiteral( 2250 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)), 2251 SizeTy, SourceLocation()); 2252 // Otherwise, if we failed to constant-fold the allocation size, we'll 2253 // just give up and pass-in something opaque, that isn't a null pointer. 2254 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2255 OK_Ordinary, /*SourceExpr=*/nullptr); 2256 2257 // Let's synthesize the alignment argument in case we will need it. 2258 // Since we *really* want to allocate these on stack, this is slightly ugly 2259 // because there might not be a `std::align_val_t` type. 2260 EnumDecl *StdAlignValT = getStdAlignValT(); 2261 QualType AlignValT = 2262 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2263 IntegerLiteral AlignmentLiteral( 2264 Context, 2265 llvm::APInt(Context.getTypeSize(SizeTy), 2266 Alignment / Context.getCharWidth()), 2267 SizeTy, SourceLocation()); 2268 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2269 CK_IntegralCast, &AlignmentLiteral, 2270 VK_PRValue, FPOptionsOverride()); 2271 2272 // Adjust placement args by prepending conjured size and alignment exprs. 2273 llvm::SmallVector<Expr *, 8> CallArgs; 2274 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2275 CallArgs.emplace_back(AllocationSize.hasValue() 2276 ? static_cast<Expr *>(&AllocationSizeLiteral) 2277 : &OpaqueAllocationSize); 2278 if (PassAlignment) 2279 CallArgs.emplace_back(&DesiredAlignment); 2280 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2281 2282 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2283 2284 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2285 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2286 2287 // Warn if the type is over-aligned and is being allocated by (unaligned) 2288 // global operator new. 2289 if (PlacementArgs.empty() && !PassAlignment && 2290 (OperatorNew->isImplicit() || 2291 (OperatorNew->getBeginLoc().isValid() && 2292 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2293 if (Alignment > NewAlignment) 2294 Diag(StartLoc, diag::warn_overaligned_type) 2295 << AllocType 2296 << unsigned(Alignment / Context.getCharWidth()) 2297 << unsigned(NewAlignment / Context.getCharWidth()); 2298 } 2299 } 2300 2301 // Array 'new' can't have any initializers except empty parentheses. 2302 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2303 // dialect distinction. 2304 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2305 SourceRange InitRange(Inits[0]->getBeginLoc(), 2306 Inits[NumInits - 1]->getEndLoc()); 2307 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2308 return ExprError(); 2309 } 2310 2311 // If we can perform the initialization, and we've not already done so, 2312 // do it now. 2313 if (!AllocType->isDependentType() && 2314 !Expr::hasAnyTypeDependentArguments( 2315 llvm::makeArrayRef(Inits, NumInits))) { 2316 // The type we initialize is the complete type, including the array bound. 2317 QualType InitType; 2318 if (KnownArraySize) 2319 InitType = Context.getConstantArrayType( 2320 AllocType, 2321 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2322 *KnownArraySize), 2323 *ArraySize, ArrayType::Normal, 0); 2324 else if (ArraySize) 2325 InitType = 2326 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2327 else 2328 InitType = AllocType; 2329 2330 InitializedEntity Entity 2331 = InitializedEntity::InitializeNew(StartLoc, InitType); 2332 InitializationSequence InitSeq(*this, Entity, Kind, 2333 MultiExprArg(Inits, NumInits)); 2334 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2335 MultiExprArg(Inits, NumInits)); 2336 if (FullInit.isInvalid()) 2337 return ExprError(); 2338 2339 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2340 // we don't want the initialized object to be destructed. 2341 // FIXME: We should not create these in the first place. 2342 if (CXXBindTemporaryExpr *Binder = 2343 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2344 FullInit = Binder->getSubExpr(); 2345 2346 Initializer = FullInit.get(); 2347 2348 // FIXME: If we have a KnownArraySize, check that the array bound of the 2349 // initializer is no greater than that constant value. 2350 2351 if (ArraySize && !*ArraySize) { 2352 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2353 if (CAT) { 2354 // FIXME: Track that the array size was inferred rather than explicitly 2355 // specified. 2356 ArraySize = IntegerLiteral::Create( 2357 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2358 } else { 2359 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2360 << Initializer->getSourceRange(); 2361 } 2362 } 2363 } 2364 2365 // Mark the new and delete operators as referenced. 2366 if (OperatorNew) { 2367 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2368 return ExprError(); 2369 MarkFunctionReferenced(StartLoc, OperatorNew); 2370 } 2371 if (OperatorDelete) { 2372 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2373 return ExprError(); 2374 MarkFunctionReferenced(StartLoc, OperatorDelete); 2375 } 2376 2377 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2378 PassAlignment, UsualArrayDeleteWantsSize, 2379 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2380 Initializer, ResultType, AllocTypeInfo, Range, 2381 DirectInitRange); 2382} 2383 2384/// Checks that a type is suitable as the allocated type 2385/// in a new-expression. 2386bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2387 SourceRange R) { 2388 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2389 // abstract class type or array thereof. 2390 if (AllocType->isFunctionType()) 2391 return Diag(Loc, diag::err_bad_new_type) 2392 << AllocType << 0 << R; 2393 else if (AllocType->isReferenceType()) 2394 return Diag(Loc, diag::err_bad_new_type) 2395 << AllocType << 1 << R; 2396 else if (!AllocType->isDependentType() && 2397 RequireCompleteSizedType( 2398 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2399 return true; 2400 else if (RequireNonAbstractType(Loc, AllocType, 2401 diag::err_allocation_of_abstract_type)) 2402 return true; 2403 else if (AllocType->isVariablyModifiedType()) 2404 return Diag(Loc, diag::err_variably_modified_new_type) 2405 << AllocType; 2406 else if (AllocType.getAddressSpace() != LangAS::Default && 2407 !getLangOpts().OpenCLCPlusPlus) 2408 return Diag(Loc, diag::err_address_space_qualified_new) 2409 << AllocType.getUnqualifiedType() 2410 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2411 else if (getLangOpts().ObjCAutoRefCount) { 2412 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2413 QualType BaseAllocType = Context.getBaseElementType(AT); 2414 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2415 BaseAllocType->isObjCLifetimeType()) 2416 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2417 << BaseAllocType; 2418 } 2419 } 2420 2421 return false; 2422} 2423 2424static bool resolveAllocationOverload( 2425 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2426 bool &PassAlignment, FunctionDecl *&Operator, 2427 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2428 OverloadCandidateSet Candidates(R.getNameLoc(), 2429 OverloadCandidateSet::CSK_Normal); 2430 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2431 Alloc != AllocEnd; ++Alloc) { 2432 // Even member operator new/delete are implicitly treated as 2433 // static, so don't use AddMemberCandidate. 2434 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2435 2436 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2437 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2438 /*ExplicitTemplateArgs=*/nullptr, Args, 2439 Candidates, 2440 /*SuppressUserConversions=*/false); 2441 continue; 2442 } 2443 2444 FunctionDecl *Fn = cast<FunctionDecl>(D); 2445 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2446 /*SuppressUserConversions=*/false); 2447 } 2448 2449 // Do the resolution. 2450 OverloadCandidateSet::iterator Best; 2451 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2452 case OR_Success: { 2453 // Got one! 2454 FunctionDecl *FnDecl = Best->Function; 2455 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2456 Best->FoundDecl) == Sema::AR_inaccessible) 2457 return true; 2458 2459 Operator = FnDecl; 2460 return false; 2461 } 2462 2463 case OR_No_Viable_Function: 2464 // C++17 [expr.new]p13: 2465 // If no matching function is found and the allocated object type has 2466 // new-extended alignment, the alignment argument is removed from the 2467 // argument list, and overload resolution is performed again. 2468 if (PassAlignment) { 2469 PassAlignment = false; 2470 AlignArg = Args[1]; 2471 Args.erase(Args.begin() + 1); 2472 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2473 Operator, &Candidates, AlignArg, 2474 Diagnose); 2475 } 2476 2477 // MSVC will fall back on trying to find a matching global operator new 2478 // if operator new[] cannot be found. Also, MSVC will leak by not 2479 // generating a call to operator delete or operator delete[], but we 2480 // will not replicate that bug. 2481 // FIXME: Find out how this interacts with the std::align_val_t fallback 2482 // once MSVC implements it. 2483 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2484 S.Context.getLangOpts().MSVCCompat) { 2485 R.clear(); 2486 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2487 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2488 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2489 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2490 Operator, /*Candidates=*/nullptr, 2491 /*AlignArg=*/nullptr, Diagnose); 2492 } 2493 2494 if (Diagnose) { 2495 // If this is an allocation of the form 'new (p) X' for some object 2496 // pointer p (or an expression that will decay to such a pointer), 2497 // diagnose the missing inclusion of <new>. 2498 if (!R.isClassLookup() && Args.size() == 2 && 2499 (Args[1]->getType()->isObjectPointerType() || 2500 Args[1]->getType()->isArrayType())) { 2501 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2502 << R.getLookupName() << Range; 2503 // Listing the candidates is unlikely to be useful; skip it. 2504 return true; 2505 } 2506 2507 // Finish checking all candidates before we note any. This checking can 2508 // produce additional diagnostics so can't be interleaved with our 2509 // emission of notes. 2510 // 2511 // For an aligned allocation, separately check the aligned and unaligned 2512 // candidates with their respective argument lists. 2513 SmallVector<OverloadCandidate*, 32> Cands; 2514 SmallVector<OverloadCandidate*, 32> AlignedCands; 2515 llvm::SmallVector<Expr*, 4> AlignedArgs; 2516 if (AlignedCandidates) { 2517 auto IsAligned = [](OverloadCandidate &C) { 2518 return C.Function->getNumParams() > 1 && 2519 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2520 }; 2521 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2522 2523 AlignedArgs.reserve(Args.size() + 1); 2524 AlignedArgs.push_back(Args[0]); 2525 AlignedArgs.push_back(AlignArg); 2526 AlignedArgs.append(Args.begin() + 1, Args.end()); 2527 AlignedCands = AlignedCandidates->CompleteCandidates( 2528 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2529 2530 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2531 R.getNameLoc(), IsUnaligned); 2532 } else { 2533 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2534 R.getNameLoc()); 2535 } 2536 2537 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2538 << R.getLookupName() << Range; 2539 if (AlignedCandidates) 2540 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2541 R.getNameLoc()); 2542 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2543 } 2544 return true; 2545 2546 case OR_Ambiguous: 2547 if (Diagnose) { 2548 Candidates.NoteCandidates( 2549 PartialDiagnosticAt(R.getNameLoc(), 2550 S.PDiag(diag::err_ovl_ambiguous_call) 2551 << R.getLookupName() << Range), 2552 S, OCD_AmbiguousCandidates, Args); 2553 } 2554 return true; 2555 2556 case OR_Deleted: { 2557 if (Diagnose) { 2558 Candidates.NoteCandidates( 2559 PartialDiagnosticAt(R.getNameLoc(), 2560 S.PDiag(diag::err_ovl_deleted_call) 2561 << R.getLookupName() << Range), 2562 S, OCD_AllCandidates, Args); 2563 } 2564 return true; 2565 } 2566 } 2567 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2567)
; 2568} 2569 2570bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2571 AllocationFunctionScope NewScope, 2572 AllocationFunctionScope DeleteScope, 2573 QualType AllocType, bool IsArray, 2574 bool &PassAlignment, MultiExprArg PlaceArgs, 2575 FunctionDecl *&OperatorNew, 2576 FunctionDecl *&OperatorDelete, 2577 bool Diagnose) { 2578 // --- Choosing an allocation function --- 2579 // C++ 5.3.4p8 - 14 & 18 2580 // 1) If looking in AFS_Global scope for allocation functions, only look in 2581 // the global scope. Else, if AFS_Class, only look in the scope of the 2582 // allocated class. If AFS_Both, look in both. 2583 // 2) If an array size is given, look for operator new[], else look for 2584 // operator new. 2585 // 3) The first argument is always size_t. Append the arguments from the 2586 // placement form. 2587 2588 SmallVector<Expr*, 8> AllocArgs; 2589 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2590 2591 // We don't care about the actual value of these arguments. 2592 // FIXME: Should the Sema create the expression and embed it in the syntax 2593 // tree? Or should the consumer just recalculate the value? 2594 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2595 IntegerLiteral Size( 2596 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2597 Context.getSizeType(), SourceLocation()); 2598 AllocArgs.push_back(&Size); 2599 2600 QualType AlignValT = Context.VoidTy; 2601 if (PassAlignment) { 2602 DeclareGlobalNewDelete(); 2603 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2604 } 2605 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2606 if (PassAlignment) 2607 AllocArgs.push_back(&Align); 2608 2609 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2610 2611 // C++ [expr.new]p8: 2612 // If the allocated type is a non-array type, the allocation 2613 // function's name is operator new and the deallocation function's 2614 // name is operator delete. If the allocated type is an array 2615 // type, the allocation function's name is operator new[] and the 2616 // deallocation function's name is operator delete[]. 2617 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2618 IsArray ? OO_Array_New : OO_New); 2619 2620 QualType AllocElemType = Context.getBaseElementType(AllocType); 2621 2622 // Find the allocation function. 2623 { 2624 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2625 2626 // C++1z [expr.new]p9: 2627 // If the new-expression begins with a unary :: operator, the allocation 2628 // function's name is looked up in the global scope. Otherwise, if the 2629 // allocated type is a class type T or array thereof, the allocation 2630 // function's name is looked up in the scope of T. 2631 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2632 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2633 2634 // We can see ambiguity here if the allocation function is found in 2635 // multiple base classes. 2636 if (R.isAmbiguous()) 2637 return true; 2638 2639 // If this lookup fails to find the name, or if the allocated type is not 2640 // a class type, the allocation function's name is looked up in the 2641 // global scope. 2642 if (R.empty()) { 2643 if (NewScope == AFS_Class) 2644 return true; 2645 2646 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2647 } 2648 2649 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2650 if (PlaceArgs.empty()) { 2651 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2652 } else { 2653 Diag(StartLoc, diag::err_openclcxx_placement_new); 2654 } 2655 return true; 2656 } 2657 2658 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2658, __extension__ __PRETTY_FUNCTION__))
; 2659 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 2659, __extension__ __PRETTY_FUNCTION__))
; 2660 2661 // We do our own custom access checks below. 2662 R.suppressDiagnostics(); 2663 2664 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2665 OperatorNew, /*Candidates=*/nullptr, 2666 /*AlignArg=*/nullptr, Diagnose)) 2667 return true; 2668 } 2669 2670 // We don't need an operator delete if we're running under -fno-exceptions. 2671 if (!getLangOpts().Exceptions) { 2672 OperatorDelete = nullptr; 2673 return false; 2674 } 2675 2676 // Note, the name of OperatorNew might have been changed from array to 2677 // non-array by resolveAllocationOverload. 2678 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2679 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2680 ? OO_Array_Delete 2681 : OO_Delete); 2682 2683 // C++ [expr.new]p19: 2684 // 2685 // If the new-expression begins with a unary :: operator, the 2686 // deallocation function's name is looked up in the global 2687 // scope. Otherwise, if the allocated type is a class type T or an 2688 // array thereof, the deallocation function's name is looked up in 2689 // the scope of T. If this lookup fails to find the name, or if 2690 // the allocated type is not a class type or array thereof, the 2691 // deallocation function's name is looked up in the global scope. 2692 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2693 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2694 auto *RD = 2695 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2696 LookupQualifiedName(FoundDelete, RD); 2697 } 2698 if (FoundDelete.isAmbiguous()) 2699 return true; // FIXME: clean up expressions? 2700 2701 // Filter out any destroying operator deletes. We can't possibly call such a 2702 // function in this context, because we're handling the case where the object 2703 // was not successfully constructed. 2704 // FIXME: This is not covered by the language rules yet. 2705 { 2706 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2707 while (Filter.hasNext()) { 2708 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2709 if (FD && FD->isDestroyingOperatorDelete()) 2710 Filter.erase(); 2711 } 2712 Filter.done(); 2713 } 2714 2715 bool FoundGlobalDelete = FoundDelete.empty(); 2716 if (FoundDelete.empty()) { 2717 FoundDelete.clear(LookupOrdinaryName); 2718 2719 if (DeleteScope == AFS_Class) 2720 return true; 2721 2722 DeclareGlobalNewDelete(); 2723 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2724 } 2725 2726 FoundDelete.suppressDiagnostics(); 2727 2728 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2729 2730 // Whether we're looking for a placement operator delete is dictated 2731 // by whether we selected a placement operator new, not by whether 2732 // we had explicit placement arguments. This matters for things like 2733 // struct A { void *operator new(size_t, int = 0); ... }; 2734 // A *a = new A() 2735 // 2736 // We don't have any definition for what a "placement allocation function" 2737 // is, but we assume it's any allocation function whose 2738 // parameter-declaration-clause is anything other than (size_t). 2739 // 2740 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2741 // This affects whether an exception from the constructor of an overaligned 2742 // type uses the sized or non-sized form of aligned operator delete. 2743 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2744 OperatorNew->isVariadic(); 2745 2746 if (isPlacementNew) { 2747 // C++ [expr.new]p20: 2748 // A declaration of a placement deallocation function matches the 2749 // declaration of a placement allocation function if it has the 2750 // same number of parameters and, after parameter transformations 2751 // (8.3.5), all parameter types except the first are 2752 // identical. [...] 2753 // 2754 // To perform this comparison, we compute the function type that 2755 // the deallocation function should have, and use that type both 2756 // for template argument deduction and for comparison purposes. 2757 QualType ExpectedFunctionType; 2758 { 2759 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2760 2761 SmallVector<QualType, 4> ArgTypes; 2762 ArgTypes.push_back(Context.VoidPtrTy); 2763 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2764 ArgTypes.push_back(Proto->getParamType(I)); 2765 2766 FunctionProtoType::ExtProtoInfo EPI; 2767 // FIXME: This is not part of the standard's rule. 2768 EPI.Variadic = Proto->isVariadic(); 2769 2770 ExpectedFunctionType 2771 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2772 } 2773 2774 for (LookupResult::iterator D = FoundDelete.begin(), 2775 DEnd = FoundDelete.end(); 2776 D != DEnd; ++D) { 2777 FunctionDecl *Fn = nullptr; 2778 if (FunctionTemplateDecl *FnTmpl = 2779 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2780 // Perform template argument deduction to try to match the 2781 // expected function type. 2782 TemplateDeductionInfo Info(StartLoc); 2783 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2784 Info)) 2785 continue; 2786 } else 2787 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2788 2789 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2790 ExpectedFunctionType, 2791 /*AdjustExcpetionSpec*/true), 2792 ExpectedFunctionType)) 2793 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2794 } 2795 2796 if (getLangOpts().CUDA) 2797 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2798 } else { 2799 // C++1y [expr.new]p22: 2800 // For a non-placement allocation function, the normal deallocation 2801 // function lookup is used 2802 // 2803 // Per [expr.delete]p10, this lookup prefers a member operator delete 2804 // without a size_t argument, but prefers a non-member operator delete 2805 // with a size_t where possible (which it always is in this case). 2806 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2807 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2808 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2809 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2810 &BestDeallocFns); 2811 if (Selected) 2812 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2813 else { 2814 // If we failed to select an operator, all remaining functions are viable 2815 // but ambiguous. 2816 for (auto Fn : BestDeallocFns) 2817 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2818 } 2819 } 2820 2821 // C++ [expr.new]p20: 2822 // [...] If the lookup finds a single matching deallocation 2823 // function, that function will be called; otherwise, no 2824 // deallocation function will be called. 2825 if (Matches.size() == 1) { 2826 OperatorDelete = Matches[0].second; 2827 2828 // C++1z [expr.new]p23: 2829 // If the lookup finds a usual deallocation function (3.7.4.2) 2830 // with a parameter of type std::size_t and that function, considered 2831 // as a placement deallocation function, would have been 2832 // selected as a match for the allocation function, the program 2833 // is ill-formed. 2834 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2835 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2836 UsualDeallocFnInfo Info(*this, 2837 DeclAccessPair::make(OperatorDelete, AS_public)); 2838 // Core issue, per mail to core reflector, 2016-10-09: 2839 // If this is a member operator delete, and there is a corresponding 2840 // non-sized member operator delete, this isn't /really/ a sized 2841 // deallocation function, it just happens to have a size_t parameter. 2842 bool IsSizedDelete = Info.HasSizeT; 2843 if (IsSizedDelete && !FoundGlobalDelete) { 2844 auto NonSizedDelete = 2845 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2846 /*WantAlign*/Info.HasAlignValT); 2847 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2848 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2849 IsSizedDelete = false; 2850 } 2851 2852 if (IsSizedDelete) { 2853 SourceRange R = PlaceArgs.empty() 2854 ? SourceRange() 2855 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2856 PlaceArgs.back()->getEndLoc()); 2857 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2858 if (!OperatorDelete->isImplicit()) 2859 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2860 << DeleteName; 2861 } 2862 } 2863 2864 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2865 Matches[0].first); 2866 } else if (!Matches.empty()) { 2867 // We found multiple suitable operators. Per [expr.new]p20, that means we 2868 // call no 'operator delete' function, but we should at least warn the user. 2869 // FIXME: Suppress this warning if the construction cannot throw. 2870 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2871 << DeleteName << AllocElemType; 2872 2873 for (auto &Match : Matches) 2874 Diag(Match.second->getLocation(), 2875 diag::note_member_declared_here) << DeleteName; 2876 } 2877 2878 return false; 2879} 2880 2881/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2882/// delete. These are: 2883/// @code 2884/// // C++03: 2885/// void* operator new(std::size_t) throw(std::bad_alloc); 2886/// void* operator new[](std::size_t) throw(std::bad_alloc); 2887/// void operator delete(void *) throw(); 2888/// void operator delete[](void *) throw(); 2889/// // C++11: 2890/// void* operator new(std::size_t); 2891/// void* operator new[](std::size_t); 2892/// void operator delete(void *) noexcept; 2893/// void operator delete[](void *) noexcept; 2894/// // C++1y: 2895/// void* operator new(std::size_t); 2896/// void* operator new[](std::size_t); 2897/// void operator delete(void *) noexcept; 2898/// void operator delete[](void *) noexcept; 2899/// void operator delete(void *, std::size_t) noexcept; 2900/// void operator delete[](void *, std::size_t) noexcept; 2901/// @endcode 2902/// Note that the placement and nothrow forms of new are *not* implicitly 2903/// declared. Their use requires including \<new\>. 2904void Sema::DeclareGlobalNewDelete() { 2905 if (GlobalNewDeleteDeclared) 2906 return; 2907 2908 // The implicitly declared new and delete operators 2909 // are not supported in OpenCL. 2910 if (getLangOpts().OpenCLCPlusPlus) 2911 return; 2912 2913 // C++ [basic.std.dynamic]p2: 2914 // [...] The following allocation and deallocation functions (18.4) are 2915 // implicitly declared in global scope in each translation unit of a 2916 // program 2917 // 2918 // C++03: 2919 // void* operator new(std::size_t) throw(std::bad_alloc); 2920 // void* operator new[](std::size_t) throw(std::bad_alloc); 2921 // void operator delete(void*) throw(); 2922 // void operator delete[](void*) throw(); 2923 // C++11: 2924 // void* operator new(std::size_t); 2925 // void* operator new[](std::size_t); 2926 // void operator delete(void*) noexcept; 2927 // void operator delete[](void*) noexcept; 2928 // C++1y: 2929 // void* operator new(std::size_t); 2930 // void* operator new[](std::size_t); 2931 // void operator delete(void*) noexcept; 2932 // void operator delete[](void*) noexcept; 2933 // void operator delete(void*, std::size_t) noexcept; 2934 // void operator delete[](void*, std::size_t) noexcept; 2935 // 2936 // These implicit declarations introduce only the function names operator 2937 // new, operator new[], operator delete, operator delete[]. 2938 // 2939 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2940 // "std" or "bad_alloc" as necessary to form the exception specification. 2941 // However, we do not make these implicit declarations visible to name 2942 // lookup. 2943 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2944 // The "std::bad_alloc" class has not yet been declared, so build it 2945 // implicitly. 2946 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2947 getOrCreateStdNamespace(), 2948 SourceLocation(), SourceLocation(), 2949 &PP.getIdentifierTable().get("bad_alloc"), 2950 nullptr); 2951 getStdBadAlloc()->setImplicit(true); 2952 } 2953 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2954 // The "std::align_val_t" enum class has not yet been declared, so build it 2955 // implicitly. 2956 auto *AlignValT = EnumDecl::Create( 2957 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2958 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2959 AlignValT->setIntegerType(Context.getSizeType()); 2960 AlignValT->setPromotionType(Context.getSizeType()); 2961 AlignValT->setImplicit(true); 2962 StdAlignValT = AlignValT; 2963 } 2964 2965 GlobalNewDeleteDeclared = true; 2966 2967 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2968 QualType SizeT = Context.getSizeType(); 2969 2970 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2971 QualType Return, QualType Param) { 2972 llvm::SmallVector<QualType, 3> Params; 2973 Params.push_back(Param); 2974 2975 // Create up to four variants of the function (sized/aligned). 2976 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2977 (Kind == OO_Delete || Kind == OO_Array_Delete); 2978 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2979 2980 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2981 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2982 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2983 if (Sized) 2984 Params.push_back(SizeT); 2985 2986 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2987 if (Aligned) 2988 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2989 2990 DeclareGlobalAllocationFunction( 2991 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2992 2993 if (Aligned) 2994 Params.pop_back(); 2995 } 2996 } 2997 }; 2998 2999 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3000 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3001 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3002 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3003} 3004 3005/// DeclareGlobalAllocationFunction - Declares a single implicit global 3006/// allocation function if it doesn't already exist. 3007void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3008 QualType Return, 3009 ArrayRef<QualType> Params) { 3010 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3011 3012 // Check if this function is already declared. 3013 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3014 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3015 Alloc != AllocEnd; ++Alloc) { 3016 // Only look at non-template functions, as it is the predefined, 3017 // non-templated allocation function we are trying to declare here. 3018 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3019 if (Func->getNumParams() == Params.size()) { 3020 llvm::SmallVector<QualType, 3> FuncParams; 3021 for (auto *P : Func->parameters()) 3022 FuncParams.push_back( 3023 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3024 if (llvm::makeArrayRef(FuncParams) == Params) { 3025 // Make the function visible to name lookup, even if we found it in 3026 // an unimported module. It either is an implicitly-declared global 3027 // allocation function, or is suppressing that function. 3028 Func->setVisibleDespiteOwningModule(); 3029 return; 3030 } 3031 } 3032 } 3033 } 3034 3035 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3036 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3037 3038 QualType BadAllocType; 3039 bool HasBadAllocExceptionSpec 3040 = (Name.getCXXOverloadedOperator() == OO_New || 3041 Name.getCXXOverloadedOperator() == OO_Array_New); 3042 if (HasBadAllocExceptionSpec) { 3043 if (!getLangOpts().CPlusPlus11) { 3044 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3045 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3045, __extension__ __PRETTY_FUNCTION__))
; 3046 EPI.ExceptionSpec.Type = EST_Dynamic; 3047 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3048 } 3049 if (getLangOpts().NewInfallible) { 3050 EPI.ExceptionSpec.Type = EST_DynamicNone; 3051 } 3052 } else { 3053 EPI.ExceptionSpec = 3054 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3055 } 3056 3057 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3058 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3059 FunctionDecl *Alloc = FunctionDecl::Create( 3060 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3061 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3062 true); 3063 Alloc->setImplicit(); 3064 // Global allocation functions should always be visible. 3065 Alloc->setVisibleDespiteOwningModule(); 3066 3067 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3068 Alloc->addAttr( 3069 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3070 3071 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3072 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3073 ? VisibilityAttr::Hidden 3074 : VisibilityAttr::Default)); 3075 3076 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3077 for (QualType T : Params) { 3078 ParamDecls.push_back(ParmVarDecl::Create( 3079 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3080 /*TInfo=*/nullptr, SC_None, nullptr)); 3081 ParamDecls.back()->setImplicit(); 3082 } 3083 Alloc->setParams(ParamDecls); 3084 if (ExtraAttr) 3085 Alloc->addAttr(ExtraAttr); 3086 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3087 Context.getTranslationUnitDecl()->addDecl(Alloc); 3088 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3089 }; 3090 3091 if (!LangOpts.CUDA) 3092 CreateAllocationFunctionDecl(nullptr); 3093 else { 3094 // Host and device get their own declaration so each can be 3095 // defined or re-declared independently. 3096 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3097 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3098 } 3099} 3100 3101FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3102 bool CanProvideSize, 3103 bool Overaligned, 3104 DeclarationName Name) { 3105 DeclareGlobalNewDelete(); 3106 3107 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3108 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3109 3110 // FIXME: It's possible for this to result in ambiguity, through a 3111 // user-declared variadic operator delete or the enable_if attribute. We 3112 // should probably not consider those cases to be usual deallocation 3113 // functions. But for now we just make an arbitrary choice in that case. 3114 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3115 Overaligned); 3116 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3116, __extension__ __PRETTY_FUNCTION__))
; 3117 return Result.FD; 3118} 3119 3120FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3121 CXXRecordDecl *RD) { 3122 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3123 3124 FunctionDecl *OperatorDelete = nullptr; 3125 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3126 return nullptr; 3127 if (OperatorDelete) 3128 return OperatorDelete; 3129 3130 // If there's no class-specific operator delete, look up the global 3131 // non-array delete. 3132 return FindUsualDeallocationFunction( 3133 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3134 Name); 3135} 3136 3137bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3138 DeclarationName Name, 3139 FunctionDecl *&Operator, bool Diagnose) { 3140 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3141 // Try to find operator delete/operator delete[] in class scope. 3142 LookupQualifiedName(Found, RD); 3143 3144 if (Found.isAmbiguous()) 3145 return true; 3146 3147 Found.suppressDiagnostics(); 3148 3149 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3150 3151 // C++17 [expr.delete]p10: 3152 // If the deallocation functions have class scope, the one without a 3153 // parameter of type std::size_t is selected. 3154 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3155 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3156 /*WantAlign*/ Overaligned, &Matches); 3157 3158 // If we could find an overload, use it. 3159 if (Matches.size() == 1) { 3160 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3161 3162 // FIXME: DiagnoseUseOfDecl? 3163 if (Operator->isDeleted()) { 3164 if (Diagnose) { 3165 Diag(StartLoc, diag::err_deleted_function_use); 3166 NoteDeletedFunction(Operator); 3167 } 3168 return true; 3169 } 3170 3171 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3172 Matches[0].Found, Diagnose) == AR_inaccessible) 3173 return true; 3174 3175 return false; 3176 } 3177 3178 // We found multiple suitable operators; complain about the ambiguity. 3179 // FIXME: The standard doesn't say to do this; it appears that the intent 3180 // is that this should never happen. 3181 if (!Matches.empty()) { 3182 if (Diagnose) { 3183 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3184 << Name << RD; 3185 for (auto &Match : Matches) 3186 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3187 } 3188 return true; 3189 } 3190 3191 // We did find operator delete/operator delete[] declarations, but 3192 // none of them were suitable. 3193 if (!Found.empty()) { 3194 if (Diagnose) { 3195 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3196 << Name << RD; 3197 3198 for (NamedDecl *D : Found) 3199 Diag(D->getUnderlyingDecl()->getLocation(), 3200 diag::note_member_declared_here) << Name; 3201 } 3202 return true; 3203 } 3204 3205 Operator = nullptr; 3206 return false; 3207} 3208 3209namespace { 3210/// Checks whether delete-expression, and new-expression used for 3211/// initializing deletee have the same array form. 3212class MismatchingNewDeleteDetector { 3213public: 3214 enum MismatchResult { 3215 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3216 NoMismatch, 3217 /// Indicates that variable is initialized with mismatching form of \a new. 3218 VarInitMismatches, 3219 /// Indicates that member is initialized with mismatching form of \a new. 3220 MemberInitMismatches, 3221 /// Indicates that 1 or more constructors' definitions could not been 3222 /// analyzed, and they will be checked again at the end of translation unit. 3223 AnalyzeLater 3224 }; 3225 3226 /// \param EndOfTU True, if this is the final analysis at the end of 3227 /// translation unit. False, if this is the initial analysis at the point 3228 /// delete-expression was encountered. 3229 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3230 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3231 HasUndefinedConstructors(false) {} 3232 3233 /// Checks whether pointee of a delete-expression is initialized with 3234 /// matching form of new-expression. 3235 /// 3236 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3237 /// point where delete-expression is encountered, then a warning will be 3238 /// issued immediately. If return value is \c AnalyzeLater at the point where 3239 /// delete-expression is seen, then member will be analyzed at the end of 3240 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3241 /// couldn't be analyzed. If at least one constructor initializes the member 3242 /// with matching type of new, the return value is \c NoMismatch. 3243 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3244 /// Analyzes a class member. 3245 /// \param Field Class member to analyze. 3246 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3247 /// for deleting the \p Field. 3248 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3249 FieldDecl *Field; 3250 /// List of mismatching new-expressions used for initialization of the pointee 3251 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3252 /// Indicates whether delete-expression was in array form. 3253 bool IsArrayForm; 3254 3255private: 3256 const bool EndOfTU; 3257 /// Indicates that there is at least one constructor without body. 3258 bool HasUndefinedConstructors; 3259 /// Returns \c CXXNewExpr from given initialization expression. 3260 /// \param E Expression used for initializing pointee in delete-expression. 3261 /// E can be a single-element \c InitListExpr consisting of new-expression. 3262 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3263 /// Returns whether member is initialized with mismatching form of 3264 /// \c new either by the member initializer or in-class initialization. 3265 /// 3266 /// If bodies of all constructors are not visible at the end of translation 3267 /// unit or at least one constructor initializes member with the matching 3268 /// form of \c new, mismatch cannot be proven, and this function will return 3269 /// \c NoMismatch. 3270 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3271 /// Returns whether variable is initialized with mismatching form of 3272 /// \c new. 3273 /// 3274 /// If variable is initialized with matching form of \c new or variable is not 3275 /// initialized with a \c new expression, this function will return true. 3276 /// If variable is initialized with mismatching form of \c new, returns false. 3277 /// \param D Variable to analyze. 3278 bool hasMatchingVarInit(const DeclRefExpr *D); 3279 /// Checks whether the constructor initializes pointee with mismatching 3280 /// form of \c new. 3281 /// 3282 /// Returns true, if member is initialized with matching form of \c new in 3283 /// member initializer list. Returns false, if member is initialized with the 3284 /// matching form of \c new in this constructor's initializer or given 3285 /// constructor isn't defined at the point where delete-expression is seen, or 3286 /// member isn't initialized by the constructor. 3287 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3288 /// Checks whether member is initialized with matching form of 3289 /// \c new in member initializer list. 3290 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3291 /// Checks whether member is initialized with mismatching form of \c new by 3292 /// in-class initializer. 3293 MismatchResult analyzeInClassInitializer(); 3294}; 3295} 3296 3297MismatchingNewDeleteDetector::MismatchResult 3298MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3299 NewExprs.clear(); 3300 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3300, __extension__ __PRETTY_FUNCTION__))
; 3301 IsArrayForm = DE->isArrayForm(); 3302 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3303 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3304 return analyzeMemberExpr(ME); 3305 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3306 if (!hasMatchingVarInit(D)) 3307 return VarInitMismatches; 3308 } 3309 return NoMismatch; 3310} 3311 3312const CXXNewExpr * 3313MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3314 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3314, __extension__ __PRETTY_FUNCTION__))
; 3315 E = E->IgnoreParenImpCasts(); 3316 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3317 if (ILE->getNumInits() == 1) 3318 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3319 } 3320 3321 return dyn_cast_or_null<const CXXNewExpr>(E); 3322} 3323 3324bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3325 const CXXCtorInitializer *CI) { 3326 const CXXNewExpr *NE = nullptr; 3327 if (Field == CI->getMember() && 3328 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3329 if (NE->isArray() == IsArrayForm) 3330 return true; 3331 else 3332 NewExprs.push_back(NE); 3333 } 3334 return false; 3335} 3336 3337bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3338 const CXXConstructorDecl *CD) { 3339 if (CD->isImplicit()) 3340 return false; 3341 const FunctionDecl *Definition = CD; 3342 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3343 HasUndefinedConstructors = true; 3344 return EndOfTU; 3345 } 3346 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3347 if (hasMatchingNewInCtorInit(CI)) 3348 return true; 3349 } 3350 return false; 3351} 3352 3353MismatchingNewDeleteDetector::MismatchResult 3354MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3355 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3355, __extension__ __PRETTY_FUNCTION__))
; 3356 const Expr *InitExpr = Field->getInClassInitializer(); 3357 if (!InitExpr) 3358 return EndOfTU ? NoMismatch : AnalyzeLater; 3359 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3360 if (NE->isArray() != IsArrayForm) { 3361 NewExprs.push_back(NE); 3362 return MemberInitMismatches; 3363 } 3364 } 3365 return NoMismatch; 3366} 3367 3368MismatchingNewDeleteDetector::MismatchResult 3369MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3370 bool DeleteWasArrayForm) { 3371 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3371, __extension__ __PRETTY_FUNCTION__))
; 3372 this->Field = Field; 3373 IsArrayForm = DeleteWasArrayForm; 3374 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3375 for (const auto *CD : RD->ctors()) { 3376 if (hasMatchingNewInCtor(CD)) 3377 return NoMismatch; 3378 } 3379 if (HasUndefinedConstructors) 3380 return EndOfTU ? NoMismatch : AnalyzeLater; 3381 if (!NewExprs.empty()) 3382 return MemberInitMismatches; 3383 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3384 : NoMismatch; 3385} 3386 3387MismatchingNewDeleteDetector::MismatchResult 3388MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3389 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3389, __extension__ __PRETTY_FUNCTION__))
; 3390 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3391 return analyzeField(F, IsArrayForm); 3392 return NoMismatch; 3393} 3394 3395bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3396 const CXXNewExpr *NE = nullptr; 3397 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3398 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3399 NE->isArray() != IsArrayForm) { 3400 NewExprs.push_back(NE); 3401 } 3402 } 3403 return NewExprs.empty(); 3404} 3405 3406static void 3407DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3408 const MismatchingNewDeleteDetector &Detector) { 3409 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3410 FixItHint H; 3411 if (!Detector.IsArrayForm) 3412 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3413 else { 3414 SourceLocation RSquare = Lexer::findLocationAfterToken( 3415 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3416 SemaRef.getLangOpts(), true); 3417 if (RSquare.isValid()) 3418 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3419 } 3420 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3421 << Detector.IsArrayForm << H; 3422 3423 for (const auto *NE : Detector.NewExprs) 3424 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3425 << Detector.IsArrayForm; 3426} 3427 3428void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3429 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3430 return; 3431 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3432 switch (Detector.analyzeDeleteExpr(DE)) { 3433 case MismatchingNewDeleteDetector::VarInitMismatches: 3434 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3435 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3436 break; 3437 } 3438 case MismatchingNewDeleteDetector::AnalyzeLater: { 3439 DeleteExprs[Detector.Field].push_back( 3440 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3441 break; 3442 } 3443 case MismatchingNewDeleteDetector::NoMismatch: 3444 break; 3445 } 3446} 3447 3448void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3449 bool DeleteWasArrayForm) { 3450 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3451 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3452 case MismatchingNewDeleteDetector::VarInitMismatches: 3453 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3453)
; 3454 case MismatchingNewDeleteDetector::AnalyzeLater: 3455 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3456)
3456 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3456)
; 3457 case MismatchingNewDeleteDetector::MemberInitMismatches: 3458 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3459 break; 3460 case MismatchingNewDeleteDetector::NoMismatch: 3461 break; 3462 } 3463} 3464 3465/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3466/// @code ::delete ptr; @endcode 3467/// or 3468/// @code delete [] ptr; @endcode 3469ExprResult 3470Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3471 bool ArrayForm, Expr *ExE) { 3472 // C++ [expr.delete]p1: 3473 // The operand shall have a pointer type, or a class type having a single 3474 // non-explicit conversion function to a pointer type. The result has type 3475 // void. 3476 // 3477 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3478 3479 ExprResult Ex = ExE; 3480 FunctionDecl *OperatorDelete = nullptr; 3481 bool ArrayFormAsWritten = ArrayForm; 3482 bool UsualArrayDeleteWantsSize = false; 3483 3484 if (!Ex.get()->isTypeDependent()) { 3485 // Perform lvalue-to-rvalue cast, if needed. 3486 Ex = DefaultLvalueConversion(Ex.get()); 3487 if (Ex.isInvalid()) 3488 return ExprError(); 3489 3490 QualType Type = Ex.get()->getType(); 3491 3492 class DeleteConverter : public ContextualImplicitConverter { 3493 public: 3494 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3495 3496 bool match(QualType ConvType) override { 3497 // FIXME: If we have an operator T* and an operator void*, we must pick 3498 // the operator T*. 3499 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3500 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3501 return true; 3502 return false; 3503 } 3504 3505 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3506 QualType T) override { 3507 return S.Diag(Loc, diag::err_delete_operand) << T; 3508 } 3509 3510 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3511 QualType T) override { 3512 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3513 } 3514 3515 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3516 QualType T, 3517 QualType ConvTy) override { 3518 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3519 } 3520 3521 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3522 QualType ConvTy) override { 3523 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3524 << ConvTy; 3525 } 3526 3527 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3528 QualType T) override { 3529 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3530 } 3531 3532 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3533 QualType ConvTy) override { 3534 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3535 << ConvTy; 3536 } 3537 3538 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3539 QualType T, 3540 QualType ConvTy) override { 3541 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3541)
; 3542 } 3543 } Converter; 3544 3545 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3546 if (Ex.isInvalid()) 3547 return ExprError(); 3548 Type = Ex.get()->getType(); 3549 if (!Converter.match(Type)) 3550 // FIXME: PerformContextualImplicitConversion should return ExprError 3551 // itself in this case. 3552 return ExprError(); 3553 3554 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3555 QualType PointeeElem = Context.getBaseElementType(Pointee); 3556 3557 if (Pointee.getAddressSpace() != LangAS::Default && 3558 !getLangOpts().OpenCLCPlusPlus) 3559 return Diag(Ex.get()->getBeginLoc(), 3560 diag::err_address_space_qualified_delete) 3561 << Pointee.getUnqualifiedType() 3562 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3563 3564 CXXRecordDecl *PointeeRD = nullptr; 3565 if (Pointee->isVoidType() && !isSFINAEContext()) { 3566 // The C++ standard bans deleting a pointer to a non-object type, which 3567 // effectively bans deletion of "void*". However, most compilers support 3568 // this, so we treat it as a warning unless we're in a SFINAE context. 3569 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3570 << Type << Ex.get()->getSourceRange(); 3571 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3572 Pointee->isSizelessType()) { 3573 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3574 << Type << Ex.get()->getSourceRange()); 3575 } else if (!Pointee->isDependentType()) { 3576 // FIXME: This can result in errors if the definition was imported from a 3577 // module but is hidden. 3578 if (!RequireCompleteType(StartLoc, Pointee, 3579 diag::warn_delete_incomplete, Ex.get())) { 3580 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3581 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3582 } 3583 } 3584 3585 if (Pointee->isArrayType() && !ArrayForm) { 3586 Diag(StartLoc, diag::warn_delete_array_type) 3587 << Type << Ex.get()->getSourceRange() 3588 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3589 ArrayForm = true; 3590 } 3591 3592 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3593 ArrayForm ? OO_Array_Delete : OO_Delete); 3594 3595 if (PointeeRD) { 3596 if (!UseGlobal && 3597 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3598 OperatorDelete)) 3599 return ExprError(); 3600 3601 // If we're allocating an array of records, check whether the 3602 // usual operator delete[] has a size_t parameter. 3603 if (ArrayForm) { 3604 // If the user specifically asked to use the global allocator, 3605 // we'll need to do the lookup into the class. 3606 if (UseGlobal) 3607 UsualArrayDeleteWantsSize = 3608 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3609 3610 // Otherwise, the usual operator delete[] should be the 3611 // function we just found. 3612 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3613 UsualArrayDeleteWantsSize = 3614 UsualDeallocFnInfo(*this, 3615 DeclAccessPair::make(OperatorDelete, AS_public)) 3616 .HasSizeT; 3617 } 3618 3619 if (!PointeeRD->hasIrrelevantDestructor()) 3620 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3621 MarkFunctionReferenced(StartLoc, 3622 const_cast<CXXDestructorDecl*>(Dtor)); 3623 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3624 return ExprError(); 3625 } 3626 3627 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3628 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3629 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3630 SourceLocation()); 3631 } 3632 3633 if (!OperatorDelete) { 3634 if (getLangOpts().OpenCLCPlusPlus) { 3635 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3636 return ExprError(); 3637 } 3638 3639 bool IsComplete = isCompleteType(StartLoc, Pointee); 3640 bool CanProvideSize = 3641 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3642 Pointee.isDestructedType()); 3643 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3644 3645 // Look for a global declaration. 3646 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3647 Overaligned, DeleteName); 3648 } 3649 3650 MarkFunctionReferenced(StartLoc, OperatorDelete); 3651 3652 // Check access and ambiguity of destructor if we're going to call it. 3653 // Note that this is required even for a virtual delete. 3654 bool IsVirtualDelete = false; 3655 if (PointeeRD) { 3656 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3657 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3658 PDiag(diag::err_access_dtor) << PointeeElem); 3659 IsVirtualDelete = Dtor->isVirtual(); 3660 } 3661 } 3662 3663 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3664 3665 // Convert the operand to the type of the first parameter of operator 3666 // delete. This is only necessary if we selected a destroying operator 3667 // delete that we are going to call (non-virtually); converting to void* 3668 // is trivial and left to AST consumers to handle. 3669 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3670 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3671 Qualifiers Qs = Pointee.getQualifiers(); 3672 if (Qs.hasCVRQualifiers()) { 3673 // Qualifiers are irrelevant to this conversion; we're only looking 3674 // for access and ambiguity. 3675 Qs.removeCVRQualifiers(); 3676 QualType Unqual = Context.getPointerType( 3677 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3678 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3679 } 3680 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3681 if (Ex.isInvalid()) 3682 return ExprError(); 3683 } 3684 } 3685 3686 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3687 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3688 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3689 AnalyzeDeleteExprMismatch(Result); 3690 return Result; 3691} 3692 3693static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3694 bool IsDelete, 3695 FunctionDecl *&Operator) { 3696 3697 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3698 IsDelete ? OO_Delete : OO_New); 3699 3700 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3701 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3702 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3702, __extension__ __PRETTY_FUNCTION__))
; 3703 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3703, __extension__ __PRETTY_FUNCTION__))
; 3704 3705 // We do our own custom access checks below. 3706 R.suppressDiagnostics(); 3707 3708 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3709 OverloadCandidateSet Candidates(R.getNameLoc(), 3710 OverloadCandidateSet::CSK_Normal); 3711 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3712 FnOvl != FnOvlEnd; ++FnOvl) { 3713 // Even member operator new/delete are implicitly treated as 3714 // static, so don't use AddMemberCandidate. 3715 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3716 3717 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3718 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3719 /*ExplicitTemplateArgs=*/nullptr, Args, 3720 Candidates, 3721 /*SuppressUserConversions=*/false); 3722 continue; 3723 } 3724 3725 FunctionDecl *Fn = cast<FunctionDecl>(D); 3726 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3727 /*SuppressUserConversions=*/false); 3728 } 3729 3730 SourceRange Range = TheCall->getSourceRange(); 3731 3732 // Do the resolution. 3733 OverloadCandidateSet::iterator Best; 3734 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3735 case OR_Success: { 3736 // Got one! 3737 FunctionDecl *FnDecl = Best->Function; 3738 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3739, __extension__ __PRETTY_FUNCTION__))
3739 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3739, __extension__ __PRETTY_FUNCTION__))
; 3740 3741 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3742 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3743 << (IsDelete ? 1 : 0) << Range; 3744 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3745 << R.getLookupName() << FnDecl->getSourceRange(); 3746 return true; 3747 } 3748 3749 Operator = FnDecl; 3750 return false; 3751 } 3752 3753 case OR_No_Viable_Function: 3754 Candidates.NoteCandidates( 3755 PartialDiagnosticAt(R.getNameLoc(), 3756 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3757 << R.getLookupName() << Range), 3758 S, OCD_AllCandidates, Args); 3759 return true; 3760 3761 case OR_Ambiguous: 3762 Candidates.NoteCandidates( 3763 PartialDiagnosticAt(R.getNameLoc(), 3764 S.PDiag(diag::err_ovl_ambiguous_call) 3765 << R.getLookupName() << Range), 3766 S, OCD_AmbiguousCandidates, Args); 3767 return true; 3768 3769 case OR_Deleted: { 3770 Candidates.NoteCandidates( 3771 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3772 << R.getLookupName() << Range), 3773 S, OCD_AllCandidates, Args); 3774 return true; 3775 } 3776 } 3777 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3777)
; 3778} 3779 3780ExprResult 3781Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3782 bool IsDelete) { 3783 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3784 if (!getLangOpts().CPlusPlus) { 3785 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3786 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3787 << "C++"; 3788 return ExprError(); 3789 } 3790 // CodeGen assumes it can find the global new and delete to call, 3791 // so ensure that they are declared. 3792 DeclareGlobalNewDelete(); 3793 3794 FunctionDecl *OperatorNewOrDelete = nullptr; 3795 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3796 OperatorNewOrDelete)) 3797 return ExprError(); 3798 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3798, __extension__ __PRETTY_FUNCTION__))
; 3799 3800 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3801 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3802 3803 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3804 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3805 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3806 InitializedEntity Entity = 3807 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3808 ExprResult Arg = PerformCopyInitialization( 3809 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3810 if (Arg.isInvalid()) 3811 return ExprError(); 3812 TheCall->setArg(i, Arg.get()); 3813 } 3814 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3815 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3816, __extension__ __PRETTY_FUNCTION__))
3816 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3816, __extension__ __PRETTY_FUNCTION__))
; 3817 Callee->setType(OperatorNewOrDelete->getType()); 3818 3819 return TheCallResult; 3820} 3821 3822void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3823 bool IsDelete, bool CallCanBeVirtual, 3824 bool WarnOnNonAbstractTypes, 3825 SourceLocation DtorLoc) { 3826 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3827 return; 3828 3829 // C++ [expr.delete]p3: 3830 // In the first alternative (delete object), if the static type of the 3831 // object to be deleted is different from its dynamic type, the static 3832 // type shall be a base class of the dynamic type of the object to be 3833 // deleted and the static type shall have a virtual destructor or the 3834 // behavior is undefined. 3835 // 3836 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3837 // Note: a final class cannot be derived from, no issue there 3838 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3839 return; 3840 3841 // If the superclass is in a system header, there's nothing that can be done. 3842 // The `delete` (where we emit the warning) can be in a system header, 3843 // what matters for this warning is where the deleted type is defined. 3844 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3845 return; 3846 3847 QualType ClassType = dtor->getThisType()->getPointeeType(); 3848 if (PointeeRD->isAbstract()) { 3849 // If the class is abstract, we warn by default, because we're 3850 // sure the code has undefined behavior. 3851 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3852 << ClassType; 3853 } else if (WarnOnNonAbstractTypes) { 3854 // Otherwise, if this is not an array delete, it's a bit suspect, 3855 // but not necessarily wrong. 3856 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3857 << ClassType; 3858 } 3859 if (!IsDelete) { 3860 std::string TypeStr; 3861 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3862 Diag(DtorLoc, diag::note_delete_non_virtual) 3863 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3864 } 3865} 3866 3867Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3868 SourceLocation StmtLoc, 3869 ConditionKind CK) { 3870 ExprResult E = 3871 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3872 if (E.isInvalid()) 3873 return ConditionError(); 3874 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3875 CK == ConditionKind::ConstexprIf); 3876} 3877 3878/// Check the use of the given variable as a C++ condition in an if, 3879/// while, do-while, or switch statement. 3880ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3881 SourceLocation StmtLoc, 3882 ConditionKind CK) { 3883 if (ConditionVar->isInvalidDecl()) 3884 return ExprError(); 3885 3886 QualType T = ConditionVar->getType(); 3887 3888 // C++ [stmt.select]p2: 3889 // The declarator shall not specify a function or an array. 3890 if (T->isFunctionType()) 3891 return ExprError(Diag(ConditionVar->getLocation(), 3892 diag::err_invalid_use_of_function_type) 3893 << ConditionVar->getSourceRange()); 3894 else if (T->isArrayType()) 3895 return ExprError(Diag(ConditionVar->getLocation(), 3896 diag::err_invalid_use_of_array_type) 3897 << ConditionVar->getSourceRange()); 3898 3899 ExprResult Condition = BuildDeclRefExpr( 3900 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3901 ConditionVar->getLocation()); 3902 3903 switch (CK) { 3904 case ConditionKind::Boolean: 3905 return CheckBooleanCondition(StmtLoc, Condition.get()); 3906 3907 case ConditionKind::ConstexprIf: 3908 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3909 3910 case ConditionKind::Switch: 3911 return CheckSwitchCondition(StmtLoc, Condition.get()); 3912 } 3913 3914 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3914)
; 3915} 3916 3917/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3918ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3919 // C++11 6.4p4: 3920 // The value of a condition that is an initialized declaration in a statement 3921 // other than a switch statement is the value of the declared variable 3922 // implicitly converted to type bool. If that conversion is ill-formed, the 3923 // program is ill-formed. 3924 // The value of a condition that is an expression is the value of the 3925 // expression, implicitly converted to bool. 3926 // 3927 // C++2b 8.5.2p2 3928 // If the if statement is of the form if constexpr, the value of the condition 3929 // is contextually converted to bool and the converted expression shall be 3930 // a constant expression. 3931 // 3932 3933 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3934 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3935 return E; 3936 3937 // FIXME: Return this value to the caller so they don't need to recompute it. 3938 llvm::APSInt Cond; 3939 E = VerifyIntegerConstantExpression( 3940 E.get(), &Cond, 3941 diag::err_constexpr_if_condition_expression_is_not_constant); 3942 return E; 3943} 3944 3945/// Helper function to determine whether this is the (deprecated) C++ 3946/// conversion from a string literal to a pointer to non-const char or 3947/// non-const wchar_t (for narrow and wide string literals, 3948/// respectively). 3949bool 3950Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3951 // Look inside the implicit cast, if it exists. 3952 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3953 From = Cast->getSubExpr(); 3954 3955 // A string literal (2.13.4) that is not a wide string literal can 3956 // be converted to an rvalue of type "pointer to char"; a wide 3957 // string literal can be converted to an rvalue of type "pointer 3958 // to wchar_t" (C++ 4.2p2). 3959 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3960 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3961 if (const BuiltinType *ToPointeeType 3962 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3963 // This conversion is considered only when there is an 3964 // explicit appropriate pointer target type (C++ 4.2p2). 3965 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3966 switch (StrLit->getKind()) { 3967 case StringLiteral::UTF8: 3968 case StringLiteral::UTF16: 3969 case StringLiteral::UTF32: 3970 // We don't allow UTF literals to be implicitly converted 3971 break; 3972 case StringLiteral::Ascii: 3973 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3974 ToPointeeType->getKind() == BuiltinType::Char_S); 3975 case StringLiteral::Wide: 3976 return Context.typesAreCompatible(Context.getWideCharType(), 3977 QualType(ToPointeeType, 0)); 3978 } 3979 } 3980 } 3981 3982 return false; 3983} 3984 3985static ExprResult BuildCXXCastArgument(Sema &S, 3986 SourceLocation CastLoc, 3987 QualType Ty, 3988 CastKind Kind, 3989 CXXMethodDecl *Method, 3990 DeclAccessPair FoundDecl, 3991 bool HadMultipleCandidates, 3992 Expr *From) { 3993 switch (Kind) { 3994 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 3994)
; 3995 case CK_ConstructorConversion: { 3996 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3997 SmallVector<Expr*, 8> ConstructorArgs; 3998 3999 if (S.RequireNonAbstractType(CastLoc, Ty, 4000 diag::err_allocation_of_abstract_type)) 4001 return ExprError(); 4002 4003 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4004 ConstructorArgs)) 4005 return ExprError(); 4006 4007 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4008 InitializedEntity::InitializeTemporary(Ty)); 4009 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4010 return ExprError(); 4011 4012 ExprResult Result = S.BuildCXXConstructExpr( 4013 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4014 ConstructorArgs, HadMultipleCandidates, 4015 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4016 CXXConstructExpr::CK_Complete, SourceRange()); 4017 if (Result.isInvalid()) 4018 return ExprError(); 4019 4020 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4021 } 4022 4023 case CK_UserDefinedConversion: { 4024 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4024, __extension__ __PRETTY_FUNCTION__))
; 4025 4026 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4027 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4028 return ExprError(); 4029 4030 // Create an implicit call expr that calls it. 4031 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4032 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4033 HadMultipleCandidates); 4034 if (Result.isInvalid()) 4035 return ExprError(); 4036 // Record usage of conversion in an implicit cast. 4037 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4038 CK_UserDefinedConversion, Result.get(), 4039 nullptr, Result.get()->getValueKind(), 4040 S.CurFPFeatureOverrides()); 4041 4042 return S.MaybeBindToTemporary(Result.get()); 4043 } 4044 } 4045} 4046 4047/// PerformImplicitConversion - Perform an implicit conversion of the 4048/// expression From to the type ToType using the pre-computed implicit 4049/// conversion sequence ICS. Returns the converted 4050/// expression. Action is the kind of conversion we're performing, 4051/// used in the error message. 4052ExprResult 4053Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4054 const ImplicitConversionSequence &ICS, 4055 AssignmentAction Action, 4056 CheckedConversionKind CCK) { 4057 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4058 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4059 return From; 4060 4061 switch (ICS.getKind()) { 4062 case ImplicitConversionSequence::StandardConversion: { 4063 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4064 Action, CCK); 4065 if (Res.isInvalid()) 4066 return ExprError(); 4067 From = Res.get(); 4068 break; 4069 } 4070 4071 case ImplicitConversionSequence::UserDefinedConversion: { 4072 4073 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4074 CastKind CastKind; 4075 QualType BeforeToType; 4076 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4076, __extension__ __PRETTY_FUNCTION__))
; 4077 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4078 CastKind = CK_UserDefinedConversion; 4079 4080 // If the user-defined conversion is specified by a conversion function, 4081 // the initial standard conversion sequence converts the source type to 4082 // the implicit object parameter of the conversion function. 4083 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4084 } else { 4085 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4086 CastKind = CK_ConstructorConversion; 4087 // Do no conversion if dealing with ... for the first conversion. 4088 if (!ICS.UserDefined.EllipsisConversion) { 4089 // If the user-defined conversion is specified by a constructor, the 4090 // initial standard conversion sequence converts the source type to 4091 // the type required by the argument of the constructor 4092 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4093 } 4094 } 4095 // Watch out for ellipsis conversion. 4096 if (!ICS.UserDefined.EllipsisConversion) { 4097 ExprResult Res = 4098 PerformImplicitConversion(From, BeforeToType, 4099 ICS.UserDefined.Before, AA_Converting, 4100 CCK); 4101 if (Res.isInvalid()) 4102 return ExprError(); 4103 From = Res.get(); 4104 } 4105 4106 ExprResult CastArg = BuildCXXCastArgument( 4107 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4108 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4109 ICS.UserDefined.HadMultipleCandidates, From); 4110 4111 if (CastArg.isInvalid()) 4112 return ExprError(); 4113 4114 From = CastArg.get(); 4115 4116 // C++ [over.match.oper]p7: 4117 // [...] the second standard conversion sequence of a user-defined 4118 // conversion sequence is not applied. 4119 if (CCK == CCK_ForBuiltinOverloadedOp) 4120 return From; 4121 4122 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4123 AA_Converting, CCK); 4124 } 4125 4126 case ImplicitConversionSequence::AmbiguousConversion: 4127 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4128 PDiag(diag::err_typecheck_ambiguous_condition) 4129 << From->getSourceRange()); 4130 return ExprError(); 4131 4132 case ImplicitConversionSequence::EllipsisConversion: 4133 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4133)
; 4134 4135 case ImplicitConversionSequence::BadConversion: 4136 Sema::AssignConvertType ConvTy = 4137 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4138 bool Diagnosed = DiagnoseAssignmentResult( 4139 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4140 ToType, From->getType(), From, Action); 4141 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4141, __extension__ __PRETTY_FUNCTION__))
; (void)Diagnosed; 4142 return ExprError(); 4143 } 4144 4145 // Everything went well. 4146 return From; 4147} 4148 4149/// PerformImplicitConversion - Perform an implicit conversion of the 4150/// expression From to the type ToType by following the standard 4151/// conversion sequence SCS. Returns the converted 4152/// expression. Flavor is the context in which we're performing this 4153/// conversion, for use in error messages. 4154ExprResult 4155Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4156 const StandardConversionSequence& SCS, 4157 AssignmentAction Action, 4158 CheckedConversionKind CCK) { 4159 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4160 4161 // Overall FIXME: we are recomputing too many types here and doing far too 4162 // much extra work. What this means is that we need to keep track of more 4163 // information that is computed when we try the implicit conversion initially, 4164 // so that we don't need to recompute anything here. 4165 QualType FromType = From->getType(); 4166 4167 if (SCS.CopyConstructor) { 4168 // FIXME: When can ToType be a reference type? 4169 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4169, __extension__ __PRETTY_FUNCTION__))
; 4170 if (SCS.Second == ICK_Derived_To_Base) { 4171 SmallVector<Expr*, 8> ConstructorArgs; 4172 if (CompleteConstructorCall( 4173 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4174 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4175 return ExprError(); 4176 return BuildCXXConstructExpr( 4177 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4178 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4179 ConstructorArgs, /*HadMultipleCandidates*/ false, 4180 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4181 CXXConstructExpr::CK_Complete, SourceRange()); 4182 } 4183 return BuildCXXConstructExpr( 4184 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4185 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4186 From, /*HadMultipleCandidates*/ false, 4187 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4188 CXXConstructExpr::CK_Complete, SourceRange()); 4189 } 4190 4191 // Resolve overloaded function references. 4192 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4193 DeclAccessPair Found; 4194 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4195 true, Found); 4196 if (!Fn) 4197 return ExprError(); 4198 4199 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4200 return ExprError(); 4201 4202 From = FixOverloadedFunctionReference(From, Found, Fn); 4203 FromType = From->getType(); 4204 } 4205 4206 // If we're converting to an atomic type, first convert to the corresponding 4207 // non-atomic type. 4208 QualType ToAtomicType; 4209 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4210 ToAtomicType = ToType; 4211 ToType = ToAtomic->getValueType(); 4212 } 4213 4214 QualType InitialFromType = FromType; 4215 // Perform the first implicit conversion. 4216 switch (SCS.First) { 4217 case ICK_Identity: 4218 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4219 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4220 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4221 From, /*BasePath=*/nullptr, VK_PRValue, 4222 FPOptionsOverride()); 4223 } 4224 break; 4225 4226 case ICK_Lvalue_To_Rvalue: { 4227 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4227, __extension__ __PRETTY_FUNCTION__))
; 4228 ExprResult FromRes = DefaultLvalueConversion(From); 4229 if (FromRes.isInvalid()) 4230 return ExprError(); 4231 4232 From = FromRes.get(); 4233 FromType = From->getType(); 4234 break; 4235 } 4236 4237 case ICK_Array_To_Pointer: 4238 FromType = Context.getArrayDecayedType(FromType); 4239 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4240 /*BasePath=*/nullptr, CCK) 4241 .get(); 4242 break; 4243 4244 case ICK_Function_To_Pointer: 4245 FromType = Context.getPointerType(FromType); 4246 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4247 VK_PRValue, /*BasePath=*/nullptr, CCK) 4248 .get(); 4249 break; 4250 4251 default: 4252 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4252)
; 4253 } 4254 4255 // Perform the second implicit conversion 4256 switch (SCS.Second) { 4257 case ICK_Identity: 4258 // C++ [except.spec]p5: 4259 // [For] assignment to and initialization of pointers to functions, 4260 // pointers to member functions, and references to functions: the 4261 // target entity shall allow at least the exceptions allowed by the 4262 // source value in the assignment or initialization. 4263 switch (Action) { 4264 case AA_Assigning: 4265 case AA_Initializing: 4266 // Note, function argument passing and returning are initialization. 4267 case AA_Passing: 4268 case AA_Returning: 4269 case AA_Sending: 4270 case AA_Passing_CFAudited: 4271 if (CheckExceptionSpecCompatibility(From, ToType)) 4272 return ExprError(); 4273 break; 4274 4275 case AA_Casting: 4276 case AA_Converting: 4277 // Casts and implicit conversions are not initialization, so are not 4278 // checked for exception specification mismatches. 4279 break; 4280 } 4281 // Nothing else to do. 4282 break; 4283 4284 case ICK_Integral_Promotion: 4285 case ICK_Integral_Conversion: 4286 if (ToType->isBooleanType()) { 4287 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4289, __extension__ __PRETTY_FUNCTION__))
4288 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4289, __extension__ __PRETTY_FUNCTION__))
4289 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4289, __extension__ __PRETTY_FUNCTION__))
; 4290 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4291 /*BasePath=*/nullptr, CCK) 4292 .get(); 4293 } else { 4294 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4295 /*BasePath=*/nullptr, CCK) 4296 .get(); 4297 } 4298 break; 4299 4300 case ICK_Floating_Promotion: 4301 case ICK_Floating_Conversion: 4302 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4303 /*BasePath=*/nullptr, CCK) 4304 .get(); 4305 break; 4306 4307 case ICK_Complex_Promotion: 4308 case ICK_Complex_Conversion: { 4309 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4310 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4311 CastKind CK; 4312 if (FromEl->isRealFloatingType()) { 4313 if (ToEl->isRealFloatingType()) 4314 CK = CK_FloatingComplexCast; 4315 else 4316 CK = CK_FloatingComplexToIntegralComplex; 4317 } else if (ToEl->isRealFloatingType()) { 4318 CK = CK_IntegralComplexToFloatingComplex; 4319 } else { 4320 CK = CK_IntegralComplexCast; 4321 } 4322 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4323 CCK) 4324 .get(); 4325 break; 4326 } 4327 4328 case ICK_Floating_Integral: 4329 if (ToType->isRealFloatingType()) 4330 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4331 /*BasePath=*/nullptr, CCK) 4332 .get(); 4333 else 4334 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4335 /*BasePath=*/nullptr, CCK) 4336 .get(); 4337 break; 4338 4339 case ICK_Compatible_Conversion: 4340 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4341 /*BasePath=*/nullptr, CCK).get(); 4342 break; 4343 4344 case ICK_Writeback_Conversion: 4345 case ICK_Pointer_Conversion: { 4346 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4347 // Diagnose incompatible Objective-C conversions 4348 if (Action == AA_Initializing || Action == AA_Assigning) 4349 Diag(From->getBeginLoc(), 4350 diag::ext_typecheck_convert_incompatible_pointer) 4351 << ToType << From->getType() << Action << From->getSourceRange() 4352 << 0; 4353 else 4354 Diag(From->getBeginLoc(), 4355 diag::ext_typecheck_convert_incompatible_pointer) 4356 << From->getType() << ToType << Action << From->getSourceRange() 4357 << 0; 4358 4359 if (From->getType()->isObjCObjectPointerType() && 4360 ToType->isObjCObjectPointerType()) 4361 EmitRelatedResultTypeNote(From); 4362 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4363 !CheckObjCARCUnavailableWeakConversion(ToType, 4364 From->getType())) { 4365 if (Action == AA_Initializing) 4366 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4367 else 4368 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4369 << (Action == AA_Casting) << From->getType() << ToType 4370 << From->getSourceRange(); 4371 } 4372 4373 // Defer address space conversion to the third conversion. 4374 QualType FromPteeType = From->getType()->getPointeeType(); 4375 QualType ToPteeType = ToType->getPointeeType(); 4376 QualType NewToType = ToType; 4377 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4378 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4379 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4380 NewToType = Context.getAddrSpaceQualType(NewToType, 4381 FromPteeType.getAddressSpace()); 4382 if (ToType->isObjCObjectPointerType()) 4383 NewToType = Context.getObjCObjectPointerType(NewToType); 4384 else if (ToType->isBlockPointerType()) 4385 NewToType = Context.getBlockPointerType(NewToType); 4386 else 4387 NewToType = Context.getPointerType(NewToType); 4388 } 4389 4390 CastKind Kind; 4391 CXXCastPath BasePath; 4392 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4393 return ExprError(); 4394 4395 // Make sure we extend blocks if necessary. 4396 // FIXME: doing this here is really ugly. 4397 if (Kind == CK_BlockPointerToObjCPointerCast) { 4398 ExprResult E = From; 4399 (void) PrepareCastToObjCObjectPointer(E); 4400 From = E.get(); 4401 } 4402 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4403 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4404 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4405 .get(); 4406 break; 4407 } 4408 4409 case ICK_Pointer_Member: { 4410 CastKind Kind; 4411 CXXCastPath BasePath; 4412 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4413 return ExprError(); 4414 if (CheckExceptionSpecCompatibility(From, ToType)) 4415 return ExprError(); 4416 4417 // We may not have been able to figure out what this member pointer resolved 4418 // to up until this exact point. Attempt to lock-in it's inheritance model. 4419 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4420 (void)isCompleteType(From->getExprLoc(), From->getType()); 4421 (void)isCompleteType(From->getExprLoc(), ToType); 4422 } 4423 4424 From = 4425 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4426 break; 4427 } 4428 4429 case ICK_Boolean_Conversion: 4430 // Perform half-to-boolean conversion via float. 4431 if (From->getType()->isHalfType()) { 4432 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4433 FromType = Context.FloatTy; 4434 } 4435 4436 From = ImpCastExprToType(From, Context.BoolTy, 4437 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4438 /*BasePath=*/nullptr, CCK) 4439 .get(); 4440 break; 4441 4442 case ICK_Derived_To_Base: { 4443 CXXCastPath BasePath; 4444 if (CheckDerivedToBaseConversion( 4445 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4446 From->getSourceRange(), &BasePath, CStyle)) 4447 return ExprError(); 4448 4449 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4450 CK_DerivedToBase, From->getValueKind(), 4451 &BasePath, CCK).get(); 4452 break; 4453 } 4454 4455 case ICK_Vector_Conversion: 4456 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4457 /*BasePath=*/nullptr, CCK) 4458 .get(); 4459 break; 4460 4461 case ICK_SVE_Vector_Conversion: 4462 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4463 /*BasePath=*/nullptr, CCK) 4464 .get(); 4465 break; 4466 4467 case ICK_Vector_Splat: { 4468 // Vector splat from any arithmetic type to a vector. 4469 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4470 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4471 /*BasePath=*/nullptr, CCK) 4472 .get(); 4473 break; 4474 } 4475 4476 case ICK_Complex_Real: 4477 // Case 1. x -> _Complex y 4478 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4479 QualType ElType = ToComplex->getElementType(); 4480 bool isFloatingComplex = ElType->isRealFloatingType(); 4481 4482 // x -> y 4483 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4484 // do nothing 4485 } else if (From->getType()->isRealFloatingType()) { 4486 From = ImpCastExprToType(From, ElType, 4487 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4488 } else { 4489 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4489, __extension__ __PRETTY_FUNCTION__))
; 4490 From = ImpCastExprToType(From, ElType, 4491 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4492 } 4493 // y -> _Complex y 4494 From = ImpCastExprToType(From, ToType, 4495 isFloatingComplex ? CK_FloatingRealToComplex 4496 : CK_IntegralRealToComplex).get(); 4497 4498 // Case 2. _Complex x -> y 4499 } else { 4500 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4501 QualType ElType = FromComplex->getElementType(); 4502 bool isFloatingComplex = ElType->isRealFloatingType(); 4503 4504 // _Complex x -> x 4505 From = ImpCastExprToType(From, ElType, 4506 isFloatingComplex ? CK_FloatingComplexToReal 4507 : CK_IntegralComplexToReal, 4508 VK_PRValue, /*BasePath=*/nullptr, CCK) 4509 .get(); 4510 4511 // x -> y 4512 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4513 // do nothing 4514 } else if (ToType->isRealFloatingType()) { 4515 From = ImpCastExprToType(From, ToType, 4516 isFloatingComplex ? CK_FloatingCast 4517 : CK_IntegralToFloating, 4518 VK_PRValue, /*BasePath=*/nullptr, CCK) 4519 .get(); 4520 } else { 4521 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4521, __extension__ __PRETTY_FUNCTION__))
; 4522 From = ImpCastExprToType(From, ToType, 4523 isFloatingComplex ? CK_FloatingToIntegral 4524 : CK_IntegralCast, 4525 VK_PRValue, /*BasePath=*/nullptr, CCK) 4526 .get(); 4527 } 4528 } 4529 break; 4530 4531 case ICK_Block_Pointer_Conversion: { 4532 LangAS AddrSpaceL = 4533 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4534 LangAS AddrSpaceR = 4535 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4536 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4537, __extension__ __PRETTY_FUNCTION__))
4537 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4537, __extension__ __PRETTY_FUNCTION__))
; 4538 CastKind Kind = 4539 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4540 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4541 VK_PRValue, /*BasePath=*/nullptr, CCK) 4542 .get(); 4543 break; 4544 } 4545 4546 case ICK_TransparentUnionConversion: { 4547 ExprResult FromRes = From; 4548 Sema::AssignConvertType ConvTy = 4549 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4550 if (FromRes.isInvalid()) 4551 return ExprError(); 4552 From = FromRes.get(); 4553 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4554, __extension__ __PRETTY_FUNCTION__))
4554 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4554, __extension__ __PRETTY_FUNCTION__))
; 4555 (void)ConvTy; 4556 break; 4557 } 4558 4559 case ICK_Zero_Event_Conversion: 4560 case ICK_Zero_Queue_Conversion: 4561 From = ImpCastExprToType(From, ToType, 4562 CK_ZeroToOCLOpaqueType, 4563 From->getValueKind()).get(); 4564 break; 4565 4566 case ICK_Lvalue_To_Rvalue: 4567 case ICK_Array_To_Pointer: 4568 case ICK_Function_To_Pointer: 4569 case ICK_Function_Conversion: 4570 case ICK_Qualification: 4571 case ICK_Num_Conversion_Kinds: 4572 case ICK_C_Only_Conversion: 4573 case ICK_Incompatible_Pointer_Conversion: 4574 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4574)
; 4575 } 4576 4577 switch (SCS.Third) { 4578 case ICK_Identity: 4579 // Nothing to do. 4580 break; 4581 4582 case ICK_Function_Conversion: 4583 // If both sides are functions (or pointers/references to them), there could 4584 // be incompatible exception declarations. 4585 if (CheckExceptionSpecCompatibility(From, ToType)) 4586 return ExprError(); 4587 4588 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4589 /*BasePath=*/nullptr, CCK) 4590 .get(); 4591 break; 4592 4593 case ICK_Qualification: { 4594 ExprValueKind VK = From->getValueKind(); 4595 CastKind CK = CK_NoOp; 4596 4597 if (ToType->isReferenceType() && 4598 ToType->getPointeeType().getAddressSpace() != 4599 From->getType().getAddressSpace()) 4600 CK = CK_AddressSpaceConversion; 4601 4602 if (ToType->isPointerType() && 4603 ToType->getPointeeType().getAddressSpace() != 4604 From->getType()->getPointeeType().getAddressSpace()) 4605 CK = CK_AddressSpaceConversion; 4606 4607 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4608 /*BasePath=*/nullptr, CCK) 4609 .get(); 4610 4611 if (SCS.DeprecatedStringLiteralToCharPtr && 4612 !getLangOpts().WritableStrings) { 4613 Diag(From->getBeginLoc(), 4614 getLangOpts().CPlusPlus11 4615 ? diag::ext_deprecated_string_literal_conversion 4616 : diag::warn_deprecated_string_literal_conversion) 4617 << ToType.getNonReferenceType(); 4618 } 4619 4620 break; 4621 } 4622 4623 default: 4624 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4624)
; 4625 } 4626 4627 // If this conversion sequence involved a scalar -> atomic conversion, perform 4628 // that conversion now. 4629 if (!ToAtomicType.isNull()) { 4630 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4631, __extension__ __PRETTY_FUNCTION__))
4631 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4631, __extension__ __PRETTY_FUNCTION__))
; 4632 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4633 VK_PRValue, nullptr, CCK) 4634 .get(); 4635 } 4636 4637 // Materialize a temporary if we're implicitly converting to a reference 4638 // type. This is not required by the C++ rules but is necessary to maintain 4639 // AST invariants. 4640 if (ToType->isReferenceType() && From->isPRValue()) { 4641 ExprResult Res = TemporaryMaterializationConversion(From); 4642 if (Res.isInvalid()) 4643 return ExprError(); 4644 From = Res.get(); 4645 } 4646 4647 // If this conversion sequence succeeded and involved implicitly converting a 4648 // _Nullable type to a _Nonnull one, complain. 4649 if (!isCast(CCK)) 4650 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4651 From->getBeginLoc()); 4652 4653 return From; 4654} 4655 4656/// Check the completeness of a type in a unary type trait. 4657/// 4658/// If the particular type trait requires a complete type, tries to complete 4659/// it. If completing the type fails, a diagnostic is emitted and false 4660/// returned. If completing the type succeeds or no completion was required, 4661/// returns true. 4662static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4663 SourceLocation Loc, 4664 QualType ArgTy) { 4665 // C++0x [meta.unary.prop]p3: 4666 // For all of the class templates X declared in this Clause, instantiating 4667 // that template with a template argument that is a class template 4668 // specialization may result in the implicit instantiation of the template 4669 // argument if and only if the semantics of X require that the argument 4670 // must be a complete type. 4671 // We apply this rule to all the type trait expressions used to implement 4672 // these class templates. We also try to follow any GCC documented behavior 4673 // in these expressions to ensure portability of standard libraries. 4674 switch (UTT) { 4675 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4675)
; 4676 // is_complete_type somewhat obviously cannot require a complete type. 4677 case UTT_IsCompleteType: 4678 // Fall-through 4679 4680 // These traits are modeled on the type predicates in C++0x 4681 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4682 // requiring a complete type, as whether or not they return true cannot be 4683 // impacted by the completeness of the type. 4684 case UTT_IsVoid: 4685 case UTT_IsIntegral: 4686 case UTT_IsFloatingPoint: 4687 case UTT_IsArray: 4688 case UTT_IsPointer: 4689 case UTT_IsLvalueReference: 4690 case UTT_IsRvalueReference: 4691 case UTT_IsMemberFunctionPointer: 4692 case UTT_IsMemberObjectPointer: 4693 case UTT_IsEnum: 4694 case UTT_IsUnion: 4695 case UTT_IsClass: 4696 case UTT_IsFunction: 4697 case UTT_IsReference: 4698 case UTT_IsArithmetic: 4699 case UTT_IsFundamental: 4700 case UTT_IsObject: 4701 case UTT_IsScalar: 4702 case UTT_IsCompound: 4703 case UTT_IsMemberPointer: 4704 // Fall-through 4705 4706 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4707 // which requires some of its traits to have the complete type. However, 4708 // the completeness of the type cannot impact these traits' semantics, and 4709 // so they don't require it. This matches the comments on these traits in 4710 // Table 49. 4711 case UTT_IsConst: 4712 case UTT_IsVolatile: 4713 case UTT_IsSigned: 4714 case UTT_IsUnsigned: 4715 4716 // This type trait always returns false, checking the type is moot. 4717 case UTT_IsInterfaceClass: 4718 return true; 4719 4720 // C++14 [meta.unary.prop]: 4721 // If T is a non-union class type, T shall be a complete type. 4722 case UTT_IsEmpty: 4723 case UTT_IsPolymorphic: 4724 case UTT_IsAbstract: 4725 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4726 if (!RD->isUnion()) 4727 return !S.RequireCompleteType( 4728 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4729 return true; 4730 4731 // C++14 [meta.unary.prop]: 4732 // If T is a class type, T shall be a complete type. 4733 case UTT_IsFinal: 4734 case UTT_IsSealed: 4735 if (ArgTy->getAsCXXRecordDecl()) 4736 return !S.RequireCompleteType( 4737 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4738 return true; 4739 4740 // C++1z [meta.unary.prop]: 4741 // remove_all_extents_t<T> shall be a complete type or cv void. 4742 case UTT_IsAggregate: 4743 case UTT_IsTrivial: 4744 case UTT_IsTriviallyCopyable: 4745 case UTT_IsStandardLayout: 4746 case UTT_IsPOD: 4747 case UTT_IsLiteral: 4748 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4749 // or an array of unknown bound. But GCC actually imposes the same constraints 4750 // as above. 4751 case UTT_HasNothrowAssign: 4752 case UTT_HasNothrowMoveAssign: 4753 case UTT_HasNothrowConstructor: 4754 case UTT_HasNothrowCopy: 4755 case UTT_HasTrivialAssign: 4756 case UTT_HasTrivialMoveAssign: 4757 case UTT_HasTrivialDefaultConstructor: 4758 case UTT_HasTrivialMoveConstructor: 4759 case UTT_HasTrivialCopy: 4760 case UTT_HasTrivialDestructor: 4761 case UTT_HasVirtualDestructor: 4762 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4763 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 4764 4765 // C++1z [meta.unary.prop]: 4766 // T shall be a complete type, cv void, or an array of unknown bound. 4767 case UTT_IsDestructible: 4768 case UTT_IsNothrowDestructible: 4769 case UTT_IsTriviallyDestructible: 4770 case UTT_HasUniqueObjectRepresentations: 4771 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4772 return true; 4773 4774 return !S.RequireCompleteType( 4775 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4776 } 4777} 4778 4779static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4780 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4781 bool (CXXRecordDecl::*HasTrivial)() const, 4782 bool (CXXRecordDecl::*HasNonTrivial)() const, 4783 bool (CXXMethodDecl::*IsDesiredOp)() const) 4784{ 4785 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4786 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4787 return true; 4788 4789 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4790 DeclarationNameInfo NameInfo(Name, KeyLoc); 4791 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4792 if (Self.LookupQualifiedName(Res, RD)) { 4793 bool FoundOperator = false; 4794 Res.suppressDiagnostics(); 4795 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4796 Op != OpEnd; ++Op) { 4797 if (isa<FunctionTemplateDecl>(*Op)) 4798 continue; 4799 4800 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4801 if((Operator->*IsDesiredOp)()) { 4802 FoundOperator = true; 4803 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4804 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4805 if (!CPT || !CPT->isNothrow()) 4806 return false; 4807 } 4808 } 4809 return FoundOperator; 4810 } 4811 return false; 4812} 4813 4814static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4815 SourceLocation KeyLoc, QualType T) { 4816 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4816, __extension__ __PRETTY_FUNCTION__))
; 4817 4818 ASTContext &C = Self.Context; 4819 switch(UTT) { 4820 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 4820)
; 4821 // Type trait expressions corresponding to the primary type category 4822 // predicates in C++0x [meta.unary.cat]. 4823 case UTT_IsVoid: 4824 return T->isVoidType(); 4825 case UTT_IsIntegral: 4826 return T->isIntegralType(C); 4827 case UTT_IsFloatingPoint: 4828 return T->isFloatingType(); 4829 case UTT_IsArray: 4830 return T->isArrayType(); 4831 case UTT_IsPointer: 4832 return T->isAnyPointerType(); 4833 case UTT_IsLvalueReference: 4834 return T->isLValueReferenceType(); 4835 case UTT_IsRvalueReference: 4836 return T->isRValueReferenceType(); 4837 case UTT_IsMemberFunctionPointer: 4838 return T->isMemberFunctionPointerType(); 4839 case UTT_IsMemberObjectPointer: 4840 return T->isMemberDataPointerType(); 4841 case UTT_IsEnum: 4842 return T->isEnumeralType(); 4843 case UTT_IsUnion: 4844 return T->isUnionType(); 4845 case UTT_IsClass: 4846 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4847 case UTT_IsFunction: 4848 return T->isFunctionType(); 4849 4850 // Type trait expressions which correspond to the convenient composition 4851 // predicates in C++0x [meta.unary.comp]. 4852 case UTT_IsReference: 4853 return T->isReferenceType(); 4854 case UTT_IsArithmetic: 4855 return T->isArithmeticType() && !T->isEnumeralType(); 4856 case UTT_IsFundamental: 4857 return T->isFundamentalType(); 4858 case UTT_IsObject: 4859 return T->isObjectType(); 4860 case UTT_IsScalar: 4861 // Note: semantic analysis depends on Objective-C lifetime types to be 4862 // considered scalar types. However, such types do not actually behave 4863 // like scalar types at run time (since they may require retain/release 4864 // operations), so we report them as non-scalar. 4865 if (T->isObjCLifetimeType()) { 4866 switch (T.getObjCLifetime()) { 4867 case Qualifiers::OCL_None: 4868 case Qualifiers::OCL_ExplicitNone: 4869 return true; 4870 4871 case Qualifiers::OCL_Strong: 4872 case Qualifiers::OCL_Weak: 4873 case Qualifiers::OCL_Autoreleasing: 4874 return false; 4875 } 4876 } 4877 4878 return T->isScalarType(); 4879 case UTT_IsCompound: 4880 return T->isCompoundType(); 4881 case UTT_IsMemberPointer: 4882 return T->isMemberPointerType(); 4883 4884 // Type trait expressions which correspond to the type property predicates 4885 // in C++0x [meta.unary.prop]. 4886 case UTT_IsConst: 4887 return T.isConstQualified(); 4888 case UTT_IsVolatile: 4889 return T.isVolatileQualified(); 4890 case UTT_IsTrivial: 4891 return T.isTrivialType(C); 4892 case UTT_IsTriviallyCopyable: 4893 return T.isTriviallyCopyableType(C); 4894 case UTT_IsStandardLayout: 4895 return T->isStandardLayoutType(); 4896 case UTT_IsPOD: 4897 return T.isPODType(C); 4898 case UTT_IsLiteral: 4899 return T->isLiteralType(C); 4900 case UTT_IsEmpty: 4901 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4902 return !RD->isUnion() && RD->isEmpty(); 4903 return false; 4904 case UTT_IsPolymorphic: 4905 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4906 return !RD->isUnion() && RD->isPolymorphic(); 4907 return false; 4908 case UTT_IsAbstract: 4909 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4910 return !RD->isUnion() && RD->isAbstract(); 4911 return false; 4912 case UTT_IsAggregate: 4913 // Report vector extensions and complex types as aggregates because they 4914 // support aggregate initialization. GCC mirrors this behavior for vectors 4915 // but not _Complex. 4916 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4917 T->isAnyComplexType(); 4918 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4919 // even then only when it is used with the 'interface struct ...' syntax 4920 // Clang doesn't support /CLR which makes this type trait moot. 4921 case UTT_IsInterfaceClass: 4922 return false; 4923 case UTT_IsFinal: 4924 case UTT_IsSealed: 4925 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4926 return RD->hasAttr<FinalAttr>(); 4927 return false; 4928 case UTT_IsSigned: 4929 // Enum types should always return false. 4930 // Floating points should always return true. 4931 return T->isFloatingType() || 4932 (T->isSignedIntegerType() && !T->isEnumeralType()); 4933 case UTT_IsUnsigned: 4934 // Enum types should always return false. 4935 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4936 4937 // Type trait expressions which query classes regarding their construction, 4938 // destruction, and copying. Rather than being based directly on the 4939 // related type predicates in the standard, they are specified by both 4940 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4941 // specifications. 4942 // 4943 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4944 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4945 // 4946 // Note that these builtins do not behave as documented in g++: if a class 4947 // has both a trivial and a non-trivial special member of a particular kind, 4948 // they return false! For now, we emulate this behavior. 4949 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4950 // does not correctly compute triviality in the presence of multiple special 4951 // members of the same kind. Revisit this once the g++ bug is fixed. 4952 case UTT_HasTrivialDefaultConstructor: 4953 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4954 // If __is_pod (type) is true then the trait is true, else if type is 4955 // a cv class or union type (or array thereof) with a trivial default 4956 // constructor ([class.ctor]) then the trait is true, else it is false. 4957 if (T.isPODType(C)) 4958 return true; 4959 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4960 return RD->hasTrivialDefaultConstructor() && 4961 !RD->hasNonTrivialDefaultConstructor(); 4962 return false; 4963 case UTT_HasTrivialMoveConstructor: 4964 // This trait is implemented by MSVC 2012 and needed to parse the 4965 // standard library headers. Specifically this is used as the logic 4966 // behind std::is_trivially_move_constructible (20.9.4.3). 4967 if (T.isPODType(C)) 4968 return true; 4969 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4970 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4971 return false; 4972 case UTT_HasTrivialCopy: 4973 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4974 // If __is_pod (type) is true or type is a reference type then 4975 // the trait is true, else if type is a cv class or union type 4976 // with a trivial copy constructor ([class.copy]) then the trait 4977 // is true, else it is false. 4978 if (T.isPODType(C) || T->isReferenceType()) 4979 return true; 4980 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4981 return RD->hasTrivialCopyConstructor() && 4982 !RD->hasNonTrivialCopyConstructor(); 4983 return false; 4984 case UTT_HasTrivialMoveAssign: 4985 // This trait is implemented by MSVC 2012 and needed to parse the 4986 // standard library headers. Specifically it is used as the logic 4987 // behind std::is_trivially_move_assignable (20.9.4.3) 4988 if (T.isPODType(C)) 4989 return true; 4990 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4991 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4992 return false; 4993 case UTT_HasTrivialAssign: 4994 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4995 // If type is const qualified or is a reference type then the 4996 // trait is false. Otherwise if __is_pod (type) is true then the 4997 // trait is true, else if type is a cv class or union type with 4998 // a trivial copy assignment ([class.copy]) then the trait is 4999 // true, else it is false. 5000 // Note: the const and reference restrictions are interesting, 5001 // given that const and reference members don't prevent a class 5002 // from having a trivial copy assignment operator (but do cause 5003 // errors if the copy assignment operator is actually used, q.v. 5004 // [class.copy]p12). 5005 5006 if (T.isConstQualified()) 5007 return false; 5008 if (T.isPODType(C)) 5009 return true; 5010 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5011 return RD->hasTrivialCopyAssignment() && 5012 !RD->hasNonTrivialCopyAssignment(); 5013 return false; 5014 case UTT_IsDestructible: 5015 case UTT_IsTriviallyDestructible: 5016 case UTT_IsNothrowDestructible: 5017 // C++14 [meta.unary.prop]: 5018 // For reference types, is_destructible<T>::value is true. 5019 if (T->isReferenceType()) 5020 return true; 5021 5022 // Objective-C++ ARC: autorelease types don't require destruction. 5023 if (T->isObjCLifetimeType() && 5024 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5025 return true; 5026 5027 // C++14 [meta.unary.prop]: 5028 // For incomplete types and function types, is_destructible<T>::value is 5029 // false. 5030 if (T->isIncompleteType() || T->isFunctionType()) 5031 return false; 5032 5033 // A type that requires destruction (via a non-trivial destructor or ARC 5034 // lifetime semantics) is not trivially-destructible. 5035 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5036 return false; 5037 5038 // C++14 [meta.unary.prop]: 5039 // For object types and given U equal to remove_all_extents_t<T>, if the 5040 // expression std::declval<U&>().~U() is well-formed when treated as an 5041 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5042 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5043 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5044 if (!Destructor) 5045 return false; 5046 // C++14 [dcl.fct.def.delete]p2: 5047 // A program that refers to a deleted function implicitly or 5048 // explicitly, other than to declare it, is ill-formed. 5049 if (Destructor->isDeleted()) 5050 return false; 5051 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5052 return false; 5053 if (UTT == UTT_IsNothrowDestructible) { 5054 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5055 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5056 if (!CPT || !CPT->isNothrow()) 5057 return false; 5058 } 5059 } 5060 return true; 5061 5062 case UTT_HasTrivialDestructor: 5063 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5064 // If __is_pod (type) is true or type is a reference type 5065 // then the trait is true, else if type is a cv class or union 5066 // type (or array thereof) with a trivial destructor 5067 // ([class.dtor]) then the trait is true, else it is 5068 // false. 5069 if (T.isPODType(C) || T->isReferenceType()) 5070 return true; 5071 5072 // Objective-C++ ARC: autorelease types don't require destruction. 5073 if (T->isObjCLifetimeType() && 5074 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5075 return true; 5076 5077 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5078 return RD->hasTrivialDestructor(); 5079 return false; 5080 // TODO: Propagate nothrowness for implicitly declared special members. 5081 case UTT_HasNothrowAssign: 5082 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5083 // If type is const qualified or is a reference type then the 5084 // trait is false. Otherwise if __has_trivial_assign (type) 5085 // is true then the trait is true, else if type is a cv class 5086 // or union type with copy assignment operators that are known 5087 // not to throw an exception then the trait is true, else it is 5088 // false. 5089 if (C.getBaseElementType(T).isConstQualified()) 5090 return false; 5091 if (T->isReferenceType()) 5092 return false; 5093 if (T.isPODType(C) || T->isObjCLifetimeType()) 5094 return true; 5095 5096 if (const RecordType *RT = T->getAs<RecordType>()) 5097 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5098 &CXXRecordDecl::hasTrivialCopyAssignment, 5099 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5100 &CXXMethodDecl::isCopyAssignmentOperator); 5101 return false; 5102 case UTT_HasNothrowMoveAssign: 5103 // This trait is implemented by MSVC 2012 and needed to parse the 5104 // standard library headers. Specifically this is used as the logic 5105 // behind std::is_nothrow_move_assignable (20.9.4.3). 5106 if (T.isPODType(C)) 5107 return true; 5108 5109 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5110 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5111 &CXXRecordDecl::hasTrivialMoveAssignment, 5112 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5113 &CXXMethodDecl::isMoveAssignmentOperator); 5114 return false; 5115 case UTT_HasNothrowCopy: 5116 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5117 // If __has_trivial_copy (type) is true then the trait is true, else 5118 // if type is a cv class or union type with copy constructors that are 5119 // known not to throw an exception then the trait is true, else it is 5120 // false. 5121 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5122 return true; 5123 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5124 if (RD->hasTrivialCopyConstructor() && 5125 !RD->hasNonTrivialCopyConstructor()) 5126 return true; 5127 5128 bool FoundConstructor = false; 5129 unsigned FoundTQs; 5130 for (const auto *ND : Self.LookupConstructors(RD)) { 5131 // A template constructor is never a copy constructor. 5132 // FIXME: However, it may actually be selected at the actual overload 5133 // resolution point. 5134 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5135 continue; 5136 // UsingDecl itself is not a constructor 5137 if (isa<UsingDecl>(ND)) 5138 continue; 5139 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5140 if (Constructor->isCopyConstructor(FoundTQs)) { 5141 FoundConstructor = true; 5142 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5143 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5144 if (!CPT) 5145 return false; 5146 // TODO: check whether evaluating default arguments can throw. 5147 // For now, we'll be conservative and assume that they can throw. 5148 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5149 return false; 5150 } 5151 } 5152 5153 return FoundConstructor; 5154 } 5155 return false; 5156 case UTT_HasNothrowConstructor: 5157 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5158 // If __has_trivial_constructor (type) is true then the trait is 5159 // true, else if type is a cv class or union type (or array 5160 // thereof) with a default constructor that is known not to 5161 // throw an exception then the trait is true, else it is false. 5162 if (T.isPODType(C) || T->isObjCLifetimeType()) 5163 return true; 5164 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5165 if (RD->hasTrivialDefaultConstructor() && 5166 !RD->hasNonTrivialDefaultConstructor()) 5167 return true; 5168 5169 bool FoundConstructor = false; 5170 for (const auto *ND : Self.LookupConstructors(RD)) { 5171 // FIXME: In C++0x, a constructor template can be a default constructor. 5172 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5173 continue; 5174 // UsingDecl itself is not a constructor 5175 if (isa<UsingDecl>(ND)) 5176 continue; 5177 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5178 if (Constructor->isDefaultConstructor()) { 5179 FoundConstructor = true; 5180 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5181 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5182 if (!CPT) 5183 return false; 5184 // FIXME: check whether evaluating default arguments can throw. 5185 // For now, we'll be conservative and assume that they can throw. 5186 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5187 return false; 5188 } 5189 } 5190 return FoundConstructor; 5191 } 5192 return false; 5193 case UTT_HasVirtualDestructor: 5194 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5195 // If type is a class type with a virtual destructor ([class.dtor]) 5196 // then the trait is true, else it is false. 5197 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5198 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5199 return Destructor->isVirtual(); 5200 return false; 5201 5202 // These type trait expressions are modeled on the specifications for the 5203 // Embarcadero C++0x type trait functions: 5204 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5205 case UTT_IsCompleteType: 5206 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5207 // Returns True if and only if T is a complete type at the point of the 5208 // function call. 5209 return !T->isIncompleteType(); 5210 case UTT_HasUniqueObjectRepresentations: 5211 return C.hasUniqueObjectRepresentations(T); 5212 } 5213} 5214 5215static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5216 QualType RhsT, SourceLocation KeyLoc); 5217 5218static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5219 ArrayRef<TypeSourceInfo *> Args, 5220 SourceLocation RParenLoc) { 5221 if (Kind <= UTT_Last) 5222 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5223 5224 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5225 // traits to avoid duplication. 5226 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5227 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5228 Args[1]->getType(), RParenLoc); 5229 5230 switch (Kind) { 5231 case clang::BTT_ReferenceBindsToTemporary: 5232 case clang::TT_IsConstructible: 5233 case clang::TT_IsNothrowConstructible: 5234 case clang::TT_IsTriviallyConstructible: { 5235 // C++11 [meta.unary.prop]: 5236 // is_trivially_constructible is defined as: 5237 // 5238 // is_constructible<T, Args...>::value is true and the variable 5239 // definition for is_constructible, as defined below, is known to call 5240 // no operation that is not trivial. 5241 // 5242 // The predicate condition for a template specialization 5243 // is_constructible<T, Args...> shall be satisfied if and only if the 5244 // following variable definition would be well-formed for some invented 5245 // variable t: 5246 // 5247 // T t(create<Args>()...); 5248 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5248, __extension__ __PRETTY_FUNCTION__))
; 5249 5250 // Precondition: T and all types in the parameter pack Args shall be 5251 // complete types, (possibly cv-qualified) void, or arrays of 5252 // unknown bound. 5253 for (const auto *TSI : Args) { 5254 QualType ArgTy = TSI->getType(); 5255 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5256 continue; 5257 5258 if (S.RequireCompleteType(KWLoc, ArgTy, 5259 diag::err_incomplete_type_used_in_type_trait_expr)) 5260 return false; 5261 } 5262 5263 // Make sure the first argument is not incomplete nor a function type. 5264 QualType T = Args[0]->getType(); 5265 if (T->isIncompleteType() || T->isFunctionType()) 5266 return false; 5267 5268 // Make sure the first argument is not an abstract type. 5269 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5270 if (RD && RD->isAbstract()) 5271 return false; 5272 5273 llvm::BumpPtrAllocator OpaqueExprAllocator; 5274 SmallVector<Expr *, 2> ArgExprs; 5275 ArgExprs.reserve(Args.size() - 1); 5276 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5277 QualType ArgTy = Args[I]->getType(); 5278 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5279 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5280 ArgExprs.push_back( 5281 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5282 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5283 ArgTy.getNonLValueExprType(S.Context), 5284 Expr::getValueKindForType(ArgTy))); 5285 } 5286 5287 // Perform the initialization in an unevaluated context within a SFINAE 5288 // trap at translation unit scope. 5289 EnterExpressionEvaluationContext Unevaluated( 5290 S, Sema::ExpressionEvaluationContext::Unevaluated); 5291 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5292 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5293 InitializedEntity To( 5294 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5295 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5296 RParenLoc)); 5297 InitializationSequence Init(S, To, InitKind, ArgExprs); 5298 if (Init.Failed()) 5299 return false; 5300 5301 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5302 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5303 return false; 5304 5305 if (Kind == clang::TT_IsConstructible) 5306 return true; 5307 5308 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5309 if (!T->isReferenceType()) 5310 return false; 5311 5312 return !Init.isDirectReferenceBinding(); 5313 } 5314 5315 if (Kind == clang::TT_IsNothrowConstructible) 5316 return S.canThrow(Result.get()) == CT_Cannot; 5317 5318 if (Kind == clang::TT_IsTriviallyConstructible) { 5319 // Under Objective-C ARC and Weak, if the destination has non-trivial 5320 // Objective-C lifetime, this is a non-trivial construction. 5321 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5322 return false; 5323 5324 // The initialization succeeded; now make sure there are no non-trivial 5325 // calls. 5326 return !Result.get()->hasNonTrivialCall(S.Context); 5327 } 5328 5329 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5329)
; 5330 return false; 5331 } 5332 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5332)
; 5333 } 5334 5335 return false; 5336} 5337 5338ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5339 ArrayRef<TypeSourceInfo *> Args, 5340 SourceLocation RParenLoc) { 5341 QualType ResultType = Context.getLogicalOperationType(); 5342 5343 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5344 *this, Kind, KWLoc, Args[0]->getType())) 5345 return ExprError(); 5346 5347 bool Dependent = false; 5348 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5349 if (Args[I]->getType()->isDependentType()) { 5350 Dependent = true; 5351 break; 5352 } 5353 } 5354 5355 bool Result = false; 5356 if (!Dependent) 5357 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5358 5359 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5360 RParenLoc, Result); 5361} 5362 5363ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5364 ArrayRef<ParsedType> Args, 5365 SourceLocation RParenLoc) { 5366 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5367 ConvertedArgs.reserve(Args.size()); 5368 5369 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5370 TypeSourceInfo *TInfo; 5371 QualType T = GetTypeFromParser(Args[I], &TInfo); 5372 if (!TInfo) 5373 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5374 5375 ConvertedArgs.push_back(TInfo); 5376 } 5377 5378 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5379} 5380 5381static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5382 QualType RhsT, SourceLocation KeyLoc) { 5383 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5384, __extension__ __PRETTY_FUNCTION__))
5384 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5384, __extension__ __PRETTY_FUNCTION__))
; 5385 5386 switch(BTT) { 5387 case BTT_IsBaseOf: { 5388 // C++0x [meta.rel]p2 5389 // Base is a base class of Derived without regard to cv-qualifiers or 5390 // Base and Derived are not unions and name the same class type without 5391 // regard to cv-qualifiers. 5392 5393 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5394 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5395 if (!rhsRecord || !lhsRecord) { 5396 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5397 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5398 if (!LHSObjTy || !RHSObjTy) 5399 return false; 5400 5401 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5402 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5403 if (!BaseInterface || !DerivedInterface) 5404 return false; 5405 5406 if (Self.RequireCompleteType( 5407 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5408 return false; 5409 5410 return BaseInterface->isSuperClassOf(DerivedInterface); 5411 } 5412 5413 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5414, __extension__ __PRETTY_FUNCTION__))
5414 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5414, __extension__ __PRETTY_FUNCTION__))
; 5415 5416 // Unions are never base classes, and never have base classes. 5417 // It doesn't matter if they are complete or not. See PR#41843 5418 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5419 return false; 5420 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5421 return false; 5422 5423 if (lhsRecord == rhsRecord) 5424 return true; 5425 5426 // C++0x [meta.rel]p2: 5427 // If Base and Derived are class types and are different types 5428 // (ignoring possible cv-qualifiers) then Derived shall be a 5429 // complete type. 5430 if (Self.RequireCompleteType(KeyLoc, RhsT, 5431 diag::err_incomplete_type_used_in_type_trait_expr)) 5432 return false; 5433 5434 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5435 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5436 } 5437 case BTT_IsSame: 5438 return Self.Context.hasSameType(LhsT, RhsT); 5439 case BTT_TypeCompatible: { 5440 // GCC ignores cv-qualifiers on arrays for this builtin. 5441 Qualifiers LhsQuals, RhsQuals; 5442 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5443 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5444 return Self.Context.typesAreCompatible(Lhs, Rhs); 5445 } 5446 case BTT_IsConvertible: 5447 case BTT_IsConvertibleTo: { 5448 // C++0x [meta.rel]p4: 5449 // Given the following function prototype: 5450 // 5451 // template <class T> 5452 // typename add_rvalue_reference<T>::type create(); 5453 // 5454 // the predicate condition for a template specialization 5455 // is_convertible<From, To> shall be satisfied if and only if 5456 // the return expression in the following code would be 5457 // well-formed, including any implicit conversions to the return 5458 // type of the function: 5459 // 5460 // To test() { 5461 // return create<From>(); 5462 // } 5463 // 5464 // Access checking is performed as if in a context unrelated to To and 5465 // From. Only the validity of the immediate context of the expression 5466 // of the return-statement (including conversions to the return type) 5467 // is considered. 5468 // 5469 // We model the initialization as a copy-initialization of a temporary 5470 // of the appropriate type, which for this expression is identical to the 5471 // return statement (since NRVO doesn't apply). 5472 5473 // Functions aren't allowed to return function or array types. 5474 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5475 return false; 5476 5477 // A return statement in a void function must have void type. 5478 if (RhsT->isVoidType()) 5479 return LhsT->isVoidType(); 5480 5481 // A function definition requires a complete, non-abstract return type. 5482 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5483 return false; 5484 5485 // Compute the result of add_rvalue_reference. 5486 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5487 LhsT = Self.Context.getRValueReferenceType(LhsT); 5488 5489 // Build a fake source and destination for initialization. 5490 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5491 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5492 Expr::getValueKindForType(LhsT)); 5493 Expr *FromPtr = &From; 5494 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5495 SourceLocation())); 5496 5497 // Perform the initialization in an unevaluated context within a SFINAE 5498 // trap at translation unit scope. 5499 EnterExpressionEvaluationContext Unevaluated( 5500 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5501 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5502 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5503 InitializationSequence Init(Self, To, Kind, FromPtr); 5504 if (Init.Failed()) 5505 return false; 5506 5507 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5508 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5509 } 5510 5511 case BTT_IsAssignable: 5512 case BTT_IsNothrowAssignable: 5513 case BTT_IsTriviallyAssignable: { 5514 // C++11 [meta.unary.prop]p3: 5515 // is_trivially_assignable is defined as: 5516 // is_assignable<T, U>::value is true and the assignment, as defined by 5517 // is_assignable, is known to call no operation that is not trivial 5518 // 5519 // is_assignable is defined as: 5520 // The expression declval<T>() = declval<U>() is well-formed when 5521 // treated as an unevaluated operand (Clause 5). 5522 // 5523 // For both, T and U shall be complete types, (possibly cv-qualified) 5524 // void, or arrays of unknown bound. 5525 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5526 Self.RequireCompleteType(KeyLoc, LhsT, 5527 diag::err_incomplete_type_used_in_type_trait_expr)) 5528 return false; 5529 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5530 Self.RequireCompleteType(KeyLoc, RhsT, 5531 diag::err_incomplete_type_used_in_type_trait_expr)) 5532 return false; 5533 5534 // cv void is never assignable. 5535 if (LhsT->isVoidType() || RhsT->isVoidType()) 5536 return false; 5537 5538 // Build expressions that emulate the effect of declval<T>() and 5539 // declval<U>(). 5540 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5541 LhsT = Self.Context.getRValueReferenceType(LhsT); 5542 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5543 RhsT = Self.Context.getRValueReferenceType(RhsT); 5544 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5545 Expr::getValueKindForType(LhsT)); 5546 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5547 Expr::getValueKindForType(RhsT)); 5548 5549 // Attempt the assignment in an unevaluated context within a SFINAE 5550 // trap at translation unit scope. 5551 EnterExpressionEvaluationContext Unevaluated( 5552 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5553 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5554 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5555 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5556 &Rhs); 5557 if (Result.isInvalid()) 5558 return false; 5559 5560 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5561 Self.CheckUnusedVolatileAssignment(Result.get()); 5562 5563 if (SFINAE.hasErrorOccurred()) 5564 return false; 5565 5566 if (BTT == BTT_IsAssignable) 5567 return true; 5568 5569 if (BTT == BTT_IsNothrowAssignable) 5570 return Self.canThrow(Result.get()) == CT_Cannot; 5571 5572 if (BTT == BTT_IsTriviallyAssignable) { 5573 // Under Objective-C ARC and Weak, if the destination has non-trivial 5574 // Objective-C lifetime, this is a non-trivial assignment. 5575 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5576 return false; 5577 5578 return !Result.get()->hasNonTrivialCall(Self.Context); 5579 } 5580 5581 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5581)
; 5582 return false; 5583 } 5584 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5584)
; 5585 } 5586 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5586)
; 5587} 5588 5589ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5590 SourceLocation KWLoc, 5591 ParsedType Ty, 5592 Expr* DimExpr, 5593 SourceLocation RParen) { 5594 TypeSourceInfo *TSInfo; 5595 QualType T = GetTypeFromParser(Ty, &TSInfo); 5596 if (!TSInfo) 5597 TSInfo = Context.getTrivialTypeSourceInfo(T); 5598 5599 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5600} 5601 5602static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5603 QualType T, Expr *DimExpr, 5604 SourceLocation KeyLoc) { 5605 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5605, __extension__ __PRETTY_FUNCTION__))
; 5606 5607 switch(ATT) { 5608 case ATT_ArrayRank: 5609 if (T->isArrayType()) { 5610 unsigned Dim = 0; 5611 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5612 ++Dim; 5613 T = AT->getElementType(); 5614 } 5615 return Dim; 5616 } 5617 return 0; 5618 5619 case ATT_ArrayExtent: { 5620 llvm::APSInt Value; 5621 uint64_t Dim; 5622 if (Self.VerifyIntegerConstantExpression( 5623 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5624 .isInvalid()) 5625 return 0; 5626 if (Value.isSigned() && Value.isNegative()) { 5627 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5628 << DimExpr->getSourceRange(); 5629 return 0; 5630 } 5631 Dim = Value.getLimitedValue(); 5632 5633 if (T->isArrayType()) { 5634 unsigned D = 0; 5635 bool Matched = false; 5636 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5637 if (Dim == D) { 5638 Matched = true; 5639 break; 5640 } 5641 ++D; 5642 T = AT->getElementType(); 5643 } 5644 5645 if (Matched && T->isArrayType()) { 5646 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5647 return CAT->getSize().getLimitedValue(); 5648 } 5649 } 5650 return 0; 5651 } 5652 } 5653 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5653)
; 5654} 5655 5656ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5657 SourceLocation KWLoc, 5658 TypeSourceInfo *TSInfo, 5659 Expr* DimExpr, 5660 SourceLocation RParen) { 5661 QualType T = TSInfo->getType(); 5662 5663 // FIXME: This should likely be tracked as an APInt to remove any host 5664 // assumptions about the width of size_t on the target. 5665 uint64_t Value = 0; 5666 if (!T->isDependentType()) 5667 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5668 5669 // While the specification for these traits from the Embarcadero C++ 5670 // compiler's documentation says the return type is 'unsigned int', Clang 5671 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5672 // compiler, there is no difference. On several other platforms this is an 5673 // important distinction. 5674 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5675 RParen, Context.getSizeType()); 5676} 5677 5678ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5679 SourceLocation KWLoc, 5680 Expr *Queried, 5681 SourceLocation RParen) { 5682 // If error parsing the expression, ignore. 5683 if (!Queried) 5684 return ExprError(); 5685 5686 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5687 5688 return Result; 5689} 5690 5691static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5692 switch (ET) { 5693 case ET_IsLValueExpr: return E->isLValue(); 5694 case ET_IsRValueExpr: 5695 return E->isPRValue(); 5696 } 5697 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5697)
; 5698} 5699 5700ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5701 SourceLocation KWLoc, 5702 Expr *Queried, 5703 SourceLocation RParen) { 5704 if (Queried->isTypeDependent()) { 5705 // Delay type-checking for type-dependent expressions. 5706 } else if (Queried->getType()->isPlaceholderType()) { 5707 ExprResult PE = CheckPlaceholderExpr(Queried); 5708 if (PE.isInvalid()) return ExprError(); 5709 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5710 } 5711 5712 bool Value = EvaluateExpressionTrait(ET, Queried); 5713 5714 return new (Context) 5715 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5716} 5717 5718QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5719 ExprValueKind &VK, 5720 SourceLocation Loc, 5721 bool isIndirect) { 5722 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Sema/SemaExprCXX.cpp"
, 5724, __extension__ __PRETTY_FUNCTION__))
5723 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() &