Bug Summary

File:clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1246, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-26-233846-219801-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/clang/lib/Sema/SemaExprCXX.cpp

/build/llvm-toolchain-snapshot-14~++20220126101029+f487a76430a0/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 65, __extension__ __PRETTY_FUNCTION__
))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 89, __extension__ __PRETTY_FUNCTION__
))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 433, __extension__ __PRETTY_FUNCTION__
))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 470, __extension__ __PRETTY_FUNCTION__
))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
;
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (isReservedInAllContexts(Status) &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 529)
;
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
807 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 807, __extension__ __PRETTY_FUNCTION__
))
;
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (CurLSI->CallOperator->isConst())
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140 // can happen during instantiation of its nested generic lambda call
1141 // operator); 2. if we're in a lambda scope (lambda body).
1142 if (CurLSI && isLambdaCallOperator(CurDC)) {
1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1144 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1145 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
1147 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
;
1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1148, __extension__ __PRETTY_FUNCTION__
))
;
1149
1150 auto IsThisCaptured =
1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152 IsConst = false;
1153 IsByCopy = false;
1154 for (auto &&C : Closure->captures()) {
1155 if (C.capturesThis()) {
1156 if (C.getCaptureKind() == LCK_StarThis)
1157 IsByCopy = true;
1158 if (Closure->getLambdaCallOperator()->isConst())
1159 IsConst = true;
1160 return true;
1161 }
1162 }
1163 return false;
1164 };
1165
1166 bool IsByCopyCapture = false;
1167 bool IsConstCapture = false;
1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169 while (Closure &&
1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171 if (IsByCopyCapture) {
1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173 if (IsConstCapture)
1174 ClassType.addConst();
1175 return ASTCtx.getPointerType(ClassType);
1176 }
1177 Closure = isLambdaCallOperator(Closure->getParent())
1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179 : nullptr;
1180 }
1181 }
1182 return ASTCtx.getPointerType(ClassType);
1183}
1184
1185QualType Sema::getCurrentThisType() {
1186 DeclContext *DC = getFunctionLevelDeclContext();
1187 QualType ThisTy = CXXThisTypeOverride;
1188
1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190 if (method && method->isInstance())
1191 ThisTy = method->getThisType();
1192 }
1193
1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196
1197 // This is a lambda call operator that is being instantiated as a default
1198 // initializer. DC must point to the enclosing class type, so we can recover
1199 // the 'this' type from it.
1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201 // There are no cv-qualifiers for 'this' within default initializers,
1202 // per [expr.prim.general]p4.
1203 ThisTy = Context.getPointerType(ClassTy);
1204 }
1205
1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207 // might need to be adjusted if the lambda or any of its enclosing lambda's
1208 // captures '*this' by copy.
1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211 CurContext, Context);
1212 return ThisTy;
1213}
1214
1215Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216 Decl *ContextDecl,
1217 Qualifiers CXXThisTypeQuals,
1218 bool Enabled)
1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220{
1221 if (!Enabled || !ContextDecl)
1222 return;
1223
1224 CXXRecordDecl *Record = nullptr;
1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226 Record = Template->getTemplatedDecl();
1227 else
1228 Record = cast<CXXRecordDecl>(ContextDecl);
1229
1230 QualType T = S.Context.getRecordType(Record);
1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232
1233 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234
1235 this->Enabled = true;
1236}
1237
1238
1239Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240 if (Enabled) {
1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242 }
1243}
1244
1245static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
32
Called C++ object pointer is null
1247 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 // [=, this] {}; // until C++20: Error: this when = is the default
1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250 !Sema.getLangOpts().CPlusPlus20)
1251 return;
1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253 << FixItHint::CreateInsertion(
1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255}
1256
1257bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259 const bool ByCopy) {
1260 // We don't need to capture this in an unevaluated context.
1261 if (isUnevaluatedContext() && !Explicit)
5
Calling 'Sema::isUnevaluatedContext'
14
Returning from 'Sema::isUnevaluatedContext'
1262 return true;
1263
1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1264, __extension__ __PRETTY_FUNCTION__
))
;
15
'?' condition is true
1265
1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
15.1
'FunctionScopeIndexToStopAt' is null
15.1
'FunctionScopeIndexToStopAt' is null
16
'?' condition is false
1267 ? *FunctionScopeIndexToStopAt 1268 : FunctionScopes.size() - 1; 1269 1270 // Check that we can capture the *enclosing object* (referred to by '*this') 1271 // by the capturing-entity/closure (lambda/block/etc) at 1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1273 1274 // Note: The *enclosing object* can only be captured by-value by a 1275 // closure that is a lambda, using the explicit notation: 1276 // [*this] { ... }. 1277 // Every other capture of the *enclosing object* results in its by-reference 1278 // capture. 1279 1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1281 // stack), we can capture the *enclosing object* only if: 1282 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1283 // - or, 'L' has an implicit capture. 1284 // AND 1285 // -- there is no enclosing closure 1286 // -- or, there is some enclosing closure 'E' that has already captured the 1287 // *enclosing object*, and every intervening closure (if any) between 'E' 1288 // and 'L' can implicitly capture the *enclosing object*. 1289 // -- or, every enclosing closure can implicitly capture the 1290 // *enclosing object* 1291 1292 1293 unsigned NumCapturingClosures = 0; 1294 for (int idx = MaxFunctionScopesIndex; idx
16.1
'idx' is >= 0
16.1
'idx' is >= 0
>= 0; idx--) {
17
Loop condition is true. Entering loop body
1295 if (CapturingScopeInfo *CSI
18.1
'CSI' is non-null
18.1
'CSI' is non-null
=
19
Taking true branch
1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
18
Assuming the object is a 'CapturingScopeInfo'
1297 if (CSI->CXXThisCaptureIndex != 0) {
20
Assuming field 'CXXThisCaptureIndex' is equal to 0
21
Taking false branch
1298 // 'this' is already being captured; there isn't anything more to do. 1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1300 break; 1301 } 1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
22
Assuming 'CSI' is not a 'LambdaScopeInfo'
23
'LSI' initialized to a null pointer value
1303 if (LSI
23.1
'LSI' is null
23.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1304 // This context can't implicitly capture 'this'; fail out. 1305 if (BuildAndDiagnose) { 1306 Diag(Loc, diag::err_this_capture) 1307 << (Explicit && idx == MaxFunctionScopesIndex); 1308 if (!Explicit) 1309 buildLambdaThisCaptureFixit(*this, LSI); 1310 } 1311 return true; 1312 } 1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
24
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
25
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
26
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
27
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1317 (Explicit
27.1
'Explicit' is false
27.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1319 // iteration through can be an explicit capture, all enclosing closures, 1320 // if any, must perform implicit captures. 1321 1322 // This closure can capture 'this'; continue looking upwards. 1323 NumCapturingClosures++; 1324 continue; 1325 } 1326 // This context can't implicitly capture 'this'; fail out. 1327 if (BuildAndDiagnose
27.2
'BuildAndDiagnose' is true
27.2
'BuildAndDiagnose' is true
)
28
Taking true branch
1328 Diag(Loc, diag::err_this_capture) 1329 << (Explicit
28.1
'Explicit' is false
28.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1330 1331 if (!Explicit
28.2
'Explicit' is false
28.2
'Explicit' is false
)
29
Taking true branch
1332 buildLambdaThisCaptureFixit(*this, LSI);
30
Passing null pointer value via 2nd parameter 'LSI'
31
Calling 'buildLambdaThisCaptureFixit'
1333 return true; 1334 } 1335 break; 1336 } 1337 if (!BuildAndDiagnose) return false; 1338 1339 // If we got here, then the closure at MaxFunctionScopesIndex on the 1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1341 // (including implicit by-reference captures in any enclosing closures). 1342 1343 // In the loop below, respect the ByCopy flag only for the closure requesting 1344 // the capture (i.e. first iteration through the loop below). Ignore it for 1345 // all enclosing closure's up to NumCapturingClosures (since they must be 1346 // implicitly capturing the *enclosing object* by reference (see loop 1347 // above)). 1348 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1349 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1350 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
1351 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1351, __extension__ __PRETTY_FUNCTION__
))
; 1352 QualType ThisTy = getCurrentThisType(); 1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1354 --idx, --NumCapturingClosures) { 1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1356 1357 // The type of the corresponding data member (not a 'this' pointer if 'by 1358 // copy'). 1359 QualType CaptureType = ThisTy; 1360 if (ByCopy) { 1361 // If we are capturing the object referred to by '*this' by copy, ignore 1362 // any cv qualifiers inherited from the type of the member function for 1363 // the type of the closure-type's corresponding data member and any use 1364 // of 'this'. 1365 CaptureType = ThisTy->getPointeeType(); 1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1367 } 1368 1369 bool isNested = NumCapturingClosures > 1; 1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1371 } 1372 return false; 1373} 1374 1375ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1377 /// is a non-lvalue expression whose value is the address of the object for 1378 /// which the function is called. 1379 1380 QualType ThisTy = getCurrentThisType(); 1381 if (ThisTy.isNull())
1
Taking false branch
1382 return Diag(Loc, diag::err_invalid_this_use); 1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1384} 1385 1386Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1387 bool IsImplicit) { 1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1389 MarkThisReferenced(This);
3
Calling 'Sema::MarkThisReferenced'
1390 return This; 1391} 1392 1393void Sema::MarkThisReferenced(CXXThisExpr *This) { 1394 CheckCXXThisCapture(This->getExprLoc());
4
Calling 'Sema::CheckCXXThisCapture'
1395} 1396 1397bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1398 // If we're outside the body of a member function, then we'll have a specified 1399 // type for 'this'. 1400 if (CXXThisTypeOverride.isNull()) 1401 return false; 1402 1403 // Determine whether we're looking into a class that's currently being 1404 // defined. 1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1406 return Class && Class->isBeingDefined(); 1407} 1408 1409/// Parse construction of a specified type. 1410/// Can be interpreted either as function-style casting ("int(x)") 1411/// or class type construction ("ClassType(x,y,z)") 1412/// or creation of a value-initialized type ("int()"). 1413ExprResult 1414Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1415 SourceLocation LParenOrBraceLoc, 1416 MultiExprArg exprs, 1417 SourceLocation RParenOrBraceLoc, 1418 bool ListInitialization) { 1419 if (!TypeRep) 1420 return ExprError(); 1421 1422 TypeSourceInfo *TInfo; 1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1424 if (!TInfo) 1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1426 1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1428 RParenOrBraceLoc, ListInitialization); 1429 // Avoid creating a non-type-dependent expression that contains typos. 1430 // Non-type-dependent expressions are liable to be discarded without 1431 // checking for embedded typos. 1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1433 !Result.get()->isTypeDependent()) 1434 Result = CorrectDelayedTyposInExpr(Result.get()); 1435 else if (Result.isInvalid()) 1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1437 RParenOrBraceLoc, exprs, Ty); 1438 return Result; 1439} 1440 1441ExprResult 1442Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1443 SourceLocation LParenOrBraceLoc, 1444 MultiExprArg Exprs, 1445 SourceLocation RParenOrBraceLoc, 1446 bool ListInitialization) { 1447 QualType Ty = TInfo->getType(); 1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1449 1450 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
; 1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1454 1455 InitializedEntity Entity = 1456 InitializedEntity::InitializeTemporary(Context, TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // Only construct objects with object types. 1511 // The standard doesn't explicitly forbid function types here, but that's an 1512 // obvious oversight, as there's no way to dynamically construct a function 1513 // in general. 1514 if (Ty->isFunctionType()) 1515 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1516 << Ty << FullRange); 1517 1518 // C++17 [expr.type.conv]p2: 1519 // If the type is cv void and the initializer is (), the expression is a 1520 // prvalue of the specified type that performs no initialization. 1521 if (!Ty->isVoidType() && 1522 RequireCompleteType(TyBeginLoc, ElemTy, 1523 diag::err_invalid_incomplete_type_use, FullRange)) 1524 return ExprError(); 1525 1526 // Otherwise, the expression is a prvalue of the specified type whose 1527 // result object is direct-initialized (11.6) with the initializer. 1528 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1529 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1530 1531 if (Result.isInvalid()) 1532 return Result; 1533 1534 Expr *Inner = Result.get(); 1535 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1536 Inner = BTE->getSubExpr(); 1537 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1538 !isa<CXXScalarValueInitExpr>(Inner)) { 1539 // If we created a CXXTemporaryObjectExpr, that node also represents the 1540 // functional cast. Otherwise, create an explicit cast to represent 1541 // the syntactic form of a functional-style cast that was used here. 1542 // 1543 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1544 // would give a more consistent AST representation than using a 1545 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1546 // is sometimes handled by initialization and sometimes not. 1547 QualType ResultType = Result.get()->getType(); 1548 SourceRange Locs = ListInitialization 1549 ? SourceRange() 1550 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1551 Result = CXXFunctionalCastExpr::Create( 1552 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1553 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1554 Locs.getBegin(), Locs.getEnd()); 1555 } 1556 1557 return Result; 1558} 1559 1560bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1561 // [CUDA] Ignore this function, if we can't call it. 1562 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1563 if (getLangOpts().CUDA) { 1564 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1565 // If it's not callable at all, it's not the right function. 1566 if (CallPreference < CFP_WrongSide) 1567 return false; 1568 if (CallPreference == CFP_WrongSide) { 1569 // Maybe. We have to check if there are better alternatives. 1570 DeclContext::lookup_result R = 1571 Method->getDeclContext()->lookup(Method->getDeclName()); 1572 for (const auto *D : R) { 1573 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1574 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1575 return false; 1576 } 1577 } 1578 // We've found no better variants. 1579 } 1580 } 1581 1582 SmallVector<const FunctionDecl*, 4> PreventedBy; 1583 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1584 1585 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1586 return Result; 1587 1588 // In case of CUDA, return true if none of the 1-argument deallocator 1589 // functions are actually callable. 1590 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1591 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1592, __extension__ __PRETTY_FUNCTION__
))
1592 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1592, __extension__ __PRETTY_FUNCTION__
))
; 1593 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1594 }); 1595} 1596 1597/// Determine whether the given function is a non-placement 1598/// deallocation function. 1599static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1600 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1601 return S.isUsualDeallocationFunction(Method); 1602 1603 if (FD->getOverloadedOperator() != OO_Delete && 1604 FD->getOverloadedOperator() != OO_Array_Delete) 1605 return false; 1606 1607 unsigned UsualParams = 1; 1608 1609 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1610 S.Context.hasSameUnqualifiedType( 1611 FD->getParamDecl(UsualParams)->getType(), 1612 S.Context.getSizeType())) 1613 ++UsualParams; 1614 1615 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1616 S.Context.hasSameUnqualifiedType( 1617 FD->getParamDecl(UsualParams)->getType(), 1618 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1619 ++UsualParams; 1620 1621 return UsualParams == FD->getNumParams(); 1622} 1623 1624namespace { 1625 struct UsualDeallocFnInfo { 1626 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1627 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1628 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1629 Destroying(false), HasSizeT(false), HasAlignValT(false), 1630 CUDAPref(Sema::CFP_Native) { 1631 // A function template declaration is never a usual deallocation function. 1632 if (!FD) 1633 return; 1634 unsigned NumBaseParams = 1; 1635 if (FD->isDestroyingOperatorDelete()) { 1636 Destroying = true; 1637 ++NumBaseParams; 1638 } 1639 1640 if (NumBaseParams < FD->getNumParams() && 1641 S.Context.hasSameUnqualifiedType( 1642 FD->getParamDecl(NumBaseParams)->getType(), 1643 S.Context.getSizeType())) { 1644 ++NumBaseParams; 1645 HasSizeT = true; 1646 } 1647 1648 if (NumBaseParams < FD->getNumParams() && 1649 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1650 ++NumBaseParams; 1651 HasAlignValT = true; 1652 } 1653 1654 // In CUDA, determine how much we'd like / dislike to call this. 1655 if (S.getLangOpts().CUDA) 1656 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1657 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1658 } 1659 1660 explicit operator bool() const { return FD; } 1661 1662 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1663 bool WantAlign) const { 1664 // C++ P0722: 1665 // A destroying operator delete is preferred over a non-destroying 1666 // operator delete. 1667 if (Destroying != Other.Destroying) 1668 return Destroying; 1669 1670 // C++17 [expr.delete]p10: 1671 // If the type has new-extended alignment, a function with a parameter 1672 // of type std::align_val_t is preferred; otherwise a function without 1673 // such a parameter is preferred 1674 if (HasAlignValT != Other.HasAlignValT) 1675 return HasAlignValT == WantAlign; 1676 1677 if (HasSizeT != Other.HasSizeT) 1678 return HasSizeT == WantSize; 1679 1680 // Use CUDA call preference as a tiebreaker. 1681 return CUDAPref > Other.CUDAPref; 1682 } 1683 1684 DeclAccessPair Found; 1685 FunctionDecl *FD; 1686 bool Destroying, HasSizeT, HasAlignValT; 1687 Sema::CUDAFunctionPreference CUDAPref; 1688 }; 1689} 1690 1691/// Determine whether a type has new-extended alignment. This may be called when 1692/// the type is incomplete (for a delete-expression with an incomplete pointee 1693/// type), in which case it will conservatively return false if the alignment is 1694/// not known. 1695static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1696 return S.getLangOpts().AlignedAllocation && 1697 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1698 S.getASTContext().getTargetInfo().getNewAlign(); 1699} 1700 1701/// Select the correct "usual" deallocation function to use from a selection of 1702/// deallocation functions (either global or class-scope). 1703static UsualDeallocFnInfo resolveDeallocationOverload( 1704 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1705 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1706 UsualDeallocFnInfo Best; 1707 1708 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1709 UsualDeallocFnInfo Info(S, I.getPair()); 1710 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1711 Info.CUDAPref == Sema::CFP_Never) 1712 continue; 1713 1714 if (!Best) { 1715 Best = Info; 1716 if (BestFns) 1717 BestFns->push_back(Info); 1718 continue; 1719 } 1720 1721 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1722 continue; 1723 1724 // If more than one preferred function is found, all non-preferred 1725 // functions are eliminated from further consideration. 1726 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1727 BestFns->clear(); 1728 1729 Best = Info; 1730 if (BestFns) 1731 BestFns->push_back(Info); 1732 } 1733 1734 return Best; 1735} 1736 1737/// Determine whether a given type is a class for which 'delete[]' would call 1738/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1739/// we need to store the array size (even if the type is 1740/// trivially-destructible). 1741static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1742 QualType allocType) { 1743 const RecordType *record = 1744 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1745 if (!record) return false; 1746 1747 // Try to find an operator delete[] in class scope. 1748 1749 DeclarationName deleteName = 1750 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1751 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1752 S.LookupQualifiedName(ops, record->getDecl()); 1753 1754 // We're just doing this for information. 1755 ops.suppressDiagnostics(); 1756 1757 // Very likely: there's no operator delete[]. 1758 if (ops.empty()) return false; 1759 1760 // If it's ambiguous, it should be illegal to call operator delete[] 1761 // on this thing, so it doesn't matter if we allocate extra space or not. 1762 if (ops.isAmbiguous()) return false; 1763 1764 // C++17 [expr.delete]p10: 1765 // If the deallocation functions have class scope, the one without a 1766 // parameter of type std::size_t is selected. 1767 auto Best = resolveDeallocationOverload( 1768 S, ops, /*WantSize*/false, 1769 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1770 return Best && Best.HasSizeT; 1771} 1772 1773/// Parsed a C++ 'new' expression (C++ 5.3.4). 1774/// 1775/// E.g.: 1776/// @code new (memory) int[size][4] @endcode 1777/// or 1778/// @code ::new Foo(23, "hello") @endcode 1779/// 1780/// \param StartLoc The first location of the expression. 1781/// \param UseGlobal True if 'new' was prefixed with '::'. 1782/// \param PlacementLParen Opening paren of the placement arguments. 1783/// \param PlacementArgs Placement new arguments. 1784/// \param PlacementRParen Closing paren of the placement arguments. 1785/// \param TypeIdParens If the type is in parens, the source range. 1786/// \param D The type to be allocated, as well as array dimensions. 1787/// \param Initializer The initializing expression or initializer-list, or null 1788/// if there is none. 1789ExprResult 1790Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1791 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1792 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1793 Declarator &D, Expr *Initializer) { 1794 Optional<Expr *> ArraySize; 1795 // If the specified type is an array, unwrap it and save the expression. 1796 if (D.getNumTypeObjects() > 0 && 1797 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1798 DeclaratorChunk &Chunk = D.getTypeObject(0); 1799 if (D.getDeclSpec().hasAutoTypeSpec()) 1800 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1801 << D.getSourceRange()); 1802 if (Chunk.Arr.hasStatic) 1803 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1804 << D.getSourceRange()); 1805 if (!Chunk.Arr.NumElts && !Initializer) 1806 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1807 << D.getSourceRange()); 1808 1809 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1810 D.DropFirstTypeObject(); 1811 } 1812 1813 // Every dimension shall be of constant size. 1814 if (ArraySize) { 1815 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1816 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1817 break; 1818 1819 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1820 if (Expr *NumElts = (Expr *)Array.NumElts) { 1821 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1822 // FIXME: GCC permits constant folding here. We should either do so consistently 1823 // or not do so at all, rather than changing behavior in C++14 onwards. 1824 if (getLangOpts().CPlusPlus14) { 1825 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1826 // shall be a converted constant expression (5.19) of type std::size_t 1827 // and shall evaluate to a strictly positive value. 1828 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1829 Array.NumElts 1830 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1831 CCEK_ArrayBound) 1832 .get(); 1833 } else { 1834 Array.NumElts = 1835 VerifyIntegerConstantExpression( 1836 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1837 .get(); 1838 } 1839 if (!Array.NumElts) 1840 return ExprError(); 1841 } 1842 } 1843 } 1844 } 1845 1846 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1847 QualType AllocType = TInfo->getType(); 1848 if (D.isInvalidType()) 1849 return ExprError(); 1850 1851 SourceRange DirectInitRange; 1852 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1853 DirectInitRange = List->getSourceRange(); 1854 1855 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1856 PlacementLParen, PlacementArgs, PlacementRParen, 1857 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1858 Initializer); 1859} 1860 1861static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1862 Expr *Init) { 1863 if (!Init) 1864 return true; 1865 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1866 return PLE->getNumExprs() == 0; 1867 if (isa<ImplicitValueInitExpr>(Init)) 1868 return true; 1869 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1870 return !CCE->isListInitialization() && 1871 CCE->getConstructor()->isDefaultConstructor(); 1872 else if (Style == CXXNewExpr::ListInit) { 1873 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1874, __extension__ __PRETTY_FUNCTION__
))
1874 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1874, __extension__ __PRETTY_FUNCTION__
))
; 1875 return true; 1876 } 1877 return false; 1878} 1879 1880bool 1881Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1882 if (!getLangOpts().AlignedAllocationUnavailable) 1883 return false; 1884 if (FD.isDefined()) 1885 return false; 1886 Optional<unsigned> AlignmentParam; 1887 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1888 AlignmentParam.hasValue()) 1889 return true; 1890 return false; 1891} 1892 1893// Emit a diagnostic if an aligned allocation/deallocation function that is not 1894// implemented in the standard library is selected. 1895void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1896 SourceLocation Loc) { 1897 if (isUnavailableAlignedAllocationFunction(FD)) { 1898 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1899 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1900 getASTContext().getTargetInfo().getPlatformName()); 1901 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1902 1903 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1904 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1905 Diag(Loc, diag::err_aligned_allocation_unavailable) 1906 << IsDelete << FD.getType().getAsString() << OSName 1907 << OSVersion.getAsString() << OSVersion.empty(); 1908 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1909 } 1910} 1911 1912ExprResult 1913Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1914 SourceLocation PlacementLParen, 1915 MultiExprArg PlacementArgs, 1916 SourceLocation PlacementRParen, 1917 SourceRange TypeIdParens, 1918 QualType AllocType, 1919 TypeSourceInfo *AllocTypeInfo, 1920 Optional<Expr *> ArraySize, 1921 SourceRange DirectInitRange, 1922 Expr *Initializer) { 1923 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1924 SourceLocation StartLoc = Range.getBegin(); 1925 1926 CXXNewExpr::InitializationStyle initStyle; 1927 if (DirectInitRange.isValid()) { 1928 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1928, __extension__ __PRETTY_FUNCTION__
))
; 1929 initStyle = CXXNewExpr::CallInit; 1930 } else if (Initializer && isa<InitListExpr>(Initializer)) 1931 initStyle = CXXNewExpr::ListInit; 1932 else { 1933 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
1934 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
1935 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1935, __extension__ __PRETTY_FUNCTION__
))
; 1936 initStyle = CXXNewExpr::NoInit; 1937 } 1938 1939 Expr **Inits = &Initializer; 1940 unsigned NumInits = Initializer ? 1 : 0; 1941 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1942 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1942, __extension__ __PRETTY_FUNCTION__
))
; 1943 Inits = List->getExprs(); 1944 NumInits = List->getNumExprs(); 1945 } 1946 1947 // C++11 [expr.new]p15: 1948 // A new-expression that creates an object of type T initializes that 1949 // object as follows: 1950 InitializationKind Kind 1951 // - If the new-initializer is omitted, the object is default- 1952 // initialized (8.5); if no initialization is performed, 1953 // the object has indeterminate value 1954 = initStyle == CXXNewExpr::NoInit 1955 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1956 // - Otherwise, the new-initializer is interpreted according to 1957 // the 1958 // initialization rules of 8.5 for direct-initialization. 1959 : initStyle == CXXNewExpr::ListInit 1960 ? InitializationKind::CreateDirectList( 1961 TypeRange.getBegin(), Initializer->getBeginLoc(), 1962 Initializer->getEndLoc()) 1963 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1964 DirectInitRange.getBegin(), 1965 DirectInitRange.getEnd()); 1966 1967 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1968 auto *Deduced = AllocType->getContainedDeducedType(); 1969 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1970 if (ArraySize) 1971 return ExprError( 1972 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1973 diag::err_deduced_class_template_compound_type) 1974 << /*array*/ 2 1975 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1976 1977 InitializedEntity Entity 1978 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1979 AllocType = DeduceTemplateSpecializationFromInitializer( 1980 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1981 if (AllocType.isNull()) 1982 return ExprError(); 1983 } else if (Deduced) { 1984 bool Braced = (initStyle == CXXNewExpr::ListInit); 1985 if (NumInits == 1) { 1986 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1987 Inits = p->getInits(); 1988 NumInits = p->getNumInits(); 1989 Braced = true; 1990 } 1991 } 1992 1993 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1994 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1995 << AllocType << TypeRange); 1996 if (NumInits > 1) { 1997 Expr *FirstBad = Inits[1]; 1998 return ExprError(Diag(FirstBad->getBeginLoc(), 1999 diag::err_auto_new_ctor_multiple_expressions) 2000 << AllocType << TypeRange); 2001 } 2002 if (Braced && !getLangOpts().CPlusPlus17) 2003 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2004 << AllocType << TypeRange; 2005 Expr *Deduce = Inits[0]; 2006 QualType DeducedType; 2007 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2008 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2009 << AllocType << Deduce->getType() 2010 << TypeRange << Deduce->getSourceRange()); 2011 if (DeducedType.isNull()) 2012 return ExprError(); 2013 AllocType = DeducedType; 2014 } 2015 2016 // Per C++0x [expr.new]p5, the type being constructed may be a 2017 // typedef of an array type. 2018 if (!ArraySize) { 2019 if (const ConstantArrayType *Array 2020 = Context.getAsConstantArrayType(AllocType)) { 2021 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2022 Context.getSizeType(), 2023 TypeRange.getEnd()); 2024 AllocType = Array->getElementType(); 2025 } 2026 } 2027 2028 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2029 return ExprError(); 2030 2031 // In ARC, infer 'retaining' for the allocated 2032 if (getLangOpts().ObjCAutoRefCount && 2033 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2034 AllocType->isObjCLifetimeType()) { 2035 AllocType = Context.getLifetimeQualifiedType(AllocType, 2036 AllocType->getObjCARCImplicitLifetime()); 2037 } 2038 2039 QualType ResultType = Context.getPointerType(AllocType); 2040 2041 if (ArraySize && *ArraySize && 2042 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2043 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2044 if (result.isInvalid()) return ExprError(); 2045 ArraySize = result.get(); 2046 } 2047 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2048 // integral or enumeration type with a non-negative value." 2049 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2050 // enumeration type, or a class type for which a single non-explicit 2051 // conversion function to integral or unscoped enumeration type exists. 2052 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2053 // std::size_t. 2054 llvm::Optional<uint64_t> KnownArraySize; 2055 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2056 ExprResult ConvertedSize; 2057 if (getLangOpts().CPlusPlus14) { 2058 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2058, __extension__ __PRETTY_FUNCTION__
))
; 2059 2060 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2061 AA_Converting); 2062 2063 if (!ConvertedSize.isInvalid() && 2064 (*ArraySize)->getType()->getAs<RecordType>()) 2065 // Diagnose the compatibility of this conversion. 2066 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2067 << (*ArraySize)->getType() << 0 << "'size_t'"; 2068 } else { 2069 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2070 protected: 2071 Expr *ArraySize; 2072 2073 public: 2074 SizeConvertDiagnoser(Expr *ArraySize) 2075 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2076 ArraySize(ArraySize) {} 2077 2078 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2079 QualType T) override { 2080 return S.Diag(Loc, diag::err_array_size_not_integral) 2081 << S.getLangOpts().CPlusPlus11 << T; 2082 } 2083 2084 SemaDiagnosticBuilder diagnoseIncomplete( 2085 Sema &S, SourceLocation Loc, QualType T) override { 2086 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2087 << T << ArraySize->getSourceRange(); 2088 } 2089 2090 SemaDiagnosticBuilder diagnoseExplicitConv( 2091 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2092 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2093 } 2094 2095 SemaDiagnosticBuilder noteExplicitConv( 2096 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2097 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2098 << ConvTy->isEnumeralType() << ConvTy; 2099 } 2100 2101 SemaDiagnosticBuilder diagnoseAmbiguous( 2102 Sema &S, SourceLocation Loc, QualType T) override { 2103 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2104 } 2105 2106 SemaDiagnosticBuilder noteAmbiguous( 2107 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2108 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2109 << ConvTy->isEnumeralType() << ConvTy; 2110 } 2111 2112 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2113 QualType T, 2114 QualType ConvTy) override { 2115 return S.Diag(Loc, 2116 S.getLangOpts().CPlusPlus11 2117 ? diag::warn_cxx98_compat_array_size_conversion 2118 : diag::ext_array_size_conversion) 2119 << T << ConvTy->isEnumeralType() << ConvTy; 2120 } 2121 } SizeDiagnoser(*ArraySize); 2122 2123 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2124 SizeDiagnoser); 2125 } 2126 if (ConvertedSize.isInvalid()) 2127 return ExprError(); 2128 2129 ArraySize = ConvertedSize.get(); 2130 QualType SizeType = (*ArraySize)->getType(); 2131 2132 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2133 return ExprError(); 2134 2135 // C++98 [expr.new]p7: 2136 // The expression in a direct-new-declarator shall have integral type 2137 // with a non-negative value. 2138 // 2139 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2140 // per CWG1464. Otherwise, if it's not a constant, we must have an 2141 // unparenthesized array type. 2142 2143 // We've already performed any required implicit conversion to integer or 2144 // unscoped enumeration type. 2145 // FIXME: Per CWG1464, we are required to check the value prior to 2146 // converting to size_t. This will never find a negative array size in 2147 // C++14 onwards, because Value is always unsigned here! 2148 if (Optional<llvm::APSInt> Value = 2149 (*ArraySize)->getIntegerConstantExpr(Context)) { 2150 if (Value->isSigned() && Value->isNegative()) { 2151 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2152 diag::err_typecheck_negative_array_size) 2153 << (*ArraySize)->getSourceRange()); 2154 } 2155 2156 if (!AllocType->isDependentType()) { 2157 unsigned ActiveSizeBits = 2158 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2159 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2160 return ExprError( 2161 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2162 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2163 } 2164 2165 KnownArraySize = Value->getZExtValue(); 2166 } else if (TypeIdParens.isValid()) { 2167 // Can't have dynamic array size when the type-id is in parentheses. 2168 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2169 << (*ArraySize)->getSourceRange() 2170 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2171 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2172 2173 TypeIdParens = SourceRange(); 2174 } 2175 2176 // Note that we do *not* convert the argument in any way. It can 2177 // be signed, larger than size_t, whatever. 2178 } 2179 2180 FunctionDecl *OperatorNew = nullptr; 2181 FunctionDecl *OperatorDelete = nullptr; 2182 unsigned Alignment = 2183 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2184 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2185 bool PassAlignment = getLangOpts().AlignedAllocation && 2186 Alignment > NewAlignment; 2187 2188 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2189 if (!AllocType->isDependentType() && 2190 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2191 FindAllocationFunctions( 2192 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2193 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2194 OperatorNew, OperatorDelete)) 2195 return ExprError(); 2196 2197 // If this is an array allocation, compute whether the usual array 2198 // deallocation function for the type has a size_t parameter. 2199 bool UsualArrayDeleteWantsSize = false; 2200 if (ArraySize && !AllocType->isDependentType()) 2201 UsualArrayDeleteWantsSize = 2202 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2203 2204 SmallVector<Expr *, 8> AllPlaceArgs; 2205 if (OperatorNew) { 2206 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2207 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2208 : VariadicDoesNotApply; 2209 2210 // We've already converted the placement args, just fill in any default 2211 // arguments. Skip the first parameter because we don't have a corresponding 2212 // argument. Skip the second parameter too if we're passing in the 2213 // alignment; we've already filled it in. 2214 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2215 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2216 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2217 CallType)) 2218 return ExprError(); 2219 2220 if (!AllPlaceArgs.empty()) 2221 PlacementArgs = AllPlaceArgs; 2222 2223 // We would like to perform some checking on the given `operator new` call, 2224 // but the PlacementArgs does not contain the implicit arguments, 2225 // namely allocation size and maybe allocation alignment, 2226 // so we need to conjure them. 2227 2228 QualType SizeTy = Context.getSizeType(); 2229 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2230 2231 llvm::APInt SingleEltSize( 2232 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2233 2234 // How many bytes do we want to allocate here? 2235 llvm::Optional<llvm::APInt> AllocationSize; 2236 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2237 // For non-array operator new, we only want to allocate one element. 2238 AllocationSize = SingleEltSize; 2239 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2240 // For array operator new, only deal with static array size case. 2241 bool Overflow; 2242 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2243 .umul_ov(SingleEltSize, Overflow); 2244 (void)Overflow; 2245 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
2246 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
2247 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
; 2248 } 2249 2250 IntegerLiteral AllocationSizeLiteral( 2251 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)), 2252 SizeTy, SourceLocation()); 2253 // Otherwise, if we failed to constant-fold the allocation size, we'll 2254 // just give up and pass-in something opaque, that isn't a null pointer. 2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2256 OK_Ordinary, /*SourceExpr=*/nullptr); 2257 2258 // Let's synthesize the alignment argument in case we will need it. 2259 // Since we *really* want to allocate these on stack, this is slightly ugly 2260 // because there might not be a `std::align_val_t` type. 2261 EnumDecl *StdAlignValT = getStdAlignValT(); 2262 QualType AlignValT = 2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2264 IntegerLiteral AlignmentLiteral( 2265 Context, 2266 llvm::APInt(Context.getTypeSize(SizeTy), 2267 Alignment / Context.getCharWidth()), 2268 SizeTy, SourceLocation()); 2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2270 CK_IntegralCast, &AlignmentLiteral, 2271 VK_PRValue, FPOptionsOverride()); 2272 2273 // Adjust placement args by prepending conjured size and alignment exprs. 2274 llvm::SmallVector<Expr *, 8> CallArgs; 2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2276 CallArgs.emplace_back(AllocationSize.hasValue() 2277 ? static_cast<Expr *>(&AllocationSizeLiteral) 2278 : &OpaqueAllocationSize); 2279 if (PassAlignment) 2280 CallArgs.emplace_back(&DesiredAlignment); 2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2282 2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2284 2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2287 2288 // Warn if the type is over-aligned and is being allocated by (unaligned) 2289 // global operator new. 2290 if (PlacementArgs.empty() && !PassAlignment && 2291 (OperatorNew->isImplicit() || 2292 (OperatorNew->getBeginLoc().isValid() && 2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2294 if (Alignment > NewAlignment) 2295 Diag(StartLoc, diag::warn_overaligned_type) 2296 << AllocType 2297 << unsigned(Alignment / Context.getCharWidth()) 2298 << unsigned(NewAlignment / Context.getCharWidth()); 2299 } 2300 } 2301 2302 // Array 'new' can't have any initializers except empty parentheses. 2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2304 // dialect distinction. 2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2306 SourceRange InitRange(Inits[0]->getBeginLoc(), 2307 Inits[NumInits - 1]->getEndLoc()); 2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2309 return ExprError(); 2310 } 2311 2312 // If we can perform the initialization, and we've not already done so, 2313 // do it now. 2314 if (!AllocType->isDependentType() && 2315 !Expr::hasAnyTypeDependentArguments( 2316 llvm::makeArrayRef(Inits, NumInits))) { 2317 // The type we initialize is the complete type, including the array bound. 2318 QualType InitType; 2319 if (KnownArraySize) 2320 InitType = Context.getConstantArrayType( 2321 AllocType, 2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2323 *KnownArraySize), 2324 *ArraySize, ArrayType::Normal, 0); 2325 else if (ArraySize) 2326 InitType = 2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2328 else 2329 InitType = AllocType; 2330 2331 InitializedEntity Entity 2332 = InitializedEntity::InitializeNew(StartLoc, InitType); 2333 InitializationSequence InitSeq(*this, Entity, Kind, 2334 MultiExprArg(Inits, NumInits)); 2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2336 MultiExprArg(Inits, NumInits)); 2337 if (FullInit.isInvalid()) 2338 return ExprError(); 2339 2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2341 // we don't want the initialized object to be destructed. 2342 // FIXME: We should not create these in the first place. 2343 if (CXXBindTemporaryExpr *Binder = 2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2345 FullInit = Binder->getSubExpr(); 2346 2347 Initializer = FullInit.get(); 2348 2349 // FIXME: If we have a KnownArraySize, check that the array bound of the 2350 // initializer is no greater than that constant value. 2351 2352 if (ArraySize && !*ArraySize) { 2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2354 if (CAT) { 2355 // FIXME: Track that the array size was inferred rather than explicitly 2356 // specified. 2357 ArraySize = IntegerLiteral::Create( 2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2359 } else { 2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2361 << Initializer->getSourceRange(); 2362 } 2363 } 2364 } 2365 2366 // Mark the new and delete operators as referenced. 2367 if (OperatorNew) { 2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2369 return ExprError(); 2370 MarkFunctionReferenced(StartLoc, OperatorNew); 2371 } 2372 if (OperatorDelete) { 2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2374 return ExprError(); 2375 MarkFunctionReferenced(StartLoc, OperatorDelete); 2376 } 2377 2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2379 PassAlignment, UsualArrayDeleteWantsSize, 2380 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2381 Initializer, ResultType, AllocTypeInfo, Range, 2382 DirectInitRange); 2383} 2384 2385/// Checks that a type is suitable as the allocated type 2386/// in a new-expression. 2387bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2388 SourceRange R) { 2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2390 // abstract class type or array thereof. 2391 if (AllocType->isFunctionType()) 2392 return Diag(Loc, diag::err_bad_new_type) 2393 << AllocType << 0 << R; 2394 else if (AllocType->isReferenceType()) 2395 return Diag(Loc, diag::err_bad_new_type) 2396 << AllocType << 1 << R; 2397 else if (!AllocType->isDependentType() && 2398 RequireCompleteSizedType( 2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2400 return true; 2401 else if (RequireNonAbstractType(Loc, AllocType, 2402 diag::err_allocation_of_abstract_type)) 2403 return true; 2404 else if (AllocType->isVariablyModifiedType()) 2405 return Diag(Loc, diag::err_variably_modified_new_type) 2406 << AllocType; 2407 else if (AllocType.getAddressSpace() != LangAS::Default && 2408 !getLangOpts().OpenCLCPlusPlus) 2409 return Diag(Loc, diag::err_address_space_qualified_new) 2410 << AllocType.getUnqualifiedType() 2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2412 else if (getLangOpts().ObjCAutoRefCount) { 2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2414 QualType BaseAllocType = Context.getBaseElementType(AT); 2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2416 BaseAllocType->isObjCLifetimeType()) 2417 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2418 << BaseAllocType; 2419 } 2420 } 2421 2422 return false; 2423} 2424 2425static bool resolveAllocationOverload( 2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2427 bool &PassAlignment, FunctionDecl *&Operator, 2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2429 OverloadCandidateSet Candidates(R.getNameLoc(), 2430 OverloadCandidateSet::CSK_Normal); 2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2432 Alloc != AllocEnd; ++Alloc) { 2433 // Even member operator new/delete are implicitly treated as 2434 // static, so don't use AddMemberCandidate. 2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2436 2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2439 /*ExplicitTemplateArgs=*/nullptr, Args, 2440 Candidates, 2441 /*SuppressUserConversions=*/false); 2442 continue; 2443 } 2444 2445 FunctionDecl *Fn = cast<FunctionDecl>(D); 2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2447 /*SuppressUserConversions=*/false); 2448 } 2449 2450 // Do the resolution. 2451 OverloadCandidateSet::iterator Best; 2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2453 case OR_Success: { 2454 // Got one! 2455 FunctionDecl *FnDecl = Best->Function; 2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2457 Best->FoundDecl) == Sema::AR_inaccessible) 2458 return true; 2459 2460 Operator = FnDecl; 2461 return false; 2462 } 2463 2464 case OR_No_Viable_Function: 2465 // C++17 [expr.new]p13: 2466 // If no matching function is found and the allocated object type has 2467 // new-extended alignment, the alignment argument is removed from the 2468 // argument list, and overload resolution is performed again. 2469 if (PassAlignment) { 2470 PassAlignment = false; 2471 AlignArg = Args[1]; 2472 Args.erase(Args.begin() + 1); 2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2474 Operator, &Candidates, AlignArg, 2475 Diagnose); 2476 } 2477 2478 // MSVC will fall back on trying to find a matching global operator new 2479 // if operator new[] cannot be found. Also, MSVC will leak by not 2480 // generating a call to operator delete or operator delete[], but we 2481 // will not replicate that bug. 2482 // FIXME: Find out how this interacts with the std::align_val_t fallback 2483 // once MSVC implements it. 2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2485 S.Context.getLangOpts().MSVCCompat) { 2486 R.clear(); 2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2489 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2491 Operator, /*Candidates=*/nullptr, 2492 /*AlignArg=*/nullptr, Diagnose); 2493 } 2494 2495 if (Diagnose) { 2496 // If this is an allocation of the form 'new (p) X' for some object 2497 // pointer p (or an expression that will decay to such a pointer), 2498 // diagnose the missing inclusion of <new>. 2499 if (!R.isClassLookup() && Args.size() == 2 && 2500 (Args[1]->getType()->isObjectPointerType() || 2501 Args[1]->getType()->isArrayType())) { 2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2503 << R.getLookupName() << Range; 2504 // Listing the candidates is unlikely to be useful; skip it. 2505 return true; 2506 } 2507 2508 // Finish checking all candidates before we note any. This checking can 2509 // produce additional diagnostics so can't be interleaved with our 2510 // emission of notes. 2511 // 2512 // For an aligned allocation, separately check the aligned and unaligned 2513 // candidates with their respective argument lists. 2514 SmallVector<OverloadCandidate*, 32> Cands; 2515 SmallVector<OverloadCandidate*, 32> AlignedCands; 2516 llvm::SmallVector<Expr*, 4> AlignedArgs; 2517 if (AlignedCandidates) { 2518 auto IsAligned = [](OverloadCandidate &C) { 2519 return C.Function->getNumParams() > 1 && 2520 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2521 }; 2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2523 2524 AlignedArgs.reserve(Args.size() + 1); 2525 AlignedArgs.push_back(Args[0]); 2526 AlignedArgs.push_back(AlignArg); 2527 AlignedArgs.append(Args.begin() + 1, Args.end()); 2528 AlignedCands = AlignedCandidates->CompleteCandidates( 2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2530 2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2532 R.getNameLoc(), IsUnaligned); 2533 } else { 2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2535 R.getNameLoc()); 2536 } 2537 2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2539 << R.getLookupName() << Range; 2540 if (AlignedCandidates) 2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2542 R.getNameLoc()); 2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2544 } 2545 return true; 2546 2547 case OR_Ambiguous: 2548 if (Diagnose) { 2549 Candidates.NoteCandidates( 2550 PartialDiagnosticAt(R.getNameLoc(), 2551 S.PDiag(diag::err_ovl_ambiguous_call) 2552 << R.getLookupName() << Range), 2553 S, OCD_AmbiguousCandidates, Args); 2554 } 2555 return true; 2556 2557 case OR_Deleted: { 2558 if (Diagnose) { 2559 Candidates.NoteCandidates( 2560 PartialDiagnosticAt(R.getNameLoc(), 2561 S.PDiag(diag::err_ovl_deleted_call) 2562 << R.getLookupName() << Range), 2563 S, OCD_AllCandidates, Args); 2564 } 2565 return true; 2566 } 2567 } 2568 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2568)
; 2569} 2570 2571bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2572 AllocationFunctionScope NewScope, 2573 AllocationFunctionScope DeleteScope, 2574 QualType AllocType, bool IsArray, 2575 bool &PassAlignment, MultiExprArg PlaceArgs, 2576 FunctionDecl *&OperatorNew, 2577 FunctionDecl *&OperatorDelete, 2578 bool Diagnose) { 2579 // --- Choosing an allocation function --- 2580 // C++ 5.3.4p8 - 14 & 18 2581 // 1) If looking in AFS_Global scope for allocation functions, only look in 2582 // the global scope. Else, if AFS_Class, only look in the scope of the 2583 // allocated class. If AFS_Both, look in both. 2584 // 2) If an array size is given, look for operator new[], else look for 2585 // operator new. 2586 // 3) The first argument is always size_t. Append the arguments from the 2587 // placement form. 2588 2589 SmallVector<Expr*, 8> AllocArgs; 2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2591 2592 // We don't care about the actual value of these arguments. 2593 // FIXME: Should the Sema create the expression and embed it in the syntax 2594 // tree? Or should the consumer just recalculate the value? 2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2596 IntegerLiteral Size( 2597 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2598 Context.getSizeType(), SourceLocation()); 2599 AllocArgs.push_back(&Size); 2600 2601 QualType AlignValT = Context.VoidTy; 2602 if (PassAlignment) { 2603 DeclareGlobalNewDelete(); 2604 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2605 } 2606 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2607 if (PassAlignment) 2608 AllocArgs.push_back(&Align); 2609 2610 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2611 2612 // C++ [expr.new]p8: 2613 // If the allocated type is a non-array type, the allocation 2614 // function's name is operator new and the deallocation function's 2615 // name is operator delete. If the allocated type is an array 2616 // type, the allocation function's name is operator new[] and the 2617 // deallocation function's name is operator delete[]. 2618 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2619 IsArray ? OO_Array_New : OO_New); 2620 2621 QualType AllocElemType = Context.getBaseElementType(AllocType); 2622 2623 // Find the allocation function. 2624 { 2625 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2626 2627 // C++1z [expr.new]p9: 2628 // If the new-expression begins with a unary :: operator, the allocation 2629 // function's name is looked up in the global scope. Otherwise, if the 2630 // allocated type is a class type T or array thereof, the allocation 2631 // function's name is looked up in the scope of T. 2632 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2633 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2634 2635 // We can see ambiguity here if the allocation function is found in 2636 // multiple base classes. 2637 if (R.isAmbiguous()) 2638 return true; 2639 2640 // If this lookup fails to find the name, or if the allocated type is not 2641 // a class type, the allocation function's name is looked up in the 2642 // global scope. 2643 if (R.empty()) { 2644 if (NewScope == AFS_Class) 2645 return true; 2646 2647 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2648 } 2649 2650 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2651 if (PlaceArgs.empty()) { 2652 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2653 } else { 2654 Diag(StartLoc, diag::err_openclcxx_placement_new); 2655 } 2656 return true; 2657 } 2658 2659 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2659, __extension__ __PRETTY_FUNCTION__
))
; 2660 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2660, __extension__ __PRETTY_FUNCTION__
))
; 2661 2662 // We do our own custom access checks below. 2663 R.suppressDiagnostics(); 2664 2665 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2666 OperatorNew, /*Candidates=*/nullptr, 2667 /*AlignArg=*/nullptr, Diagnose)) 2668 return true; 2669 } 2670 2671 // We don't need an operator delete if we're running under -fno-exceptions. 2672 if (!getLangOpts().Exceptions) { 2673 OperatorDelete = nullptr; 2674 return false; 2675 } 2676 2677 // Note, the name of OperatorNew might have been changed from array to 2678 // non-array by resolveAllocationOverload. 2679 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2680 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2681 ? OO_Array_Delete 2682 : OO_Delete); 2683 2684 // C++ [expr.new]p19: 2685 // 2686 // If the new-expression begins with a unary :: operator, the 2687 // deallocation function's name is looked up in the global 2688 // scope. Otherwise, if the allocated type is a class type T or an 2689 // array thereof, the deallocation function's name is looked up in 2690 // the scope of T. If this lookup fails to find the name, or if 2691 // the allocated type is not a class type or array thereof, the 2692 // deallocation function's name is looked up in the global scope. 2693 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2694 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2695 auto *RD = 2696 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2697 LookupQualifiedName(FoundDelete, RD); 2698 } 2699 if (FoundDelete.isAmbiguous()) 2700 return true; // FIXME: clean up expressions? 2701 2702 // Filter out any destroying operator deletes. We can't possibly call such a 2703 // function in this context, because we're handling the case where the object 2704 // was not successfully constructed. 2705 // FIXME: This is not covered by the language rules yet. 2706 { 2707 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2708 while (Filter.hasNext()) { 2709 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2710 if (FD && FD->isDestroyingOperatorDelete()) 2711 Filter.erase(); 2712 } 2713 Filter.done(); 2714 } 2715 2716 bool FoundGlobalDelete = FoundDelete.empty(); 2717 if (FoundDelete.empty()) { 2718 FoundDelete.clear(LookupOrdinaryName); 2719 2720 if (DeleteScope == AFS_Class) 2721 return true; 2722 2723 DeclareGlobalNewDelete(); 2724 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2725 } 2726 2727 FoundDelete.suppressDiagnostics(); 2728 2729 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2730 2731 // Whether we're looking for a placement operator delete is dictated 2732 // by whether we selected a placement operator new, not by whether 2733 // we had explicit placement arguments. This matters for things like 2734 // struct A { void *operator new(size_t, int = 0); ... }; 2735 // A *a = new A() 2736 // 2737 // We don't have any definition for what a "placement allocation function" 2738 // is, but we assume it's any allocation function whose 2739 // parameter-declaration-clause is anything other than (size_t). 2740 // 2741 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2742 // This affects whether an exception from the constructor of an overaligned 2743 // type uses the sized or non-sized form of aligned operator delete. 2744 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2745 OperatorNew->isVariadic(); 2746 2747 if (isPlacementNew) { 2748 // C++ [expr.new]p20: 2749 // A declaration of a placement deallocation function matches the 2750 // declaration of a placement allocation function if it has the 2751 // same number of parameters and, after parameter transformations 2752 // (8.3.5), all parameter types except the first are 2753 // identical. [...] 2754 // 2755 // To perform this comparison, we compute the function type that 2756 // the deallocation function should have, and use that type both 2757 // for template argument deduction and for comparison purposes. 2758 QualType ExpectedFunctionType; 2759 { 2760 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2761 2762 SmallVector<QualType, 4> ArgTypes; 2763 ArgTypes.push_back(Context.VoidPtrTy); 2764 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2765 ArgTypes.push_back(Proto->getParamType(I)); 2766 2767 FunctionProtoType::ExtProtoInfo EPI; 2768 // FIXME: This is not part of the standard's rule. 2769 EPI.Variadic = Proto->isVariadic(); 2770 2771 ExpectedFunctionType 2772 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2773 } 2774 2775 for (LookupResult::iterator D = FoundDelete.begin(), 2776 DEnd = FoundDelete.end(); 2777 D != DEnd; ++D) { 2778 FunctionDecl *Fn = nullptr; 2779 if (FunctionTemplateDecl *FnTmpl = 2780 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2781 // Perform template argument deduction to try to match the 2782 // expected function type. 2783 TemplateDeductionInfo Info(StartLoc); 2784 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2785 Info)) 2786 continue; 2787 } else 2788 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2789 2790 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2791 ExpectedFunctionType, 2792 /*AdjustExcpetionSpec*/true), 2793 ExpectedFunctionType)) 2794 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2795 } 2796 2797 if (getLangOpts().CUDA) 2798 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2799 } else { 2800 // C++1y [expr.new]p22: 2801 // For a non-placement allocation function, the normal deallocation 2802 // function lookup is used 2803 // 2804 // Per [expr.delete]p10, this lookup prefers a member operator delete 2805 // without a size_t argument, but prefers a non-member operator delete 2806 // with a size_t where possible (which it always is in this case). 2807 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2808 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2809 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2810 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2811 &BestDeallocFns); 2812 if (Selected) 2813 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2814 else { 2815 // If we failed to select an operator, all remaining functions are viable 2816 // but ambiguous. 2817 for (auto Fn : BestDeallocFns) 2818 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2819 } 2820 } 2821 2822 // C++ [expr.new]p20: 2823 // [...] If the lookup finds a single matching deallocation 2824 // function, that function will be called; otherwise, no 2825 // deallocation function will be called. 2826 if (Matches.size() == 1) { 2827 OperatorDelete = Matches[0].second; 2828 2829 // C++1z [expr.new]p23: 2830 // If the lookup finds a usual deallocation function (3.7.4.2) 2831 // with a parameter of type std::size_t and that function, considered 2832 // as a placement deallocation function, would have been 2833 // selected as a match for the allocation function, the program 2834 // is ill-formed. 2835 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2836 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2837 UsualDeallocFnInfo Info(*this, 2838 DeclAccessPair::make(OperatorDelete, AS_public)); 2839 // Core issue, per mail to core reflector, 2016-10-09: 2840 // If this is a member operator delete, and there is a corresponding 2841 // non-sized member operator delete, this isn't /really/ a sized 2842 // deallocation function, it just happens to have a size_t parameter. 2843 bool IsSizedDelete = Info.HasSizeT; 2844 if (IsSizedDelete && !FoundGlobalDelete) { 2845 auto NonSizedDelete = 2846 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2847 /*WantAlign*/Info.HasAlignValT); 2848 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2849 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2850 IsSizedDelete = false; 2851 } 2852 2853 if (IsSizedDelete) { 2854 SourceRange R = PlaceArgs.empty() 2855 ? SourceRange() 2856 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2857 PlaceArgs.back()->getEndLoc()); 2858 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2859 if (!OperatorDelete->isImplicit()) 2860 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2861 << DeleteName; 2862 } 2863 } 2864 2865 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2866 Matches[0].first); 2867 } else if (!Matches.empty()) { 2868 // We found multiple suitable operators. Per [expr.new]p20, that means we 2869 // call no 'operator delete' function, but we should at least warn the user. 2870 // FIXME: Suppress this warning if the construction cannot throw. 2871 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2872 << DeleteName << AllocElemType; 2873 2874 for (auto &Match : Matches) 2875 Diag(Match.second->getLocation(), 2876 diag::note_member_declared_here) << DeleteName; 2877 } 2878 2879 return false; 2880} 2881 2882/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2883/// delete. These are: 2884/// @code 2885/// // C++03: 2886/// void* operator new(std::size_t) throw(std::bad_alloc); 2887/// void* operator new[](std::size_t) throw(std::bad_alloc); 2888/// void operator delete(void *) throw(); 2889/// void operator delete[](void *) throw(); 2890/// // C++11: 2891/// void* operator new(std::size_t); 2892/// void* operator new[](std::size_t); 2893/// void operator delete(void *) noexcept; 2894/// void operator delete[](void *) noexcept; 2895/// // C++1y: 2896/// void* operator new(std::size_t); 2897/// void* operator new[](std::size_t); 2898/// void operator delete(void *) noexcept; 2899/// void operator delete[](void *) noexcept; 2900/// void operator delete(void *, std::size_t) noexcept; 2901/// void operator delete[](void *, std::size_t) noexcept; 2902/// @endcode 2903/// Note that the placement and nothrow forms of new are *not* implicitly 2904/// declared. Their use requires including \<new\>. 2905void Sema::DeclareGlobalNewDelete() { 2906 if (GlobalNewDeleteDeclared) 2907 return; 2908 2909 // The implicitly declared new and delete operators 2910 // are not supported in OpenCL. 2911 if (getLangOpts().OpenCLCPlusPlus) 2912 return; 2913 2914 // C++ [basic.std.dynamic]p2: 2915 // [...] The following allocation and deallocation functions (18.4) are 2916 // implicitly declared in global scope in each translation unit of a 2917 // program 2918 // 2919 // C++03: 2920 // void* operator new(std::size_t) throw(std::bad_alloc); 2921 // void* operator new[](std::size_t) throw(std::bad_alloc); 2922 // void operator delete(void*) throw(); 2923 // void operator delete[](void*) throw(); 2924 // C++11: 2925 // void* operator new(std::size_t); 2926 // void* operator new[](std::size_t); 2927 // void operator delete(void*) noexcept; 2928 // void operator delete[](void*) noexcept; 2929 // C++1y: 2930 // void* operator new(std::size_t); 2931 // void* operator new[](std::size_t); 2932 // void operator delete(void*) noexcept; 2933 // void operator delete[](void*) noexcept; 2934 // void operator delete(void*, std::size_t) noexcept; 2935 // void operator delete[](void*, std::size_t) noexcept; 2936 // 2937 // These implicit declarations introduce only the function names operator 2938 // new, operator new[], operator delete, operator delete[]. 2939 // 2940 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2941 // "std" or "bad_alloc" as necessary to form the exception specification. 2942 // However, we do not make these implicit declarations visible to name 2943 // lookup. 2944 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2945 // The "std::bad_alloc" class has not yet been declared, so build it 2946 // implicitly. 2947 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2948 getOrCreateStdNamespace(), 2949 SourceLocation(), SourceLocation(), 2950 &PP.getIdentifierTable().get("bad_alloc"), 2951 nullptr); 2952 getStdBadAlloc()->setImplicit(true); 2953 } 2954 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2955 // The "std::align_val_t" enum class has not yet been declared, so build it 2956 // implicitly. 2957 auto *AlignValT = EnumDecl::Create( 2958 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2959 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2960 AlignValT->setIntegerType(Context.getSizeType()); 2961 AlignValT->setPromotionType(Context.getSizeType()); 2962 AlignValT->setImplicit(true); 2963 StdAlignValT = AlignValT; 2964 } 2965 2966 GlobalNewDeleteDeclared = true; 2967 2968 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2969 QualType SizeT = Context.getSizeType(); 2970 2971 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2972 QualType Return, QualType Param) { 2973 llvm::SmallVector<QualType, 3> Params; 2974 Params.push_back(Param); 2975 2976 // Create up to four variants of the function (sized/aligned). 2977 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2978 (Kind == OO_Delete || Kind == OO_Array_Delete); 2979 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2980 2981 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2982 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2983 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2984 if (Sized) 2985 Params.push_back(SizeT); 2986 2987 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2988 if (Aligned) 2989 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2990 2991 DeclareGlobalAllocationFunction( 2992 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2993 2994 if (Aligned) 2995 Params.pop_back(); 2996 } 2997 } 2998 }; 2999 3000 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3001 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3002 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3003 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3004} 3005 3006/// DeclareGlobalAllocationFunction - Declares a single implicit global 3007/// allocation function if it doesn't already exist. 3008void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3009 QualType Return, 3010 ArrayRef<QualType> Params) { 3011 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3012 3013 // Check if this function is already declared. 3014 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3015 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3016 Alloc != AllocEnd; ++Alloc) { 3017 // Only look at non-template functions, as it is the predefined, 3018 // non-templated allocation function we are trying to declare here. 3019 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3020 if (Func->getNumParams() == Params.size()) { 3021 llvm::SmallVector<QualType, 3> FuncParams; 3022 for (auto *P : Func->parameters()) 3023 FuncParams.push_back( 3024 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3025 if (llvm::makeArrayRef(FuncParams) == Params) { 3026 // Make the function visible to name lookup, even if we found it in 3027 // an unimported module. It either is an implicitly-declared global 3028 // allocation function, or is suppressing that function. 3029 Func->setVisibleDespiteOwningModule(); 3030 return; 3031 } 3032 } 3033 } 3034 } 3035 3036 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3037 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3038 3039 QualType BadAllocType; 3040 bool HasBadAllocExceptionSpec 3041 = (Name.getCXXOverloadedOperator() == OO_New || 3042 Name.getCXXOverloadedOperator() == OO_Array_New); 3043 if (HasBadAllocExceptionSpec) { 3044 if (!getLangOpts().CPlusPlus11) { 3045 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3046 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3046, __extension__ __PRETTY_FUNCTION__
))
; 3047 EPI.ExceptionSpec.Type = EST_Dynamic; 3048 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3049 } 3050 if (getLangOpts().NewInfallible) { 3051 EPI.ExceptionSpec.Type = EST_DynamicNone; 3052 } 3053 } else { 3054 EPI.ExceptionSpec = 3055 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3056 } 3057 3058 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3059 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3060 FunctionDecl *Alloc = FunctionDecl::Create( 3061 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3062 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3063 true); 3064 Alloc->setImplicit(); 3065 // Global allocation functions should always be visible. 3066 Alloc->setVisibleDespiteOwningModule(); 3067 3068 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3069 Alloc->addAttr( 3070 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3071 3072 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3073 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3074 ? VisibilityAttr::Hidden 3075 : VisibilityAttr::Default)); 3076 3077 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3078 for (QualType T : Params) { 3079 ParamDecls.push_back(ParmVarDecl::Create( 3080 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3081 /*TInfo=*/nullptr, SC_None, nullptr)); 3082 ParamDecls.back()->setImplicit(); 3083 } 3084 Alloc->setParams(ParamDecls); 3085 if (ExtraAttr) 3086 Alloc->addAttr(ExtraAttr); 3087 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3088 Context.getTranslationUnitDecl()->addDecl(Alloc); 3089 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3090 }; 3091 3092 if (!LangOpts.CUDA) 3093 CreateAllocationFunctionDecl(nullptr); 3094 else { 3095 // Host and device get their own declaration so each can be 3096 // defined or re-declared independently. 3097 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3098 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3099 } 3100} 3101 3102FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3103 bool CanProvideSize, 3104 bool Overaligned, 3105 DeclarationName Name) { 3106 DeclareGlobalNewDelete(); 3107 3108 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3109 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3110 3111 // FIXME: It's possible for this to result in ambiguity, through a 3112 // user-declared variadic operator delete or the enable_if attribute. We 3113 // should probably not consider those cases to be usual deallocation 3114 // functions. But for now we just make an arbitrary choice in that case. 3115 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3116 Overaligned); 3117 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3117, __extension__ __PRETTY_FUNCTION__
))
; 3118 return Result.FD; 3119} 3120 3121FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3122 CXXRecordDecl *RD) { 3123 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3124 3125 FunctionDecl *OperatorDelete = nullptr; 3126 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3127 return nullptr; 3128 if (OperatorDelete) 3129 return OperatorDelete; 3130 3131 // If there's no class-specific operator delete, look up the global 3132 // non-array delete. 3133 return FindUsualDeallocationFunction( 3134 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3135 Name); 3136} 3137 3138bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3139 DeclarationName Name, 3140 FunctionDecl *&Operator, bool Diagnose) { 3141 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3142 // Try to find operator delete/operator delete[] in class scope. 3143 LookupQualifiedName(Found, RD); 3144 3145 if (Found.isAmbiguous()) 3146 return true; 3147 3148 Found.suppressDiagnostics(); 3149 3150 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3151 3152 // C++17 [expr.delete]p10: 3153 // If the deallocation functions have class scope, the one without a 3154 // parameter of type std::size_t is selected. 3155 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3156 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3157 /*WantAlign*/ Overaligned, &Matches); 3158 3159 // If we could find an overload, use it. 3160 if (Matches.size() == 1) { 3161 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3162 3163 // FIXME: DiagnoseUseOfDecl? 3164 if (Operator->isDeleted()) { 3165 if (Diagnose) { 3166 Diag(StartLoc, diag::err_deleted_function_use); 3167 NoteDeletedFunction(Operator); 3168 } 3169 return true; 3170 } 3171 3172 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3173 Matches[0].Found, Diagnose) == AR_inaccessible) 3174 return true; 3175 3176 return false; 3177 } 3178 3179 // We found multiple suitable operators; complain about the ambiguity. 3180 // FIXME: The standard doesn't say to do this; it appears that the intent 3181 // is that this should never happen. 3182 if (!Matches.empty()) { 3183 if (Diagnose) { 3184 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3185 << Name << RD; 3186 for (auto &Match : Matches) 3187 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3188 } 3189 return true; 3190 } 3191 3192 // We did find operator delete/operator delete[] declarations, but 3193 // none of them were suitable. 3194 if (!Found.empty()) { 3195 if (Diagnose) { 3196 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3197 << Name << RD; 3198 3199 for (NamedDecl *D : Found) 3200 Diag(D->getUnderlyingDecl()->getLocation(), 3201 diag::note_member_declared_here) << Name; 3202 } 3203 return true; 3204 } 3205 3206 Operator = nullptr; 3207 return false; 3208} 3209 3210namespace { 3211/// Checks whether delete-expression, and new-expression used for 3212/// initializing deletee have the same array form. 3213class MismatchingNewDeleteDetector { 3214public: 3215 enum MismatchResult { 3216 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3217 NoMismatch, 3218 /// Indicates that variable is initialized with mismatching form of \a new. 3219 VarInitMismatches, 3220 /// Indicates that member is initialized with mismatching form of \a new. 3221 MemberInitMismatches, 3222 /// Indicates that 1 or more constructors' definitions could not been 3223 /// analyzed, and they will be checked again at the end of translation unit. 3224 AnalyzeLater 3225 }; 3226 3227 /// \param EndOfTU True, if this is the final analysis at the end of 3228 /// translation unit. False, if this is the initial analysis at the point 3229 /// delete-expression was encountered. 3230 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3231 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3232 HasUndefinedConstructors(false) {} 3233 3234 /// Checks whether pointee of a delete-expression is initialized with 3235 /// matching form of new-expression. 3236 /// 3237 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3238 /// point where delete-expression is encountered, then a warning will be 3239 /// issued immediately. If return value is \c AnalyzeLater at the point where 3240 /// delete-expression is seen, then member will be analyzed at the end of 3241 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3242 /// couldn't be analyzed. If at least one constructor initializes the member 3243 /// with matching type of new, the return value is \c NoMismatch. 3244 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3245 /// Analyzes a class member. 3246 /// \param Field Class member to analyze. 3247 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3248 /// for deleting the \p Field. 3249 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3250 FieldDecl *Field; 3251 /// List of mismatching new-expressions used for initialization of the pointee 3252 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3253 /// Indicates whether delete-expression was in array form. 3254 bool IsArrayForm; 3255 3256private: 3257 const bool EndOfTU; 3258 /// Indicates that there is at least one constructor without body. 3259 bool HasUndefinedConstructors; 3260 /// Returns \c CXXNewExpr from given initialization expression. 3261 /// \param E Expression used for initializing pointee in delete-expression. 3262 /// E can be a single-element \c InitListExpr consisting of new-expression. 3263 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3264 /// Returns whether member is initialized with mismatching form of 3265 /// \c new either by the member initializer or in-class initialization. 3266 /// 3267 /// If bodies of all constructors are not visible at the end of translation 3268 /// unit or at least one constructor initializes member with the matching 3269 /// form of \c new, mismatch cannot be proven, and this function will return 3270 /// \c NoMismatch. 3271 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3272 /// Returns whether variable is initialized with mismatching form of 3273 /// \c new. 3274 /// 3275 /// If variable is initialized with matching form of \c new or variable is not 3276 /// initialized with a \c new expression, this function will return true. 3277 /// If variable is initialized with mismatching form of \c new, returns false. 3278 /// \param D Variable to analyze. 3279 bool hasMatchingVarInit(const DeclRefExpr *D); 3280 /// Checks whether the constructor initializes pointee with mismatching 3281 /// form of \c new. 3282 /// 3283 /// Returns true, if member is initialized with matching form of \c new in 3284 /// member initializer list. Returns false, if member is initialized with the 3285 /// matching form of \c new in this constructor's initializer or given 3286 /// constructor isn't defined at the point where delete-expression is seen, or 3287 /// member isn't initialized by the constructor. 3288 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3289 /// Checks whether member is initialized with matching form of 3290 /// \c new in member initializer list. 3291 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3292 /// Checks whether member is initialized with mismatching form of \c new by 3293 /// in-class initializer. 3294 MismatchResult analyzeInClassInitializer(); 3295}; 3296} 3297 3298MismatchingNewDeleteDetector::MismatchResult 3299MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3300 NewExprs.clear(); 3301 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3301, __extension__ __PRETTY_FUNCTION__
))
; 3302 IsArrayForm = DE->isArrayForm(); 3303 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3304 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3305 return analyzeMemberExpr(ME); 3306 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3307 if (!hasMatchingVarInit(D)) 3308 return VarInitMismatches; 3309 } 3310 return NoMismatch; 3311} 3312 3313const CXXNewExpr * 3314MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3315 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3315, __extension__ __PRETTY_FUNCTION__
))
; 3316 E = E->IgnoreParenImpCasts(); 3317 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3318 if (ILE->getNumInits() == 1) 3319 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3320 } 3321 3322 return dyn_cast_or_null<const CXXNewExpr>(E); 3323} 3324 3325bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3326 const CXXCtorInitializer *CI) { 3327 const CXXNewExpr *NE = nullptr; 3328 if (Field == CI->getMember() && 3329 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3330 if (NE->isArray() == IsArrayForm) 3331 return true; 3332 else 3333 NewExprs.push_back(NE); 3334 } 3335 return false; 3336} 3337 3338bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3339 const CXXConstructorDecl *CD) { 3340 if (CD->isImplicit()) 3341 return false; 3342 const FunctionDecl *Definition = CD; 3343 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3344 HasUndefinedConstructors = true; 3345 return EndOfTU; 3346 } 3347 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3348 if (hasMatchingNewInCtorInit(CI)) 3349 return true; 3350 } 3351 return false; 3352} 3353 3354MismatchingNewDeleteDetector::MismatchResult 3355MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3356 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3356, __extension__ __PRETTY_FUNCTION__
))
; 3357 const Expr *InitExpr = Field->getInClassInitializer(); 3358 if (!InitExpr) 3359 return EndOfTU ? NoMismatch : AnalyzeLater; 3360 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3361 if (NE->isArray() != IsArrayForm) { 3362 NewExprs.push_back(NE); 3363 return MemberInitMismatches; 3364 } 3365 } 3366 return NoMismatch; 3367} 3368 3369MismatchingNewDeleteDetector::MismatchResult 3370MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3371 bool DeleteWasArrayForm) { 3372 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3372, __extension__ __PRETTY_FUNCTION__
))
; 3373 this->Field = Field; 3374 IsArrayForm = DeleteWasArrayForm; 3375 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3376 for (const auto *CD : RD->ctors()) { 3377 if (hasMatchingNewInCtor(CD)) 3378 return NoMismatch; 3379 } 3380 if (HasUndefinedConstructors) 3381 return EndOfTU ? NoMismatch : AnalyzeLater; 3382 if (!NewExprs.empty()) 3383 return MemberInitMismatches; 3384 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3385 : NoMismatch; 3386} 3387 3388MismatchingNewDeleteDetector::MismatchResult 3389MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3390 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3390, __extension__ __PRETTY_FUNCTION__
))
; 3391 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3392 return analyzeField(F, IsArrayForm); 3393 return NoMismatch; 3394} 3395 3396bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3397 const CXXNewExpr *NE = nullptr; 3398 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3399 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3400 NE->isArray() != IsArrayForm) { 3401 NewExprs.push_back(NE); 3402 } 3403 } 3404 return NewExprs.empty(); 3405} 3406 3407static void 3408DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3409 const MismatchingNewDeleteDetector &Detector) { 3410 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3411 FixItHint H; 3412 if (!Detector.IsArrayForm) 3413 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3414 else { 3415 SourceLocation RSquare = Lexer::findLocationAfterToken( 3416 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3417 SemaRef.getLangOpts(), true); 3418 if (RSquare.isValid()) 3419 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3420 } 3421 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3422 << Detector.IsArrayForm << H; 3423 3424 for (const auto *NE : Detector.NewExprs) 3425 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3426 << Detector.IsArrayForm; 3427} 3428 3429void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3430 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3431 return; 3432 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3433 switch (Detector.analyzeDeleteExpr(DE)) { 3434 case MismatchingNewDeleteDetector::VarInitMismatches: 3435 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3436 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3437 break; 3438 } 3439 case MismatchingNewDeleteDetector::AnalyzeLater: { 3440 DeleteExprs[Detector.Field].push_back( 3441 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3442 break; 3443 } 3444 case MismatchingNewDeleteDetector::NoMismatch: 3445 break; 3446 } 3447} 3448 3449void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3450 bool DeleteWasArrayForm) { 3451 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3452 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3453 case MismatchingNewDeleteDetector::VarInitMismatches: 3454 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3454)
; 3455 case MismatchingNewDeleteDetector::AnalyzeLater: 3456 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3457)
3457 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3457)
; 3458 case MismatchingNewDeleteDetector::MemberInitMismatches: 3459 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3460 break; 3461 case MismatchingNewDeleteDetector::NoMismatch: 3462 break; 3463 } 3464} 3465 3466/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3467/// @code ::delete ptr; @endcode 3468/// or 3469/// @code delete [] ptr; @endcode 3470ExprResult 3471Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3472 bool ArrayForm, Expr *ExE) { 3473 // C++ [expr.delete]p1: 3474 // The operand shall have a pointer type, or a class type having a single 3475 // non-explicit conversion function to a pointer type. The result has type 3476 // void. 3477 // 3478 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3479 3480 ExprResult Ex = ExE; 3481 FunctionDecl *OperatorDelete = nullptr; 3482 bool ArrayFormAsWritten = ArrayForm; 3483 bool UsualArrayDeleteWantsSize = false; 3484 3485 if (!Ex.get()->isTypeDependent()) { 3486 // Perform lvalue-to-rvalue cast, if needed. 3487 Ex = DefaultLvalueConversion(Ex.get()); 3488 if (Ex.isInvalid()) 3489 return ExprError(); 3490 3491 QualType Type = Ex.get()->getType(); 3492 3493 class DeleteConverter : public ContextualImplicitConverter { 3494 public: 3495 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3496 3497 bool match(QualType ConvType) override { 3498 // FIXME: If we have an operator T* and an operator void*, we must pick 3499 // the operator T*. 3500 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3501 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3502 return true; 3503 return false; 3504 } 3505 3506 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3507 QualType T) override { 3508 return S.Diag(Loc, diag::err_delete_operand) << T; 3509 } 3510 3511 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3512 QualType T) override { 3513 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3514 } 3515 3516 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3517 QualType T, 3518 QualType ConvTy) override { 3519 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3520 } 3521 3522 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3523 QualType ConvTy) override { 3524 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3525 << ConvTy; 3526 } 3527 3528 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3529 QualType T) override { 3530 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3531 } 3532 3533 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3534 QualType ConvTy) override { 3535 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3536 << ConvTy; 3537 } 3538 3539 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3540 QualType T, 3541 QualType ConvTy) override { 3542 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3542)
; 3543 } 3544 } Converter; 3545 3546 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3547 if (Ex.isInvalid()) 3548 return ExprError(); 3549 Type = Ex.get()->getType(); 3550 if (!Converter.match(Type)) 3551 // FIXME: PerformContextualImplicitConversion should return ExprError 3552 // itself in this case. 3553 return ExprError(); 3554 3555 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3556 QualType PointeeElem = Context.getBaseElementType(Pointee); 3557 3558 if (Pointee.getAddressSpace() != LangAS::Default && 3559 !getLangOpts().OpenCLCPlusPlus) 3560 return Diag(Ex.get()->getBeginLoc(), 3561 diag::err_address_space_qualified_delete) 3562 << Pointee.getUnqualifiedType() 3563 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3564 3565 CXXRecordDecl *PointeeRD = nullptr; 3566 if (Pointee->isVoidType() && !isSFINAEContext()) { 3567 // The C++ standard bans deleting a pointer to a non-object type, which 3568 // effectively bans deletion of "void*". However, most compilers support 3569 // this, so we treat it as a warning unless we're in a SFINAE context. 3570 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3571 << Type << Ex.get()->getSourceRange(); 3572 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3573 Pointee->isSizelessType()) { 3574 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3575 << Type << Ex.get()->getSourceRange()); 3576 } else if (!Pointee->isDependentType()) { 3577 // FIXME: This can result in errors if the definition was imported from a 3578 // module but is hidden. 3579 if (!RequireCompleteType(StartLoc, Pointee, 3580 diag::warn_delete_incomplete, Ex.get())) { 3581 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3582 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3583 } 3584 } 3585 3586 if (Pointee->isArrayType() && !ArrayForm) { 3587 Diag(StartLoc, diag::warn_delete_array_type) 3588 << Type << Ex.get()->getSourceRange() 3589 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3590 ArrayForm = true; 3591 } 3592 3593 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3594 ArrayForm ? OO_Array_Delete : OO_Delete); 3595 3596 if (PointeeRD) { 3597 if (!UseGlobal && 3598 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3599 OperatorDelete)) 3600 return ExprError(); 3601 3602 // If we're allocating an array of records, check whether the 3603 // usual operator delete[] has a size_t parameter. 3604 if (ArrayForm) { 3605 // If the user specifically asked to use the global allocator, 3606 // we'll need to do the lookup into the class. 3607 if (UseGlobal) 3608 UsualArrayDeleteWantsSize = 3609 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3610 3611 // Otherwise, the usual operator delete[] should be the 3612 // function we just found. 3613 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3614 UsualArrayDeleteWantsSize = 3615 UsualDeallocFnInfo(*this, 3616 DeclAccessPair::make(OperatorDelete, AS_public)) 3617 .HasSizeT; 3618 } 3619 3620 if (!PointeeRD->hasIrrelevantDestructor()) 3621 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3622 MarkFunctionReferenced(StartLoc, 3623 const_cast<CXXDestructorDecl*>(Dtor)); 3624 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3625 return ExprError(); 3626 } 3627 3628 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3629 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3630 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3631 SourceLocation()); 3632 } 3633 3634 if (!OperatorDelete) { 3635 if (getLangOpts().OpenCLCPlusPlus) { 3636 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3637 return ExprError(); 3638 } 3639 3640 bool IsComplete = isCompleteType(StartLoc, Pointee); 3641 bool CanProvideSize = 3642 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3643 Pointee.isDestructedType()); 3644 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3645 3646 // Look for a global declaration. 3647 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3648 Overaligned, DeleteName); 3649 } 3650 3651 MarkFunctionReferenced(StartLoc, OperatorDelete); 3652 3653 // Check access and ambiguity of destructor if we're going to call it. 3654 // Note that this is required even for a virtual delete. 3655 bool IsVirtualDelete = false; 3656 if (PointeeRD) { 3657 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3658 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3659 PDiag(diag::err_access_dtor) << PointeeElem); 3660 IsVirtualDelete = Dtor->isVirtual(); 3661 } 3662 } 3663 3664 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3665 3666 // Convert the operand to the type of the first parameter of operator 3667 // delete. This is only necessary if we selected a destroying operator 3668 // delete that we are going to call (non-virtually); converting to void* 3669 // is trivial and left to AST consumers to handle. 3670 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3671 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3672 Qualifiers Qs = Pointee.getQualifiers(); 3673 if (Qs.hasCVRQualifiers()) { 3674 // Qualifiers are irrelevant to this conversion; we're only looking 3675 // for access and ambiguity. 3676 Qs.removeCVRQualifiers(); 3677 QualType Unqual = Context.getPointerType( 3678 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3679 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3680 } 3681 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3682 if (Ex.isInvalid()) 3683 return ExprError(); 3684 } 3685 } 3686 3687 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3688 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3689 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3690 AnalyzeDeleteExprMismatch(Result); 3691 return Result; 3692} 3693 3694static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3695 bool IsDelete, 3696 FunctionDecl *&Operator) { 3697 3698 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3699 IsDelete ? OO_Delete : OO_New); 3700 3701 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3702 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3703 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3703, __extension__ __PRETTY_FUNCTION__
))
; 3704 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3704, __extension__ __PRETTY_FUNCTION__
))
; 3705 3706 // We do our own custom access checks below. 3707 R.suppressDiagnostics(); 3708 3709 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3710 OverloadCandidateSet Candidates(R.getNameLoc(), 3711 OverloadCandidateSet::CSK_Normal); 3712 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3713 FnOvl != FnOvlEnd; ++FnOvl) { 3714 // Even member operator new/delete are implicitly treated as 3715 // static, so don't use AddMemberCandidate. 3716 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3717 3718 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3719 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3720 /*ExplicitTemplateArgs=*/nullptr, Args, 3721 Candidates, 3722 /*SuppressUserConversions=*/false); 3723 continue; 3724 } 3725 3726 FunctionDecl *Fn = cast<FunctionDecl>(D); 3727 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3728 /*SuppressUserConversions=*/false); 3729 } 3730 3731 SourceRange Range = TheCall->getSourceRange(); 3732 3733 // Do the resolution. 3734 OverloadCandidateSet::iterator Best; 3735 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3736 case OR_Success: { 3737 // Got one! 3738 FunctionDecl *FnDecl = Best->Function; 3739 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
3740 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3740, __extension__ __PRETTY_FUNCTION__
))
; 3741 3742 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3743 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3744 << (IsDelete ? 1 : 0) << Range; 3745 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3746 << R.getLookupName() << FnDecl->getSourceRange(); 3747 return true; 3748 } 3749 3750 Operator = FnDecl; 3751 return false; 3752 } 3753 3754 case OR_No_Viable_Function: 3755 Candidates.NoteCandidates( 3756 PartialDiagnosticAt(R.getNameLoc(), 3757 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3758 << R.getLookupName() << Range), 3759 S, OCD_AllCandidates, Args); 3760 return true; 3761 3762 case OR_Ambiguous: 3763 Candidates.NoteCandidates( 3764 PartialDiagnosticAt(R.getNameLoc(), 3765 S.PDiag(diag::err_ovl_ambiguous_call) 3766 << R.getLookupName() << Range), 3767 S, OCD_AmbiguousCandidates, Args); 3768 return true; 3769 3770 case OR_Deleted: { 3771 Candidates.NoteCandidates( 3772 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3773 << R.getLookupName() << Range), 3774 S, OCD_AllCandidates, Args); 3775 return true; 3776 } 3777 } 3778 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3778)
; 3779} 3780 3781ExprResult 3782Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3783 bool IsDelete) { 3784 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3785 if (!getLangOpts().CPlusPlus) { 3786 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3787 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3788 << "C++"; 3789 return ExprError(); 3790 } 3791 // CodeGen assumes it can find the global new and delete to call, 3792 // so ensure that they are declared. 3793 DeclareGlobalNewDelete(); 3794 3795 FunctionDecl *OperatorNewOrDelete = nullptr; 3796 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3797 OperatorNewOrDelete)) 3798 return ExprError(); 3799 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3799, __extension__ __PRETTY_FUNCTION__
))
; 3800 3801 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3802 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3803 3804 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3805 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3806 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3807 InitializedEntity Entity = 3808 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3809 ExprResult Arg = PerformCopyInitialization( 3810 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3811 if (Arg.isInvalid()) 3812 return ExprError(); 3813 TheCall->setArg(i, Arg.get()); 3814 } 3815 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3816 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
3817 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
; 3818 Callee->setType(OperatorNewOrDelete->getType()); 3819 3820 return TheCallResult; 3821} 3822 3823void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3824 bool IsDelete, bool CallCanBeVirtual, 3825 bool WarnOnNonAbstractTypes, 3826 SourceLocation DtorLoc) { 3827 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3828 return; 3829 3830 // C++ [expr.delete]p3: 3831 // In the first alternative (delete object), if the static type of the 3832 // object to be deleted is different from its dynamic type, the static 3833 // type shall be a base class of the dynamic type of the object to be 3834 // deleted and the static type shall have a virtual destructor or the 3835 // behavior is undefined. 3836 // 3837 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3838 // Note: a final class cannot be derived from, no issue there 3839 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3840 return; 3841 3842 // If the superclass is in a system header, there's nothing that can be done. 3843 // The `delete` (where we emit the warning) can be in a system header, 3844 // what matters for this warning is where the deleted type is defined. 3845 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3846 return; 3847 3848 QualType ClassType = dtor->getThisType()->getPointeeType(); 3849 if (PointeeRD->isAbstract()) { 3850 // If the class is abstract, we warn by default, because we're 3851 // sure the code has undefined behavior. 3852 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3853 << ClassType; 3854 } else if (WarnOnNonAbstractTypes) { 3855 // Otherwise, if this is not an array delete, it's a bit suspect, 3856 // but not necessarily wrong. 3857 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3858 << ClassType; 3859 } 3860 if (!IsDelete) { 3861 std::string TypeStr; 3862 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3863 Diag(DtorLoc, diag::note_delete_non_virtual) 3864 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3865 } 3866} 3867 3868Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3869 SourceLocation StmtLoc, 3870 ConditionKind CK) { 3871 ExprResult E = 3872 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3873 if (E.isInvalid()) 3874 return ConditionError(); 3875 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3876 CK == ConditionKind::ConstexprIf); 3877} 3878 3879/// Check the use of the given variable as a C++ condition in an if, 3880/// while, do-while, or switch statement. 3881ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3882 SourceLocation StmtLoc, 3883 ConditionKind CK) { 3884 if (ConditionVar->isInvalidDecl()) 3885 return ExprError(); 3886 3887 QualType T = ConditionVar->getType(); 3888 3889 // C++ [stmt.select]p2: 3890 // The declarator shall not specify a function or an array. 3891 if (T->isFunctionType()) 3892 return ExprError(Diag(ConditionVar->getLocation(), 3893 diag::err_invalid_use_of_function_type) 3894 << ConditionVar->getSourceRange()); 3895 else if (T->isArrayType()) 3896 return ExprError(Diag(ConditionVar->getLocation(), 3897 diag::err_invalid_use_of_array_type) 3898 << ConditionVar->getSourceRange()); 3899 3900 ExprResult Condition = BuildDeclRefExpr( 3901 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3902 ConditionVar->getLocation()); 3903 3904 switch (CK) { 3905 case ConditionKind::Boolean: 3906 return CheckBooleanCondition(StmtLoc, Condition.get()); 3907 3908 case ConditionKind::ConstexprIf: 3909 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3910 3911 case ConditionKind::Switch: 3912 return CheckSwitchCondition(StmtLoc, Condition.get()); 3913 } 3914 3915 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3915)
; 3916} 3917 3918/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3919ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3920 // C++11 6.4p4: 3921 // The value of a condition that is an initialized declaration in a statement 3922 // other than a switch statement is the value of the declared variable 3923 // implicitly converted to type bool. If that conversion is ill-formed, the 3924 // program is ill-formed. 3925 // The value of a condition that is an expression is the value of the 3926 // expression, implicitly converted to bool. 3927 // 3928 // C++2b 8.5.2p2 3929 // If the if statement is of the form if constexpr, the value of the condition 3930 // is contextually converted to bool and the converted expression shall be 3931 // a constant expression. 3932 // 3933 3934 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3935 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3936 return E; 3937 3938 // FIXME: Return this value to the caller so they don't need to recompute it. 3939 llvm::APSInt Cond; 3940 E = VerifyIntegerConstantExpression( 3941 E.get(), &Cond, 3942 diag::err_constexpr_if_condition_expression_is_not_constant); 3943 return E; 3944} 3945 3946/// Helper function to determine whether this is the (deprecated) C++ 3947/// conversion from a string literal to a pointer to non-const char or 3948/// non-const wchar_t (for narrow and wide string literals, 3949/// respectively). 3950bool 3951Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3952 // Look inside the implicit cast, if it exists. 3953 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3954 From = Cast->getSubExpr(); 3955 3956 // A string literal (2.13.4) that is not a wide string literal can 3957 // be converted to an rvalue of type "pointer to char"; a wide 3958 // string literal can be converted to an rvalue of type "pointer 3959 // to wchar_t" (C++ 4.2p2). 3960 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3961 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3962 if (const BuiltinType *ToPointeeType 3963 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3964 // This conversion is considered only when there is an 3965 // explicit appropriate pointer target type (C++ 4.2p2). 3966 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3967 switch (StrLit->getKind()) { 3968 case StringLiteral::UTF8: 3969 case StringLiteral::UTF16: 3970 case StringLiteral::UTF32: 3971 // We don't allow UTF literals to be implicitly converted 3972 break; 3973 case StringLiteral::Ascii: 3974 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3975 ToPointeeType->getKind() == BuiltinType::Char_S); 3976 case StringLiteral::Wide: 3977 return Context.typesAreCompatible(Context.getWideCharType(), 3978 QualType(ToPointeeType, 0)); 3979 } 3980 } 3981 } 3982 3983 return false; 3984} 3985 3986static ExprResult BuildCXXCastArgument(Sema &S, 3987 SourceLocation CastLoc, 3988 QualType Ty, 3989 CastKind Kind, 3990 CXXMethodDecl *Method, 3991 DeclAccessPair FoundDecl, 3992 bool HadMultipleCandidates, 3993 Expr *From) { 3994 switch (Kind) { 3995 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 3995)
; 3996 case CK_ConstructorConversion: { 3997 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3998 SmallVector<Expr*, 8> ConstructorArgs; 3999 4000 if (S.RequireNonAbstractType(CastLoc, Ty, 4001 diag::err_allocation_of_abstract_type)) 4002 return ExprError(); 4003 4004 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4005 ConstructorArgs)) 4006 return ExprError(); 4007 4008 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4009 InitializedEntity::InitializeTemporary(Ty)); 4010 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4011 return ExprError(); 4012 4013 ExprResult Result = S.BuildCXXConstructExpr( 4014 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4015 ConstructorArgs, HadMultipleCandidates, 4016 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4017 CXXConstructExpr::CK_Complete, SourceRange()); 4018 if (Result.isInvalid()) 4019 return ExprError(); 4020 4021 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4022 } 4023 4024 case CK_UserDefinedConversion: { 4025 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4025, __extension__ __PRETTY_FUNCTION__
))
; 4026 4027 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4028 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4029 return ExprError(); 4030 4031 // Create an implicit call expr that calls it. 4032 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4033 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4034 HadMultipleCandidates); 4035 if (Result.isInvalid()) 4036 return ExprError(); 4037 // Record usage of conversion in an implicit cast. 4038 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4039 CK_UserDefinedConversion, Result.get(), 4040 nullptr, Result.get()->getValueKind(), 4041 S.CurFPFeatureOverrides()); 4042 4043 return S.MaybeBindToTemporary(Result.get()); 4044 } 4045 } 4046} 4047 4048/// PerformImplicitConversion - Perform an implicit conversion of the 4049/// expression From to the type ToType using the pre-computed implicit 4050/// conversion sequence ICS. Returns the converted 4051/// expression. Action is the kind of conversion we're performing, 4052/// used in the error message. 4053ExprResult 4054Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4055 const ImplicitConversionSequence &ICS, 4056 AssignmentAction Action, 4057 CheckedConversionKind CCK) { 4058 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4059 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4060 return From; 4061 4062 switch (ICS.getKind()) { 4063 case ImplicitConversionSequence::StandardConversion: { 4064 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4065 Action, CCK); 4066 if (Res.isInvalid()) 4067 return ExprError(); 4068 From = Res.get(); 4069 break; 4070 } 4071 4072 case ImplicitConversionSequence::UserDefinedConversion: { 4073 4074 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4075 CastKind CastKind; 4076 QualType BeforeToType; 4077 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4077, __extension__ __PRETTY_FUNCTION__
))
; 4078 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4079 CastKind = CK_UserDefinedConversion; 4080 4081 // If the user-defined conversion is specified by a conversion function, 4082 // the initial standard conversion sequence converts the source type to 4083 // the implicit object parameter of the conversion function. 4084 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4085 } else { 4086 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4087 CastKind = CK_ConstructorConversion; 4088 // Do no conversion if dealing with ... for the first conversion. 4089 if (!ICS.UserDefined.EllipsisConversion) { 4090 // If the user-defined conversion is specified by a constructor, the 4091 // initial standard conversion sequence converts the source type to 4092 // the type required by the argument of the constructor 4093 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4094 } 4095 } 4096 // Watch out for ellipsis conversion. 4097 if (!ICS.UserDefined.EllipsisConversion) { 4098 ExprResult Res = 4099 PerformImplicitConversion(From, BeforeToType, 4100 ICS.UserDefined.Before, AA_Converting, 4101 CCK); 4102 if (Res.isInvalid()) 4103 return ExprError(); 4104 From = Res.get(); 4105 } 4106 4107 ExprResult CastArg = BuildCXXCastArgument( 4108 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4109 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4110 ICS.UserDefined.HadMultipleCandidates, From); 4111 4112 if (CastArg.isInvalid()) 4113 return ExprError(); 4114 4115 From = CastArg.get(); 4116 4117 // C++ [over.match.oper]p7: 4118 // [...] the second standard conversion sequence of a user-defined 4119 // conversion sequence is not applied. 4120 if (CCK == CCK_ForBuiltinOverloadedOp) 4121 return From; 4122 4123 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4124 AA_Converting, CCK); 4125 } 4126 4127 case ImplicitConversionSequence::AmbiguousConversion: 4128 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4129 PDiag(diag::err_typecheck_ambiguous_condition) 4130 << From->getSourceRange()); 4131 return ExprError(); 4132 4133 case ImplicitConversionSequence::EllipsisConversion: 4134 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4134)
; 4135 4136 case ImplicitConversionSequence::BadConversion: 4137 Sema::AssignConvertType ConvTy = 4138 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4139 bool Diagnosed = DiagnoseAssignmentResult( 4140 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4141 ToType, From->getType(), From, Action); 4142 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4142, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed; 4143 return ExprError(); 4144 } 4145 4146 // Everything went well. 4147 return From; 4148} 4149 4150/// PerformImplicitConversion - Perform an implicit conversion of the 4151/// expression From to the type ToType by following the standard 4152/// conversion sequence SCS. Returns the converted 4153/// expression. Flavor is the context in which we're performing this 4154/// conversion, for use in error messages. 4155ExprResult 4156Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4157 const StandardConversionSequence& SCS, 4158 AssignmentAction Action, 4159 CheckedConversionKind CCK) { 4160 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4161 4162 // Overall FIXME: we are recomputing too many types here and doing far too 4163 // much extra work. What this means is that we need to keep track of more 4164 // information that is computed when we try the implicit conversion initially, 4165 // so that we don't need to recompute anything here. 4166 QualType FromType = From->getType(); 4167 4168 if (SCS.CopyConstructor) { 4169 // FIXME: When can ToType be a reference type? 4170 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4170, __extension__ __PRETTY_FUNCTION__))
; 4171 if (SCS.Second == ICK_Derived_To_Base) { 4172 SmallVector<Expr*, 8> ConstructorArgs; 4173 if (CompleteConstructorCall( 4174 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4175 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4176 return ExprError(); 4177 return BuildCXXConstructExpr( 4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4179 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4180 ConstructorArgs, /*HadMultipleCandidates*/ false, 4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4182 CXXConstructExpr::CK_Complete, SourceRange()); 4183 } 4184 return BuildCXXConstructExpr( 4185 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4186 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4187 From, /*HadMultipleCandidates*/ false, 4188 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4189 CXXConstructExpr::CK_Complete, SourceRange()); 4190 } 4191 4192 // Resolve overloaded function references. 4193 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4194 DeclAccessPair Found; 4195 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4196 true, Found); 4197 if (!Fn) 4198 return ExprError(); 4199 4200 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4201 return ExprError(); 4202 4203 From = FixOverloadedFunctionReference(From, Found, Fn); 4204 FromType = From->getType(); 4205 } 4206 4207 // If we're converting to an atomic type, first convert to the corresponding 4208 // non-atomic type. 4209 QualType ToAtomicType; 4210 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4211 ToAtomicType = ToType; 4212 ToType = ToAtomic->getValueType(); 4213 } 4214 4215 QualType InitialFromType = FromType; 4216 // Perform the first implicit conversion. 4217 switch (SCS.First) { 4218 case ICK_Identity: 4219 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4220 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4221 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4222 From, /*BasePath=*/nullptr, VK_PRValue, 4223 FPOptionsOverride()); 4224 } 4225 break; 4226 4227 case ICK_Lvalue_To_Rvalue: { 4228 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4228, __extension__ __PRETTY_FUNCTION__
))
; 4229 ExprResult FromRes = DefaultLvalueConversion(From); 4230 if (FromRes.isInvalid()) 4231 return ExprError(); 4232 4233 From = FromRes.get(); 4234 FromType = From->getType(); 4235 break; 4236 } 4237 4238 case ICK_Array_To_Pointer: 4239 FromType = Context.getArrayDecayedType(FromType); 4240 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4241 /*BasePath=*/nullptr, CCK) 4242 .get(); 4243 break; 4244 4245 case ICK_Function_To_Pointer: 4246 FromType = Context.getPointerType(FromType); 4247 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4248 VK_PRValue, /*BasePath=*/nullptr, CCK) 4249 .get(); 4250 break; 4251 4252 default: 4253 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4253)
; 4254 } 4255 4256 // Perform the second implicit conversion 4257 switch (SCS.Second) { 4258 case ICK_Identity: 4259 // C++ [except.spec]p5: 4260 // [For] assignment to and initialization of pointers to functions, 4261 // pointers to member functions, and references to functions: the 4262 // target entity shall allow at least the exceptions allowed by the 4263 // source value in the assignment or initialization. 4264 switch (Action) { 4265 case AA_Assigning: 4266 case AA_Initializing: 4267 // Note, function argument passing and returning are initialization. 4268 case AA_Passing: 4269 case AA_Returning: 4270 case AA_Sending: 4271 case AA_Passing_CFAudited: 4272 if (CheckExceptionSpecCompatibility(From, ToType)) 4273 return ExprError(); 4274 break; 4275 4276 case AA_Casting: 4277 case AA_Converting: 4278 // Casts and implicit conversions are not initialization, so are not 4279 // checked for exception specification mismatches. 4280 break; 4281 } 4282 // Nothing else to do. 4283 break; 4284 4285 case ICK_Integral_Promotion: 4286 case ICK_Integral_Conversion: 4287 if (ToType->isBooleanType()) { 4288 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
4289 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
4290 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4290, __extension__ __PRETTY_FUNCTION__
))
; 4291 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4292 /*BasePath=*/nullptr, CCK) 4293 .get(); 4294 } else { 4295 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4296 /*BasePath=*/nullptr, CCK) 4297 .get(); 4298 } 4299 break; 4300 4301 case ICK_Floating_Promotion: 4302 case ICK_Floating_Conversion: 4303 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4304 /*BasePath=*/nullptr, CCK) 4305 .get(); 4306 break; 4307 4308 case ICK_Complex_Promotion: 4309 case ICK_Complex_Conversion: { 4310 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4311 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4312 CastKind CK; 4313 if (FromEl->isRealFloatingType()) { 4314 if (ToEl->isRealFloatingType()) 4315 CK = CK_FloatingComplexCast; 4316 else 4317 CK = CK_FloatingComplexToIntegralComplex; 4318 } else if (ToEl->isRealFloatingType()) { 4319 CK = CK_IntegralComplexToFloatingComplex; 4320 } else { 4321 CK = CK_IntegralComplexCast; 4322 } 4323 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4324 CCK) 4325 .get(); 4326 break; 4327 } 4328 4329 case ICK_Floating_Integral: 4330 if (ToType->isRealFloatingType()) 4331 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4332 /*BasePath=*/nullptr, CCK) 4333 .get(); 4334 else 4335 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4336 /*BasePath=*/nullptr, CCK) 4337 .get(); 4338 break; 4339 4340 case ICK_Compatible_Conversion: 4341 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4342 /*BasePath=*/nullptr, CCK).get(); 4343 break; 4344 4345 case ICK_Writeback_Conversion: 4346 case ICK_Pointer_Conversion: { 4347 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4348 // Diagnose incompatible Objective-C conversions 4349 if (Action == AA_Initializing || Action == AA_Assigning) 4350 Diag(From->getBeginLoc(), 4351 diag::ext_typecheck_convert_incompatible_pointer) 4352 << ToType << From->getType() << Action << From->getSourceRange() 4353 << 0; 4354 else 4355 Diag(From->getBeginLoc(), 4356 diag::ext_typecheck_convert_incompatible_pointer) 4357 << From->getType() << ToType << Action << From->getSourceRange() 4358 << 0; 4359 4360 if (From->getType()->isObjCObjectPointerType() && 4361 ToType->isObjCObjectPointerType()) 4362 EmitRelatedResultTypeNote(From); 4363 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4364 !CheckObjCARCUnavailableWeakConversion(ToType, 4365 From->getType())) { 4366 if (Action == AA_Initializing) 4367 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4368 else 4369 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4370 << (Action == AA_Casting) << From->getType() << ToType 4371 << From->getSourceRange(); 4372 } 4373 4374 // Defer address space conversion to the third conversion. 4375 QualType FromPteeType = From->getType()->getPointeeType(); 4376 QualType ToPteeType = ToType->getPointeeType(); 4377 QualType NewToType = ToType; 4378 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4379 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4380 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4381 NewToType = Context.getAddrSpaceQualType(NewToType, 4382 FromPteeType.getAddressSpace()); 4383 if (ToType->isObjCObjectPointerType()) 4384 NewToType = Context.getObjCObjectPointerType(NewToType); 4385 else if (ToType->isBlockPointerType()) 4386 NewToType = Context.getBlockPointerType(NewToType); 4387 else 4388 NewToType = Context.getPointerType(NewToType); 4389 } 4390 4391 CastKind Kind; 4392 CXXCastPath BasePath; 4393 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4394 return ExprError(); 4395 4396 // Make sure we extend blocks if necessary. 4397 // FIXME: doing this here is really ugly. 4398 if (Kind == CK_BlockPointerToObjCPointerCast) { 4399 ExprResult E = From; 4400 (void) PrepareCastToObjCObjectPointer(E); 4401 From = E.get(); 4402 } 4403 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4404 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4405 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4406 .get(); 4407 break; 4408 } 4409 4410 case ICK_Pointer_Member: { 4411 CastKind Kind; 4412 CXXCastPath BasePath; 4413 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4414 return ExprError(); 4415 if (CheckExceptionSpecCompatibility(From, ToType)) 4416 return ExprError(); 4417 4418 // We may not have been able to figure out what this member pointer resolved 4419 // to up until this exact point. Attempt to lock-in it's inheritance model. 4420 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4421 (void)isCompleteType(From->getExprLoc(), From->getType()); 4422 (void)isCompleteType(From->getExprLoc(), ToType); 4423 } 4424 4425 From = 4426 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4427 break; 4428 } 4429 4430 case ICK_Boolean_Conversion: 4431 // Perform half-to-boolean conversion via float. 4432 if (From->getType()->isHalfType()) { 4433 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4434 FromType = Context.FloatTy; 4435 } 4436 4437 From = ImpCastExprToType(From, Context.BoolTy, 4438 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4439 /*BasePath=*/nullptr, CCK) 4440 .get(); 4441 break; 4442 4443 case ICK_Derived_To_Base: { 4444 CXXCastPath BasePath; 4445 if (CheckDerivedToBaseConversion( 4446 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4447 From->getSourceRange(), &BasePath, CStyle)) 4448 return ExprError(); 4449 4450 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4451 CK_DerivedToBase, From->getValueKind(), 4452 &BasePath, CCK).get(); 4453 break; 4454 } 4455 4456 case ICK_Vector_Conversion: 4457 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4458 /*BasePath=*/nullptr, CCK) 4459 .get(); 4460 break; 4461 4462 case ICK_SVE_Vector_Conversion: 4463 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4464 /*BasePath=*/nullptr, CCK) 4465 .get(); 4466 break; 4467 4468 case ICK_Vector_Splat: { 4469 // Vector splat from any arithmetic type to a vector. 4470 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4471 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4472 /*BasePath=*/nullptr, CCK) 4473 .get(); 4474 break; 4475 } 4476 4477 case ICK_Complex_Real: 4478 // Case 1. x -> _Complex y 4479 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4480 QualType ElType = ToComplex->getElementType(); 4481 bool isFloatingComplex = ElType->isRealFloatingType(); 4482 4483 // x -> y 4484 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4485 // do nothing 4486 } else if (From->getType()->isRealFloatingType()) { 4487 From = ImpCastExprToType(From, ElType, 4488 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4489 } else { 4490 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4490, __extension__ __PRETTY_FUNCTION__
))
; 4491 From = ImpCastExprToType(From, ElType, 4492 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4493 } 4494 // y -> _Complex y 4495 From = ImpCastExprToType(From, ToType, 4496 isFloatingComplex ? CK_FloatingRealToComplex 4497 : CK_IntegralRealToComplex).get(); 4498 4499 // Case 2. _Complex x -> y 4500 } else { 4501 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4502 QualType ElType = FromComplex->getElementType(); 4503 bool isFloatingComplex = ElType->isRealFloatingType(); 4504 4505 // _Complex x -> x 4506 From = ImpCastExprToType(From, ElType, 4507 isFloatingComplex ? CK_FloatingComplexToReal 4508 : CK_IntegralComplexToReal, 4509 VK_PRValue, /*BasePath=*/nullptr, CCK) 4510 .get(); 4511 4512 // x -> y 4513 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4514 // do nothing 4515 } else if (ToType->isRealFloatingType()) { 4516 From = ImpCastExprToType(From, ToType, 4517 isFloatingComplex ? CK_FloatingCast 4518 : CK_IntegralToFloating, 4519 VK_PRValue, /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 } else { 4522 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4522, __extension__ __PRETTY_FUNCTION__))
; 4523 From = ImpCastExprToType(From, ToType, 4524 isFloatingComplex ? CK_FloatingToIntegral 4525 : CK_IntegralCast, 4526 VK_PRValue, /*BasePath=*/nullptr, CCK) 4527 .get(); 4528 } 4529 } 4530 break; 4531 4532 case ICK_Block_Pointer_Conversion: { 4533 LangAS AddrSpaceL = 4534 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4535 LangAS AddrSpaceR = 4536 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4537 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4538, __extension__ __PRETTY_FUNCTION__
))
4538 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4538, __extension__ __PRETTY_FUNCTION__
))
; 4539 CastKind Kind = 4540 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4541 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4542 VK_PRValue, /*BasePath=*/nullptr, CCK) 4543 .get(); 4544 break; 4545 } 4546 4547 case ICK_TransparentUnionConversion: { 4548 ExprResult FromRes = From; 4549 Sema::AssignConvertType ConvTy = 4550 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4551 if (FromRes.isInvalid()) 4552 return ExprError(); 4553 From = FromRes.get(); 4554 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4555, __extension__ __PRETTY_FUNCTION__
))
4555 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4555, __extension__ __PRETTY_FUNCTION__
))
; 4556 (void)ConvTy; 4557 break; 4558 } 4559 4560 case ICK_Zero_Event_Conversion: 4561 case ICK_Zero_Queue_Conversion: 4562 From = ImpCastExprToType(From, ToType, 4563 CK_ZeroToOCLOpaqueType, 4564 From->getValueKind()).get(); 4565 break; 4566 4567 case ICK_Lvalue_To_Rvalue: 4568 case ICK_Array_To_Pointer: 4569 case ICK_Function_To_Pointer: 4570 case ICK_Function_Conversion: 4571 case ICK_Qualification: 4572 case ICK_Num_Conversion_Kinds: 4573 case ICK_C_Only_Conversion: 4574 case ICK_Incompatible_Pointer_Conversion: 4575 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4575)
; 4576 } 4577 4578 switch (SCS.Third) { 4579 case ICK_Identity: 4580 // Nothing to do. 4581 break; 4582 4583 case ICK_Function_Conversion: 4584 // If both sides are functions (or pointers/references to them), there could 4585 // be incompatible exception declarations. 4586 if (CheckExceptionSpecCompatibility(From, ToType)) 4587 return ExprError(); 4588 4589 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4590 /*BasePath=*/nullptr, CCK) 4591 .get(); 4592 break; 4593 4594 case ICK_Qualification: { 4595 ExprValueKind VK = From->getValueKind(); 4596 CastKind CK = CK_NoOp; 4597 4598 if (ToType->isReferenceType() && 4599 ToType->getPointeeType().getAddressSpace() != 4600 From->getType().getAddressSpace()) 4601 CK = CK_AddressSpaceConversion; 4602 4603 if (ToType->isPointerType() && 4604 ToType->getPointeeType().getAddressSpace() != 4605 From->getType()->getPointeeType().getAddressSpace()) 4606 CK = CK_AddressSpaceConversion; 4607 4608 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4609 /*BasePath=*/nullptr, CCK) 4610 .get(); 4611 4612 if (SCS.DeprecatedStringLiteralToCharPtr && 4613 !getLangOpts().WritableStrings) { 4614 Diag(From->getBeginLoc(), 4615 getLangOpts().CPlusPlus11 4616 ? diag::ext_deprecated_string_literal_conversion 4617 : diag::warn_deprecated_string_literal_conversion) 4618 << ToType.getNonReferenceType(); 4619 } 4620 4621 break; 4622 } 4623 4624 default: 4625 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4625)
; 4626 } 4627 4628 // If this conversion sequence involved a scalar -> atomic conversion, perform 4629 // that conversion now. 4630 if (!ToAtomicType.isNull()) { 4631 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4632, __extension__ __PRETTY_FUNCTION__
))
4632 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4632, __extension__ __PRETTY_FUNCTION__
))
; 4633 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4634 VK_PRValue, nullptr, CCK) 4635 .get(); 4636 } 4637 4638 // Materialize a temporary if we're implicitly converting to a reference 4639 // type. This is not required by the C++ rules but is necessary to maintain 4640 // AST invariants. 4641 if (ToType->isReferenceType() && From->isPRValue()) { 4642 ExprResult Res = TemporaryMaterializationConversion(From); 4643 if (Res.isInvalid()) 4644 return ExprError(); 4645 From = Res.get(); 4646 } 4647 4648 // If this conversion sequence succeeded and involved implicitly converting a 4649 // _Nullable type to a _Nonnull one, complain. 4650 if (!isCast(CCK)) 4651 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4652 From->getBeginLoc()); 4653 4654 return From; 4655} 4656 4657/// Check the completeness of a type in a unary type trait. 4658/// 4659/// If the particular type trait requires a complete type, tries to complete 4660/// it. If completing the type fails, a diagnostic is emitted and false 4661/// returned. If completing the type succeeds or no completion was required, 4662/// returns true. 4663static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4664 SourceLocation Loc, 4665 QualType ArgTy) { 4666 // C++0x [meta.unary.prop]p3: 4667 // For all of the class templates X declared in this Clause, instantiating 4668 // that template with a template argument that is a class template 4669 // specialization may result in the implicit instantiation of the template 4670 // argument if and only if the semantics of X require that the argument 4671 // must be a complete type. 4672 // We apply this rule to all the type trait expressions used to implement 4673 // these class templates. We also try to follow any GCC documented behavior 4674 // in these expressions to ensure portability of standard libraries. 4675 switch (UTT) { 4676 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4676)
; 4677 // is_complete_type somewhat obviously cannot require a complete type. 4678 case UTT_IsCompleteType: 4679 // Fall-through 4680 4681 // These traits are modeled on the type predicates in C++0x 4682 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4683 // requiring a complete type, as whether or not they return true cannot be 4684 // impacted by the completeness of the type. 4685 case UTT_IsVoid: 4686 case UTT_IsIntegral: 4687 case UTT_IsFloatingPoint: 4688 case UTT_IsArray: 4689 case UTT_IsPointer: 4690 case UTT_IsLvalueReference: 4691 case UTT_IsRvalueReference: 4692 case UTT_IsMemberFunctionPointer: 4693 case UTT_IsMemberObjectPointer: 4694 case UTT_IsEnum: 4695 case UTT_IsUnion: 4696 case UTT_IsClass: 4697 case UTT_IsFunction: 4698 case UTT_IsReference: 4699 case UTT_IsArithmetic: 4700 case UTT_IsFundamental: 4701 case UTT_IsObject: 4702 case UTT_IsScalar: 4703 case UTT_IsCompound: 4704 case UTT_IsMemberPointer: 4705 // Fall-through 4706 4707 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4708 // which requires some of its traits to have the complete type. However, 4709 // the completeness of the type cannot impact these traits' semantics, and 4710 // so they don't require it. This matches the comments on these traits in 4711 // Table 49. 4712 case UTT_IsConst: 4713 case UTT_IsVolatile: 4714 case UTT_IsSigned: 4715 case UTT_IsUnsigned: 4716 4717 // This type trait always returns false, checking the type is moot. 4718 case UTT_IsInterfaceClass: 4719 return true; 4720 4721 // C++14 [meta.unary.prop]: 4722 // If T is a non-union class type, T shall be a complete type. 4723 case UTT_IsEmpty: 4724 case UTT_IsPolymorphic: 4725 case UTT_IsAbstract: 4726 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4727 if (!RD->isUnion()) 4728 return !S.RequireCompleteType( 4729 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4730 return true; 4731 4732 // C++14 [meta.unary.prop]: 4733 // If T is a class type, T shall be a complete type. 4734 case UTT_IsFinal: 4735 case UTT_IsSealed: 4736 if (ArgTy->getAsCXXRecordDecl()) 4737 return !S.RequireCompleteType( 4738 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4739 return true; 4740 4741 // C++1z [meta.unary.prop]: 4742 // remove_all_extents_t<T> shall be a complete type or cv void. 4743 case UTT_IsAggregate: 4744 case UTT_IsTrivial: 4745 case UTT_IsTriviallyCopyable: 4746 case UTT_IsStandardLayout: 4747 case UTT_IsPOD: 4748 case UTT_IsLiteral: 4749 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4750 // or an array of unknown bound. But GCC actually imposes the same constraints 4751 // as above. 4752 case UTT_HasNothrowAssign: 4753 case UTT_HasNothrowMoveAssign: 4754 case UTT_HasNothrowConstructor: 4755 case UTT_HasNothrowCopy: 4756 case UTT_HasTrivialAssign: 4757 case UTT_HasTrivialMoveAssign: 4758 case UTT_HasTrivialDefaultConstructor: 4759 case UTT_HasTrivialMoveConstructor: 4760 case UTT_HasTrivialCopy: 4761 case UTT_HasTrivialDestructor: 4762 case UTT_HasVirtualDestructor: 4763 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4764 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 4765 4766 // C++1z [meta.unary.prop]: 4767 // T shall be a complete type, cv void, or an array of unknown bound. 4768 case UTT_IsDestructible: 4769 case UTT_IsNothrowDestructible: 4770 case UTT_IsTriviallyDestructible: 4771 case UTT_HasUniqueObjectRepresentations: 4772 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4773 return true; 4774 4775 return !S.RequireCompleteType( 4776 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4777 } 4778} 4779 4780static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4781 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4782 bool (CXXRecordDecl::*HasTrivial)() const, 4783 bool (CXXRecordDecl::*HasNonTrivial)() const, 4784 bool (CXXMethodDecl::*IsDesiredOp)() const) 4785{ 4786 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4787 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4788 return true; 4789 4790 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4791 DeclarationNameInfo NameInfo(Name, KeyLoc); 4792 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4793 if (Self.LookupQualifiedName(Res, RD)) { 4794 bool FoundOperator = false; 4795 Res.suppressDiagnostics(); 4796 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4797 Op != OpEnd; ++Op) { 4798 if (isa<FunctionTemplateDecl>(*Op)) 4799 continue; 4800 4801 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4802 if((Operator->*IsDesiredOp)()) { 4803 FoundOperator = true; 4804 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4805 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4806 if (!CPT || !CPT->isNothrow()) 4807 return false; 4808 } 4809 } 4810 return FoundOperator; 4811 } 4812 return false; 4813} 4814 4815static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4816 SourceLocation KeyLoc, QualType T) { 4817 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4817, __extension__ __PRETTY_FUNCTION__
))
; 4818 4819 ASTContext &C = Self.Context; 4820 switch(UTT) { 4821 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4821)
; 4822 // Type trait expressions corresponding to the primary type category 4823 // predicates in C++0x [meta.unary.cat]. 4824 case UTT_IsVoid: 4825 return T->isVoidType(); 4826 case UTT_IsIntegral: 4827 return T->isIntegralType(C); 4828 case UTT_IsFloatingPoint: 4829 return T->isFloatingType(); 4830 case UTT_IsArray: 4831 return T->isArrayType(); 4832 case UTT_IsPointer: 4833 return T->isAnyPointerType(); 4834 case UTT_IsLvalueReference: 4835 return T->isLValueReferenceType(); 4836 case UTT_IsRvalueReference: 4837 return T->isRValueReferenceType(); 4838 case UTT_IsMemberFunctionPointer: 4839 return T->isMemberFunctionPointerType(); 4840 case UTT_IsMemberObjectPointer: 4841 return T->isMemberDataPointerType(); 4842 case UTT_IsEnum: 4843 return T->isEnumeralType(); 4844 case UTT_IsUnion: 4845 return T->isUnionType(); 4846 case UTT_IsClass: 4847 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4848 case UTT_IsFunction: 4849 return T->isFunctionType(); 4850 4851 // Type trait expressions which correspond to the convenient composition 4852 // predicates in C++0x [meta.unary.comp]. 4853 case UTT_IsReference: 4854 return T->isReferenceType(); 4855 case UTT_IsArithmetic: 4856 return T->isArithmeticType() && !T->isEnumeralType(); 4857 case UTT_IsFundamental: 4858 return T->isFundamentalType(); 4859 case UTT_IsObject: 4860 return T->isObjectType(); 4861 case UTT_IsScalar: 4862 // Note: semantic analysis depends on Objective-C lifetime types to be 4863 // considered scalar types. However, such types do not actually behave 4864 // like scalar types at run time (since they may require retain/release 4865 // operations), so we report them as non-scalar. 4866 if (T->isObjCLifetimeType()) { 4867 switch (T.getObjCLifetime()) { 4868 case Qualifiers::OCL_None: 4869 case Qualifiers::OCL_ExplicitNone: 4870 return true; 4871 4872 case Qualifiers::OCL_Strong: 4873 case Qualifiers::OCL_Weak: 4874 case Qualifiers::OCL_Autoreleasing: 4875 return false; 4876 } 4877 } 4878 4879 return T->isScalarType(); 4880 case UTT_IsCompound: 4881 return T->isCompoundType(); 4882 case UTT_IsMemberPointer: 4883 return T->isMemberPointerType(); 4884 4885 // Type trait expressions which correspond to the type property predicates 4886 // in C++0x [meta.unary.prop]. 4887 case UTT_IsConst: 4888 return T.isConstQualified(); 4889 case UTT_IsVolatile: 4890 return T.isVolatileQualified(); 4891 case UTT_IsTrivial: 4892 return T.isTrivialType(C); 4893 case UTT_IsTriviallyCopyable: 4894 return T.isTriviallyCopyableType(C); 4895 case UTT_IsStandardLayout: 4896 return T->isStandardLayoutType(); 4897 case UTT_IsPOD: 4898 return T.isPODType(C); 4899 case UTT_IsLiteral: 4900 return T->isLiteralType(C); 4901 case UTT_IsEmpty: 4902 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4903 return !RD->isUnion() && RD->isEmpty(); 4904 return false; 4905 case UTT_IsPolymorphic: 4906 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4907 return !RD->isUnion() && RD->isPolymorphic(); 4908 return false; 4909 case UTT_IsAbstract: 4910 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4911 return !RD->isUnion() && RD->isAbstract(); 4912 return false; 4913 case UTT_IsAggregate: 4914 // Report vector extensions and complex types as aggregates because they 4915 // support aggregate initialization. GCC mirrors this behavior for vectors 4916 // but not _Complex. 4917 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4918 T->isAnyComplexType(); 4919 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4920 // even then only when it is used with the 'interface struct ...' syntax 4921 // Clang doesn't support /CLR which makes this type trait moot. 4922 case UTT_IsInterfaceClass: 4923 return false; 4924 case UTT_IsFinal: 4925 case UTT_IsSealed: 4926 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4927 return RD->hasAttr<FinalAttr>(); 4928 return false; 4929 case UTT_IsSigned: 4930 // Enum types should always return false. 4931 // Floating points should always return true. 4932 return T->isFloatingType() || 4933 (T->isSignedIntegerType() && !T->isEnumeralType()); 4934 case UTT_IsUnsigned: 4935 // Enum types should always return false. 4936 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4937 4938 // Type trait expressions which query classes regarding their construction, 4939 // destruction, and copying. Rather than being based directly on the 4940 // related type predicates in the standard, they are specified by both 4941 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4942 // specifications. 4943 // 4944 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4945 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4946 // 4947 // Note that these builtins do not behave as documented in g++: if a class 4948 // has both a trivial and a non-trivial special member of a particular kind, 4949 // they return false! For now, we emulate this behavior. 4950 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4951 // does not correctly compute triviality in the presence of multiple special 4952 // members of the same kind. Revisit this once the g++ bug is fixed. 4953 case UTT_HasTrivialDefaultConstructor: 4954 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4955 // If __is_pod (type) is true then the trait is true, else if type is 4956 // a cv class or union type (or array thereof) with a trivial default 4957 // constructor ([class.ctor]) then the trait is true, else it is false. 4958 if (T.isPODType(C)) 4959 return true; 4960 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4961 return RD->hasTrivialDefaultConstructor() && 4962 !RD->hasNonTrivialDefaultConstructor(); 4963 return false; 4964 case UTT_HasTrivialMoveConstructor: 4965 // This trait is implemented by MSVC 2012 and needed to parse the 4966 // standard library headers. Specifically this is used as the logic 4967 // behind std::is_trivially_move_constructible (20.9.4.3). 4968 if (T.isPODType(C)) 4969 return true; 4970 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4971 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4972 return false; 4973 case UTT_HasTrivialCopy: 4974 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4975 // If __is_pod (type) is true or type is a reference type then 4976 // the trait is true, else if type is a cv class or union type 4977 // with a trivial copy constructor ([class.copy]) then the trait 4978 // is true, else it is false. 4979 if (T.isPODType(C) || T->isReferenceType()) 4980 return true; 4981 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4982 return RD->hasTrivialCopyConstructor() && 4983 !RD->hasNonTrivialCopyConstructor(); 4984 return false; 4985 case UTT_HasTrivialMoveAssign: 4986 // This trait is implemented by MSVC 2012 and needed to parse the 4987 // standard library headers. Specifically it is used as the logic 4988 // behind std::is_trivially_move_assignable (20.9.4.3) 4989 if (T.isPODType(C)) 4990 return true; 4991 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4992 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4993 return false; 4994 case UTT_HasTrivialAssign: 4995 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4996 // If type is const qualified or is a reference type then the 4997 // trait is false. Otherwise if __is_pod (type) is true then the 4998 // trait is true, else if type is a cv class or union type with 4999 // a trivial copy assignment ([class.copy]) then the trait is 5000 // true, else it is false. 5001 // Note: the const and reference restrictions are interesting, 5002 // given that const and reference members don't prevent a class 5003 // from having a trivial copy assignment operator (but do cause 5004 // errors if the copy assignment operator is actually used, q.v. 5005 // [class.copy]p12). 5006 5007 if (T.isConstQualified()) 5008 return false; 5009 if (T.isPODType(C)) 5010 return true; 5011 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5012 return RD->hasTrivialCopyAssignment() && 5013 !RD->hasNonTrivialCopyAssignment(); 5014 return false; 5015 case UTT_IsDestructible: 5016 case UTT_IsTriviallyDestructible: 5017 case UTT_IsNothrowDestructible: 5018 // C++14 [meta.unary.prop]: 5019 // For reference types, is_destructible<T>::value is true. 5020 if (T->isReferenceType()) 5021 return true; 5022 5023 // Objective-C++ ARC: autorelease types don't require destruction. 5024 if (T->isObjCLifetimeType() && 5025 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5026 return true; 5027 5028 // C++14 [meta.unary.prop]: 5029 // For incomplete types and function types, is_destructible<T>::value is 5030 // false. 5031 if (T->isIncompleteType() || T->isFunctionType()) 5032 return false; 5033 5034 // A type that requires destruction (via a non-trivial destructor or ARC 5035 // lifetime semantics) is not trivially-destructible. 5036 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5037 return false; 5038 5039 // C++14 [meta.unary.prop]: 5040 // For object types and given U equal to remove_all_extents_t<T>, if the 5041 // expression std::declval<U&>().~U() is well-formed when treated as an 5042 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5043 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5044 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5045 if (!Destructor) 5046 return false; 5047 // C++14 [dcl.fct.def.delete]p2: 5048 // A program that refers to a deleted function implicitly or 5049 // explicitly, other than to declare it, is ill-formed. 5050 if (Destructor->isDeleted()) 5051 return false; 5052 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5053 return false; 5054 if (UTT == UTT_IsNothrowDestructible) { 5055 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5056 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5057 if (!CPT || !CPT->isNothrow()) 5058 return false; 5059 } 5060 } 5061 return true; 5062 5063 case UTT_HasTrivialDestructor: 5064 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5065 // If __is_pod (type) is true or type is a reference type 5066 // then the trait is true, else if type is a cv class or union 5067 // type (or array thereof) with a trivial destructor 5068 // ([class.dtor]) then the trait is true, else it is 5069 // false. 5070 if (T.isPODType(C) || T->isReferenceType()) 5071 return true; 5072 5073 // Objective-C++ ARC: autorelease types don't require destruction. 5074 if (T->isObjCLifetimeType() && 5075 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5076 return true; 5077 5078 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5079 return RD->hasTrivialDestructor(); 5080 return false; 5081 // TODO: Propagate nothrowness for implicitly declared special members. 5082 case UTT_HasNothrowAssign: 5083 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5084 // If type is const qualified or is a reference type then the 5085 // trait is false. Otherwise if __has_trivial_assign (type) 5086 // is true then the trait is true, else if type is a cv class 5087 // or union type with copy assignment operators that are known 5088 // not to throw an exception then the trait is true, else it is 5089 // false. 5090 if (C.getBaseElementType(T).isConstQualified()) 5091 return false; 5092 if (T->isReferenceType()) 5093 return false; 5094 if (T.isPODType(C) || T->isObjCLifetimeType()) 5095 return true; 5096 5097 if (const RecordType *RT = T->getAs<RecordType>()) 5098 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5099 &CXXRecordDecl::hasTrivialCopyAssignment, 5100 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5101 &CXXMethodDecl::isCopyAssignmentOperator); 5102 return false; 5103 case UTT_HasNothrowMoveAssign: 5104 // This trait is implemented by MSVC 2012 and needed to parse the 5105 // standard library headers. Specifically this is used as the logic 5106 // behind std::is_nothrow_move_assignable (20.9.4.3). 5107 if (T.isPODType(C)) 5108 return true; 5109 5110 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5111 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5112 &CXXRecordDecl::hasTrivialMoveAssignment, 5113 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5114 &CXXMethodDecl::isMoveAssignmentOperator); 5115 return false; 5116 case UTT_HasNothrowCopy: 5117 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5118 // If __has_trivial_copy (type) is true then the trait is true, else 5119 // if type is a cv class or union type with copy constructors that are 5120 // known not to throw an exception then the trait is true, else it is 5121 // false. 5122 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5123 return true; 5124 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5125 if (RD->hasTrivialCopyConstructor() && 5126 !RD->hasNonTrivialCopyConstructor()) 5127 return true; 5128 5129 bool FoundConstructor = false; 5130 unsigned FoundTQs; 5131 for (const auto *ND : Self.LookupConstructors(RD)) { 5132 // A template constructor is never a copy constructor. 5133 // FIXME: However, it may actually be selected at the actual overload 5134 // resolution point. 5135 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5136 continue; 5137 // UsingDecl itself is not a constructor 5138 if (isa<UsingDecl>(ND)) 5139 continue; 5140 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5141 if (Constructor->isCopyConstructor(FoundTQs)) { 5142 FoundConstructor = true; 5143 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5144 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5145 if (!CPT) 5146 return false; 5147 // TODO: check whether evaluating default arguments can throw. 5148 // For now, we'll be conservative and assume that they can throw. 5149 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5150 return false; 5151 } 5152 } 5153 5154 return FoundConstructor; 5155 } 5156 return false; 5157 case UTT_HasNothrowConstructor: 5158 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5159 // If __has_trivial_constructor (type) is true then the trait is 5160 // true, else if type is a cv class or union type (or array 5161 // thereof) with a default constructor that is known not to 5162 // throw an exception then the trait is true, else it is false. 5163 if (T.isPODType(C) || T->isObjCLifetimeType()) 5164 return true; 5165 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5166 if (RD->hasTrivialDefaultConstructor() && 5167 !RD->hasNonTrivialDefaultConstructor()) 5168 return true; 5169 5170 bool FoundConstructor = false; 5171 for (const auto *ND : Self.LookupConstructors(RD)) { 5172 // FIXME: In C++0x, a constructor template can be a default constructor. 5173 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5174 continue; 5175 // UsingDecl itself is not a constructor 5176 if (isa<UsingDecl>(ND)) 5177 continue; 5178 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5179 if (Constructor->isDefaultConstructor()) { 5180 FoundConstructor = true; 5181 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5182 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5183 if (!CPT) 5184 return false; 5185 // FIXME: check whether evaluating default arguments can throw. 5186 // For now, we'll be conservative and assume that they can throw. 5187 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5188 return false; 5189 } 5190 } 5191 return FoundConstructor; 5192 } 5193 return false; 5194 case UTT_HasVirtualDestructor: 5195 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5196 // If type is a class type with a virtual destructor ([class.dtor]) 5197 // then the trait is true, else it is false. 5198 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5199 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5200 return Destructor->isVirtual(); 5201 return false; 5202 5203 // These type trait expressions are modeled on the specifications for the 5204 // Embarcadero C++0x type trait functions: 5205 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5206 case UTT_IsCompleteType: 5207 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5208 // Returns True if and only if T is a complete type at the point of the 5209 // function call. 5210 return !T->isIncompleteType(); 5211 case UTT_HasUniqueObjectRepresentations: 5212 return C.hasUniqueObjectRepresentations(T); 5213 } 5214} 5215 5216static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5217 QualType RhsT, SourceLocation KeyLoc); 5218 5219static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5220 ArrayRef<TypeSourceInfo *> Args, 5221 SourceLocation RParenLoc) { 5222 if (Kind <= UTT_Last) 5223 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5224 5225 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5226 // traits to avoid duplication. 5227 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5228 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5229 Args[1]->getType(), RParenLoc); 5230 5231 switch (Kind) { 5232 case clang::BTT_ReferenceBindsToTemporary: 5233 case clang::TT_IsConstructible: 5234 case clang::TT_IsNothrowConstructible: 5235 case clang::TT_IsTriviallyConstructible: { 5236 // C++11 [meta.unary.prop]: 5237 // is_trivially_constructible is defined as: 5238 // 5239 // is_constructible<T, Args...>::value is true and the variable 5240 // definition for is_constructible, as defined below, is known to call 5241 // no operation that is not trivial. 5242 // 5243 // The predicate condition for a template specialization 5244 // is_constructible<T, Args...> shall be satisfied if and only if the 5245 // following variable definition would be well-formed for some invented 5246 // variable t: 5247 // 5248 // T t(create<Args>()...); 5249 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5249, __extension__
__PRETTY_FUNCTION__))
; 5250 5251 // Precondition: T and all types in the parameter pack Args shall be 5252 // complete types, (possibly cv-qualified) void, or arrays of 5253 // unknown bound. 5254 for (const auto *TSI : Args) { 5255 QualType ArgTy = TSI->getType(); 5256 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5257 continue; 5258 5259 if (S.RequireCompleteType(KWLoc, ArgTy, 5260 diag::err_incomplete_type_used_in_type_trait_expr)) 5261 return false; 5262 } 5263 5264 // Make sure the first argument is not incomplete nor a function type. 5265 QualType T = Args[0]->getType(); 5266 if (T->isIncompleteType() || T->isFunctionType()) 5267 return false; 5268 5269 // Make sure the first argument is not an abstract type. 5270 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5271 if (RD && RD->isAbstract()) 5272 return false; 5273 5274 llvm::BumpPtrAllocator OpaqueExprAllocator; 5275 SmallVector<Expr *, 2> ArgExprs; 5276 ArgExprs.reserve(Args.size() - 1); 5277 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5278 QualType ArgTy = Args[I]->getType(); 5279 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5280 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5281 ArgExprs.push_back( 5282 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5283 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5284 ArgTy.getNonLValueExprType(S.Context), 5285 Expr::getValueKindForType(ArgTy))); 5286 } 5287 5288 // Perform the initialization in an unevaluated context within a SFINAE 5289 // trap at translation unit scope. 5290 EnterExpressionEvaluationContext Unevaluated( 5291 S, Sema::ExpressionEvaluationContext::Unevaluated); 5292 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5293 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5294 InitializedEntity To( 5295 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5296 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5297 RParenLoc)); 5298 InitializationSequence Init(S, To, InitKind, ArgExprs); 5299 if (Init.Failed()) 5300 return false; 5301 5302 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5303 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5304 return false; 5305 5306 if (Kind == clang::TT_IsConstructible) 5307 return true; 5308 5309 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5310 if (!T->isReferenceType()) 5311 return false; 5312 5313 return !Init.isDirectReferenceBinding(); 5314 } 5315 5316 if (Kind == clang::TT_IsNothrowConstructible) 5317 return S.canThrow(Result.get()) == CT_Cannot; 5318 5319 if (Kind == clang::TT_IsTriviallyConstructible) { 5320 // Under Objective-C ARC and Weak, if the destination has non-trivial 5321 // Objective-C lifetime, this is a non-trivial construction. 5322 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5323 return false; 5324 5325 // The initialization succeeded; now make sure there are no non-trivial 5326 // calls. 5327 return !Result.get()->hasNonTrivialCall(S.Context); 5328 } 5329 5330 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5330)
; 5331 return false; 5332 } 5333 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5333)
; 5334 } 5335 5336 return false; 5337} 5338 5339ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5340 ArrayRef<TypeSourceInfo *> Args, 5341 SourceLocation RParenLoc) { 5342 QualType ResultType = Context.getLogicalOperationType(); 5343 5344 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5345 *this, Kind, KWLoc, Args[0]->getType())) 5346 return ExprError(); 5347 5348 bool Dependent = false; 5349 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5350 if (Args[I]->getType()->isDependentType()) { 5351 Dependent = true; 5352 break; 5353 } 5354 } 5355 5356 bool Result = false; 5357 if (!Dependent) 5358 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5359 5360 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5361 RParenLoc, Result); 5362} 5363 5364ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5365 ArrayRef<ParsedType> Args, 5366 SourceLocation RParenLoc) { 5367 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5368 ConvertedArgs.reserve(Args.size()); 5369 5370 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5371 TypeSourceInfo *TInfo; 5372 QualType T = GetTypeFromParser(Args[I], &TInfo); 5373 if (!TInfo) 5374 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5375 5376 ConvertedArgs.push_back(TInfo); 5377 } 5378 5379 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5380} 5381 5382static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5383 QualType RhsT, SourceLocation KeyLoc) { 5384 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5385, __extension__ __PRETTY_FUNCTION__
))
5385 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5385, __extension__ __PRETTY_FUNCTION__
))
; 5386 5387 switch(BTT) { 5388 case BTT_IsBaseOf: { 5389 // C++0x [meta.rel]p2 5390 // Base is a base class of Derived without regard to cv-qualifiers or 5391 // Base and Derived are not unions and name the same class type without 5392 // regard to cv-qualifiers. 5393 5394 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5395 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5396 if (!rhsRecord || !lhsRecord) { 5397 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5398 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5399 if (!LHSObjTy || !RHSObjTy) 5400 return false; 5401 5402 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5403 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5404 if (!BaseInterface || !DerivedInterface) 5405 return false; 5406 5407 if (Self.RequireCompleteType( 5408 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5409 return false; 5410 5411 return BaseInterface->isSuperClassOf(DerivedInterface); 5412 } 5413 5414 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5415, __extension__ __PRETTY_FUNCTION__
))
5415 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5415, __extension__ __PRETTY_FUNCTION__
))
; 5416 5417 // Unions are never base classes, and never have base classes. 5418 // It doesn't matter if they are complete or not. See PR#41843 5419 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5420 return false; 5421 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5422 return false; 5423 5424 if (lhsRecord == rhsRecord) 5425 return true; 5426 5427 // C++0x [meta.rel]p2: 5428 // If Base and Derived are class types and are different types 5429 // (ignoring possible cv-qualifiers) then Derived shall be a 5430 // complete type. 5431 if (Self.RequireCompleteType(KeyLoc, RhsT, 5432 diag::err_incomplete_type_used_in_type_trait_expr)) 5433 return false; 5434 5435 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5436 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5437 } 5438 case BTT_IsSame: 5439 return Self.Context.hasSameType(LhsT, RhsT); 5440 case BTT_TypeCompatible: { 5441 // GCC ignores cv-qualifiers on arrays for this builtin. 5442 Qualifiers LhsQuals, RhsQuals; 5443 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5444 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5445 return Self.Context.typesAreCompatible(Lhs, Rhs); 5446 } 5447 case BTT_IsConvertible: 5448 case BTT_IsConvertibleTo: { 5449 // C++0x [meta.rel]p4: 5450 // Given the following function prototype: 5451 // 5452 // template <class T> 5453 // typename add_rvalue_reference<T>::type create(); 5454 // 5455 // the predicate condition for a template specialization 5456 // is_convertible<From, To> shall be satisfied if and only if 5457 // the return expression in the following code would be 5458 // well-formed, including any implicit conversions to the return 5459 // type of the function: 5460 // 5461 // To test() { 5462 // return create<From>(); 5463 // } 5464 // 5465 // Access checking is performed as if in a context unrelated to To and 5466 // From. Only the validity of the immediate context of the expression 5467 // of the return-statement (including conversions to the return type) 5468 // is considered. 5469 // 5470 // We model the initialization as a copy-initialization of a temporary 5471 // of the appropriate type, which for this expression is identical to the 5472 // return statement (since NRVO doesn't apply). 5473 5474 // Functions aren't allowed to return function or array types. 5475 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5476 return false; 5477 5478 // A return statement in a void function must have void type. 5479 if (RhsT->isVoidType()) 5480 return LhsT->isVoidType(); 5481 5482 // A function definition requires a complete, non-abstract return type. 5483 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5484 return false; 5485 5486 // Compute the result of add_rvalue_reference. 5487 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5488 LhsT = Self.Context.getRValueReferenceType(LhsT); 5489 5490 // Build a fake source and destination for initialization. 5491 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5492 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5493 Expr::getValueKindForType(LhsT)); 5494 Expr *FromPtr = &From; 5495 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5496 SourceLocation())); 5497 5498 // Perform the initialization in an unevaluated context within a SFINAE 5499 // trap at translation unit scope. 5500 EnterExpressionEvaluationContext Unevaluated( 5501 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5502 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5503 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5504 InitializationSequence Init(Self, To, Kind, FromPtr); 5505 if (Init.Failed()) 5506 return false; 5507 5508 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5509 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5510 } 5511 5512 case BTT_IsAssignable: 5513 case BTT_IsNothrowAssignable: 5514 case BTT_IsTriviallyAssignable: { 5515 // C++11 [meta.unary.prop]p3: 5516 // is_trivially_assignable is defined as: 5517 // is_assignable<T, U>::value is true and the assignment, as defined by 5518 // is_assignable, is known to call no operation that is not trivial 5519 // 5520 // is_assignable is defined as: 5521 // The expression declval<T>() = declval<U>() is well-formed when 5522 // treated as an unevaluated operand (Clause 5). 5523 // 5524 // For both, T and U shall be complete types, (possibly cv-qualified) 5525 // void, or arrays of unknown bound. 5526 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5527 Self.RequireCompleteType(KeyLoc, LhsT, 5528 diag::err_incomplete_type_used_in_type_trait_expr)) 5529 return false; 5530 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5531 Self.RequireCompleteType(KeyLoc, RhsT, 5532 diag::err_incomplete_type_used_in_type_trait_expr)) 5533 return false; 5534 5535 // cv void is never assignable. 5536 if (LhsT->isVoidType() || RhsT->isVoidType()) 5537 return false; 5538 5539 // Build expressions that emulate the effect of declval<T>() and 5540 // declval<U>(). 5541 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5542 LhsT = Self.Context.getRValueReferenceType(LhsT); 5543 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5544 RhsT = Self.Context.getRValueReferenceType(RhsT); 5545 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5546 Expr::getValueKindForType(LhsT)); 5547 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5548 Expr::getValueKindForType(RhsT)); 5549 5550 // Attempt the assignment in an unevaluated context within a SFINAE 5551 // trap at translation unit scope. 5552 EnterExpressionEvaluationContext Unevaluated( 5553 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5554 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5555 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5556 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5557 &Rhs); 5558 if (Result.isInvalid()) 5559 return false; 5560 5561 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5562 Self.CheckUnusedVolatileAssignment(Result.get()); 5563 5564 if (SFINAE.hasErrorOccurred()) 5565 return false; 5566 5567 if (BTT == BTT_IsAssignable) 5568 return true; 5569 5570 if (BTT == BTT_IsNothrowAssignable) 5571 return Self.canThrow(Result.get()) == CT_Cannot; 5572 5573 if (BTT == BTT_IsTriviallyAssignable) { 5574 // Under Objective-C ARC and Weak, if the destination has non-trivial 5575 // Objective-C lifetime, this is a non-trivial assignment. 5576 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5577 return false; 5578 5579 return !Result.get()->hasNonTrivialCall(Self.Context); 5580 } 5581 5582 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5582)
; 5583 return false; 5584 } 5585 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5585)
; 5586 } 5587 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5587)
; 5588} 5589 5590ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5591 SourceLocation KWLoc, 5592 ParsedType Ty, 5593 Expr* DimExpr, 5594 SourceLocation RParen) { 5595 TypeSourceInfo *TSInfo; 5596 QualType T = GetTypeFromParser(Ty, &TSInfo); 5597 if (!TSInfo) 5598 TSInfo = Context.getTrivialTypeSourceInfo(T); 5599 5600 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5601} 5602 5603static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5604 QualType T, Expr *DimExpr, 5605 SourceLocation KeyLoc) { 5606 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5606, __extension__ __PRETTY_FUNCTION__
))
; 5607 5608 switch(ATT) { 5609 case ATT_ArrayRank: 5610 if (T->isArrayType()) { 5611 unsigned Dim = 0; 5612 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5613 ++Dim; 5614 T = AT->getElementType(); 5615 } 5616 return Dim; 5617 } 5618 return 0; 5619 5620 case ATT_ArrayExtent: { 5621 llvm::APSInt Value; 5622 uint64_t Dim; 5623 if (Self.VerifyIntegerConstantExpression( 5624 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5625 .isInvalid()) 5626 return 0; 5627 if (Value.isSigned() && Value.isNegative()) { 5628 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5629 << DimExpr->getSourceRange(); 5630 return 0; 5631 } 5632 Dim = Value.getLimitedValue(); 5633 5634 if (T->isArrayType()) { 5635 unsigned D = 0; 5636 bool Matched = false; 5637 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5638 if (Dim == D) { 5639 Matched = true; 5640 break; 5641 } 5642 ++D; 5643 T = AT->getElementType(); 5644 } 5645 5646 if (Matched && T->isArrayType()) { 5647 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5648 return CAT->getSize().getLimitedValue(); 5649 } 5650 } 5651 return 0; 5652 } 5653 } 5654 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5654)
; 5655} 5656 5657ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5658 SourceLocation KWLoc, 5659 TypeSourceInfo *TSInfo, 5660 Expr* DimExpr, 5661 SourceLocation RParen) { 5662 QualType T = TSInfo->getType(); 5663 5664 // FIXME: This should likely be tracked as an APInt to remove any host 5665 // assumptions about the width of size_t on the target. 5666 uint64_t Value = 0; 5667 if (!T->isDependentType()) 5668 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5669 5670 // While the specification for these traits from the Embarcadero C++ 5671 // compiler's documentation says the return type is 'unsigned int', Clang 5672 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5673 // compiler, there is no difference. On several other platforms this is an 5674 // important distinction. 5675 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5676 RParen, Context.getSizeType()); 5677} 5678 5679ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5680 SourceLocation KWLoc, 5681 Expr *Queried, 5682 SourceLocation RParen) { 5683 // If error parsing the expression, ignore. 5684 if (!Queried) 5685 return ExprError(); 5686 5687 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5688 5689 return Result; 5690} 5691 5692static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5693 switch (ET) { 5694 case ET_IsLValueExpr: return E->isLValue(); 5695 case ET_IsRValueExpr: 5696 return E->isPRValue(); 5697 } 5698 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5698)
; 5699} 5700 5701ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5702 SourceLocation KWLoc, 5703 Expr *Queried, 5704 SourceLocation RParen) { 5705 if (Queried->isTypeDependent()) { 5706 // Delay type-checking for type-dependent expressions. 5707 } else if (Queried->getType()->isPlaceholderType()) { 5708 ExprResult PE = CheckPlaceholderExpr(Queried); 5709 if (PE.isInvalid()) return ExprError(); 5710 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5711 } 5712 5713 bool Value = EvaluateExpressionTrait(ET, Queried); 5714 5715 return new (Context) 5716 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5717} 5718 5719QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5720 ExprValueKind &VK, 5721 SourceLocation Loc, 5722 bool isIndirect) { 5723 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
5724 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
5725 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
; 5726 5727 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5728 // temporary materialization conversion otherwise. 5729 if (isIndirect) 5730 LHS = DefaultLvalueConversion(LHS.get()); 5731 else if (LHS.get()->isPRValue()) 5732 LHS = TemporaryMaterializationConversion(LHS.get()); 5733 if (LHS.isInvalid()) 5734 return QualType(); 5735 5736 // The RHS always undergoes lvalue conversions. 5737 RHS = DefaultLvalueConversion(RHS.get()); 5738 if (RHS.isInvalid()) return QualType(); 5739 5740 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5741 // C++ 5.5p2 5742 // The binary operator .* [p3: ->*] binds its second operand, which shall 5743 // be of type "pointer to member of T" (where T is a completely-defined 5744 // class type) [...] 5745 QualType RHSType = RHS.get()->getType(); 5746 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5747 if (!MemPtr) { 5748 Diag(Loc, diag::err_bad_memptr_rhs) 5749 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5750 return QualType(); 5751 } 5752 5753 QualType Class(MemPtr->getClass(), 0); 5754 5755 // No