Bug Summary

File:clang/lib/Sema/SemaExprObjC.cpp
Warning:line 1647, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp

1//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective-C expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprObjC.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/TypeLoc.h"
18#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
19#include "clang/Basic/Builtins.h"
20#include "clang/Edit/Commit.h"
21#include "clang/Edit/Rewriters.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ConvertUTF.h"
30
31using namespace clang;
32using namespace sema;
33using llvm::makeArrayRef;
34
35ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
36 ArrayRef<Expr *> Strings) {
37 // Most ObjC strings are formed out of a single piece. However, we *can*
38 // have strings formed out of multiple @ strings with multiple pptokens in
39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
40 // StringLiteral for ObjCStringLiteral to hold onto.
41 StringLiteral *S = cast<StringLiteral>(Strings[0]);
42
43 // If we have a multi-part string, merge it all together.
44 if (Strings.size() != 1) {
45 // Concatenate objc strings.
46 SmallString<128> StrBuf;
47 SmallVector<SourceLocation, 8> StrLocs;
48
49 for (Expr *E : Strings) {
50 S = cast<StringLiteral>(E);
51
52 // ObjC strings can't be wide or UTF.
53 if (!S->isAscii()) {
54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
55 << S->getSourceRange();
56 return true;
57 }
58
59 // Append the string.
60 StrBuf += S->getString();
61
62 // Get the locations of the string tokens.
63 StrLocs.append(S->tokloc_begin(), S->tokloc_end());
64 }
65
66 // Create the aggregate string with the appropriate content and location
67 // information.
68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
69 assert(CAT && "String literal not of constant array type!")((CAT && "String literal not of constant array type!"
) ? static_cast<void> (0) : __assert_fail ("CAT && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 69, __PRETTY_FUNCTION__))
;
70 QualType StrTy = Context.getConstantArrayType(
71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr,
72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers());
73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii,
74 /*Pascal=*/false, StrTy, &StrLocs[0],
75 StrLocs.size());
76 }
77
78 return BuildObjCStringLiteral(AtLocs[0], S);
79}
80
81ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
82 // Verify that this composite string is acceptable for ObjC strings.
83 if (CheckObjCString(S))
84 return true;
85
86 // Initialize the constant string interface lazily. This assumes
87 // the NSString interface is seen in this translation unit. Note: We
88 // don't use NSConstantString, since the runtime team considers this
89 // interface private (even though it appears in the header files).
90 QualType Ty = Context.getObjCConstantStringInterface();
91 if (!Ty.isNull()) {
92 Ty = Context.getObjCObjectPointerType(Ty);
93 } else if (getLangOpts().NoConstantCFStrings) {
94 IdentifierInfo *NSIdent=nullptr;
95 std::string StringClass(getLangOpts().ObjCConstantStringClass);
96
97 if (StringClass.empty())
98 NSIdent = &Context.Idents.get("NSConstantString");
99 else
100 NSIdent = &Context.Idents.get(StringClass);
101
102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
103 LookupOrdinaryName);
104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
105 Context.setObjCConstantStringInterface(StrIF);
106 Ty = Context.getObjCConstantStringInterface();
107 Ty = Context.getObjCObjectPointerType(Ty);
108 } else {
109 // If there is no NSConstantString interface defined then treat this
110 // as error and recover from it.
111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class)
112 << NSIdent << S->getSourceRange();
113 Ty = Context.getObjCIdType();
114 }
115 } else {
116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
118 LookupOrdinaryName);
119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
120 Context.setObjCConstantStringInterface(StrIF);
121 Ty = Context.getObjCConstantStringInterface();
122 Ty = Context.getObjCObjectPointerType(Ty);
123 } else {
124 // If there is no NSString interface defined, implicitly declare
125 // a @class NSString; and use that instead. This is to make sure
126 // type of an NSString literal is represented correctly, instead of
127 // being an 'id' type.
128 Ty = Context.getObjCNSStringType();
129 if (Ty.isNull()) {
130 ObjCInterfaceDecl *NSStringIDecl =
131 ObjCInterfaceDecl::Create (Context,
132 Context.getTranslationUnitDecl(),
133 SourceLocation(), NSIdent,
134 nullptr, nullptr, SourceLocation());
135 Ty = Context.getObjCInterfaceType(NSStringIDecl);
136 Context.setObjCNSStringType(Ty);
137 }
138 Ty = Context.getObjCObjectPointerType(Ty);
139 }
140 }
141
142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
143}
144
145/// Emits an error if the given method does not exist, or if the return
146/// type is not an Objective-C object.
147static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
148 const ObjCInterfaceDecl *Class,
149 Selector Sel, const ObjCMethodDecl *Method) {
150 if (!Method) {
151 // FIXME: Is there a better way to avoid quotes than using getName()?
152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
153 return false;
154 }
155
156 // Make sure the return type is reasonable.
157 QualType ReturnType = Method->getReturnType();
158 if (!ReturnType->isObjCObjectPointerType()) {
159 S.Diag(Loc, diag::err_objc_literal_method_sig)
160 << Sel;
161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
162 << ReturnType;
163 return false;
164 }
165
166 return true;
167}
168
169/// Maps ObjCLiteralKind to NSClassIdKindKind
170static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind(
171 Sema::ObjCLiteralKind LiteralKind) {
172 switch (LiteralKind) {
173 case Sema::LK_Array:
174 return NSAPI::ClassId_NSArray;
175 case Sema::LK_Dictionary:
176 return NSAPI::ClassId_NSDictionary;
177 case Sema::LK_Numeric:
178 return NSAPI::ClassId_NSNumber;
179 case Sema::LK_String:
180 return NSAPI::ClassId_NSString;
181 case Sema::LK_Boxed:
182 return NSAPI::ClassId_NSValue;
183
184 // there is no corresponding matching
185 // between LK_None/LK_Block and NSClassIdKindKind
186 case Sema::LK_Block:
187 case Sema::LK_None:
188 break;
189 }
190 llvm_unreachable("LiteralKind can't be converted into a ClassKind")::llvm::llvm_unreachable_internal("LiteralKind can't be converted into a ClassKind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 190)
;
191}
192
193/// Validates ObjCInterfaceDecl availability.
194/// ObjCInterfaceDecl, used to create ObjC literals, should be defined
195/// if clang not in a debugger mode.
196static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl,
197 SourceLocation Loc,
198 Sema::ObjCLiteralKind LiteralKind) {
199 if (!Decl) {
200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind);
201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind);
202 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
203 << II->getName() << LiteralKind;
204 return false;
205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) {
206 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
207 << Decl->getName() << LiteralKind;
208 S.Diag(Decl->getLocation(), diag::note_forward_class);
209 return false;
210 }
211
212 return true;
213}
214
215/// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind.
216/// Used to create ObjC literals, such as NSDictionary (@{}),
217/// NSArray (@[]) and Boxed Expressions (@())
218static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S,
219 SourceLocation Loc,
220 Sema::ObjCLiteralKind LiteralKind) {
221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind);
222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind);
223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc,
224 Sema::LookupOrdinaryName);
225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) {
227 ASTContext &Context = S.Context;
228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II,
230 nullptr, nullptr, SourceLocation());
231 }
232
233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) {
234 ID = nullptr;
235 }
236
237 return ID;
238}
239
240/// Retrieve the NSNumber factory method that should be used to create
241/// an Objective-C literal for the given type.
242static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
243 QualType NumberType,
244 bool isLiteral = false,
245 SourceRange R = SourceRange()) {
246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind =
247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
248
249 if (!Kind) {
250 if (isLiteral) {
251 S.Diag(Loc, diag::err_invalid_nsnumber_type)
252 << NumberType << R;
253 }
254 return nullptr;
255 }
256
257 // If we already looked up this method, we're done.
258 if (S.NSNumberLiteralMethods[*Kind])
259 return S.NSNumberLiteralMethods[*Kind];
260
261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
262 /*Instance=*/false);
263
264 ASTContext &CX = S.Context;
265
266 // Look up the NSNumber class, if we haven't done so already. It's cached
267 // in the Sema instance.
268 if (!S.NSNumberDecl) {
269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc,
270 Sema::LK_Numeric);
271 if (!S.NSNumberDecl) {
272 return nullptr;
273 }
274 }
275
276 if (S.NSNumberPointer.isNull()) {
277 // generate the pointer to NSNumber type.
278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
280 }
281
282 // Look for the appropriate method within NSNumber.
283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
285 // create a stub definition this NSNumber factory method.
286 TypeSourceInfo *ReturnTInfo = nullptr;
287 Method =
288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl,
290 /*isInstance=*/false, /*isVariadic=*/false,
291 /*isPropertyAccessor=*/false,
292 /*isSynthesizedAccessorStub=*/false,
293 /*isImplicitlyDeclared=*/true,
294 /*isDefined=*/false, ObjCMethodDecl::Required,
295 /*HasRelatedResultType=*/false);
296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
297 SourceLocation(), SourceLocation(),
298 &CX.Idents.get("value"),
299 NumberType, /*TInfo=*/nullptr,
300 SC_None, nullptr);
301 Method->setMethodParams(S.Context, value, None);
302 }
303
304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
305 return nullptr;
306
307 // Note: if the parameter type is out-of-line, we'll catch it later in the
308 // implicit conversion.
309
310 S.NSNumberLiteralMethods[*Kind] = Method;
311 return Method;
312}
313
314/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
315/// numeric literal expression. Type of the expression will be "NSNumber *".
316ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
317 // Determine the type of the literal.
318 QualType NumberType = Number->getType();
319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
320 // In C, character literals have type 'int'. That's not the type we want
321 // to use to determine the Objective-c literal kind.
322 switch (Char->getKind()) {
323 case CharacterLiteral::Ascii:
324 case CharacterLiteral::UTF8:
325 NumberType = Context.CharTy;
326 break;
327
328 case CharacterLiteral::Wide:
329 NumberType = Context.getWideCharType();
330 break;
331
332 case CharacterLiteral::UTF16:
333 NumberType = Context.Char16Ty;
334 break;
335
336 case CharacterLiteral::UTF32:
337 NumberType = Context.Char32Ty;
338 break;
339 }
340 }
341
342 // Look for the appropriate method within NSNumber.
343 // Construct the literal.
344 SourceRange NR(Number->getSourceRange());
345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
346 true, NR);
347 if (!Method)
348 return ExprError();
349
350 // Convert the number to the type that the parameter expects.
351 ParmVarDecl *ParamDecl = Method->parameters()[0];
352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
353 ParamDecl);
354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
355 SourceLocation(),
356 Number);
357 if (ConvertedNumber.isInvalid())
358 return ExprError();
359 Number = ConvertedNumber.get();
360
361 // Use the effective source range of the literal, including the leading '@'.
362 return MaybeBindToTemporary(
363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
364 SourceRange(AtLoc, NR.getEnd())));
365}
366
367ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
368 SourceLocation ValueLoc,
369 bool Value) {
370 ExprResult Inner;
371 if (getLangOpts().CPlusPlus) {
372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
373 } else {
374 // C doesn't actually have a way to represent literal values of type
375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
378 CK_IntegralToBoolean);
379 }
380
381 return BuildObjCNumericLiteral(AtLoc, Inner.get());
382}
383
384/// Check that the given expression is a valid element of an Objective-C
385/// collection literal.
386static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
387 QualType T,
388 bool ArrayLiteral = false) {
389 // If the expression is type-dependent, there's nothing for us to do.
390 if (Element->isTypeDependent())
391 return Element;
392
393 ExprResult Result = S.CheckPlaceholderExpr(Element);
394 if (Result.isInvalid())
395 return ExprError();
396 Element = Result.get();
397
398 // In C++, check for an implicit conversion to an Objective-C object pointer
399 // type.
400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
401 InitializedEntity Entity
402 = InitializedEntity::InitializeParameter(S.Context, T,
403 /*Consumed=*/false);
404 InitializationKind Kind = InitializationKind::CreateCopy(
405 Element->getBeginLoc(), SourceLocation());
406 InitializationSequence Seq(S, Entity, Kind, Element);
407 if (!Seq.Failed())
408 return Seq.Perform(S, Entity, Kind, Element);
409 }
410
411 Expr *OrigElement = Element;
412
413 // Perform lvalue-to-rvalue conversion.
414 Result = S.DefaultLvalueConversion(Element);
415 if (Result.isInvalid())
416 return ExprError();
417 Element = Result.get();
418
419 // Make sure that we have an Objective-C pointer type or block.
420 if (!Element->getType()->isObjCObjectPointerType() &&
421 !Element->getType()->isBlockPointerType()) {
422 bool Recovered = false;
423
424 // If this is potentially an Objective-C numeric literal, add the '@'.
425 if (isa<IntegerLiteral>(OrigElement) ||
426 isa<CharacterLiteral>(OrigElement) ||
427 isa<FloatingLiteral>(OrigElement) ||
428 isa<ObjCBoolLiteralExpr>(OrigElement) ||
429 isa<CXXBoolLiteralExpr>(OrigElement)) {
430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
431 int Which = isa<CharacterLiteral>(OrigElement) ? 1
432 : (isa<CXXBoolLiteralExpr>(OrigElement) ||
433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
434 : 3;
435
436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
437 << Which << OrigElement->getSourceRange()
438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
439
440 Result =
441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement);
442 if (Result.isInvalid())
443 return ExprError();
444
445 Element = Result.get();
446 Recovered = true;
447 }
448 }
449 // If this is potentially an Objective-C string literal, add the '@'.
450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
451 if (String->isAscii()) {
452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
453 << 0 << OrigElement->getSourceRange()
454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
455
456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String);
457 if (Result.isInvalid())
458 return ExprError();
459
460 Element = Result.get();
461 Recovered = true;
462 }
463 }
464
465 if (!Recovered) {
466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element)
467 << Element->getType();
468 return ExprError();
469 }
470 }
471 if (ArrayLiteral)
472 if (ObjCStringLiteral *getString =
473 dyn_cast<ObjCStringLiteral>(OrigElement)) {
474 if (StringLiteral *SL = getString->getString()) {
475 unsigned numConcat = SL->getNumConcatenated();
476 if (numConcat > 1) {
477 // Only warn if the concatenated string doesn't come from a macro.
478 bool hasMacro = false;
479 for (unsigned i = 0; i < numConcat ; ++i)
480 if (SL->getStrTokenLoc(i).isMacroID()) {
481 hasMacro = true;
482 break;
483 }
484 if (!hasMacro)
485 S.Diag(Element->getBeginLoc(),
486 diag::warn_concatenated_nsarray_literal)
487 << Element->getType();
488 }
489 }
490 }
491
492 // Make sure that the element has the type that the container factory
493 // function expects.
494 return S.PerformCopyInitialization(
495 InitializedEntity::InitializeParameter(S.Context, T,
496 /*Consumed=*/false),
497 Element->getBeginLoc(), Element);
498}
499
500ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
501 if (ValueExpr->isTypeDependent()) {
502 ObjCBoxedExpr *BoxedExpr =
503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR);
504 return BoxedExpr;
505 }
506 ObjCMethodDecl *BoxingMethod = nullptr;
507 QualType BoxedType;
508 // Convert the expression to an RValue, so we can check for pointer types...
509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
510 if (RValue.isInvalid()) {
511 return ExprError();
512 }
513 SourceLocation Loc = SR.getBegin();
514 ValueExpr = RValue.get();
515 QualType ValueType(ValueExpr->getType());
516 if (const PointerType *PT = ValueType->getAs<PointerType>()) {
517 QualType PointeeType = PT->getPointeeType();
518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
519
520 if (!NSStringDecl) {
521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
522 Sema::LK_String);
523 if (!NSStringDecl) {
524 return ExprError();
525 }
526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
528 }
529
530 // The boxed expression can be emitted as a compile time constant if it is
531 // a string literal whose character encoding is compatible with UTF-8.
532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr))
533 if (CE->getCastKind() == CK_ArrayToPointerDecay)
534 if (auto *SL =
535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) {
536 assert((SL->isAscii() || SL->isUTF8()) &&(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
537 "unexpected character encoding")(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
;
538 StringRef Str = SL->getString();
539 const llvm::UTF8 *StrBegin = Str.bytes_begin();
540 const llvm::UTF8 *StrEnd = Str.bytes_end();
541 // Check that this is a valid UTF-8 string.
542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) {
543 BoxedType = Context.getAttributedType(
544 AttributedType::getNullabilityAttrKind(
545 NullabilityKind::NonNull),
546 NSStringPointer, NSStringPointer);
547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR);
548 }
549
550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string)
551 << NSStringPointer << SL->getSourceRange();
552 }
553
554 if (!StringWithUTF8StringMethod) {
555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
557
558 // Look for the appropriate method within NSString.
559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
561 // Debugger needs to work even if NSString hasn't been defined.
562 TypeSourceInfo *ReturnTInfo = nullptr;
563 ObjCMethodDecl *M = ObjCMethodDecl::Create(
564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String,
565 NSStringPointer, ReturnTInfo, NSStringDecl,
566 /*isInstance=*/false, /*isVariadic=*/false,
567 /*isPropertyAccessor=*/false,
568 /*isSynthesizedAccessorStub=*/false,
569 /*isImplicitlyDeclared=*/true,
570 /*isDefined=*/false, ObjCMethodDecl::Required,
571 /*HasRelatedResultType=*/false);
572 QualType ConstCharType = Context.CharTy.withConst();
573 ParmVarDecl *value =
574 ParmVarDecl::Create(Context, M,
575 SourceLocation(), SourceLocation(),
576 &Context.Idents.get("value"),
577 Context.getPointerType(ConstCharType),
578 /*TInfo=*/nullptr,
579 SC_None, nullptr);
580 M->setMethodParams(Context, value, None);
581 BoxingMethod = M;
582 }
583
584 if (!validateBoxingMethod(*this, Loc, NSStringDecl,
585 stringWithUTF8String, BoxingMethod))
586 return ExprError();
587
588 StringWithUTF8StringMethod = BoxingMethod;
589 }
590
591 BoxingMethod = StringWithUTF8StringMethod;
592 BoxedType = NSStringPointer;
593 // Transfer the nullability from method's return type.
594 Optional<NullabilityKind> Nullability =
595 BoxingMethod->getReturnType()->getNullability(Context);
596 if (Nullability)
597 BoxedType = Context.getAttributedType(
598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType,
599 BoxedType);
600 }
601 } else if (ValueType->isBuiltinType()) {
602 // The other types we support are numeric, char and BOOL/bool. We could also
603 // provide limited support for structure types, such as NSRange, NSRect, and
604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
605 // for more details.
606
607 // Check for a top-level character literal.
608 if (const CharacterLiteral *Char =
609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
610 // In C, character literals have type 'int'. That's not the type we want
611 // to use to determine the Objective-c literal kind.
612 switch (Char->getKind()) {
613 case CharacterLiteral::Ascii:
614 case CharacterLiteral::UTF8:
615 ValueType = Context.CharTy;
616 break;
617
618 case CharacterLiteral::Wide:
619 ValueType = Context.getWideCharType();
620 break;
621
622 case CharacterLiteral::UTF16:
623 ValueType = Context.Char16Ty;
624 break;
625
626 case CharacterLiteral::UTF32:
627 ValueType = Context.Char32Ty;
628 break;
629 }
630 }
631 // FIXME: Do I need to do anything special with BoolTy expressions?
632
633 // Look for the appropriate method within NSNumber.
634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType);
635 BoxedType = NSNumberPointer;
636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
637 if (!ET->getDecl()->isComplete()) {
638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type)
639 << ValueType << ValueExpr->getSourceRange();
640 return ExprError();
641 }
642
643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc,
644 ET->getDecl()->getIntegerType());
645 BoxedType = NSNumberPointer;
646 } else if (ValueType->isObjCBoxableRecordType()) {
647 // Support for structure types, that marked as objc_boxable
648 // struct __attribute__((objc_boxable)) s { ... };
649
650 // Look up the NSValue class, if we haven't done so already. It's cached
651 // in the Sema instance.
652 if (!NSValueDecl) {
653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
654 Sema::LK_Boxed);
655 if (!NSValueDecl) {
656 return ExprError();
657 }
658
659 // generate the pointer to NSValue type.
660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl);
661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject);
662 }
663
664 if (!ValueWithBytesObjCTypeMethod) {
665 IdentifierInfo *II[] = {
666 &Context.Idents.get("valueWithBytes"),
667 &Context.Idents.get("objCType")
668 };
669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II);
670
671 // Look for the appropriate method within NSValue.
672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType);
673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
674 // Debugger needs to work even if NSValue hasn't been defined.
675 TypeSourceInfo *ReturnTInfo = nullptr;
676 ObjCMethodDecl *M = ObjCMethodDecl::Create(
677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType,
678 NSValuePointer, ReturnTInfo, NSValueDecl,
679 /*isInstance=*/false,
680 /*isVariadic=*/false,
681 /*isPropertyAccessor=*/false,
682 /*isSynthesizedAccessorStub=*/false,
683 /*isImplicitlyDeclared=*/true,
684 /*isDefined=*/false, ObjCMethodDecl::Required,
685 /*HasRelatedResultType=*/false);
686
687 SmallVector<ParmVarDecl *, 2> Params;
688
689 ParmVarDecl *bytes =
690 ParmVarDecl::Create(Context, M,
691 SourceLocation(), SourceLocation(),
692 &Context.Idents.get("bytes"),
693 Context.VoidPtrTy.withConst(),
694 /*TInfo=*/nullptr,
695 SC_None, nullptr);
696 Params.push_back(bytes);
697
698 QualType ConstCharType = Context.CharTy.withConst();
699 ParmVarDecl *type =
700 ParmVarDecl::Create(Context, M,
701 SourceLocation(), SourceLocation(),
702 &Context.Idents.get("type"),
703 Context.getPointerType(ConstCharType),
704 /*TInfo=*/nullptr,
705 SC_None, nullptr);
706 Params.push_back(type);
707
708 M->setMethodParams(Context, Params, None);
709 BoxingMethod = M;
710 }
711
712 if (!validateBoxingMethod(*this, Loc, NSValueDecl,
713 ValueWithBytesObjCType, BoxingMethod))
714 return ExprError();
715
716 ValueWithBytesObjCTypeMethod = BoxingMethod;
717 }
718
719 if (!ValueType.isTriviallyCopyableType(Context)) {
720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type)
721 << ValueType << ValueExpr->getSourceRange();
722 return ExprError();
723 }
724
725 BoxingMethod = ValueWithBytesObjCTypeMethod;
726 BoxedType = NSValuePointer;
727 }
728
729 if (!BoxingMethod) {
730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type)
731 << ValueType << ValueExpr->getSourceRange();
732 return ExprError();
733 }
734
735 DiagnoseUseOfDecl(BoxingMethod, Loc);
736
737 ExprResult ConvertedValueExpr;
738 if (ValueType->isObjCBoxableRecordType()) {
739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType);
740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(),
741 ValueExpr);
742 } else {
743 // Convert the expression to the type that the parameter requires.
744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0];
745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context,
746 ParamDecl);
747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(),
748 ValueExpr);
749 }
750
751 if (ConvertedValueExpr.isInvalid())
752 return ExprError();
753 ValueExpr = ConvertedValueExpr.get();
754
755 ObjCBoxedExpr *BoxedExpr =
756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
757 BoxingMethod, SR);
758 return MaybeBindToTemporary(BoxedExpr);
759}
760
761/// Build an ObjC subscript pseudo-object expression, given that
762/// that's supported by the runtime.
763ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
764 Expr *IndexExpr,
765 ObjCMethodDecl *getterMethod,
766 ObjCMethodDecl *setterMethod) {
767 assert(!LangOpts.isSubscriptPointerArithmetic())((!LangOpts.isSubscriptPointerArithmetic()) ? static_cast<
void> (0) : __assert_fail ("!LangOpts.isSubscriptPointerArithmetic()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 767, __PRETTY_FUNCTION__))
;
768
769 // We can't get dependent types here; our callers should have
770 // filtered them out.
771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
772 "base or index cannot have dependent type here")(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
;
773
774 // Filter out placeholders in the index. In theory, overloads could
775 // be preserved here, although that might not actually work correctly.
776 ExprResult Result = CheckPlaceholderExpr(IndexExpr);
777 if (Result.isInvalid())
778 return ExprError();
779 IndexExpr = Result.get();
780
781 // Perform lvalue-to-rvalue conversion on the base.
782 Result = DefaultLvalueConversion(BaseExpr);
783 if (Result.isInvalid())
784 return ExprError();
785 BaseExpr = Result.get();
786
787 // Build the pseudo-object expression.
788 return new (Context) ObjCSubscriptRefExpr(
789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript,
790 getterMethod, setterMethod, RB);
791}
792
793ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
794 SourceLocation Loc = SR.getBegin();
795
796 if (!NSArrayDecl) {
797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
798 Sema::LK_Array);
799 if (!NSArrayDecl) {
800 return ExprError();
801 }
802 }
803
804 // Find the arrayWithObjects:count: method, if we haven't done so already.
805 QualType IdT = Context.getObjCIdType();
806 if (!ArrayWithObjectsMethod) {
807 Selector
808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
810 if (!Method && getLangOpts().DebuggerObjCLiteral) {
811 TypeSourceInfo *ReturnTInfo = nullptr;
812 Method = ObjCMethodDecl::Create(
813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo,
814 Context.getTranslationUnitDecl(), false /*Instance*/,
815 false /*isVariadic*/,
816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
818 ObjCMethodDecl::Required, false);
819 SmallVector<ParmVarDecl *, 2> Params;
820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
821 SourceLocation(),
822 SourceLocation(),
823 &Context.Idents.get("objects"),
824 Context.getPointerType(IdT),
825 /*TInfo=*/nullptr,
826 SC_None, nullptr);
827 Params.push_back(objects);
828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
829 SourceLocation(),
830 SourceLocation(),
831 &Context.Idents.get("cnt"),
832 Context.UnsignedLongTy,
833 /*TInfo=*/nullptr, SC_None,
834 nullptr);
835 Params.push_back(cnt);
836 Method->setMethodParams(Context, Params, None);
837 }
838
839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method))
840 return ExprError();
841
842 // Dig out the type that all elements should be converted to.
843 QualType T = Method->parameters()[0]->getType();
844 const PointerType *PtrT = T->getAs<PointerType>();
845 if (!PtrT ||
846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
848 << Sel;
849 Diag(Method->parameters()[0]->getLocation(),
850 diag::note_objc_literal_method_param)
851 << 0 << T
852 << Context.getPointerType(IdT.withConst());
853 return ExprError();
854 }
855
856 // Check that the 'count' parameter is integral.
857 if (!Method->parameters()[1]->getType()->isIntegerType()) {
858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
859 << Sel;
860 Diag(Method->parameters()[1]->getLocation(),
861 diag::note_objc_literal_method_param)
862 << 1
863 << Method->parameters()[1]->getType()
864 << "integral";
865 return ExprError();
866 }
867
868 // We've found a good +arrayWithObjects:count: method. Save it!
869 ArrayWithObjectsMethod = Method;
870 }
871
872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType();
873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
874
875 // Check that each of the elements provided is valid in a collection literal,
876 // performing conversions as necessary.
877 Expr **ElementsBuffer = Elements.data();
878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
880 ElementsBuffer[I],
881 RequiredType, true);
882 if (Converted.isInvalid())
883 return ExprError();
884
885 ElementsBuffer[I] = Converted.get();
886 }
887
888 QualType Ty
889 = Context.getObjCObjectPointerType(
890 Context.getObjCInterfaceType(NSArrayDecl));
891
892 return MaybeBindToTemporary(
893 ObjCArrayLiteral::Create(Context, Elements, Ty,
894 ArrayWithObjectsMethod, SR));
895}
896
897ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
898 MutableArrayRef<ObjCDictionaryElement> Elements) {
899 SourceLocation Loc = SR.getBegin();
900
901 if (!NSDictionaryDecl) {
902 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
903 Sema::LK_Dictionary);
904 if (!NSDictionaryDecl) {
905 return ExprError();
906 }
907 }
908
909 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
910 // so already.
911 QualType IdT = Context.getObjCIdType();
912 if (!DictionaryWithObjectsMethod) {
913 Selector Sel = NSAPIObj->getNSDictionarySelector(
914 NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
915 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
916 if (!Method && getLangOpts().DebuggerObjCLiteral) {
917 Method = ObjCMethodDecl::Create(
918 Context, SourceLocation(), SourceLocation(), Sel, IdT,
919 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(),
920 false /*Instance*/, false /*isVariadic*/,
921 /*isPropertyAccessor=*/false,
922 /*isSynthesizedAccessorStub=*/false,
923 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
924 ObjCMethodDecl::Required, false);
925 SmallVector<ParmVarDecl *, 3> Params;
926 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
927 SourceLocation(),
928 SourceLocation(),
929 &Context.Idents.get("objects"),
930 Context.getPointerType(IdT),
931 /*TInfo=*/nullptr, SC_None,
932 nullptr);
933 Params.push_back(objects);
934 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
935 SourceLocation(),
936 SourceLocation(),
937 &Context.Idents.get("keys"),
938 Context.getPointerType(IdT),
939 /*TInfo=*/nullptr, SC_None,
940 nullptr);
941 Params.push_back(keys);
942 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
943 SourceLocation(),
944 SourceLocation(),
945 &Context.Idents.get("cnt"),
946 Context.UnsignedLongTy,
947 /*TInfo=*/nullptr, SC_None,
948 nullptr);
949 Params.push_back(cnt);
950 Method->setMethodParams(Context, Params, None);
951 }
952
953 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
954 Method))
955 return ExprError();
956
957 // Dig out the type that all values should be converted to.
958 QualType ValueT = Method->parameters()[0]->getType();
959 const PointerType *PtrValue = ValueT->getAs<PointerType>();
960 if (!PtrValue ||
961 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
962 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
963 << Sel;
964 Diag(Method->parameters()[0]->getLocation(),
965 diag::note_objc_literal_method_param)
966 << 0 << ValueT
967 << Context.getPointerType(IdT.withConst());
968 return ExprError();
969 }
970
971 // Dig out the type that all keys should be converted to.
972 QualType KeyT = Method->parameters()[1]->getType();
973 const PointerType *PtrKey = KeyT->getAs<PointerType>();
974 if (!PtrKey ||
975 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
976 IdT)) {
977 bool err = true;
978 if (PtrKey) {
979 if (QIDNSCopying.isNull()) {
980 // key argument of selector is id<NSCopying>?
981 if (ObjCProtocolDecl *NSCopyingPDecl =
982 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
983 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
984 QIDNSCopying =
985 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { },
986 llvm::makeArrayRef(
987 (ObjCProtocolDecl**) PQ,
988 1),
989 false);
990 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
991 }
992 }
993 if (!QIDNSCopying.isNull())
994 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
995 QIDNSCopying);
996 }
997
998 if (err) {
999 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1000 << Sel;
1001 Diag(Method->parameters()[1]->getLocation(),
1002 diag::note_objc_literal_method_param)
1003 << 1 << KeyT
1004 << Context.getPointerType(IdT.withConst());
1005 return ExprError();
1006 }
1007 }
1008
1009 // Check that the 'count' parameter is integral.
1010 QualType CountType = Method->parameters()[2]->getType();
1011 if (!CountType->isIntegerType()) {
1012 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1013 << Sel;
1014 Diag(Method->parameters()[2]->getLocation(),
1015 diag::note_objc_literal_method_param)
1016 << 2 << CountType
1017 << "integral";
1018 return ExprError();
1019 }
1020
1021 // We've found a good +dictionaryWithObjects:keys:count: method; save it!
1022 DictionaryWithObjectsMethod = Method;
1023 }
1024
1025 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType();
1026 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
1027 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType();
1028 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
1029
1030 // Check that each of the keys and values provided is valid in a collection
1031 // literal, performing conversions as necessary.
1032 bool HasPackExpansions = false;
1033 for (ObjCDictionaryElement &Element : Elements) {
1034 // Check the key.
1035 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key,
1036 KeyT);
1037 if (Key.isInvalid())
1038 return ExprError();
1039
1040 // Check the value.
1041 ExprResult Value
1042 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT);
1043 if (Value.isInvalid())
1044 return ExprError();
1045
1046 Element.Key = Key.get();
1047 Element.Value = Value.get();
1048
1049 if (Element.EllipsisLoc.isInvalid())
1050 continue;
1051
1052 if (!Element.Key->containsUnexpandedParameterPack() &&
1053 !Element.Value->containsUnexpandedParameterPack()) {
1054 Diag(Element.EllipsisLoc,
1055 diag::err_pack_expansion_without_parameter_packs)
1056 << SourceRange(Element.Key->getBeginLoc(),
1057 Element.Value->getEndLoc());
1058 return ExprError();
1059 }
1060
1061 HasPackExpansions = true;
1062 }
1063
1064 QualType Ty
1065 = Context.getObjCObjectPointerType(
1066 Context.getObjCInterfaceType(NSDictionaryDecl));
1067 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create(
1068 Context, Elements, HasPackExpansions, Ty,
1069 DictionaryWithObjectsMethod, SR));
1070}
1071
1072ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
1073 TypeSourceInfo *EncodedTypeInfo,
1074 SourceLocation RParenLoc) {
1075 QualType EncodedType = EncodedTypeInfo->getType();
1076 QualType StrTy;
1077 if (EncodedType->isDependentType())
1078 StrTy = Context.DependentTy;
1079 else {
1080 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
1081 !EncodedType->isVoidType()) // void is handled too.
1082 if (RequireCompleteType(AtLoc, EncodedType,
1083 diag::err_incomplete_type_objc_at_encode,
1084 EncodedTypeInfo->getTypeLoc()))
1085 return ExprError();
1086
1087 std::string Str;
1088 QualType NotEncodedT;
1089 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT);
1090 if (!NotEncodedT.isNull())
1091 Diag(AtLoc, diag::warn_incomplete_encoded_type)
1092 << EncodedType << NotEncodedT;
1093
1094 // The type of @encode is the same as the type of the corresponding string,
1095 // which is an array type.
1096 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size());
1097 }
1098
1099 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
1100}
1101
1102ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
1103 SourceLocation EncodeLoc,
1104 SourceLocation LParenLoc,
1105 ParsedType ty,
1106 SourceLocation RParenLoc) {
1107 // FIXME: Preserve type source info ?
1108 TypeSourceInfo *TInfo;
1109 QualType EncodedType = GetTypeFromParser(ty, &TInfo);
1110 if (!TInfo)
1111 TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
1112 getLocForEndOfToken(LParenLoc));
1113
1114 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
1115}
1116
1117static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
1118 SourceLocation AtLoc,
1119 SourceLocation LParenLoc,
1120 SourceLocation RParenLoc,
1121 ObjCMethodDecl *Method,
1122 ObjCMethodList &MethList) {
1123 ObjCMethodList *M = &MethList;
1124 bool Warned = false;
1125 for (M = M->getNext(); M; M=M->getNext()) {
1126 ObjCMethodDecl *MatchingMethodDecl = M->getMethod();
1127 if (MatchingMethodDecl == Method ||
1128 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) ||
1129 MatchingMethodDecl->getSelector() != Method->getSelector())
1130 continue;
1131 if (!S.MatchTwoMethodDeclarations(Method,
1132 MatchingMethodDecl, Sema::MMS_loose)) {
1133 if (!Warned) {
1134 Warned = true;
1135 S.Diag(AtLoc, diag::warn_multiple_selectors)
1136 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(")
1137 << FixItHint::CreateInsertion(RParenLoc, ")");
1138 S.Diag(Method->getLocation(), diag::note_method_declared_at)
1139 << Method->getDeclName();
1140 }
1141 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at)
1142 << MatchingMethodDecl->getDeclName();
1143 }
1144 }
1145 return Warned;
1146}
1147
1148static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc,
1149 ObjCMethodDecl *Method,
1150 SourceLocation LParenLoc,
1151 SourceLocation RParenLoc,
1152 bool WarnMultipleSelectors) {
1153 if (!WarnMultipleSelectors ||
1154 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation()))
1155 return;
1156 bool Warned = false;
1157 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1158 e = S.MethodPool.end(); b != e; b++) {
1159 // first, instance methods
1160 ObjCMethodList &InstMethList = b->second.first;
1161 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1162 Method, InstMethList))
1163 Warned = true;
1164
1165 // second, class methods
1166 ObjCMethodList &ClsMethList = b->second.second;
1167 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1168 Method, ClsMethList) || Warned)
1169 return;
1170 }
1171}
1172
1173static void HelperToDiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1174 Selector Sel,
1175 ObjCMethodList &MethList,
1176 bool &onlyDirect) {
1177 ObjCMethodList *M = &MethList;
1178 for (M = M->getNext(); M; M = M->getNext()) {
1179 ObjCMethodDecl *Method = M->getMethod();
1180 if (Method->getSelector() != Sel)
1181 continue;
1182 if (!Method->isDirectMethod())
1183 onlyDirect = false;
1184 }
1185}
1186
1187static void DiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1188 Selector Sel, bool &onlyDirect) {
1189 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1190 e = S.MethodPool.end(); b != e; b++) {
1191 // first, instance methods
1192 ObjCMethodList &InstMethList = b->second.first;
1193 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, InstMethList,
1194 onlyDirect);
1195
1196 // second, class methods
1197 ObjCMethodList &ClsMethList = b->second.second;
1198 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, ClsMethList, onlyDirect);
1199 }
1200}
1201
1202ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
1203 SourceLocation AtLoc,
1204 SourceLocation SelLoc,
1205 SourceLocation LParenLoc,
1206 SourceLocation RParenLoc,
1207 bool WarnMultipleSelectors) {
1208 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
1209 SourceRange(LParenLoc, RParenLoc));
1210 if (!Method)
1211 Method = LookupFactoryMethodInGlobalPool(Sel,
1212 SourceRange(LParenLoc, RParenLoc));
1213 if (!Method) {
1214 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) {
1215 Selector MatchedSel = OM->getSelector();
1216 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1),
1217 RParenLoc.getLocWithOffset(-1));
1218 Diag(SelLoc, diag::warn_undeclared_selector_with_typo)
1219 << Sel << MatchedSel
1220 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1221
1222 } else
1223 Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
1224 } else {
1225 bool onlyDirect = Method->isDirectMethod();
1226 DiagnoseDirectSelectorsExpr(*this, AtLoc, Sel, onlyDirect);
1227 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc,
1228 WarnMultipleSelectors);
1229 if (onlyDirect) {
1230 Diag(AtLoc, diag::err_direct_selector_expression)
1231 << Method->getSelector();
1232 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
1233 << Method->getDeclName();
1234 }
1235 }
1236
1237 if (Method &&
1238 Method->getImplementationControl() != ObjCMethodDecl::Optional &&
1239 !getSourceManager().isInSystemHeader(Method->getLocation()))
1240 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc));
1241
1242 // In ARC, forbid the user from using @selector for
1243 // retain/release/autorelease/dealloc/retainCount.
1244 if (getLangOpts().ObjCAutoRefCount) {
1245 switch (Sel.getMethodFamily()) {
1246 case OMF_retain:
1247 case OMF_release:
1248 case OMF_autorelease:
1249 case OMF_retainCount:
1250 case OMF_dealloc:
1251 Diag(AtLoc, diag::err_arc_illegal_selector) <<
1252 Sel << SourceRange(LParenLoc, RParenLoc);
1253 break;
1254
1255 case OMF_None:
1256 case OMF_alloc:
1257 case OMF_copy:
1258 case OMF_finalize:
1259 case OMF_init:
1260 case OMF_mutableCopy:
1261 case OMF_new:
1262 case OMF_self:
1263 case OMF_initialize:
1264 case OMF_performSelector:
1265 break;
1266 }
1267 }
1268 QualType Ty = Context.getObjCSelType();
1269 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
1270}
1271
1272ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
1273 SourceLocation AtLoc,
1274 SourceLocation ProtoLoc,
1275 SourceLocation LParenLoc,
1276 SourceLocation ProtoIdLoc,
1277 SourceLocation RParenLoc) {
1278 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
1279 if (!PDecl) {
1280 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
1281 return true;
1282 }
1283 if (!PDecl->hasDefinition()) {
1284 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl;
1285 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
1286 } else {
1287 PDecl = PDecl->getDefinition();
1288 }
1289
1290 QualType Ty = Context.getObjCProtoType();
1291 if (Ty.isNull())
1292 return true;
1293 Ty = Context.getObjCObjectPointerType(Ty);
1294 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
1295}
1296
1297/// Try to capture an implicit reference to 'self'.
1298ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
1299 DeclContext *DC = getFunctionLevelDeclContext();
1300
1301 // If we're not in an ObjC method, error out. Note that, unlike the
1302 // C++ case, we don't require an instance method --- class methods
1303 // still have a 'self', and we really do still need to capture it!
1304 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
1305 if (!method)
1306 return nullptr;
1307
1308 tryCaptureVariable(method->getSelfDecl(), Loc);
1309
1310 return method;
1311}
1312
1313static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
1314 QualType origType = T;
1315 if (auto nullability = AttributedType::stripOuterNullability(T)) {
1316 if (T == Context.getObjCInstanceType()) {
1317 return Context.getAttributedType(
1318 AttributedType::getNullabilityAttrKind(*nullability),
1319 Context.getObjCIdType(),
1320 Context.getObjCIdType());
1321 }
1322
1323 return origType;
1324 }
1325
1326 if (T == Context.getObjCInstanceType())
1327 return Context.getObjCIdType();
1328
1329 return origType;
1330}
1331
1332/// Determine the result type of a message send based on the receiver type,
1333/// method, and the kind of message send.
1334///
1335/// This is the "base" result type, which will still need to be adjusted
1336/// to account for nullability.
1337static QualType getBaseMessageSendResultType(Sema &S,
1338 QualType ReceiverType,
1339 ObjCMethodDecl *Method,
1340 bool isClassMessage,
1341 bool isSuperMessage) {
1342 assert(Method && "Must have a method")((Method && "Must have a method") ? static_cast<void
> (0) : __assert_fail ("Method && \"Must have a method\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (!Method->hasRelatedResultType())
1344 return Method->getSendResultType(ReceiverType);
1345
1346 ASTContext &Context = S.Context;
1347
1348 // Local function that transfers the nullability of the method's
1349 // result type to the returned result.
1350 auto transferNullability = [&](QualType type) -> QualType {
1351 // If the method's result type has nullability, extract it.
1352 if (auto nullability = Method->getSendResultType(ReceiverType)
1353 ->getNullability(Context)){
1354 // Strip off any outer nullability sugar from the provided type.
1355 (void)AttributedType::stripOuterNullability(type);
1356
1357 // Form a new attributed type using the method result type's nullability.
1358 return Context.getAttributedType(
1359 AttributedType::getNullabilityAttrKind(*nullability),
1360 type,
1361 type);
1362 }
1363
1364 return type;
1365 };
1366
1367 // If a method has a related return type:
1368 // - if the method found is an instance method, but the message send
1369 // was a class message send, T is the declared return type of the method
1370 // found
1371 if (Method->isInstanceMethod() && isClassMessage)
1372 return stripObjCInstanceType(Context,
1373 Method->getSendResultType(ReceiverType));
1374
1375 // - if the receiver is super, T is a pointer to the class of the
1376 // enclosing method definition
1377 if (isSuperMessage) {
1378 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl())
1379 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) {
1380 return transferNullability(
1381 Context.getObjCObjectPointerType(
1382 Context.getObjCInterfaceType(Class)));
1383 }
1384 }
1385
1386 // - if the receiver is the name of a class U, T is a pointer to U
1387 if (ReceiverType->getAsObjCInterfaceType())
1388 return transferNullability(Context.getObjCObjectPointerType(ReceiverType));
1389 // - if the receiver is of type Class or qualified Class type,
1390 // T is the declared return type of the method.
1391 if (ReceiverType->isObjCClassType() ||
1392 ReceiverType->isObjCQualifiedClassType())
1393 return stripObjCInstanceType(Context,
1394 Method->getSendResultType(ReceiverType));
1395
1396 // - if the receiver is id, qualified id, Class, or qualified Class, T
1397 // is the receiver type, otherwise
1398 // - T is the type of the receiver expression.
1399 return transferNullability(ReceiverType);
1400}
1401
1402QualType Sema::getMessageSendResultType(const Expr *Receiver,
1403 QualType ReceiverType,
1404 ObjCMethodDecl *Method,
1405 bool isClassMessage,
1406 bool isSuperMessage) {
1407 // Produce the result type.
1408 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType,
1409 Method,
1410 isClassMessage,
1411 isSuperMessage);
1412
1413 // If this is a class message, ignore the nullability of the receiver.
1414 if (isClassMessage) {
1415 // In a class method, class messages to 'self' that return instancetype can
1416 // be typed as the current class. We can safely do this in ARC because self
1417 // can't be reassigned, and we do it unsafely outside of ARC because in
1418 // practice people never reassign self in class methods and there's some
1419 // virtue in not being aggressively pedantic.
1420 if (Receiver && Receiver->isObjCSelfExpr()) {
1421 assert(ReceiverType->isObjCClassType() && "expected a Class self")((ReceiverType->isObjCClassType() && "expected a Class self"
) ? static_cast<void> (0) : __assert_fail ("ReceiverType->isObjCClassType() && \"expected a Class self\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1421, __PRETTY_FUNCTION__))
;
1422 QualType T = Method->getSendResultType(ReceiverType);
1423 AttributedType::stripOuterNullability(T);
1424 if (T == Context.getObjCInstanceType()) {
1425 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(
1426 cast<ImplicitParamDecl>(
1427 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl())
1428 ->getDeclContext());
1429 assert(MD->isClassMethod() && "expected a class method")((MD->isClassMethod() && "expected a class method"
) ? static_cast<void> (0) : __assert_fail ("MD->isClassMethod() && \"expected a class method\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1429, __PRETTY_FUNCTION__))
;
1430 QualType NewResultType = Context.getObjCObjectPointerType(
1431 Context.getObjCInterfaceType(MD->getClassInterface()));
1432 if (auto Nullability = resultType->getNullability(Context))
1433 NewResultType = Context.getAttributedType(
1434 AttributedType::getNullabilityAttrKind(*Nullability),
1435 NewResultType, NewResultType);
1436 return NewResultType;
1437 }
1438 }
1439 return resultType;
1440 }
1441
1442 // There is nothing left to do if the result type cannot have a nullability
1443 // specifier.
1444 if (!resultType->canHaveNullability())
1445 return resultType;
1446
1447 // Map the nullability of the result into a table index.
1448 unsigned receiverNullabilityIdx = 0;
1449 if (auto nullability = ReceiverType->getNullability(Context))
1450 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1451
1452 unsigned resultNullabilityIdx = 0;
1453 if (auto nullability = resultType->getNullability(Context))
1454 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1455
1456 // The table of nullability mappings, indexed by the receiver's nullability
1457 // and then the result type's nullability.
1458 static const uint8_t None = 0;
1459 static const uint8_t NonNull = 1;
1460 static const uint8_t Nullable = 2;
1461 static const uint8_t Unspecified = 3;
1462 static const uint8_t nullabilityMap[4][4] = {
1463 // None NonNull Nullable Unspecified
1464 /* None */ { None, None, Nullable, None },
1465 /* NonNull */ { None, NonNull, Nullable, Unspecified },
1466 /* Nullable */ { Nullable, Nullable, Nullable, Nullable },
1467 /* Unspecified */ { None, Unspecified, Nullable, Unspecified }
1468 };
1469
1470 unsigned newResultNullabilityIdx
1471 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx];
1472 if (newResultNullabilityIdx == resultNullabilityIdx)
1473 return resultType;
1474
1475 // Strip off the existing nullability. This removes as little type sugar as
1476 // possible.
1477 do {
1478 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) {
1479 resultType = attributed->getModifiedType();
1480 } else {
1481 resultType = resultType.getDesugaredType(Context);
1482 }
1483 } while (resultType->getNullability(Context));
1484
1485 // Add nullability back if needed.
1486 if (newResultNullabilityIdx > 0) {
1487 auto newNullability
1488 = static_cast<NullabilityKind>(newResultNullabilityIdx-1);
1489 return Context.getAttributedType(
1490 AttributedType::getNullabilityAttrKind(newNullability),
1491 resultType, resultType);
1492 }
1493
1494 return resultType;
1495}
1496
1497/// Look for an ObjC method whose result type exactly matches the given type.
1498static const ObjCMethodDecl *
1499findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD,
1500 QualType instancetype) {
1501 if (MD->getReturnType() == instancetype)
1502 return MD;
1503
1504 // For these purposes, a method in an @implementation overrides a
1505 // declaration in the @interface.
1506 if (const ObjCImplDecl *impl =
1507 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) {
1508 const ObjCContainerDecl *iface;
1509 if (const ObjCCategoryImplDecl *catImpl =
1510 dyn_cast<ObjCCategoryImplDecl>(impl)) {
1511 iface = catImpl->getCategoryDecl();
1512 } else {
1513 iface = impl->getClassInterface();
1514 }
1515
1516 const ObjCMethodDecl *ifaceMD =
1517 iface->getMethod(MD->getSelector(), MD->isInstanceMethod());
1518 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype);
1519 }
1520
1521 SmallVector<const ObjCMethodDecl *, 4> overrides;
1522 MD->getOverriddenMethods(overrides);
1523 for (unsigned i = 0, e = overrides.size(); i != e; ++i) {
1524 if (const ObjCMethodDecl *result =
1525 findExplicitInstancetypeDeclarer(overrides[i], instancetype))
1526 return result;
1527 }
1528
1529 return nullptr;
1530}
1531
1532void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) {
1533 // Only complain if we're in an ObjC method and the required return
1534 // type doesn't match the method's declared return type.
1535 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext);
1536 if (!MD || !MD->hasRelatedResultType() ||
1537 Context.hasSameUnqualifiedType(destType, MD->getReturnType()))
1538 return;
1539
1540 // Look for a method overridden by this method which explicitly uses
1541 // 'instancetype'.
1542 if (const ObjCMethodDecl *overridden =
1543 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) {
1544 SourceRange range = overridden->getReturnTypeSourceRange();
1545 SourceLocation loc = range.getBegin();
1546 if (loc.isInvalid())
1547 loc = overridden->getLocation();
1548 Diag(loc, diag::note_related_result_type_explicit)
1549 << /*current method*/ 1 << range;
1550 return;
1551 }
1552
1553 // Otherwise, if we have an interesting method family, note that.
1554 // This should always trigger if the above didn't.
1555 if (ObjCMethodFamily family = MD->getMethodFamily())
1556 Diag(MD->getLocation(), diag::note_related_result_type_family)
1557 << /*current method*/ 1
1558 << family;
1559}
1560
1561void Sema::EmitRelatedResultTypeNote(const Expr *E) {
1562 E = E->IgnoreParenImpCasts();
1563 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
1564 if (!MsgSend)
1565 return;
1566
1567 const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
1568 if (!Method)
1569 return;
1570
1571 if (!Method->hasRelatedResultType())
1572 return;
1573
1574 if (Context.hasSameUnqualifiedType(
1575 Method->getReturnType().getNonReferenceType(), MsgSend->getType()))
1576 return;
1577
1578 if (!Context.hasSameUnqualifiedType(Method->getReturnType(),
1579 Context.getObjCInstanceType()))
1580 return;
1581
1582 Diag(Method->getLocation(), diag::note_related_result_type_inferred)
1583 << Method->isInstanceMethod() << Method->getSelector()
1584 << MsgSend->getType();
1585}
1586
1587bool Sema::CheckMessageArgumentTypes(
1588 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args,
1589 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method,
1590 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac,
1591 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType,
1592 ExprValueKind &VK) {
1593 SourceLocation SelLoc;
1594 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
29
Assuming the condition is false
1595 SelLoc = SelectorLocs.front();
1596 else
1597 SelLoc = lbrac;
1598
1599 if (!Method
29.1
'Method' is null
29.1
'Method' is null
) {
30
Taking true branch
1600 // Apply default argument promotion as for (C99 6.5.2.2p6).
1601 for (unsigned i = 0, e = Args.size(); i != e; i++) {
31
Assuming 'i' is equal to 'e'
32
Loop condition is false. Execution continues on line 1617
1602 if (Args[i]->isTypeDependent())
1603 continue;
1604
1605 ExprResult result;
1606 if (getLangOpts().DebuggerSupport) {
1607 QualType paramTy; // ignored
1608 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy);
1609 } else {
1610 result = DefaultArgumentPromotion(Args[i]);
1611 }
1612 if (result.isInvalid())
1613 return true;
1614 Args[i] = result.get();
1615 }
1616
1617 unsigned DiagID;
1618 if (getLangOpts().ObjCAutoRefCount)
33
Assuming field 'ObjCAutoRefCount' is not equal to 0
34
Taking true branch
1619 DiagID = diag::err_arc_method_not_found;
1620 else
1621 DiagID = isClassMessage ? diag::warn_class_method_not_found
1622 : diag::warn_inst_method_not_found;
1623 if (!getLangOpts().DebuggerSupport) {
35
Assuming field 'DebuggerSupport' is 0
36
Taking true branch
1624 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType);
1625 if (OMD && !OMD->isInvalidDecl()) {
37
Assuming 'OMD' is null
1626 if (getLangOpts().ObjCAutoRefCount)
1627 DiagID = diag::err_method_not_found_with_typo;
1628 else
1629 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo
1630 : diag::warn_instance_method_not_found_with_typo;
1631 Selector MatchedSel = OMD->getSelector();
1632 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back());
1633 if (MatchedSel.isUnarySelector())
1634 Diag(SelLoc, DiagID)
1635 << Sel<< isClassMessage << MatchedSel
1636 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1637 else
1638 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel;
1639 }
1640 else
1641 Diag(SelLoc, DiagID)
1642 << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
1643 SelectorLocs.back());
1644 // Find the class to which we are sending this message.
1645 if (ReceiverType->isObjCObjectPointerType()) {
38
Calling 'Type::isObjCObjectPointerType'
41
Returning from 'Type::isObjCObjectPointerType'
42
Taking true branch
1646 if (ObjCInterfaceDecl *ThisClass =
1647 ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) {
43
Assuming the object is not a 'ObjCObjectPointerType'
44
Called C++ object pointer is null
1648 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared);
1649 if (!RecRange.isInvalid())
1650 if (ThisClass->lookupClassMethod(Sel))
1651 Diag(RecRange.getBegin(),diag::note_receiver_expr_here)
1652 << FixItHint::CreateReplacement(RecRange,
1653 ThisClass->getNameAsString());
1654 }
1655 }
1656 }
1657
1658 // In debuggers, we want to use __unknown_anytype for these
1659 // results so that clients can cast them.
1660 if (getLangOpts().DebuggerSupport) {
1661 ReturnType = Context.UnknownAnyTy;
1662 } else {
1663 ReturnType = Context.getObjCIdType();
1664 }
1665 VK = VK_RValue;
1666 return false;
1667 }
1668
1669 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method,
1670 isClassMessage, isSuperMessage);
1671 VK = Expr::getValueKindForType(Method->getReturnType());
1672
1673 unsigned NumNamedArgs = Sel.getNumArgs();
1674 // Method might have more arguments than selector indicates. This is due
1675 // to addition of c-style arguments in method.
1676 if (Method->param_size() > Sel.getNumArgs())
1677 NumNamedArgs = Method->param_size();
1678 // FIXME. This need be cleaned up.
1679 if (Args.size() < NumNamedArgs) {
1680 Diag(SelLoc, diag::err_typecheck_call_too_few_args)
1681 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size());
1682 return false;
1683 }
1684
1685 // Compute the set of type arguments to be substituted into each parameter
1686 // type.
1687 Optional<ArrayRef<QualType>> typeArgs
1688 = ReceiverType->getObjCSubstitutions(Method->getDeclContext());
1689 bool IsError = false;
1690 for (unsigned i = 0; i < NumNamedArgs; i++) {
1691 // We can't do any type-checking on a type-dependent argument.
1692 if (Args[i]->isTypeDependent())
1693 continue;
1694
1695 Expr *argExpr = Args[i];
1696
1697 ParmVarDecl *param = Method->parameters()[i];
1698 assert(argExpr && "CheckMessageArgumentTypes(): missing expression")((argExpr && "CheckMessageArgumentTypes(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"CheckMessageArgumentTypes(): missing expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1698, __PRETTY_FUNCTION__))
;
1699
1700 if (param->hasAttr<NoEscapeAttr>())
1701 if (auto *BE = dyn_cast<BlockExpr>(
1702 argExpr->IgnoreParenNoopCasts(Context)))
1703 BE->getBlockDecl()->setDoesNotEscape();
1704
1705 // Strip the unbridged-cast placeholder expression off unless it's
1706 // a consumed argument.
1707 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
1708 !param->hasAttr<CFConsumedAttr>())
1709 argExpr = stripARCUnbridgedCast(argExpr);
1710
1711 // If the parameter is __unknown_anytype, infer its type
1712 // from the argument.
1713 if (param->getType() == Context.UnknownAnyTy) {
1714 QualType paramType;
1715 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType);
1716 if (argE.isInvalid()) {
1717 IsError = true;
1718 } else {
1719 Args[i] = argE.get();
1720
1721 // Update the parameter type in-place.
1722 param->setType(paramType);
1723 }
1724 continue;
1725 }
1726
1727 QualType origParamType = param->getType();
1728 QualType paramType = param->getType();
1729 if (typeArgs)
1730 paramType = paramType.substObjCTypeArgs(
1731 Context,
1732 *typeArgs,
1733 ObjCSubstitutionContext::Parameter);
1734
1735 if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
1736 paramType,
1737 diag::err_call_incomplete_argument, argExpr))
1738 return true;
1739
1740 InitializedEntity Entity
1741 = InitializedEntity::InitializeParameter(Context, param, paramType);
1742 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr);
1743 if (ArgE.isInvalid())
1744 IsError = true;
1745 else {
1746 Args[i] = ArgE.getAs<Expr>();
1747
1748 // If we are type-erasing a block to a block-compatible
1749 // Objective-C pointer type, we may need to extend the lifetime
1750 // of the block object.
1751 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() &&
1752 Args[i]->getType()->isBlockPointerType() &&
1753 origParamType->isObjCObjectPointerType()) {
1754 ExprResult arg = Args[i];
1755 maybeExtendBlockObject(arg);
1756 Args[i] = arg.get();
1757 }
1758 }
1759 }
1760
1761 // Promote additional arguments to variadic methods.
1762 if (Method->isVariadic()) {
1763 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
1764 if (Args[i]->isTypeDependent())
1765 continue;
1766
1767 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
1768 nullptr);
1769 IsError |= Arg.isInvalid();
1770 Args[i] = Arg.get();
1771 }
1772 } else {
1773 // Check for extra arguments to non-variadic methods.
1774 if (Args.size() != NumNamedArgs) {
1775 Diag(Args[NumNamedArgs]->getBeginLoc(),
1776 diag::err_typecheck_call_too_many_args)
1777 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size())
1778 << Method->getSourceRange()
1779 << SourceRange(Args[NumNamedArgs]->getBeginLoc(),
1780 Args.back()->getEndLoc());
1781 }
1782 }
1783
1784 DiagnoseSentinelCalls(Method, SelLoc, Args);
1785
1786 // Do additional checkings on method.
1787 IsError |= CheckObjCMethodCall(
1788 Method, SelLoc, makeArrayRef(Args.data(), Args.size()));
1789
1790 return IsError;
1791}
1792
1793bool Sema::isSelfExpr(Expr *RExpr) {
1794 // 'self' is objc 'self' in an objc method only.
1795 ObjCMethodDecl *Method =
1796 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
1797 return isSelfExpr(RExpr, Method);
1798}
1799
1800bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) {
1801 if (!method) return false;
1802
1803 receiver = receiver->IgnoreParenLValueCasts();
1804 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
1805 if (DRE->getDecl() == method->getSelfDecl())
1806 return true;
1807 return false;
1808}
1809
1810/// LookupMethodInType - Look up a method in an ObjCObjectType.
1811ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
1812 bool isInstance) {
1813 const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
1814 if (ObjCInterfaceDecl *iface = objType->getInterface()) {
1815 // Look it up in the main interface (and categories, etc.)
1816 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
1817 return method;
1818
1819 // Okay, look for "private" methods declared in any
1820 // @implementations we've seen.
1821 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
1822 return method;
1823 }
1824
1825 // Check qualifiers.
1826 for (const auto *I : objType->quals())
1827 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance))
1828 return method;
1829
1830 return nullptr;
1831}
1832
1833/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
1834/// list of a qualified objective pointer type.
1835ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
1836 const ObjCObjectPointerType *OPT,
1837 bool Instance)
1838{
1839 ObjCMethodDecl *MD = nullptr;
1840 for (const auto *PROTO : OPT->quals()) {
1841 if ((MD = PROTO->lookupMethod(Sel, Instance))) {
1842 return MD;
1843 }
1844 }
1845 return nullptr;
1846}
1847
1848/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
1849/// objective C interface. This is a property reference expression.
1850ExprResult Sema::
1851HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
1852 Expr *BaseExpr, SourceLocation OpLoc,
1853 DeclarationName MemberName,
1854 SourceLocation MemberLoc,
1855 SourceLocation SuperLoc, QualType SuperType,
1856 bool Super) {
1857 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
1858 ObjCInterfaceDecl *IFace = IFaceT->getDecl();
1859
1860 if (!MemberName.isIdentifier()) {
1861 Diag(MemberLoc, diag::err_invalid_property_name)
1862 << MemberName << QualType(OPT, 0);
1863 return ExprError();
1864 }
1865
1866 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1867
1868 SourceRange BaseRange = Super? SourceRange(SuperLoc)
1869 : BaseExpr->getSourceRange();
1870 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
1871 diag::err_property_not_found_forward_class,
1872 MemberName, BaseRange))
1873 return ExprError();
1874
1875 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(
1876 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1877 // Check whether we can reference this property.
1878 if (DiagnoseUseOfDecl(PD, MemberLoc))
1879 return ExprError();
1880 if (Super)
1881 return new (Context)
1882 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1883 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1884 else
1885 return new (Context)
1886 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1887 OK_ObjCProperty, MemberLoc, BaseExpr);
1888 }
1889 // Check protocols on qualified interfaces.
1890 for (const auto *I : OPT->quals())
1891 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
1892 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1893 // Check whether we can reference this property.
1894 if (DiagnoseUseOfDecl(PD, MemberLoc))
1895 return ExprError();
1896
1897 if (Super)
1898 return new (Context) ObjCPropertyRefExpr(
1899 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc,
1900 SuperLoc, SuperType);
1901 else
1902 return new (Context)
1903 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1904 OK_ObjCProperty, MemberLoc, BaseExpr);
1905 }
1906 // If that failed, look for an "implicit" property by seeing if the nullary
1907 // selector is implemented.
1908
1909 // FIXME: The logic for looking up nullary and unary selectors should be
1910 // shared with the code in ActOnInstanceMessage.
1911
1912 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1913 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1914
1915 // May be found in property's qualified list.
1916 if (!Getter)
1917 Getter = LookupMethodInQualifiedType(Sel, OPT, true);
1918
1919 // If this reference is in an @implementation, check for 'private' methods.
1920 if (!Getter)
1921 Getter = IFace->lookupPrivateMethod(Sel);
1922
1923 if (Getter) {
1924 // Check if we can reference this property.
1925 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1926 return ExprError();
1927 }
1928 // If we found a getter then this may be a valid dot-reference, we
1929 // will look for the matching setter, in case it is needed.
1930 Selector SetterSel =
1931 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1932 PP.getSelectorTable(), Member);
1933 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1934
1935 // May be found in property's qualified list.
1936 if (!Setter)
1937 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
1938
1939 if (!Setter) {
1940 // If this reference is in an @implementation, also check for 'private'
1941 // methods.
1942 Setter = IFace->lookupPrivateMethod(SetterSel);
1943 }
1944
1945 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1946 return ExprError();
1947
1948 // Special warning if member name used in a property-dot for a setter accessor
1949 // does not use a property with same name; e.g. obj.X = ... for a property with
1950 // name 'x'.
1951 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() &&
1952 !IFace->FindPropertyDeclaration(
1953 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1954 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) {
1955 // Do not warn if user is using property-dot syntax to make call to
1956 // user named setter.
1957 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter))
1958 Diag(MemberLoc,
1959 diag::warn_property_access_suggest)
1960 << MemberName << QualType(OPT, 0) << PDecl->getName()
1961 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName());
1962 }
1963 }
1964
1965 if (Getter || Setter) {
1966 if (Super)
1967 return new (Context)
1968 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1969 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1970 else
1971 return new (Context)
1972 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1973 OK_ObjCProperty, MemberLoc, BaseExpr);
1974
1975 }
1976
1977 // Attempt to correct for typos in property names.
1978 DeclFilterCCC<ObjCPropertyDecl> CCC{};
1979 if (TypoCorrection Corrected = CorrectTypo(
1980 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName,
1981 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) {
1982 DeclarationName TypoResult = Corrected.getCorrection();
1983 if (TypoResult.isIdentifier() &&
1984 TypoResult.getAsIdentifierInfo() == Member) {
1985 // There is no need to try the correction if it is the same.
1986 NamedDecl *ChosenDecl =
1987 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl();
1988 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl))
1989 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) {
1990 // This is a class property, we should not use the instance to
1991 // access it.
1992 Diag(MemberLoc, diag::err_class_property_found) << MemberName
1993 << OPT->getInterfaceDecl()->getName()
1994 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(),
1995 OPT->getInterfaceDecl()->getName());
1996 return ExprError();
1997 }
1998 } else {
1999 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest)
2000 << MemberName << QualType(OPT, 0));
2001 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
2002 TypoResult, MemberLoc,
2003 SuperLoc, SuperType, Super);
2004 }
2005 }
2006 ObjCInterfaceDecl *ClassDeclared;
2007 if (ObjCIvarDecl *Ivar =
2008 IFace->lookupInstanceVariable(Member, ClassDeclared)) {
2009 QualType T = Ivar->getType();
2010 if (const ObjCObjectPointerType * OBJPT =
2011 T->getAsObjCInterfacePointerType()) {
2012 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
2013 diag::err_property_not_as_forward_class,
2014 MemberName, BaseExpr))
2015 return ExprError();
2016 }
2017 Diag(MemberLoc,
2018 diag::err_ivar_access_using_property_syntax_suggest)
2019 << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
2020 << FixItHint::CreateReplacement(OpLoc, "->");
2021 return ExprError();
2022 }
2023
2024 Diag(MemberLoc, diag::err_property_not_found)
2025 << MemberName << QualType(OPT, 0);
2026 if (Setter)
2027 Diag(Setter->getLocation(), diag::note_getter_unavailable)
2028 << MemberName << BaseExpr->getSourceRange();
2029 return ExprError();
2030}
2031
2032ExprResult Sema::
2033ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
2034 IdentifierInfo &propertyName,
2035 SourceLocation receiverNameLoc,
2036 SourceLocation propertyNameLoc) {
2037
2038 IdentifierInfo *receiverNamePtr = &receiverName;
2039 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
2040 receiverNameLoc);
2041
2042 QualType SuperType;
2043 if (!IFace) {
2044 // If the "receiver" is 'super' in a method, handle it as an expression-like
2045 // property reference.
2046 if (receiverNamePtr->isStr("super")) {
2047 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
2048 if (auto classDecl = CurMethod->getClassInterface()) {
2049 SuperType = QualType(classDecl->getSuperClassType(), 0);
2050 if (CurMethod->isInstanceMethod()) {
2051 if (SuperType.isNull()) {
2052 // The current class does not have a superclass.
2053 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super)
2054 << CurMethod->getClassInterface()->getIdentifier();
2055 return ExprError();
2056 }
2057 QualType T = Context.getObjCObjectPointerType(SuperType);
2058
2059 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(),
2060 /*BaseExpr*/nullptr,
2061 SourceLocation()/*OpLoc*/,
2062 &propertyName,
2063 propertyNameLoc,
2064 receiverNameLoc, T, true);
2065 }
2066
2067 // Otherwise, if this is a class method, try dispatching to our
2068 // superclass.
2069 IFace = CurMethod->getClassInterface()->getSuperClass();
2070 }
2071 }
2072 }
2073
2074 if (!IFace) {
2075 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier
2076 << tok::l_paren;
2077 return ExprError();
2078 }
2079 }
2080
2081 Selector GetterSel;
2082 Selector SetterSel;
2083 if (auto PD = IFace->FindPropertyDeclaration(
2084 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) {
2085 GetterSel = PD->getGetterName();
2086 SetterSel = PD->getSetterName();
2087 } else {
2088 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName);
2089 SetterSel = SelectorTable::constructSetterSelector(
2090 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName);
2091 }
2092
2093 // Search for a declared property first.
2094 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel);
2095
2096 // If this reference is in an @implementation, check for 'private' methods.
2097 if (!Getter)
2098 Getter = IFace->lookupPrivateClassMethod(GetterSel);
2099
2100 if (Getter) {
2101 // FIXME: refactor/share with ActOnMemberReference().
2102 // Check if we can reference this property.
2103 if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
2104 return ExprError();
2105 }
2106
2107 // Look for the matching setter, in case it is needed.
2108 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2109 if (!Setter) {
2110 // If this reference is in an @implementation, also check for 'private'
2111 // methods.
2112 Setter = IFace->lookupPrivateClassMethod(SetterSel);
2113 }
2114 // Look through local category implementations associated with the class.
2115 if (!Setter)
2116 Setter = IFace->getCategoryClassMethod(SetterSel);
2117
2118 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
2119 return ExprError();
2120
2121 if (Getter || Setter) {
2122 if (!SuperType.isNull())
2123 return new (Context)
2124 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2125 OK_ObjCProperty, propertyNameLoc, receiverNameLoc,
2126 SuperType);
2127
2128 return new (Context) ObjCPropertyRefExpr(
2129 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty,
2130 propertyNameLoc, receiverNameLoc, IFace);
2131 }
2132 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
2133 << &propertyName << Context.getObjCInterfaceType(IFace));
2134}
2135
2136namespace {
2137
2138class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback {
2139 public:
2140 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
2141 // Determine whether "super" is acceptable in the current context.
2142 if (Method && Method->getClassInterface())
2143 WantObjCSuper = Method->getClassInterface()->getSuperClass();
2144 }
2145
2146 bool ValidateCandidate(const TypoCorrection &candidate) override {
2147 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
2148 candidate.isKeyword("super");
2149 }
2150
2151 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2152 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this);
2153 }
2154};
2155
2156} // end anonymous namespace
2157
2158Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
2159 IdentifierInfo *Name,
2160 SourceLocation NameLoc,
2161 bool IsSuper,
2162 bool HasTrailingDot,
2163 ParsedType &ReceiverType) {
2164 ReceiverType = nullptr;
2165
2166 // If the identifier is "super" and there is no trailing dot, we're
2167 // messaging super. If the identifier is "super" and there is a
2168 // trailing dot, it's an instance message.
2169 if (IsSuper && S->isInObjcMethodScope())
2170 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
2171
2172 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
2173 LookupName(Result, S);
2174
2175 switch (Result.getResultKind()) {
2176 case LookupResult::NotFound:
2177 // Normal name lookup didn't find anything. If we're in an
2178 // Objective-C method, look for ivars. If we find one, we're done!
2179 // FIXME: This is a hack. Ivar lookup should be part of normal
2180 // lookup.
2181 if (ObjCMethodDecl *Method = getCurMethodDecl()) {
2182 if (!Method->getClassInterface()) {
2183 // Fall back: let the parser try to parse it as an instance message.
2184 return ObjCInstanceMessage;
2185 }
2186
2187 ObjCInterfaceDecl *ClassDeclared;
2188 if (Method->getClassInterface()->lookupInstanceVariable(Name,
2189 ClassDeclared))
2190 return ObjCInstanceMessage;
2191 }
2192
2193 // Break out; we'll perform typo correction below.
2194 break;
2195
2196 case LookupResult::NotFoundInCurrentInstantiation:
2197 case LookupResult::FoundOverloaded:
2198 case LookupResult::FoundUnresolvedValue:
2199 case LookupResult::Ambiguous:
2200 Result.suppressDiagnostics();
2201 return ObjCInstanceMessage;
2202
2203 case LookupResult::Found: {
2204 // If the identifier is a class or not, and there is a trailing dot,
2205 // it's an instance message.
2206 if (HasTrailingDot)
2207 return ObjCInstanceMessage;
2208 // We found something. If it's a type, then we have a class
2209 // message. Otherwise, it's an instance message.
2210 NamedDecl *ND = Result.getFoundDecl();
2211 QualType T;
2212 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
2213 T = Context.getObjCInterfaceType(Class);
2214 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) {
2215 T = Context.getTypeDeclType(Type);
2216 DiagnoseUseOfDecl(Type, NameLoc);
2217 }
2218 else
2219 return ObjCInstanceMessage;
2220
2221 // We have a class message, and T is the type we're
2222 // messaging. Build source-location information for it.
2223 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2224 ReceiverType = CreateParsedType(T, TSInfo);
2225 return ObjCClassMessage;
2226 }
2227 }
2228
2229 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl());
2230 if (TypoCorrection Corrected = CorrectTypo(
2231 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC,
2232 CTK_ErrorRecovery, nullptr, false, nullptr, false)) {
2233 if (Corrected.isKeyword()) {
2234 // If we've found the keyword "super" (the only keyword that would be
2235 // returned by CorrectTypo), this is a send to super.
2236 diagnoseTypo(Corrected,
2237 PDiag(diag::err_unknown_receiver_suggest) << Name);
2238 return ObjCSuperMessage;
2239 } else if (ObjCInterfaceDecl *Class =
2240 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2241 // If we found a declaration, correct when it refers to an Objective-C
2242 // class.
2243 diagnoseTypo(Corrected,
2244 PDiag(diag::err_unknown_receiver_suggest) << Name);
2245 QualType T = Context.getObjCInterfaceType(Class);
2246 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2247 ReceiverType = CreateParsedType(T, TSInfo);
2248 return ObjCClassMessage;
2249 }
2250 }
2251
2252 // Fall back: let the parser try to parse it as an instance message.
2253 return ObjCInstanceMessage;
2254}
2255
2256ExprResult Sema::ActOnSuperMessage(Scope *S,
2257 SourceLocation SuperLoc,
2258 Selector Sel,
2259 SourceLocation LBracLoc,
2260 ArrayRef<SourceLocation> SelectorLocs,
2261 SourceLocation RBracLoc,
2262 MultiExprArg Args) {
2263 // Determine whether we are inside a method or not.
2264 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
2265 if (!Method) {
2266 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
2267 return ExprError();
2268 }
2269
2270 ObjCInterfaceDecl *Class = Method->getClassInterface();
2271 if (!Class) {
2272 Diag(SuperLoc, diag::err_no_super_class_message)
2273 << Method->getDeclName();
2274 return ExprError();
2275 }
2276
2277 QualType SuperTy(Class->getSuperClassType(), 0);
2278 if (SuperTy.isNull()) {
2279 // The current class does not have a superclass.
2280 Diag(SuperLoc, diag::err_root_class_cannot_use_super)
2281 << Class->getIdentifier();
2282 return ExprError();
2283 }
2284
2285 // We are in a method whose class has a superclass, so 'super'
2286 // is acting as a keyword.
2287 if (Method->getSelector() == Sel)
2288 getCurFunction()->ObjCShouldCallSuper = false;
2289
2290 if (Method->isInstanceMethod()) {
2291 // Since we are in an instance method, this is an instance
2292 // message to the superclass instance.
2293 SuperTy = Context.getObjCObjectPointerType(SuperTy);
2294 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc,
2295 Sel, /*Method=*/nullptr,
2296 LBracLoc, SelectorLocs, RBracLoc, Args);
2297 }
2298
2299 // Since we are in a class method, this is a class message to
2300 // the superclass.
2301 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr,
2302 SuperTy,
2303 SuperLoc, Sel, /*Method=*/nullptr,
2304 LBracLoc, SelectorLocs, RBracLoc, Args);
2305}
2306
2307ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
2308 bool isSuperReceiver,
2309 SourceLocation Loc,
2310 Selector Sel,
2311 ObjCMethodDecl *Method,
2312 MultiExprArg Args) {
2313 TypeSourceInfo *receiverTypeInfo = nullptr;
2314 if (!ReceiverType.isNull())
2315 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
2316
2317 return BuildClassMessage(receiverTypeInfo, ReceiverType,
2318 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
2319 Sel, Method, Loc, Loc, Loc, Args,
2320 /*isImplicit=*/true);
2321}
2322
2323static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
2324 unsigned DiagID,
2325 bool (*refactor)(const ObjCMessageExpr *,
2326 const NSAPI &, edit::Commit &)) {
2327 SourceLocation MsgLoc = Msg->getExprLoc();
2328 if (S.Diags.isIgnored(DiagID, MsgLoc))
2329 return;
2330
2331 SourceManager &SM = S.SourceMgr;
2332 edit::Commit ECommit(SM, S.LangOpts);
2333 if (refactor(Msg,*S.NSAPIObj, ECommit)) {
2334 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
2335 << Msg->getSelector() << Msg->getSourceRange();
2336 // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
2337 if (!ECommit.isCommitable())
2338 return;
2339 for (edit::Commit::edit_iterator
2340 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
2341 const edit::Commit::Edit &Edit = *I;
2342 switch (Edit.Kind) {
2343 case edit::Commit::Act_Insert:
2344 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
2345 Edit.Text,
2346 Edit.BeforePrev));
2347 break;
2348 case edit::Commit::Act_InsertFromRange:
2349 Builder.AddFixItHint(
2350 FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
2351 Edit.getInsertFromRange(SM),
2352 Edit.BeforePrev));
2353 break;
2354 case edit::Commit::Act_Remove:
2355 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
2356 break;
2357 }
2358 }
2359 }
2360}
2361
2362static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
2363 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
2364 edit::rewriteObjCRedundantCallWithLiteral);
2365}
2366
2367static void checkFoundationAPI(Sema &S, SourceLocation Loc,
2368 const ObjCMethodDecl *Method,
2369 ArrayRef<Expr *> Args, QualType ReceiverType,
2370 bool IsClassObjectCall) {
2371 // Check if this is a performSelector method that uses a selector that returns
2372 // a record or a vector type.
2373 if (Method->getSelector().getMethodFamily() != OMF_performSelector ||
2374 Args.empty())
2375 return;
2376 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens());
2377 if (!SE)
2378 return;
2379 ObjCMethodDecl *ImpliedMethod;
2380 if (!IsClassObjectCall) {
2381 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>();
2382 if (!OPT || !OPT->getInterfaceDecl())
2383 return;
2384 ImpliedMethod =
2385 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector());
2386 if (!ImpliedMethod)
2387 ImpliedMethod =
2388 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector());
2389 } else {
2390 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>();
2391 if (!IT)
2392 return;
2393 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector());
2394 if (!ImpliedMethod)
2395 ImpliedMethod =
2396 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector());
2397 }
2398 if (!ImpliedMethod)
2399 return;
2400 QualType Ret = ImpliedMethod->getReturnType();
2401 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) {
2402 QualType Ret = ImpliedMethod->getReturnType();
2403 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector)
2404 << Method->getSelector()
2405 << (!Ret->isRecordType()
2406 ? /*Vector*/ 2
2407 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0);
2408 S.Diag(ImpliedMethod->getBeginLoc(),
2409 diag::note_objc_unsafe_perform_selector_method_declared_here)
2410 << ImpliedMethod->getSelector() << Ret;
2411 }
2412}
2413
2414/// Diagnose use of %s directive in an NSString which is being passed
2415/// as formatting string to formatting method.
2416static void
2417DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S,
2418 ObjCMethodDecl *Method,
2419 Selector Sel,
2420 Expr **Args, unsigned NumArgs) {
2421 unsigned Idx = 0;
2422 bool Format = false;
2423 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily();
2424 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) {
2425 Idx = 0;
2426 Format = true;
2427 }
2428 else if (Method) {
2429 for (const auto *I : Method->specific_attrs<FormatAttr>()) {
2430 if (S.GetFormatNSStringIdx(I, Idx)) {
2431 Format = true;
2432 break;
2433 }
2434 }
2435 }
2436 if (!Format || NumArgs <= Idx)
2437 return;
2438
2439 Expr *FormatExpr = Args[Idx];
2440 if (ObjCStringLiteral *OSL =
2441 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) {
2442 StringLiteral *FormatString = OSL->getString();
2443 if (S.FormatStringHasSArg(FormatString)) {
2444 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2445 << "%s" << 0 << 0;
2446 if (Method)
2447 S.Diag(Method->getLocation(), diag::note_method_declared_at)
2448 << Method->getDeclName();
2449 }
2450 }
2451}
2452
2453/// Build an Objective-C class message expression.
2454///
2455/// This routine takes care of both normal class messages and
2456/// class messages to the superclass.
2457///
2458/// \param ReceiverTypeInfo Type source information that describes the
2459/// receiver of this message. This may be NULL, in which case we are
2460/// sending to the superclass and \p SuperLoc must be a valid source
2461/// location.
2462
2463/// \param ReceiverType The type of the object receiving the
2464/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
2465/// type as that refers to. For a superclass send, this is the type of
2466/// the superclass.
2467///
2468/// \param SuperLoc The location of the "super" keyword in a
2469/// superclass message.
2470///
2471/// \param Sel The selector to which the message is being sent.
2472///
2473/// \param Method The method that this class message is invoking, if
2474/// already known.
2475///
2476/// \param LBracLoc The location of the opening square bracket ']'.
2477///
2478/// \param RBracLoc The location of the closing square bracket ']'.
2479///
2480/// \param ArgsIn The message arguments.
2481ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
2482 QualType ReceiverType,
2483 SourceLocation SuperLoc,
2484 Selector Sel,
2485 ObjCMethodDecl *Method,
2486 SourceLocation LBracLoc,
2487 ArrayRef<SourceLocation> SelectorLocs,
2488 SourceLocation RBracLoc,
2489 MultiExprArg ArgsIn,
2490 bool isImplicit) {
2491 SourceLocation Loc = SuperLoc.isValid()? SuperLoc
5
'?' condition is false
2492 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
2493 if (LBracLoc.isInvalid()) {
6
Taking false branch
2494 Diag(Loc, diag::err_missing_open_square_message_send)
2495 << FixItHint::CreateInsertion(Loc, "[");
2496 LBracLoc = Loc;
2497 }
2498 ArrayRef<SourceLocation> SelectorSlotLocs;
2499 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
7
Assuming the condition is false
2500 SelectorSlotLocs = SelectorLocs;
2501 else
2502 SelectorSlotLocs = Loc;
2503 SourceLocation SelLoc = SelectorSlotLocs.front();
2504
2505 if (ReceiverType->isDependentType()) {
8
Assuming the condition is false
9
Taking false branch
2506 // If the receiver type is dependent, we can't type-check anything
2507 // at this point. Build a dependent expression.
2508 unsigned NumArgs = ArgsIn.size();
2509 Expr **Args = ArgsIn.data();
2510 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2510, __PRETTY_FUNCTION__))
;
2511 return ObjCMessageExpr::Create(
2512 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel,
2513 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc,
2514 isImplicit);
2515 }
2516
2517 // Find the class to which we are sending this message.
2518 ObjCInterfaceDecl *Class = nullptr;
2519 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
10
Assuming the object is a 'ObjCObjectType'
2520 if (!ClassType || !(Class = ClassType->getInterface())) {
11
Assuming 'ClassType' is non-null
12
Assuming pointer value is null
13
Assuming 'Class' is non-null
14
Taking false branch
2521 Diag(Loc, diag::err_invalid_receiver_class_message)
2522 << ReceiverType;
2523 return ExprError();
2524 }
2525 assert
14.1
'Class' is non-null
14.1
'Class' is non-null
(Class && "We don't know which class we're messaging?")((Class && "We don't know which class we're messaging?"
) ? static_cast<void> (0) : __assert_fail ("Class && \"We don't know which class we're messaging?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2525, __PRETTY_FUNCTION__))
;
15
'?' condition is true
2526 // objc++ diagnoses during typename annotation.
2527 if (!getLangOpts().CPlusPlus)
16
Assuming field 'CPlusPlus' is not equal to 0
17
Taking false branch
2528 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs);
2529 // Find the method we are messaging.
2530 if (!Method
17.1
'Method' is null
17.1
'Method' is null
) {
18
Taking true branch
2531 SourceRange TypeRange
2532 = SuperLoc.isValid()? SourceRange(SuperLoc)
19
'?' condition is false
2533 : ReceiverTypeInfo->getTypeLoc().getSourceRange();
2534 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
22
Assuming the condition is false
23
Taking false branch
2535 (getLangOpts().ObjCAutoRefCount
20
Assuming field 'ObjCAutoRefCount' is 0
21
'?' condition is false
2536 ? diag::err_arc_receiver_forward_class
2537 : diag::warn_receiver_forward_class),
2538 TypeRange)) {
2539 // A forward class used in messaging is treated as a 'Class'
2540 Method = LookupFactoryMethodInGlobalPool(Sel,
2541 SourceRange(LBracLoc, RBracLoc));
2542 if (Method && !getLangOpts().ObjCAutoRefCount)
2543 Diag(Method->getLocation(), diag::note_method_sent_forward_class)
2544 << Method->getDeclName();
2545 }
2546 if (!Method
23.1
'Method' is null
23.1
'Method' is null
)
24
Taking true branch
2547 Method = Class->lookupClassMethod(Sel);
2548
2549 // If we have an implementation in scope, check "private" methods.
2550 if (!Method)
25
Assuming 'Method' is null
26
Taking true branch
2551 Method = Class->lookupPrivateClassMethod(Sel);
2552
2553 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs,
27
Assuming 'Method' is null
2554 nullptr, false, false, Class))
2555 return ExprError();
2556 }
2557
2558 // Check the argument types and determine the result type.
2559 QualType ReturnType;
2560 ExprValueKind VK = VK_RValue;
2561
2562 unsigned NumArgs = ArgsIn.size();
2563 Expr **Args = ArgsIn.data();
2564 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType,
28
Calling 'Sema::CheckMessageArgumentTypes'
2565 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
2566 Method, true, SuperLoc.isValid(), LBracLoc,
2567 RBracLoc, SourceRange(), ReturnType, VK))
2568 return ExprError();
2569
2570 if (Method && !Method->getReturnType()->isVoidType() &&
2571 RequireCompleteType(LBracLoc, Method->getReturnType(),
2572 diag::err_illegal_message_expr_incomplete_type))
2573 return ExprError();
2574
2575 // Warn about explicit call of +initialize on its own class. But not on 'super'.
2576 if (Method && Method->getMethodFamily() == OMF_initialize) {
2577 if (!SuperLoc.isValid()) {
2578 const ObjCInterfaceDecl *ID =
2579 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext());
2580 if (ID == Class) {
2581 Diag(Loc, diag::warn_direct_initialize_call);
2582 Diag(Method->getLocation(), diag::note_method_declared_at)
2583 << Method->getDeclName();
2584 }
2585 }
2586 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2587 // [super initialize] is allowed only within an +initialize implementation
2588 if (CurMeth->getMethodFamily() != OMF_initialize) {
2589 Diag(Loc, diag::warn_direct_super_initialize_call);
2590 Diag(Method->getLocation(), diag::note_method_declared_at)
2591 << Method->getDeclName();
2592 Diag(CurMeth->getLocation(), diag::note_method_declared_at)
2593 << CurMeth->getDeclName();
2594 }
2595 }
2596 }
2597
2598 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
2599
2600 // Construct the appropriate ObjCMessageExpr.
2601 ObjCMessageExpr *Result;
2602 if (SuperLoc.isValid())
2603 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2604 SuperLoc, /*IsInstanceSuper=*/false,
2605 ReceiverType, Sel, SelectorLocs,
2606 Method, makeArrayRef(Args, NumArgs),
2607 RBracLoc, isImplicit);
2608 else {
2609 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2610 ReceiverTypeInfo, Sel, SelectorLocs,
2611 Method, makeArrayRef(Args, NumArgs),
2612 RBracLoc, isImplicit);
2613 if (!isImplicit)
2614 checkCocoaAPI(*this, Result);
2615 }
2616 if (Method)
2617 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
2618 ReceiverType, /*IsClassObjectCall=*/true);
2619 return MaybeBindToTemporary(Result);
2620}
2621
2622// ActOnClassMessage - used for both unary and keyword messages.
2623// ArgExprs is optional - if it is present, the number of expressions
2624// is obtained from Sel.getNumArgs().
2625ExprResult Sema::ActOnClassMessage(Scope *S,
2626 ParsedType Receiver,
2627 Selector Sel,
2628 SourceLocation LBracLoc,
2629 ArrayRef<SourceLocation> SelectorLocs,
2630 SourceLocation RBracLoc,
2631 MultiExprArg Args) {
2632 TypeSourceInfo *ReceiverTypeInfo;
2633 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
2634 if (ReceiverType.isNull())
1
Taking false branch
2635 return ExprError();
2636
2637 if (!ReceiverTypeInfo)
2
Assuming 'ReceiverTypeInfo' is non-null
3
Taking false branch
2638 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
2639
2640 return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
4
Calling 'Sema::BuildClassMessage'
2641 /*SuperLoc=*/SourceLocation(), Sel,
2642 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc,
2643 Args);
2644}
2645
2646ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
2647 QualType ReceiverType,
2648 SourceLocation Loc,
2649 Selector Sel,
2650 ObjCMethodDecl *Method,
2651 MultiExprArg Args) {
2652 return BuildInstanceMessage(Receiver, ReceiverType,
2653 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
2654 Sel, Method, Loc, Loc, Loc, Args,
2655 /*isImplicit=*/true);
2656}
2657
2658static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) {
2659 if (!S.NSAPIObj)
2660 return false;
2661 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext());
2662 if (!Protocol)
2663 return false;
2664 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
2665 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>(
2666 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(),
2667 Sema::LookupOrdinaryName))) {
2668 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) {
2669 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl())
2670 return true;
2671 }
2672 }
2673 return false;
2674}
2675
2676/// Build an Objective-C instance message expression.
2677///
2678/// This routine takes care of both normal instance messages and
2679/// instance messages to the superclass instance.
2680///
2681/// \param Receiver The expression that computes the object that will
2682/// receive this message. This may be empty, in which case we are
2683/// sending to the superclass instance and \p SuperLoc must be a valid
2684/// source location.
2685///
2686/// \param ReceiverType The (static) type of the object receiving the
2687/// message. When a \p Receiver expression is provided, this is the
2688/// same type as that expression. For a superclass instance send, this
2689/// is a pointer to the type of the superclass.
2690///
2691/// \param SuperLoc The location of the "super" keyword in a
2692/// superclass instance message.
2693///
2694/// \param Sel The selector to which the message is being sent.
2695///
2696/// \param Method The method that this instance message is invoking, if
2697/// already known.
2698///
2699/// \param LBracLoc The location of the opening square bracket ']'.
2700///
2701/// \param RBracLoc The location of the closing square bracket ']'.
2702///
2703/// \param ArgsIn The message arguments.
2704ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
2705 QualType ReceiverType,
2706 SourceLocation SuperLoc,
2707 Selector Sel,
2708 ObjCMethodDecl *Method,
2709 SourceLocation LBracLoc,
2710 ArrayRef<SourceLocation> SelectorLocs,
2711 SourceLocation RBracLoc,
2712 MultiExprArg ArgsIn,
2713 bool isImplicit) {
2714 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
2715 "SuperLoc must be valid so we can "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
2716 "use it instead.")(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
;
2717
2718 // The location of the receiver.
2719 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc();
2720 SourceRange RecRange =
2721 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange();
2722 ArrayRef<SourceLocation> SelectorSlotLocs;
2723 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2724 SelectorSlotLocs = SelectorLocs;
2725 else
2726 SelectorSlotLocs = Loc;
2727 SourceLocation SelLoc = SelectorSlotLocs.front();
2728
2729 if (LBracLoc.isInvalid()) {
2730 Diag(Loc, diag::err_missing_open_square_message_send)
2731 << FixItHint::CreateInsertion(Loc, "[");
2732 LBracLoc = Loc;
2733 }
2734
2735 // If we have a receiver expression, perform appropriate promotions
2736 // and determine receiver type.
2737 if (Receiver) {
2738 if (Receiver->hasPlaceholderType()) {
2739 ExprResult Result;
2740 if (Receiver->getType() == Context.UnknownAnyTy)
2741 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
2742 else
2743 Result = CheckPlaceholderExpr(Receiver);
2744 if (Result.isInvalid()) return ExprError();
2745 Receiver = Result.get();
2746 }
2747
2748 if (Receiver->isTypeDependent()) {
2749 // If the receiver is type-dependent, we can't type-check anything
2750 // at this point. Build a dependent expression.
2751 unsigned NumArgs = ArgsIn.size();
2752 Expr **Args = ArgsIn.data();
2753 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2753, __PRETTY_FUNCTION__))
;
2754 return ObjCMessageExpr::Create(
2755 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel,
2756 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs),
2757 RBracLoc, isImplicit);
2758 }
2759
2760 // If necessary, apply function/array conversion to the receiver.
2761 // C99 6.7.5.3p[7,8].
2762 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
2763 if (Result.isInvalid())
2764 return ExprError();
2765 Receiver = Result.get();
2766 ReceiverType = Receiver->getType();
2767
2768 // If the receiver is an ObjC pointer, a block pointer, or an
2769 // __attribute__((NSObject)) pointer, we don't need to do any
2770 // special conversion in order to look up a receiver.
2771 if (ReceiverType->isObjCRetainableType()) {
2772 // do nothing
2773 } else if (!getLangOpts().ObjCAutoRefCount &&
2774 !Context.getObjCIdType().isNull() &&
2775 (ReceiverType->isPointerType() ||
2776 ReceiverType->isIntegerType())) {
2777 // Implicitly convert integers and pointers to 'id' but emit a warning.
2778 // But not in ARC.
2779 Diag(Loc, diag::warn_bad_receiver_type)
2780 << ReceiverType
2781 << Receiver->getSourceRange();
2782 if (ReceiverType->isPointerType()) {
2783 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2784 CK_CPointerToObjCPointerCast).get();
2785 } else {
2786 // TODO: specialized warning on null receivers?
2787 bool IsNull = Receiver->isNullPointerConstant(Context,
2788 Expr::NPC_ValueDependentIsNull);
2789 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
2790 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2791 Kind).get();
2792 }
2793 ReceiverType = Receiver->getType();
2794 } else if (getLangOpts().CPlusPlus) {
2795 // The receiver must be a complete type.
2796 if (RequireCompleteType(Loc, Receiver->getType(),
2797 diag::err_incomplete_receiver_type))
2798 return ExprError();
2799
2800 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver);
2801 if (result.isUsable()) {
2802 Receiver = result.get();
2803 ReceiverType = Receiver->getType();
2804 }
2805 }
2806 }
2807
2808 // There's a somewhat weird interaction here where we assume that we
2809 // won't actually have a method unless we also don't need to do some
2810 // of the more detailed type-checking on the receiver.
2811
2812 if (!Method) {
2813 // Handle messages to id and __kindof types (where we use the
2814 // global method pool).
2815 const ObjCObjectType *typeBound = nullptr;
2816 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context,
2817 typeBound);
2818 if (receiverIsIdLike || ReceiverType->isBlockPointerType() ||
2819 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
2820 SmallVector<ObjCMethodDecl*, 4> Methods;
2821 // If we have a type bound, further filter the methods.
2822 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/,
2823 true/*CheckTheOther*/, typeBound);
2824 if (!Methods.empty()) {
2825 // We choose the first method as the initial candidate, then try to
2826 // select a better one.
2827 Method = Methods[0];
2828
2829 if (ObjCMethodDecl *BestMethod =
2830 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods))
2831 Method = BestMethod;
2832
2833 if (!AreMultipleMethodsInGlobalPool(Sel, Method,
2834 SourceRange(LBracLoc, RBracLoc),
2835 receiverIsIdLike, Methods))
2836 DiagnoseUseOfDecl(Method, SelectorSlotLocs);
2837 }
2838 } else if (ReceiverType->isObjCClassOrClassKindOfType() ||
2839 ReceiverType->isObjCQualifiedClassType()) {
2840 // Handle messages to Class.
2841 // We allow sending a message to a qualified Class ("Class<foo>"), which
2842 // is ok as long as one of the protocols implements the selector (if not,
2843 // warn).
2844 if (!ReceiverType->isObjCClassOrClassKindOfType()) {
2845 const ObjCObjectPointerType *QClassTy
2846 = ReceiverType->getAsObjCQualifiedClassType();
2847 // Search protocols for class methods.
2848 Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
2849 if (!Method) {
2850 Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
2851 // warn if instance method found for a Class message.
2852 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) {
2853 Diag(SelLoc, diag::warn_instance_method_on_class_found)
2854 << Method->getSelector() << Sel;
2855 Diag(Method->getLocation(), diag::note_method_declared_at)
2856 << Method->getDeclName();
2857 }
2858 }
2859 } else {
2860 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2861 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
2862 // As a guess, try looking for the method in the current interface.
2863 // This very well may not produce the "right" method.
2864
2865 // First check the public methods in the class interface.
2866 Method = ClassDecl->lookupClassMethod(Sel);
2867
2868 if (!Method)
2869 Method = ClassDecl->lookupPrivateClassMethod(Sel);
2870
2871 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2872 return ExprError();
2873 }
2874 }
2875 if (!Method) {
2876 // If not messaging 'self', look for any factory method named 'Sel'.
2877 if (!Receiver || !isSelfExpr(Receiver)) {
2878 // If no class (factory) method was found, check if an _instance_
2879 // method of the same name exists in the root class only.
2880 SmallVector<ObjCMethodDecl*, 4> Methods;
2881 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2882 false/*InstanceFirst*/,
2883 true/*CheckTheOther*/);
2884 if (!Methods.empty()) {
2885 // We choose the first method as the initial candidate, then try
2886 // to select a better one.
2887 Method = Methods[0];
2888
2889 // If we find an instance method, emit warning.
2890 if (Method->isInstanceMethod()) {
2891 if (const ObjCInterfaceDecl *ID =
2892 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
2893 if (ID->getSuperClass())
2894 Diag(SelLoc, diag::warn_root_inst_method_not_found)
2895 << Sel << SourceRange(LBracLoc, RBracLoc);
2896 }
2897 }
2898
2899 if (ObjCMethodDecl *BestMethod =
2900 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2901 Methods))
2902 Method = BestMethod;
2903 }
2904 }
2905 }
2906 }
2907 } else {
2908 ObjCInterfaceDecl *ClassDecl = nullptr;
2909
2910 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
2911 // long as one of the protocols implements the selector (if not, warn).
2912 // And as long as message is not deprecated/unavailable (warn if it is).
2913 if (const ObjCObjectPointerType *QIdTy
2914 = ReceiverType->getAsObjCQualifiedIdType()) {
2915 // Search protocols for instance methods.
2916 Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
2917 if (!Method)
2918 Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
2919 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2920 return ExprError();
2921 } else if (const ObjCObjectPointerType *OCIType
2922 = ReceiverType->getAsObjCInterfacePointerType()) {
2923 // We allow sending a message to a pointer to an interface (an object).
2924 ClassDecl = OCIType->getInterfaceDecl();
2925
2926 // Try to complete the type. Under ARC, this is a hard error from which
2927 // we don't try to recover.
2928 // FIXME: In the non-ARC case, this will still be a hard error if the
2929 // definition is found in a module that's not visible.
2930 const ObjCInterfaceDecl *forwardClass = nullptr;
2931 if (RequireCompleteType(Loc, OCIType->getPointeeType(),
2932 getLangOpts().ObjCAutoRefCount
2933 ? diag::err_arc_receiver_forward_instance
2934 : diag::warn_receiver_forward_instance,
2935 Receiver? Receiver->getSourceRange()
2936 : SourceRange(SuperLoc))) {
2937 if (getLangOpts().ObjCAutoRefCount)
2938 return ExprError();
2939
2940 forwardClass = OCIType->getInterfaceDecl();
2941 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc,
2942 diag::note_receiver_is_id);
2943 Method = nullptr;
2944 } else {
2945 Method = ClassDecl->lookupInstanceMethod(Sel);
2946 }
2947
2948 if (!Method)
2949 // Search protocol qualifiers.
2950 Method = LookupMethodInQualifiedType(Sel, OCIType, true);
2951
2952 if (!Method) {
2953 // If we have implementations in scope, check "private" methods.
2954 Method = ClassDecl->lookupPrivateMethod(Sel);
2955
2956 if (!Method && getLangOpts().ObjCAutoRefCount) {
2957 Diag(SelLoc, diag::err_arc_may_not_respond)
2958 << OCIType->getPointeeType() << Sel << RecRange
2959 << SourceRange(SelectorLocs.front(), SelectorLocs.back());
2960 return ExprError();
2961 }
2962
2963 if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
2964 // If we still haven't found a method, look in the global pool. This
2965 // behavior isn't very desirable, however we need it for GCC
2966 // compatibility. FIXME: should we deviate??
2967 if (OCIType->qual_empty()) {
2968 SmallVector<ObjCMethodDecl*, 4> Methods;
2969 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2970 true/*InstanceFirst*/,
2971 false/*CheckTheOther*/);
2972 if (!Methods.empty()) {
2973 // We choose the first method as the initial candidate, then try
2974 // to select a better one.
2975 Method = Methods[0];
2976
2977 if (ObjCMethodDecl *BestMethod =
2978 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2979 Methods))
2980 Method = BestMethod;
2981
2982 AreMultipleMethodsInGlobalPool(Sel, Method,
2983 SourceRange(LBracLoc, RBracLoc),
2984 true/*receiverIdOrClass*/,
2985 Methods);
2986 }
2987 if (Method && !forwardClass)
2988 Diag(SelLoc, diag::warn_maynot_respond)
2989 << OCIType->getInterfaceDecl()->getIdentifier()
2990 << Sel << RecRange;
2991 }
2992 }
2993 }
2994 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass))
2995 return ExprError();
2996 } else {
2997 // Reject other random receiver types (e.g. structs).
2998 Diag(Loc, diag::err_bad_receiver_type)
2999 << ReceiverType << Receiver->getSourceRange();
3000 return ExprError();
3001 }
3002 }
3003 }
3004
3005 FunctionScopeInfo *DIFunctionScopeInfo =
3006 (Method && Method->getMethodFamily() == OMF_init)
3007 ? getEnclosingFunction() : nullptr;
3008
3009 if (Method && Method->isDirectMethod()) {
3010 if (ReceiverType->isObjCIdType() && !isImplicit) {
3011 Diag(Receiver->getExprLoc(),
3012 diag::err_messaging_unqualified_id_with_direct_method);
3013 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3014 << Method->getDeclName();
3015 }
3016
3017 if (ReceiverType->isObjCClassType() && !isImplicit) {
3018 Diag(Receiver->getExprLoc(),
3019 diag::err_messaging_class_with_direct_method);
3020 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3021 << Method->getDeclName();
3022 }
3023
3024 if (SuperLoc.isValid()) {
3025 Diag(SuperLoc, diag::err_messaging_super_with_direct_method);
3026 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3027 << Method->getDeclName();
3028 }
3029 } else if (ReceiverType->isObjCIdType() && !isImplicit) {
3030 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id);
3031 }
3032
3033 if (DIFunctionScopeInfo &&
3034 DIFunctionScopeInfo->ObjCIsDesignatedInit &&
3035 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3036 bool isDesignatedInitChain = false;
3037 if (SuperLoc.isValid()) {
3038 if (const ObjCObjectPointerType *
3039 OCIType = ReceiverType->getAsObjCInterfacePointerType()) {
3040 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) {
3041 // Either we know this is a designated initializer or we
3042 // conservatively assume it because we don't know for sure.
3043 if (!ID->declaresOrInheritsDesignatedInitializers() ||
3044 ID->isDesignatedInitializer(Sel)) {
3045 isDesignatedInitChain = true;
3046 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false;
3047 }
3048 }
3049 }
3050 }
3051 if (!isDesignatedInitChain) {
3052 const ObjCMethodDecl *InitMethod = nullptr;
3053 bool isDesignated =
3054 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod);
3055 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3055, __PRETTY_FUNCTION__))
;
3056 (void)isDesignated;
3057 Diag(SelLoc, SuperLoc.isValid() ?
3058 diag::warn_objc_designated_init_non_designated_init_call :
3059 diag::warn_objc_designated_init_non_super_designated_init_call);
3060 Diag(InitMethod->getLocation(),
3061 diag::note_objc_designated_init_marked_here);
3062 }
3063 }
3064
3065 if (DIFunctionScopeInfo &&
3066 DIFunctionScopeInfo->ObjCIsSecondaryInit &&
3067 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3068 if (SuperLoc.isValid()) {
3069 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call);
3070 } else {
3071 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false;
3072 }
3073 }
3074
3075 // Check the message arguments.
3076 unsigned NumArgs = ArgsIn.size();
3077 Expr **Args = ArgsIn.data();
3078 QualType ReturnType;
3079 ExprValueKind VK = VK_RValue;
3080 bool ClassMessage = (ReceiverType->isObjCClassType() ||
3081 ReceiverType->isObjCQualifiedClassType());
3082 if (CheckMessageArgumentTypes(Receiver, ReceiverType,
3083 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
3084 Method, ClassMessage, SuperLoc.isValid(),
3085 LBracLoc, RBracLoc, RecRange, ReturnType, VK))
3086 return ExprError();
3087
3088 if (Method && !Method->getReturnType()->isVoidType() &&
3089 RequireCompleteType(LBracLoc, Method->getReturnType(),
3090 diag::err_illegal_message_expr_incomplete_type))
3091 return ExprError();
3092
3093 // In ARC, forbid the user from sending messages to
3094 // retain/release/autorelease/dealloc/retainCount explicitly.
3095 if (getLangOpts().ObjCAutoRefCount) {
3096 ObjCMethodFamily family =
3097 (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
3098 switch (family) {
3099 case OMF_init:
3100 if (Method)
3101 checkInitMethod(Method, ReceiverType);
3102 break;
3103
3104 case OMF_None:
3105 case OMF_alloc:
3106 case OMF_copy:
3107 case OMF_finalize:
3108 case OMF_mutableCopy:
3109 case OMF_new:
3110 case OMF_self:
3111 case OMF_initialize:
3112 break;
3113
3114 case OMF_dealloc:
3115 case OMF_retain:
3116 case OMF_release:
3117 case OMF_autorelease:
3118 case OMF_retainCount:
3119 Diag(SelLoc, diag::err_arc_illegal_explicit_message)
3120 << Sel << RecRange;
3121 break;
3122
3123 case OMF_performSelector:
3124 if (Method && NumArgs >= 1) {
3125 if (const auto *SelExp =
3126 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) {
3127 Selector ArgSel = SelExp->getSelector();
3128 ObjCMethodDecl *SelMethod =
3129 LookupInstanceMethodInGlobalPool(ArgSel,
3130 SelExp->getSourceRange());
3131 if (!SelMethod)
3132 SelMethod =
3133 LookupFactoryMethodInGlobalPool(ArgSel,
3134 SelExp->getSourceRange());
3135 if (SelMethod) {
3136 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
3137 switch (SelFamily) {
3138 case OMF_alloc:
3139 case OMF_copy:
3140 case OMF_mutableCopy:
3141 case OMF_new:
3142 case OMF_init:
3143 // Issue error, unless ns_returns_not_retained.
3144 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
3145 // selector names a +1 method
3146 Diag(SelLoc,
3147 diag::err_arc_perform_selector_retains);
3148 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3149 << SelMethod->getDeclName();
3150 }
3151 break;
3152 default:
3153 // +0 call. OK. unless ns_returns_retained.
3154 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
3155 // selector names a +1 method
3156 Diag(SelLoc,
3157 diag::err_arc_perform_selector_retains);
3158 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3159 << SelMethod->getDeclName();
3160 }
3161 break;
3162 }
3163 }
3164 } else {
3165 // error (may leak).
3166 Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
3167 Diag(Args[0]->getExprLoc(), diag::note_used_here);
3168 }
3169 }
3170 break;
3171 }
3172 }
3173
3174 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
3175
3176 // Construct the appropriate ObjCMessageExpr instance.
3177 ObjCMessageExpr *Result;
3178 if (SuperLoc.isValid())
3179 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3180 SuperLoc, /*IsInstanceSuper=*/true,
3181 ReceiverType, Sel, SelectorLocs, Method,
3182 makeArrayRef(Args, NumArgs), RBracLoc,
3183 isImplicit);
3184 else {
3185 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3186 Receiver, Sel, SelectorLocs, Method,
3187 makeArrayRef(Args, NumArgs), RBracLoc,
3188 isImplicit);
3189 if (!isImplicit)
3190 checkCocoaAPI(*this, Result);
3191 }
3192 if (Method) {
3193 bool IsClassObjectCall = ClassMessage;
3194 // 'self' message receivers in class methods should be treated as message
3195 // sends to the class object in order for the semantic checks to be
3196 // performed correctly. Messages to 'super' already count as class messages,
3197 // so they don't need to be handled here.
3198 if (Receiver && isSelfExpr(Receiver)) {
3199 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
3200 if (OPT->getObjectType()->isObjCClass()) {
3201 if (const auto *CurMeth = getCurMethodDecl()) {
3202 IsClassObjectCall = true;
3203 ReceiverType =
3204 Context.getObjCInterfaceType(CurMeth->getClassInterface());
3205 }
3206 }
3207 }
3208 }
3209 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
3210 ReceiverType, IsClassObjectCall);
3211 }
3212
3213 if (getLangOpts().ObjCAutoRefCount) {
3214 // In ARC, annotate delegate init calls.
3215 if (Result->getMethodFamily() == OMF_init &&
3216 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3217 // Only consider init calls *directly* in init implementations,
3218 // not within blocks.
3219 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
3220 if (method && method->getMethodFamily() == OMF_init) {
3221 // The implicit assignment to self means we also don't want to
3222 // consume the result.
3223 Result->setDelegateInitCall(true);
3224 return Result;
3225 }
3226 }
3227
3228 // In ARC, check for message sends which are likely to introduce
3229 // retain cycles.
3230 checkRetainCycles(Result);
3231 }
3232
3233 if (getLangOpts().ObjCWeak) {
3234 if (!isImplicit && Method) {
3235 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) {
3236 bool IsWeak =
3237 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak;
3238 if (!IsWeak && Sel.isUnarySelector())
3239 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak;
3240 if (IsWeak && !isUnevaluatedContext() &&
3241 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc))
3242 getCurFunction()->recordUseOfWeak(Result, Prop);
3243 }
3244 }
3245 }
3246
3247 CheckObjCCircularContainer(Result);
3248
3249 return MaybeBindToTemporary(Result);
3250}
3251
3252static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) {
3253 if (ObjCSelectorExpr *OSE =
3254 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) {
3255 Selector Sel = OSE->getSelector();
3256 SourceLocation Loc = OSE->getAtLoc();
3257 auto Pos = S.ReferencedSelectors.find(Sel);
3258 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc)
3259 S.ReferencedSelectors.erase(Pos);
3260 }
3261}
3262
3263// ActOnInstanceMessage - used for both unary and keyword messages.
3264// ArgExprs is optional - if it is present, the number of expressions
3265// is obtained from Sel.getNumArgs().
3266ExprResult Sema::ActOnInstanceMessage(Scope *S,
3267 Expr *Receiver,
3268 Selector Sel,
3269 SourceLocation LBracLoc,
3270 ArrayRef<SourceLocation> SelectorLocs,
3271 SourceLocation RBracLoc,
3272 MultiExprArg Args) {
3273 if (!Receiver)
3274 return ExprError();
3275
3276 // A ParenListExpr can show up while doing error recovery with invalid code.
3277 if (isa<ParenListExpr>(Receiver)) {
3278 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver);
3279 if (Result.isInvalid()) return ExprError();
3280 Receiver = Result.get();
3281 }
3282
3283 if (RespondsToSelectorSel.isNull()) {
3284 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector");
3285 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId);
3286 }
3287 if (Sel == RespondsToSelectorSel)
3288 RemoveSelectorFromWarningCache(*this, Args[0]);
3289
3290 return BuildInstanceMessage(Receiver, Receiver->getType(),
3291 /*SuperLoc=*/SourceLocation(), Sel,
3292 /*Method=*/nullptr, LBracLoc, SelectorLocs,
3293 RBracLoc, Args);
3294}
3295
3296enum ARCConversionTypeClass {
3297 /// int, void, struct A
3298 ACTC_none,
3299
3300 /// id, void (^)()
3301 ACTC_retainable,
3302
3303 /// id*, id***, void (^*)(),
3304 ACTC_indirectRetainable,
3305
3306 /// void* might be a normal C type, or it might a CF type.
3307 ACTC_voidPtr,
3308
3309 /// struct A*
3310 ACTC_coreFoundation
3311};
3312
3313static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
3314 return (ACTC == ACTC_retainable ||
3315 ACTC == ACTC_coreFoundation ||
3316 ACTC == ACTC_voidPtr);
3317}
3318
3319static bool isAnyCLike(ARCConversionTypeClass ACTC) {
3320 return ACTC == ACTC_none ||
3321 ACTC == ACTC_voidPtr ||
3322 ACTC == ACTC_coreFoundation;
3323}
3324
3325static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
3326 bool isIndirect = false;
3327
3328 // Ignore an outermost reference type.
3329 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
3330 type = ref->getPointeeType();
3331 isIndirect = true;
3332 }
3333
3334 // Drill through pointers and arrays recursively.
3335 while (true) {
3336 if (const PointerType *ptr = type->getAs<PointerType>()) {
3337 type = ptr->getPointeeType();
3338
3339 // The first level of pointer may be the innermost pointer on a CF type.
3340 if (!isIndirect) {
3341 if (type->isVoidType()) return ACTC_voidPtr;
3342 if (type->isRecordType()) return ACTC_coreFoundation;
3343 }
3344 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
3345 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
3346 } else {
3347 break;
3348 }
3349 isIndirect = true;
3350 }
3351
3352 if (isIndirect) {
3353 if (type->isObjCARCBridgableType())
3354 return ACTC_indirectRetainable;
3355 return ACTC_none;
3356 }
3357
3358 if (type->isObjCARCBridgableType())
3359 return ACTC_retainable;
3360
3361 return ACTC_none;
3362}
3363
3364namespace {
3365 /// A result from the cast checker.
3366 enum ACCResult {
3367 /// Cannot be casted.
3368 ACC_invalid,
3369
3370 /// Can be safely retained or not retained.
3371 ACC_bottom,
3372
3373 /// Can be casted at +0.
3374 ACC_plusZero,
3375
3376 /// Can be casted at +1.
3377 ACC_plusOne
3378 };
3379 ACCResult merge(ACCResult left, ACCResult right) {
3380 if (left == right) return left;
3381 if (left == ACC_bottom) return right;
3382 if (right == ACC_bottom) return left;
3383 return ACC_invalid;
3384 }
3385
3386 /// A checker which white-lists certain expressions whose conversion
3387 /// to or from retainable type would otherwise be forbidden in ARC.
3388 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
3389 typedef StmtVisitor<ARCCastChecker, ACCResult> super;
3390
3391 ASTContext &Context;
3392 ARCConversionTypeClass SourceClass;
3393 ARCConversionTypeClass TargetClass;
3394 bool Diagnose;
3395
3396 static bool isCFType(QualType type) {
3397 // Someday this can use ns_bridged. For now, it has to do this.
3398 return type->isCARCBridgableType();
3399 }
3400
3401 public:
3402 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
3403 ARCConversionTypeClass target, bool diagnose)
3404 : Context(Context), SourceClass(source), TargetClass(target),
3405 Diagnose(diagnose) {}
3406
3407 using super::Visit;
3408 ACCResult Visit(Expr *e) {
3409 return super::Visit(e->IgnoreParens());
3410 }
3411
3412 ACCResult VisitStmt(Stmt *s) {
3413 return ACC_invalid;
3414 }
3415
3416 /// Null pointer constants can be casted however you please.
3417 ACCResult VisitExpr(Expr *e) {
3418 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
3419 return ACC_bottom;
3420 return ACC_invalid;
3421 }
3422
3423 /// Objective-C string literals can be safely casted.
3424 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
3425 // If we're casting to any retainable type, go ahead. Global
3426 // strings are immune to retains, so this is bottom.
3427 if (isAnyRetainable(TargetClass)) return ACC_bottom;
3428
3429 return ACC_invalid;
3430 }
3431
3432 /// Look through certain implicit and explicit casts.
3433 ACCResult VisitCastExpr(CastExpr *e) {
3434 switch (e->getCastKind()) {
3435 case CK_NullToPointer:
3436 return ACC_bottom;
3437
3438 case CK_NoOp:
3439 case CK_LValueToRValue:
3440 case CK_BitCast:
3441 case CK_CPointerToObjCPointerCast:
3442 case CK_BlockPointerToObjCPointerCast:
3443 case CK_AnyPointerToBlockPointerCast:
3444 return Visit(e->getSubExpr());
3445
3446 default:
3447 return ACC_invalid;
3448 }
3449 }
3450
3451 /// Look through unary extension.
3452 ACCResult VisitUnaryExtension(UnaryOperator *e) {
3453 return Visit(e->getSubExpr());
3454 }
3455
3456 /// Ignore the LHS of a comma operator.
3457 ACCResult VisitBinComma(BinaryOperator *e) {
3458 return Visit(e->getRHS());
3459 }
3460
3461 /// Conditional operators are okay if both sides are okay.
3462 ACCResult VisitConditionalOperator(ConditionalOperator *e) {
3463 ACCResult left = Visit(e->getTrueExpr());
3464 if (left == ACC_invalid) return ACC_invalid;
3465 return merge(left, Visit(e->getFalseExpr()));
3466 }
3467
3468 /// Look through pseudo-objects.
3469 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
3470 // If we're getting here, we should always have a result.
3471 return Visit(e->getResultExpr());
3472 }
3473
3474 /// Statement expressions are okay if their result expression is okay.
3475 ACCResult VisitStmtExpr(StmtExpr *e) {
3476 return Visit(e->getSubStmt()->body_back());
3477 }
3478
3479 /// Some declaration references are okay.
3480 ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
3481 VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
3482 // References to global constants are okay.
3483 if (isAnyRetainable(TargetClass) &&
3484 isAnyRetainable(SourceClass) &&
3485 var &&
3486 !var->hasDefinition(Context) &&
3487 var->getType().isConstQualified()) {
3488
3489 // In system headers, they can also be assumed to be immune to retains.
3490 // These are things like 'kCFStringTransformToLatin'.
3491 if (Context.getSourceManager().isInSystemHeader(var->getLocation()))
3492 return ACC_bottom;
3493
3494 return ACC_plusZero;
3495 }
3496
3497 // Nothing else.
3498 return ACC_invalid;
3499 }
3500
3501 /// Some calls are okay.
3502 ACCResult VisitCallExpr(CallExpr *e) {
3503 if (FunctionDecl *fn = e->getDirectCallee())
3504 if (ACCResult result = checkCallToFunction(fn))
3505 return result;
3506
3507 return super::VisitCallExpr(e);
3508 }
3509
3510 ACCResult checkCallToFunction(FunctionDecl *fn) {
3511 // Require a CF*Ref return type.
3512 if (!isCFType(fn->getReturnType()))
3513 return ACC_invalid;
3514
3515 if (!isAnyRetainable(TargetClass))
3516 return ACC_invalid;
3517
3518 // Honor an explicit 'not retained' attribute.
3519 if (fn->hasAttr<CFReturnsNotRetainedAttr>())
3520 return ACC_plusZero;
3521
3522 // Honor an explicit 'retained' attribute, except that for
3523 // now we're not going to permit implicit handling of +1 results,
3524 // because it's a bit frightening.
3525 if (fn->hasAttr<CFReturnsRetainedAttr>())
3526 return Diagnose ? ACC_plusOne
3527 : ACC_invalid; // ACC_plusOne if we start accepting this
3528
3529 // Recognize this specific builtin function, which is used by CFSTR.
3530 unsigned builtinID = fn->getBuiltinID();
3531 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
3532 return ACC_bottom;
3533
3534 // Otherwise, don't do anything implicit with an unaudited function.
3535 if (!fn->hasAttr<CFAuditedTransferAttr>())
3536 return ACC_invalid;
3537
3538 // Otherwise, it's +0 unless it follows the create convention.
3539 if (ento::coreFoundation::followsCreateRule(fn))
3540 return Diagnose ? ACC_plusOne
3541 : ACC_invalid; // ACC_plusOne if we start accepting this
3542
3543 return ACC_plusZero;
3544 }
3545
3546 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
3547 return checkCallToMethod(e->getMethodDecl());
3548 }
3549
3550 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
3551 ObjCMethodDecl *method;
3552 if (e->isExplicitProperty())
3553 method = e->getExplicitProperty()->getGetterMethodDecl();
3554 else
3555 method = e->getImplicitPropertyGetter();
3556 return checkCallToMethod(method);
3557 }
3558
3559 ACCResult checkCallToMethod(ObjCMethodDecl *method) {
3560 if (!method) return ACC_invalid;
3561
3562 // Check for message sends to functions returning CF types. We
3563 // just obey the Cocoa conventions with these, even though the
3564 // return type is CF.
3565 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType()))
3566 return ACC_invalid;
3567
3568 // If the method is explicitly marked not-retained, it's +0.
3569 if (method->hasAttr<CFReturnsNotRetainedAttr>())
3570 return ACC_plusZero;
3571
3572 // If the method is explicitly marked as returning retained, or its
3573 // selector follows a +1 Cocoa convention, treat it as +1.
3574 if (method->hasAttr<CFReturnsRetainedAttr>())
3575 return ACC_plusOne;
3576
3577 switch (method->getSelector().getMethodFamily()) {
3578 case OMF_alloc:
3579 case OMF_copy:
3580 case OMF_mutableCopy:
3581 case OMF_new:
3582 return ACC_plusOne;
3583
3584 default:
3585 // Otherwise, treat it as +0.
3586 return ACC_plusZero;
3587 }
3588 }
3589 };
3590} // end anonymous namespace
3591
3592bool Sema::isKnownName(StringRef name) {
3593 if (name.empty())
3594 return false;
3595 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
3596 Sema::LookupOrdinaryName);
3597 return LookupName(R, TUScope, false);
3598}
3599
3600static void addFixitForObjCARCConversion(Sema &S,
3601 DiagnosticBuilder &DiagB,
3602 Sema::CheckedConversionKind CCK,
3603 SourceLocation afterLParen,
3604 QualType castType,
3605 Expr *castExpr,
3606 Expr *realCast,
3607 const char *bridgeKeyword,
3608 const char *CFBridgeName) {
3609 // We handle C-style and implicit casts here.
3610 switch (CCK) {
3611 case Sema::CCK_ImplicitConversion:
3612 case Sema::CCK_ForBuiltinOverloadedOp:
3613 case Sema::CCK_CStyleCast:
3614 case Sema::CCK_OtherCast:
3615 break;
3616 case Sema::CCK_FunctionalCast:
3617 return;
3618 }
3619
3620 if (CFBridgeName) {
3621 if (CCK == Sema::CCK_OtherCast) {
3622 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3623 SourceRange range(NCE->getOperatorLoc(),
3624 NCE->getAngleBrackets().getEnd());
3625 SmallString<32> BridgeCall;
3626
3627 SourceManager &SM = S.getSourceManager();
3628 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3629 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3630 BridgeCall += ' ';
3631
3632 BridgeCall += CFBridgeName;
3633 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall));
3634 }
3635 return;
3636 }
3637 Expr *castedE = castExpr;
3638 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
3639 castedE = CCE->getSubExpr();
3640 castedE = castedE->IgnoreImpCasts();
3641 SourceRange range = castedE->getSourceRange();
3642
3643 SmallString<32> BridgeCall;
3644
3645 SourceManager &SM = S.getSourceManager();
3646 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3647 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3648 BridgeCall += ' ';
3649
3650 BridgeCall += CFBridgeName;
3651
3652 if (isa<ParenExpr>(castedE)) {
3653 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3654 BridgeCall));
3655 } else {
3656 BridgeCall += '(';
3657 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3658 BridgeCall));
3659 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3660 S.getLocForEndOfToken(range.getEnd()),
3661 ")"));
3662 }
3663 return;
3664 }
3665
3666 if (CCK == Sema::CCK_CStyleCast) {
3667 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
3668 } else if (CCK == Sema::CCK_OtherCast) {
3669 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3670 std::string castCode = "(";
3671 castCode += bridgeKeyword;
3672 castCode += castType.getAsString();
3673 castCode += ")";
3674 SourceRange Range(NCE->getOperatorLoc(),
3675 NCE->getAngleBrackets().getEnd());
3676 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode));
3677 }
3678 } else {
3679 std::string castCode = "(";
3680 castCode += bridgeKeyword;
3681 castCode += castType.getAsString();
3682 castCode += ")";
3683 Expr *castedE = castExpr->IgnoreImpCasts();
3684 SourceRange range = castedE->getSourceRange();
3685 if (isa<ParenExpr>(castedE)) {
3686 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3687 castCode));
3688 } else {
3689 castCode += "(";
3690 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3691 castCode));
3692 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3693 S.getLocForEndOfToken(range.getEnd()),
3694 ")"));
3695 }
3696 }
3697}
3698
3699template <typename T>
3700static inline T *getObjCBridgeAttr(const TypedefType *TD) {
3701 TypedefNameDecl *TDNDecl = TD->getDecl();
3702 QualType QT = TDNDecl->getUnderlyingType();
3703 if (QT->isPointerType()) {
3704 QT = QT->getPointeeType();
3705 if (const RecordType *RT = QT->getAs<RecordType>())
3706 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl())
3707 return RD->getAttr<T>();
3708 }
3709 return nullptr;
3710}
3711
3712static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T,
3713 TypedefNameDecl *&TDNDecl) {
3714 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3715 TDNDecl = TD->getDecl();
3716 if (ObjCBridgeRelatedAttr *ObjCBAttr =
3717 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD))
3718 return ObjCBAttr;
3719 T = TDNDecl->getUnderlyingType();
3720 }
3721 return nullptr;
3722}
3723
3724static void
3725diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
3726 QualType castType, ARCConversionTypeClass castACTC,
3727 Expr *castExpr, Expr *realCast,
3728 ARCConversionTypeClass exprACTC,
3729 Sema::CheckedConversionKind CCK) {
3730 SourceLocation loc =
3731 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
3732
3733 if (S.makeUnavailableInSystemHeader(loc,
3734 UnavailableAttr::IR_ARCForbiddenConversion))
3735 return;
3736
3737 QualType castExprType = castExpr->getType();
3738 // Defer emitting a diagnostic for bridge-related casts; that will be
3739 // handled by CheckObjCBridgeRelatedConversions.
3740 TypedefNameDecl *TDNDecl = nullptr;
3741 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable &&
3742 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) ||
3743 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable &&
3744 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl)))
3745 return;
3746
3747 unsigned srcKind = 0;
3748 switch (exprACTC) {
3749 case ACTC_none:
3750 case ACTC_coreFoundation:
3751 case ACTC_voidPtr:
3752 srcKind = (castExprType->isPointerType() ? 1 : 0);
3753 break;
3754 case ACTC_retainable:
3755 srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
3756 break;
3757 case ACTC_indirectRetainable:
3758 srcKind = 4;
3759 break;
3760 }
3761
3762 // Check whether this could be fixed with a bridge cast.
3763 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin());
3764 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
3765
3766 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1;
3767
3768 // Bridge from an ARC type to a CF type.
3769 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
3770
3771 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3772 << convKindForDiag
3773 << 2 // of C pointer type
3774 << castExprType
3775 << unsigned(castType->isBlockPointerType()) // to ObjC|block type
3776 << castType
3777 << castRange
3778 << castExpr->getSourceRange();
3779 bool br = S.isKnownName("CFBridgingRelease");
3780 ACCResult CreateRule =
3781 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3782 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3782, __PRETTY_FUNCTION__))
;
3783 if (CreateRule != ACC_plusOne)
3784 {
3785 DiagnosticBuilder DiagB =
3786 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3787 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3788
3789 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3790 castType, castExpr, realCast, "__bridge ",
3791 nullptr);
3792 }
3793 if (CreateRule != ACC_plusZero)
3794 {
3795 DiagnosticBuilder DiagB =
3796 (CCK == Sema::CCK_OtherCast && !br) ?
3797 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType :
3798 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3799 diag::note_arc_bridge_transfer)
3800 << castExprType << br;
3801
3802 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3803 castType, castExpr, realCast, "__bridge_transfer ",
3804 br ? "CFBridgingRelease" : nullptr);
3805 }
3806
3807 return;
3808 }
3809
3810 // Bridge from a CF type to an ARC type.
3811 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
3812 bool br = S.isKnownName("CFBridgingRetain");
3813 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3814 << convKindForDiag
3815 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
3816 << castExprType
3817 << 2 // to C pointer type
3818 << castType
3819 << castRange
3820 << castExpr->getSourceRange();
3821 ACCResult CreateRule =
3822 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3823 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3823, __PRETTY_FUNCTION__))
;
3824 if (CreateRule != ACC_plusOne)
3825 {
3826 DiagnosticBuilder DiagB =
3827 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3828 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3829 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3830 castType, castExpr, realCast, "__bridge ",
3831 nullptr);
3832 }
3833 if (CreateRule != ACC_plusZero)
3834 {
3835 DiagnosticBuilder DiagB =
3836 (CCK == Sema::CCK_OtherCast && !br) ?
3837 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType :
3838 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3839 diag::note_arc_bridge_retained)
3840 << castType << br;
3841
3842 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3843 castType, castExpr, realCast, "__bridge_retained ",
3844 br ? "CFBridgingRetain" : nullptr);
3845 }
3846
3847 return;
3848 }
3849
3850 S.Diag(loc, diag::err_arc_mismatched_cast)
3851 << !convKindForDiag
3852 << srcKind << castExprType << castType
3853 << castRange << castExpr->getSourceRange();
3854}
3855
3856template <typename TB>
3857static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr,
3858 bool &HadTheAttribute, bool warn) {
3859 QualType T = castExpr->getType();
3860 HadTheAttribute = false;
3861 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3862 TypedefNameDecl *TDNDecl = TD->getDecl();
3863 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3864 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3865 HadTheAttribute = true;
3866 if (Parm->isStr("id"))
3867 return true;
3868
3869 NamedDecl *Target = nullptr;
3870 // Check for an existing type with this name.
3871 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3872 Sema::LookupOrdinaryName);
3873 if (S.LookupName(R, S.TUScope)) {
3874 Target = R.getFoundDecl();
3875 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3876 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target);
3877 if (const ObjCObjectPointerType *InterfacePointerType =
3878 castType->getAsObjCInterfacePointerType()) {
3879 ObjCInterfaceDecl *CastClass
3880 = InterfacePointerType->getObjectType()->getInterface();
3881 if ((CastClass == ExprClass) ||
3882 (CastClass && CastClass->isSuperClassOf(ExprClass)))
3883 return true;
3884 if (warn)
3885 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3886 << T << Target->getName() << castType->getPointeeType();
3887 return false;
3888 } else if (castType->isObjCIdType() ||
3889 (S.Context.ObjCObjectAdoptsQTypeProtocols(
3890 castType, ExprClass)))
3891 // ok to cast to 'id'.
3892 // casting to id<p-list> is ok if bridge type adopts all of
3893 // p-list protocols.
3894 return true;
3895 else {
3896 if (warn) {
3897 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3898 << T << Target->getName() << castType;
3899 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3900 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3901 }
3902 return false;
3903 }
3904 }
3905 } else if (!castType->isObjCIdType()) {
3906 S.Diag(castExpr->getBeginLoc(),
3907 diag::err_objc_cf_bridged_not_interface)
3908 << castExpr->getType() << Parm;
3909 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3910 if (Target)
3911 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3912 }
3913 return true;
3914 }
3915 return false;
3916 }
3917 T = TDNDecl->getUnderlyingType();
3918 }
3919 return true;
3920}
3921
3922template <typename TB>
3923static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr,
3924 bool &HadTheAttribute, bool warn) {
3925 QualType T = castType;
3926 HadTheAttribute = false;
3927 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3928 TypedefNameDecl *TDNDecl = TD->getDecl();
3929 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3930 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3931 HadTheAttribute = true;
3932 if (Parm->isStr("id"))
3933 return true;
3934
3935 NamedDecl *Target = nullptr;
3936 // Check for an existing type with this name.
3937 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3938 Sema::LookupOrdinaryName);
3939 if (S.LookupName(R, S.TUScope)) {
3940 Target = R.getFoundDecl();
3941 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3942 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target);
3943 if (const ObjCObjectPointerType *InterfacePointerType =
3944 castExpr->getType()->getAsObjCInterfacePointerType()) {
3945 ObjCInterfaceDecl *ExprClass
3946 = InterfacePointerType->getObjectType()->getInterface();
3947 if ((CastClass == ExprClass) ||
3948 (ExprClass && CastClass->isSuperClassOf(ExprClass)))
3949 return true;
3950 if (warn) {
3951 S.Diag(castExpr->getBeginLoc(),
3952 diag::warn_objc_invalid_bridge_to_cf)
3953 << castExpr->getType()->getPointeeType() << T;
3954 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3955 }
3956 return false;
3957 } else if (castExpr->getType()->isObjCIdType() ||
3958 (S.Context.QIdProtocolsAdoptObjCObjectProtocols(
3959 castExpr->getType(), CastClass)))
3960 // ok to cast an 'id' expression to a CFtype.
3961 // ok to cast an 'id<plist>' expression to CFtype provided plist
3962 // adopts all of CFtype's ObjetiveC's class plist.
3963 return true;
3964 else {
3965 if (warn) {
3966 S.Diag(castExpr->getBeginLoc(),
3967 diag::warn_objc_invalid_bridge_to_cf)
3968 << castExpr->getType() << castType;
3969 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3970 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3971 }
3972 return false;
3973 }
3974 }
3975 }
3976 S.Diag(castExpr->getBeginLoc(),
3977 diag::err_objc_ns_bridged_invalid_cfobject)
3978 << castExpr->getType() << castType;
3979 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3980 if (Target)
3981 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3982 return true;
3983 }
3984 return false;
3985 }
3986 T = TDNDecl->getUnderlyingType();
3987 }
3988 return true;
3989}
3990
3991void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) {
3992 if (!getLangOpts().ObjC)
3993 return;
3994 // warn in presence of __bridge casting to or from a toll free bridge cast.
3995 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType());
3996 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
3997 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) {
3998 bool HasObjCBridgeAttr;
3999 bool ObjCBridgeAttrWillNotWarn =
4000 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4001 false);
4002 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4003 return;
4004 bool HasObjCBridgeMutableAttr;
4005 bool ObjCBridgeMutableAttrWillNotWarn =
4006 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4007 HasObjCBridgeMutableAttr, false);
4008 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4009 return;
4010
4011 if (HasObjCBridgeAttr)
4012 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4013 true);
4014 else if (HasObjCBridgeMutableAttr)
4015 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4016 HasObjCBridgeMutableAttr, true);
4017 }
4018 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) {
4019 bool HasObjCBridgeAttr;
4020 bool ObjCBridgeAttrWillNotWarn =
4021 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4022 false);
4023 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4024 return;
4025 bool HasObjCBridgeMutableAttr;
4026 bool ObjCBridgeMutableAttrWillNotWarn =
4027 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4028 HasObjCBridgeMutableAttr, false);
4029 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4030 return;
4031
4032 if (HasObjCBridgeAttr)
4033 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4034 true);
4035 else if (HasObjCBridgeMutableAttr)
4036 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4037 HasObjCBridgeMutableAttr, true);
4038 }
4039}
4040
4041void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) {
4042 QualType SrcType = castExpr->getType();
4043 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) {
4044 if (PRE->isExplicitProperty()) {
4045 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty())
4046 SrcType = PDecl->getType();
4047 }
4048 else if (PRE->isImplicitProperty()) {
4049 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter())
4050 SrcType = Getter->getReturnType();
4051 }
4052 }
4053
4054 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType);
4055 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType);
4056 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation)
4057 return;
4058 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType,
4059 castExpr);
4060}
4061
4062bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
4063 CastKind &Kind) {
4064 if (!getLangOpts().ObjC)
4065 return false;
4066 ARCConversionTypeClass exprACTC =
4067 classifyTypeForARCConversion(castExpr->getType());
4068 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4069 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) ||
4070 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) {
4071 CheckTollFreeBridgeCast(castType, castExpr);
4072 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast
4073 : CK_CPointerToObjCPointerCast;
4074 return true;
4075 }
4076 return false;
4077}
4078
4079bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc,
4080 QualType DestType, QualType SrcType,
4081 ObjCInterfaceDecl *&RelatedClass,
4082 ObjCMethodDecl *&ClassMethod,
4083 ObjCMethodDecl *&InstanceMethod,
4084 TypedefNameDecl *&TDNDecl,
4085 bool CfToNs, bool Diagnose) {
4086 QualType T = CfToNs ? SrcType : DestType;
4087 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl);
4088 if (!ObjCBAttr)
4089 return false;
4090
4091 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass();
4092 IdentifierInfo *CMId = ObjCBAttr->getClassMethod();
4093 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod();
4094 if (!RCId)
4095 return false;
4096 NamedDecl *Target = nullptr;
4097 // Check for an existing type with this name.
4098 LookupResult R(*this, DeclarationName(RCId), SourceLocation(),
4099 Sema::LookupOrdinaryName);
4100 if (!LookupName(R, TUScope)) {
4101 if (Diagnose) {
4102 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId
4103 << SrcType << DestType;
4104 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4105 }
4106 return false;
4107 }
4108 Target = R.getFoundDecl();
4109 if (Target && isa<ObjCInterfaceDecl>(Target))
4110 RelatedClass = cast<ObjCInterfaceDecl>(Target);
4111 else {
4112 if (Diagnose) {
4113 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId
4114 << SrcType << DestType;
4115 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4116 if (Target)
4117 Diag(Target->getBeginLoc(), diag::note_declared_at);
4118 }
4119 return false;
4120 }
4121
4122 // Check for an existing class method with the given selector name.
4123 if (CfToNs && CMId) {
4124 Selector Sel = Context.Selectors.getUnarySelector(CMId);
4125 ClassMethod = RelatedClass->lookupMethod(Sel, false);
4126 if (!ClassMethod) {
4127 if (Diagnose) {
4128 Diag(Loc, diag::err_objc_bridged_related_known_method)
4129 << SrcType << DestType << Sel << false;
4130 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4131 }
4132 return false;
4133 }
4134 }
4135
4136 // Check for an existing instance method with the given selector name.
4137 if (!CfToNs && IMId) {
4138 Selector Sel = Context.Selectors.getNullarySelector(IMId);
4139 InstanceMethod = RelatedClass->lookupMethod(Sel, true);
4140 if (!InstanceMethod) {
4141 if (Diagnose) {
4142 Diag(Loc, diag::err_objc_bridged_related_known_method)
4143 << SrcType << DestType << Sel << true;
4144 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4145 }
4146 return false;
4147 }
4148 }
4149 return true;
4150}
4151
4152bool
4153Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc,
4154 QualType DestType, QualType SrcType,
4155 Expr *&SrcExpr, bool Diagnose) {
4156 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType);
4157 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType);
4158 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable);
4159 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation);
4160 if (!CfToNs && !NsToCf)
4161 return false;
4162
4163 ObjCInterfaceDecl *RelatedClass;
4164 ObjCMethodDecl *ClassMethod = nullptr;
4165 ObjCMethodDecl *InstanceMethod = nullptr;
4166 TypedefNameDecl *TDNDecl = nullptr;
4167 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass,
4168 ClassMethod, InstanceMethod, TDNDecl,
4169 CfToNs, Diagnose))
4170 return false;
4171
4172 if (CfToNs) {
4173 // Implicit conversion from CF to ObjC object is needed.
4174 if (ClassMethod) {
4175 if (Diagnose) {
4176 std::string ExpressionString = "[";
4177 ExpressionString += RelatedClass->getNameAsString();
4178 ExpressionString += " ";
4179 ExpressionString += ClassMethod->getSelector().getAsString();
4180 SourceLocation SrcExprEndLoc =
4181 getLocForEndOfToken(SrcExpr->getEndLoc());
4182 // Provide a fixit: [RelatedClass ClassMethod SrcExpr]
4183 Diag(Loc, diag::err_objc_bridged_related_known_method)
4184 << SrcType << DestType << ClassMethod->getSelector() << false
4185 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(),
4186 ExpressionString)
4187 << FixItHint::CreateInsertion(SrcExprEndLoc, "]");
4188 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4189 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4190
4191 QualType receiverType = Context.getObjCInterfaceType(RelatedClass);
4192 // Argument.
4193 Expr *args[] = { SrcExpr };
4194 ExprResult msg = BuildClassMessageImplicit(receiverType, false,
4195 ClassMethod->getLocation(),
4196 ClassMethod->getSelector(), ClassMethod,
4197 MultiExprArg(args, 1));
4198 SrcExpr = msg.get();
4199 }
4200 return true;
4201 }
4202 }
4203 else {
4204 // Implicit conversion from ObjC type to CF object is needed.
4205 if (InstanceMethod) {
4206 if (Diagnose) {
4207 std::string ExpressionString;
4208 SourceLocation SrcExprEndLoc =
4209 getLocForEndOfToken(SrcExpr->getEndLoc());
4210 if (InstanceMethod->isPropertyAccessor())
4211 if (const ObjCPropertyDecl *PDecl =
4212 InstanceMethod->findPropertyDecl()) {
4213 // fixit: ObjectExpr.propertyname when it is aproperty accessor.
4214 ExpressionString = ".";
4215 ExpressionString += PDecl->getNameAsString();
4216 Diag(Loc, diag::err_objc_bridged_related_known_method)
4217 << SrcType << DestType << InstanceMethod->getSelector() << true
4218 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4219 }
4220 if (ExpressionString.empty()) {
4221 // Provide a fixit: [ObjectExpr InstanceMethod]
4222 ExpressionString = " ";
4223 ExpressionString += InstanceMethod->getSelector().getAsString();
4224 ExpressionString += "]";
4225
4226 Diag(Loc, diag::err_objc_bridged_related_known_method)
4227 << SrcType << DestType << InstanceMethod->getSelector() << true
4228 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[")
4229 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4230 }
4231 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4232 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4233
4234 ExprResult msg =
4235 BuildInstanceMessageImplicit(SrcExpr, SrcType,
4236 InstanceMethod->getLocation(),
4237 InstanceMethod->getSelector(),
4238 InstanceMethod, None);
4239 SrcExpr = msg.get();
4240 }
4241 return true;
4242 }
4243 }
4244 return false;
4245}
4246
4247Sema::ARCConversionResult
4248Sema::CheckObjCConversion(SourceRange castRange, QualType castType,
4249 Expr *&castExpr, CheckedConversionKind CCK,
4250 bool Diagnose, bool DiagnoseCFAudited,
4251 BinaryOperatorKind Opc) {
4252 QualType castExprType = castExpr->getType();
4253
4254 // For the purposes of the classification, we assume reference types
4255 // will bind to temporaries.
4256 QualType effCastType = castType;
4257 if (const ReferenceType *ref = castType->getAs<ReferenceType>())
4258 effCastType = ref->getPointeeType();
4259
4260 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
4261 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
4262 if (exprACTC == castACTC) {
4263 // Check for viability and report error if casting an rvalue to a
4264 // life-time qualifier.
4265 if (castACTC == ACTC_retainable &&
4266 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
4267 castType != castExprType) {
4268 const Type *DT = castType.getTypePtr();
4269 QualType QDT = castType;
4270 // We desugar some types but not others. We ignore those
4271 // that cannot happen in a cast; i.e. auto, and those which
4272 // should not be de-sugared; i.e typedef.
4273 if (const ParenType *PT = dyn_cast<ParenType>(DT))
4274 QDT = PT->desugar();
4275 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
4276 QDT = TP->desugar();
4277 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
4278 QDT = AT->desugar();
4279 if (QDT != castType &&
4280 QDT.getObjCLifetime() != Qualifiers::OCL_None) {
4281 if (Diagnose) {
4282 SourceLocation loc = (castRange.isValid() ? castRange.getBegin()
4283 : castExpr->getExprLoc());
4284 Diag(loc, diag::err_arc_nolifetime_behavior);
4285 }
4286 return ACR_error;
4287 }
4288 }
4289 return ACR_okay;
4290 }
4291
4292 // The life-time qualifier cast check above is all we need for ObjCWeak.
4293 // ObjCAutoRefCount has more restrictions on what is legal.
4294 if (!getLangOpts().ObjCAutoRefCount)
4295 return ACR_okay;
4296
4297 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
4298
4299 // Allow all of these types to be cast to integer types (but not
4300 // vice-versa).
4301 if (castACTC == ACTC_none && castType->isIntegralType(Context))
4302 return ACR_okay;
4303
4304 // Allow casts between pointers to lifetime types (e.g., __strong id*)
4305 // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
4306 // must be explicit.
4307 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
4308 return ACR_okay;
4309 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
4310 isCast(CCK))
4311 return ACR_okay;
4312
4313 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
4314 // For invalid casts, fall through.
4315 case ACC_invalid:
4316 break;
4317
4318 // Do nothing for both bottom and +0.
4319 case ACC_bottom:
4320 case ACC_plusZero:
4321 return ACR_okay;
4322
4323 // If the result is +1, consume it here.
4324 case ACC_plusOne:
4325 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
4326 CK_ARCConsumeObject, castExpr,
4327 nullptr, VK_RValue);
4328 Cleanup.setExprNeedsCleanups(true);
4329 return ACR_okay;
4330 }
4331
4332 // If this is a non-implicit cast from id or block type to a
4333 // CoreFoundation type, delay complaining in case the cast is used
4334 // in an acceptable context.
4335 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK))
4336 return ACR_unbridged;
4337
4338 // Issue a diagnostic about a missing @-sign when implicit casting a cstring
4339 // to 'NSString *', instead of falling through to report a "bridge cast"
4340 // diagnostic.
4341 if (castACTC == ACTC_retainable && exprACTC == ACTC_none &&
4342 ConversionToObjCStringLiteralCheck(castType, castExpr, Diagnose))
4343 return ACR_error;
4344
4345 // Do not issue "bridge cast" diagnostic when implicit casting
4346 // a retainable object to a CF type parameter belonging to an audited
4347 // CF API function. Let caller issue a normal type mismatched diagnostic
4348 // instead.
4349 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable ||
4350 castACTC != ACTC_coreFoundation) &&
4351 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable &&
4352 (Opc == BO_NE || Opc == BO_EQ))) {
4353 if (Diagnose)
4354 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr,
4355 castExpr, exprACTC, CCK);
4356 return ACR_error;
4357 }
4358 return ACR_okay;
4359}
4360
4361/// Given that we saw an expression with the ARCUnbridgedCastTy
4362/// placeholder type, complain bitterly.
4363void Sema::diagnoseARCUnbridgedCast(Expr *e) {
4364 // We expect the spurious ImplicitCastExpr to already have been stripped.
4365 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ?
static_cast<void> (0) : __assert_fail ("!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4365, __PRETTY_FUNCTION__))
;
4366 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
4367
4368 SourceRange castRange;
4369 QualType castType;
4370 CheckedConversionKind CCK;
4371
4372 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
4373 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
4374 castType = cast->getTypeAsWritten();
4375 CCK = CCK_CStyleCast;
4376 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
4377 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
4378 castType = cast->getTypeAsWritten();
4379 CCK = CCK_OtherCast;
4380 } else {
4381 llvm_unreachable("Unexpected ImplicitCastExpr")::llvm::llvm_unreachable_internal("Unexpected ImplicitCastExpr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4381)
;
4382 }
4383
4384 ARCConversionTypeClass castACTC =
4385 classifyTypeForARCConversion(castType.getNonReferenceType());
4386
4387 Expr *castExpr = realCast->getSubExpr();
4388 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable)((classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable
) ? static_cast<void> (0) : __assert_fail ("classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4388, __PRETTY_FUNCTION__))
;
4389
4390 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
4391 castExpr, realCast, ACTC_retainable, CCK);
4392}
4393
4394/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
4395/// type, remove the placeholder cast.
4396Expr *Sema::stripARCUnbridgedCast(Expr *e) {
4397 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4397, __PRETTY_FUNCTION__))
;
4398
4399 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
4400 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
4401 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
4402 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
4403 assert(uo->getOpcode() == UO_Extension)((uo->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("uo->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4403, __PRETTY_FUNCTION__))
;
4404 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
4405 return new (Context)
4406 UnaryOperator(sub, UO_Extension, sub->getType(), sub->getValueKind(),
4407 sub->getObjectKind(), uo->getOperatorLoc(), false);
4408 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
4409 assert(!gse->isResultDependent())((!gse->isResultDependent()) ? static_cast<void> (0)
: __assert_fail ("!gse->isResultDependent()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4409, __PRETTY_FUNCTION__))
;
4410
4411 unsigned n = gse->getNumAssocs();
4412 SmallVector<Expr *, 4> subExprs;
4413 SmallVector<TypeSourceInfo *, 4> subTypes;
4414 subExprs.reserve(n);
4415 subTypes.reserve(n);
4416 for (const GenericSelectionExpr::Association assoc : gse->associations()) {
4417 subTypes.push_back(assoc.getTypeSourceInfo());
4418 Expr *sub = assoc.getAssociationExpr();
4419 if (assoc.isSelected())
4420 sub = stripARCUnbridgedCast(sub);
4421 subExprs.push_back(sub);
4422 }
4423
4424 return GenericSelectionExpr::Create(
4425 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes,
4426 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(),
4427 gse->containsUnexpandedParameterPack(), gse->getResultIndex());
4428 } else {
4429 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!")((isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"
) ? static_cast<void> (0) : __assert_fail ("isa<ImplicitCastExpr>(e) && \"bad form of unbridged cast!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4429, __PRETTY_FUNCTION__))
;
4430 return cast<ImplicitCastExpr>(e)->getSubExpr();
4431 }
4432}
4433
4434bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
4435 QualType exprType) {
4436 QualType canCastType =
4437 Context.getCanonicalType(castType).getUnqualifiedType();
4438 QualType canExprType =
4439 Context.getCanonicalType(exprType).getUnqualifiedType();
4440 if (isa<ObjCObjectPointerType>(canCastType) &&
4441 castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
4442 canExprType->isObjCObjectPointerType()) {
4443 if (const ObjCObjectPointerType *ObjT =
4444 canExprType->getAs<ObjCObjectPointerType>())
4445 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
4446 return !ObjI->isArcWeakrefUnavailable();
4447 }
4448 return true;
4449}
4450
4451/// Look for an ObjCReclaimReturnedObject cast and destroy it.
4452static Expr *maybeUndoReclaimObject(Expr *e) {
4453 Expr *curExpr = e, *prevExpr = nullptr;
4454
4455 // Walk down the expression until we hit an implicit cast of kind
4456 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast.
4457 while (true) {
4458 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) {
4459 prevExpr = curExpr;
4460 curExpr = pe->getSubExpr();
4461 continue;
4462 }
4463
4464 if (auto *ce = dyn_cast<CastExpr>(curExpr)) {
4465 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce))
4466 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) {
4467 if (!prevExpr)
4468 return ice->getSubExpr();
4469 if (auto *pe = dyn_cast<ParenExpr>(prevExpr))
4470 pe->setSubExpr(ice->getSubExpr());
4471 else
4472 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr());
4473 return e;
4474 }
4475
4476 prevExpr = curExpr;
4477 curExpr = ce->getSubExpr();
4478 continue;
4479 }
4480
4481 // Break out of the loop if curExpr is neither a Paren nor a Cast.
4482 break;
4483 }
4484
4485 return e;
4486}
4487
4488ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
4489 ObjCBridgeCastKind Kind,
4490 SourceLocation BridgeKeywordLoc,
4491 TypeSourceInfo *TSInfo,
4492 Expr *SubExpr) {
4493 ExprResult SubResult = UsualUnaryConversions(SubExpr);
4494 if (SubResult.isInvalid()) return ExprError();
4495 SubExpr = SubResult.get();
4496
4497 QualType T = TSInfo->getType();
4498 QualType FromType = SubExpr->getType();
4499
4500 CastKind CK;
4501
4502 bool MustConsume = false;
4503 if (T->isDependentType() || SubExpr->isTypeDependent()) {
4504 // Okay: we'll build a dependent expression type.
4505 CK = CK_Dependent;
4506 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
4507 // Casting CF -> id
4508 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
4509 : CK_CPointerToObjCPointerCast);
4510 switch (Kind) {
4511 case OBC_Bridge:
4512 break;
4513
4514 case OBC_BridgeRetained: {
4515 bool br = isKnownName("CFBridgingRelease");
4516 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4517 << 2
4518 << FromType
4519 << (T->isBlockPointerType()? 1 : 0)
4520 << T
4521 << SubExpr->getSourceRange()
4522 << Kind;
4523 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4524 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
4525 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
4526 << FromType << br
4527 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4528 br ? "CFBridgingRelease "
4529 : "__bridge_transfer ");
4530
4531 Kind = OBC_Bridge;
4532 break;
4533 }
4534
4535 case OBC_BridgeTransfer:
4536 // We must consume the Objective-C object produced by the cast.
4537 MustConsume = true;
4538 break;
4539 }
4540 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
4541 // Okay: id -> CF
4542 CK = CK_BitCast;
4543 switch (Kind) {
4544 case OBC_Bridge:
4545 // Reclaiming a value that's going to be __bridge-casted to CF
4546 // is very dangerous, so we don't do it.
4547 SubExpr = maybeUndoReclaimObject(SubExpr);
4548 break;
4549
4550 case OBC_BridgeRetained:
4551 // Produce the object before casting it.
4552 SubExpr = ImplicitCastExpr::Create(Context, FromType,
4553 CK_ARCProduceObject,
4554 SubExpr, nullptr, VK_RValue);
4555 break;
4556
4557 case OBC_BridgeTransfer: {
4558 bool br = isKnownName("CFBridgingRetain");
4559 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4560 << (FromType->isBlockPointerType()? 1 : 0)
4561 << FromType
4562 << 2
4563 << T
4564 << SubExpr->getSourceRange()
4565 << Kind;
4566
4567 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4568 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
4569 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
4570 << T << br
4571 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4572 br ? "CFBridgingRetain " : "__bridge_retained");
4573
4574 Kind = OBC_Bridge;
4575 break;
4576 }
4577 }
4578 } else {
4579 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
4580 << FromType << T << Kind
4581 << SubExpr->getSourceRange()
4582 << TSInfo->getTypeLoc().getSourceRange();
4583 return ExprError();
4584 }
4585
4586 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
4587 BridgeKeywordLoc,
4588 TSInfo, SubExpr);
4589
4590 if (MustConsume) {
4591 Cleanup.setExprNeedsCleanups(true);
4592 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
4593 nullptr, VK_RValue);
4594 }
4595
4596 return Result;
4597}
4598
4599ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
4600 SourceLocation LParenLoc,
4601 ObjCBridgeCastKind Kind,
4602 SourceLocation BridgeKeywordLoc,
4603 ParsedType Type,
4604 SourceLocation RParenLoc,
4605 Expr *SubExpr) {
4606 TypeSourceInfo *TSInfo = nullptr;
4607 QualType T = GetTypeFromParser(Type, &TSInfo);
4608 if (Kind == OBC_Bridge)
4609 CheckTollFreeBridgeCast(T, SubExpr);
4610 if (!TSInfo)
4611 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
4612 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
4613 SubExpr);
4614}

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69namespace serialization {
70 template <class T> class AbstractTypeReader;
71 template <class T> class AbstractTypeWriter;
72}
73
74} // namespace clang
75
76namespace llvm {
77
78 template <typename T>
79 struct PointerLikeTypeTraits;
80 template<>
81 struct PointerLikeTypeTraits< ::clang::Type*> {
82 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
83
84 static inline ::clang::Type *getFromVoidPointer(void *P) {
85 return static_cast< ::clang::Type*>(P);
86 }
87
88 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
89 };
90
91 template<>
92 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
93 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
94
95 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
96 return static_cast< ::clang::ExtQuals*>(P);
97 }
98
99 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
100 };
101
102} // namespace llvm
103
104namespace clang {
105
106class ASTContext;
107template <typename> class CanQual;
108class CXXRecordDecl;
109class DeclContext;
110class EnumDecl;
111class Expr;
112class ExtQualsTypeCommonBase;
113class FunctionDecl;
114class IdentifierInfo;
115class NamedDecl;
116class ObjCInterfaceDecl;
117class ObjCProtocolDecl;
118class ObjCTypeParamDecl;
119struct PrintingPolicy;
120class RecordDecl;
121class Stmt;
122class TagDecl;
123class TemplateArgument;
124class TemplateArgumentListInfo;
125class TemplateArgumentLoc;
126class TemplateTypeParmDecl;
127class TypedefNameDecl;
128class UnresolvedUsingTypenameDecl;
129
130using CanQualType = CanQual<Type>;
131
132// Provide forward declarations for all of the *Type classes.
133#define TYPE(Class, Base) class Class##Type;
134#include "clang/AST/TypeNodes.inc"
135
136/// The collection of all-type qualifiers we support.
137/// Clang supports five independent qualifiers:
138/// * C99: const, volatile, and restrict
139/// * MS: __unaligned
140/// * Embedded C (TR18037): address spaces
141/// * Objective C: the GC attributes (none, weak, or strong)
142class Qualifiers {
143public:
144 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
145 Const = 0x1,
146 Restrict = 0x2,
147 Volatile = 0x4,
148 CVRMask = Const | Volatile | Restrict
149 };
150
151 enum GC {
152 GCNone = 0,
153 Weak,
154 Strong
155 };
156
157 enum ObjCLifetime {
158 /// There is no lifetime qualification on this type.
159 OCL_None,
160
161 /// This object can be modified without requiring retains or
162 /// releases.
163 OCL_ExplicitNone,
164
165 /// Assigning into this object requires the old value to be
166 /// released and the new value to be retained. The timing of the
167 /// release of the old value is inexact: it may be moved to
168 /// immediately after the last known point where the value is
169 /// live.
170 OCL_Strong,
171
172 /// Reading or writing from this object requires a barrier call.
173 OCL_Weak,
174
175 /// Assigning into this object requires a lifetime extension.
176 OCL_Autoreleasing
177 };
178
179 enum {
180 /// The maximum supported address space number.
181 /// 23 bits should be enough for anyone.
182 MaxAddressSpace = 0x7fffffu,
183
184 /// The width of the "fast" qualifier mask.
185 FastWidth = 3,
186
187 /// The fast qualifier mask.
188 FastMask = (1 << FastWidth) - 1
189 };
190
191 /// Returns the common set of qualifiers while removing them from
192 /// the given sets.
193 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
194 // If both are only CVR-qualified, bit operations are sufficient.
195 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
196 Qualifiers Q;
197 Q.Mask = L.Mask & R.Mask;
198 L.Mask &= ~Q.Mask;
199 R.Mask &= ~Q.Mask;
200 return Q;
201 }
202
203 Qualifiers Q;
204 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
205 Q.addCVRQualifiers(CommonCRV);
206 L.removeCVRQualifiers(CommonCRV);
207 R.removeCVRQualifiers(CommonCRV);
208
209 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
210 Q.setObjCGCAttr(L.getObjCGCAttr());
211 L.removeObjCGCAttr();
212 R.removeObjCGCAttr();
213 }
214
215 if (L.getObjCLifetime() == R.getObjCLifetime()) {
216 Q.setObjCLifetime(L.getObjCLifetime());
217 L.removeObjCLifetime();
218 R.removeObjCLifetime();
219 }
220
221 if (L.getAddressSpace() == R.getAddressSpace()) {
222 Q.setAddressSpace(L.getAddressSpace());
223 L.removeAddressSpace();
224 R.removeAddressSpace();
225 }
226 return Q;
227 }
228
229 static Qualifiers fromFastMask(unsigned Mask) {
230 Qualifiers Qs;
231 Qs.addFastQualifiers(Mask);
232 return Qs;
233 }
234
235 static Qualifiers fromCVRMask(unsigned CVR) {
236 Qualifiers Qs;
237 Qs.addCVRQualifiers(CVR);
238 return Qs;
239 }
240
241 static Qualifiers fromCVRUMask(unsigned CVRU) {
242 Qualifiers Qs;
243 Qs.addCVRUQualifiers(CVRU);
244 return Qs;
245 }
246
247 // Deserialize qualifiers from an opaque representation.
248 static Qualifiers fromOpaqueValue(unsigned opaque) {
249 Qualifiers Qs;
250 Qs.Mask = opaque;
251 return Qs;
252 }
253
254 // Serialize these qualifiers into an opaque representation.
255 unsigned getAsOpaqueValue() const {
256 return Mask;
257 }
258
259 bool hasConst() const { return Mask & Const; }
260 bool hasOnlyConst() const { return Mask == Const; }
261 void removeConst() { Mask &= ~Const; }
262 void addConst() { Mask |= Const; }
263
264 bool hasVolatile() const { return Mask & Volatile; }
265 bool hasOnlyVolatile() const { return Mask == Volatile; }
266 void removeVolatile() { Mask &= ~Volatile; }
267 void addVolatile() { Mask |= Volatile; }
268
269 bool hasRestrict() const { return Mask & Restrict; }
270 bool hasOnlyRestrict() const { return Mask == Restrict; }
271 void removeRestrict() { Mask &= ~Restrict; }
272 void addRestrict() { Mask |= Restrict; }
273
274 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
275 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
276 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
277
278 void setCVRQualifiers(unsigned mask) {
279 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 279, __PRETTY_FUNCTION__))
;
280 Mask = (Mask & ~CVRMask) | mask;
281 }
282 void removeCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 283, __PRETTY_FUNCTION__))
;
284 Mask &= ~mask;
285 }
286 void removeCVRQualifiers() {
287 removeCVRQualifiers(CVRMask);
288 }
289 void addCVRQualifiers(unsigned mask) {
290 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 290, __PRETTY_FUNCTION__))
;
291 Mask |= mask;
292 }
293 void addCVRUQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 294, __PRETTY_FUNCTION__))
;
295 Mask |= mask;
296 }
297
298 bool hasUnaligned() const { return Mask & UMask; }
299 void setUnaligned(bool flag) {
300 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
301 }
302 void removeUnaligned() { Mask &= ~UMask; }
303 void addUnaligned() { Mask |= UMask; }
304
305 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
306 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
307 void setObjCGCAttr(GC type) {
308 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
309 }
310 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
311 void addObjCGCAttr(GC type) {
312 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 312, __PRETTY_FUNCTION__))
;
313 setObjCGCAttr(type);
314 }
315 Qualifiers withoutObjCGCAttr() const {
316 Qualifiers qs = *this;
317 qs.removeObjCGCAttr();
318 return qs;
319 }
320 Qualifiers withoutObjCLifetime() const {
321 Qualifiers qs = *this;
322 qs.removeObjCLifetime();
323 return qs;
324 }
325 Qualifiers withoutAddressSpace() const {
326 Qualifiers qs = *this;
327 qs.removeAddressSpace();
328 return qs;
329 }
330
331 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
332 ObjCLifetime getObjCLifetime() const {
333 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
334 }
335 void setObjCLifetime(ObjCLifetime type) {
336 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
337 }
338 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
339 void addObjCLifetime(ObjCLifetime type) {
340 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 340, __PRETTY_FUNCTION__))
;
341 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 341, __PRETTY_FUNCTION__))
;
342 Mask |= (type << LifetimeShift);
343 }
344
345 /// True if the lifetime is neither None or ExplicitNone.
346 bool hasNonTrivialObjCLifetime() const {
347 ObjCLifetime lifetime = getObjCLifetime();
348 return (lifetime > OCL_ExplicitNone);
349 }
350
351 /// True if the lifetime is either strong or weak.
352 bool hasStrongOrWeakObjCLifetime() const {
353 ObjCLifetime lifetime = getObjCLifetime();
354 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
355 }
356
357 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
358 LangAS getAddressSpace() const {
359 return static_cast<LangAS>(Mask >> AddressSpaceShift);
360 }
361 bool hasTargetSpecificAddressSpace() const {
362 return isTargetAddressSpace(getAddressSpace());
363 }
364 /// Get the address space attribute value to be printed by diagnostics.
365 unsigned getAddressSpaceAttributePrintValue() const {
366 auto Addr = getAddressSpace();
367 // This function is not supposed to be used with language specific
368 // address spaces. If that happens, the diagnostic message should consider
369 // printing the QualType instead of the address space value.
370 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 370, __PRETTY_FUNCTION__))
;
371 if (Addr != LangAS::Default)
372 return toTargetAddressSpace(Addr);
373 // TODO: The diagnostic messages where Addr may be 0 should be fixed
374 // since it cannot differentiate the situation where 0 denotes the default
375 // address space or user specified __attribute__((address_space(0))).
376 return 0;
377 }
378 void setAddressSpace(LangAS space) {
379 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 379, __PRETTY_FUNCTION__))
;
380 Mask = (Mask & ~AddressSpaceMask)
381 | (((uint32_t) space) << AddressSpaceShift);
382 }
383 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
384 void addAddressSpace(LangAS space) {
385 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 385, __PRETTY_FUNCTION__))
;
386 setAddressSpace(space);
387 }
388
389 // Fast qualifiers are those that can be allocated directly
390 // on a QualType object.
391 bool hasFastQualifiers() const { return getFastQualifiers(); }
392 unsigned getFastQualifiers() const { return Mask & FastMask; }
393 void setFastQualifiers(unsigned mask) {
394 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 394, __PRETTY_FUNCTION__))
;
395 Mask = (Mask & ~FastMask) | mask;
396 }
397 void removeFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 398, __PRETTY_FUNCTION__))
;
399 Mask &= ~mask;
400 }
401 void removeFastQualifiers() {
402 removeFastQualifiers(FastMask);
403 }
404 void addFastQualifiers(unsigned mask) {
405 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 405, __PRETTY_FUNCTION__))
;
406 Mask |= mask;
407 }
408
409 /// Return true if the set contains any qualifiers which require an ExtQuals
410 /// node to be allocated.
411 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
412 Qualifiers getNonFastQualifiers() const {
413 Qualifiers Quals = *this;
414 Quals.setFastQualifiers(0);
415 return Quals;
416 }
417
418 /// Return true if the set contains any qualifiers.
419 bool hasQualifiers() const { return Mask; }
420 bool empty() const { return !Mask; }
421
422 /// Add the qualifiers from the given set to this set.
423 void addQualifiers(Qualifiers Q) {
424 // If the other set doesn't have any non-boolean qualifiers, just
425 // bit-or it in.
426 if (!(Q.Mask & ~CVRMask))
427 Mask |= Q.Mask;
428 else {
429 Mask |= (Q.Mask & CVRMask);
430 if (Q.hasAddressSpace())
431 addAddressSpace(Q.getAddressSpace());
432 if (Q.hasObjCGCAttr())
433 addObjCGCAttr(Q.getObjCGCAttr());
434 if (Q.hasObjCLifetime())
435 addObjCLifetime(Q.getObjCLifetime());
436 }
437 }
438
439 /// Remove the qualifiers from the given set from this set.
440 void removeQualifiers(Qualifiers Q) {
441 // If the other set doesn't have any non-boolean qualifiers, just
442 // bit-and the inverse in.
443 if (!(Q.Mask & ~CVRMask))
444 Mask &= ~Q.Mask;
445 else {
446 Mask &= ~(Q.Mask & CVRMask);
447 if (getObjCGCAttr() == Q.getObjCGCAttr())
448 removeObjCGCAttr();
449 if (getObjCLifetime() == Q.getObjCLifetime())
450 removeObjCLifetime();
451 if (getAddressSpace() == Q.getAddressSpace())
452 removeAddressSpace();
453 }
454 }
455
456 /// Add the qualifiers from the given set to this set, given that
457 /// they don't conflict.
458 void addConsistentQualifiers(Qualifiers qs) {
459 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
460 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
;
461 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
462 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
;
463 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
464 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
;
465 Mask |= qs.Mask;
466 }
467
468 /// Returns true if address space A is equal to or a superset of B.
469 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
470 /// overlapping address spaces.
471 /// CL1.1 or CL1.2:
472 /// every address space is a superset of itself.
473 /// CL2.0 adds:
474 /// __generic is a superset of any address space except for __constant.
475 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
476 // Address spaces must match exactly.
477 return A == B ||
478 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
479 // for __constant can be used as __generic.
480 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
481 // Consider pointer size address spaces to be equivalent to default.
482 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
483 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
484 }
485
486 /// Returns true if the address space in these qualifiers is equal to or
487 /// a superset of the address space in the argument qualifiers.
488 bool isAddressSpaceSupersetOf(Qualifiers other) const {
489 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
490 }
491
492 /// Determines if these qualifiers compatibly include another set.
493 /// Generally this answers the question of whether an object with the other
494 /// qualifiers can be safely used as an object with these qualifiers.
495 bool compatiblyIncludes(Qualifiers other) const {
496 return isAddressSpaceSupersetOf(other) &&
497 // ObjC GC qualifiers can match, be added, or be removed, but can't
498 // be changed.
499 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
500 !other.hasObjCGCAttr()) &&
501 // ObjC lifetime qualifiers must match exactly.
502 getObjCLifetime() == other.getObjCLifetime() &&
503 // CVR qualifiers may subset.
504 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
505 // U qualifier may superset.
506 (!other.hasUnaligned() || hasUnaligned());
507 }
508
509 /// Determines if these qualifiers compatibly include another set of
510 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
511 ///
512 /// One set of Objective-C lifetime qualifiers compatibly includes the other
513 /// if the lifetime qualifiers match, or if both are non-__weak and the
514 /// including set also contains the 'const' qualifier, or both are non-__weak
515 /// and one is None (which can only happen in non-ARC modes).
516 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
517 if (getObjCLifetime() == other.getObjCLifetime())
518 return true;
519
520 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
521 return false;
522
523 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
524 return true;
525
526 return hasConst();
527 }
528
529 /// Determine whether this set of qualifiers is a strict superset of
530 /// another set of qualifiers, not considering qualifier compatibility.
531 bool isStrictSupersetOf(Qualifiers Other) const;
532
533 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
534 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
535
536 explicit operator bool() const { return hasQualifiers(); }
537
538 Qualifiers &operator+=(Qualifiers R) {
539 addQualifiers(R);
540 return *this;
541 }
542
543 // Union two qualifier sets. If an enumerated qualifier appears
544 // in both sets, use the one from the right.
545 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
546 L += R;
547 return L;
548 }
549
550 Qualifiers &operator-=(Qualifiers R) {
551 removeQualifiers(R);
552 return *this;
553 }
554
555 /// Compute the difference between two qualifier sets.
556 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
557 L -= R;
558 return L;
559 }
560
561 std::string getAsString() const;
562 std::string getAsString(const PrintingPolicy &Policy) const;
563
564 static std::string getAddrSpaceAsString(LangAS AS);
565
566 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
567 void print(raw_ostream &OS, const PrintingPolicy &Policy,
568 bool appendSpaceIfNonEmpty = false) const;
569
570 void Profile(llvm::FoldingSetNodeID &ID) const {
571 ID.AddInteger(Mask);
572 }
573
574private:
575 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
576 // |C R V|U|GCAttr|Lifetime|AddressSpace|
577 uint32_t Mask = 0;
578
579 static const uint32_t UMask = 0x8;
580 static const uint32_t UShift = 3;
581 static const uint32_t GCAttrMask = 0x30;
582 static const uint32_t GCAttrShift = 4;
583 static const uint32_t LifetimeMask = 0x1C0;
584 static const uint32_t LifetimeShift = 6;
585 static const uint32_t AddressSpaceMask =
586 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
587 static const uint32_t AddressSpaceShift = 9;
588};
589
590/// A std::pair-like structure for storing a qualified type split
591/// into its local qualifiers and its locally-unqualified type.
592struct SplitQualType {
593 /// The locally-unqualified type.
594 const Type *Ty = nullptr;
595
596 /// The local qualifiers.
597 Qualifiers Quals;
598
599 SplitQualType() = default;
600 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
601
602 SplitQualType getSingleStepDesugaredType() const; // end of this file
603
604 // Make std::tie work.
605 std::pair<const Type *,Qualifiers> asPair() const {
606 return std::pair<const Type *, Qualifiers>(Ty, Quals);
607 }
608
609 friend bool operator==(SplitQualType a, SplitQualType b) {
610 return a.Ty == b.Ty && a.Quals == b.Quals;
611 }
612 friend bool operator!=(SplitQualType a, SplitQualType b) {
613 return a.Ty != b.Ty || a.Quals != b.Quals;
614 }
615};
616
617/// The kind of type we are substituting Objective-C type arguments into.
618///
619/// The kind of substitution affects the replacement of type parameters when
620/// no concrete type information is provided, e.g., when dealing with an
621/// unspecialized type.
622enum class ObjCSubstitutionContext {
623 /// An ordinary type.
624 Ordinary,
625
626 /// The result type of a method or function.
627 Result,
628
629 /// The parameter type of a method or function.
630 Parameter,
631
632 /// The type of a property.
633 Property,
634
635 /// The superclass of a type.
636 Superclass,
637};
638
639/// A (possibly-)qualified type.
640///
641/// For efficiency, we don't store CV-qualified types as nodes on their
642/// own: instead each reference to a type stores the qualifiers. This
643/// greatly reduces the number of nodes we need to allocate for types (for
644/// example we only need one for 'int', 'const int', 'volatile int',
645/// 'const volatile int', etc).
646///
647/// As an added efficiency bonus, instead of making this a pair, we
648/// just store the two bits we care about in the low bits of the
649/// pointer. To handle the packing/unpacking, we make QualType be a
650/// simple wrapper class that acts like a smart pointer. A third bit
651/// indicates whether there are extended qualifiers present, in which
652/// case the pointer points to a special structure.
653class QualType {
654 friend class QualifierCollector;
655
656 // Thankfully, these are efficiently composable.
657 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
658 Qualifiers::FastWidth> Value;
659
660 const ExtQuals *getExtQualsUnsafe() const {
661 return Value.getPointer().get<const ExtQuals*>();
662 }
663
664 const Type *getTypePtrUnsafe() const {
665 return Value.getPointer().get<const Type*>();
666 }
667
668 const ExtQualsTypeCommonBase *getCommonPtr() const {
669 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 669, __PRETTY_FUNCTION__))
;
670 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
671 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
672 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
673 }
674
675public:
676 QualType() = default;
677 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
678 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
679
680 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
681 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
682
683 /// Retrieves a pointer to the underlying (unqualified) type.
684 ///
685 /// This function requires that the type not be NULL. If the type might be
686 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
687 const Type *getTypePtr() const;
688
689 const Type *getTypePtrOrNull() const;
690
691 /// Retrieves a pointer to the name of the base type.
692 const IdentifierInfo *getBaseTypeIdentifier() const;
693
694 /// Divides a QualType into its unqualified type and a set of local
695 /// qualifiers.
696 SplitQualType split() const;
697
698 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
699
700 static QualType getFromOpaquePtr(const void *Ptr) {
701 QualType T;
702 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
703 return T;
704 }
705
706 const Type &operator*() const {
707 return *getTypePtr();
708 }
709
710 const Type *operator->() const {
711 return getTypePtr();
712 }
713
714 bool isCanonical() const;
715 bool isCanonicalAsParam() const;
716
717 /// Return true if this QualType doesn't point to a type yet.
718 bool isNull() const {
719 return Value.getPointer().isNull();
720 }
721
722 /// Determine whether this particular QualType instance has the
723 /// "const" qualifier set, without looking through typedefs that may have
724 /// added "const" at a different level.
725 bool isLocalConstQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Const);
727 }
728
729 /// Determine whether this type is const-qualified.
730 bool isConstQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "restrict" qualifier set, without looking through typedefs that may have
734 /// added "restrict" at a different level.
735 bool isLocalRestrictQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Restrict);
737 }
738
739 /// Determine whether this type is restrict-qualified.
740 bool isRestrictQualified() const;
741
742 /// Determine whether this particular QualType instance has the
743 /// "volatile" qualifier set, without looking through typedefs that may have
744 /// added "volatile" at a different level.
745 bool isLocalVolatileQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Volatile);
747 }
748
749 /// Determine whether this type is volatile-qualified.
750 bool isVolatileQualified() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// qualifiers, without looking through any typedefs that might add
754 /// qualifiers at a different level.
755 bool hasLocalQualifiers() const {
756 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
757 }
758
759 /// Determine whether this type has any qualifiers.
760 bool hasQualifiers() const;
761
762 /// Determine whether this particular QualType instance has any
763 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
764 /// instance.
765 bool hasLocalNonFastQualifiers() const {
766 return Value.getPointer().is<const ExtQuals*>();
767 }
768
769 /// Retrieve the set of qualifiers local to this particular QualType
770 /// instance, not including any qualifiers acquired through typedefs or
771 /// other sugar.
772 Qualifiers getLocalQualifiers() const;
773
774 /// Retrieve the set of qualifiers applied to this type.
775 Qualifiers getQualifiers() const;
776
777 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
778 /// local to this particular QualType instance, not including any qualifiers
779 /// acquired through typedefs or other sugar.
780 unsigned getLocalCVRQualifiers() const {
781 return getLocalFastQualifiers();
782 }
783
784 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
785 /// applied to this type.
786 unsigned getCVRQualifiers() const;
787
788 bool isConstant(const ASTContext& Ctx) const {
789 return QualType::isConstant(*this, Ctx);
790 }
791
792 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
793 bool isPODType(const ASTContext &Context) const;
794
795 /// Return true if this is a POD type according to the rules of the C++98
796 /// standard, regardless of the current compilation's language.
797 bool isCXX98PODType(const ASTContext &Context) const;
798
799 /// Return true if this is a POD type according to the more relaxed rules
800 /// of the C++11 standard, regardless of the current compilation's language.
801 /// (C++0x [basic.types]p9). Note that, unlike
802 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
803 bool isCXX11PODType(const ASTContext &Context) const;
804
805 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
806 bool isTrivialType(const ASTContext &Context) const;
807
808 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
809 bool isTriviallyCopyableType(const ASTContext &Context) const;
810
811
812 /// Returns true if it is a class and it might be dynamic.
813 bool mayBeDynamicClass() const;
814
815 /// Returns true if it is not a class or if the class might not be dynamic.
816 bool mayBeNotDynamicClass() const;
817
818 // Don't promise in the API that anything besides 'const' can be
819 // easily added.
820
821 /// Add the `const` type qualifier to this QualType.
822 void addConst() {
823 addFastQualifiers(Qualifiers::Const);
824 }
825 QualType withConst() const {
826 return withFastQualifiers(Qualifiers::Const);
827 }
828
829 /// Add the `volatile` type qualifier to this QualType.
830 void addVolatile() {
831 addFastQualifiers(Qualifiers::Volatile);
832 }
833 QualType withVolatile() const {
834 return withFastQualifiers(Qualifiers::Volatile);
835 }
836
837 /// Add the `restrict` qualifier to this QualType.
838 void addRestrict() {
839 addFastQualifiers(Qualifiers::Restrict);
840 }
841 QualType withRestrict() const {
842 return withFastQualifiers(Qualifiers::Restrict);
843 }
844
845 QualType withCVRQualifiers(unsigned CVR) const {
846 return withFastQualifiers(CVR);
847 }
848
849 void addFastQualifiers(unsigned TQs) {
850 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
851 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
;
852 Value.setInt(Value.getInt() | TQs);
853 }
854
855 void removeLocalConst();
856 void removeLocalVolatile();
857 void removeLocalRestrict();
858 void removeLocalCVRQualifiers(unsigned Mask);
859
860 void removeLocalFastQualifiers() { Value.setInt(0); }
861 void removeLocalFastQualifiers(unsigned Mask) {
862 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 862, __PRETTY_FUNCTION__))
;
863 Value.setInt(Value.getInt() & ~Mask);
864 }
865
866 // Creates a type with the given qualifiers in addition to any
867 // qualifiers already on this type.
868 QualType withFastQualifiers(unsigned TQs) const {
869 QualType T = *this;
870 T.addFastQualifiers(TQs);
871 return T;
872 }
873
874 // Creates a type with exactly the given fast qualifiers, removing
875 // any existing fast qualifiers.
876 QualType withExactLocalFastQualifiers(unsigned TQs) const {
877 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
878 }
879
880 // Removes fast qualifiers, but leaves any extended qualifiers in place.
881 QualType withoutLocalFastQualifiers() const {
882 QualType T = *this;
883 T.removeLocalFastQualifiers();
884 return T;
885 }
886
887 QualType getCanonicalType() const;
888
889 /// Return this type with all of the instance-specific qualifiers
890 /// removed, but without removing any qualifiers that may have been applied
891 /// through typedefs.
892 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
893
894 /// Retrieve the unqualified variant of the given type,
895 /// removing as little sugar as possible.
896 ///
897 /// This routine looks through various kinds of sugar to find the
898 /// least-desugared type that is unqualified. For example, given:
899 ///
900 /// \code
901 /// typedef int Integer;
902 /// typedef const Integer CInteger;
903 /// typedef CInteger DifferenceType;
904 /// \endcode
905 ///
906 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
907 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
908 ///
909 /// The resulting type might still be qualified if it's sugar for an array
910 /// type. To strip qualifiers even from within a sugared array type, use
911 /// ASTContext::getUnqualifiedArrayType.
912 inline QualType getUnqualifiedType() const;
913
914 /// Retrieve the unqualified variant of the given type, removing as little
915 /// sugar as possible.
916 ///
917 /// Like getUnqualifiedType(), but also returns the set of
918 /// qualifiers that were built up.
919 ///
920 /// The resulting type might still be qualified if it's sugar for an array
921 /// type. To strip qualifiers even from within a sugared array type, use
922 /// ASTContext::getUnqualifiedArrayType.
923 inline SplitQualType getSplitUnqualifiedType() const;
924
925 /// Determine whether this type is more qualified than the other
926 /// given type, requiring exact equality for non-CVR qualifiers.
927 bool isMoreQualifiedThan(QualType Other) const;
928
929 /// Determine whether this type is at least as qualified as the other
930 /// given type, requiring exact equality for non-CVR qualifiers.
931 bool isAtLeastAsQualifiedAs(QualType Other) const;
932
933 QualType getNonReferenceType() const;
934
935 /// Determine the type of a (typically non-lvalue) expression with the
936 /// specified result type.
937 ///
938 /// This routine should be used for expressions for which the return type is
939 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
940 /// an lvalue. It removes a top-level reference (since there are no
941 /// expressions of reference type) and deletes top-level cvr-qualifiers
942 /// from non-class types (in C++) or all types (in C).
943 QualType getNonLValueExprType(const ASTContext &Context) const;
944
945 /// Return the specified type with any "sugar" removed from
946 /// the type. This takes off typedefs, typeof's etc. If the outer level of
947 /// the type is already concrete, it returns it unmodified. This is similar
948 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
949 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
950 /// concrete.
951 ///
952 /// Qualifiers are left in place.
953 QualType getDesugaredType(const ASTContext &Context) const {
954 return getDesugaredType(*this, Context);
955 }
956
957 SplitQualType getSplitDesugaredType() const {
958 return getSplitDesugaredType(*this);
959 }
960
961 /// Return the specified type with one level of "sugar" removed from
962 /// the type.
963 ///
964 /// This routine takes off the first typedef, typeof, etc. If the outer level
965 /// of the type is already concrete, it returns it unmodified.
966 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
967 return getSingleStepDesugaredTypeImpl(*this, Context);
968 }
969
970 /// Returns the specified type after dropping any
971 /// outer-level parentheses.
972 QualType IgnoreParens() const {
973 if (isa<ParenType>(*this))
974 return QualType::IgnoreParens(*this);
975 return *this;
976 }
977
978 /// Indicate whether the specified types and qualifiers are identical.
979 friend bool operator==(const QualType &LHS, const QualType &RHS) {
980 return LHS.Value == RHS.Value;
981 }
982 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
983 return LHS.Value != RHS.Value;
984 }
985 friend bool operator<(const QualType &LHS, const QualType &RHS) {
986 return LHS.Value < RHS.Value;
987 }
988
989 static std::string getAsString(SplitQualType split,
990 const PrintingPolicy &Policy) {
991 return getAsString(split.Ty, split.Quals, Policy);
992 }
993 static std::string getAsString(const Type *ty, Qualifiers qs,
994 const PrintingPolicy &Policy);
995
996 std::string getAsString() const;
997 std::string getAsString(const PrintingPolicy &Policy) const;
998
999 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1000 const Twine &PlaceHolder = Twine(),
1001 unsigned Indentation = 0) const;
1002
1003 static void print(SplitQualType split, raw_ostream &OS,
1004 const PrintingPolicy &policy, const Twine &PlaceHolder,
1005 unsigned Indentation = 0) {
1006 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1007 }
1008
1009 static void print(const Type *ty, Qualifiers qs,
1010 raw_ostream &OS, const PrintingPolicy &policy,
1011 const Twine &PlaceHolder,
1012 unsigned Indentation = 0);
1013
1014 void getAsStringInternal(std::string &Str,
1015 const PrintingPolicy &Policy) const;
1016
1017 static void getAsStringInternal(SplitQualType split, std::string &out,
1018 const PrintingPolicy &policy) {
1019 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1020 }
1021
1022 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1023 std::string &out,
1024 const PrintingPolicy &policy);
1025
1026 class StreamedQualTypeHelper {
1027 const QualType &T;
1028 const PrintingPolicy &Policy;
1029 const Twine &PlaceHolder;
1030 unsigned Indentation;
1031
1032 public:
1033 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1034 const Twine &PlaceHolder, unsigned Indentation)
1035 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1036 Indentation(Indentation) {}
1037
1038 friend raw_ostream &operator<<(raw_ostream &OS,
1039 const StreamedQualTypeHelper &SQT) {
1040 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1041 return OS;
1042 }
1043 };
1044
1045 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1046 const Twine &PlaceHolder = Twine(),
1047 unsigned Indentation = 0) const {
1048 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1049 }
1050
1051 void dump(const char *s) const;
1052 void dump() const;
1053 void dump(llvm::raw_ostream &OS) const;
1054
1055 void Profile(llvm::FoldingSetNodeID &ID) const {
1056 ID.AddPointer(getAsOpaquePtr());
1057 }
1058
1059 /// Check if this type has any address space qualifier.
1060 inline bool hasAddressSpace() const;
1061
1062 /// Return the address space of this type.
1063 inline LangAS getAddressSpace() const;
1064
1065 /// Returns gc attribute of this type.
1066 inline Qualifiers::GC getObjCGCAttr() const;
1067
1068 /// true when Type is objc's weak.
1069 bool isObjCGCWeak() const {
1070 return getObjCGCAttr() == Qualifiers::Weak;
1071 }
1072
1073 /// true when Type is objc's strong.
1074 bool isObjCGCStrong() const {
1075 return getObjCGCAttr() == Qualifiers::Strong;
1076 }
1077
1078 /// Returns lifetime attribute of this type.
1079 Qualifiers::ObjCLifetime getObjCLifetime() const {
1080 return getQualifiers().getObjCLifetime();
1081 }
1082
1083 bool hasNonTrivialObjCLifetime() const {
1084 return getQualifiers().hasNonTrivialObjCLifetime();
1085 }
1086
1087 bool hasStrongOrWeakObjCLifetime() const {
1088 return getQualifiers().hasStrongOrWeakObjCLifetime();
1089 }
1090
1091 // true when Type is objc's weak and weak is enabled but ARC isn't.
1092 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1093
1094 enum PrimitiveDefaultInitializeKind {
1095 /// The type does not fall into any of the following categories. Note that
1096 /// this case is zero-valued so that values of this enum can be used as a
1097 /// boolean condition for non-triviality.
1098 PDIK_Trivial,
1099
1100 /// The type is an Objective-C retainable pointer type that is qualified
1101 /// with the ARC __strong qualifier.
1102 PDIK_ARCStrong,
1103
1104 /// The type is an Objective-C retainable pointer type that is qualified
1105 /// with the ARC __weak qualifier.
1106 PDIK_ARCWeak,
1107
1108 /// The type is a struct containing a field whose type is not PCK_Trivial.
1109 PDIK_Struct
1110 };
1111
1112 /// Functions to query basic properties of non-trivial C struct types.
1113
1114 /// Check if this is a non-trivial type that would cause a C struct
1115 /// transitively containing this type to be non-trivial to default initialize
1116 /// and return the kind.
1117 PrimitiveDefaultInitializeKind
1118 isNonTrivialToPrimitiveDefaultInitialize() const;
1119
1120 enum PrimitiveCopyKind {
1121 /// The type does not fall into any of the following categories. Note that
1122 /// this case is zero-valued so that values of this enum can be used as a
1123 /// boolean condition for non-triviality.
1124 PCK_Trivial,
1125
1126 /// The type would be trivial except that it is volatile-qualified. Types
1127 /// that fall into one of the other non-trivial cases may additionally be
1128 /// volatile-qualified.
1129 PCK_VolatileTrivial,
1130
1131 /// The type is an Objective-C retainable pointer type that is qualified
1132 /// with the ARC __strong qualifier.
1133 PCK_ARCStrong,
1134
1135 /// The type is an Objective-C retainable pointer type that is qualified
1136 /// with the ARC __weak qualifier.
1137 PCK_ARCWeak,
1138
1139 /// The type is a struct containing a field whose type is neither
1140 /// PCK_Trivial nor PCK_VolatileTrivial.
1141 /// Note that a C++ struct type does not necessarily match this; C++ copying
1142 /// semantics are too complex to express here, in part because they depend
1143 /// on the exact constructor or assignment operator that is chosen by
1144 /// overload resolution to do the copy.
1145 PCK_Struct
1146 };
1147
1148 /// Check if this is a non-trivial type that would cause a C struct
1149 /// transitively containing this type to be non-trivial to copy and return the
1150 /// kind.
1151 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1152
1153 /// Check if this is a non-trivial type that would cause a C struct
1154 /// transitively containing this type to be non-trivial to destructively
1155 /// move and return the kind. Destructive move in this context is a C++-style
1156 /// move in which the source object is placed in a valid but unspecified state
1157 /// after it is moved, as opposed to a truly destructive move in which the
1158 /// source object is placed in an uninitialized state.
1159 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1160
1161 enum DestructionKind {
1162 DK_none,
1163 DK_cxx_destructor,
1164 DK_objc_strong_lifetime,
1165 DK_objc_weak_lifetime,
1166 DK_nontrivial_c_struct
1167 };
1168
1169 /// Returns a nonzero value if objects of this type require
1170 /// non-trivial work to clean up after. Non-zero because it's
1171 /// conceivable that qualifiers (objc_gc(weak)?) could make
1172 /// something require destruction.
1173 DestructionKind isDestructedType() const {
1174 return isDestructedTypeImpl(*this);
1175 }
1176
1177 /// Check if this is or contains a C union that is non-trivial to
1178 /// default-initialize, which is a union that has a member that is non-trivial
1179 /// to default-initialize. If this returns true,
1180 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1181 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1182
1183 /// Check if this is or contains a C union that is non-trivial to destruct,
1184 /// which is a union that has a member that is non-trivial to destruct. If
1185 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1186 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1187
1188 /// Check if this is or contains a C union that is non-trivial to copy, which
1189 /// is a union that has a member that is non-trivial to copy. If this returns
1190 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1191 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1192
1193 /// Determine whether expressions of the given type are forbidden
1194 /// from being lvalues in C.
1195 ///
1196 /// The expression types that are forbidden to be lvalues are:
1197 /// - 'void', but not qualified void
1198 /// - function types
1199 ///
1200 /// The exact rule here is C99 6.3.2.1:
1201 /// An lvalue is an expression with an object type or an incomplete
1202 /// type other than void.
1203 bool isCForbiddenLValueType() const;
1204
1205 /// Substitute type arguments for the Objective-C type parameters used in the
1206 /// subject type.
1207 ///
1208 /// \param ctx ASTContext in which the type exists.
1209 ///
1210 /// \param typeArgs The type arguments that will be substituted for the
1211 /// Objective-C type parameters in the subject type, which are generally
1212 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1213 /// parameters will be replaced with their bounds or id/Class, as appropriate
1214 /// for the context.
1215 ///
1216 /// \param context The context in which the subject type was written.
1217 ///
1218 /// \returns the resulting type.
1219 QualType substObjCTypeArgs(ASTContext &ctx,
1220 ArrayRef<QualType> typeArgs,
1221 ObjCSubstitutionContext context) const;
1222
1223 /// Substitute type arguments from an object type for the Objective-C type
1224 /// parameters used in the subject type.
1225 ///
1226 /// This operation combines the computation of type arguments for
1227 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1228 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1229 /// callers that need to perform a single substitution in isolation.
1230 ///
1231 /// \param objectType The type of the object whose member type we're
1232 /// substituting into. For example, this might be the receiver of a message
1233 /// or the base of a property access.
1234 ///
1235 /// \param dc The declaration context from which the subject type was
1236 /// retrieved, which indicates (for example) which type parameters should
1237 /// be substituted.
1238 ///
1239 /// \param context The context in which the subject type was written.
1240 ///
1241 /// \returns the subject type after replacing all of the Objective-C type
1242 /// parameters with their corresponding arguments.
1243 QualType substObjCMemberType(QualType objectType,
1244 const DeclContext *dc,
1245 ObjCSubstitutionContext context) const;
1246
1247 /// Strip Objective-C "__kindof" types from the given type.
1248 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1249
1250 /// Remove all qualifiers including _Atomic.
1251 QualType getAtomicUnqualifiedType() const;
1252
1253private:
1254 // These methods are implemented in a separate translation unit;
1255 // "static"-ize them to avoid creating temporary QualTypes in the
1256 // caller.
1257 static bool isConstant(QualType T, const ASTContext& Ctx);
1258 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1259 static SplitQualType getSplitDesugaredType(QualType T);
1260 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1261 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1262 const ASTContext &C);
1263 static QualType IgnoreParens(QualType T);
1264 static DestructionKind isDestructedTypeImpl(QualType type);
1265
1266 /// Check if \param RD is or contains a non-trivial C union.
1267 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1268 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1269 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1270};
1271
1272} // namespace clang
1273
1274namespace llvm {
1275
1276/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1277/// to a specific Type class.
1278template<> struct simplify_type< ::clang::QualType> {
1279 using SimpleType = const ::clang::Type *;
1280
1281 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1282 return Val.getTypePtr();
1283 }
1284};
1285
1286// Teach SmallPtrSet that QualType is "basically a pointer".
1287template<>
1288struct PointerLikeTypeTraits<clang::QualType> {
1289 static inline void *getAsVoidPointer(clang::QualType P) {
1290 return P.getAsOpaquePtr();
1291 }
1292
1293 static inline clang::QualType getFromVoidPointer(void *P) {
1294 return clang::QualType::getFromOpaquePtr(P);
1295 }
1296
1297 // Various qualifiers go in low bits.
1298 enum { NumLowBitsAvailable = 0 };
1299};
1300
1301} // namespace llvm
1302
1303namespace clang {
1304
1305/// Base class that is common to both the \c ExtQuals and \c Type
1306/// classes, which allows \c QualType to access the common fields between the
1307/// two.
1308class ExtQualsTypeCommonBase {
1309 friend class ExtQuals;
1310 friend class QualType;
1311 friend class Type;
1312
1313 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1314 /// a self-referential pointer (for \c Type).
1315 ///
1316 /// This pointer allows an efficient mapping from a QualType to its
1317 /// underlying type pointer.
1318 const Type *const BaseType;
1319
1320 /// The canonical type of this type. A QualType.
1321 QualType CanonicalType;
1322
1323 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1324 : BaseType(baseType), CanonicalType(canon) {}
1325};
1326
1327/// We can encode up to four bits in the low bits of a
1328/// type pointer, but there are many more type qualifiers that we want
1329/// to be able to apply to an arbitrary type. Therefore we have this
1330/// struct, intended to be heap-allocated and used by QualType to
1331/// store qualifiers.
1332///
1333/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1334/// in three low bits on the QualType pointer; a fourth bit records whether
1335/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1336/// Objective-C GC attributes) are much more rare.
1337class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1338 // NOTE: changing the fast qualifiers should be straightforward as
1339 // long as you don't make 'const' non-fast.
1340 // 1. Qualifiers:
1341 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1342 // Fast qualifiers must occupy the low-order bits.
1343 // b) Update Qualifiers::FastWidth and FastMask.
1344 // 2. QualType:
1345 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1346 // b) Update remove{Volatile,Restrict}, defined near the end of
1347 // this header.
1348 // 3. ASTContext:
1349 // a) Update get{Volatile,Restrict}Type.
1350
1351 /// The immutable set of qualifiers applied by this node. Always contains
1352 /// extended qualifiers.
1353 Qualifiers Quals;
1354
1355 ExtQuals *this_() { return this; }
1356
1357public:
1358 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1359 : ExtQualsTypeCommonBase(baseType,
1360 canon.isNull() ? QualType(this_(), 0) : canon),
1361 Quals(quals) {
1362 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
1363 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
;
1364 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
1365 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
;
1366 }
1367
1368 Qualifiers getQualifiers() const { return Quals; }
1369
1370 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1371 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1372
1373 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1374 Qualifiers::ObjCLifetime getObjCLifetime() const {
1375 return Quals.getObjCLifetime();
1376 }
1377
1378 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1379 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1380
1381 const Type *getBaseType() const { return BaseType; }
1382
1383public:
1384 void Profile(llvm::FoldingSetNodeID &ID) const {
1385 Profile(ID, getBaseType(), Quals);
1386 }
1387
1388 static void Profile(llvm::FoldingSetNodeID &ID,
1389 const Type *BaseType,