Bug Summary

File:clang/lib/Sema/SemaExprObjC.cpp
Warning:line 1647, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp

1//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective-C expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprObjC.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/TypeLoc.h"
18#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
19#include "clang/Basic/Builtins.h"
20#include "clang/Edit/Commit.h"
21#include "clang/Edit/Rewriters.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ConvertUTF.h"
30
31using namespace clang;
32using namespace sema;
33using llvm::makeArrayRef;
34
35ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
36 ArrayRef<Expr *> Strings) {
37 // Most ObjC strings are formed out of a single piece. However, we *can*
38 // have strings formed out of multiple @ strings with multiple pptokens in
39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
40 // StringLiteral for ObjCStringLiteral to hold onto.
41 StringLiteral *S = cast<StringLiteral>(Strings[0]);
42
43 // If we have a multi-part string, merge it all together.
44 if (Strings.size() != 1) {
45 // Concatenate objc strings.
46 SmallString<128> StrBuf;
47 SmallVector<SourceLocation, 8> StrLocs;
48
49 for (Expr *E : Strings) {
50 S = cast<StringLiteral>(E);
51
52 // ObjC strings can't be wide or UTF.
53 if (!S->isAscii()) {
54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
55 << S->getSourceRange();
56 return true;
57 }
58
59 // Append the string.
60 StrBuf += S->getString();
61
62 // Get the locations of the string tokens.
63 StrLocs.append(S->tokloc_begin(), S->tokloc_end());
64 }
65
66 // Create the aggregate string with the appropriate content and location
67 // information.
68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
69 assert(CAT && "String literal not of constant array type!")((CAT && "String literal not of constant array type!"
) ? static_cast<void> (0) : __assert_fail ("CAT && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 69, __PRETTY_FUNCTION__))
;
70 QualType StrTy = Context.getConstantArrayType(
71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr,
72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers());
73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii,
74 /*Pascal=*/false, StrTy, &StrLocs[0],
75 StrLocs.size());
76 }
77
78 return BuildObjCStringLiteral(AtLocs[0], S);
79}
80
81ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
82 // Verify that this composite string is acceptable for ObjC strings.
83 if (CheckObjCString(S))
84 return true;
85
86 // Initialize the constant string interface lazily. This assumes
87 // the NSString interface is seen in this translation unit. Note: We
88 // don't use NSConstantString, since the runtime team considers this
89 // interface private (even though it appears in the header files).
90 QualType Ty = Context.getObjCConstantStringInterface();
91 if (!Ty.isNull()) {
92 Ty = Context.getObjCObjectPointerType(Ty);
93 } else if (getLangOpts().NoConstantCFStrings) {
94 IdentifierInfo *NSIdent=nullptr;
95 std::string StringClass(getLangOpts().ObjCConstantStringClass);
96
97 if (StringClass.empty())
98 NSIdent = &Context.Idents.get("NSConstantString");
99 else
100 NSIdent = &Context.Idents.get(StringClass);
101
102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
103 LookupOrdinaryName);
104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
105 Context.setObjCConstantStringInterface(StrIF);
106 Ty = Context.getObjCConstantStringInterface();
107 Ty = Context.getObjCObjectPointerType(Ty);
108 } else {
109 // If there is no NSConstantString interface defined then treat this
110 // as error and recover from it.
111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class)
112 << NSIdent << S->getSourceRange();
113 Ty = Context.getObjCIdType();
114 }
115 } else {
116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
118 LookupOrdinaryName);
119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
120 Context.setObjCConstantStringInterface(StrIF);
121 Ty = Context.getObjCConstantStringInterface();
122 Ty = Context.getObjCObjectPointerType(Ty);
123 } else {
124 // If there is no NSString interface defined, implicitly declare
125 // a @class NSString; and use that instead. This is to make sure
126 // type of an NSString literal is represented correctly, instead of
127 // being an 'id' type.
128 Ty = Context.getObjCNSStringType();
129 if (Ty.isNull()) {
130 ObjCInterfaceDecl *NSStringIDecl =
131 ObjCInterfaceDecl::Create (Context,
132 Context.getTranslationUnitDecl(),
133 SourceLocation(), NSIdent,
134 nullptr, nullptr, SourceLocation());
135 Ty = Context.getObjCInterfaceType(NSStringIDecl);
136 Context.setObjCNSStringType(Ty);
137 }
138 Ty = Context.getObjCObjectPointerType(Ty);
139 }
140 }
141
142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
143}
144
145/// Emits an error if the given method does not exist, or if the return
146/// type is not an Objective-C object.
147static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
148 const ObjCInterfaceDecl *Class,
149 Selector Sel, const ObjCMethodDecl *Method) {
150 if (!Method) {
151 // FIXME: Is there a better way to avoid quotes than using getName()?
152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
153 return false;
154 }
155
156 // Make sure the return type is reasonable.
157 QualType ReturnType = Method->getReturnType();
158 if (!ReturnType->isObjCObjectPointerType()) {
159 S.Diag(Loc, diag::err_objc_literal_method_sig)
160 << Sel;
161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
162 << ReturnType;
163 return false;
164 }
165
166 return true;
167}
168
169/// Maps ObjCLiteralKind to NSClassIdKindKind
170static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind(
171 Sema::ObjCLiteralKind LiteralKind) {
172 switch (LiteralKind) {
173 case Sema::LK_Array:
174 return NSAPI::ClassId_NSArray;
175 case Sema::LK_Dictionary:
176 return NSAPI::ClassId_NSDictionary;
177 case Sema::LK_Numeric:
178 return NSAPI::ClassId_NSNumber;
179 case Sema::LK_String:
180 return NSAPI::ClassId_NSString;
181 case Sema::LK_Boxed:
182 return NSAPI::ClassId_NSValue;
183
184 // there is no corresponding matching
185 // between LK_None/LK_Block and NSClassIdKindKind
186 case Sema::LK_Block:
187 case Sema::LK_None:
188 break;
189 }
190 llvm_unreachable("LiteralKind can't be converted into a ClassKind")::llvm::llvm_unreachable_internal("LiteralKind can't be converted into a ClassKind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 190)
;
191}
192
193/// Validates ObjCInterfaceDecl availability.
194/// ObjCInterfaceDecl, used to create ObjC literals, should be defined
195/// if clang not in a debugger mode.
196static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl,
197 SourceLocation Loc,
198 Sema::ObjCLiteralKind LiteralKind) {
199 if (!Decl) {
200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind);
201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind);
202 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
203 << II->getName() << LiteralKind;
204 return false;
205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) {
206 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
207 << Decl->getName() << LiteralKind;
208 S.Diag(Decl->getLocation(), diag::note_forward_class);
209 return false;
210 }
211
212 return true;
213}
214
215/// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind.
216/// Used to create ObjC literals, such as NSDictionary (@{}),
217/// NSArray (@[]) and Boxed Expressions (@())
218static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S,
219 SourceLocation Loc,
220 Sema::ObjCLiteralKind LiteralKind) {
221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind);
222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind);
223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc,
224 Sema::LookupOrdinaryName);
225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) {
227 ASTContext &Context = S.Context;
228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II,
230 nullptr, nullptr, SourceLocation());
231 }
232
233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) {
234 ID = nullptr;
235 }
236
237 return ID;
238}
239
240/// Retrieve the NSNumber factory method that should be used to create
241/// an Objective-C literal for the given type.
242static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
243 QualType NumberType,
244 bool isLiteral = false,
245 SourceRange R = SourceRange()) {
246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind =
247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
248
249 if (!Kind) {
250 if (isLiteral) {
251 S.Diag(Loc, diag::err_invalid_nsnumber_type)
252 << NumberType << R;
253 }
254 return nullptr;
255 }
256
257 // If we already looked up this method, we're done.
258 if (S.NSNumberLiteralMethods[*Kind])
259 return S.NSNumberLiteralMethods[*Kind];
260
261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
262 /*Instance=*/false);
263
264 ASTContext &CX = S.Context;
265
266 // Look up the NSNumber class, if we haven't done so already. It's cached
267 // in the Sema instance.
268 if (!S.NSNumberDecl) {
269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc,
270 Sema::LK_Numeric);
271 if (!S.NSNumberDecl) {
272 return nullptr;
273 }
274 }
275
276 if (S.NSNumberPointer.isNull()) {
277 // generate the pointer to NSNumber type.
278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
280 }
281
282 // Look for the appropriate method within NSNumber.
283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
285 // create a stub definition this NSNumber factory method.
286 TypeSourceInfo *ReturnTInfo = nullptr;
287 Method =
288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl,
290 /*isInstance=*/false, /*isVariadic=*/false,
291 /*isPropertyAccessor=*/false,
292 /*isSynthesizedAccessorStub=*/false,
293 /*isImplicitlyDeclared=*/true,
294 /*isDefined=*/false, ObjCMethodDecl::Required,
295 /*HasRelatedResultType=*/false);
296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
297 SourceLocation(), SourceLocation(),
298 &CX.Idents.get("value"),
299 NumberType, /*TInfo=*/nullptr,
300 SC_None, nullptr);
301 Method->setMethodParams(S.Context, value, None);
302 }
303
304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
305 return nullptr;
306
307 // Note: if the parameter type is out-of-line, we'll catch it later in the
308 // implicit conversion.
309
310 S.NSNumberLiteralMethods[*Kind] = Method;
311 return Method;
312}
313
314/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
315/// numeric literal expression. Type of the expression will be "NSNumber *".
316ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
317 // Determine the type of the literal.
318 QualType NumberType = Number->getType();
319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
320 // In C, character literals have type 'int'. That's not the type we want
321 // to use to determine the Objective-c literal kind.
322 switch (Char->getKind()) {
323 case CharacterLiteral::Ascii:
324 case CharacterLiteral::UTF8:
325 NumberType = Context.CharTy;
326 break;
327
328 case CharacterLiteral::Wide:
329 NumberType = Context.getWideCharType();
330 break;
331
332 case CharacterLiteral::UTF16:
333 NumberType = Context.Char16Ty;
334 break;
335
336 case CharacterLiteral::UTF32:
337 NumberType = Context.Char32Ty;
338 break;
339 }
340 }
341
342 // Look for the appropriate method within NSNumber.
343 // Construct the literal.
344 SourceRange NR(Number->getSourceRange());
345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
346 true, NR);
347 if (!Method)
348 return ExprError();
349
350 // Convert the number to the type that the parameter expects.
351 ParmVarDecl *ParamDecl = Method->parameters()[0];
352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
353 ParamDecl);
354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
355 SourceLocation(),
356 Number);
357 if (ConvertedNumber.isInvalid())
358 return ExprError();
359 Number = ConvertedNumber.get();
360
361 // Use the effective source range of the literal, including the leading '@'.
362 return MaybeBindToTemporary(
363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
364 SourceRange(AtLoc, NR.getEnd())));
365}
366
367ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
368 SourceLocation ValueLoc,
369 bool Value) {
370 ExprResult Inner;
371 if (getLangOpts().CPlusPlus) {
372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
373 } else {
374 // C doesn't actually have a way to represent literal values of type
375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
378 CK_IntegralToBoolean);
379 }
380
381 return BuildObjCNumericLiteral(AtLoc, Inner.get());
382}
383
384/// Check that the given expression is a valid element of an Objective-C
385/// collection literal.
386static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
387 QualType T,
388 bool ArrayLiteral = false) {
389 // If the expression is type-dependent, there's nothing for us to do.
390 if (Element->isTypeDependent())
391 return Element;
392
393 ExprResult Result = S.CheckPlaceholderExpr(Element);
394 if (Result.isInvalid())
395 return ExprError();
396 Element = Result.get();
397
398 // In C++, check for an implicit conversion to an Objective-C object pointer
399 // type.
400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
401 InitializedEntity Entity
402 = InitializedEntity::InitializeParameter(S.Context, T,
403 /*Consumed=*/false);
404 InitializationKind Kind = InitializationKind::CreateCopy(
405 Element->getBeginLoc(), SourceLocation());
406 InitializationSequence Seq(S, Entity, Kind, Element);
407 if (!Seq.Failed())
408 return Seq.Perform(S, Entity, Kind, Element);
409 }
410
411 Expr *OrigElement = Element;
412
413 // Perform lvalue-to-rvalue conversion.
414 Result = S.DefaultLvalueConversion(Element);
415 if (Result.isInvalid())
416 return ExprError();
417 Element = Result.get();
418
419 // Make sure that we have an Objective-C pointer type or block.
420 if (!Element->getType()->isObjCObjectPointerType() &&
421 !Element->getType()->isBlockPointerType()) {
422 bool Recovered = false;
423
424 // If this is potentially an Objective-C numeric literal, add the '@'.
425 if (isa<IntegerLiteral>(OrigElement) ||
426 isa<CharacterLiteral>(OrigElement) ||
427 isa<FloatingLiteral>(OrigElement) ||
428 isa<ObjCBoolLiteralExpr>(OrigElement) ||
429 isa<CXXBoolLiteralExpr>(OrigElement)) {
430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
431 int Which = isa<CharacterLiteral>(OrigElement) ? 1
432 : (isa<CXXBoolLiteralExpr>(OrigElement) ||
433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
434 : 3;
435
436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
437 << Which << OrigElement->getSourceRange()
438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
439
440 Result =
441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement);
442 if (Result.isInvalid())
443 return ExprError();
444
445 Element = Result.get();
446 Recovered = true;
447 }
448 }
449 // If this is potentially an Objective-C string literal, add the '@'.
450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
451 if (String->isAscii()) {
452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
453 << 0 << OrigElement->getSourceRange()
454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
455
456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String);
457 if (Result.isInvalid())
458 return ExprError();
459
460 Element = Result.get();
461 Recovered = true;
462 }
463 }
464
465 if (!Recovered) {
466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element)
467 << Element->getType();
468 return ExprError();
469 }
470 }
471 if (ArrayLiteral)
472 if (ObjCStringLiteral *getString =
473 dyn_cast<ObjCStringLiteral>(OrigElement)) {
474 if (StringLiteral *SL = getString->getString()) {
475 unsigned numConcat = SL->getNumConcatenated();
476 if (numConcat > 1) {
477 // Only warn if the concatenated string doesn't come from a macro.
478 bool hasMacro = false;
479 for (unsigned i = 0; i < numConcat ; ++i)
480 if (SL->getStrTokenLoc(i).isMacroID()) {
481 hasMacro = true;
482 break;
483 }
484 if (!hasMacro)
485 S.Diag(Element->getBeginLoc(),
486 diag::warn_concatenated_nsarray_literal)
487 << Element->getType();
488 }
489 }
490 }
491
492 // Make sure that the element has the type that the container factory
493 // function expects.
494 return S.PerformCopyInitialization(
495 InitializedEntity::InitializeParameter(S.Context, T,
496 /*Consumed=*/false),
497 Element->getBeginLoc(), Element);
498}
499
500ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
501 if (ValueExpr->isTypeDependent()) {
502 ObjCBoxedExpr *BoxedExpr =
503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR);
504 return BoxedExpr;
505 }
506 ObjCMethodDecl *BoxingMethod = nullptr;
507 QualType BoxedType;
508 // Convert the expression to an RValue, so we can check for pointer types...
509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
510 if (RValue.isInvalid()) {
511 return ExprError();
512 }
513 SourceLocation Loc = SR.getBegin();
514 ValueExpr = RValue.get();
515 QualType ValueType(ValueExpr->getType());
516 if (const PointerType *PT = ValueType->getAs<PointerType>()) {
517 QualType PointeeType = PT->getPointeeType();
518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
519
520 if (!NSStringDecl) {
521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
522 Sema::LK_String);
523 if (!NSStringDecl) {
524 return ExprError();
525 }
526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
528 }
529
530 // The boxed expression can be emitted as a compile time constant if it is
531 // a string literal whose character encoding is compatible with UTF-8.
532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr))
533 if (CE->getCastKind() == CK_ArrayToPointerDecay)
534 if (auto *SL =
535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) {
536 assert((SL->isAscii() || SL->isUTF8()) &&(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
537 "unexpected character encoding")(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
;
538 StringRef Str = SL->getString();
539 const llvm::UTF8 *StrBegin = Str.bytes_begin();
540 const llvm::UTF8 *StrEnd = Str.bytes_end();
541 // Check that this is a valid UTF-8 string.
542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) {
543 BoxedType = Context.getAttributedType(
544 AttributedType::getNullabilityAttrKind(
545 NullabilityKind::NonNull),
546 NSStringPointer, NSStringPointer);
547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR);
548 }
549
550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string)
551 << NSStringPointer << SL->getSourceRange();
552 }
553
554 if (!StringWithUTF8StringMethod) {
555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
557
558 // Look for the appropriate method within NSString.
559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
561 // Debugger needs to work even if NSString hasn't been defined.
562 TypeSourceInfo *ReturnTInfo = nullptr;
563 ObjCMethodDecl *M = ObjCMethodDecl::Create(
564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String,
565 NSStringPointer, ReturnTInfo, NSStringDecl,
566 /*isInstance=*/false, /*isVariadic=*/false,
567 /*isPropertyAccessor=*/false,
568 /*isSynthesizedAccessorStub=*/false,
569 /*isImplicitlyDeclared=*/true,
570 /*isDefined=*/false, ObjCMethodDecl::Required,
571 /*HasRelatedResultType=*/false);
572 QualType ConstCharType = Context.CharTy.withConst();
573 ParmVarDecl *value =
574 ParmVarDecl::Create(Context, M,
575 SourceLocation(), SourceLocation(),
576 &Context.Idents.get("value"),
577 Context.getPointerType(ConstCharType),
578 /*TInfo=*/nullptr,
579 SC_None, nullptr);
580 M->setMethodParams(Context, value, None);
581 BoxingMethod = M;
582 }
583
584 if (!validateBoxingMethod(*this, Loc, NSStringDecl,
585 stringWithUTF8String, BoxingMethod))
586 return ExprError();
587
588 StringWithUTF8StringMethod = BoxingMethod;
589 }
590
591 BoxingMethod = StringWithUTF8StringMethod;
592 BoxedType = NSStringPointer;
593 // Transfer the nullability from method's return type.
594 Optional<NullabilityKind> Nullability =
595 BoxingMethod->getReturnType()->getNullability(Context);
596 if (Nullability)
597 BoxedType = Context.getAttributedType(
598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType,
599 BoxedType);
600 }
601 } else if (ValueType->isBuiltinType()) {
602 // The other types we support are numeric, char and BOOL/bool. We could also
603 // provide limited support for structure types, such as NSRange, NSRect, and
604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
605 // for more details.
606
607 // Check for a top-level character literal.
608 if (const CharacterLiteral *Char =
609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
610 // In C, character literals have type 'int'. That's not the type we want
611 // to use to determine the Objective-c literal kind.
612 switch (Char->getKind()) {
613 case CharacterLiteral::Ascii:
614 case CharacterLiteral::UTF8:
615 ValueType = Context.CharTy;
616 break;
617
618 case CharacterLiteral::Wide:
619 ValueType = Context.getWideCharType();
620 break;
621
622 case CharacterLiteral::UTF16:
623 ValueType = Context.Char16Ty;
624 break;
625
626 case CharacterLiteral::UTF32:
627 ValueType = Context.Char32Ty;
628 break;
629 }
630 }
631 // FIXME: Do I need to do anything special with BoolTy expressions?
632
633 // Look for the appropriate method within NSNumber.
634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType);
635 BoxedType = NSNumberPointer;
636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
637 if (!ET->getDecl()->isComplete()) {
638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type)
639 << ValueType << ValueExpr->getSourceRange();
640 return ExprError();
641 }
642
643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc,
644 ET->getDecl()->getIntegerType());
645 BoxedType = NSNumberPointer;
646 } else if (ValueType->isObjCBoxableRecordType()) {
647 // Support for structure types, that marked as objc_boxable
648 // struct __attribute__((objc_boxable)) s { ... };
649
650 // Look up the NSValue class, if we haven't done so already. It's cached
651 // in the Sema instance.
652 if (!NSValueDecl) {
653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
654 Sema::LK_Boxed);
655 if (!NSValueDecl) {
656 return ExprError();
657 }
658
659 // generate the pointer to NSValue type.
660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl);
661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject);
662 }
663
664 if (!ValueWithBytesObjCTypeMethod) {
665 IdentifierInfo *II[] = {
666 &Context.Idents.get("valueWithBytes"),
667 &Context.Idents.get("objCType")
668 };
669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II);
670
671 // Look for the appropriate method within NSValue.
672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType);
673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
674 // Debugger needs to work even if NSValue hasn't been defined.
675 TypeSourceInfo *ReturnTInfo = nullptr;
676 ObjCMethodDecl *M = ObjCMethodDecl::Create(
677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType,
678 NSValuePointer, ReturnTInfo, NSValueDecl,
679 /*isInstance=*/false,
680 /*isVariadic=*/false,
681 /*isPropertyAccessor=*/false,
682 /*isSynthesizedAccessorStub=*/false,
683 /*isImplicitlyDeclared=*/true,
684 /*isDefined=*/false, ObjCMethodDecl::Required,
685 /*HasRelatedResultType=*/false);
686
687 SmallVector<ParmVarDecl *, 2> Params;
688
689 ParmVarDecl *bytes =
690 ParmVarDecl::Create(Context, M,
691 SourceLocation(), SourceLocation(),
692 &Context.Idents.get("bytes"),
693 Context.VoidPtrTy.withConst(),
694 /*TInfo=*/nullptr,
695 SC_None, nullptr);
696 Params.push_back(bytes);
697
698 QualType ConstCharType = Context.CharTy.withConst();
699 ParmVarDecl *type =
700 ParmVarDecl::Create(Context, M,
701 SourceLocation(), SourceLocation(),
702 &Context.Idents.get("type"),
703 Context.getPointerType(ConstCharType),
704 /*TInfo=*/nullptr,
705 SC_None, nullptr);
706 Params.push_back(type);
707
708 M->setMethodParams(Context, Params, None);
709 BoxingMethod = M;
710 }
711
712 if (!validateBoxingMethod(*this, Loc, NSValueDecl,
713 ValueWithBytesObjCType, BoxingMethod))
714 return ExprError();
715
716 ValueWithBytesObjCTypeMethod = BoxingMethod;
717 }
718
719 if (!ValueType.isTriviallyCopyableType(Context)) {
720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type)
721 << ValueType << ValueExpr->getSourceRange();
722 return ExprError();
723 }
724
725 BoxingMethod = ValueWithBytesObjCTypeMethod;
726 BoxedType = NSValuePointer;
727 }
728
729 if (!BoxingMethod) {
730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type)
731 << ValueType << ValueExpr->getSourceRange();
732 return ExprError();
733 }
734
735 DiagnoseUseOfDecl(BoxingMethod, Loc);
736
737 ExprResult ConvertedValueExpr;
738 if (ValueType->isObjCBoxableRecordType()) {
739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType);
740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(),
741 ValueExpr);
742 } else {
743 // Convert the expression to the type that the parameter requires.
744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0];
745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context,
746 ParamDecl);
747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(),
748 ValueExpr);
749 }
750
751 if (ConvertedValueExpr.isInvalid())
752 return ExprError();
753 ValueExpr = ConvertedValueExpr.get();
754
755 ObjCBoxedExpr *BoxedExpr =
756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
757 BoxingMethod, SR);
758 return MaybeBindToTemporary(BoxedExpr);
759}
760
761/// Build an ObjC subscript pseudo-object expression, given that
762/// that's supported by the runtime.
763ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
764 Expr *IndexExpr,
765 ObjCMethodDecl *getterMethod,
766 ObjCMethodDecl *setterMethod) {
767 assert(!LangOpts.isSubscriptPointerArithmetic())((!LangOpts.isSubscriptPointerArithmetic()) ? static_cast<
void> (0) : __assert_fail ("!LangOpts.isSubscriptPointerArithmetic()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 767, __PRETTY_FUNCTION__))
;
768
769 // We can't get dependent types here; our callers should have
770 // filtered them out.
771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
772 "base or index cannot have dependent type here")(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
;
773
774 // Filter out placeholders in the index. In theory, overloads could
775 // be preserved here, although that might not actually work correctly.
776 ExprResult Result = CheckPlaceholderExpr(IndexExpr);
777 if (Result.isInvalid())
778 return ExprError();
779 IndexExpr = Result.get();
780
781 // Perform lvalue-to-rvalue conversion on the base.
782 Result = DefaultLvalueConversion(BaseExpr);
783 if (Result.isInvalid())
784 return ExprError();
785 BaseExpr = Result.get();
786
787 // Build the pseudo-object expression.
788 return new (Context) ObjCSubscriptRefExpr(
789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript,
790 getterMethod, setterMethod, RB);
791}
792
793ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
794 SourceLocation Loc = SR.getBegin();
795
796 if (!NSArrayDecl) {
797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
798 Sema::LK_Array);
799 if (!NSArrayDecl) {
800 return ExprError();
801 }
802 }
803
804 // Find the arrayWithObjects:count: method, if we haven't done so already.
805 QualType IdT = Context.getObjCIdType();
806 if (!ArrayWithObjectsMethod) {
807 Selector
808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
810 if (!Method && getLangOpts().DebuggerObjCLiteral) {
811 TypeSourceInfo *ReturnTInfo = nullptr;
812 Method = ObjCMethodDecl::Create(
813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo,
814 Context.getTranslationUnitDecl(), false /*Instance*/,
815 false /*isVariadic*/,
816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
818 ObjCMethodDecl::Required, false);
819 SmallVector<ParmVarDecl *, 2> Params;
820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
821 SourceLocation(),
822 SourceLocation(),
823 &Context.Idents.get("objects"),
824 Context.getPointerType(IdT),
825 /*TInfo=*/nullptr,
826 SC_None, nullptr);
827 Params.push_back(objects);
828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
829 SourceLocation(),
830 SourceLocation(),
831 &Context.Idents.get("cnt"),
832 Context.UnsignedLongTy,
833 /*TInfo=*/nullptr, SC_None,
834 nullptr);
835 Params.push_back(cnt);
836 Method->setMethodParams(Context, Params, None);
837 }
838
839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method))
840 return ExprError();
841
842 // Dig out the type that all elements should be converted to.
843 QualType T = Method->parameters()[0]->getType();
844 const PointerType *PtrT = T->getAs<PointerType>();
845 if (!PtrT ||
846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
848 << Sel;
849 Diag(Method->parameters()[0]->getLocation(),
850 diag::note_objc_literal_method_param)
851 << 0 << T
852 << Context.getPointerType(IdT.withConst());
853 return ExprError();
854 }
855
856 // Check that the 'count' parameter is integral.
857 if (!Method->parameters()[1]->getType()->isIntegerType()) {
858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
859 << Sel;
860 Diag(Method->parameters()[1]->getLocation(),
861 diag::note_objc_literal_method_param)
862 << 1
863 << Method->parameters()[1]->getType()
864 << "integral";
865 return ExprError();
866 }
867
868 // We've found a good +arrayWithObjects:count: method. Save it!
869 ArrayWithObjectsMethod = Method;
870 }
871
872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType();
873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
874
875 // Check that each of the elements provided is valid in a collection literal,
876 // performing conversions as necessary.
877 Expr **ElementsBuffer = Elements.data();
878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
880 ElementsBuffer[I],
881 RequiredType, true);
882 if (Converted.isInvalid())
883 return ExprError();
884
885 ElementsBuffer[I] = Converted.get();
886 }
887
888 QualType Ty
889 = Context.getObjCObjectPointerType(
890 Context.getObjCInterfaceType(NSArrayDecl));
891
892 return MaybeBindToTemporary(
893 ObjCArrayLiteral::Create(Context, Elements, Ty,
894 ArrayWithObjectsMethod, SR));
895}
896
897ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
898 MutableArrayRef<ObjCDictionaryElement> Elements) {
899 SourceLocation Loc = SR.getBegin();
900
901 if (!NSDictionaryDecl) {
902 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
903 Sema::LK_Dictionary);
904 if (!NSDictionaryDecl) {
905 return ExprError();
906 }
907 }
908
909 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
910 // so already.
911 QualType IdT = Context.getObjCIdType();
912 if (!DictionaryWithObjectsMethod) {
913 Selector Sel = NSAPIObj->getNSDictionarySelector(
914 NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
915 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
916 if (!Method && getLangOpts().DebuggerObjCLiteral) {
917 Method = ObjCMethodDecl::Create(
918 Context, SourceLocation(), SourceLocation(), Sel, IdT,
919 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(),
920 false /*Instance*/, false /*isVariadic*/,
921 /*isPropertyAccessor=*/false,
922 /*isSynthesizedAccessorStub=*/false,
923 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
924 ObjCMethodDecl::Required, false);
925 SmallVector<ParmVarDecl *, 3> Params;
926 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
927 SourceLocation(),
928 SourceLocation(),
929 &Context.Idents.get("objects"),
930 Context.getPointerType(IdT),
931 /*TInfo=*/nullptr, SC_None,
932 nullptr);
933 Params.push_back(objects);
934 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
935 SourceLocation(),
936 SourceLocation(),
937 &Context.Idents.get("keys"),
938 Context.getPointerType(IdT),
939 /*TInfo=*/nullptr, SC_None,
940 nullptr);
941 Params.push_back(keys);
942 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
943 SourceLocation(),
944 SourceLocation(),
945 &Context.Idents.get("cnt"),
946 Context.UnsignedLongTy,
947 /*TInfo=*/nullptr, SC_None,
948 nullptr);
949 Params.push_back(cnt);
950 Method->setMethodParams(Context, Params, None);
951 }
952
953 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
954 Method))
955 return ExprError();
956
957 // Dig out the type that all values should be converted to.
958 QualType ValueT = Method->parameters()[0]->getType();
959 const PointerType *PtrValue = ValueT->getAs<PointerType>();
960 if (!PtrValue ||
961 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
962 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
963 << Sel;
964 Diag(Method->parameters()[0]->getLocation(),
965 diag::note_objc_literal_method_param)
966 << 0 << ValueT
967 << Context.getPointerType(IdT.withConst());
968 return ExprError();
969 }
970
971 // Dig out the type that all keys should be converted to.
972 QualType KeyT = Method->parameters()[1]->getType();
973 const PointerType *PtrKey = KeyT->getAs<PointerType>();
974 if (!PtrKey ||
975 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
976 IdT)) {
977 bool err = true;
978 if (PtrKey) {
979 if (QIDNSCopying.isNull()) {
980 // key argument of selector is id<NSCopying>?
981 if (ObjCProtocolDecl *NSCopyingPDecl =
982 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
983 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
984 QIDNSCopying =
985 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { },
986 llvm::makeArrayRef(
987 (ObjCProtocolDecl**) PQ,
988 1),
989 false);
990 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
991 }
992 }
993 if (!QIDNSCopying.isNull())
994 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
995 QIDNSCopying);
996 }
997
998 if (err) {
999 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1000 << Sel;
1001 Diag(Method->parameters()[1]->getLocation(),
1002 diag::note_objc_literal_method_param)
1003 << 1 << KeyT
1004 << Context.getPointerType(IdT.withConst());
1005 return ExprError();
1006 }
1007 }
1008
1009 // Check that the 'count' parameter is integral.
1010 QualType CountType = Method->parameters()[2]->getType();
1011 if (!CountType->isIntegerType()) {
1012 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1013 << Sel;
1014 Diag(Method->parameters()[2]->getLocation(),
1015 diag::note_objc_literal_method_param)
1016 << 2 << CountType
1017 << "integral";
1018 return ExprError();
1019 }
1020
1021 // We've found a good +dictionaryWithObjects:keys:count: method; save it!
1022 DictionaryWithObjectsMethod = Method;
1023 }
1024
1025 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType();
1026 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
1027 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType();
1028 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
1029
1030 // Check that each of the keys and values provided is valid in a collection
1031 // literal, performing conversions as necessary.
1032 bool HasPackExpansions = false;
1033 for (ObjCDictionaryElement &Element : Elements) {
1034 // Check the key.
1035 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key,
1036 KeyT);
1037 if (Key.isInvalid())
1038 return ExprError();
1039
1040 // Check the value.
1041 ExprResult Value
1042 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT);
1043 if (Value.isInvalid())
1044 return ExprError();
1045
1046 Element.Key = Key.get();
1047 Element.Value = Value.get();
1048
1049 if (Element.EllipsisLoc.isInvalid())
1050 continue;
1051
1052 if (!Element.Key->containsUnexpandedParameterPack() &&
1053 !Element.Value->containsUnexpandedParameterPack()) {
1054 Diag(Element.EllipsisLoc,
1055 diag::err_pack_expansion_without_parameter_packs)
1056 << SourceRange(Element.Key->getBeginLoc(),
1057 Element.Value->getEndLoc());
1058 return ExprError();
1059 }
1060
1061 HasPackExpansions = true;
1062 }
1063
1064 QualType Ty
1065 = Context.getObjCObjectPointerType(
1066 Context.getObjCInterfaceType(NSDictionaryDecl));
1067 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create(
1068 Context, Elements, HasPackExpansions, Ty,
1069 DictionaryWithObjectsMethod, SR));
1070}
1071
1072ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
1073 TypeSourceInfo *EncodedTypeInfo,
1074 SourceLocation RParenLoc) {
1075 QualType EncodedType = EncodedTypeInfo->getType();
1076 QualType StrTy;
1077 if (EncodedType->isDependentType())
1078 StrTy = Context.DependentTy;
1079 else {
1080 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
1081 !EncodedType->isVoidType()) // void is handled too.
1082 if (RequireCompleteType(AtLoc, EncodedType,
1083 diag::err_incomplete_type_objc_at_encode,
1084 EncodedTypeInfo->getTypeLoc()))
1085 return ExprError();
1086
1087 std::string Str;
1088 QualType NotEncodedT;
1089 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT);
1090 if (!NotEncodedT.isNull())
1091 Diag(AtLoc, diag::warn_incomplete_encoded_type)
1092 << EncodedType << NotEncodedT;
1093
1094 // The type of @encode is the same as the type of the corresponding string,
1095 // which is an array type.
1096 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size());
1097 }
1098
1099 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
1100}
1101
1102ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
1103 SourceLocation EncodeLoc,
1104 SourceLocation LParenLoc,
1105 ParsedType ty,
1106 SourceLocation RParenLoc) {
1107 // FIXME: Preserve type source info ?
1108 TypeSourceInfo *TInfo;
1109 QualType EncodedType = GetTypeFromParser(ty, &TInfo);
1110 if (!TInfo)
1111 TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
1112 getLocForEndOfToken(LParenLoc));
1113
1114 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
1115}
1116
1117static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
1118 SourceLocation AtLoc,
1119 SourceLocation LParenLoc,
1120 SourceLocation RParenLoc,
1121 ObjCMethodDecl *Method,
1122 ObjCMethodList &MethList) {
1123 ObjCMethodList *M = &MethList;
1124 bool Warned = false;
1125 for (M = M->getNext(); M; M=M->getNext()) {
1126 ObjCMethodDecl *MatchingMethodDecl = M->getMethod();
1127 if (MatchingMethodDecl == Method ||
1128 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) ||
1129 MatchingMethodDecl->getSelector() != Method->getSelector())
1130 continue;
1131 if (!S.MatchTwoMethodDeclarations(Method,
1132 MatchingMethodDecl, Sema::MMS_loose)) {
1133 if (!Warned) {
1134 Warned = true;
1135 S.Diag(AtLoc, diag::warn_multiple_selectors)
1136 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(")
1137 << FixItHint::CreateInsertion(RParenLoc, ")");
1138 S.Diag(Method->getLocation(), diag::note_method_declared_at)
1139 << Method->getDeclName();
1140 }
1141 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at)
1142 << MatchingMethodDecl->getDeclName();
1143 }
1144 }
1145 return Warned;
1146}
1147
1148static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc,
1149 ObjCMethodDecl *Method,
1150 SourceLocation LParenLoc,
1151 SourceLocation RParenLoc,
1152 bool WarnMultipleSelectors) {
1153 if (!WarnMultipleSelectors ||
1154 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation()))
1155 return;
1156 bool Warned = false;
1157 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1158 e = S.MethodPool.end(); b != e; b++) {
1159 // first, instance methods
1160 ObjCMethodList &InstMethList = b->second.first;
1161 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1162 Method, InstMethList))
1163 Warned = true;
1164
1165 // second, class methods
1166 ObjCMethodList &ClsMethList = b->second.second;
1167 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1168 Method, ClsMethList) || Warned)
1169 return;
1170 }
1171}
1172
1173static void HelperToDiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1174 Selector Sel,
1175 ObjCMethodList &MethList,
1176 bool &onlyDirect) {
1177 ObjCMethodList *M = &MethList;
1178 for (M = M->getNext(); M; M = M->getNext()) {
1179 ObjCMethodDecl *Method = M->getMethod();
1180 if (Method->getSelector() != Sel)
1181 continue;
1182 if (!Method->isDirectMethod())
1183 onlyDirect = false;
1184 }
1185}
1186
1187static void DiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1188 Selector Sel, bool &onlyDirect) {
1189 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1190 e = S.MethodPool.end(); b != e; b++) {
1191 // first, instance methods
1192 ObjCMethodList &InstMethList = b->second.first;
1193 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, InstMethList,
1194 onlyDirect);
1195
1196 // second, class methods
1197 ObjCMethodList &ClsMethList = b->second.second;
1198 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, ClsMethList, onlyDirect);
1199 }
1200}
1201
1202ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
1203 SourceLocation AtLoc,
1204 SourceLocation SelLoc,
1205 SourceLocation LParenLoc,
1206 SourceLocation RParenLoc,
1207 bool WarnMultipleSelectors) {
1208 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
1209 SourceRange(LParenLoc, RParenLoc));
1210 if (!Method)
1211 Method = LookupFactoryMethodInGlobalPool(Sel,
1212 SourceRange(LParenLoc, RParenLoc));
1213 if (!Method) {
1214 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) {
1215 Selector MatchedSel = OM->getSelector();
1216 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1),
1217 RParenLoc.getLocWithOffset(-1));
1218 Diag(SelLoc, diag::warn_undeclared_selector_with_typo)
1219 << Sel << MatchedSel
1220 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1221
1222 } else
1223 Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
1224 } else {
1225 bool onlyDirect = Method->isDirectMethod();
1226 DiagnoseDirectSelectorsExpr(*this, AtLoc, Sel, onlyDirect);
1227 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc,
1228 WarnMultipleSelectors);
1229 if (onlyDirect) {
1230 Diag(AtLoc, diag::err_direct_selector_expression)
1231 << Method->getSelector();
1232 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
1233 << Method->getDeclName();
1234 }
1235 }
1236
1237 if (Method &&
1238 Method->getImplementationControl() != ObjCMethodDecl::Optional &&
1239 !getSourceManager().isInSystemHeader(Method->getLocation()))
1240 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc));
1241
1242 // In ARC, forbid the user from using @selector for
1243 // retain/release/autorelease/dealloc/retainCount.
1244 if (getLangOpts().ObjCAutoRefCount) {
1245 switch (Sel.getMethodFamily()) {
1246 case OMF_retain:
1247 case OMF_release:
1248 case OMF_autorelease:
1249 case OMF_retainCount:
1250 case OMF_dealloc:
1251 Diag(AtLoc, diag::err_arc_illegal_selector) <<
1252 Sel << SourceRange(LParenLoc, RParenLoc);
1253 break;
1254
1255 case OMF_None:
1256 case OMF_alloc:
1257 case OMF_copy:
1258 case OMF_finalize:
1259 case OMF_init:
1260 case OMF_mutableCopy:
1261 case OMF_new:
1262 case OMF_self:
1263 case OMF_initialize:
1264 case OMF_performSelector:
1265 break;
1266 }
1267 }
1268 QualType Ty = Context.getObjCSelType();
1269 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
1270}
1271
1272ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
1273 SourceLocation AtLoc,
1274 SourceLocation ProtoLoc,
1275 SourceLocation LParenLoc,
1276 SourceLocation ProtoIdLoc,
1277 SourceLocation RParenLoc) {
1278 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
1279 if (!PDecl) {
1280 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
1281 return true;
1282 }
1283 if (!PDecl->hasDefinition()) {
1284 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl;
1285 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
1286 } else {
1287 PDecl = PDecl->getDefinition();
1288 }
1289
1290 QualType Ty = Context.getObjCProtoType();
1291 if (Ty.isNull())
1292 return true;
1293 Ty = Context.getObjCObjectPointerType(Ty);
1294 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
1295}
1296
1297/// Try to capture an implicit reference to 'self'.
1298ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
1299 DeclContext *DC = getFunctionLevelDeclContext();
1300
1301 // If we're not in an ObjC method, error out. Note that, unlike the
1302 // C++ case, we don't require an instance method --- class methods
1303 // still have a 'self', and we really do still need to capture it!
1304 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
1305 if (!method)
1306 return nullptr;
1307
1308 tryCaptureVariable(method->getSelfDecl(), Loc);
1309
1310 return method;
1311}
1312
1313static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
1314 QualType origType = T;
1315 if (auto nullability = AttributedType::stripOuterNullability(T)) {
1316 if (T == Context.getObjCInstanceType()) {
1317 return Context.getAttributedType(
1318 AttributedType::getNullabilityAttrKind(*nullability),
1319 Context.getObjCIdType(),
1320 Context.getObjCIdType());
1321 }
1322
1323 return origType;
1324 }
1325
1326 if (T == Context.getObjCInstanceType())
1327 return Context.getObjCIdType();
1328
1329 return origType;
1330}
1331
1332/// Determine the result type of a message send based on the receiver type,
1333/// method, and the kind of message send.
1334///
1335/// This is the "base" result type, which will still need to be adjusted
1336/// to account for nullability.
1337static QualType getBaseMessageSendResultType(Sema &S,
1338 QualType ReceiverType,
1339 ObjCMethodDecl *Method,
1340 bool isClassMessage,
1341 bool isSuperMessage) {
1342 assert(Method && "Must have a method")((Method && "Must have a method") ? static_cast<void
> (0) : __assert_fail ("Method && \"Must have a method\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (!Method->hasRelatedResultType())
1344 return Method->getSendResultType(ReceiverType);
1345
1346 ASTContext &Context = S.Context;
1347
1348 // Local function that transfers the nullability of the method's
1349 // result type to the returned result.
1350 auto transferNullability = [&](QualType type) -> QualType {
1351 // If the method's result type has nullability, extract it.
1352 if (auto nullability = Method->getSendResultType(ReceiverType)
1353 ->getNullability(Context)){
1354 // Strip off any outer nullability sugar from the provided type.
1355 (void)AttributedType::stripOuterNullability(type);
1356
1357 // Form a new attributed type using the method result type's nullability.
1358 return Context.getAttributedType(
1359 AttributedType::getNullabilityAttrKind(*nullability),
1360 type,
1361 type);
1362 }
1363
1364 return type;
1365 };
1366
1367 // If a method has a related return type:
1368 // - if the method found is an instance method, but the message send
1369 // was a class message send, T is the declared return type of the method
1370 // found
1371 if (Method->isInstanceMethod() && isClassMessage)
1372 return stripObjCInstanceType(Context,
1373 Method->getSendResultType(ReceiverType));
1374
1375 // - if the receiver is super, T is a pointer to the class of the
1376 // enclosing method definition
1377 if (isSuperMessage) {
1378 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl())
1379 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) {
1380 return transferNullability(
1381 Context.getObjCObjectPointerType(
1382 Context.getObjCInterfaceType(Class)));
1383 }
1384 }
1385
1386 // - if the receiver is the name of a class U, T is a pointer to U
1387 if (ReceiverType->getAsObjCInterfaceType())
1388 return transferNullability(Context.getObjCObjectPointerType(ReceiverType));
1389 // - if the receiver is of type Class or qualified Class type,
1390 // T is the declared return type of the method.
1391 if (ReceiverType->isObjCClassType() ||
1392 ReceiverType->isObjCQualifiedClassType())
1393 return stripObjCInstanceType(Context,
1394 Method->getSendResultType(ReceiverType));
1395
1396 // - if the receiver is id, qualified id, Class, or qualified Class, T
1397 // is the receiver type, otherwise
1398 // - T is the type of the receiver expression.
1399 return transferNullability(ReceiverType);
1400}
1401
1402QualType Sema::getMessageSendResultType(const Expr *Receiver,
1403 QualType ReceiverType,
1404 ObjCMethodDecl *Method,
1405 bool isClassMessage,
1406 bool isSuperMessage) {
1407 // Produce the result type.
1408 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType,
1409 Method,
1410 isClassMessage,
1411 isSuperMessage);
1412
1413 // If this is a class message, ignore the nullability of the receiver.
1414 if (isClassMessage) {
1415 // In a class method, class messages to 'self' that return instancetype can
1416 // be typed as the current class. We can safely do this in ARC because self
1417 // can't be reassigned, and we do it unsafely outside of ARC because in
1418 // practice people never reassign self in class methods and there's some
1419 // virtue in not being aggressively pedantic.
1420 if (Receiver && Receiver->isObjCSelfExpr()) {
1421 assert(ReceiverType->isObjCClassType() && "expected a Class self")((ReceiverType->isObjCClassType() && "expected a Class self"
) ? static_cast<void> (0) : __assert_fail ("ReceiverType->isObjCClassType() && \"expected a Class self\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1421, __PRETTY_FUNCTION__))
;
1422 QualType T = Method->getSendResultType(ReceiverType);
1423 AttributedType::stripOuterNullability(T);
1424 if (T == Context.getObjCInstanceType()) {
1425 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(
1426 cast<ImplicitParamDecl>(
1427 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl())
1428 ->getDeclContext());
1429 assert(MD->isClassMethod() && "expected a class method")((MD->isClassMethod() && "expected a class method"
) ? static_cast<void> (0) : __assert_fail ("MD->isClassMethod() && \"expected a class method\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1429, __PRETTY_FUNCTION__))
;
1430 QualType NewResultType = Context.getObjCObjectPointerType(
1431 Context.getObjCInterfaceType(MD->getClassInterface()));
1432 if (auto Nullability = resultType->getNullability(Context))
1433 NewResultType = Context.getAttributedType(
1434 AttributedType::getNullabilityAttrKind(*Nullability),
1435 NewResultType, NewResultType);
1436 return NewResultType;
1437 }
1438 }
1439 return resultType;
1440 }
1441
1442 // There is nothing left to do if the result type cannot have a nullability
1443 // specifier.
1444 if (!resultType->canHaveNullability())
1445 return resultType;
1446
1447 // Map the nullability of the result into a table index.
1448 unsigned receiverNullabilityIdx = 0;
1449 if (auto nullability = ReceiverType->getNullability(Context))
1450 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1451
1452 unsigned resultNullabilityIdx = 0;
1453 if (auto nullability = resultType->getNullability(Context))
1454 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1455
1456 // The table of nullability mappings, indexed by the receiver's nullability
1457 // and then the result type's nullability.
1458 static const uint8_t None = 0;
1459 static const uint8_t NonNull = 1;
1460 static const uint8_t Nullable = 2;
1461 static const uint8_t Unspecified = 3;
1462 static const uint8_t nullabilityMap[4][4] = {
1463 // None NonNull Nullable Unspecified
1464 /* None */ { None, None, Nullable, None },
1465 /* NonNull */ { None, NonNull, Nullable, Unspecified },
1466 /* Nullable */ { Nullable, Nullable, Nullable, Nullable },
1467 /* Unspecified */ { None, Unspecified, Nullable, Unspecified }
1468 };
1469
1470 unsigned newResultNullabilityIdx
1471 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx];
1472 if (newResultNullabilityIdx == resultNullabilityIdx)
1473 return resultType;
1474
1475 // Strip off the existing nullability. This removes as little type sugar as
1476 // possible.
1477 do {
1478 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) {
1479 resultType = attributed->getModifiedType();
1480 } else {
1481 resultType = resultType.getDesugaredType(Context);
1482 }
1483 } while (resultType->getNullability(Context));
1484
1485 // Add nullability back if needed.
1486 if (newResultNullabilityIdx > 0) {
1487 auto newNullability
1488 = static_cast<NullabilityKind>(newResultNullabilityIdx-1);
1489 return Context.getAttributedType(
1490 AttributedType::getNullabilityAttrKind(newNullability),
1491 resultType, resultType);
1492 }
1493
1494 return resultType;
1495}
1496
1497/// Look for an ObjC method whose result type exactly matches the given type.
1498static const ObjCMethodDecl *
1499findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD,
1500 QualType instancetype) {
1501 if (MD->getReturnType() == instancetype)
1502 return MD;
1503
1504 // For these purposes, a method in an @implementation overrides a
1505 // declaration in the @interface.
1506 if (const ObjCImplDecl *impl =
1507 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) {
1508 const ObjCContainerDecl *iface;
1509 if (const ObjCCategoryImplDecl *catImpl =
1510 dyn_cast<ObjCCategoryImplDecl>(impl)) {
1511 iface = catImpl->getCategoryDecl();
1512 } else {
1513 iface = impl->getClassInterface();
1514 }
1515
1516 const ObjCMethodDecl *ifaceMD =
1517 iface->getMethod(MD->getSelector(), MD->isInstanceMethod());
1518 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype);
1519 }
1520
1521 SmallVector<const ObjCMethodDecl *, 4> overrides;
1522 MD->getOverriddenMethods(overrides);
1523 for (unsigned i = 0, e = overrides.size(); i != e; ++i) {
1524 if (const ObjCMethodDecl *result =
1525 findExplicitInstancetypeDeclarer(overrides[i], instancetype))
1526 return result;
1527 }
1528
1529 return nullptr;
1530}
1531
1532void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) {
1533 // Only complain if we're in an ObjC method and the required return
1534 // type doesn't match the method's declared return type.
1535 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext);
1536 if (!MD || !MD->hasRelatedResultType() ||
1537 Context.hasSameUnqualifiedType(destType, MD->getReturnType()))
1538 return;
1539
1540 // Look for a method overridden by this method which explicitly uses
1541 // 'instancetype'.
1542 if (const ObjCMethodDecl *overridden =
1543 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) {
1544 SourceRange range = overridden->getReturnTypeSourceRange();
1545 SourceLocation loc = range.getBegin();
1546 if (loc.isInvalid())
1547 loc = overridden->getLocation();
1548 Diag(loc, diag::note_related_result_type_explicit)
1549 << /*current method*/ 1 << range;
1550 return;
1551 }
1552
1553 // Otherwise, if we have an interesting method family, note that.
1554 // This should always trigger if the above didn't.
1555 if (ObjCMethodFamily family = MD->getMethodFamily())
1556 Diag(MD->getLocation(), diag::note_related_result_type_family)
1557 << /*current method*/ 1
1558 << family;
1559}
1560
1561void Sema::EmitRelatedResultTypeNote(const Expr *E) {
1562 E = E->IgnoreParenImpCasts();
1563 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
1564 if (!MsgSend)
1565 return;
1566
1567 const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
1568 if (!Method)
1569 return;
1570
1571 if (!Method->hasRelatedResultType())
1572 return;
1573
1574 if (Context.hasSameUnqualifiedType(
1575 Method->getReturnType().getNonReferenceType(), MsgSend->getType()))
1576 return;
1577
1578 if (!Context.hasSameUnqualifiedType(Method->getReturnType(),
1579 Context.getObjCInstanceType()))
1580 return;
1581
1582 Diag(Method->getLocation(), diag::note_related_result_type_inferred)
1583 << Method->isInstanceMethod() << Method->getSelector()
1584 << MsgSend->getType();
1585}
1586
1587bool Sema::CheckMessageArgumentTypes(
1588 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args,
1589 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method,
1590 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac,
1591 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType,
1592 ExprValueKind &VK) {
1593 SourceLocation SelLoc;
1594 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
29
Assuming the condition is false
1595 SelLoc = SelectorLocs.front();
1596 else
1597 SelLoc = lbrac;
1598
1599 if (!Method
29.1
'Method' is null
29.1
'Method' is null
) {
30
Taking true branch
1600 // Apply default argument promotion as for (C99 6.5.2.2p6).
1601 for (unsigned i = 0, e = Args.size(); i != e; i++) {
31
Assuming 'i' is equal to 'e'
32
Loop condition is false. Execution continues on line 1617
1602 if (Args[i]->isTypeDependent())
1603 continue;
1604
1605 ExprResult result;
1606 if (getLangOpts().DebuggerSupport) {
1607 QualType paramTy; // ignored
1608 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy);
1609 } else {
1610 result = DefaultArgumentPromotion(Args[i]);
1611 }
1612 if (result.isInvalid())
1613 return true;
1614 Args[i] = result.get();
1615 }
1616
1617 unsigned DiagID;
1618 if (getLangOpts().ObjCAutoRefCount)
33
Assuming field 'ObjCAutoRefCount' is not equal to 0
34
Taking true branch
1619 DiagID = diag::err_arc_method_not_found;
1620 else
1621 DiagID = isClassMessage ? diag::warn_class_method_not_found
1622 : diag::warn_inst_method_not_found;
1623 if (!getLangOpts().DebuggerSupport) {
35
Assuming field 'DebuggerSupport' is 0
36
Taking true branch
1624 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType);
1625 if (OMD && !OMD->isInvalidDecl()) {
37
Assuming 'OMD' is null
1626 if (getLangOpts().ObjCAutoRefCount)
1627 DiagID = diag::err_method_not_found_with_typo;
1628 else
1629 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo
1630 : diag::warn_instance_method_not_found_with_typo;
1631 Selector MatchedSel = OMD->getSelector();
1632 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back());
1633 if (MatchedSel.isUnarySelector())
1634 Diag(SelLoc, DiagID)
1635 << Sel<< isClassMessage << MatchedSel
1636 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1637 else
1638 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel;
1639 }
1640 else
1641 Diag(SelLoc, DiagID)
1642 << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
1643 SelectorLocs.back());
1644 // Find the class to which we are sending this message.
1645 if (ReceiverType->isObjCObjectPointerType()) {
38
Calling 'Type::isObjCObjectPointerType'
41
Returning from 'Type::isObjCObjectPointerType'
42
Taking true branch
1646 if (ObjCInterfaceDecl *ThisClass =
1647 ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) {
43
Assuming the object is not a 'ObjCObjectPointerType'
44
Called C++ object pointer is null
1648 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared);
1649 if (!RecRange.isInvalid())
1650 if (ThisClass->lookupClassMethod(Sel))
1651 Diag(RecRange.getBegin(),diag::note_receiver_expr_here)
1652 << FixItHint::CreateReplacement(RecRange,
1653 ThisClass->getNameAsString());
1654 }
1655 }
1656 }
1657
1658 // In debuggers, we want to use __unknown_anytype for these
1659 // results so that clients can cast them.
1660 if (getLangOpts().DebuggerSupport) {
1661 ReturnType = Context.UnknownAnyTy;
1662 } else {
1663 ReturnType = Context.getObjCIdType();
1664 }
1665 VK = VK_RValue;
1666 return false;
1667 }
1668
1669 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method,
1670 isClassMessage, isSuperMessage);
1671 VK = Expr::getValueKindForType(Method->getReturnType());
1672
1673 unsigned NumNamedArgs = Sel.getNumArgs();
1674 // Method might have more arguments than selector indicates. This is due
1675 // to addition of c-style arguments in method.
1676 if (Method->param_size() > Sel.getNumArgs())
1677 NumNamedArgs = Method->param_size();
1678 // FIXME. This need be cleaned up.
1679 if (Args.size() < NumNamedArgs) {
1680 Diag(SelLoc, diag::err_typecheck_call_too_few_args)
1681 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size());
1682 return false;
1683 }
1684
1685 // Compute the set of type arguments to be substituted into each parameter
1686 // type.
1687 Optional<ArrayRef<QualType>> typeArgs
1688 = ReceiverType->getObjCSubstitutions(Method->getDeclContext());
1689 bool IsError = false;
1690 for (unsigned i = 0; i < NumNamedArgs; i++) {
1691 // We can't do any type-checking on a type-dependent argument.
1692 if (Args[i]->isTypeDependent())
1693 continue;
1694
1695 Expr *argExpr = Args[i];
1696
1697 ParmVarDecl *param = Method->parameters()[i];
1698 assert(argExpr && "CheckMessageArgumentTypes(): missing expression")((argExpr && "CheckMessageArgumentTypes(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"CheckMessageArgumentTypes(): missing expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 1698, __PRETTY_FUNCTION__))
;
1699
1700 if (param->hasAttr<NoEscapeAttr>())
1701 if (auto *BE = dyn_cast<BlockExpr>(
1702 argExpr->IgnoreParenNoopCasts(Context)))
1703 BE->getBlockDecl()->setDoesNotEscape();
1704
1705 // Strip the unbridged-cast placeholder expression off unless it's
1706 // a consumed argument.
1707 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
1708 !param->hasAttr<CFConsumedAttr>())
1709 argExpr = stripARCUnbridgedCast(argExpr);
1710
1711 // If the parameter is __unknown_anytype, infer its type
1712 // from the argument.
1713 if (param->getType() == Context.UnknownAnyTy) {
1714 QualType paramType;
1715 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType);
1716 if (argE.isInvalid()) {
1717 IsError = true;
1718 } else {
1719 Args[i] = argE.get();
1720
1721 // Update the parameter type in-place.
1722 param->setType(paramType);
1723 }
1724 continue;
1725 }
1726
1727 QualType origParamType = param->getType();
1728 QualType paramType = param->getType();
1729 if (typeArgs)
1730 paramType = paramType.substObjCTypeArgs(
1731 Context,
1732 *typeArgs,
1733 ObjCSubstitutionContext::Parameter);
1734
1735 if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
1736 paramType,
1737 diag::err_call_incomplete_argument, argExpr))
1738 return true;
1739
1740 InitializedEntity Entity
1741 = InitializedEntity::InitializeParameter(Context, param, paramType);
1742 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr);
1743 if (ArgE.isInvalid())
1744 IsError = true;
1745 else {
1746 Args[i] = ArgE.getAs<Expr>();
1747
1748 // If we are type-erasing a block to a block-compatible
1749 // Objective-C pointer type, we may need to extend the lifetime
1750 // of the block object.
1751 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() &&
1752 Args[i]->getType()->isBlockPointerType() &&
1753 origParamType->isObjCObjectPointerType()) {
1754 ExprResult arg = Args[i];
1755 maybeExtendBlockObject(arg);
1756 Args[i] = arg.get();
1757 }
1758 }
1759 }
1760
1761 // Promote additional arguments to variadic methods.
1762 if (Method->isVariadic()) {
1763 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
1764 if (Args[i]->isTypeDependent())
1765 continue;
1766
1767 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
1768 nullptr);
1769 IsError |= Arg.isInvalid();
1770 Args[i] = Arg.get();
1771 }
1772 } else {
1773 // Check for extra arguments to non-variadic methods.
1774 if (Args.size() != NumNamedArgs) {
1775 Diag(Args[NumNamedArgs]->getBeginLoc(),
1776 diag::err_typecheck_call_too_many_args)
1777 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size())
1778 << Method->getSourceRange()
1779 << SourceRange(Args[NumNamedArgs]->getBeginLoc(),
1780 Args.back()->getEndLoc());
1781 }
1782 }
1783
1784 DiagnoseSentinelCalls(Method, SelLoc, Args);
1785
1786 // Do additional checkings on method.
1787 IsError |= CheckObjCMethodCall(
1788 Method, SelLoc, makeArrayRef(Args.data(), Args.size()));
1789
1790 return IsError;
1791}
1792
1793bool Sema::isSelfExpr(Expr *RExpr) {
1794 // 'self' is objc 'self' in an objc method only.
1795 ObjCMethodDecl *Method =
1796 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
1797 return isSelfExpr(RExpr, Method);
1798}
1799
1800bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) {
1801 if (!method) return false;
1802
1803 receiver = receiver->IgnoreParenLValueCasts();
1804 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
1805 if (DRE->getDecl() == method->getSelfDecl())
1806 return true;
1807 return false;
1808}
1809
1810/// LookupMethodInType - Look up a method in an ObjCObjectType.
1811ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
1812 bool isInstance) {
1813 const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
1814 if (ObjCInterfaceDecl *iface = objType->getInterface()) {
1815 // Look it up in the main interface (and categories, etc.)
1816 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
1817 return method;
1818
1819 // Okay, look for "private" methods declared in any
1820 // @implementations we've seen.
1821 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
1822 return method;
1823 }
1824
1825 // Check qualifiers.
1826 for (const auto *I : objType->quals())
1827 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance))
1828 return method;
1829
1830 return nullptr;
1831}
1832
1833/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
1834/// list of a qualified objective pointer type.
1835ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
1836 const ObjCObjectPointerType *OPT,
1837 bool Instance)
1838{
1839 ObjCMethodDecl *MD = nullptr;
1840 for (const auto *PROTO : OPT->quals()) {
1841 if ((MD = PROTO->lookupMethod(Sel, Instance))) {
1842 return MD;
1843 }
1844 }
1845 return nullptr;
1846}
1847
1848/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
1849/// objective C interface. This is a property reference expression.
1850ExprResult Sema::
1851HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
1852 Expr *BaseExpr, SourceLocation OpLoc,
1853 DeclarationName MemberName,
1854 SourceLocation MemberLoc,
1855 SourceLocation SuperLoc, QualType SuperType,
1856 bool Super) {
1857 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
1858 ObjCInterfaceDecl *IFace = IFaceT->getDecl();
1859
1860 if (!MemberName.isIdentifier()) {
1861 Diag(MemberLoc, diag::err_invalid_property_name)
1862 << MemberName << QualType(OPT, 0);
1863 return ExprError();
1864 }
1865
1866 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1867
1868 SourceRange BaseRange = Super? SourceRange(SuperLoc)
1869 : BaseExpr->getSourceRange();
1870 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
1871 diag::err_property_not_found_forward_class,
1872 MemberName, BaseRange))
1873 return ExprError();
1874
1875 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(
1876 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1877 // Check whether we can reference this property.
1878 if (DiagnoseUseOfDecl(PD, MemberLoc))
1879 return ExprError();
1880 if (Super)
1881 return new (Context)
1882 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1883 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1884 else
1885 return new (Context)
1886 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1887 OK_ObjCProperty, MemberLoc, BaseExpr);
1888 }
1889 // Check protocols on qualified interfaces.
1890 for (const auto *I : OPT->quals())
1891 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
1892 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1893 // Check whether we can reference this property.
1894 if (DiagnoseUseOfDecl(PD, MemberLoc))
1895 return ExprError();
1896
1897 if (Super)
1898 return new (Context) ObjCPropertyRefExpr(
1899 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc,
1900 SuperLoc, SuperType);
1901 else
1902 return new (Context)
1903 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1904 OK_ObjCProperty, MemberLoc, BaseExpr);
1905 }
1906 // If that failed, look for an "implicit" property by seeing if the nullary
1907 // selector is implemented.
1908
1909 // FIXME: The logic for looking up nullary and unary selectors should be
1910 // shared with the code in ActOnInstanceMessage.
1911
1912 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1913 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1914
1915 // May be found in property's qualified list.
1916 if (!Getter)
1917 Getter = LookupMethodInQualifiedType(Sel, OPT, true);
1918
1919 // If this reference is in an @implementation, check for 'private' methods.
1920 if (!Getter)
1921 Getter = IFace->lookupPrivateMethod(Sel);
1922
1923 if (Getter) {
1924 // Check if we can reference this property.
1925 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1926 return ExprError();
1927 }
1928 // If we found a getter then this may be a valid dot-reference, we
1929 // will look for the matching setter, in case it is needed.
1930 Selector SetterSel =
1931 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1932 PP.getSelectorTable(), Member);
1933 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1934
1935 // May be found in property's qualified list.
1936 if (!Setter)
1937 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
1938
1939 if (!Setter) {
1940 // If this reference is in an @implementation, also check for 'private'
1941 // methods.
1942 Setter = IFace->lookupPrivateMethod(SetterSel);
1943 }
1944
1945 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1946 return ExprError();
1947
1948 // Special warning if member name used in a property-dot for a setter accessor
1949 // does not use a property with same name; e.g. obj.X = ... for a property with
1950 // name 'x'.
1951 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() &&
1952 !IFace->FindPropertyDeclaration(
1953 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1954 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) {
1955 // Do not warn if user is using property-dot syntax to make call to
1956 // user named setter.
1957 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter))
1958 Diag(MemberLoc,
1959 diag::warn_property_access_suggest)
1960 << MemberName << QualType(OPT, 0) << PDecl->getName()
1961 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName());
1962 }
1963 }
1964
1965 if (Getter || Setter) {
1966 if (Super)
1967 return new (Context)
1968 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1969 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1970 else
1971 return new (Context)
1972 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1973 OK_ObjCProperty, MemberLoc, BaseExpr);
1974
1975 }
1976
1977 // Attempt to correct for typos in property names.
1978 DeclFilterCCC<ObjCPropertyDecl> CCC{};
1979 if (TypoCorrection Corrected = CorrectTypo(
1980 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName,
1981 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) {
1982 DeclarationName TypoResult = Corrected.getCorrection();
1983 if (TypoResult.isIdentifier() &&
1984 TypoResult.getAsIdentifierInfo() == Member) {
1985 // There is no need to try the correction if it is the same.
1986 NamedDecl *ChosenDecl =
1987 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl();
1988 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl))
1989 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) {
1990 // This is a class property, we should not use the instance to
1991 // access it.
1992 Diag(MemberLoc, diag::err_class_property_found) << MemberName
1993 << OPT->getInterfaceDecl()->getName()
1994 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(),
1995 OPT->getInterfaceDecl()->getName());
1996 return ExprError();
1997 }
1998 } else {
1999 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest)
2000 << MemberName << QualType(OPT, 0));
2001 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
2002 TypoResult, MemberLoc,
2003 SuperLoc, SuperType, Super);
2004 }
2005 }
2006 ObjCInterfaceDecl *ClassDeclared;
2007 if (ObjCIvarDecl *Ivar =
2008 IFace->lookupInstanceVariable(Member, ClassDeclared)) {
2009 QualType T = Ivar->getType();
2010 if (const ObjCObjectPointerType * OBJPT =
2011 T->getAsObjCInterfacePointerType()) {
2012 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
2013 diag::err_property_not_as_forward_class,
2014 MemberName, BaseExpr))
2015 return ExprError();
2016 }
2017 Diag(MemberLoc,
2018 diag::err_ivar_access_using_property_syntax_suggest)
2019 << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
2020 << FixItHint::CreateReplacement(OpLoc, "->");
2021 return ExprError();
2022 }
2023
2024 Diag(MemberLoc, diag::err_property_not_found)
2025 << MemberName << QualType(OPT, 0);
2026 if (Setter)
2027 Diag(Setter->getLocation(), diag::note_getter_unavailable)
2028 << MemberName << BaseExpr->getSourceRange();
2029 return ExprError();
2030}
2031
2032ExprResult Sema::
2033ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
2034 IdentifierInfo &propertyName,
2035 SourceLocation receiverNameLoc,
2036 SourceLocation propertyNameLoc) {
2037
2038 IdentifierInfo *receiverNamePtr = &receiverName;
2039 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
2040 receiverNameLoc);
2041
2042 QualType SuperType;
2043 if (!IFace) {
2044 // If the "receiver" is 'super' in a method, handle it as an expression-like
2045 // property reference.
2046 if (receiverNamePtr->isStr("super")) {
2047 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
2048 if (auto classDecl = CurMethod->getClassInterface()) {
2049 SuperType = QualType(classDecl->getSuperClassType(), 0);
2050 if (CurMethod->isInstanceMethod()) {
2051 if (SuperType.isNull()) {
2052 // The current class does not have a superclass.
2053 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super)
2054 << CurMethod->getClassInterface()->getIdentifier();
2055 return ExprError();
2056 }
2057 QualType T = Context.getObjCObjectPointerType(SuperType);
2058
2059 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(),
2060 /*BaseExpr*/nullptr,
2061 SourceLocation()/*OpLoc*/,
2062 &propertyName,
2063 propertyNameLoc,
2064 receiverNameLoc, T, true);
2065 }
2066
2067 // Otherwise, if this is a class method, try dispatching to our
2068 // superclass.
2069 IFace = CurMethod->getClassInterface()->getSuperClass();
2070 }
2071 }
2072 }
2073
2074 if (!IFace) {
2075 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier
2076 << tok::l_paren;
2077 return ExprError();
2078 }
2079 }
2080
2081 Selector GetterSel;
2082 Selector SetterSel;
2083 if (auto PD = IFace->FindPropertyDeclaration(
2084 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) {
2085 GetterSel = PD->getGetterName();
2086 SetterSel = PD->getSetterName();
2087 } else {
2088 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName);
2089 SetterSel = SelectorTable::constructSetterSelector(
2090 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName);
2091 }
2092
2093 // Search for a declared property first.
2094 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel);
2095
2096 // If this reference is in an @implementation, check for 'private' methods.
2097 if (!Getter)
2098 Getter = IFace->lookupPrivateClassMethod(GetterSel);
2099
2100 if (Getter) {
2101 // FIXME: refactor/share with ActOnMemberReference().
2102 // Check if we can reference this property.
2103 if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
2104 return ExprError();
2105 }
2106
2107 // Look for the matching setter, in case it is needed.
2108 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2109 if (!Setter) {
2110 // If this reference is in an @implementation, also check for 'private'
2111 // methods.
2112 Setter = IFace->lookupPrivateClassMethod(SetterSel);
2113 }
2114 // Look through local category implementations associated with the class.
2115 if (!Setter)
2116 Setter = IFace->getCategoryClassMethod(SetterSel);
2117
2118 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
2119 return ExprError();
2120
2121 if (Getter || Setter) {
2122 if (!SuperType.isNull())
2123 return new (Context)
2124 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2125 OK_ObjCProperty, propertyNameLoc, receiverNameLoc,
2126 SuperType);
2127
2128 return new (Context) ObjCPropertyRefExpr(
2129 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty,
2130 propertyNameLoc, receiverNameLoc, IFace);
2131 }
2132 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
2133 << &propertyName << Context.getObjCInterfaceType(IFace));
2134}
2135
2136namespace {
2137
2138class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback {
2139 public:
2140 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
2141 // Determine whether "super" is acceptable in the current context.
2142 if (Method && Method->getClassInterface())
2143 WantObjCSuper = Method->getClassInterface()->getSuperClass();
2144 }
2145
2146 bool ValidateCandidate(const TypoCorrection &candidate) override {
2147 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
2148 candidate.isKeyword("super");
2149 }
2150
2151 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2152 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this);
2153 }
2154};
2155
2156} // end anonymous namespace
2157
2158Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
2159 IdentifierInfo *Name,
2160 SourceLocation NameLoc,
2161 bool IsSuper,
2162 bool HasTrailingDot,
2163 ParsedType &ReceiverType) {
2164 ReceiverType = nullptr;
2165
2166 // If the identifier is "super" and there is no trailing dot, we're
2167 // messaging super. If the identifier is "super" and there is a
2168 // trailing dot, it's an instance message.
2169 if (IsSuper && S->isInObjcMethodScope())
2170 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
2171
2172 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
2173 LookupName(Result, S);
2174
2175 switch (Result.getResultKind()) {
2176 case LookupResult::NotFound:
2177 // Normal name lookup didn't find anything. If we're in an
2178 // Objective-C method, look for ivars. If we find one, we're done!
2179 // FIXME: This is a hack. Ivar lookup should be part of normal
2180 // lookup.
2181 if (ObjCMethodDecl *Method = getCurMethodDecl()) {
2182 if (!Method->getClassInterface()) {
2183 // Fall back: let the parser try to parse it as an instance message.
2184 return ObjCInstanceMessage;
2185 }
2186
2187 ObjCInterfaceDecl *ClassDeclared;
2188 if (Method->getClassInterface()->lookupInstanceVariable(Name,
2189 ClassDeclared))
2190 return ObjCInstanceMessage;
2191 }
2192
2193 // Break out; we'll perform typo correction below.
2194 break;
2195
2196 case LookupResult::NotFoundInCurrentInstantiation:
2197 case LookupResult::FoundOverloaded:
2198 case LookupResult::FoundUnresolvedValue:
2199 case LookupResult::Ambiguous:
2200 Result.suppressDiagnostics();
2201 return ObjCInstanceMessage;
2202
2203 case LookupResult::Found: {
2204 // If the identifier is a class or not, and there is a trailing dot,
2205 // it's an instance message.
2206 if (HasTrailingDot)
2207 return ObjCInstanceMessage;
2208 // We found something. If it's a type, then we have a class
2209 // message. Otherwise, it's an instance message.
2210 NamedDecl *ND = Result.getFoundDecl();
2211 QualType T;
2212 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
2213 T = Context.getObjCInterfaceType(Class);
2214 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) {
2215 T = Context.getTypeDeclType(Type);
2216 DiagnoseUseOfDecl(Type, NameLoc);
2217 }
2218 else
2219 return ObjCInstanceMessage;
2220
2221 // We have a class message, and T is the type we're
2222 // messaging. Build source-location information for it.
2223 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2224 ReceiverType = CreateParsedType(T, TSInfo);
2225 return ObjCClassMessage;
2226 }
2227 }
2228
2229 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl());
2230 if (TypoCorrection Corrected = CorrectTypo(
2231 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC,
2232 CTK_ErrorRecovery, nullptr, false, nullptr, false)) {
2233 if (Corrected.isKeyword()) {
2234 // If we've found the keyword "super" (the only keyword that would be
2235 // returned by CorrectTypo), this is a send to super.
2236 diagnoseTypo(Corrected,
2237 PDiag(diag::err_unknown_receiver_suggest) << Name);
2238 return ObjCSuperMessage;
2239 } else if (ObjCInterfaceDecl *Class =
2240 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2241 // If we found a declaration, correct when it refers to an Objective-C
2242 // class.
2243 diagnoseTypo(Corrected,
2244 PDiag(diag::err_unknown_receiver_suggest) << Name);
2245 QualType T = Context.getObjCInterfaceType(Class);
2246 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2247 ReceiverType = CreateParsedType(T, TSInfo);
2248 return ObjCClassMessage;
2249 }
2250 }
2251
2252 // Fall back: let the parser try to parse it as an instance message.
2253 return ObjCInstanceMessage;
2254}
2255
2256ExprResult Sema::ActOnSuperMessage(Scope *S,
2257 SourceLocation SuperLoc,
2258 Selector Sel,
2259 SourceLocation LBracLoc,
2260 ArrayRef<SourceLocation> SelectorLocs,
2261 SourceLocation RBracLoc,
2262 MultiExprArg Args) {
2263 // Determine whether we are inside a method or not.
2264 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
2265 if (!Method) {
2266 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
2267 return ExprError();
2268 }
2269
2270 ObjCInterfaceDecl *Class = Method->getClassInterface();
2271 if (!Class) {
2272 Diag(SuperLoc, diag::err_no_super_class_message)
2273 << Method->getDeclName();
2274 return ExprError();
2275 }
2276
2277 QualType SuperTy(Class->getSuperClassType(), 0);
2278 if (SuperTy.isNull()) {
2279 // The current class does not have a superclass.
2280 Diag(SuperLoc, diag::err_root_class_cannot_use_super)
2281 << Class->getIdentifier();
2282 return ExprError();
2283 }
2284
2285 // We are in a method whose class has a superclass, so 'super'
2286 // is acting as a keyword.
2287 if (Method->getSelector() == Sel)
2288 getCurFunction()->ObjCShouldCallSuper = false;
2289
2290 if (Method->isInstanceMethod()) {
2291 // Since we are in an instance method, this is an instance
2292 // message to the superclass instance.
2293 SuperTy = Context.getObjCObjectPointerType(SuperTy);
2294 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc,
2295 Sel, /*Method=*/nullptr,
2296 LBracLoc, SelectorLocs, RBracLoc, Args);
2297 }
2298
2299 // Since we are in a class method, this is a class message to
2300 // the superclass.
2301 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr,
2302 SuperTy,
2303 SuperLoc, Sel, /*Method=*/nullptr,
2304 LBracLoc, SelectorLocs, RBracLoc, Args);
2305}
2306
2307ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
2308 bool isSuperReceiver,
2309 SourceLocation Loc,
2310 Selector Sel,
2311 ObjCMethodDecl *Method,
2312 MultiExprArg Args) {
2313 TypeSourceInfo *receiverTypeInfo = nullptr;
2314 if (!ReceiverType.isNull())
2315 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
2316
2317 return BuildClassMessage(receiverTypeInfo, ReceiverType,
2318 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
2319 Sel, Method, Loc, Loc, Loc, Args,
2320 /*isImplicit=*/true);
2321}
2322
2323static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
2324 unsigned DiagID,
2325 bool (*refactor)(const ObjCMessageExpr *,
2326 const NSAPI &, edit::Commit &)) {
2327 SourceLocation MsgLoc = Msg->getExprLoc();
2328 if (S.Diags.isIgnored(DiagID, MsgLoc))
2329 return;
2330
2331 SourceManager &SM = S.SourceMgr;
2332 edit::Commit ECommit(SM, S.LangOpts);
2333 if (refactor(Msg,*S.NSAPIObj, ECommit)) {
2334 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
2335 << Msg->getSelector() << Msg->getSourceRange();
2336 // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
2337 if (!ECommit.isCommitable())
2338 return;
2339 for (edit::Commit::edit_iterator
2340 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
2341 const edit::Commit::Edit &Edit = *I;
2342 switch (Edit.Kind) {
2343 case edit::Commit::Act_Insert:
2344 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
2345 Edit.Text,
2346 Edit.BeforePrev));
2347 break;
2348 case edit::Commit::Act_InsertFromRange:
2349 Builder.AddFixItHint(
2350 FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
2351 Edit.getInsertFromRange(SM),
2352 Edit.BeforePrev));
2353 break;
2354 case edit::Commit::Act_Remove:
2355 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
2356 break;
2357 }
2358 }
2359 }
2360}
2361
2362static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
2363 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
2364 edit::rewriteObjCRedundantCallWithLiteral);
2365}
2366
2367static void checkFoundationAPI(Sema &S, SourceLocation Loc,
2368 const ObjCMethodDecl *Method,
2369 ArrayRef<Expr *> Args, QualType ReceiverType,
2370 bool IsClassObjectCall) {
2371 // Check if this is a performSelector method that uses a selector that returns
2372 // a record or a vector type.
2373 if (Method->getSelector().getMethodFamily() != OMF_performSelector ||
2374 Args.empty())
2375 return;
2376 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens());
2377 if (!SE)
2378 return;
2379 ObjCMethodDecl *ImpliedMethod;
2380 if (!IsClassObjectCall) {
2381 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>();
2382 if (!OPT || !OPT->getInterfaceDecl())
2383 return;
2384 ImpliedMethod =
2385 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector());
2386 if (!ImpliedMethod)
2387 ImpliedMethod =
2388 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector());
2389 } else {
2390 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>();
2391 if (!IT)
2392 return;
2393 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector());
2394 if (!ImpliedMethod)
2395 ImpliedMethod =
2396 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector());
2397 }
2398 if (!ImpliedMethod)
2399 return;
2400 QualType Ret = ImpliedMethod->getReturnType();
2401 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) {
2402 QualType Ret = ImpliedMethod->getReturnType();
2403 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector)
2404 << Method->getSelector()
2405 << (!Ret->isRecordType()
2406 ? /*Vector*/ 2
2407 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0);
2408 S.Diag(ImpliedMethod->getBeginLoc(),
2409 diag::note_objc_unsafe_perform_selector_method_declared_here)
2410 << ImpliedMethod->getSelector() << Ret;
2411 }
2412}
2413
2414/// Diagnose use of %s directive in an NSString which is being passed
2415/// as formatting string to formatting method.
2416static void
2417DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S,
2418 ObjCMethodDecl *Method,
2419 Selector Sel,
2420 Expr **Args, unsigned NumArgs) {
2421 unsigned Idx = 0;
2422 bool Format = false;
2423 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily();
2424 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) {
2425 Idx = 0;
2426 Format = true;
2427 }
2428 else if (Method) {
2429 for (const auto *I : Method->specific_attrs<FormatAttr>()) {
2430 if (S.GetFormatNSStringIdx(I, Idx)) {
2431 Format = true;
2432 break;
2433 }
2434 }
2435 }
2436 if (!Format || NumArgs <= Idx)
2437 return;
2438
2439 Expr *FormatExpr = Args[Idx];
2440 if (ObjCStringLiteral *OSL =
2441 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) {
2442 StringLiteral *FormatString = OSL->getString();
2443 if (S.FormatStringHasSArg(FormatString)) {
2444 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2445 << "%s" << 0 << 0;
2446 if (Method)
2447 S.Diag(Method->getLocation(), diag::note_method_declared_at)
2448 << Method->getDeclName();
2449 }
2450 }
2451}
2452
2453/// Build an Objective-C class message expression.
2454///
2455/// This routine takes care of both normal class messages and
2456/// class messages to the superclass.
2457///
2458/// \param ReceiverTypeInfo Type source information that describes the
2459/// receiver of this message. This may be NULL, in which case we are
2460/// sending to the superclass and \p SuperLoc must be a valid source
2461/// location.
2462
2463/// \param ReceiverType The type of the object receiving the
2464/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
2465/// type as that refers to. For a superclass send, this is the type of
2466/// the superclass.
2467///
2468/// \param SuperLoc The location of the "super" keyword in a
2469/// superclass message.
2470///
2471/// \param Sel The selector to which the message is being sent.
2472///
2473/// \param Method The method that this class message is invoking, if
2474/// already known.
2475///
2476/// \param LBracLoc The location of the opening square bracket ']'.
2477///
2478/// \param RBracLoc The location of the closing square bracket ']'.
2479///
2480/// \param ArgsIn The message arguments.
2481ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
2482 QualType ReceiverType,
2483 SourceLocation SuperLoc,
2484 Selector Sel,
2485 ObjCMethodDecl *Method,
2486 SourceLocation LBracLoc,
2487 ArrayRef<SourceLocation> SelectorLocs,
2488 SourceLocation RBracLoc,
2489 MultiExprArg ArgsIn,
2490 bool isImplicit) {
2491 SourceLocation Loc = SuperLoc.isValid()? SuperLoc
5
'?' condition is false
2492 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
2493 if (LBracLoc.isInvalid()) {
6
Taking false branch
2494 Diag(Loc, diag::err_missing_open_square_message_send)
2495 << FixItHint::CreateInsertion(Loc, "[");
2496 LBracLoc = Loc;
2497 }
2498 ArrayRef<SourceLocation> SelectorSlotLocs;
2499 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
7
Assuming the condition is false
2500 SelectorSlotLocs = SelectorLocs;
2501 else
2502 SelectorSlotLocs = Loc;
2503 SourceLocation SelLoc = SelectorSlotLocs.front();
2504
2505 if (ReceiverType->isDependentType()) {
8
Assuming the condition is false
9
Taking false branch
2506 // If the receiver type is dependent, we can't type-check anything
2507 // at this point. Build a dependent expression.
2508 unsigned NumArgs = ArgsIn.size();
2509 Expr **Args = ArgsIn.data();
2510 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2510, __PRETTY_FUNCTION__))
;
2511 return ObjCMessageExpr::Create(
2512 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel,
2513 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc,
2514 isImplicit);
2515 }
2516
2517 // Find the class to which we are sending this message.
2518 ObjCInterfaceDecl *Class = nullptr;
2519 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
10
Assuming the object is a 'ObjCObjectType'
2520 if (!ClassType || !(Class = ClassType->getInterface())) {
11
Assuming 'ClassType' is non-null
12
Assuming pointer value is null
13
Assuming 'Class' is non-null
14
Taking false branch
2521 Diag(Loc, diag::err_invalid_receiver_class_message)
2522 << ReceiverType;
2523 return ExprError();
2524 }
2525 assert
14.1
'Class' is non-null
14.1
'Class' is non-null
(Class && "We don't know which class we're messaging?")((Class && "We don't know which class we're messaging?"
) ? static_cast<void> (0) : __assert_fail ("Class && \"We don't know which class we're messaging?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2525, __PRETTY_FUNCTION__))
;
15
'?' condition is true
2526 // objc++ diagnoses during typename annotation.
2527 if (!getLangOpts().CPlusPlus)
16
Assuming field 'CPlusPlus' is not equal to 0
17
Taking false branch
2528 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs);
2529 // Find the method we are messaging.
2530 if (!Method
17.1
'Method' is null
17.1
'Method' is null
) {
18
Taking true branch
2531 SourceRange TypeRange
2532 = SuperLoc.isValid()? SourceRange(SuperLoc)
19
'?' condition is false
2533 : ReceiverTypeInfo->getTypeLoc().getSourceRange();
2534 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
22
Assuming the condition is false
23
Taking false branch
2535 (getLangOpts().ObjCAutoRefCount
20
Assuming field 'ObjCAutoRefCount' is 0
21
'?' condition is false
2536 ? diag::err_arc_receiver_forward_class
2537 : diag::warn_receiver_forward_class),
2538 TypeRange)) {
2539 // A forward class used in messaging is treated as a 'Class'
2540 Method = LookupFactoryMethodInGlobalPool(Sel,
2541 SourceRange(LBracLoc, RBracLoc));
2542 if (Method && !getLangOpts().ObjCAutoRefCount)
2543 Diag(Method->getLocation(), diag::note_method_sent_forward_class)
2544 << Method->getDeclName();
2545 }
2546 if (!Method
23.1
'Method' is null
23.1
'Method' is null
)
24
Taking true branch
2547 Method = Class->lookupClassMethod(Sel);
2548
2549 // If we have an implementation in scope, check "private" methods.
2550 if (!Method)
25
Assuming 'Method' is null
26
Taking true branch
2551 Method = Class->lookupPrivateClassMethod(Sel);
2552
2553 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs,
27
Assuming 'Method' is null
2554 nullptr, false, false, Class))
2555 return ExprError();
2556 }
2557
2558 // Check the argument types and determine the result type.
2559 QualType ReturnType;
2560 ExprValueKind VK = VK_RValue;
2561
2562 unsigned NumArgs = ArgsIn.size();
2563 Expr **Args = ArgsIn.data();
2564 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType,
28
Calling 'Sema::CheckMessageArgumentTypes'
2565 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
2566 Method, true, SuperLoc.isValid(), LBracLoc,
2567 RBracLoc, SourceRange(), ReturnType, VK))
2568 return ExprError();
2569
2570 if (Method && !Method->getReturnType()->isVoidType() &&
2571 RequireCompleteType(LBracLoc, Method->getReturnType(),
2572 diag::err_illegal_message_expr_incomplete_type))
2573 return ExprError();
2574
2575 // Warn about explicit call of +initialize on its own class. But not on 'super'.
2576 if (Method && Method->getMethodFamily() == OMF_initialize) {
2577 if (!SuperLoc.isValid()) {
2578 const ObjCInterfaceDecl *ID =
2579 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext());
2580 if (ID == Class) {
2581 Diag(Loc, diag::warn_direct_initialize_call);
2582 Diag(Method->getLocation(), diag::note_method_declared_at)
2583 << Method->getDeclName();
2584 }
2585 }
2586 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2587 // [super initialize] is allowed only within an +initialize implementation
2588 if (CurMeth->getMethodFamily() != OMF_initialize) {
2589 Diag(Loc, diag::warn_direct_super_initialize_call);
2590 Diag(Method->getLocation(), diag::note_method_declared_at)
2591 << Method->getDeclName();
2592 Diag(CurMeth->getLocation(), diag::note_method_declared_at)
2593 << CurMeth->getDeclName();
2594 }
2595 }
2596 }
2597
2598 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
2599
2600 // Construct the appropriate ObjCMessageExpr.
2601 ObjCMessageExpr *Result;
2602 if (SuperLoc.isValid())
2603 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2604 SuperLoc, /*IsInstanceSuper=*/false,
2605 ReceiverType, Sel, SelectorLocs,
2606 Method, makeArrayRef(Args, NumArgs),
2607 RBracLoc, isImplicit);
2608 else {
2609 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2610 ReceiverTypeInfo, Sel, SelectorLocs,
2611 Method, makeArrayRef(Args, NumArgs),
2612 RBracLoc, isImplicit);
2613 if (!isImplicit)
2614 checkCocoaAPI(*this, Result);
2615 }
2616 if (Method)
2617 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
2618 ReceiverType, /*IsClassObjectCall=*/true);
2619 return MaybeBindToTemporary(Result);
2620}
2621
2622// ActOnClassMessage - used for both unary and keyword messages.
2623// ArgExprs is optional - if it is present, the number of expressions
2624// is obtained from Sel.getNumArgs().
2625ExprResult Sema::ActOnClassMessage(Scope *S,
2626 ParsedType Receiver,
2627 Selector Sel,
2628 SourceLocation LBracLoc,
2629 ArrayRef<SourceLocation> SelectorLocs,
2630 SourceLocation RBracLoc,
2631 MultiExprArg Args) {
2632 TypeSourceInfo *ReceiverTypeInfo;
2633 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
2634 if (ReceiverType.isNull())
1
Taking false branch
2635 return ExprError();
2636
2637 if (!ReceiverTypeInfo)
2
Assuming 'ReceiverTypeInfo' is non-null
3
Taking false branch
2638 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
2639
2640 return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
4
Calling 'Sema::BuildClassMessage'
2641 /*SuperLoc=*/SourceLocation(), Sel,
2642 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc,
2643 Args);
2644}
2645
2646ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
2647 QualType ReceiverType,
2648 SourceLocation Loc,
2649 Selector Sel,
2650 ObjCMethodDecl *Method,
2651 MultiExprArg Args) {
2652 return BuildInstanceMessage(Receiver, ReceiverType,
2653 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
2654 Sel, Method, Loc, Loc, Loc, Args,
2655 /*isImplicit=*/true);
2656}
2657
2658static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) {
2659 if (!S.NSAPIObj)
2660 return false;
2661 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext());
2662 if (!Protocol)
2663 return false;
2664 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
2665 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>(
2666 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(),
2667 Sema::LookupOrdinaryName))) {
2668 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) {
2669 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl())
2670 return true;
2671 }
2672 }
2673 return false;
2674}
2675
2676/// Build an Objective-C instance message expression.
2677///
2678/// This routine takes care of both normal instance messages and
2679/// instance messages to the superclass instance.
2680///
2681/// \param Receiver The expression that computes the object that will
2682/// receive this message. This may be empty, in which case we are
2683/// sending to the superclass instance and \p SuperLoc must be a valid
2684/// source location.
2685///
2686/// \param ReceiverType The (static) type of the object receiving the
2687/// message. When a \p Receiver expression is provided, this is the
2688/// same type as that expression. For a superclass instance send, this
2689/// is a pointer to the type of the superclass.
2690///
2691/// \param SuperLoc The location of the "super" keyword in a
2692/// superclass instance message.
2693///
2694/// \param Sel The selector to which the message is being sent.
2695///
2696/// \param Method The method that this instance message is invoking, if
2697/// already known.
2698///
2699/// \param LBracLoc The location of the opening square bracket ']'.
2700///
2701/// \param RBracLoc The location of the closing square bracket ']'.
2702///
2703/// \param ArgsIn The message arguments.
2704ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
2705 QualType ReceiverType,
2706 SourceLocation SuperLoc,
2707 Selector Sel,
2708 ObjCMethodDecl *Method,
2709 SourceLocation LBracLoc,
2710 ArrayRef<SourceLocation> SelectorLocs,
2711 SourceLocation RBracLoc,
2712 MultiExprArg ArgsIn,
2713 bool isImplicit) {
2714 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
2715 "SuperLoc must be valid so we can "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
2716 "use it instead.")(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2716, __PRETTY_FUNCTION__))
;
2717
2718 // The location of the receiver.
2719 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc();
2720 SourceRange RecRange =
2721 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange();
2722 ArrayRef<SourceLocation> SelectorSlotLocs;
2723 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2724 SelectorSlotLocs = SelectorLocs;
2725 else
2726 SelectorSlotLocs = Loc;
2727 SourceLocation SelLoc = SelectorSlotLocs.front();
2728
2729 if (LBracLoc.isInvalid()) {
2730 Diag(Loc, diag::err_missing_open_square_message_send)
2731 << FixItHint::CreateInsertion(Loc, "[");
2732 LBracLoc = Loc;
2733 }
2734
2735 // If we have a receiver expression, perform appropriate promotions
2736 // and determine receiver type.
2737 if (Receiver) {
2738 if (Receiver->hasPlaceholderType()) {
2739 ExprResult Result;
2740 if (Receiver->getType() == Context.UnknownAnyTy)
2741 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
2742 else
2743 Result = CheckPlaceholderExpr(Receiver);
2744 if (Result.isInvalid()) return ExprError();
2745 Receiver = Result.get();
2746 }
2747
2748 if (Receiver->isTypeDependent()) {
2749 // If the receiver is type-dependent, we can't type-check anything
2750 // at this point. Build a dependent expression.
2751 unsigned NumArgs = ArgsIn.size();
2752 Expr **Args = ArgsIn.data();
2753 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 2753, __PRETTY_FUNCTION__))
;
2754 return ObjCMessageExpr::Create(
2755 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel,
2756 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs),
2757 RBracLoc, isImplicit);
2758 }
2759
2760 // If necessary, apply function/array conversion to the receiver.
2761 // C99 6.7.5.3p[7,8].
2762 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
2763 if (Result.isInvalid())
2764 return ExprError();
2765 Receiver = Result.get();
2766 ReceiverType = Receiver->getType();
2767
2768 // If the receiver is an ObjC pointer, a block pointer, or an
2769 // __attribute__((NSObject)) pointer, we don't need to do any
2770 // special conversion in order to look up a receiver.
2771 if (ReceiverType->isObjCRetainableType()) {
2772 // do nothing
2773 } else if (!getLangOpts().ObjCAutoRefCount &&
2774 !Context.getObjCIdType().isNull() &&
2775 (ReceiverType->isPointerType() ||
2776 ReceiverType->isIntegerType())) {
2777 // Implicitly convert integers and pointers to 'id' but emit a warning.
2778 // But not in ARC.
2779 Diag(Loc, diag::warn_bad_receiver_type)
2780 << ReceiverType
2781 << Receiver->getSourceRange();
2782 if (ReceiverType->isPointerType()) {
2783 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2784 CK_CPointerToObjCPointerCast).get();
2785 } else {
2786 // TODO: specialized warning on null receivers?
2787 bool IsNull = Receiver->isNullPointerConstant(Context,
2788 Expr::NPC_ValueDependentIsNull);
2789 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
2790 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2791 Kind).get();
2792 }
2793 ReceiverType = Receiver->getType();
2794 } else if (getLangOpts().CPlusPlus) {
2795 // The receiver must be a complete type.
2796 if (RequireCompleteType(Loc, Receiver->getType(),
2797 diag::err_incomplete_receiver_type))
2798 return ExprError();
2799
2800 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver);
2801 if (result.isUsable()) {
2802 Receiver = result.get();
2803 ReceiverType = Receiver->getType();
2804 }
2805 }
2806 }
2807
2808 // There's a somewhat weird interaction here where we assume that we
2809 // won't actually have a method unless we also don't need to do some
2810 // of the more detailed type-checking on the receiver.
2811
2812 if (!Method) {
2813 // Handle messages to id and __kindof types (where we use the
2814 // global method pool).
2815 const ObjCObjectType *typeBound = nullptr;
2816 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context,
2817 typeBound);
2818 if (receiverIsIdLike || ReceiverType->isBlockPointerType() ||
2819 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
2820 SmallVector<ObjCMethodDecl*, 4> Methods;
2821 // If we have a type bound, further filter the methods.
2822 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/,
2823 true/*CheckTheOther*/, typeBound);
2824 if (!Methods.empty()) {
2825 // We choose the first method as the initial candidate, then try to
2826 // select a better one.
2827 Method = Methods[0];
2828
2829 if (ObjCMethodDecl *BestMethod =
2830 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods))
2831 Method = BestMethod;
2832
2833 if (!AreMultipleMethodsInGlobalPool(Sel, Method,
2834 SourceRange(LBracLoc, RBracLoc),
2835 receiverIsIdLike, Methods))
2836 DiagnoseUseOfDecl(Method, SelectorSlotLocs);
2837 }
2838 } else if (ReceiverType->isObjCClassOrClassKindOfType() ||
2839 ReceiverType->isObjCQualifiedClassType()) {
2840 // Handle messages to Class.
2841 // We allow sending a message to a qualified Class ("Class<foo>"), which
2842 // is ok as long as one of the protocols implements the selector (if not,
2843 // warn).
2844 if (!ReceiverType->isObjCClassOrClassKindOfType()) {
2845 const ObjCObjectPointerType *QClassTy
2846 = ReceiverType->getAsObjCQualifiedClassType();
2847 // Search protocols for class methods.
2848 Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
2849 if (!Method) {
2850 Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
2851 // warn if instance method found for a Class message.
2852 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) {
2853 Diag(SelLoc, diag::warn_instance_method_on_class_found)
2854 << Method->getSelector() << Sel;
2855 Diag(Method->getLocation(), diag::note_method_declared_at)
2856 << Method->getDeclName();
2857 }
2858 }
2859 } else {
2860 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2861 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
2862 // As a guess, try looking for the method in the current interface.
2863 // This very well may not produce the "right" method.
2864
2865 // First check the public methods in the class interface.
2866 Method = ClassDecl->lookupClassMethod(Sel);
2867
2868 if (!Method)
2869 Method = ClassDecl->lookupPrivateClassMethod(Sel);
2870
2871 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2872 return ExprError();
2873 }
2874 }
2875 if (!Method) {
2876 // If not messaging 'self', look for any factory method named 'Sel'.
2877 if (!Receiver || !isSelfExpr(Receiver)) {
2878 // If no class (factory) method was found, check if an _instance_
2879 // method of the same name exists in the root class only.
2880 SmallVector<ObjCMethodDecl*, 4> Methods;
2881 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2882 false/*InstanceFirst*/,
2883 true/*CheckTheOther*/);
2884 if (!Methods.empty()) {
2885 // We choose the first method as the initial candidate, then try
2886 // to select a better one.
2887 Method = Methods[0];
2888
2889 // If we find an instance method, emit warning.
2890 if (Method->isInstanceMethod()) {
2891 if (const ObjCInterfaceDecl *ID =
2892 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
2893 if (ID->getSuperClass())
2894 Diag(SelLoc, diag::warn_root_inst_method_not_found)
2895 << Sel << SourceRange(LBracLoc, RBracLoc);
2896 }
2897 }
2898
2899 if (ObjCMethodDecl *BestMethod =
2900 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2901 Methods))
2902 Method = BestMethod;
2903 }
2904 }
2905 }
2906 }
2907 } else {
2908 ObjCInterfaceDecl *ClassDecl = nullptr;
2909
2910 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
2911 // long as one of the protocols implements the selector (if not, warn).
2912 // And as long as message is not deprecated/unavailable (warn if it is).
2913 if (const ObjCObjectPointerType *QIdTy
2914 = ReceiverType->getAsObjCQualifiedIdType()) {
2915 // Search protocols for instance methods.
2916 Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
2917 if (!Method)
2918 Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
2919 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2920 return ExprError();
2921 } else if (const ObjCObjectPointerType *OCIType
2922 = ReceiverType->getAsObjCInterfacePointerType()) {
2923 // We allow sending a message to a pointer to an interface (an object).
2924 ClassDecl = OCIType->getInterfaceDecl();
2925
2926 // Try to complete the type. Under ARC, this is a hard error from which
2927 // we don't try to recover.
2928 // FIXME: In the non-ARC case, this will still be a hard error if the
2929 // definition is found in a module that's not visible.
2930 const ObjCInterfaceDecl *forwardClass = nullptr;
2931 if (RequireCompleteType(Loc, OCIType->getPointeeType(),
2932 getLangOpts().ObjCAutoRefCount
2933 ? diag::err_arc_receiver_forward_instance
2934 : diag::warn_receiver_forward_instance,
2935 Receiver? Receiver->getSourceRange()
2936 : SourceRange(SuperLoc))) {
2937 if (getLangOpts().ObjCAutoRefCount)
2938 return ExprError();
2939
2940 forwardClass = OCIType->getInterfaceDecl();
2941 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc,
2942 diag::note_receiver_is_id);
2943 Method = nullptr;
2944 } else {
2945 Method = ClassDecl->lookupInstanceMethod(Sel);
2946 }
2947
2948 if (!Method)
2949 // Search protocol qualifiers.
2950 Method = LookupMethodInQualifiedType(Sel, OCIType, true);
2951
2952 if (!Method) {
2953 // If we have implementations in scope, check "private" methods.
2954 Method = ClassDecl->lookupPrivateMethod(Sel);
2955
2956 if (!Method && getLangOpts().ObjCAutoRefCount) {
2957 Diag(SelLoc, diag::err_arc_may_not_respond)
2958 << OCIType->getPointeeType() << Sel << RecRange
2959 << SourceRange(SelectorLocs.front(), SelectorLocs.back());
2960 return ExprError();
2961 }
2962
2963 if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
2964 // If we still haven't found a method, look in the global pool. This
2965 // behavior isn't very desirable, however we need it for GCC
2966 // compatibility. FIXME: should we deviate??
2967 if (OCIType->qual_empty()) {
2968 SmallVector<ObjCMethodDecl*, 4> Methods;
2969 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2970 true/*InstanceFirst*/,
2971 false/*CheckTheOther*/);
2972 if (!Methods.empty()) {
2973 // We choose the first method as the initial candidate, then try
2974 // to select a better one.
2975 Method = Methods[0];
2976
2977 if (ObjCMethodDecl *BestMethod =
2978 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2979 Methods))
2980 Method = BestMethod;
2981
2982 AreMultipleMethodsInGlobalPool(Sel, Method,
2983 SourceRange(LBracLoc, RBracLoc),
2984 true/*receiverIdOrClass*/,
2985 Methods);
2986 }
2987 if (Method && !forwardClass)
2988 Diag(SelLoc, diag::warn_maynot_respond)
2989 << OCIType->getInterfaceDecl()->getIdentifier()
2990 << Sel << RecRange;
2991 }
2992 }
2993 }
2994 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass))
2995 return ExprError();
2996 } else {
2997 // Reject other random receiver types (e.g. structs).
2998 Diag(Loc, diag::err_bad_receiver_type)
2999 << ReceiverType << Receiver->getSourceRange();
3000 return ExprError();
3001 }
3002 }
3003 }
3004
3005 FunctionScopeInfo *DIFunctionScopeInfo =
3006 (Method && Method->getMethodFamily() == OMF_init)
3007 ? getEnclosingFunction() : nullptr;
3008
3009 if (Method && Method->isDirectMethod()) {
3010 if (ReceiverType->isObjCIdType() && !isImplicit) {
3011 Diag(Receiver->getExprLoc(),
3012 diag::err_messaging_unqualified_id_with_direct_method);
3013 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3014 << Method->getDeclName();
3015 }
3016
3017 if (ReceiverType->isObjCClassType() && !isImplicit) {
3018 Diag(Receiver->getExprLoc(),
3019 diag::err_messaging_class_with_direct_method);
3020 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3021 << Method->getDeclName();
3022 }
3023
3024 if (SuperLoc.isValid()) {
3025 Diag(SuperLoc, diag::err_messaging_super_with_direct_method);
3026 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3027 << Method->getDeclName();
3028 }
3029 } else if (ReceiverType->isObjCIdType() && !isImplicit) {
3030 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id);
3031 }
3032
3033 if (DIFunctionScopeInfo &&
3034 DIFunctionScopeInfo->ObjCIsDesignatedInit &&
3035 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3036 bool isDesignatedInitChain = false;
3037 if (SuperLoc.isValid()) {
3038 if (const ObjCObjectPointerType *
3039 OCIType = ReceiverType->getAsObjCInterfacePointerType()) {
3040 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) {
3041 // Either we know this is a designated initializer or we
3042 // conservatively assume it because we don't know for sure.
3043 if (!ID->declaresOrInheritsDesignatedInitializers() ||
3044 ID->isDesignatedInitializer(Sel)) {
3045 isDesignatedInitChain = true;
3046 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false;
3047 }
3048 }
3049 }
3050 }
3051 if (!isDesignatedInitChain) {
3052 const ObjCMethodDecl *InitMethod = nullptr;
3053 bool isDesignated =
3054 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod);
3055 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3055, __PRETTY_FUNCTION__))
;
3056 (void)isDesignated;
3057 Diag(SelLoc, SuperLoc.isValid() ?
3058 diag::warn_objc_designated_init_non_designated_init_call :
3059 diag::warn_objc_designated_init_non_super_designated_init_call);
3060 Diag(InitMethod->getLocation(),
3061 diag::note_objc_designated_init_marked_here);
3062 }
3063 }
3064
3065 if (DIFunctionScopeInfo &&
3066 DIFunctionScopeInfo->ObjCIsSecondaryInit &&
3067 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3068 if (SuperLoc.isValid()) {
3069 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call);
3070 } else {
3071 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false;
3072 }
3073 }
3074
3075 // Check the message arguments.
3076 unsigned NumArgs = ArgsIn.size();
3077 Expr **Args = ArgsIn.data();
3078 QualType ReturnType;
3079 ExprValueKind VK = VK_RValue;
3080 bool ClassMessage = (ReceiverType->isObjCClassType() ||
3081 ReceiverType->isObjCQualifiedClassType());
3082 if (CheckMessageArgumentTypes(Receiver, ReceiverType,
3083 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
3084 Method, ClassMessage, SuperLoc.isValid(),
3085 LBracLoc, RBracLoc, RecRange, ReturnType, VK))
3086 return ExprError();
3087
3088 if (Method && !Method->getReturnType()->isVoidType() &&
3089 RequireCompleteType(LBracLoc, Method->getReturnType(),
3090 diag::err_illegal_message_expr_incomplete_type))
3091 return ExprError();
3092
3093 // In ARC, forbid the user from sending messages to
3094 // retain/release/autorelease/dealloc/retainCount explicitly.
3095 if (getLangOpts().ObjCAutoRefCount) {
3096 ObjCMethodFamily family =
3097 (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
3098 switch (family) {
3099 case OMF_init:
3100 if (Method)
3101 checkInitMethod(Method, ReceiverType);
3102 break;
3103
3104 case OMF_None:
3105 case OMF_alloc:
3106 case OMF_copy:
3107 case OMF_finalize:
3108 case OMF_mutableCopy:
3109 case OMF_new:
3110 case OMF_self:
3111 case OMF_initialize:
3112 break;
3113
3114 case OMF_dealloc:
3115 case OMF_retain:
3116 case OMF_release:
3117 case OMF_autorelease:
3118 case OMF_retainCount:
3119 Diag(SelLoc, diag::err_arc_illegal_explicit_message)
3120 << Sel << RecRange;
3121 break;
3122
3123 case OMF_performSelector:
3124 if (Method && NumArgs >= 1) {
3125 if (const auto *SelExp =
3126 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) {
3127 Selector ArgSel = SelExp->getSelector();
3128 ObjCMethodDecl *SelMethod =
3129 LookupInstanceMethodInGlobalPool(ArgSel,
3130 SelExp->getSourceRange());
3131 if (!SelMethod)
3132 SelMethod =
3133 LookupFactoryMethodInGlobalPool(ArgSel,
3134 SelExp->getSourceRange());
3135 if (SelMethod) {
3136 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
3137 switch (SelFamily) {
3138 case OMF_alloc:
3139 case OMF_copy:
3140 case OMF_mutableCopy:
3141 case OMF_new:
3142 case OMF_init:
3143 // Issue error, unless ns_returns_not_retained.
3144 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
3145 // selector names a +1 method
3146 Diag(SelLoc,
3147 diag::err_arc_perform_selector_retains);
3148 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3149 << SelMethod->getDeclName();
3150 }
3151 break;
3152 default:
3153 // +0 call. OK. unless ns_returns_retained.
3154 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
3155 // selector names a +1 method
3156 Diag(SelLoc,
3157 diag::err_arc_perform_selector_retains);
3158 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3159 << SelMethod->getDeclName();
3160 }
3161 break;
3162 }
3163 }
3164 } else {
3165 // error (may leak).
3166 Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
3167 Diag(Args[0]->getExprLoc(), diag::note_used_here);
3168 }
3169 }
3170 break;
3171 }
3172 }
3173
3174 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
3175
3176 // Construct the appropriate ObjCMessageExpr instance.
3177 ObjCMessageExpr *Result;
3178 if (SuperLoc.isValid())
3179 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3180 SuperLoc, /*IsInstanceSuper=*/true,
3181 ReceiverType, Sel, SelectorLocs, Method,
3182 makeArrayRef(Args, NumArgs), RBracLoc,
3183 isImplicit);
3184 else {
3185 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3186 Receiver, Sel, SelectorLocs, Method,
3187 makeArrayRef(Args, NumArgs), RBracLoc,
3188 isImplicit);
3189 if (!isImplicit)
3190 checkCocoaAPI(*this, Result);
3191 }
3192 if (Method) {
3193 bool IsClassObjectCall = ClassMessage;
3194 // 'self' message receivers in class methods should be treated as message
3195 // sends to the class object in order for the semantic checks to be
3196 // performed correctly. Messages to 'super' already count as class messages,
3197 // so they don't need to be handled here.
3198 if (Receiver && isSelfExpr(Receiver)) {
3199 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
3200 if (OPT->getObjectType()->isObjCClass()) {
3201 if (const auto *CurMeth = getCurMethodDecl()) {
3202 IsClassObjectCall = true;
3203 ReceiverType =
3204 Context.getObjCInterfaceType(CurMeth->getClassInterface());
3205 }
3206 }
3207 }
3208 }
3209 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
3210 ReceiverType, IsClassObjectCall);
3211 }
3212
3213 if (getLangOpts().ObjCAutoRefCount) {
3214 // In ARC, annotate delegate init calls.
3215 if (Result->getMethodFamily() == OMF_init &&
3216 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3217 // Only consider init calls *directly* in init implementations,
3218 // not within blocks.
3219 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
3220 if (method && method->getMethodFamily() == OMF_init) {
3221 // The implicit assignment to self means we also don't want to
3222 // consume the result.
3223 Result->setDelegateInitCall(true);
3224 return Result;
3225 }
3226 }
3227
3228 // In ARC, check for message sends which are likely to introduce
3229 // retain cycles.
3230 checkRetainCycles(Result);
3231 }
3232
3233 if (getLangOpts().ObjCWeak) {
3234 if (!isImplicit && Method) {
3235 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) {
3236 bool IsWeak =
3237 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak;
3238 if (!IsWeak && Sel.isUnarySelector())
3239 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak;
3240 if (IsWeak && !isUnevaluatedContext() &&
3241 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc))
3242 getCurFunction()->recordUseOfWeak(Result, Prop);
3243 }
3244 }
3245 }
3246
3247 CheckObjCCircularContainer(Result);
3248
3249 return MaybeBindToTemporary(Result);
3250}
3251
3252static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) {
3253 if (ObjCSelectorExpr *OSE =
3254 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) {
3255 Selector Sel = OSE->getSelector();
3256 SourceLocation Loc = OSE->getAtLoc();
3257 auto Pos = S.ReferencedSelectors.find(Sel);
3258 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc)
3259 S.ReferencedSelectors.erase(Pos);
3260 }
3261}
3262
3263// ActOnInstanceMessage - used for both unary and keyword messages.
3264// ArgExprs is optional - if it is present, the number of expressions
3265// is obtained from Sel.getNumArgs().
3266ExprResult Sema::ActOnInstanceMessage(Scope *S,
3267 Expr *Receiver,
3268 Selector Sel,
3269 SourceLocation LBracLoc,
3270 ArrayRef<SourceLocation> SelectorLocs,
3271 SourceLocation RBracLoc,
3272 MultiExprArg Args) {
3273 if (!Receiver)
3274 return ExprError();
3275
3276 // A ParenListExpr can show up while doing error recovery with invalid code.
3277 if (isa<ParenListExpr>(Receiver)) {
3278 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver);
3279 if (Result.isInvalid()) return ExprError();
3280 Receiver = Result.get();
3281 }
3282
3283 if (RespondsToSelectorSel.isNull()) {
3284 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector");
3285 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId);
3286 }
3287 if (Sel == RespondsToSelectorSel)
3288 RemoveSelectorFromWarningCache(*this, Args[0]);
3289
3290 return BuildInstanceMessage(Receiver, Receiver->getType(),
3291 /*SuperLoc=*/SourceLocation(), Sel,
3292 /*Method=*/nullptr, LBracLoc, SelectorLocs,
3293 RBracLoc, Args);
3294}
3295
3296enum ARCConversionTypeClass {
3297 /// int, void, struct A
3298 ACTC_none,
3299
3300 /// id, void (^)()
3301 ACTC_retainable,
3302
3303 /// id*, id***, void (^*)(),
3304 ACTC_indirectRetainable,
3305
3306 /// void* might be a normal C type, or it might a CF type.
3307 ACTC_voidPtr,
3308
3309 /// struct A*
3310 ACTC_coreFoundation
3311};
3312
3313static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
3314 return (ACTC == ACTC_retainable ||
3315 ACTC == ACTC_coreFoundation ||
3316 ACTC == ACTC_voidPtr);
3317}
3318
3319static bool isAnyCLike(ARCConversionTypeClass ACTC) {
3320 return ACTC == ACTC_none ||
3321 ACTC == ACTC_voidPtr ||
3322 ACTC == ACTC_coreFoundation;
3323}
3324
3325static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
3326 bool isIndirect = false;
3327
3328 // Ignore an outermost reference type.
3329 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
3330 type = ref->getPointeeType();
3331 isIndirect = true;
3332 }
3333
3334 // Drill through pointers and arrays recursively.
3335 while (true) {
3336 if (const PointerType *ptr = type->getAs<PointerType>()) {
3337 type = ptr->getPointeeType();
3338
3339 // The first level of pointer may be the innermost pointer on a CF type.
3340 if (!isIndirect) {
3341 if (type->isVoidType()) return ACTC_voidPtr;
3342 if (type->isRecordType()) return ACTC_coreFoundation;
3343 }
3344 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
3345 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
3346 } else {
3347 break;
3348 }
3349 isIndirect = true;
3350 }
3351
3352 if (isIndirect) {
3353 if (type->isObjCARCBridgableType())
3354 return ACTC_indirectRetainable;
3355 return ACTC_none;
3356 }
3357
3358 if (type->isObjCARCBridgableType())
3359 return ACTC_retainable;
3360
3361 return ACTC_none;
3362}
3363
3364namespace {
3365 /// A result from the cast checker.
3366 enum ACCResult {
3367 /// Cannot be casted.
3368 ACC_invalid,
3369
3370 /// Can be safely retained or not retained.
3371 ACC_bottom,
3372
3373 /// Can be casted at +0.
3374 ACC_plusZero,
3375
3376 /// Can be casted at +1.
3377 ACC_plusOne
3378 };
3379 ACCResult merge(ACCResult left, ACCResult right) {
3380 if (left == right) return left;
3381 if (left == ACC_bottom) return right;
3382 if (right == ACC_bottom) return left;
3383 return ACC_invalid;
3384 }
3385
3386 /// A checker which white-lists certain expressions whose conversion
3387 /// to or from retainable type would otherwise be forbidden in ARC.
3388 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
3389 typedef StmtVisitor<ARCCastChecker, ACCResult> super;
3390
3391 ASTContext &Context;
3392 ARCConversionTypeClass SourceClass;
3393 ARCConversionTypeClass TargetClass;
3394 bool Diagnose;
3395
3396 static bool isCFType(QualType type) {
3397 // Someday this can use ns_bridged. For now, it has to do this.
3398 return type->isCARCBridgableType();
3399 }
3400
3401 public:
3402 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
3403 ARCConversionTypeClass target, bool diagnose)
3404 : Context(Context), SourceClass(source), TargetClass(target),
3405 Diagnose(diagnose) {}
3406
3407 using super::Visit;
3408 ACCResult Visit(Expr *e) {
3409 return super::Visit(e->IgnoreParens());
3410 }
3411
3412 ACCResult VisitStmt(Stmt *s) {
3413 return ACC_invalid;
3414 }
3415
3416 /// Null pointer constants can be casted however you please.
3417 ACCResult VisitExpr(Expr *e) {
3418 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
3419 return ACC_bottom;
3420 return ACC_invalid;
3421 }
3422
3423 /// Objective-C string literals can be safely casted.
3424 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
3425 // If we're casting to any retainable type, go ahead. Global
3426 // strings are immune to retains, so this is bottom.
3427 if (isAnyRetainable(TargetClass)) return ACC_bottom;
3428
3429 return ACC_invalid;
3430 }
3431
3432 /// Look through certain implicit and explicit casts.
3433 ACCResult VisitCastExpr(CastExpr *e) {
3434 switch (e->getCastKind()) {
3435 case CK_NullToPointer:
3436 return ACC_bottom;
3437
3438 case CK_NoOp:
3439 case CK_LValueToRValue:
3440 case CK_BitCast:
3441 case CK_CPointerToObjCPointerCast:
3442 case CK_BlockPointerToObjCPointerCast:
3443 case CK_AnyPointerToBlockPointerCast:
3444 return Visit(e->getSubExpr());
3445
3446 default:
3447 return ACC_invalid;
3448 }
3449 }
3450
3451 /// Look through unary extension.
3452 ACCResult VisitUnaryExtension(UnaryOperator *e) {
3453 return Visit(e->getSubExpr());
3454 }
3455
3456 /// Ignore the LHS of a comma operator.
3457 ACCResult VisitBinComma(BinaryOperator *e) {
3458 return Visit(e->getRHS());
3459 }
3460
3461 /// Conditional operators are okay if both sides are okay.
3462 ACCResult VisitConditionalOperator(ConditionalOperator *e) {
3463 ACCResult left = Visit(e->getTrueExpr());
3464 if (left == ACC_invalid) return ACC_invalid;
3465 return merge(left, Visit(e->getFalseExpr()));
3466 }
3467
3468 /// Look through pseudo-objects.
3469 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
3470 // If we're getting here, we should always have a result.
3471 return Visit(e->getResultExpr());
3472 }
3473
3474 /// Statement expressions are okay if their result expression is okay.
3475 ACCResult VisitStmtExpr(StmtExpr *e) {
3476 return Visit(e->getSubStmt()->body_back());
3477 }
3478
3479 /// Some declaration references are okay.
3480 ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
3481 VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
3482 // References to global constants are okay.
3483 if (isAnyRetainable(TargetClass) &&
3484 isAnyRetainable(SourceClass) &&
3485 var &&
3486 !var->hasDefinition(Context) &&
3487 var->getType().isConstQualified()) {
3488
3489 // In system headers, they can also be assumed to be immune to retains.
3490 // These are things like 'kCFStringTransformToLatin'.
3491 if (Context.getSourceManager().isInSystemHeader(var->getLocation()))
3492 return ACC_bottom;
3493
3494 return ACC_plusZero;
3495 }
3496
3497 // Nothing else.
3498 return ACC_invalid;
3499 }
3500
3501 /// Some calls are okay.
3502 ACCResult VisitCallExpr(CallExpr *e) {
3503 if (FunctionDecl *fn = e->getDirectCallee())
3504 if (ACCResult result = checkCallToFunction(fn))
3505 return result;
3506
3507 return super::VisitCallExpr(e);
3508 }
3509
3510 ACCResult checkCallToFunction(FunctionDecl *fn) {
3511 // Require a CF*Ref return type.
3512 if (!isCFType(fn->getReturnType()))
3513 return ACC_invalid;
3514
3515 if (!isAnyRetainable(TargetClass))
3516 return ACC_invalid;
3517
3518 // Honor an explicit 'not retained' attribute.
3519 if (fn->hasAttr<CFReturnsNotRetainedAttr>())
3520 return ACC_plusZero;
3521
3522 // Honor an explicit 'retained' attribute, except that for
3523 // now we're not going to permit implicit handling of +1 results,
3524 // because it's a bit frightening.
3525 if (fn->hasAttr<CFReturnsRetainedAttr>())
3526 return Diagnose ? ACC_plusOne
3527 : ACC_invalid; // ACC_plusOne if we start accepting this
3528
3529 // Recognize this specific builtin function, which is used by CFSTR.
3530 unsigned builtinID = fn->getBuiltinID();
3531 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
3532 return ACC_bottom;
3533
3534 // Otherwise, don't do anything implicit with an unaudited function.
3535 if (!fn->hasAttr<CFAuditedTransferAttr>())
3536 return ACC_invalid;
3537
3538 // Otherwise, it's +0 unless it follows the create convention.
3539 if (ento::coreFoundation::followsCreateRule(fn))
3540 return Diagnose ? ACC_plusOne
3541 : ACC_invalid; // ACC_plusOne if we start accepting this
3542
3543 return ACC_plusZero;
3544 }
3545
3546 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
3547 return checkCallToMethod(e->getMethodDecl());
3548 }
3549
3550 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
3551 ObjCMethodDecl *method;
3552 if (e->isExplicitProperty())
3553 method = e->getExplicitProperty()->getGetterMethodDecl();
3554 else
3555 method = e->getImplicitPropertyGetter();
3556 return checkCallToMethod(method);
3557 }
3558
3559 ACCResult checkCallToMethod(ObjCMethodDecl *method) {
3560 if (!method) return ACC_invalid;
3561
3562 // Check for message sends to functions returning CF types. We
3563 // just obey the Cocoa conventions with these, even though the
3564 // return type is CF.
3565 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType()))
3566 return ACC_invalid;
3567
3568 // If the method is explicitly marked not-retained, it's +0.
3569 if (method->hasAttr<CFReturnsNotRetainedAttr>())
3570 return ACC_plusZero;
3571
3572 // If the method is explicitly marked as returning retained, or its
3573 // selector follows a +1 Cocoa convention, treat it as +1.
3574 if (method->hasAttr<CFReturnsRetainedAttr>())
3575 return ACC_plusOne;
3576
3577 switch (method->getSelector().getMethodFamily()) {
3578 case OMF_alloc:
3579 case OMF_copy:
3580 case OMF_mutableCopy:
3581 case OMF_new:
3582 return ACC_plusOne;
3583
3584 default:
3585 // Otherwise, treat it as +0.
3586 return ACC_plusZero;
3587 }
3588 }
3589 };
3590} // end anonymous namespace
3591
3592bool Sema::isKnownName(StringRef name) {
3593 if (name.empty())
3594 return false;
3595 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
3596 Sema::LookupOrdinaryName);
3597 return LookupName(R, TUScope, false);
3598}
3599
3600static void addFixitForObjCARCConversion(Sema &S,
3601 DiagnosticBuilder &DiagB,
3602 Sema::CheckedConversionKind CCK,
3603 SourceLocation afterLParen,
3604 QualType castType,
3605 Expr *castExpr,
3606 Expr *realCast,
3607 const char *bridgeKeyword,
3608 const char *CFBridgeName) {
3609 // We handle C-style and implicit casts here.
3610 switch (CCK) {
3611 case Sema::CCK_ImplicitConversion:
3612 case Sema::CCK_ForBuiltinOverloadedOp:
3613 case Sema::CCK_CStyleCast:
3614 case Sema::CCK_OtherCast:
3615 break;
3616 case Sema::CCK_FunctionalCast:
3617 return;
3618 }
3619
3620 if (CFBridgeName) {
3621 if (CCK == Sema::CCK_OtherCast) {
3622 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3623 SourceRange range(NCE->getOperatorLoc(),
3624 NCE->getAngleBrackets().getEnd());
3625 SmallString<32> BridgeCall;
3626
3627 SourceManager &SM = S.getSourceManager();
3628 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3629 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3630 BridgeCall += ' ';
3631
3632 BridgeCall += CFBridgeName;
3633 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall));
3634 }
3635 return;
3636 }
3637 Expr *castedE = castExpr;
3638 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
3639 castedE = CCE->getSubExpr();
3640 castedE = castedE->IgnoreImpCasts();
3641 SourceRange range = castedE->getSourceRange();
3642
3643 SmallString<32> BridgeCall;
3644
3645 SourceManager &SM = S.getSourceManager();
3646 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3647 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3648 BridgeCall += ' ';
3649
3650 BridgeCall += CFBridgeName;
3651
3652 if (isa<ParenExpr>(castedE)) {
3653 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3654 BridgeCall));
3655 } else {
3656 BridgeCall += '(';
3657 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3658 BridgeCall));
3659 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3660 S.getLocForEndOfToken(range.getEnd()),
3661 ")"));
3662 }
3663 return;
3664 }
3665
3666 if (CCK == Sema::CCK_CStyleCast) {
3667 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
3668 } else if (CCK == Sema::CCK_OtherCast) {
3669 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3670 std::string castCode = "(";
3671 castCode += bridgeKeyword;
3672 castCode += castType.getAsString();
3673 castCode += ")";
3674 SourceRange Range(NCE->getOperatorLoc(),
3675 NCE->getAngleBrackets().getEnd());
3676 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode));
3677 }
3678 } else {
3679 std::string castCode = "(";
3680 castCode += bridgeKeyword;
3681 castCode += castType.getAsString();
3682 castCode += ")";
3683 Expr *castedE = castExpr->IgnoreImpCasts();
3684 SourceRange range = castedE->getSourceRange();
3685 if (isa<ParenExpr>(castedE)) {
3686 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3687 castCode));
3688 } else {
3689 castCode += "(";
3690 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3691 castCode));
3692 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3693 S.getLocForEndOfToken(range.getEnd()),
3694 ")"));
3695 }
3696 }
3697}
3698
3699template <typename T>
3700static inline T *getObjCBridgeAttr(const TypedefType *TD) {
3701 TypedefNameDecl *TDNDecl = TD->getDecl();
3702 QualType QT = TDNDecl->getUnderlyingType();
3703 if (QT->isPointerType()) {
3704 QT = QT->getPointeeType();
3705 if (const RecordType *RT = QT->getAs<RecordType>())
3706 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl())
3707 return RD->getAttr<T>();
3708 }
3709 return nullptr;
3710}
3711
3712static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T,
3713 TypedefNameDecl *&TDNDecl) {
3714 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3715 TDNDecl = TD->getDecl();
3716 if (ObjCBridgeRelatedAttr *ObjCBAttr =
3717 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD))
3718 return ObjCBAttr;
3719 T = TDNDecl->getUnderlyingType();
3720 }
3721 return nullptr;
3722}
3723
3724static void
3725diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
3726 QualType castType, ARCConversionTypeClass castACTC,
3727 Expr *castExpr, Expr *realCast,
3728 ARCConversionTypeClass exprACTC,
3729 Sema::CheckedConversionKind CCK) {
3730 SourceLocation loc =
3731 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
3732
3733 if (S.makeUnavailableInSystemHeader(loc,
3734 UnavailableAttr::IR_ARCForbiddenConversion))
3735 return;
3736
3737 QualType castExprType = castExpr->getType();
3738 // Defer emitting a diagnostic for bridge-related casts; that will be
3739 // handled by CheckObjCBridgeRelatedConversions.
3740 TypedefNameDecl *TDNDecl = nullptr;
3741 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable &&
3742 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) ||
3743 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable &&
3744 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl)))
3745 return;
3746
3747 unsigned srcKind = 0;
3748 switch (exprACTC) {
3749 case ACTC_none:
3750 case ACTC_coreFoundation:
3751 case ACTC_voidPtr:
3752 srcKind = (castExprType->isPointerType() ? 1 : 0);
3753 break;
3754 case ACTC_retainable:
3755 srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
3756 break;
3757 case ACTC_indirectRetainable:
3758 srcKind = 4;
3759 break;
3760 }
3761
3762 // Check whether this could be fixed with a bridge cast.
3763 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin());
3764 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
3765
3766 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1;
3767
3768 // Bridge from an ARC type to a CF type.
3769 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
3770
3771 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3772 << convKindForDiag
3773 << 2 // of C pointer type
3774 << castExprType
3775 << unsigned(castType->isBlockPointerType()) // to ObjC|block type
3776 << castType
3777 << castRange
3778 << castExpr->getSourceRange();
3779 bool br = S.isKnownName("CFBridgingRelease");
3780 ACCResult CreateRule =
3781 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3782 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3782, __PRETTY_FUNCTION__))
;
3783 if (CreateRule != ACC_plusOne)
3784 {
3785 DiagnosticBuilder DiagB =
3786 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3787 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3788
3789 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3790 castType, castExpr, realCast, "__bridge ",
3791 nullptr);
3792 }
3793 if (CreateRule != ACC_plusZero)
3794 {
3795 DiagnosticBuilder DiagB =
3796 (CCK == Sema::CCK_OtherCast && !br) ?
3797 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType :
3798 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3799 diag::note_arc_bridge_transfer)
3800 << castExprType << br;
3801
3802 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3803 castType, castExpr, realCast, "__bridge_transfer ",
3804 br ? "CFBridgingRelease" : nullptr);
3805 }
3806
3807 return;
3808 }
3809
3810 // Bridge from a CF type to an ARC type.
3811 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
3812 bool br = S.isKnownName("CFBridgingRetain");
3813 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3814 << convKindForDiag
3815 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
3816 << castExprType
3817 << 2 // to C pointer type
3818 << castType
3819 << castRange
3820 << castExpr->getSourceRange();
3821 ACCResult CreateRule =
3822 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3823 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 3823, __PRETTY_FUNCTION__))
;
3824 if (CreateRule != ACC_plusOne)
3825 {
3826 DiagnosticBuilder DiagB =
3827 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3828 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3829 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3830 castType, castExpr, realCast, "__bridge ",
3831 nullptr);
3832 }
3833 if (CreateRule != ACC_plusZero)
3834 {
3835 DiagnosticBuilder DiagB =
3836 (CCK == Sema::CCK_OtherCast && !br) ?
3837 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType :
3838 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3839 diag::note_arc_bridge_retained)
3840 << castType << br;
3841
3842 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3843 castType, castExpr, realCast, "__bridge_retained ",
3844 br ? "CFBridgingRetain" : nullptr);
3845 }
3846
3847 return;
3848 }
3849
3850 S.Diag(loc, diag::err_arc_mismatched_cast)
3851 << !convKindForDiag
3852 << srcKind << castExprType << castType
3853 << castRange << castExpr->getSourceRange();
3854}
3855
3856template <typename TB>
3857static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr,
3858 bool &HadTheAttribute, bool warn) {
3859 QualType T = castExpr->getType();
3860 HadTheAttribute = false;
3861 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3862 TypedefNameDecl *TDNDecl = TD->getDecl();
3863 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3864 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3865 HadTheAttribute = true;
3866 if (Parm->isStr("id"))
3867 return true;
3868
3869 NamedDecl *Target = nullptr;
3870 // Check for an existing type with this name.
3871 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3872 Sema::LookupOrdinaryName);
3873 if (S.LookupName(R, S.TUScope)) {
3874 Target = R.getFoundDecl();
3875 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3876 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target);
3877 if (const ObjCObjectPointerType *InterfacePointerType =
3878 castType->getAsObjCInterfacePointerType()) {
3879 ObjCInterfaceDecl *CastClass
3880 = InterfacePointerType->getObjectType()->getInterface();
3881 if ((CastClass == ExprClass) ||
3882 (CastClass && CastClass->isSuperClassOf(ExprClass)))
3883 return true;
3884 if (warn)
3885 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3886 << T << Target->getName() << castType->getPointeeType();
3887 return false;
3888 } else if (castType->isObjCIdType() ||
3889 (S.Context.ObjCObjectAdoptsQTypeProtocols(
3890 castType, ExprClass)))
3891 // ok to cast to 'id'.
3892 // casting to id<p-list> is ok if bridge type adopts all of
3893 // p-list protocols.
3894 return true;
3895 else {
3896 if (warn) {
3897 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3898 << T << Target->getName() << castType;
3899 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3900 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3901 }
3902 return false;
3903 }
3904 }
3905 } else if (!castType->isObjCIdType()) {
3906 S.Diag(castExpr->getBeginLoc(),
3907 diag::err_objc_cf_bridged_not_interface)
3908 << castExpr->getType() << Parm;
3909 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3910 if (Target)
3911 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3912 }
3913 return true;
3914 }
3915 return false;
3916 }
3917 T = TDNDecl->getUnderlyingType();
3918 }
3919 return true;
3920}
3921
3922template <typename TB>
3923static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr,
3924 bool &HadTheAttribute, bool warn) {
3925 QualType T = castType;
3926 HadTheAttribute = false;
3927 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3928 TypedefNameDecl *TDNDecl = TD->getDecl();
3929 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3930 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3931 HadTheAttribute = true;
3932 if (Parm->isStr("id"))
3933 return true;
3934
3935 NamedDecl *Target = nullptr;
3936 // Check for an existing type with this name.
3937 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3938 Sema::LookupOrdinaryName);
3939 if (S.LookupName(R, S.TUScope)) {
3940 Target = R.getFoundDecl();
3941 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3942 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target);
3943 if (const ObjCObjectPointerType *InterfacePointerType =
3944 castExpr->getType()->getAsObjCInterfacePointerType()) {
3945 ObjCInterfaceDecl *ExprClass
3946 = InterfacePointerType->getObjectType()->getInterface();
3947 if ((CastClass == ExprClass) ||
3948 (ExprClass && CastClass->isSuperClassOf(ExprClass)))
3949 return true;
3950 if (warn) {
3951 S.Diag(castExpr->getBeginLoc(),
3952 diag::warn_objc_invalid_bridge_to_cf)
3953 << castExpr->getType()->getPointeeType() << T;
3954 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3955 }
3956 return false;
3957 } else if (castExpr->getType()->isObjCIdType() ||
3958 (S.Context.QIdProtocolsAdoptObjCObjectProtocols(
3959 castExpr->getType(), CastClass)))
3960 // ok to cast an 'id' expression to a CFtype.
3961 // ok to cast an 'id<plist>' expression to CFtype provided plist
3962 // adopts all of CFtype's ObjetiveC's class plist.
3963 return true;
3964 else {
3965 if (warn) {
3966 S.Diag(castExpr->getBeginLoc(),
3967 diag::warn_objc_invalid_bridge_to_cf)
3968 << castExpr->getType() << castType;
3969 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3970 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3971 }
3972 return false;
3973 }
3974 }
3975 }
3976 S.Diag(castExpr->getBeginLoc(),
3977 diag::err_objc_ns_bridged_invalid_cfobject)
3978 << castExpr->getType() << castType;
3979 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3980 if (Target)
3981 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3982 return true;
3983 }
3984 return false;
3985 }
3986 T = TDNDecl->getUnderlyingType();
3987 }
3988 return true;
3989}
3990
3991void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) {
3992 if (!getLangOpts().ObjC)
3993 return;
3994 // warn in presence of __bridge casting to or from a toll free bridge cast.
3995 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType());
3996 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
3997 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) {
3998 bool HasObjCBridgeAttr;
3999 bool ObjCBridgeAttrWillNotWarn =
4000 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4001 false);
4002 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4003 return;
4004 bool HasObjCBridgeMutableAttr;
4005 bool ObjCBridgeMutableAttrWillNotWarn =
4006 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4007 HasObjCBridgeMutableAttr, false);
4008 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4009 return;
4010
4011 if (HasObjCBridgeAttr)
4012 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4013 true);
4014 else if (HasObjCBridgeMutableAttr)
4015 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4016 HasObjCBridgeMutableAttr, true);
4017 }
4018 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) {
4019 bool HasObjCBridgeAttr;
4020 bool ObjCBridgeAttrWillNotWarn =
4021 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4022 false);
4023 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4024 return;
4025 bool HasObjCBridgeMutableAttr;
4026 bool ObjCBridgeMutableAttrWillNotWarn =
4027 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4028 HasObjCBridgeMutableAttr, false);
4029 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4030 return;
4031
4032 if (HasObjCBridgeAttr)
4033 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4034 true);
4035 else if (HasObjCBridgeMutableAttr)
4036 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4037 HasObjCBridgeMutableAttr, true);
4038 }
4039}
4040
4041void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) {
4042 QualType SrcType = castExpr->getType();
4043 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) {
4044 if (PRE->isExplicitProperty()) {
4045 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty())
4046 SrcType = PDecl->getType();
4047 }
4048 else if (PRE->isImplicitProperty()) {
4049 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter())
4050 SrcType = Getter->getReturnType();
4051 }
4052 }
4053
4054 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType);
4055 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType);
4056 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation)
4057 return;
4058 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType,
4059 castExpr);
4060}
4061
4062bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
4063 CastKind &Kind) {
4064 if (!getLangOpts().ObjC)
4065 return false;
4066 ARCConversionTypeClass exprACTC =
4067 classifyTypeForARCConversion(castExpr->getType());
4068 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4069 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) ||
4070 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) {
4071 CheckTollFreeBridgeCast(castType, castExpr);
4072 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast
4073 : CK_CPointerToObjCPointerCast;
4074 return true;
4075 }
4076 return false;
4077}
4078
4079bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc,
4080 QualType DestType, QualType SrcType,
4081 ObjCInterfaceDecl *&RelatedClass,
4082 ObjCMethodDecl *&ClassMethod,
4083 ObjCMethodDecl *&InstanceMethod,
4084 TypedefNameDecl *&TDNDecl,
4085 bool CfToNs, bool Diagnose) {
4086 QualType T = CfToNs ? SrcType : DestType;
4087 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl);
4088 if (!ObjCBAttr)
4089 return false;
4090
4091 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass();
4092 IdentifierInfo *CMId = ObjCBAttr->getClassMethod();
4093 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod();
4094 if (!RCId)
4095 return false;
4096 NamedDecl *Target = nullptr;
4097 // Check for an existing type with this name.
4098 LookupResult R(*this, DeclarationName(RCId), SourceLocation(),
4099 Sema::LookupOrdinaryName);
4100 if (!LookupName(R, TUScope)) {
4101 if (Diagnose) {
4102 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId
4103 << SrcType << DestType;
4104 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4105 }
4106 return false;
4107 }
4108 Target = R.getFoundDecl();
4109 if (Target && isa<ObjCInterfaceDecl>(Target))
4110 RelatedClass = cast<ObjCInterfaceDecl>(Target);
4111 else {
4112 if (Diagnose) {
4113 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId
4114 << SrcType << DestType;
4115 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4116 if (Target)
4117 Diag(Target->getBeginLoc(), diag::note_declared_at);
4118 }
4119 return false;
4120 }
4121
4122 // Check for an existing class method with the given selector name.
4123 if (CfToNs && CMId) {
4124 Selector Sel = Context.Selectors.getUnarySelector(CMId);
4125 ClassMethod = RelatedClass->lookupMethod(Sel, false);
4126 if (!ClassMethod) {
4127 if (Diagnose) {
4128 Diag(Loc, diag::err_objc_bridged_related_known_method)
4129 << SrcType << DestType << Sel << false;
4130 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4131 }
4132 return false;
4133 }
4134 }
4135
4136 // Check for an existing instance method with the given selector name.
4137 if (!CfToNs && IMId) {
4138 Selector Sel = Context.Selectors.getNullarySelector(IMId);
4139 InstanceMethod = RelatedClass->lookupMethod(Sel, true);
4140 if (!InstanceMethod) {
4141 if (Diagnose) {
4142 Diag(Loc, diag::err_objc_bridged_related_known_method)
4143 << SrcType << DestType << Sel << true;
4144 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4145 }
4146 return false;
4147 }
4148 }
4149 return true;
4150}
4151
4152bool
4153Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc,
4154 QualType DestType, QualType SrcType,
4155 Expr *&SrcExpr, bool Diagnose) {
4156 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType);
4157 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType);
4158 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable);
4159 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation);
4160 if (!CfToNs && !NsToCf)
4161 return false;
4162
4163 ObjCInterfaceDecl *RelatedClass;
4164 ObjCMethodDecl *ClassMethod = nullptr;
4165 ObjCMethodDecl *InstanceMethod = nullptr;
4166 TypedefNameDecl *TDNDecl = nullptr;
4167 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass,
4168 ClassMethod, InstanceMethod, TDNDecl,
4169 CfToNs, Diagnose))
4170 return false;
4171
4172 if (CfToNs) {
4173 // Implicit conversion from CF to ObjC object is needed.
4174 if (ClassMethod) {
4175 if (Diagnose) {
4176 std::string ExpressionString = "[";
4177 ExpressionString += RelatedClass->getNameAsString();
4178 ExpressionString += " ";
4179 ExpressionString += ClassMethod->getSelector().getAsString();
4180 SourceLocation SrcExprEndLoc =
4181 getLocForEndOfToken(SrcExpr->getEndLoc());
4182 // Provide a fixit: [RelatedClass ClassMethod SrcExpr]
4183 Diag(Loc, diag::err_objc_bridged_related_known_method)
4184 << SrcType << DestType << ClassMethod->getSelector() << false
4185 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(),
4186 ExpressionString)
4187 << FixItHint::CreateInsertion(SrcExprEndLoc, "]");
4188 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4189 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4190
4191 QualType receiverType = Context.getObjCInterfaceType(RelatedClass);
4192 // Argument.
4193 Expr *args[] = { SrcExpr };
4194 ExprResult msg = BuildClassMessageImplicit(receiverType, false,
4195 ClassMethod->getLocation(),
4196 ClassMethod->getSelector(), ClassMethod,
4197 MultiExprArg(args, 1));
4198 SrcExpr = msg.get();
4199 }
4200 return true;
4201 }
4202 }
4203 else {
4204 // Implicit conversion from ObjC type to CF object is needed.
4205 if (InstanceMethod) {
4206 if (Diagnose) {
4207 std::string ExpressionString;
4208 SourceLocation SrcExprEndLoc =
4209 getLocForEndOfToken(SrcExpr->getEndLoc());
4210 if (InstanceMethod->isPropertyAccessor())
4211 if (const ObjCPropertyDecl *PDecl =
4212 InstanceMethod->findPropertyDecl()) {
4213 // fixit: ObjectExpr.propertyname when it is aproperty accessor.
4214 ExpressionString = ".";
4215 ExpressionString += PDecl->getNameAsString();
4216 Diag(Loc, diag::err_objc_bridged_related_known_method)
4217 << SrcType << DestType << InstanceMethod->getSelector() << true
4218 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4219 }
4220 if (ExpressionString.empty()) {
4221 // Provide a fixit: [ObjectExpr InstanceMethod]
4222 ExpressionString = " ";
4223 ExpressionString += InstanceMethod->getSelector().getAsString();
4224 ExpressionString += "]";
4225
4226 Diag(Loc, diag::err_objc_bridged_related_known_method)
4227 << SrcType << DestType << InstanceMethod->getSelector() << true
4228 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[")
4229 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4230 }
4231 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4232 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4233
4234 ExprResult msg =
4235 BuildInstanceMessageImplicit(SrcExpr, SrcType,
4236 InstanceMethod->getLocation(),
4237 InstanceMethod->getSelector(),
4238 InstanceMethod, None);
4239 SrcExpr = msg.get();
4240 }
4241 return true;
4242 }
4243 }
4244 return false;
4245}
4246
4247Sema::ARCConversionResult
4248Sema::CheckObjCConversion(SourceRange castRange, QualType castType,
4249 Expr *&castExpr, CheckedConversionKind CCK,
4250 bool Diagnose, bool DiagnoseCFAudited,
4251 BinaryOperatorKind Opc) {
4252 QualType castExprType = castExpr->getType();
4253
4254 // For the purposes of the classification, we assume reference types
4255 // will bind to temporaries.
4256 QualType effCastType = castType;
4257 if (const ReferenceType *ref = castType->getAs<ReferenceType>())
4258 effCastType = ref->getPointeeType();
4259
4260 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
4261 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
4262 if (exprACTC == castACTC) {
4263 // Check for viability and report error if casting an rvalue to a
4264 // life-time qualifier.
4265 if (castACTC == ACTC_retainable &&
4266 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
4267 castType != castExprType) {
4268 const Type *DT = castType.getTypePtr();
4269 QualType QDT = castType;
4270 // We desugar some types but not others. We ignore those
4271 // that cannot happen in a cast; i.e. auto, and those which
4272 // should not be de-sugared; i.e typedef.
4273 if (const ParenType *PT = dyn_cast<ParenType>(DT))
4274 QDT = PT->desugar();
4275 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
4276 QDT = TP->desugar();
4277 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
4278 QDT = AT->desugar();
4279 if (QDT != castType &&
4280 QDT.getObjCLifetime() != Qualifiers::OCL_None) {
4281 if (Diagnose) {
4282 SourceLocation loc = (castRange.isValid() ? castRange.getBegin()
4283 : castExpr->getExprLoc());
4284 Diag(loc, diag::err_arc_nolifetime_behavior);
4285 }
4286 return ACR_error;
4287 }
4288 }
4289 return ACR_okay;
4290 }
4291
4292 // The life-time qualifier cast check above is all we need for ObjCWeak.
4293 // ObjCAutoRefCount has more restrictions on what is legal.
4294 if (!getLangOpts().ObjCAutoRefCount)
4295 return ACR_okay;
4296
4297 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
4298
4299 // Allow all of these types to be cast to integer types (but not
4300 // vice-versa).
4301 if (castACTC == ACTC_none && castType->isIntegralType(Context))
4302 return ACR_okay;
4303
4304 // Allow casts between pointers to lifetime types (e.g., __strong id*)
4305 // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
4306 // must be explicit.
4307 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
4308 return ACR_okay;
4309 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
4310 isCast(CCK))
4311 return ACR_okay;
4312
4313 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
4314 // For invalid casts, fall through.
4315 case ACC_invalid:
4316 break;
4317
4318 // Do nothing for both bottom and +0.
4319 case ACC_bottom:
4320 case ACC_plusZero:
4321 return ACR_okay;
4322
4323 // If the result is +1, consume it here.
4324 case ACC_plusOne:
4325 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
4326 CK_ARCConsumeObject, castExpr,
4327 nullptr, VK_RValue);
4328 Cleanup.setExprNeedsCleanups(true);
4329 return ACR_okay;
4330 }
4331
4332 // If this is a non-implicit cast from id or block type to a
4333 // CoreFoundation type, delay complaining in case the cast is used
4334 // in an acceptable context.
4335 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK))
4336 return ACR_unbridged;
4337
4338 // Issue a diagnostic about a missing @-sign when implicit casting a cstring
4339 // to 'NSString *', instead of falling through to report a "bridge cast"
4340 // diagnostic.
4341 if (castACTC == ACTC_retainable && exprACTC == ACTC_none &&
4342 ConversionToObjCStringLiteralCheck(castType, castExpr, Diagnose))
4343 return ACR_error;
4344
4345 // Do not issue "bridge cast" diagnostic when implicit casting
4346 // a retainable object to a CF type parameter belonging to an audited
4347 // CF API function. Let caller issue a normal type mismatched diagnostic
4348 // instead.
4349 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable ||
4350 castACTC != ACTC_coreFoundation) &&
4351 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable &&
4352 (Opc == BO_NE || Opc == BO_EQ))) {
4353 if (Diagnose)
4354 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr,
4355 castExpr, exprACTC, CCK);
4356 return ACR_error;
4357 }
4358 return ACR_okay;
4359}
4360
4361/// Given that we saw an expression with the ARCUnbridgedCastTy
4362/// placeholder type, complain bitterly.
4363void Sema::diagnoseARCUnbridgedCast(Expr *e) {
4364 // We expect the spurious ImplicitCastExpr to already have been stripped.
4365 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ?
static_cast<void> (0) : __assert_fail ("!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4365, __PRETTY_FUNCTION__))
;
4366 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
4367
4368 SourceRange castRange;
4369 QualType castType;
4370 CheckedConversionKind CCK;
4371
4372 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
4373 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
4374 castType = cast->getTypeAsWritten();
4375 CCK = CCK_CStyleCast;
4376 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
4377 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
4378 castType = cast->getTypeAsWritten();
4379 CCK = CCK_OtherCast;
4380 } else {
4381 llvm_unreachable("Unexpected ImplicitCastExpr")::llvm::llvm_unreachable_internal("Unexpected ImplicitCastExpr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4381)
;
4382 }
4383
4384 ARCConversionTypeClass castACTC =
4385 classifyTypeForARCConversion(castType.getNonReferenceType());
4386
4387 Expr *castExpr = realCast->getSubExpr();
4388 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable)((classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable
) ? static_cast<void> (0) : __assert_fail ("classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4388, __PRETTY_FUNCTION__))
;
4389
4390 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
4391 castExpr, realCast, ACTC_retainable, CCK);
4392}
4393
4394/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
4395/// type, remove the placeholder cast.
4396Expr *Sema::stripARCUnbridgedCast(Expr *e) {
4397 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4397, __PRETTY_FUNCTION__))
;
4398
4399 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
4400 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
4401 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
4402 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
4403 assert(uo->getOpcode() == UO_Extension)((uo->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("uo->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4403, __PRETTY_FUNCTION__))
;
4404 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
4405 return new (Context)
4406 UnaryOperator(sub, UO_Extension, sub->getType(), sub->getValueKind(),
4407 sub->getObjectKind(), uo->getOperatorLoc(), false);
4408 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
4409 assert(!gse->isResultDependent())((!gse->isResultDependent()) ? static_cast<void> (0)
: __assert_fail ("!gse->isResultDependent()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4409, __PRETTY_FUNCTION__))
;
4410
4411 unsigned n = gse->getNumAssocs();
4412 SmallVector<Expr *, 4> subExprs;
4413 SmallVector<TypeSourceInfo *, 4> subTypes;
4414 subExprs.reserve(n);
4415 subTypes.reserve(n);
4416 for (const GenericSelectionExpr::Association assoc : gse->associations()) {
4417 subTypes.push_back(assoc.getTypeSourceInfo());
4418 Expr *sub = assoc.getAssociationExpr();
4419 if (assoc.isSelected())
4420 sub = stripARCUnbridgedCast(sub);
4421 subExprs.push_back(sub);
4422 }
4423
4424 return GenericSelectionExpr::Create(
4425 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes,
4426 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(),
4427 gse->containsUnexpandedParameterPack(), gse->getResultIndex());
4428 } else {
4429 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!")((isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"
) ? static_cast<void> (0) : __assert_fail ("isa<ImplicitCastExpr>(e) && \"bad form of unbridged cast!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaExprObjC.cpp"
, 4429, __PRETTY_FUNCTION__))
;
4430 return cast<ImplicitCastExpr>(e)->getSubExpr();
4431 }
4432}
4433
4434bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
4435 QualType exprType) {
4436 QualType canCastType =
4437 Context.getCanonicalType(castType).getUnqualifiedType();
4438 QualType canExprType =
4439 Context.getCanonicalType(exprType).getUnqualifiedType();
4440 if (isa<ObjCObjectPointerType>(canCastType) &&
4441 castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
4442 canExprType->isObjCObjectPointerType()) {
4443 if (const ObjCObjectPointerType *ObjT =
4444 canExprType->getAs<ObjCObjectPointerType>())
4445 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
4446 return !ObjI->isArcWeakrefUnavailable();
4447 }
4448 return true;
4449}
4450
4451/// Look for an ObjCReclaimReturnedObject cast and destroy it.
4452static Expr *maybeUndoReclaimObject(Expr *e) {
4453 Expr *curExpr = e, *prevExpr = nullptr;
4454
4455 // Walk down the expression until we hit an implicit cast of kind
4456 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast.
4457 while (true) {
4458 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) {
4459 prevExpr = curExpr;
4460 curExpr = pe->getSubExpr();
4461 continue;
4462 }
4463
4464 if (auto *ce = dyn_cast<CastExpr>(curExpr)) {
4465 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce))
4466 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) {
4467 if (!prevExpr)
4468 return ice->getSubExpr();
4469 if (auto *pe = dyn_cast<ParenExpr>(prevExpr))
4470 pe->setSubExpr(ice->getSubExpr());
4471 else
4472 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr());
4473 return e;
4474 }
4475
4476 prevExpr = curExpr;
4477 curExpr = ce->getSubExpr();
4478 continue;
4479 }
4480
4481 // Break out of the loop if curExpr is neither a Paren nor a Cast.
4482 break;
4483 }
4484
4485 return e;
4486}
4487
4488ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
4489 ObjCBridgeCastKind Kind,
4490 SourceLocation BridgeKeywordLoc,
4491 TypeSourceInfo *TSInfo,
4492 Expr *SubExpr) {
4493 ExprResult SubResult = UsualUnaryConversions(SubExpr);
4494 if (SubResult.isInvalid()) return ExprError();
4495 SubExpr = SubResult.get();
4496
4497 QualType T = TSInfo->getType();
4498 QualType FromType = SubExpr->getType();
4499
4500 CastKind CK;
4501
4502 bool MustConsume = false;
4503 if (T->isDependentType() || SubExpr->isTypeDependent()) {
4504 // Okay: we'll build a dependent expression type.
4505 CK = CK_Dependent;
4506 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
4507 // Casting CF -> id
4508 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
4509 : CK_CPointerToObjCPointerCast);
4510 switch (Kind) {
4511 case OBC_Bridge:
4512 break;
4513
4514 case OBC_BridgeRetained: {
4515 bool br = isKnownName("CFBridgingRelease");
4516 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4517 << 2
4518 << FromType
4519 << (T->isBlockPointerType()? 1 : 0)
4520 << T
4521 << SubExpr->getSourceRange()
4522 << Kind;
4523 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4524 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
4525 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
4526 << FromType << br
4527 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4528 br ? "CFBridgingRelease "
4529 : "__bridge_transfer ");
4530
4531 Kind = OBC_Bridge;
4532 break;
4533 }
4534
4535 case OBC_BridgeTransfer:
4536 // We must consume the Objective-C object produced by the cast.
4537 MustConsume = true;
4538 break;
4539 }
4540 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
4541 // Okay: id -> CF
4542 CK = CK_BitCast;
4543 switch (Kind) {
4544 case OBC_Bridge:
4545 // Reclaiming a value that's going to be __bridge-casted to CF
4546 // is very dangerous, so we don't do it.
4547 SubExpr = maybeUndoReclaimObject(SubExpr);
4548 break;
4549
4550 case OBC_BridgeRetained:
4551 // Produce the object before casting it.
4552 SubExpr = ImplicitCastExpr::Create(Context, FromType,
4553 CK_ARCProduceObject,
4554 SubExpr, nullptr, VK_RValue);
4555 break;
4556
4557 case OBC_BridgeTransfer: {
4558 bool br = isKnownName("CFBridgingRetain");
4559 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4560 << (FromType->isBlockPointerType()? 1 : 0)
4561 << FromType
4562 << 2
4563 << T
4564 << SubExpr->getSourceRange()
4565 << Kind;
4566
4567 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4568 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
4569 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
4570 << T << br
4571 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4572 br ? "CFBridgingRetain " : "__bridge_retained");
4573
4574 Kind = OBC_Bridge;
4575 break;
4576 }
4577 }
4578 } else {
4579 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
4580 << FromType << T << Kind
4581 << SubExpr->getSourceRange()
4582 << TSInfo->getTypeLoc().getSourceRange();
4583 return ExprError();
4584 }
4585
4586 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
4587 BridgeKeywordLoc,
4588 TSInfo, SubExpr);
4589
4590 if (MustConsume) {
4591 Cleanup.setExprNeedsCleanups(true);
4592 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
4593 nullptr, VK_RValue);
4594 }
4595
4596 return Result;
4597}
4598
4599ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
4600 SourceLocation LParenLoc,
4601 ObjCBridgeCastKind Kind,
4602 SourceLocation BridgeKeywordLoc,
4603 ParsedType Type,
4604 SourceLocation RParenLoc,
4605 Expr *SubExpr) {
4606 TypeSourceInfo *TSInfo = nullptr;
4607 QualType T = GetTypeFromParser(Type, &TSInfo);
4608 if (Kind == OBC_Bridge)
4609 CheckTollFreeBridgeCast(T, SubExpr);
4610 if (!TSInfo)
4611 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
4612 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
4613 SubExpr);
4614}

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69namespace serialization {
70 template <class T> class AbstractTypeReader;
71 template <class T> class AbstractTypeWriter;
72}
73
74} // namespace clang
75
76namespace llvm {
77
78 template <typename T>
79 struct PointerLikeTypeTraits;
80 template<>
81 struct PointerLikeTypeTraits< ::clang::Type*> {
82 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
83
84 static inline ::clang::Type *getFromVoidPointer(void *P) {
85 return static_cast< ::clang::Type*>(P);
86 }
87
88 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
89 };
90
91 template<>
92 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
93 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
94
95 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
96 return static_cast< ::clang::ExtQuals*>(P);
97 }
98
99 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
100 };
101
102} // namespace llvm
103
104namespace clang {
105
106class ASTContext;
107template <typename> class CanQual;
108class CXXRecordDecl;
109class DeclContext;
110class EnumDecl;
111class Expr;
112class ExtQualsTypeCommonBase;
113class FunctionDecl;
114class IdentifierInfo;
115class NamedDecl;
116class ObjCInterfaceDecl;
117class ObjCProtocolDecl;
118class ObjCTypeParamDecl;
119struct PrintingPolicy;
120class RecordDecl;
121class Stmt;
122class TagDecl;
123class TemplateArgument;
124class TemplateArgumentListInfo;
125class TemplateArgumentLoc;
126class TemplateTypeParmDecl;
127class TypedefNameDecl;
128class UnresolvedUsingTypenameDecl;
129
130using CanQualType = CanQual<Type>;
131
132// Provide forward declarations for all of the *Type classes.
133#define TYPE(Class, Base) class Class##Type;
134#include "clang/AST/TypeNodes.inc"
135
136/// The collection of all-type qualifiers we support.
137/// Clang supports five independent qualifiers:
138/// * C99: const, volatile, and restrict
139/// * MS: __unaligned
140/// * Embedded C (TR18037): address spaces
141/// * Objective C: the GC attributes (none, weak, or strong)
142class Qualifiers {
143public:
144 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
145 Const = 0x1,
146 Restrict = 0x2,
147 Volatile = 0x4,
148 CVRMask = Const | Volatile | Restrict
149 };
150
151 enum GC {
152 GCNone = 0,
153 Weak,
154 Strong
155 };
156
157 enum ObjCLifetime {
158 /// There is no lifetime qualification on this type.
159 OCL_None,
160
161 /// This object can be modified without requiring retains or
162 /// releases.
163 OCL_ExplicitNone,
164
165 /// Assigning into this object requires the old value to be
166 /// released and the new value to be retained. The timing of the
167 /// release of the old value is inexact: it may be moved to
168 /// immediately after the last known point where the value is
169 /// live.
170 OCL_Strong,
171
172 /// Reading or writing from this object requires a barrier call.
173 OCL_Weak,
174
175 /// Assigning into this object requires a lifetime extension.
176 OCL_Autoreleasing
177 };
178
179 enum {
180 /// The maximum supported address space number.
181 /// 23 bits should be enough for anyone.
182 MaxAddressSpace = 0x7fffffu,
183
184 /// The width of the "fast" qualifier mask.
185 FastWidth = 3,
186
187 /// The fast qualifier mask.
188 FastMask = (1 << FastWidth) - 1
189 };
190
191 /// Returns the common set of qualifiers while removing them from
192 /// the given sets.
193 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
194 // If both are only CVR-qualified, bit operations are sufficient.
195 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
196 Qualifiers Q;
197 Q.Mask = L.Mask & R.Mask;
198 L.Mask &= ~Q.Mask;
199 R.Mask &= ~Q.Mask;
200 return Q;
201 }
202
203 Qualifiers Q;
204 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
205 Q.addCVRQualifiers(CommonCRV);
206 L.removeCVRQualifiers(CommonCRV);
207 R.removeCVRQualifiers(CommonCRV);
208
209 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
210 Q.setObjCGCAttr(L.getObjCGCAttr());
211 L.removeObjCGCAttr();
212 R.removeObjCGCAttr();
213 }
214
215 if (L.getObjCLifetime() == R.getObjCLifetime()) {
216 Q.setObjCLifetime(L.getObjCLifetime());
217 L.removeObjCLifetime();
218 R.removeObjCLifetime();
219 }
220
221 if (L.getAddressSpace() == R.getAddressSpace()) {
222 Q.setAddressSpace(L.getAddressSpace());
223 L.removeAddressSpace();
224 R.removeAddressSpace();
225 }
226 return Q;
227 }
228
229 static Qualifiers fromFastMask(unsigned Mask) {
230 Qualifiers Qs;
231 Qs.addFastQualifiers(Mask);
232 return Qs;
233 }
234
235 static Qualifiers fromCVRMask(unsigned CVR) {
236 Qualifiers Qs;
237 Qs.addCVRQualifiers(CVR);
238 return Qs;
239 }
240
241 static Qualifiers fromCVRUMask(unsigned CVRU) {
242 Qualifiers Qs;
243 Qs.addCVRUQualifiers(CVRU);
244 return Qs;
245 }
246
247 // Deserialize qualifiers from an opaque representation.
248 static Qualifiers fromOpaqueValue(unsigned opaque) {
249 Qualifiers Qs;
250 Qs.Mask = opaque;
251 return Qs;
252 }
253
254 // Serialize these qualifiers into an opaque representation.
255 unsigned getAsOpaqueValue() const {
256 return Mask;
257 }
258
259 bool hasConst() const { return Mask & Const; }
260 bool hasOnlyConst() const { return Mask == Const; }
261 void removeConst() { Mask &= ~Const; }
262 void addConst() { Mask |= Const; }
263
264 bool hasVolatile() const { return Mask & Volatile; }
265 bool hasOnlyVolatile() const { return Mask == Volatile; }
266 void removeVolatile() { Mask &= ~Volatile; }
267 void addVolatile() { Mask |= Volatile; }
268
269 bool hasRestrict() const { return Mask & Restrict; }
270 bool hasOnlyRestrict() const { return Mask == Restrict; }
271 void removeRestrict() { Mask &= ~Restrict; }
272 void addRestrict() { Mask |= Restrict; }
273
274 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
275 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
276 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
277
278 void setCVRQualifiers(unsigned mask) {
279 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 279, __PRETTY_FUNCTION__))
;
280 Mask = (Mask & ~CVRMask) | mask;
281 }
282 void removeCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 283, __PRETTY_FUNCTION__))
;
284 Mask &= ~mask;
285 }
286 void removeCVRQualifiers() {
287 removeCVRQualifiers(CVRMask);
288 }
289 void addCVRQualifiers(unsigned mask) {
290 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 290, __PRETTY_FUNCTION__))
;
291 Mask |= mask;
292 }
293 void addCVRUQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 294, __PRETTY_FUNCTION__))
;
295 Mask |= mask;
296 }
297
298 bool hasUnaligned() const { return Mask & UMask; }
299 void setUnaligned(bool flag) {
300 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
301 }
302 void removeUnaligned() { Mask &= ~UMask; }
303 void addUnaligned() { Mask |= UMask; }
304
305 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
306 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
307 void setObjCGCAttr(GC type) {
308 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
309 }
310 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
311 void addObjCGCAttr(GC type) {
312 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 312, __PRETTY_FUNCTION__))
;
313 setObjCGCAttr(type);
314 }
315 Qualifiers withoutObjCGCAttr() const {
316 Qualifiers qs = *this;
317 qs.removeObjCGCAttr();
318 return qs;
319 }
320 Qualifiers withoutObjCLifetime() const {
321 Qualifiers qs = *this;
322 qs.removeObjCLifetime();
323 return qs;
324 }
325 Qualifiers withoutAddressSpace() const {
326 Qualifiers qs = *this;
327 qs.removeAddressSpace();
328 return qs;
329 }
330
331 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
332 ObjCLifetime getObjCLifetime() const {
333 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
334 }
335 void setObjCLifetime(ObjCLifetime type) {
336 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
337 }
338 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
339 void addObjCLifetime(ObjCLifetime type) {
340 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 340, __PRETTY_FUNCTION__))
;
341 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 341, __PRETTY_FUNCTION__))
;
342 Mask |= (type << LifetimeShift);
343 }
344
345 /// True if the lifetime is neither None or ExplicitNone.
346 bool hasNonTrivialObjCLifetime() const {
347 ObjCLifetime lifetime = getObjCLifetime();
348 return (lifetime > OCL_ExplicitNone);
349 }
350
351 /// True if the lifetime is either strong or weak.
352 bool hasStrongOrWeakObjCLifetime() const {
353 ObjCLifetime lifetime = getObjCLifetime();
354 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
355 }
356
357 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
358 LangAS getAddressSpace() const {
359 return static_cast<LangAS>(Mask >> AddressSpaceShift);
360 }
361 bool hasTargetSpecificAddressSpace() const {
362 return isTargetAddressSpace(getAddressSpace());
363 }
364 /// Get the address space attribute value to be printed by diagnostics.
365 unsigned getAddressSpaceAttributePrintValue() const {
366 auto Addr = getAddressSpace();
367 // This function is not supposed to be used with language specific
368 // address spaces. If that happens, the diagnostic message should consider
369 // printing the QualType instead of the address space value.
370 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 370, __PRETTY_FUNCTION__))
;
371 if (Addr != LangAS::Default)
372 return toTargetAddressSpace(Addr);
373 // TODO: The diagnostic messages where Addr may be 0 should be fixed
374 // since it cannot differentiate the situation where 0 denotes the default
375 // address space or user specified __attribute__((address_space(0))).
376 return 0;
377 }
378 void setAddressSpace(LangAS space) {
379 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 379, __PRETTY_FUNCTION__))
;
380 Mask = (Mask & ~AddressSpaceMask)
381 | (((uint32_t) space) << AddressSpaceShift);
382 }
383 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
384 void addAddressSpace(LangAS space) {
385 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 385, __PRETTY_FUNCTION__))
;
386 setAddressSpace(space);
387 }
388
389 // Fast qualifiers are those that can be allocated directly
390 // on a QualType object.
391 bool hasFastQualifiers() const { return getFastQualifiers(); }
392 unsigned getFastQualifiers() const { return Mask & FastMask; }
393 void setFastQualifiers(unsigned mask) {
394 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 394, __PRETTY_FUNCTION__))
;
395 Mask = (Mask & ~FastMask) | mask;
396 }
397 void removeFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 398, __PRETTY_FUNCTION__))
;
399 Mask &= ~mask;
400 }
401 void removeFastQualifiers() {
402 removeFastQualifiers(FastMask);
403 }
404 void addFastQualifiers(unsigned mask) {
405 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 405, __PRETTY_FUNCTION__))
;
406 Mask |= mask;
407 }
408
409 /// Return true if the set contains any qualifiers which require an ExtQuals
410 /// node to be allocated.
411 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
412 Qualifiers getNonFastQualifiers() const {
413 Qualifiers Quals = *this;
414 Quals.setFastQualifiers(0);
415 return Quals;
416 }
417
418 /// Return true if the set contains any qualifiers.
419 bool hasQualifiers() const { return Mask; }
420 bool empty() const { return !Mask; }
421
422 /// Add the qualifiers from the given set to this set.
423 void addQualifiers(Qualifiers Q) {
424 // If the other set doesn't have any non-boolean qualifiers, just
425 // bit-or it in.
426 if (!(Q.Mask & ~CVRMask))
427 Mask |= Q.Mask;
428 else {
429 Mask |= (Q.Mask & CVRMask);
430 if (Q.hasAddressSpace())
431 addAddressSpace(Q.getAddressSpace());
432 if (Q.hasObjCGCAttr())
433 addObjCGCAttr(Q.getObjCGCAttr());
434 if (Q.hasObjCLifetime())
435 addObjCLifetime(Q.getObjCLifetime());
436 }
437 }
438
439 /// Remove the qualifiers from the given set from this set.
440 void removeQualifiers(Qualifiers Q) {
441 // If the other set doesn't have any non-boolean qualifiers, just
442 // bit-and the inverse in.
443 if (!(Q.Mask & ~CVRMask))
444 Mask &= ~Q.Mask;
445 else {
446 Mask &= ~(Q.Mask & CVRMask);
447 if (getObjCGCAttr() == Q.getObjCGCAttr())
448 removeObjCGCAttr();
449 if (getObjCLifetime() == Q.getObjCLifetime())
450 removeObjCLifetime();
451 if (getAddressSpace() == Q.getAddressSpace())
452 removeAddressSpace();
453 }
454 }
455
456 /// Add the qualifiers from the given set to this set, given that
457 /// they don't conflict.
458 void addConsistentQualifiers(Qualifiers qs) {
459 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
460 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
;
461 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
462 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
;
463 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
464 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
;
465 Mask |= qs.Mask;
466 }
467
468 /// Returns true if address space A is equal to or a superset of B.
469 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
470 /// overlapping address spaces.
471 /// CL1.1 or CL1.2:
472 /// every address space is a superset of itself.
473 /// CL2.0 adds:
474 /// __generic is a superset of any address space except for __constant.
475 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
476 // Address spaces must match exactly.
477 return A == B ||
478 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
479 // for __constant can be used as __generic.
480 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
481 // Consider pointer size address spaces to be equivalent to default.
482 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
483 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
484 }
485
486 /// Returns true if the address space in these qualifiers is equal to or
487 /// a superset of the address space in the argument qualifiers.
488 bool isAddressSpaceSupersetOf(Qualifiers other) const {
489 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
490 }
491
492 /// Determines if these qualifiers compatibly include another set.
493 /// Generally this answers the question of whether an object with the other
494 /// qualifiers can be safely used as an object with these qualifiers.
495 bool compatiblyIncludes(Qualifiers other) const {
496 return isAddressSpaceSupersetOf(other) &&
497 // ObjC GC qualifiers can match, be added, or be removed, but can't
498 // be changed.
499 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
500 !other.hasObjCGCAttr()) &&
501 // ObjC lifetime qualifiers must match exactly.
502 getObjCLifetime() == other.getObjCLifetime() &&
503 // CVR qualifiers may subset.
504 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
505 // U qualifier may superset.
506 (!other.hasUnaligned() || hasUnaligned());
507 }
508
509 /// Determines if these qualifiers compatibly include another set of
510 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
511 ///
512 /// One set of Objective-C lifetime qualifiers compatibly includes the other
513 /// if the lifetime qualifiers match, or if both are non-__weak and the
514 /// including set also contains the 'const' qualifier, or both are non-__weak
515 /// and one is None (which can only happen in non-ARC modes).
516 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
517 if (getObjCLifetime() == other.getObjCLifetime())
518 return true;
519
520 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
521 return false;
522
523 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
524 return true;
525
526 return hasConst();
527 }
528
529 /// Determine whether this set of qualifiers is a strict superset of
530 /// another set of qualifiers, not considering qualifier compatibility.
531 bool isStrictSupersetOf(Qualifiers Other) const;
532
533 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
534 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
535
536 explicit operator bool() const { return hasQualifiers(); }
537
538 Qualifiers &operator+=(Qualifiers R) {
539 addQualifiers(R);
540 return *this;
541 }
542
543 // Union two qualifier sets. If an enumerated qualifier appears
544 // in both sets, use the one from the right.
545 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
546 L += R;
547 return L;
548 }
549
550 Qualifiers &operator-=(Qualifiers R) {
551 removeQualifiers(R);
552 return *this;
553 }
554
555 /// Compute the difference between two qualifier sets.
556 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
557 L -= R;
558 return L;
559 }
560
561 std::string getAsString() const;
562 std::string getAsString(const PrintingPolicy &Policy) const;
563
564 static std::string getAddrSpaceAsString(LangAS AS);
565
566 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
567 void print(raw_ostream &OS, const PrintingPolicy &Policy,
568 bool appendSpaceIfNonEmpty = false) const;
569
570 void Profile(llvm::FoldingSetNodeID &ID) const {
571 ID.AddInteger(Mask);
572 }
573
574private:
575 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
576 // |C R V|U|GCAttr|Lifetime|AddressSpace|
577 uint32_t Mask = 0;
578
579 static const uint32_t UMask = 0x8;
580 static const uint32_t UShift = 3;
581 static const uint32_t GCAttrMask = 0x30;
582 static const uint32_t GCAttrShift = 4;
583 static const uint32_t LifetimeMask = 0x1C0;
584 static const uint32_t LifetimeShift = 6;
585 static const uint32_t AddressSpaceMask =
586 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
587 static const uint32_t AddressSpaceShift = 9;
588};
589
590/// A std::pair-like structure for storing a qualified type split
591/// into its local qualifiers and its locally-unqualified type.
592struct SplitQualType {
593 /// The locally-unqualified type.
594 const Type *Ty = nullptr;
595
596 /// The local qualifiers.
597 Qualifiers Quals;
598
599 SplitQualType() = default;
600 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
601
602 SplitQualType getSingleStepDesugaredType() const; // end of this file
603
604 // Make std::tie work.
605 std::pair<const Type *,Qualifiers> asPair() const {
606 return std::pair<const Type *, Qualifiers>(Ty, Quals);
607 }
608
609 friend bool operator==(SplitQualType a, SplitQualType b) {
610 return a.Ty == b.Ty && a.Quals == b.Quals;
611 }
612 friend bool operator!=(SplitQualType a, SplitQualType b) {
613 return a.Ty != b.Ty || a.Quals != b.Quals;
614 }
615};
616
617/// The kind of type we are substituting Objective-C type arguments into.
618///
619/// The kind of substitution affects the replacement of type parameters when
620/// no concrete type information is provided, e.g., when dealing with an
621/// unspecialized type.
622enum class ObjCSubstitutionContext {
623 /// An ordinary type.
624 Ordinary,
625
626 /// The result type of a method or function.
627 Result,
628
629 /// The parameter type of a method or function.
630 Parameter,
631
632 /// The type of a property.
633 Property,
634
635 /// The superclass of a type.
636 Superclass,
637};
638
639/// A (possibly-)qualified type.
640///
641/// For efficiency, we don't store CV-qualified types as nodes on their
642/// own: instead each reference to a type stores the qualifiers. This
643/// greatly reduces the number of nodes we need to allocate for types (for
644/// example we only need one for 'int', 'const int', 'volatile int',
645/// 'const volatile int', etc).
646///
647/// As an added efficiency bonus, instead of making this a pair, we
648/// just store the two bits we care about in the low bits of the
649/// pointer. To handle the packing/unpacking, we make QualType be a
650/// simple wrapper class that acts like a smart pointer. A third bit
651/// indicates whether there are extended qualifiers present, in which
652/// case the pointer points to a special structure.
653class QualType {
654 friend class QualifierCollector;
655
656 // Thankfully, these are efficiently composable.
657 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
658 Qualifiers::FastWidth> Value;
659
660 const ExtQuals *getExtQualsUnsafe() const {
661 return Value.getPointer().get<const ExtQuals*>();
662 }
663
664 const Type *getTypePtrUnsafe() const {
665 return Value.getPointer().get<const Type*>();
666 }
667
668 const ExtQualsTypeCommonBase *getCommonPtr() const {
669 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 669, __PRETTY_FUNCTION__))
;
670 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
671 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
672 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
673 }
674
675public:
676 QualType() = default;
677 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
678 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
679
680 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
681 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
682
683 /// Retrieves a pointer to the underlying (unqualified) type.
684 ///
685 /// This function requires that the type not be NULL. If the type might be
686 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
687 const Type *getTypePtr() const;
688
689 const Type *getTypePtrOrNull() const;
690
691 /// Retrieves a pointer to the name of the base type.
692 const IdentifierInfo *getBaseTypeIdentifier() const;
693
694 /// Divides a QualType into its unqualified type and a set of local
695 /// qualifiers.
696 SplitQualType split() const;
697
698 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
699
700 static QualType getFromOpaquePtr(const void *Ptr) {
701 QualType T;
702 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
703 return T;
704 }
705
706 const Type &operator*() const {
707 return *getTypePtr();
708 }
709
710 const Type *operator->() const {
711 return getTypePtr();
712 }
713
714 bool isCanonical() const;
715 bool isCanonicalAsParam() const;
716
717 /// Return true if this QualType doesn't point to a type yet.
718 bool isNull() const {
719 return Value.getPointer().isNull();
720 }
721
722 /// Determine whether this particular QualType instance has the
723 /// "const" qualifier set, without looking through typedefs that may have
724 /// added "const" at a different level.
725 bool isLocalConstQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Const);
727 }
728
729 /// Determine whether this type is const-qualified.
730 bool isConstQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "restrict" qualifier set, without looking through typedefs that may have
734 /// added "restrict" at a different level.
735 bool isLocalRestrictQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Restrict);
737 }
738
739 /// Determine whether this type is restrict-qualified.
740 bool isRestrictQualified() const;
741
742 /// Determine whether this particular QualType instance has the
743 /// "volatile" qualifier set, without looking through typedefs that may have
744 /// added "volatile" at a different level.
745 bool isLocalVolatileQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Volatile);
747 }
748
749 /// Determine whether this type is volatile-qualified.
750 bool isVolatileQualified() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// qualifiers, without looking through any typedefs that might add
754 /// qualifiers at a different level.
755 bool hasLocalQualifiers() const {
756 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
757 }
758
759 /// Determine whether this type has any qualifiers.
760 bool hasQualifiers() const;
761
762 /// Determine whether this particular QualType instance has any
763 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
764 /// instance.
765 bool hasLocalNonFastQualifiers() const {
766 return Value.getPointer().is<const ExtQuals*>();
767 }
768
769 /// Retrieve the set of qualifiers local to this particular QualType
770 /// instance, not including any qualifiers acquired through typedefs or
771 /// other sugar.
772 Qualifiers getLocalQualifiers() const;
773
774 /// Retrieve the set of qualifiers applied to this type.
775 Qualifiers getQualifiers() const;
776
777 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
778 /// local to this particular QualType instance, not including any qualifiers
779 /// acquired through typedefs or other sugar.
780 unsigned getLocalCVRQualifiers() const {
781 return getLocalFastQualifiers();
782 }
783
784 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
785 /// applied to this type.
786 unsigned getCVRQualifiers() const;
787
788 bool isConstant(const ASTContext& Ctx) const {
789 return QualType::isConstant(*this, Ctx);
790 }
791
792 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
793 bool isPODType(const ASTContext &Context) const;
794
795 /// Return true if this is a POD type according to the rules of the C++98
796 /// standard, regardless of the current compilation's language.
797 bool isCXX98PODType(const ASTContext &Context) const;
798
799 /// Return true if this is a POD type according to the more relaxed rules
800 /// of the C++11 standard, regardless of the current compilation's language.
801 /// (C++0x [basic.types]p9). Note that, unlike
802 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
803 bool isCXX11PODType(const ASTContext &Context) const;
804
805 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
806 bool isTrivialType(const ASTContext &Context) const;
807
808 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
809 bool isTriviallyCopyableType(const ASTContext &Context) const;
810
811
812 /// Returns true if it is a class and it might be dynamic.
813 bool mayBeDynamicClass() const;
814
815 /// Returns true if it is not a class or if the class might not be dynamic.
816 bool mayBeNotDynamicClass() const;
817
818 // Don't promise in the API that anything besides 'const' can be
819 // easily added.
820
821 /// Add the `const` type qualifier to this QualType.
822 void addConst() {
823 addFastQualifiers(Qualifiers::Const);
824 }
825 QualType withConst() const {
826 return withFastQualifiers(Qualifiers::Const);
827 }
828
829 /// Add the `volatile` type qualifier to this QualType.
830 void addVolatile() {
831 addFastQualifiers(Qualifiers::Volatile);
832 }
833 QualType withVolatile() const {
834 return withFastQualifiers(Qualifiers::Volatile);
835 }
836
837 /// Add the `restrict` qualifier to this QualType.
838 void addRestrict() {
839 addFastQualifiers(Qualifiers::Restrict);
840 }
841 QualType withRestrict() const {
842 return withFastQualifiers(Qualifiers::Restrict);
843 }
844
845 QualType withCVRQualifiers(unsigned CVR) const {
846 return withFastQualifiers(CVR);
847 }
848
849 void addFastQualifiers(unsigned TQs) {
850 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
851 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
;
852 Value.setInt(Value.getInt() | TQs);
853 }
854
855 void removeLocalConst();
856 void removeLocalVolatile();
857 void removeLocalRestrict();
858 void removeLocalCVRQualifiers(unsigned Mask);
859
860 void removeLocalFastQualifiers() { Value.setInt(0); }
861 void removeLocalFastQualifiers(unsigned Mask) {
862 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 862, __PRETTY_FUNCTION__))
;
863 Value.setInt(Value.getInt() & ~Mask);
864 }
865
866 // Creates a type with the given qualifiers in addition to any
867 // qualifiers already on this type.
868 QualType withFastQualifiers(unsigned TQs) const {
869 QualType T = *this;
870 T.addFastQualifiers(TQs);
871 return T;
872 }
873
874 // Creates a type with exactly the given fast qualifiers, removing
875 // any existing fast qualifiers.
876 QualType withExactLocalFastQualifiers(unsigned TQs) const {
877 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
878 }
879
880 // Removes fast qualifiers, but leaves any extended qualifiers in place.
881 QualType withoutLocalFastQualifiers() const {
882 QualType T = *this;
883 T.removeLocalFastQualifiers();
884 return T;
885 }
886
887 QualType getCanonicalType() const;
888
889 /// Return this type with all of the instance-specific qualifiers
890 /// removed, but without removing any qualifiers that may have been applied
891 /// through typedefs.
892 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
893
894 /// Retrieve the unqualified variant of the given type,
895 /// removing as little sugar as possible.
896 ///
897 /// This routine looks through various kinds of sugar to find the
898 /// least-desugared type that is unqualified. For example, given:
899 ///
900 /// \code
901 /// typedef int Integer;
902 /// typedef const Integer CInteger;
903 /// typedef CInteger DifferenceType;
904 /// \endcode
905 ///
906 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
907 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
908 ///
909 /// The resulting type might still be qualified if it's sugar for an array
910 /// type. To strip qualifiers even from within a sugared array type, use
911 /// ASTContext::getUnqualifiedArrayType.
912 inline QualType getUnqualifiedType() const;
913
914 /// Retrieve the unqualified variant of the given type, removing as little
915 /// sugar as possible.
916 ///
917 /// Like getUnqualifiedType(), but also returns the set of
918 /// qualifiers that were built up.
919 ///
920 /// The resulting type might still be qualified if it's sugar for an array
921 /// type. To strip qualifiers even from within a sugared array type, use
922 /// ASTContext::getUnqualifiedArrayType.
923 inline SplitQualType getSplitUnqualifiedType() const;
924
925 /// Determine whether this type is more qualified than the other
926 /// given type, requiring exact equality for non-CVR qualifiers.
927 bool isMoreQualifiedThan(QualType Other) const;
928
929 /// Determine whether this type is at least as qualified as the other
930 /// given type, requiring exact equality for non-CVR qualifiers.
931 bool isAtLeastAsQualifiedAs(QualType Other) const;
932
933 QualType getNonReferenceType() const;
934
935 /// Determine the type of a (typically non-lvalue) expression with the
936 /// specified result type.
937 ///
938 /// This routine should be used for expressions for which the return type is
939 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
940 /// an lvalue. It removes a top-level reference (since there are no
941 /// expressions of reference type) and deletes top-level cvr-qualifiers
942 /// from non-class types (in C++) or all types (in C).
943 QualType getNonLValueExprType(const ASTContext &Context) const;
944
945 /// Return the specified type with any "sugar" removed from
946 /// the type. This takes off typedefs, typeof's etc. If the outer level of
947 /// the type is already concrete, it returns it unmodified. This is similar
948 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
949 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
950 /// concrete.
951 ///
952 /// Qualifiers are left in place.
953 QualType getDesugaredType(const ASTContext &Context) const {
954 return getDesugaredType(*this, Context);
955 }
956
957 SplitQualType getSplitDesugaredType() const {
958 return getSplitDesugaredType(*this);
959 }
960
961 /// Return the specified type with one level of "sugar" removed from
962 /// the type.
963 ///
964 /// This routine takes off the first typedef, typeof, etc. If the outer level
965 /// of the type is already concrete, it returns it unmodified.
966 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
967 return getSingleStepDesugaredTypeImpl(*this, Context);
968 }
969
970 /// Returns the specified type after dropping any
971 /// outer-level parentheses.
972 QualType IgnoreParens() const {
973 if (isa<ParenType>(*this))
974 return QualType::IgnoreParens(*this);
975 return *this;
976 }
977
978 /// Indicate whether the specified types and qualifiers are identical.
979 friend bool operator==(const QualType &LHS, const QualType &RHS) {
980 return LHS.Value == RHS.Value;
981 }
982 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
983 return LHS.Value != RHS.Value;
984 }
985 friend bool operator<(const QualType &LHS, const QualType &RHS) {
986 return LHS.Value < RHS.Value;
987 }
988
989 static std::string getAsString(SplitQualType split,
990 const PrintingPolicy &Policy) {
991 return getAsString(split.Ty, split.Quals, Policy);
992 }
993 static std::string getAsString(const Type *ty, Qualifiers qs,
994 const PrintingPolicy &Policy);
995
996 std::string getAsString() const;
997 std::string getAsString(const PrintingPolicy &Policy) const;
998
999 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1000 const Twine &PlaceHolder = Twine(),
1001 unsigned Indentation = 0) const;
1002
1003 static void print(SplitQualType split, raw_ostream &OS,
1004 const PrintingPolicy &policy, const Twine &PlaceHolder,
1005 unsigned Indentation = 0) {
1006 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1007 }
1008
1009 static void print(const Type *ty, Qualifiers qs,
1010 raw_ostream &OS, const PrintingPolicy &policy,
1011 const Twine &PlaceHolder,
1012 unsigned Indentation = 0);
1013
1014 void getAsStringInternal(std::string &Str,
1015 const PrintingPolicy &Policy) const;
1016
1017 static void getAsStringInternal(SplitQualType split, std::string &out,
1018 const PrintingPolicy &policy) {
1019 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1020 }
1021
1022 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1023 std::string &out,
1024 const PrintingPolicy &policy);
1025
1026 class StreamedQualTypeHelper {
1027 const QualType &T;
1028 const PrintingPolicy &Policy;
1029 const Twine &PlaceHolder;
1030 unsigned Indentation;
1031
1032 public:
1033 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1034 const Twine &PlaceHolder, unsigned Indentation)
1035 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1036 Indentation(Indentation) {}
1037
1038 friend raw_ostream &operator<<(raw_ostream &OS,
1039 const StreamedQualTypeHelper &SQT) {
1040 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1041 return OS;
1042 }
1043 };
1044
1045 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1046 const Twine &PlaceHolder = Twine(),
1047 unsigned Indentation = 0) const {
1048 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1049 }
1050
1051 void dump(const char *s) const;
1052 void dump() const;
1053 void dump(llvm::raw_ostream &OS) const;
1054
1055 void Profile(llvm::FoldingSetNodeID &ID) const {
1056 ID.AddPointer(getAsOpaquePtr());
1057 }
1058
1059 /// Check if this type has any address space qualifier.
1060 inline bool hasAddressSpace() const;
1061
1062 /// Return the address space of this type.
1063 inline LangAS getAddressSpace() const;
1064
1065 /// Returns gc attribute of this type.
1066 inline Qualifiers::GC getObjCGCAttr() const;
1067
1068 /// true when Type is objc's weak.
1069 bool isObjCGCWeak() const {
1070 return getObjCGCAttr() == Qualifiers::Weak;
1071 }
1072
1073 /// true when Type is objc's strong.
1074 bool isObjCGCStrong() const {
1075 return getObjCGCAttr() == Qualifiers::Strong;
1076 }
1077
1078 /// Returns lifetime attribute of this type.
1079 Qualifiers::ObjCLifetime getObjCLifetime() const {
1080 return getQualifiers().getObjCLifetime();
1081 }
1082
1083 bool hasNonTrivialObjCLifetime() const {
1084 return getQualifiers().hasNonTrivialObjCLifetime();
1085 }
1086
1087 bool hasStrongOrWeakObjCLifetime() const {
1088 return getQualifiers().hasStrongOrWeakObjCLifetime();
1089 }
1090
1091 // true when Type is objc's weak and weak is enabled but ARC isn't.
1092 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1093
1094 enum PrimitiveDefaultInitializeKind {
1095 /// The type does not fall into any of the following categories. Note that
1096 /// this case is zero-valued so that values of this enum can be used as a
1097 /// boolean condition for non-triviality.
1098 PDIK_Trivial,
1099
1100 /// The type is an Objective-C retainable pointer type that is qualified
1101 /// with the ARC __strong qualifier.
1102 PDIK_ARCStrong,
1103
1104 /// The type is an Objective-C retainable pointer type that is qualified
1105 /// with the ARC __weak qualifier.
1106 PDIK_ARCWeak,
1107
1108 /// The type is a struct containing a field whose type is not PCK_Trivial.
1109 PDIK_Struct
1110 };
1111
1112 /// Functions to query basic properties of non-trivial C struct types.
1113
1114 /// Check if this is a non-trivial type that would cause a C struct
1115 /// transitively containing this type to be non-trivial to default initialize
1116 /// and return the kind.
1117 PrimitiveDefaultInitializeKind
1118 isNonTrivialToPrimitiveDefaultInitialize() const;
1119
1120 enum PrimitiveCopyKind {
1121 /// The type does not fall into any of the following categories. Note that
1122 /// this case is zero-valued so that values of this enum can be used as a
1123 /// boolean condition for non-triviality.
1124 PCK_Trivial,
1125
1126 /// The type would be trivial except that it is volatile-qualified. Types
1127 /// that fall into one of the other non-trivial cases may additionally be
1128 /// volatile-qualified.
1129 PCK_VolatileTrivial,
1130
1131 /// The type is an Objective-C retainable pointer type that is qualified
1132 /// with the ARC __strong qualifier.
1133 PCK_ARCStrong,
1134
1135 /// The type is an Objective-C retainable pointer type that is qualified
1136 /// with the ARC __weak qualifier.
1137 PCK_ARCWeak,
1138
1139 /// The type is a struct containing a field whose type is neither
1140 /// PCK_Trivial nor PCK_VolatileTrivial.
1141 /// Note that a C++ struct type does not necessarily match this; C++ copying
1142 /// semantics are too complex to express here, in part because they depend
1143 /// on the exact constructor or assignment operator that is chosen by
1144 /// overload resolution to do the copy.
1145 PCK_Struct
1146 };
1147
1148 /// Check if this is a non-trivial type that would cause a C struct
1149 /// transitively containing this type to be non-trivial to copy and return the
1150 /// kind.
1151 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1152
1153 /// Check if this is a non-trivial type that would cause a C struct
1154 /// transitively containing this type to be non-trivial to destructively
1155 /// move and return the kind. Destructive move in this context is a C++-style
1156 /// move in which the source object is placed in a valid but unspecified state
1157 /// after it is moved, as opposed to a truly destructive move in which the
1158 /// source object is placed in an uninitialized state.
1159 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1160
1161 enum DestructionKind {
1162 DK_none,
1163 DK_cxx_destructor,
1164 DK_objc_strong_lifetime,
1165 DK_objc_weak_lifetime,
1166 DK_nontrivial_c_struct
1167 };
1168
1169 /// Returns a nonzero value if objects of this type require
1170 /// non-trivial work to clean up after. Non-zero because it's
1171 /// conceivable that qualifiers (objc_gc(weak)?) could make
1172 /// something require destruction.
1173 DestructionKind isDestructedType() const {
1174 return isDestructedTypeImpl(*this);
1175 }
1176
1177 /// Check if this is or contains a C union that is non-trivial to
1178 /// default-initialize, which is a union that has a member that is non-trivial
1179 /// to default-initialize. If this returns true,
1180 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1181 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1182
1183 /// Check if this is or contains a C union that is non-trivial to destruct,
1184 /// which is a union that has a member that is non-trivial to destruct. If
1185 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1186 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1187
1188 /// Check if this is or contains a C union that is non-trivial to copy, which
1189 /// is a union that has a member that is non-trivial to copy. If this returns
1190 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1191 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1192
1193 /// Determine whether expressions of the given type are forbidden
1194 /// from being lvalues in C.
1195 ///
1196 /// The expression types that are forbidden to be lvalues are:
1197 /// - 'void', but not qualified void
1198 /// - function types
1199 ///
1200 /// The exact rule here is C99 6.3.2.1:
1201 /// An lvalue is an expression with an object type or an incomplete
1202 /// type other than void.
1203 bool isCForbiddenLValueType() const;
1204
1205 /// Substitute type arguments for the Objective-C type parameters used in the
1206 /// subject type.
1207 ///
1208 /// \param ctx ASTContext in which the type exists.
1209 ///
1210 /// \param typeArgs The type arguments that will be substituted for the
1211 /// Objective-C type parameters in the subject type, which are generally
1212 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1213 /// parameters will be replaced with their bounds or id/Class, as appropriate
1214 /// for the context.
1215 ///
1216 /// \param context The context in which the subject type was written.
1217 ///
1218 /// \returns the resulting type.
1219 QualType substObjCTypeArgs(ASTContext &ctx,
1220 ArrayRef<QualType> typeArgs,
1221 ObjCSubstitutionContext context) const;
1222
1223 /// Substitute type arguments from an object type for the Objective-C type
1224 /// parameters used in the subject type.
1225 ///
1226 /// This operation combines the computation of type arguments for
1227 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1228 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1229 /// callers that need to perform a single substitution in isolation.
1230 ///
1231 /// \param objectType The type of the object whose member type we're
1232 /// substituting into. For example, this might be the receiver of a message
1233 /// or the base of a property access.
1234 ///
1235 /// \param dc The declaration context from which the subject type was
1236 /// retrieved, which indicates (for example) which type parameters should
1237 /// be substituted.
1238 ///
1239 /// \param context The context in which the subject type was written.
1240 ///
1241 /// \returns the subject type after replacing all of the Objective-C type
1242 /// parameters with their corresponding arguments.
1243 QualType substObjCMemberType(QualType objectType,
1244 const DeclContext *dc,
1245 ObjCSubstitutionContext context) const;
1246
1247 /// Strip Objective-C "__kindof" types from the given type.
1248 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1249
1250 /// Remove all qualifiers including _Atomic.
1251 QualType getAtomicUnqualifiedType() const;
1252
1253private:
1254 // These methods are implemented in a separate translation unit;
1255 // "static"-ize them to avoid creating temporary QualTypes in the
1256 // caller.
1257 static bool isConstant(QualType T, const ASTContext& Ctx);
1258 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1259 static SplitQualType getSplitDesugaredType(QualType T);
1260 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1261 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1262 const ASTContext &C);
1263 static QualType IgnoreParens(QualType T);
1264 static DestructionKind isDestructedTypeImpl(QualType type);
1265
1266 /// Check if \param RD is or contains a non-trivial C union.
1267 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1268 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1269 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1270};
1271
1272} // namespace clang
1273
1274namespace llvm {
1275
1276/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1277/// to a specific Type class.
1278template<> struct simplify_type< ::clang::QualType> {
1279 using SimpleType = const ::clang::Type *;
1280
1281 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1282 return Val.getTypePtr();
1283 }
1284};
1285
1286// Teach SmallPtrSet that QualType is "basically a pointer".
1287template<>
1288struct PointerLikeTypeTraits<clang::QualType> {
1289 static inline void *getAsVoidPointer(clang::QualType P) {
1290 return P.getAsOpaquePtr();
1291 }
1292
1293 static inline clang::QualType getFromVoidPointer(void *P) {
1294 return clang::QualType::getFromOpaquePtr(P);
1295 }
1296
1297 // Various qualifiers go in low bits.
1298 enum { NumLowBitsAvailable = 0 };
1299};
1300
1301} // namespace llvm
1302
1303namespace clang {
1304
1305/// Base class that is common to both the \c ExtQuals and \c Type
1306/// classes, which allows \c QualType to access the common fields between the
1307/// two.
1308class ExtQualsTypeCommonBase {
1309 friend class ExtQuals;
1310 friend class QualType;
1311 friend class Type;
1312
1313 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1314 /// a self-referential pointer (for \c Type).
1315 ///
1316 /// This pointer allows an efficient mapping from a QualType to its
1317 /// underlying type pointer.
1318 const Type *const BaseType;
1319
1320 /// The canonical type of this type. A QualType.
1321 QualType CanonicalType;
1322
1323 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1324 : BaseType(baseType), CanonicalType(canon) {}
1325};
1326
1327/// We can encode up to four bits in the low bits of a
1328/// type pointer, but there are many more type qualifiers that we want
1329/// to be able to apply to an arbitrary type. Therefore we have this
1330/// struct, intended to be heap-allocated and used by QualType to
1331/// store qualifiers.
1332///
1333/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1334/// in three low bits on the QualType pointer; a fourth bit records whether
1335/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1336/// Objective-C GC attributes) are much more rare.
1337class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1338 // NOTE: changing the fast qualifiers should be straightforward as
1339 // long as you don't make 'const' non-fast.
1340 // 1. Qualifiers:
1341 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1342 // Fast qualifiers must occupy the low-order bits.
1343 // b) Update Qualifiers::FastWidth and FastMask.
1344 // 2. QualType:
1345 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1346 // b) Update remove{Volatile,Restrict}, defined near the end of
1347 // this header.
1348 // 3. ASTContext:
1349 // a) Update get{Volatile,Restrict}Type.
1350
1351 /// The immutable set of qualifiers applied by this node. Always contains
1352 /// extended qualifiers.
1353 Qualifiers Quals;
1354
1355 ExtQuals *this_() { return this; }
1356
1357public:
1358 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1359 : ExtQualsTypeCommonBase(baseType,
1360 canon.isNull() ? QualType(this_(), 0) : canon),
1361 Quals(quals) {
1362 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
1363 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
;
1364 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
1365 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
;
1366 }
1367
1368 Qualifiers getQualifiers() const { return Quals; }
1369
1370 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1371 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1372
1373 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1374 Qualifiers::ObjCLifetime getObjCLifetime() const {
1375 return Quals.getObjCLifetime();
1376 }
1377
1378 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1379 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1380
1381 const Type *getBaseType() const { return BaseType; }
1382
1383public:
1384 void Profile(llvm::FoldingSetNodeID &ID) const {
1385 Profile(ID, getBaseType(), Quals);
1386 }
1387
1388 static void Profile(llvm::FoldingSetNodeID &ID,
1389 const Type *BaseType,
1390 Qualifiers Quals) {
1391 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1391, __PRETTY_FUNCTION__))
;
1392 ID.AddPointer(BaseType);
1393 Quals.Profile(ID);
1394 }
1395};
1396
1397/// The kind of C++11 ref-qualifier associated with a function type.
1398/// This determines whether a member function's "this" object can be an
1399/// lvalue, rvalue, or neither.
1400enum RefQualifierKind {
1401 /// No ref-qualifier was provided.
1402 RQ_None = 0,
1403
1404 /// An lvalue ref-qualifier was provided (\c &).
1405 RQ_LValue,
1406
1407 /// An rvalue ref-qualifier was provided (\c &&).
1408 RQ_RValue
1409};
1410
1411/// Which keyword(s) were used to create an AutoType.
1412enum class AutoTypeKeyword {
1413 /// auto
1414 Auto,
1415
1416 /// decltype(auto)
1417 DecltypeAuto,
1418
1419 /// __auto_type (GNU extension)
1420 GNUAutoType
1421};
1422
1423/// The base class of the type hierarchy.
1424///
1425/// A central concept with types is that each type always has a canonical
1426/// type. A canonical type is the type with any typedef names stripped out
1427/// of it or the types it references. For example, consider:
1428///
1429/// typedef int foo;
1430/// typedef foo* bar;
1431/// 'int *' 'foo *' 'bar'
1432///
1433/// There will be a Type object created for 'int'. Since int is canonical, its
1434/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1435/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1436/// there is a PointerType that represents 'int*', which, like 'int', is
1437/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1438/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1439/// is also 'int*'.
1440///
1441/// Non-canonical types are useful for emitting diagnostics, without losing
1442/// information about typedefs being used. Canonical types are useful for type
1443/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1444/// about whether something has a particular form (e.g. is a function type),
1445/// because they implicitly, recursively, strip all typedefs out of a type.
1446///
1447/// Types, once created, are immutable.
1448///
1449class alignas(8) Type : public ExtQualsTypeCommonBase {
1450public:
1451 enum TypeClass {
1452#define TYPE(Class, Base) Class,
1453#define LAST_TYPE(Class) TypeLast = Class
1454#define ABSTRACT_TYPE(Class, Base)
1455#include "clang/AST/TypeNodes.inc"
1456 };
1457
1458private:
1459 /// Bitfields required by the Type class.
1460 class TypeBitfields {
1461 friend class Type;
1462 template <class T> friend class TypePropertyCache;
1463
1464 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1465 unsigned TC : 8;
1466
1467 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1468 unsigned Dependent : 1;
1469
1470 /// Whether this type somehow involves a template parameter, even
1471 /// if the resolution of the type does not depend on a template parameter.
1472 unsigned InstantiationDependent : 1;
1473
1474 /// Whether this type is a variably-modified type (C99 6.7.5).
1475 unsigned VariablyModified : 1;
1476
1477 /// Whether this type contains an unexpanded parameter pack
1478 /// (for C++11 variadic templates).
1479 unsigned ContainsUnexpandedParameterPack : 1;
1480
1481 /// True if the cache (i.e. the bitfields here starting with
1482 /// 'Cache') is valid.
1483 mutable unsigned CacheValid : 1;
1484
1485 /// Linkage of this type.
1486 mutable unsigned CachedLinkage : 3;
1487
1488 /// Whether this type involves and local or unnamed types.
1489 mutable unsigned CachedLocalOrUnnamed : 1;
1490
1491 /// Whether this type comes from an AST file.
1492 mutable unsigned FromAST : 1;
1493
1494 bool isCacheValid() const {
1495 return CacheValid;
1496 }
1497
1498 Linkage getLinkage() const {
1499 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1499, __PRETTY_FUNCTION__))
;
1500 return static_cast<Linkage>(CachedLinkage);
1501 }
1502
1503 bool hasLocalOrUnnamedType() const {
1504 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1504, __PRETTY_FUNCTION__))
;
1505 return CachedLocalOrUnnamed;
1506 }
1507 };
1508 enum { NumTypeBits = 18 };
1509
1510protected:
1511 // These classes allow subclasses to somewhat cleanly pack bitfields
1512 // into Type.
1513
1514 class ArrayTypeBitfields {
1515 friend class ArrayType;
1516
1517 unsigned : NumTypeBits;
1518
1519 /// CVR qualifiers from declarations like
1520 /// 'int X[static restrict 4]'. For function parameters only.
1521 unsigned IndexTypeQuals : 3;
1522
1523 /// Storage class qualifiers from declarations like
1524 /// 'int X[static restrict 4]'. For function parameters only.
1525 /// Actually an ArrayType::ArraySizeModifier.
1526 unsigned SizeModifier : 3;
1527 };
1528
1529 class ConstantArrayTypeBitfields {
1530 friend class ConstantArrayType;
1531
1532 unsigned : NumTypeBits + 3 + 3;
1533
1534 /// Whether we have a stored size expression.
1535 unsigned HasStoredSizeExpr : 1;
1536 };
1537
1538 class BuiltinTypeBitfields {
1539 friend class BuiltinType;
1540
1541 unsigned : NumTypeBits;
1542
1543 /// The kind (BuiltinType::Kind) of builtin type this is.
1544 unsigned Kind : 8;
1545 };
1546
1547 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1548 /// Only common bits are stored here. Additional uncommon bits are stored
1549 /// in a trailing object after FunctionProtoType.
1550 class FunctionTypeBitfields {
1551 friend class FunctionProtoType;
1552 friend class FunctionType;
1553
1554 unsigned : NumTypeBits;
1555
1556 /// Extra information which affects how the function is called, like
1557 /// regparm and the calling convention.
1558 unsigned ExtInfo : 12;
1559
1560 /// The ref-qualifier associated with a \c FunctionProtoType.
1561 ///
1562 /// This is a value of type \c RefQualifierKind.
1563 unsigned RefQualifier : 2;
1564
1565 /// Used only by FunctionProtoType, put here to pack with the
1566 /// other bitfields.
1567 /// The qualifiers are part of FunctionProtoType because...
1568 ///
1569 /// C++ 8.3.5p4: The return type, the parameter type list and the
1570 /// cv-qualifier-seq, [...], are part of the function type.
1571 unsigned FastTypeQuals : Qualifiers::FastWidth;
1572 /// Whether this function has extended Qualifiers.
1573 unsigned HasExtQuals : 1;
1574
1575 /// The number of parameters this function has, not counting '...'.
1576 /// According to [implimits] 8 bits should be enough here but this is
1577 /// somewhat easy to exceed with metaprogramming and so we would like to
1578 /// keep NumParams as wide as reasonably possible.
1579 unsigned NumParams : 16;
1580
1581 /// The type of exception specification this function has.
1582 unsigned ExceptionSpecType : 4;
1583
1584 /// Whether this function has extended parameter information.
1585 unsigned HasExtParameterInfos : 1;
1586
1587 /// Whether the function is variadic.
1588 unsigned Variadic : 1;
1589
1590 /// Whether this function has a trailing return type.
1591 unsigned HasTrailingReturn : 1;
1592 };
1593
1594 class ObjCObjectTypeBitfields {
1595 friend class ObjCObjectType;
1596
1597 unsigned : NumTypeBits;
1598
1599 /// The number of type arguments stored directly on this object type.
1600 unsigned NumTypeArgs : 7;
1601
1602 /// The number of protocols stored directly on this object type.
1603 unsigned NumProtocols : 6;
1604
1605 /// Whether this is a "kindof" type.
1606 unsigned IsKindOf : 1;
1607 };
1608
1609 class ReferenceTypeBitfields {
1610 friend class ReferenceType;
1611
1612 unsigned : NumTypeBits;
1613
1614 /// True if the type was originally spelled with an lvalue sigil.
1615 /// This is never true of rvalue references but can also be false
1616 /// on lvalue references because of C++0x [dcl.typedef]p9,
1617 /// as follows:
1618 ///
1619 /// typedef int &ref; // lvalue, spelled lvalue
1620 /// typedef int &&rvref; // rvalue
1621 /// ref &a; // lvalue, inner ref, spelled lvalue
1622 /// ref &&a; // lvalue, inner ref
1623 /// rvref &a; // lvalue, inner ref, spelled lvalue
1624 /// rvref &&a; // rvalue, inner ref
1625 unsigned SpelledAsLValue : 1;
1626
1627 /// True if the inner type is a reference type. This only happens
1628 /// in non-canonical forms.
1629 unsigned InnerRef : 1;
1630 };
1631
1632 class TypeWithKeywordBitfields {
1633 friend class TypeWithKeyword;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1638 unsigned Keyword : 8;
1639 };
1640
1641 enum { NumTypeWithKeywordBits = 8 };
1642
1643 class ElaboratedTypeBitfields {
1644 friend class ElaboratedType;
1645
1646 unsigned : NumTypeBits;
1647 unsigned : NumTypeWithKeywordBits;
1648
1649 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1650 unsigned HasOwnedTagDecl : 1;
1651 };
1652
1653 class VectorTypeBitfields {
1654 friend class VectorType;
1655 friend class DependentVectorType;
1656
1657 unsigned : NumTypeBits;
1658
1659 /// The kind of vector, either a generic vector type or some
1660 /// target-specific vector type such as for AltiVec or Neon.
1661 unsigned VecKind : 3;
1662
1663 /// The number of elements in the vector.
1664 unsigned NumElements : 29 - NumTypeBits;
1665
1666 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1667 };
1668
1669 class AttributedTypeBitfields {
1670 friend class AttributedType;
1671
1672 unsigned : NumTypeBits;
1673
1674 /// An AttributedType::Kind
1675 unsigned AttrKind : 32 - NumTypeBits;
1676 };
1677
1678 class AutoTypeBitfields {
1679 friend class AutoType;
1680
1681 unsigned : NumTypeBits;
1682
1683 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1684 /// or '__auto_type'? AutoTypeKeyword value.
1685 unsigned Keyword : 2;
1686 };
1687
1688 class SubstTemplateTypeParmPackTypeBitfields {
1689 friend class SubstTemplateTypeParmPackType;
1690
1691 unsigned : NumTypeBits;
1692
1693 /// The number of template arguments in \c Arguments, which is
1694 /// expected to be able to hold at least 1024 according to [implimits].
1695 /// However as this limit is somewhat easy to hit with template
1696 /// metaprogramming we'd prefer to keep it as large as possible.
1697 /// At the moment it has been left as a non-bitfield since this type
1698 /// safely fits in 64 bits as an unsigned, so there is no reason to
1699 /// introduce the performance impact of a bitfield.
1700 unsigned NumArgs;
1701 };
1702
1703 class TemplateSpecializationTypeBitfields {
1704 friend class TemplateSpecializationType;
1705
1706 unsigned : NumTypeBits;
1707
1708 /// Whether this template specialization type is a substituted type alias.
1709 unsigned TypeAlias : 1;
1710
1711 /// The number of template arguments named in this class template
1712 /// specialization, which is expected to be able to hold at least 1024
1713 /// according to [implimits]. However, as this limit is somewhat easy to
1714 /// hit with template metaprogramming we'd prefer to keep it as large
1715 /// as possible. At the moment it has been left as a non-bitfield since
1716 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1717 /// to introduce the performance impact of a bitfield.
1718 unsigned NumArgs;
1719 };
1720
1721 class DependentTemplateSpecializationTypeBitfields {
1722 friend class DependentTemplateSpecializationType;
1723
1724 unsigned : NumTypeBits;
1725 unsigned : NumTypeWithKeywordBits;
1726
1727 /// The number of template arguments named in this class template
1728 /// specialization, which is expected to be able to hold at least 1024
1729 /// according to [implimits]. However, as this limit is somewhat easy to
1730 /// hit with template metaprogramming we'd prefer to keep it as large
1731 /// as possible. At the moment it has been left as a non-bitfield since
1732 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1733 /// to introduce the performance impact of a bitfield.
1734 unsigned NumArgs;
1735 };
1736
1737 class PackExpansionTypeBitfields {
1738 friend class PackExpansionType;
1739
1740 unsigned : NumTypeBits;
1741
1742 /// The number of expansions that this pack expansion will
1743 /// generate when substituted (+1), which is expected to be able to
1744 /// hold at least 1024 according to [implimits]. However, as this limit
1745 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1746 /// keep it as large as possible. At the moment it has been left as a
1747 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1748 /// there is no reason to introduce the performance impact of a bitfield.
1749 ///
1750 /// This field will only have a non-zero value when some of the parameter
1751 /// packs that occur within the pattern have been substituted but others
1752 /// have not.
1753 unsigned NumExpansions;
1754 };
1755
1756 union {
1757 TypeBitfields TypeBits;
1758 ArrayTypeBitfields ArrayTypeBits;
1759 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1760 AttributedTypeBitfields AttributedTypeBits;
1761 AutoTypeBitfields AutoTypeBits;
1762 BuiltinTypeBitfields BuiltinTypeBits;
1763 FunctionTypeBitfields FunctionTypeBits;
1764 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1765 ReferenceTypeBitfields ReferenceTypeBits;
1766 TypeWithKeywordBitfields TypeWithKeywordBits;
1767 ElaboratedTypeBitfields ElaboratedTypeBits;
1768 VectorTypeBitfields VectorTypeBits;
1769 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1770 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1771 DependentTemplateSpecializationTypeBitfields
1772 DependentTemplateSpecializationTypeBits;
1773 PackExpansionTypeBitfields PackExpansionTypeBits;
1774
1775 static_assert(sizeof(TypeBitfields) <= 8,
1776 "TypeBitfields is larger than 8 bytes!");
1777 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1778 "ArrayTypeBitfields is larger than 8 bytes!");
1779 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1780 "AttributedTypeBitfields is larger than 8 bytes!");
1781 static_assert(sizeof(AutoTypeBitfields) <= 8,
1782 "AutoTypeBitfields is larger than 8 bytes!");
1783 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1784 "BuiltinTypeBitfields is larger than 8 bytes!");
1785 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1786 "FunctionTypeBitfields is larger than 8 bytes!");
1787 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1788 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1789 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1790 "ReferenceTypeBitfields is larger than 8 bytes!");
1791 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1792 "TypeWithKeywordBitfields is larger than 8 bytes!");
1793 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1794 "ElaboratedTypeBitfields is larger than 8 bytes!");
1795 static_assert(sizeof(VectorTypeBitfields) <= 8,
1796 "VectorTypeBitfields is larger than 8 bytes!");
1797 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1798 "SubstTemplateTypeParmPackTypeBitfields is larger"
1799 " than 8 bytes!");
1800 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1801 "TemplateSpecializationTypeBitfields is larger"
1802 " than 8 bytes!");
1803 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1804 "DependentTemplateSpecializationTypeBitfields is larger"
1805 " than 8 bytes!");
1806 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1807 "PackExpansionTypeBitfields is larger than 8 bytes");
1808 };
1809
1810private:
1811 template <class T> friend class TypePropertyCache;
1812
1813 /// Set whether this type comes from an AST file.
1814 void setFromAST(bool V = true) const {
1815 TypeBits.FromAST = V;
1816 }
1817
1818protected:
1819 friend class ASTContext;
1820
1821 Type(TypeClass tc, QualType canon, bool Dependent,
1822 bool InstantiationDependent, bool VariablyModified,
1823 bool ContainsUnexpandedParameterPack)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 TypeBits.TC = tc;
1827 TypeBits.Dependent = Dependent;
1828 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1829 TypeBits.VariablyModified = VariablyModified;
1830 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1831 TypeBits.CacheValid = false;
1832 TypeBits.CachedLocalOrUnnamed = false;
1833 TypeBits.CachedLinkage = NoLinkage;
1834 TypeBits.FromAST = false;
1835 }
1836
1837 // silence VC++ warning C4355: 'this' : used in base member initializer list
1838 Type *this_() { return this; }
1839
1840 void setDependent(bool D = true) {
1841 TypeBits.Dependent = D;
1842 if (D)
1843 TypeBits.InstantiationDependent = true;
1844 }
1845
1846 void setInstantiationDependent(bool D = true) {
1847 TypeBits.InstantiationDependent = D; }
1848
1849 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1850
1851 void setContainsUnexpandedParameterPack(bool PP = true) {
1852 TypeBits.ContainsUnexpandedParameterPack = PP;
1853 }
1854
1855public:
1856 friend class ASTReader;
1857 friend class ASTWriter;
1858 template <class T> friend class serialization::AbstractTypeReader;
1859 template <class T> friend class serialization::AbstractTypeWriter;
1860
1861 Type(const Type &) = delete;
1862 Type(Type &&) = delete;
1863 Type &operator=(const Type &) = delete;
1864 Type &operator=(Type &&) = delete;
1865
1866 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1867
1868 /// Whether this type comes from an AST file.
1869 bool isFromAST() const { return TypeBits.FromAST; }
1870
1871 /// Whether this type is or contains an unexpanded parameter
1872 /// pack, used to support C++0x variadic templates.
1873 ///
1874 /// A type that contains a parameter pack shall be expanded by the
1875 /// ellipsis operator at some point. For example, the typedef in the
1876 /// following example contains an unexpanded parameter pack 'T':
1877 ///
1878 /// \code
1879 /// template<typename ...T>
1880 /// struct X {
1881 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1882 /// };
1883 /// \endcode
1884 ///
1885 /// Note that this routine does not specify which
1886 bool containsUnexpandedParameterPack() const {
1887 return TypeBits.ContainsUnexpandedParameterPack;
1888 }
1889
1890 /// Determines if this type would be canonical if it had no further
1891 /// qualification.
1892 bool isCanonicalUnqualified() const {
1893 return CanonicalType == QualType(this, 0);
1894 }
1895
1896 /// Pull a single level of sugar off of this locally-unqualified type.
1897 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1898 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1899 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1900
1901 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1902 /// object types, function types, and incomplete types.
1903
1904 /// Return true if this is an incomplete type.
1905 /// A type that can describe objects, but which lacks information needed to
1906 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1907 /// routine will need to determine if the size is actually required.
1908 ///
1909 /// Def If non-null, and the type refers to some kind of declaration
1910 /// that can be completed (such as a C struct, C++ class, or Objective-C
1911 /// class), will be set to the declaration.
1912 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1913
1914 /// Return true if this is an incomplete or object
1915 /// type, in other words, not a function type.
1916 bool isIncompleteOrObjectType() const {
1917 return !isFunctionType();
1918 }
1919
1920 /// Determine whether this type is an object type.
1921 bool isObjectType() const {
1922 // C++ [basic.types]p8:
1923 // An object type is a (possibly cv-qualified) type that is not a
1924 // function type, not a reference type, and not a void type.
1925 return !isReferenceType() && !isFunctionType() && !isVoidType();
1926 }
1927
1928 /// Return true if this is a literal type
1929 /// (C++11 [basic.types]p10)
1930 bool isLiteralType(const ASTContext &Ctx) const;
1931
1932 /// Test if this type is a standard-layout type.
1933 /// (C++0x [basic.type]p9)
1934 bool isStandardLayoutType() const;
1935
1936 /// Helper methods to distinguish type categories. All type predicates
1937 /// operate on the canonical type, ignoring typedefs and qualifiers.
1938
1939 /// Returns true if the type is a builtin type.
1940 bool isBuiltinType() const;
1941
1942 /// Test for a particular builtin type.
1943 bool isSpecificBuiltinType(unsigned K) const;
1944
1945 /// Test for a type which does not represent an actual type-system type but
1946 /// is instead used as a placeholder for various convenient purposes within
1947 /// Clang. All such types are BuiltinTypes.
1948 bool isPlaceholderType() const;
1949 const BuiltinType *getAsPlaceholderType() const;
1950
1951 /// Test for a specific placeholder type.
1952 bool isSpecificPlaceholderType(unsigned K) const;
1953
1954 /// Test for a placeholder type other than Overload; see
1955 /// BuiltinType::isNonOverloadPlaceholderType.
1956 bool isNonOverloadPlaceholderType() const;
1957
1958 /// isIntegerType() does *not* include complex integers (a GCC extension).
1959 /// isComplexIntegerType() can be used to test for complex integers.
1960 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1961 bool isEnumeralType() const;
1962
1963 /// Determine whether this type is a scoped enumeration type.
1964 bool isScopedEnumeralType() const;
1965 bool isBooleanType() const;
1966 bool isCharType() const;
1967 bool isWideCharType() const;
1968 bool isChar8Type() const;
1969 bool isChar16Type() const;
1970 bool isChar32Type() const;
1971 bool isAnyCharacterType() const;
1972 bool isIntegralType(const ASTContext &Ctx) const;
1973
1974 /// Determine whether this type is an integral or enumeration type.
1975 bool isIntegralOrEnumerationType() const;
1976
1977 /// Determine whether this type is an integral or unscoped enumeration type.
1978 bool isIntegralOrUnscopedEnumerationType() const;
1979 bool isUnscopedEnumerationType() const;
1980
1981 /// Floating point categories.
1982 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1983 /// isComplexType() does *not* include complex integers (a GCC extension).
1984 /// isComplexIntegerType() can be used to test for complex integers.
1985 bool isComplexType() const; // C99 6.2.5p11 (complex)
1986 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1987 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1988 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1989 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1990 bool isFloat128Type() const;
1991 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1992 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1993 bool isVoidType() const; // C99 6.2.5p19
1994 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1995 bool isAggregateType() const;
1996 bool isFundamentalType() const;
1997 bool isCompoundType() const;
1998
1999 // Type Predicates: Check to see if this type is structurally the specified
2000 // type, ignoring typedefs and qualifiers.
2001 bool isFunctionType() const;
2002 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2003 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2004 bool isPointerType() const;
2005 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2006 bool isBlockPointerType() const;
2007 bool isVoidPointerType() const;
2008 bool isReferenceType() const;
2009 bool isLValueReferenceType() const;
2010 bool isRValueReferenceType() const;
2011 bool isObjectPointerType() const;
2012 bool isFunctionPointerType() const;
2013 bool isFunctionReferenceType() const;
2014 bool isMemberPointerType() const;
2015 bool isMemberFunctionPointerType() const;
2016 bool isMemberDataPointerType() const;
2017 bool isArrayType() const;
2018 bool isConstantArrayType() const;
2019 bool isIncompleteArrayType() const;
2020 bool isVariableArrayType() const;
2021 bool isDependentSizedArrayType() const;
2022 bool isRecordType() const;
2023 bool isClassType() const;
2024 bool isStructureType() const;
2025 bool isObjCBoxableRecordType() const;
2026 bool isInterfaceType() const;
2027 bool isStructureOrClassType() const;
2028 bool isUnionType() const;
2029 bool isComplexIntegerType() const; // GCC _Complex integer type.
2030 bool isVectorType() const; // GCC vector type.
2031 bool isExtVectorType() const; // Extended vector type.
2032 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2033 bool isObjCObjectPointerType() const; // pointer to ObjC object
2034 bool isObjCRetainableType() const; // ObjC object or block pointer
2035 bool isObjCLifetimeType() const; // (array of)* retainable type
2036 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2037 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2038 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2039 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2040 // for the common case.
2041 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2042 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2043 bool isObjCQualifiedIdType() const; // id<foo>
2044 bool isObjCQualifiedClassType() const; // Class<foo>
2045 bool isObjCObjectOrInterfaceType() const;
2046 bool isObjCIdType() const; // id
2047 bool isDecltypeType() const;
2048 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2049 /// qualifier?
2050 ///
2051 /// This approximates the answer to the following question: if this
2052 /// translation unit were compiled in ARC, would this type be qualified
2053 /// with __unsafe_unretained?
2054 bool isObjCInertUnsafeUnretainedType() const {
2055 return hasAttr(attr::ObjCInertUnsafeUnretained);
2056 }
2057
2058 /// Whether the type is Objective-C 'id' or a __kindof type of an
2059 /// object type, e.g., __kindof NSView * or __kindof id
2060 /// <NSCopying>.
2061 ///
2062 /// \param bound Will be set to the bound on non-id subtype types,
2063 /// which will be (possibly specialized) Objective-C class type, or
2064 /// null for 'id.
2065 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2066 const ObjCObjectType *&bound) const;
2067
2068 bool isObjCClassType() const; // Class
2069
2070 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2071 /// Class type, e.g., __kindof Class <NSCopying>.
2072 ///
2073 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2074 /// here because Objective-C's type system cannot express "a class
2075 /// object for a subclass of NSFoo".
2076 bool isObjCClassOrClassKindOfType() const;
2077
2078 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2079 bool isObjCSelType() const; // Class
2080 bool isObjCBuiltinType() const; // 'id' or 'Class'
2081 bool isObjCARCBridgableType() const;
2082 bool isCARCBridgableType() const;
2083 bool isTemplateTypeParmType() const; // C++ template type parameter
2084 bool isNullPtrType() const; // C++11 std::nullptr_t
2085 bool isNothrowT() const; // C++ std::nothrow_t
2086 bool isAlignValT() const; // C++17 std::align_val_t
2087 bool isStdByteType() const; // C++17 std::byte
2088 bool isAtomicType() const; // C11 _Atomic()
2089 bool isUndeducedAutoType() const; // C++11 auto or
2090 // C++14 decltype(auto)
2091
2092#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2093 bool is##Id##Type() const;
2094#include "clang/Basic/OpenCLImageTypes.def"
2095
2096 bool isImageType() const; // Any OpenCL image type
2097
2098 bool isSamplerT() const; // OpenCL sampler_t
2099 bool isEventT() const; // OpenCL event_t
2100 bool isClkEventT() const; // OpenCL clk_event_t
2101 bool isQueueT() const; // OpenCL queue_t
2102 bool isReserveIDT() const; // OpenCL reserve_id_t
2103
2104#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2105 bool is##Id##Type() const;
2106#include "clang/Basic/OpenCLExtensionTypes.def"
2107 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2108 bool isOCLIntelSubgroupAVCType() const;
2109 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2110
2111 bool isPipeType() const; // OpenCL pipe type
2112 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2113
2114 /// Determines if this type, which must satisfy
2115 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2116 /// than implicitly __strong.
2117 bool isObjCARCImplicitlyUnretainedType() const;
2118
2119 /// Return the implicit lifetime for this type, which must not be dependent.
2120 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2121
2122 enum ScalarTypeKind {
2123 STK_CPointer,
2124 STK_BlockPointer,
2125 STK_ObjCObjectPointer,
2126 STK_MemberPointer,
2127 STK_Bool,
2128 STK_Integral,
2129 STK_Floating,
2130 STK_IntegralComplex,
2131 STK_FloatingComplex,
2132 STK_FixedPoint
2133 };
2134
2135 /// Given that this is a scalar type, classify it.
2136 ScalarTypeKind getScalarTypeKind() const;
2137
2138 /// Whether this type is a dependent type, meaning that its definition
2139 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2140 bool isDependentType() const { return TypeBits.Dependent; }
2141
2142 /// Determine whether this type is an instantiation-dependent type,
2143 /// meaning that the type involves a template parameter (even if the
2144 /// definition does not actually depend on the type substituted for that
2145 /// template parameter).
2146 bool isInstantiationDependentType() const {
2147 return TypeBits.InstantiationDependent;
2148 }
2149
2150 /// Determine whether this type is an undeduced type, meaning that
2151 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2152 /// deduced.
2153 bool isUndeducedType() const;
2154
2155 /// Whether this type is a variably-modified type (C99 6.7.5).
2156 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2157
2158 /// Whether this type involves a variable-length array type
2159 /// with a definite size.
2160 bool hasSizedVLAType() const;
2161
2162 /// Whether this type is or contains a local or unnamed type.
2163 bool hasUnnamedOrLocalType() const;
2164
2165 bool isOverloadableType() const;
2166
2167 /// Determine wither this type is a C++ elaborated-type-specifier.
2168 bool isElaboratedTypeSpecifier() const;
2169
2170 bool canDecayToPointerType() const;
2171
2172 /// Whether this type is represented natively as a pointer. This includes
2173 /// pointers, references, block pointers, and Objective-C interface,
2174 /// qualified id, and qualified interface types, as well as nullptr_t.
2175 bool hasPointerRepresentation() const;
2176
2177 /// Whether this type can represent an objective pointer type for the
2178 /// purpose of GC'ability
2179 bool hasObjCPointerRepresentation() const;
2180
2181 /// Determine whether this type has an integer representation
2182 /// of some sort, e.g., it is an integer type or a vector.
2183 bool hasIntegerRepresentation() const;
2184
2185 /// Determine whether this type has an signed integer representation
2186 /// of some sort, e.g., it is an signed integer type or a vector.
2187 bool hasSignedIntegerRepresentation() const;
2188
2189 /// Determine whether this type has an unsigned integer representation
2190 /// of some sort, e.g., it is an unsigned integer type or a vector.
2191 bool hasUnsignedIntegerRepresentation() const;
2192
2193 /// Determine whether this type has a floating-point representation
2194 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2195 bool hasFloatingRepresentation() const;
2196
2197 // Type Checking Functions: Check to see if this type is structurally the
2198 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2199 // the best type we can.
2200 const RecordType *getAsStructureType() const;
2201 /// NOTE: getAs*ArrayType are methods on ASTContext.
2202 const RecordType *getAsUnionType() const;
2203 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2204 const ObjCObjectType *getAsObjCInterfaceType() const;
2205
2206 // The following is a convenience method that returns an ObjCObjectPointerType
2207 // for object declared using an interface.
2208 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2209 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2210 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2211 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2212
2213 /// Retrieves the CXXRecordDecl that this type refers to, either
2214 /// because the type is a RecordType or because it is the injected-class-name
2215 /// type of a class template or class template partial specialization.
2216 CXXRecordDecl *getAsCXXRecordDecl() const;
2217
2218 /// Retrieves the RecordDecl this type refers to.
2219 RecordDecl *getAsRecordDecl() const;
2220
2221 /// Retrieves the TagDecl that this type refers to, either
2222 /// because the type is a TagType or because it is the injected-class-name
2223 /// type of a class template or class template partial specialization.
2224 TagDecl *getAsTagDecl() const;
2225
2226 /// If this is a pointer or reference to a RecordType, return the
2227 /// CXXRecordDecl that the type refers to.
2228 ///
2229 /// If this is not a pointer or reference, or the type being pointed to does
2230 /// not refer to a CXXRecordDecl, returns NULL.
2231 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2232
2233 /// Get the DeducedType whose type will be deduced for a variable with
2234 /// an initializer of this type. This looks through declarators like pointer
2235 /// types, but not through decltype or typedefs.
2236 DeducedType *getContainedDeducedType() const;
2237
2238 /// Get the AutoType whose type will be deduced for a variable with
2239 /// an initializer of this type. This looks through declarators like pointer
2240 /// types, but not through decltype or typedefs.
2241 AutoType *getContainedAutoType() const {
2242 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2243 }
2244
2245 /// Determine whether this type was written with a leading 'auto'
2246 /// corresponding to a trailing return type (possibly for a nested
2247 /// function type within a pointer to function type or similar).
2248 bool hasAutoForTrailingReturnType() const;
2249
2250 /// Member-template getAs<specific type>'. Look through sugar for
2251 /// an instance of \<specific type>. This scheme will eventually
2252 /// replace the specific getAsXXXX methods above.
2253 ///
2254 /// There are some specializations of this member template listed
2255 /// immediately following this class.
2256 template <typename T> const T *getAs() const;
2257
2258 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2259 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2260 /// This is used when you need to walk over sugar nodes that represent some
2261 /// kind of type adjustment from a type that was written as a \<specific type>
2262 /// to another type that is still canonically a \<specific type>.
2263 template <typename T> const T *getAsAdjusted() const;
2264
2265 /// A variant of getAs<> for array types which silently discards
2266 /// qualifiers from the outermost type.
2267 const ArrayType *getAsArrayTypeUnsafe() const;
2268
2269 /// Member-template castAs<specific type>. Look through sugar for
2270 /// the underlying instance of \<specific type>.
2271 ///
2272 /// This method has the same relationship to getAs<T> as cast<T> has
2273 /// to dyn_cast<T>; which is to say, the underlying type *must*
2274 /// have the intended type, and this method will never return null.
2275 template <typename T> const T *castAs() const;
2276
2277 /// A variant of castAs<> for array type which silently discards
2278 /// qualifiers from the outermost type.
2279 const ArrayType *castAsArrayTypeUnsafe() const;
2280
2281 /// Determine whether this type had the specified attribute applied to it
2282 /// (looking through top-level type sugar).
2283 bool hasAttr(attr::Kind AK) const;
2284
2285 /// Get the base element type of this type, potentially discarding type
2286 /// qualifiers. This should never be used when type qualifiers
2287 /// are meaningful.
2288 const Type *getBaseElementTypeUnsafe() const;
2289
2290 /// If this is an array type, return the element type of the array,
2291 /// potentially with type qualifiers missing.
2292 /// This should never be used when type qualifiers are meaningful.
2293 const Type *getArrayElementTypeNoTypeQual() const;
2294
2295 /// If this is a pointer type, return the pointee type.
2296 /// If this is an array type, return the array element type.
2297 /// This should never be used when type qualifiers are meaningful.
2298 const Type *getPointeeOrArrayElementType() const;
2299
2300 /// If this is a pointer, ObjC object pointer, or block
2301 /// pointer, this returns the respective pointee.
2302 QualType getPointeeType() const;
2303
2304 /// Return the specified type with any "sugar" removed from the type,
2305 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2306 const Type *getUnqualifiedDesugaredType() const;
2307
2308 /// More type predicates useful for type checking/promotion
2309 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2310
2311 /// Return true if this is an integer type that is
2312 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2313 /// or an enum decl which has a signed representation.
2314 bool isSignedIntegerType() const;
2315
2316 /// Return true if this is an integer type that is
2317 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2318 /// or an enum decl which has an unsigned representation.
2319 bool isUnsignedIntegerType() const;
2320
2321 /// Determines whether this is an integer type that is signed or an
2322 /// enumeration types whose underlying type is a signed integer type.
2323 bool isSignedIntegerOrEnumerationType() const;
2324
2325 /// Determines whether this is an integer type that is unsigned or an
2326 /// enumeration types whose underlying type is a unsigned integer type.
2327 bool isUnsignedIntegerOrEnumerationType() const;
2328
2329 /// Return true if this is a fixed point type according to
2330 /// ISO/IEC JTC1 SC22 WG14 N1169.
2331 bool isFixedPointType() const;
2332
2333 /// Return true if this is a fixed point or integer type.
2334 bool isFixedPointOrIntegerType() const;
2335
2336 /// Return true if this is a saturated fixed point type according to
2337 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2338 bool isSaturatedFixedPointType() const;
2339
2340 /// Return true if this is a saturated fixed point type according to
2341 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2342 bool isUnsaturatedFixedPointType() const;
2343
2344 /// Return true if this is a fixed point type that is signed according
2345 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2346 bool isSignedFixedPointType() const;
2347
2348 /// Return true if this is a fixed point type that is unsigned according
2349 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2350 bool isUnsignedFixedPointType() const;
2351
2352 /// Return true if this is not a variable sized type,
2353 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2354 /// incomplete types.
2355 bool isConstantSizeType() const;
2356
2357 /// Returns true if this type can be represented by some
2358 /// set of type specifiers.
2359 bool isSpecifierType() const;
2360
2361 /// Determine the linkage of this type.
2362 Linkage getLinkage() const;
2363
2364 /// Determine the visibility of this type.
2365 Visibility getVisibility() const {
2366 return getLinkageAndVisibility().getVisibility();
2367 }
2368
2369 /// Return true if the visibility was explicitly set is the code.
2370 bool isVisibilityExplicit() const {
2371 return getLinkageAndVisibility().isVisibilityExplicit();
2372 }
2373
2374 /// Determine the linkage and visibility of this type.
2375 LinkageInfo getLinkageAndVisibility() const;
2376
2377 /// True if the computed linkage is valid. Used for consistency
2378 /// checking. Should always return true.
2379 bool isLinkageValid() const;
2380
2381 /// Determine the nullability of the given type.
2382 ///
2383 /// Note that nullability is only captured as sugar within the type
2384 /// system, not as part of the canonical type, so nullability will
2385 /// be lost by canonicalization and desugaring.
2386 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2387
2388 /// Determine whether the given type can have a nullability
2389 /// specifier applied to it, i.e., if it is any kind of pointer type.
2390 ///
2391 /// \param ResultIfUnknown The value to return if we don't yet know whether
2392 /// this type can have nullability because it is dependent.
2393 bool canHaveNullability(bool ResultIfUnknown = true) const;
2394
2395 /// Retrieve the set of substitutions required when accessing a member
2396 /// of the Objective-C receiver type that is declared in the given context.
2397 ///
2398 /// \c *this is the type of the object we're operating on, e.g., the
2399 /// receiver for a message send or the base of a property access, and is
2400 /// expected to be of some object or object pointer type.
2401 ///
2402 /// \param dc The declaration context for which we are building up a
2403 /// substitution mapping, which should be an Objective-C class, extension,
2404 /// category, or method within.
2405 ///
2406 /// \returns an array of type arguments that can be substituted for
2407 /// the type parameters of the given declaration context in any type described
2408 /// within that context, or an empty optional to indicate that no
2409 /// substitution is required.
2410 Optional<ArrayRef<QualType>>
2411 getObjCSubstitutions(const DeclContext *dc) const;
2412
2413 /// Determines if this is an ObjC interface type that may accept type
2414 /// parameters.
2415 bool acceptsObjCTypeParams() const;
2416
2417 const char *getTypeClassName() const;
2418
2419 QualType getCanonicalTypeInternal() const {
2420 return CanonicalType;
2421 }
2422
2423 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2424 void dump() const;
2425 void dump(llvm::raw_ostream &OS) const;
2426};
2427
2428/// This will check for a TypedefType by removing any existing sugar
2429/// until it reaches a TypedefType or a non-sugared type.
2430template <> const TypedefType *Type::getAs() const;
2431
2432/// This will check for a TemplateSpecializationType by removing any
2433/// existing sugar until it reaches a TemplateSpecializationType or a
2434/// non-sugared type.
2435template <> const TemplateSpecializationType *Type::getAs() const;
2436
2437/// This will check for an AttributedType by removing any existing sugar
2438/// until it reaches an AttributedType or a non-sugared type.
2439template <> const AttributedType *Type::getAs() const;
2440
2441// We can do canonical leaf types faster, because we don't have to
2442// worry about preserving child type decoration.
2443#define TYPE(Class, Base)
2444#define LEAF_TYPE(Class) \
2445template <> inline const Class##Type *Type::getAs() const { \
2446 return dyn_cast<Class##Type>(CanonicalType); \
2447} \
2448template <> inline const Class##Type *Type::castAs() const { \
2449 return cast<Class##Type>(CanonicalType); \
2450}
2451#include "clang/AST/TypeNodes.inc"
2452
2453/// This class is used for builtin types like 'int'. Builtin
2454/// types are always canonical and have a literal name field.
2455class BuiltinType : public Type {
2456public:
2457 enum Kind {
2458// OpenCL image types
2459#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2460#include "clang/Basic/OpenCLImageTypes.def"
2461// OpenCL extension types
2462#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2463#include "clang/Basic/OpenCLExtensionTypes.def"
2464// SVE Types
2465#define SVE_TYPE(Name, Id, SingletonId) Id,
2466#include "clang/Basic/AArch64SVEACLETypes.def"
2467// All other builtin types
2468#define BUILTIN_TYPE(Id, SingletonId) Id,
2469#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2470#include "clang/AST/BuiltinTypes.def"
2471 };
2472
2473private:
2474 friend class ASTContext; // ASTContext creates these.
2475
2476 BuiltinType(Kind K)
2477 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2478 /*InstantiationDependent=*/(K == Dependent),
2479 /*VariablyModified=*/false,
2480 /*Unexpanded parameter pack=*/false) {
2481 BuiltinTypeBits.Kind = K;
2482 }
2483
2484public:
2485 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2486 StringRef getName(const PrintingPolicy &Policy) const;
2487
2488 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2489 // The StringRef is null-terminated.
2490 StringRef str = getName(Policy);
2491 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 2491, __PRETTY_FUNCTION__))
;
2492 return str.data();
2493 }
2494
2495 bool isSugared() const { return false; }
2496 QualType desugar() const { return QualType(this, 0); }
2497
2498 bool isInteger() const {
2499 return getKind() >= Bool && getKind() <= Int128;
2500 }
2501
2502 bool isSignedInteger() const {
2503 return getKind() >= Char_S && getKind() <= Int128;
2504 }
2505
2506 bool isUnsignedInteger() const {
2507 return getKind() >= Bool && getKind() <= UInt128;
2508 }
2509
2510 bool isFloatingPoint() const {
2511 return getKind() >= Half && getKind() <= Float128;
2512 }
2513
2514 /// Determines whether the given kind corresponds to a placeholder type.
2515 static bool isPlaceholderTypeKind(Kind K) {
2516 return K >= Overload;
2517 }
2518
2519 /// Determines whether this type is a placeholder type, i.e. a type
2520 /// which cannot appear in arbitrary positions in a fully-formed
2521 /// expression.
2522 bool isPlaceholderType() const {
2523 return isPlaceholderTypeKind(getKind());
2524 }
2525
2526 /// Determines whether this type is a placeholder type other than
2527 /// Overload. Most placeholder types require only syntactic
2528 /// information about their context in order to be resolved (e.g.
2529 /// whether it is a call expression), which means they can (and
2530 /// should) be resolved in an earlier "phase" of analysis.
2531 /// Overload expressions sometimes pick up further information
2532 /// from their context, like whether the context expects a
2533 /// specific function-pointer type, and so frequently need
2534 /// special treatment.
2535 bool isNonOverloadPlaceholderType() const {
2536 return getKind() > Overload;
2537 }
2538
2539 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2540};
2541
2542/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2543/// types (_Complex float etc) as well as the GCC integer complex extensions.
2544class ComplexType : public Type, public llvm::FoldingSetNode {
2545 friend class ASTContext; // ASTContext creates these.
2546
2547 QualType ElementType;
2548
2549 ComplexType(QualType Element, QualType CanonicalPtr)
2550 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2551 Element->isInstantiationDependentType(),
2552 Element->isVariablyModifiedType(),
2553 Element->containsUnexpandedParameterPack()),
2554 ElementType(Element) {}
2555
2556public:
2557 QualType getElementType() const { return ElementType; }
2558
2559 bool isSugared() const { return false; }
2560 QualType desugar() const { return QualType(this, 0); }
2561
2562 void Profile(llvm::FoldingSetNodeID &ID) {
2563 Profile(ID, getElementType());
2564 }
2565
2566 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2567 ID.AddPointer(Element.getAsOpaquePtr());
2568 }
2569
2570 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2571};
2572
2573/// Sugar for parentheses used when specifying types.
2574class ParenType : public Type, public llvm::FoldingSetNode {
2575 friend class ASTContext; // ASTContext creates these.
2576
2577 QualType Inner;
2578
2579 ParenType(QualType InnerType, QualType CanonType)
2580 : Type(Paren, CanonType, InnerType->isDependentType(),
2581 InnerType->isInstantiationDependentType(),
2582 InnerType->isVariablyModifiedType(),
2583 InnerType->containsUnexpandedParameterPack()),
2584 Inner(InnerType) {}
2585
2586public:
2587 QualType getInnerType() const { return Inner; }
2588
2589 bool isSugared() const { return true; }
2590 QualType desugar() const { return getInnerType(); }
2591
2592 void Profile(llvm::FoldingSetNodeID &ID) {
2593 Profile(ID, getInnerType());
2594 }
2595
2596 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2597 Inner.Profile(ID);
2598 }
2599
2600 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2601};
2602
2603/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2604class PointerType : public Type, public llvm::FoldingSetNode {
2605 friend class ASTContext; // ASTContext creates these.
2606
2607 QualType PointeeType;
2608
2609 PointerType(QualType Pointee, QualType CanonicalPtr)
2610 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2611 Pointee->isInstantiationDependentType(),
2612 Pointee->isVariablyModifiedType(),
2613 Pointee->containsUnexpandedParameterPack()),
2614 PointeeType(Pointee) {}
2615
2616public:
2617 QualType getPointeeType() const { return PointeeType; }
2618
2619 /// Returns true if address spaces of pointers overlap.
2620 /// OpenCL v2.0 defines conversion rules for pointers to different
2621 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2622 /// address spaces.
2623 /// CL1.1 or CL1.2:
2624 /// address spaces overlap iff they are they same.
2625 /// CL2.0 adds:
2626 /// __generic overlaps with any address space except for __constant.
2627 bool isAddressSpaceOverlapping(const PointerType &other) const {
2628 Qualifiers thisQuals = PointeeType.getQualifiers();
2629 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2630 // Address spaces overlap if at least one of them is a superset of another
2631 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2632 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2633 }
2634
2635 bool isSugared() const { return false; }
2636 QualType desugar() const { return QualType(this, 0); }
2637
2638 void Profile(llvm::FoldingSetNodeID &ID) {
2639 Profile(ID, getPointeeType());
2640 }
2641
2642 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2643 ID.AddPointer(Pointee.getAsOpaquePtr());
2644 }
2645
2646 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2647};
2648
2649/// Represents a type which was implicitly adjusted by the semantic
2650/// engine for arbitrary reasons. For example, array and function types can
2651/// decay, and function types can have their calling conventions adjusted.
2652class AdjustedType : public Type, public llvm::FoldingSetNode {
2653 QualType OriginalTy;
2654 QualType AdjustedTy;
2655
2656protected:
2657 friend class ASTContext; // ASTContext creates these.
2658
2659 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2660 QualType CanonicalPtr)
2661 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2662 OriginalTy->isInstantiationDependentType(),
2663 OriginalTy->isVariablyModifiedType(),
2664 OriginalTy->containsUnexpandedParameterPack()),
2665 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2666
2667public:
2668 QualType getOriginalType() const { return OriginalTy; }
2669 QualType getAdjustedType() const { return AdjustedTy; }
2670
2671 bool isSugared() const { return true; }
2672 QualType desugar() const { return AdjustedTy; }
2673
2674 void Profile(llvm::FoldingSetNodeID &ID) {
2675 Profile(ID, OriginalTy, AdjustedTy);
2676 }
2677
2678 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2679 ID.AddPointer(Orig.getAsOpaquePtr());
2680 ID.AddPointer(New.getAsOpaquePtr());
2681 }
2682
2683 static bool classof(const Type *T) {
2684 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2685 }
2686};
2687
2688/// Represents a pointer type decayed from an array or function type.
2689class DecayedType : public AdjustedType {
2690 friend class ASTContext; // ASTContext creates these.
2691
2692 inline
2693 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2694
2695public:
2696 QualType getDecayedType() const { return getAdjustedType(); }
2697
2698 inline QualType getPointeeType() const;
2699
2700 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2701};
2702
2703/// Pointer to a block type.
2704/// This type is to represent types syntactically represented as
2705/// "void (^)(int)", etc. Pointee is required to always be a function type.
2706class BlockPointerType : public Type, public llvm::FoldingSetNode {
2707 friend class ASTContext; // ASTContext creates these.
2708
2709 // Block is some kind of pointer type
2710 QualType PointeeType;
2711
2712 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2713 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2714 Pointee->isInstantiationDependentType(),
2715 Pointee->isVariablyModifiedType(),
2716 Pointee->containsUnexpandedParameterPack()),
2717 PointeeType(Pointee) {}
2718
2719public:
2720 // Get the pointee type. Pointee is required to always be a function type.
2721 QualType getPointeeType() const { return PointeeType; }
2722
2723 bool isSugared() const { return false; }
2724 QualType desugar() const { return QualType(this, 0); }
2725
2726 void Profile(llvm::FoldingSetNodeID &ID) {
2727 Profile(ID, getPointeeType());
2728 }
2729
2730 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2731 ID.AddPointer(Pointee.getAsOpaquePtr());
2732 }
2733
2734 static bool classof(const Type *T) {
2735 return T->getTypeClass() == BlockPointer;
2736 }
2737};
2738
2739/// Base for LValueReferenceType and RValueReferenceType
2740class ReferenceType : public Type, public llvm::FoldingSetNode {
2741 QualType PointeeType;
2742
2743protected:
2744 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2745 bool SpelledAsLValue)
2746 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2747 Referencee->isInstantiationDependentType(),
2748 Referencee->isVariablyModifiedType(),
2749 Referencee->containsUnexpandedParameterPack()),
2750 PointeeType(Referencee) {
2751 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2752 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2753 }
2754
2755public:
2756 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2757 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2758
2759 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2760
2761 QualType getPointeeType() const {
2762 // FIXME: this might strip inner qualifiers; okay?
2763 const ReferenceType *T = this;
2764 while (T->isInnerRef())
2765 T = T->PointeeType->castAs<ReferenceType>();
2766 return T->PointeeType;
2767 }
2768
2769 void Profile(llvm::FoldingSetNodeID &ID) {
2770 Profile(ID, PointeeType, isSpelledAsLValue());
2771 }
2772
2773 static void Profile(llvm::FoldingSetNodeID &ID,
2774 QualType Referencee,
2775 bool SpelledAsLValue) {
2776 ID.AddPointer(Referencee.getAsOpaquePtr());
2777 ID.AddBoolean(SpelledAsLValue);
2778 }
2779
2780 static bool classof(const Type *T) {
2781 return T->getTypeClass() == LValueReference ||
2782 T->getTypeClass() == RValueReference;
2783 }
2784};
2785
2786/// An lvalue reference type, per C++11 [dcl.ref].
2787class LValueReferenceType : public ReferenceType {
2788 friend class ASTContext; // ASTContext creates these
2789
2790 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2791 bool SpelledAsLValue)
2792 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2793 SpelledAsLValue) {}
2794
2795public:
2796 bool isSugared() const { return false; }
2797 QualType desugar() const { return QualType(this, 0); }
2798
2799 static bool classof(const Type *T) {
2800 return T->getTypeClass() == LValueReference;
2801 }
2802};
2803
2804/// An rvalue reference type, per C++11 [dcl.ref].
2805class RValueReferenceType : public ReferenceType {
2806 friend class ASTContext; // ASTContext creates these
2807
2808 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2809 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2810
2811public:
2812 bool isSugared() const { return false; }
2813 QualType desugar() const { return QualType(this, 0); }
2814
2815 static bool classof(const Type *T) {
2816 return T->getTypeClass() == RValueReference;
2817 }
2818};
2819
2820/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2821///
2822/// This includes both pointers to data members and pointer to member functions.
2823class MemberPointerType : public Type, public llvm::FoldingSetNode {
2824 friend class ASTContext; // ASTContext creates these.
2825
2826 QualType PointeeType;
2827
2828 /// The class of which the pointee is a member. Must ultimately be a
2829 /// RecordType, but could be a typedef or a template parameter too.
2830 const Type *Class;
2831
2832 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2833 : Type(MemberPointer, CanonicalPtr,
2834 Cls->isDependentType() || Pointee->isDependentType(),
2835 (Cls->isInstantiationDependentType() ||
2836 Pointee->isInstantiationDependentType()),
2837 Pointee->isVariablyModifiedType(),
2838 (Cls->containsUnexpandedParameterPack() ||
2839 Pointee->containsUnexpandedParameterPack())),
2840 PointeeType(Pointee), Class(Cls) {}
2841
2842public:
2843 QualType getPointeeType() const { return PointeeType; }
2844
2845 /// Returns true if the member type (i.e. the pointee type) is a
2846 /// function type rather than a data-member type.
2847 bool isMemberFunctionPointer() const {
2848 return PointeeType->isFunctionProtoType();
2849 }
2850
2851 /// Returns true if the member type (i.e. the pointee type) is a
2852 /// data type rather than a function type.
2853 bool isMemberDataPointer() const {
2854 return !PointeeType->isFunctionProtoType();
2855 }
2856
2857 const Type *getClass() const { return Class; }
2858 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2859
2860 bool isSugared() const { return false; }
2861 QualType desugar() const { return QualType(this, 0); }
2862
2863 void Profile(llvm::FoldingSetNodeID &ID) {
2864 Profile(ID, getPointeeType(), getClass());
2865 }
2866
2867 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2868 const Type *Class) {
2869 ID.AddPointer(Pointee.getAsOpaquePtr());
2870 ID.AddPointer(Class);
2871 }
2872
2873 static bool classof(const Type *T) {
2874 return T->getTypeClass() == MemberPointer;
2875 }
2876};
2877
2878/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2879class ArrayType : public Type, public llvm::FoldingSetNode {
2880public:
2881 /// Capture whether this is a normal array (e.g. int X[4])
2882 /// an array with a static size (e.g. int X[static 4]), or an array
2883 /// with a star size (e.g. int X[*]).
2884 /// 'static' is only allowed on function parameters.
2885 enum ArraySizeModifier {
2886 Normal, Static, Star
2887 };
2888
2889private:
2890 /// The element type of the array.
2891 QualType ElementType;
2892
2893protected:
2894 friend class ASTContext; // ASTContext creates these.
2895
2896 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2897 unsigned tq, const Expr *sz = nullptr);
2898
2899public:
2900 QualType getElementType() const { return ElementType; }
2901
2902 ArraySizeModifier getSizeModifier() const {
2903 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2904 }
2905
2906 Qualifiers getIndexTypeQualifiers() const {
2907 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2908 }
2909
2910 unsigned getIndexTypeCVRQualifiers() const {
2911 return ArrayTypeBits.IndexTypeQuals;
2912 }
2913
2914 static bool classof(const Type *T) {
2915 return T->getTypeClass() == ConstantArray ||
2916 T->getTypeClass() == VariableArray ||
2917 T->getTypeClass() == IncompleteArray ||
2918 T->getTypeClass() == DependentSizedArray;
2919 }
2920};
2921
2922/// Represents the canonical version of C arrays with a specified constant size.
2923/// For example, the canonical type for 'int A[4 + 4*100]' is a
2924/// ConstantArrayType where the element type is 'int' and the size is 404.
2925class ConstantArrayType final
2926 : public ArrayType,
2927 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2928 friend class ASTContext; // ASTContext creates these.
2929 friend TrailingObjects;
2930
2931 llvm::APInt Size; // Allows us to unique the type.
2932
2933 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2934 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2935 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2936 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2937 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2938 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 2938, __PRETTY_FUNCTION__))
;
2939 *getTrailingObjects<const Expr*>() = sz;
2940 }
2941 }
2942
2943 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2944 return ConstantArrayTypeBits.HasStoredSizeExpr;
2945 }
2946
2947public:
2948 const llvm::APInt &getSize() const { return Size; }
2949 const Expr *getSizeExpr() const {
2950 return ConstantArrayTypeBits.HasStoredSizeExpr
2951 ? *getTrailingObjects<const Expr *>()
2952 : nullptr;
2953 }
2954 bool isSugared() const { return false; }
2955 QualType desugar() const { return QualType(this, 0); }
2956
2957 /// Determine the number of bits required to address a member of
2958 // an array with the given element type and number of elements.
2959 static unsigned getNumAddressingBits(const ASTContext &Context,
2960 QualType ElementType,
2961 const llvm::APInt &NumElements);
2962
2963 /// Determine the maximum number of active bits that an array's size
2964 /// can require, which limits the maximum size of the array.
2965 static unsigned getMaxSizeBits(const ASTContext &Context);
2966
2967 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2968 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2969 getSizeModifier(), getIndexTypeCVRQualifiers());
2970 }
2971
2972 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2973 QualType ET, const llvm::APInt &ArraySize,
2974 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2975 unsigned TypeQuals);
2976
2977 static bool classof(const Type *T) {
2978 return T->getTypeClass() == ConstantArray;
2979 }
2980};
2981
2982/// Represents a C array with an unspecified size. For example 'int A[]' has
2983/// an IncompleteArrayType where the element type is 'int' and the size is
2984/// unspecified.
2985class IncompleteArrayType : public ArrayType {
2986 friend class ASTContext; // ASTContext creates these.
2987
2988 IncompleteArrayType(QualType et, QualType can,
2989 ArraySizeModifier sm, unsigned tq)
2990 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2991
2992public:
2993 friend class StmtIteratorBase;
2994
2995 bool isSugared() const { return false; }
2996 QualType desugar() const { return QualType(this, 0); }
2997
2998 static bool classof(const Type *T) {
2999 return T->getTypeClass() == IncompleteArray;
3000 }
3001
3002 void Profile(llvm::FoldingSetNodeID &ID) {
3003 Profile(ID, getElementType(), getSizeModifier(),
3004 getIndexTypeCVRQualifiers());
3005 }
3006
3007 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3008 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3009 ID.AddPointer(ET.getAsOpaquePtr());
3010 ID.AddInteger(SizeMod);
3011 ID.AddInteger(TypeQuals);
3012 }
3013};
3014
3015/// Represents a C array with a specified size that is not an
3016/// integer-constant-expression. For example, 'int s[x+foo()]'.
3017/// Since the size expression is an arbitrary expression, we store it as such.
3018///
3019/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3020/// should not be: two lexically equivalent variable array types could mean
3021/// different things, for example, these variables do not have the same type
3022/// dynamically:
3023///
3024/// void foo(int x) {
3025/// int Y[x];
3026/// ++x;
3027/// int Z[x];
3028/// }
3029class VariableArrayType : public ArrayType {
3030 friend class ASTContext; // ASTContext creates these.
3031
3032 /// An assignment-expression. VLA's are only permitted within
3033 /// a function block.
3034 Stmt *SizeExpr;
3035
3036 /// The range spanned by the left and right array brackets.
3037 SourceRange Brackets;
3038
3039 VariableArrayType(QualType et, QualType can, Expr *e,
3040 ArraySizeModifier sm, unsigned tq,
3041 SourceRange brackets)
3042 : ArrayType(VariableArray, et, can, sm, tq, e),
3043 SizeExpr((Stmt*) e), Brackets(brackets) {}
3044
3045public:
3046 friend class StmtIteratorBase;
3047
3048 Expr *getSizeExpr() const {
3049 // We use C-style casts instead of cast<> here because we do not wish
3050 // to have a dependency of Type.h on Stmt.h/Expr.h.
3051 return (Expr*) SizeExpr;
3052 }
3053
3054 SourceRange getBracketsRange() const { return Brackets; }
3055 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3056 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3057
3058 bool isSugared() const { return false; }
3059 QualType desugar() const { return QualType(this, 0); }
3060
3061 static bool classof(const Type *T) {
3062 return T->getTypeClass() == VariableArray;
3063 }
3064
3065 void Profile(llvm::FoldingSetNodeID &ID) {
3066 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3066)
;
3067 }
3068};
3069
3070/// Represents an array type in C++ whose size is a value-dependent expression.
3071///
3072/// For example:
3073/// \code
3074/// template<typename T, int Size>
3075/// class array {
3076/// T data[Size];
3077/// };
3078/// \endcode
3079///
3080/// For these types, we won't actually know what the array bound is
3081/// until template instantiation occurs, at which point this will
3082/// become either a ConstantArrayType or a VariableArrayType.
3083class DependentSizedArrayType : public ArrayType {
3084 friend class ASTContext; // ASTContext creates these.
3085
3086 const ASTContext &Context;
3087
3088 /// An assignment expression that will instantiate to the
3089 /// size of the array.
3090 ///
3091 /// The expression itself might be null, in which case the array
3092 /// type will have its size deduced from an initializer.
3093 Stmt *SizeExpr;
3094
3095 /// The range spanned by the left and right array brackets.
3096 SourceRange Brackets;
3097
3098 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3099 Expr *e, ArraySizeModifier sm, unsigned tq,
3100 SourceRange brackets);
3101
3102public:
3103 friend class StmtIteratorBase;
3104
3105 Expr *getSizeExpr() const {
3106 // We use C-style casts instead of cast<> here because we do not wish
3107 // to have a dependency of Type.h on Stmt.h/Expr.h.
3108 return (Expr*) SizeExpr;
3109 }
3110
3111 SourceRange getBracketsRange() const { return Brackets; }
3112 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3113 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3114
3115 bool isSugared() const { return false; }
3116 QualType desugar() const { return QualType(this, 0); }
3117
3118 static bool classof(const Type *T) {
3119 return T->getTypeClass() == DependentSizedArray;
3120 }
3121
3122 void Profile(llvm::FoldingSetNodeID &ID) {
3123 Profile(ID, Context, getElementType(),
3124 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3125 }
3126
3127 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3128 QualType ET, ArraySizeModifier SizeMod,
3129 unsigned TypeQuals, Expr *E);
3130};
3131
3132/// Represents an extended address space qualifier where the input address space
3133/// value is dependent. Non-dependent address spaces are not represented with a
3134/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3135///
3136/// For example:
3137/// \code
3138/// template<typename T, int AddrSpace>
3139/// class AddressSpace {
3140/// typedef T __attribute__((address_space(AddrSpace))) type;
3141/// }
3142/// \endcode
3143class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3144 friend class ASTContext;
3145
3146 const ASTContext &Context;
3147 Expr *AddrSpaceExpr;
3148 QualType PointeeType;
3149 SourceLocation loc;
3150
3151 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3152 QualType can, Expr *AddrSpaceExpr,
3153 SourceLocation loc);
3154
3155public:
3156 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3157 QualType getPointeeType() const { return PointeeType; }
3158 SourceLocation getAttributeLoc() const { return loc; }
3159
3160 bool isSugared() const { return false; }
3161 QualType desugar() const { return QualType(this, 0); }
3162
3163 static bool classof(const Type *T) {
3164 return T->getTypeClass() == DependentAddressSpace;
3165 }
3166
3167 void Profile(llvm::FoldingSetNodeID &ID) {
3168 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3169 }
3170
3171 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3172 QualType PointeeType, Expr *AddrSpaceExpr);
3173};
3174
3175/// Represents an extended vector type where either the type or size is
3176/// dependent.
3177///
3178/// For example:
3179/// \code
3180/// template<typename T, int Size>
3181/// class vector {
3182/// typedef T __attribute__((ext_vector_type(Size))) type;
3183/// }
3184/// \endcode
3185class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3186 friend class ASTContext;
3187
3188 const ASTContext &Context;
3189 Expr *SizeExpr;
3190
3191 /// The element type of the array.
3192 QualType ElementType;
3193
3194 SourceLocation loc;
3195
3196 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3197 QualType can, Expr *SizeExpr, SourceLocation loc);
3198
3199public:
3200 Expr *getSizeExpr() const { return SizeExpr; }
3201 QualType getElementType() const { return ElementType; }
3202 SourceLocation getAttributeLoc() const { return loc; }
3203
3204 bool isSugared() const { return false; }
3205 QualType desugar() const { return QualType(this, 0); }
3206
3207 static bool classof(const Type *T) {
3208 return T->getTypeClass() == DependentSizedExtVector;
3209 }
3210
3211 void Profile(llvm::FoldingSetNodeID &ID) {
3212 Profile(ID, Context, getElementType(), getSizeExpr());
3213 }
3214
3215 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3216 QualType ElementType, Expr *SizeExpr);
3217};
3218
3219
3220/// Represents a GCC generic vector type. This type is created using
3221/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3222/// bytes; or from an Altivec __vector or vector declaration.
3223/// Since the constructor takes the number of vector elements, the
3224/// client is responsible for converting the size into the number of elements.
3225class VectorType : public Type, public llvm::FoldingSetNode {
3226public:
3227 enum VectorKind {
3228 /// not a target-specific vector type
3229 GenericVector,
3230
3231 /// is AltiVec vector
3232 AltiVecVector,
3233
3234 /// is AltiVec 'vector Pixel'
3235 AltiVecPixel,
3236
3237 /// is AltiVec 'vector bool ...'
3238 AltiVecBool,
3239
3240 /// is ARM Neon vector
3241 NeonVector,
3242
3243 /// is ARM Neon polynomial vector
3244 NeonPolyVector
3245 };
3246
3247protected:
3248 friend class ASTContext; // ASTContext creates these.
3249
3250 /// The element type of the vector.
3251 QualType ElementType;
3252
3253 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3254 VectorKind vecKind);
3255
3256 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3257 QualType canonType, VectorKind vecKind);
3258
3259public:
3260 QualType getElementType() const { return ElementType; }
3261 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3262
3263 static bool isVectorSizeTooLarge(unsigned NumElements) {
3264 return NumElements > VectorTypeBitfields::MaxNumElements;
3265 }
3266
3267 bool isSugared() const { return false; }
3268 QualType desugar() const { return QualType(this, 0); }
3269
3270 VectorKind getVectorKind() const {
3271 return VectorKind(VectorTypeBits.VecKind);
3272 }
3273
3274 void Profile(llvm::FoldingSetNodeID &ID) {
3275 Profile(ID, getElementType(), getNumElements(),
3276 getTypeClass(), getVectorKind());
3277 }
3278
3279 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3280 unsigned NumElements, TypeClass TypeClass,
3281 VectorKind VecKind) {
3282 ID.AddPointer(ElementType.getAsOpaquePtr());
3283 ID.AddInteger(NumElements);
3284 ID.AddInteger(TypeClass);
3285 ID.AddInteger(VecKind);
3286 }
3287
3288 static bool classof(const Type *T) {
3289 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3290 }
3291};
3292
3293/// Represents a vector type where either the type or size is dependent.
3294////
3295/// For example:
3296/// \code
3297/// template<typename T, int Size>
3298/// class vector {
3299/// typedef T __attribute__((vector_size(Size))) type;
3300/// }
3301/// \endcode
3302class DependentVectorType : public Type, public llvm::FoldingSetNode {
3303 friend class ASTContext;
3304
3305 const ASTContext &Context;
3306 QualType ElementType;
3307 Expr *SizeExpr;
3308 SourceLocation Loc;
3309
3310 DependentVectorType(const ASTContext &Context, QualType ElementType,
3311 QualType CanonType, Expr *SizeExpr,
3312 SourceLocation Loc, VectorType::VectorKind vecKind);
3313
3314public:
3315 Expr *getSizeExpr() const { return SizeExpr; }
3316 QualType getElementType() const { return ElementType; }
3317 SourceLocation getAttributeLoc() const { return Loc; }
3318 VectorType::VectorKind getVectorKind() const {
3319 return VectorType::VectorKind(VectorTypeBits.VecKind);
3320 }
3321
3322 bool isSugared() const { return false; }
3323 QualType desugar() const { return QualType(this, 0); }
3324
3325 static bool classof(const Type *T) {
3326 return T->getTypeClass() == DependentVector;
3327 }
3328
3329 void Profile(llvm::FoldingSetNodeID &ID) {
3330 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3331 }
3332
3333 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3334 QualType ElementType, const Expr *SizeExpr,
3335 VectorType::VectorKind VecKind);
3336};
3337
3338/// ExtVectorType - Extended vector type. This type is created using
3339/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3340/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3341/// class enables syntactic extensions, like Vector Components for accessing
3342/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3343/// Shading Language).
3344class ExtVectorType : public VectorType {
3345 friend class ASTContext; // ASTContext creates these.
3346
3347 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3348 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3349
3350public:
3351 static int getPointAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case 'x': case 'r': return 0;
3355 case 'y': case 'g': return 1;
3356 case 'z': case 'b': return 2;
3357 case 'w': case 'a': return 3;
3358 }
3359 }
3360
3361 static int getNumericAccessorIdx(char c) {
3362 switch (c) {
3363 default: return -1;
3364 case '0': return 0;
3365 case '1': return 1;
3366 case '2': return 2;
3367 case '3': return 3;
3368 case '4': return 4;
3369 case '5': return 5;
3370 case '6': return 6;
3371 case '7': return 7;
3372 case '8': return 8;
3373 case '9': return 9;
3374 case 'A':
3375 case 'a': return 10;
3376 case 'B':
3377 case 'b': return 11;
3378 case 'C':
3379 case 'c': return 12;
3380 case 'D':
3381 case 'd': return 13;
3382 case 'E':
3383 case 'e': return 14;
3384 case 'F':
3385 case 'f': return 15;
3386 }
3387 }
3388
3389 static int getAccessorIdx(char c, bool isNumericAccessor) {
3390 if (isNumericAccessor)
3391 return getNumericAccessorIdx(c);
3392 else
3393 return getPointAccessorIdx(c);
3394 }
3395
3396 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3397 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3398 return unsigned(idx-1) < getNumElements();
3399 return false;
3400 }
3401
3402 bool isSugared() const { return false; }
3403 QualType desugar() const { return QualType(this, 0); }
3404
3405 static bool classof(const Type *T) {
3406 return T->getTypeClass() == ExtVector;
3407 }
3408};
3409
3410/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3411/// class of FunctionNoProtoType and FunctionProtoType.
3412class FunctionType : public Type {
3413 // The type returned by the function.
3414 QualType ResultType;
3415
3416public:
3417 /// Interesting information about a specific parameter that can't simply
3418 /// be reflected in parameter's type. This is only used by FunctionProtoType
3419 /// but is in FunctionType to make this class available during the
3420 /// specification of the bases of FunctionProtoType.
3421 ///
3422 /// It makes sense to model language features this way when there's some
3423 /// sort of parameter-specific override (such as an attribute) that
3424 /// affects how the function is called. For example, the ARC ns_consumed
3425 /// attribute changes whether a parameter is passed at +0 (the default)
3426 /// or +1 (ns_consumed). This must be reflected in the function type,
3427 /// but isn't really a change to the parameter type.
3428 ///
3429 /// One serious disadvantage of modelling language features this way is
3430 /// that they generally do not work with language features that attempt
3431 /// to destructure types. For example, template argument deduction will
3432 /// not be able to match a parameter declared as
3433 /// T (*)(U)
3434 /// against an argument of type
3435 /// void (*)(__attribute__((ns_consumed)) id)
3436 /// because the substitution of T=void, U=id into the former will
3437 /// not produce the latter.
3438 class ExtParameterInfo {
3439 enum {
3440 ABIMask = 0x0F,
3441 IsConsumed = 0x10,
3442 HasPassObjSize = 0x20,
3443 IsNoEscape = 0x40,
3444 };
3445 unsigned char Data = 0;
3446
3447 public:
3448 ExtParameterInfo() = default;
3449
3450 /// Return the ABI treatment of this parameter.
3451 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3452 ExtParameterInfo withABI(ParameterABI kind) const {
3453 ExtParameterInfo copy = *this;
3454 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3455 return copy;
3456 }
3457
3458 /// Is this parameter considered "consumed" by Objective-C ARC?
3459 /// Consumed parameters must have retainable object type.
3460 bool isConsumed() const { return (Data & IsConsumed); }
3461 ExtParameterInfo withIsConsumed(bool consumed) const {
3462 ExtParameterInfo copy = *this;
3463 if (consumed)
3464 copy.Data |= IsConsumed;
3465 else
3466 copy.Data &= ~IsConsumed;
3467 return copy;
3468 }
3469
3470 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3471 ExtParameterInfo withHasPassObjectSize() const {
3472 ExtParameterInfo Copy = *this;
3473 Copy.Data |= HasPassObjSize;
3474 return Copy;
3475 }
3476
3477 bool isNoEscape() const { return Data & IsNoEscape; }
3478 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3479 ExtParameterInfo Copy = *this;
3480 if (NoEscape)
3481 Copy.Data |= IsNoEscape;
3482 else
3483 Copy.Data &= ~IsNoEscape;
3484 return Copy;
3485 }
3486
3487 unsigned char getOpaqueValue() const { return Data; }
3488 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3489 ExtParameterInfo result;
3490 result.Data = data;
3491 return result;
3492 }
3493
3494 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3495 return lhs.Data == rhs.Data;
3496 }
3497
3498 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3499 return lhs.Data != rhs.Data;
3500 }
3501 };
3502
3503 /// A class which abstracts out some details necessary for
3504 /// making a call.
3505 ///
3506 /// It is not actually used directly for storing this information in
3507 /// a FunctionType, although FunctionType does currently use the
3508 /// same bit-pattern.
3509 ///
3510 // If you add a field (say Foo), other than the obvious places (both,
3511 // constructors, compile failures), what you need to update is
3512 // * Operator==
3513 // * getFoo
3514 // * withFoo
3515 // * functionType. Add Foo, getFoo.
3516 // * ASTContext::getFooType
3517 // * ASTContext::mergeFunctionTypes
3518 // * FunctionNoProtoType::Profile
3519 // * FunctionProtoType::Profile
3520 // * TypePrinter::PrintFunctionProto
3521 // * AST read and write
3522 // * Codegen
3523 class ExtInfo {
3524 friend class FunctionType;
3525
3526 // Feel free to rearrange or add bits, but if you go over 12,
3527 // you'll need to adjust both the Bits field below and
3528 // Type::FunctionTypeBitfields.
3529
3530 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3531 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3532 //
3533 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3534 enum { CallConvMask = 0x1F };
3535 enum { NoReturnMask = 0x20 };
3536 enum { ProducesResultMask = 0x40 };
3537 enum { NoCallerSavedRegsMask = 0x80 };
3538 enum { NoCfCheckMask = 0x800 };
3539 enum {
3540 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3541 NoCallerSavedRegsMask | NoCfCheckMask),
3542 RegParmOffset = 8
3543 }; // Assumed to be the last field
3544 uint16_t Bits = CC_C;
3545
3546 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3547
3548 public:
3549 // Constructor with no defaults. Use this when you know that you
3550 // have all the elements (when reading an AST file for example).
3551 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3552 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3553 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3553, __PRETTY_FUNCTION__))
;
3554 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3555 (producesResult ? ProducesResultMask : 0) |
3556 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3557 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3558 (NoCfCheck ? NoCfCheckMask : 0);
3559 }
3560
3561 // Constructor with all defaults. Use when for example creating a
3562 // function known to use defaults.
3563 ExtInfo() = default;
3564
3565 // Constructor with just the calling convention, which is an important part
3566 // of the canonical type.
3567 ExtInfo(CallingConv CC) : Bits(CC) {}
3568
3569 bool getNoReturn() const { return Bits & NoReturnMask; }
3570 bool getProducesResult() const { return Bits & ProducesResultMask; }
3571 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3572 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3573 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3574
3575 unsigned getRegParm() const {
3576 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3577 if (RegParm > 0)
3578 --RegParm;
3579 return RegParm;
3580 }
3581
3582 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3583
3584 bool operator==(ExtInfo Other) const {
3585 return Bits == Other.Bits;
3586 }
3587 bool operator!=(ExtInfo Other) const {
3588 return Bits != Other.Bits;
3589 }
3590
3591 // Note that we don't have setters. That is by design, use
3592 // the following with methods instead of mutating these objects.
3593
3594 ExtInfo withNoReturn(bool noReturn) const {
3595 if (noReturn)
3596 return ExtInfo(Bits | NoReturnMask);
3597 else
3598 return ExtInfo(Bits & ~NoReturnMask);
3599 }
3600
3601 ExtInfo withProducesResult(bool producesResult) const {
3602 if (producesResult)
3603 return ExtInfo(Bits | ProducesResultMask);
3604 else
3605 return ExtInfo(Bits & ~ProducesResultMask);
3606 }
3607
3608 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3609 if (noCallerSavedRegs)
3610 return ExtInfo(Bits | NoCallerSavedRegsMask);
3611 else
3612 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3613 }
3614
3615 ExtInfo withNoCfCheck(bool noCfCheck) const {
3616 if (noCfCheck)
3617 return ExtInfo(Bits | NoCfCheckMask);
3618 else
3619 return ExtInfo(Bits & ~NoCfCheckMask);
3620 }
3621
3622 ExtInfo withRegParm(unsigned RegParm) const {
3623 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3623, __PRETTY_FUNCTION__))
;
3624 return ExtInfo((Bits & ~RegParmMask) |
3625 ((RegParm + 1) << RegParmOffset));
3626 }
3627
3628 ExtInfo withCallingConv(CallingConv cc) const {
3629 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3630 }
3631
3632 void Profile(llvm::FoldingSetNodeID &ID) const {
3633 ID.AddInteger(Bits);
3634 }
3635 };
3636
3637 /// A simple holder for a QualType representing a type in an
3638 /// exception specification. Unfortunately needed by FunctionProtoType
3639 /// because TrailingObjects cannot handle repeated types.
3640 struct ExceptionType { QualType Type; };
3641
3642 /// A simple holder for various uncommon bits which do not fit in
3643 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3644 /// alignment of subsequent objects in TrailingObjects. You must update
3645 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3646 struct alignas(void *) FunctionTypeExtraBitfields {
3647 /// The number of types in the exception specification.
3648 /// A whole unsigned is not needed here and according to
3649 /// [implimits] 8 bits would be enough here.
3650 unsigned NumExceptionType;
3651 };
3652
3653protected:
3654 FunctionType(TypeClass tc, QualType res,
3655 QualType Canonical, bool Dependent,
3656 bool InstantiationDependent,
3657 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3658 ExtInfo Info)
3659 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3660 ContainsUnexpandedParameterPack),
3661 ResultType(res) {
3662 FunctionTypeBits.ExtInfo = Info.Bits;
3663 }
3664
3665 Qualifiers getFastTypeQuals() const {
3666 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3667 }
3668
3669public:
3670 QualType getReturnType() const { return ResultType; }
3671
3672 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3673 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3674
3675 /// Determine whether this function type includes the GNU noreturn
3676 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3677 /// type.
3678 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3679
3680 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3681 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3682
3683 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3684 "Const, volatile and restrict are assumed to be a subset of "
3685 "the fast qualifiers.");
3686
3687 bool isConst() const { return getFastTypeQuals().hasConst(); }
3688 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3689 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3690
3691 /// Determine the type of an expression that calls a function of
3692 /// this type.
3693 QualType getCallResultType(const ASTContext &Context) const {
3694 return getReturnType().getNonLValueExprType(Context);
3695 }
3696
3697 static StringRef getNameForCallConv(CallingConv CC);
3698
3699 static bool classof(const Type *T) {
3700 return T->getTypeClass() == FunctionNoProto ||
3701 T->getTypeClass() == FunctionProto;
3702 }
3703};
3704
3705/// Represents a K&R-style 'int foo()' function, which has
3706/// no information available about its arguments.
3707class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3708 friend class ASTContext; // ASTContext creates these.
3709
3710 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3711 : FunctionType(FunctionNoProto, Result, Canonical,
3712 /*Dependent=*/false, /*InstantiationDependent=*/false,
3713 Result->isVariablyModifiedType(),
3714 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3715
3716public:
3717 // No additional state past what FunctionType provides.
3718
3719 bool isSugared() const { return false; }
3720 QualType desugar() const { return QualType(this, 0); }
3721
3722 void Profile(llvm::FoldingSetNodeID &ID) {
3723 Profile(ID, getReturnType(), getExtInfo());
3724 }
3725
3726 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3727 ExtInfo Info) {
3728 Info.Profile(ID);
3729 ID.AddPointer(ResultType.getAsOpaquePtr());
3730 }
3731
3732 static bool classof(const Type *T) {
3733 return T->getTypeClass() == FunctionNoProto;
3734 }
3735};
3736
3737/// Represents a prototype with parameter type info, e.g.
3738/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3739/// parameters, not as having a single void parameter. Such a type can have
3740/// an exception specification, but this specification is not part of the
3741/// canonical type. FunctionProtoType has several trailing objects, some of
3742/// which optional. For more information about the trailing objects see
3743/// the first comment inside FunctionProtoType.
3744class FunctionProtoType final
3745 : public FunctionType,
3746 public llvm::FoldingSetNode,
3747 private llvm::TrailingObjects<
3748 FunctionProtoType, QualType, SourceLocation,
3749 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3750 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3751 friend class ASTContext; // ASTContext creates these.
3752 friend TrailingObjects;
3753
3754 // FunctionProtoType is followed by several trailing objects, some of
3755 // which optional. They are in order:
3756 //
3757 // * An array of getNumParams() QualType holding the parameter types.
3758 // Always present. Note that for the vast majority of FunctionProtoType,
3759 // these will be the only trailing objects.
3760 //
3761 // * Optionally if the function is variadic, the SourceLocation of the
3762 // ellipsis.
3763 //
3764 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3765 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3766 // a single FunctionTypeExtraBitfields. Present if and only if
3767 // hasExtraBitfields() is true.
3768 //
3769 // * Optionally exactly one of:
3770 // * an array of getNumExceptions() ExceptionType,
3771 // * a single Expr *,
3772 // * a pair of FunctionDecl *,
3773 // * a single FunctionDecl *
3774 // used to store information about the various types of exception
3775 // specification. See getExceptionSpecSize for the details.
3776 //
3777 // * Optionally an array of getNumParams() ExtParameterInfo holding
3778 // an ExtParameterInfo for each of the parameters. Present if and
3779 // only if hasExtParameterInfos() is true.
3780 //
3781 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3782 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3783 // if hasExtQualifiers() is true.
3784 //
3785 // The optional FunctionTypeExtraBitfields has to be before the data
3786 // related to the exception specification since it contains the number
3787 // of exception types.
3788 //
3789 // We put the ExtParameterInfos last. If all were equal, it would make
3790 // more sense to put these before the exception specification, because
3791 // it's much easier to skip past them compared to the elaborate switch
3792 // required to skip the exception specification. However, all is not
3793 // equal; ExtParameterInfos are used to model very uncommon features,
3794 // and it's better not to burden the more common paths.
3795
3796public:
3797 /// Holds information about the various types of exception specification.
3798 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3799 /// used to group together the various bits of information about the
3800 /// exception specification.
3801 struct ExceptionSpecInfo {
3802 /// The kind of exception specification this is.
3803 ExceptionSpecificationType Type = EST_None;
3804
3805 /// Explicitly-specified list of exception types.
3806 ArrayRef<QualType> Exceptions;
3807
3808 /// Noexcept expression, if this is a computed noexcept specification.
3809 Expr *NoexceptExpr = nullptr;
3810
3811 /// The function whose exception specification this is, for
3812 /// EST_Unevaluated and EST_Uninstantiated.
3813 FunctionDecl *SourceDecl = nullptr;
3814
3815 /// The function template whose exception specification this is instantiated
3816 /// from, for EST_Uninstantiated.
3817 FunctionDecl *SourceTemplate = nullptr;
3818
3819 ExceptionSpecInfo() = default;
3820
3821 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3822 };
3823
3824 /// Extra information about a function prototype. ExtProtoInfo is not
3825 /// stored as such in FunctionProtoType but is used to group together
3826 /// the various bits of extra information about a function prototype.
3827 struct ExtProtoInfo {
3828 FunctionType::ExtInfo ExtInfo;
3829 bool Variadic : 1;
3830 bool HasTrailingReturn : 1;
3831 Qualifiers TypeQuals;
3832 RefQualifierKind RefQualifier = RQ_None;
3833 ExceptionSpecInfo ExceptionSpec;
3834 const ExtParameterInfo *ExtParameterInfos = nullptr;
3835 SourceLocation EllipsisLoc;
3836
3837 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3838
3839 ExtProtoInfo(CallingConv CC)
3840 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3841
3842 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3843 ExtProtoInfo Result(*this);
3844 Result.ExceptionSpec = ESI;
3845 return Result;
3846 }
3847 };
3848
3849private:
3850 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3851 return getNumParams();
3852 }
3853
3854 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3855 return isVariadic();
3856 }
3857
3858 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3859 return hasExtraBitfields();
3860 }
3861
3862 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3863 return getExceptionSpecSize().NumExceptionType;
3864 }
3865
3866 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3867 return getExceptionSpecSize().NumExprPtr;
3868 }
3869
3870 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3871 return getExceptionSpecSize().NumFunctionDeclPtr;
3872 }
3873
3874 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3875 return hasExtParameterInfos() ? getNumParams() : 0;
3876 }
3877
3878 /// Determine whether there are any argument types that
3879 /// contain an unexpanded parameter pack.
3880 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3881 unsigned numArgs) {
3882 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3883 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3884 return true;
3885
3886 return false;
3887 }
3888
3889 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3890 QualType canonical, const ExtProtoInfo &epi);
3891
3892 /// This struct is returned by getExceptionSpecSize and is used to
3893 /// translate an ExceptionSpecificationType to the number and kind
3894 /// of trailing objects related to the exception specification.
3895 struct ExceptionSpecSizeHolder {
3896 unsigned NumExceptionType;
3897 unsigned NumExprPtr;
3898 unsigned NumFunctionDeclPtr;
3899 };
3900
3901 /// Return the number and kind of trailing objects
3902 /// related to the exception specification.
3903 static ExceptionSpecSizeHolder
3904 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3905 switch (EST) {
3906 case EST_None:
3907 case EST_DynamicNone:
3908 case EST_MSAny:
3909 case EST_BasicNoexcept:
3910 case EST_Unparsed:
3911 case EST_NoThrow:
3912 return {0, 0, 0};
3913
3914 case EST_Dynamic:
3915 return {NumExceptions, 0, 0};
3916
3917 case EST_DependentNoexcept:
3918 case EST_NoexceptFalse:
3919 case EST_NoexceptTrue:
3920 return {0, 1, 0};
3921
3922 case EST_Uninstantiated:
3923 return {0, 0, 2};
3924
3925 case EST_Unevaluated:
3926 return {0, 0, 1};
3927 }
3928 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3928)
;
3929 }
3930
3931 /// Return the number and kind of trailing objects
3932 /// related to the exception specification.
3933 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3934 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3935 }
3936
3937 /// Whether the trailing FunctionTypeExtraBitfields is present.
3938 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3939 // If the exception spec type is EST_Dynamic then we have > 0 exception
3940 // types and the exact number is stored in FunctionTypeExtraBitfields.
3941 return EST == EST_Dynamic;
3942 }
3943
3944 /// Whether the trailing FunctionTypeExtraBitfields is present.
3945 bool hasExtraBitfields() const {
3946 return hasExtraBitfields(getExceptionSpecType());
3947 }
3948
3949 bool hasExtQualifiers() const {
3950 return FunctionTypeBits.HasExtQuals;
3951 }
3952
3953public:
3954 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3955
3956 QualType getParamType(unsigned i) const {
3957 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3957, __PRETTY_FUNCTION__))
;
3958 return param_type_begin()[i];
3959 }
3960
3961 ArrayRef<QualType> getParamTypes() const {
3962 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3963 }
3964
3965 ExtProtoInfo getExtProtoInfo() const {
3966 ExtProtoInfo EPI;
3967 EPI.ExtInfo = getExtInfo();
3968 EPI.Variadic = isVariadic();
3969 EPI.EllipsisLoc = getEllipsisLoc();
3970 EPI.HasTrailingReturn = hasTrailingReturn();
3971 EPI.ExceptionSpec = getExceptionSpecInfo();
3972 EPI.TypeQuals = getMethodQuals();
3973 EPI.RefQualifier = getRefQualifier();
3974 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3975 return EPI;
3976 }
3977
3978 /// Get the kind of exception specification on this function.
3979 ExceptionSpecificationType getExceptionSpecType() const {
3980 return static_cast<ExceptionSpecificationType>(
3981 FunctionTypeBits.ExceptionSpecType);
3982 }
3983
3984 /// Return whether this function has any kind of exception spec.
3985 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3986
3987 /// Return whether this function has a dynamic (throw) exception spec.
3988 bool hasDynamicExceptionSpec() const {
3989 return isDynamicExceptionSpec(getExceptionSpecType());
3990 }
3991
3992 /// Return whether this function has a noexcept exception spec.
3993 bool hasNoexceptExceptionSpec() const {
3994 return isNoexceptExceptionSpec(getExceptionSpecType());
3995 }
3996
3997 /// Return whether this function has a dependent exception spec.
3998 bool hasDependentExceptionSpec() const;
3999
4000 /// Return whether this function has an instantiation-dependent exception
4001 /// spec.
4002 bool hasInstantiationDependentExceptionSpec() const;
4003
4004 /// Return all the available information about this type's exception spec.
4005 ExceptionSpecInfo getExceptionSpecInfo() const {
4006 ExceptionSpecInfo Result;
4007 Result.Type = getExceptionSpecType();
4008 if (Result.Type == EST_Dynamic) {
4009 Result.Exceptions = exceptions();
4010 } else if (isComputedNoexcept(Result.Type)) {
4011 Result.NoexceptExpr = getNoexceptExpr();
4012 } else if (Result.Type == EST_Uninstantiated) {
4013 Result.SourceDecl = getExceptionSpecDecl();
4014 Result.SourceTemplate = getExceptionSpecTemplate();
4015 } else if (Result.Type == EST_Unevaluated) {
4016 Result.SourceDecl = getExceptionSpecDecl();
4017 }
4018 return Result;
4019 }
4020
4021 /// Return the number of types in the exception specification.
4022 unsigned getNumExceptions() const {
4023 return getExceptionSpecType() == EST_Dynamic
4024 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4025 ->NumExceptionType
4026 : 0;
4027 }
4028
4029 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4030 QualType getExceptionType(unsigned i) const {
4031 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4031, __PRETTY_FUNCTION__))
;
4032 return exception_begin()[i];
4033 }
4034
4035 /// Return the expression inside noexcept(expression), or a null pointer
4036 /// if there is none (because the exception spec is not of this form).
4037 Expr *getNoexceptExpr() const {
4038 if (!isComputedNoexcept(getExceptionSpecType()))
4039 return nullptr;
4040 return *getTrailingObjects<Expr *>();
4041 }
4042
4043 /// If this function type has an exception specification which hasn't
4044 /// been determined yet (either because it has not been evaluated or because
4045 /// it has not been instantiated), this is the function whose exception
4046 /// specification is represented by this type.
4047 FunctionDecl *getExceptionSpecDecl() const {
4048 if (getExceptionSpecType() != EST_Uninstantiated &&
4049 getExceptionSpecType() != EST_Unevaluated)
4050 return nullptr;
4051 return getTrailingObjects<FunctionDecl *>()[0];
4052 }
4053
4054 /// If this function type has an uninstantiated exception
4055 /// specification, this is the function whose exception specification
4056 /// should be instantiated to find the exception specification for
4057 /// this type.
4058 FunctionDecl *getExceptionSpecTemplate() const {
4059 if (getExceptionSpecType() != EST_Uninstantiated)
4060 return nullptr;
4061 return getTrailingObjects<FunctionDecl *>()[1];
4062 }
4063
4064 /// Determine whether this function type has a non-throwing exception
4065 /// specification.
4066 CanThrowResult canThrow() const;
4067
4068 /// Determine whether this function type has a non-throwing exception
4069 /// specification. If this depends on template arguments, returns
4070 /// \c ResultIfDependent.
4071 bool isNothrow(bool ResultIfDependent = false) const {
4072 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4073 }
4074
4075 /// Whether this function prototype is variadic.
4076 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4077
4078 SourceLocation getEllipsisLoc() const {
4079 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4080 : SourceLocation();
4081 }
4082
4083 /// Determines whether this function prototype contains a
4084 /// parameter pack at the end.
4085 ///
4086 /// A function template whose last parameter is a parameter pack can be
4087 /// called with an arbitrary number of arguments, much like a variadic
4088 /// function.
4089 bool isTemplateVariadic() const;
4090
4091 /// Whether this function prototype has a trailing return type.
4092 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4093
4094 Qualifiers getMethodQuals() const {
4095 if (hasExtQualifiers())
4096 return *getTrailingObjects<Qualifiers>();
4097 else
4098 return getFastTypeQuals();
4099 }
4100
4101 /// Retrieve the ref-qualifier associated with this function type.
4102 RefQualifierKind getRefQualifier() const {
4103 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4104 }
4105
4106 using param_type_iterator = const QualType *;
4107 using param_type_range = llvm::iterator_range<param_type_iterator>;
4108
4109 param_type_range param_types() const {
4110 return param_type_range(param_type_begin(), param_type_end());
4111 }
4112
4113 param_type_iterator param_type_begin() const {
4114 return getTrailingObjects<QualType>();
4115 }
4116
4117 param_type_iterator param_type_end() const {
4118 return param_type_begin() + getNumParams();
4119 }
4120
4121 using exception_iterator = const QualType *;
4122
4123 ArrayRef<QualType> exceptions() const {
4124 return llvm::makeArrayRef(exception_begin(), exception_end());
4125 }
4126
4127 exception_iterator exception_begin() const {
4128 return reinterpret_cast<exception_iterator>(
4129 getTrailingObjects<ExceptionType>());
4130 }
4131
4132 exception_iterator exception_end() const {
4133 return exception_begin() + getNumExceptions();
4134 }
4135
4136 /// Is there any interesting extra information for any of the parameters
4137 /// of this function type?
4138 bool hasExtParameterInfos() const {
4139 return FunctionTypeBits.HasExtParameterInfos;
4140 }
4141
4142 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4143 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4143, __PRETTY_FUNCTION__))
;
4144 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4145 getNumParams());
4146 }
4147
4148 /// Return a pointer to the beginning of the array of extra parameter
4149 /// information, if present, or else null if none of the parameters
4150 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4151 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4152 if (!hasExtParameterInfos())
4153 return nullptr;
4154 return getTrailingObjects<ExtParameterInfo>();
4155 }
4156
4157 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4158 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4158, __PRETTY_FUNCTION__))
;
4159 if (hasExtParameterInfos())
4160 return getTrailingObjects<ExtParameterInfo>()[I];
4161 return ExtParameterInfo();
4162 }
4163
4164 ParameterABI getParameterABI(unsigned I) const {
4165 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4165, __PRETTY_FUNCTION__))
;
4166 if (hasExtParameterInfos())
4167 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4168 return ParameterABI::Ordinary;
4169 }
4170
4171 bool isParamConsumed(unsigned I) const {
4172 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4172, __PRETTY_FUNCTION__))
;
4173 if (hasExtParameterInfos())
4174 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4175 return false;
4176 }
4177
4178 bool isSugared() const { return false; }
4179 QualType desugar() const { return QualType(this, 0); }
4180
4181 void printExceptionSpecification(raw_ostream &OS,
4182 const PrintingPolicy &Policy) const;
4183
4184 static bool classof(const Type *T) {
4185 return T->getTypeClass() == FunctionProto;
4186 }
4187
4188 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4189 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4190 param_type_iterator ArgTys, unsigned NumArgs,
4191 const ExtProtoInfo &EPI, const ASTContext &Context,
4192 bool Canonical);
4193};
4194
4195/// Represents the dependent type named by a dependently-scoped
4196/// typename using declaration, e.g.
4197/// using typename Base<T>::foo;
4198///
4199/// Template instantiation turns these into the underlying type.
4200class UnresolvedUsingType : public Type {
4201 friend class ASTContext; // ASTContext creates these.
4202
4203 UnresolvedUsingTypenameDecl *Decl;
4204
4205 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4206 : Type(UnresolvedUsing, QualType(), true, true, false,
4207 /*ContainsUnexpandedParameterPack=*/false),
4208 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4209
4210public:
4211 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4212
4213 bool isSugared() const { return false; }
4214 QualType desugar() const { return QualType(this, 0); }
4215
4216 static bool classof(const Type *T) {
4217 return T->getTypeClass() == UnresolvedUsing;
4218 }
4219
4220 void Profile(llvm::FoldingSetNodeID &ID) {
4221 return Profile(ID, Decl);
4222 }
4223
4224 static void Profile(llvm::FoldingSetNodeID &ID,
4225 UnresolvedUsingTypenameDecl *D) {
4226 ID.AddPointer(D);
4227 }
4228};
4229
4230class TypedefType : public Type {
4231 TypedefNameDecl *Decl;
4232
4233protected:
4234 friend class ASTContext; // ASTContext creates these.
4235
4236 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4237 : Type(tc, can, can->isDependentType(),
4238 can->isInstantiationDependentType(),
4239 can->isVariablyModifiedType(),
4240 /*ContainsUnexpandedParameterPack=*/false),
4241 Decl(const_cast<TypedefNameDecl*>(D)) {
4242 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4242, __PRETTY_FUNCTION__))
;
4243 }
4244
4245public:
4246 TypedefNameDecl *getDecl() const { return Decl; }
4247
4248 bool isSugared() const { return true; }
4249 QualType desugar() const;
4250
4251 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4252};
4253
4254/// Sugar type that represents a type that was qualified by a qualifier written
4255/// as a macro invocation.
4256class MacroQualifiedType : public Type {
4257 friend class ASTContext; // ASTContext creates these.
4258
4259 QualType UnderlyingTy;
4260 const IdentifierInfo *MacroII;
4261
4262 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4263 const IdentifierInfo *MacroII)
4264 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4265 UnderlyingTy->isInstantiationDependentType(),
4266 UnderlyingTy->isVariablyModifiedType(),
4267 UnderlyingTy->containsUnexpandedParameterPack()),
4268 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4269 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
4270 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
;
4271 }
4272
4273public:
4274 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4275 QualType getUnderlyingType() const { return UnderlyingTy; }
4276
4277 /// Return this attributed type's modified type with no qualifiers attached to
4278 /// it.
4279 QualType getModifiedType() const;
4280
4281 bool isSugared() const { return true; }
4282 QualType desugar() const;
4283
4284 static bool classof(const Type *T) {
4285 return T->getTypeClass() == MacroQualified;
4286 }
4287};
4288
4289/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4290class TypeOfExprType : public Type {
4291 Expr *TOExpr;
4292
4293protected:
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 TypeOfExprType(Expr *E, QualType can = QualType());
4297
4298public:
4299 Expr *getUnderlyingExpr() const { return TOExpr; }
4300
4301 /// Remove a single level of sugar.
4302 QualType desugar() const;
4303
4304 /// Returns whether this type directly provides sugar.
4305 bool isSugared() const;
4306
4307 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4308};
4309
4310/// Internal representation of canonical, dependent
4311/// `typeof(expr)` types.
4312///
4313/// This class is used internally by the ASTContext to manage
4314/// canonical, dependent types, only. Clients will only see instances
4315/// of this class via TypeOfExprType nodes.
4316class DependentTypeOfExprType
4317 : public TypeOfExprType, public llvm::FoldingSetNode {
4318 const ASTContext &Context;
4319
4320public:
4321 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4322 : TypeOfExprType(E), Context(Context) {}
4323
4324 void Profile(llvm::FoldingSetNodeID &ID) {
4325 Profile(ID, Context, getUnderlyingExpr());
4326 }
4327
4328 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4329 Expr *E);
4330};
4331
4332/// Represents `typeof(type)`, a GCC extension.
4333class TypeOfType : public Type {
4334 friend class ASTContext; // ASTContext creates these.
4335
4336 QualType TOType;
4337
4338 TypeOfType(QualType T, QualType can)
4339 : Type(TypeOf, can, T->isDependentType(),
4340 T->isInstantiationDependentType(),
4341 T->isVariablyModifiedType(),
4342 T->containsUnexpandedParameterPack()),
4343 TOType(T) {
4344 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4344, __PRETTY_FUNCTION__))
;
4345 }
4346
4347public:
4348 QualType getUnderlyingType() const { return TOType; }
4349
4350 /// Remove a single level of sugar.
4351 QualType desugar() const { return getUnderlyingType(); }
4352
4353 /// Returns whether this type directly provides sugar.
4354 bool isSugared() const { return true; }
4355
4356 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4357};
4358
4359/// Represents the type `decltype(expr)` (C++11).
4360class DecltypeType : public Type {
4361 Expr *E;
4362 QualType UnderlyingType;
4363
4364protected:
4365 friend class ASTContext; // ASTContext creates these.
4366
4367 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4368
4369public:
4370 Expr *getUnderlyingExpr() const { return E; }
4371 QualType getUnderlyingType() const { return UnderlyingType; }
4372
4373 /// Remove a single level of sugar.
4374 QualType desugar() const;
4375
4376 /// Returns whether this type directly provides sugar.
4377 bool isSugared() const;
4378
4379 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4380};
4381
4382/// Internal representation of canonical, dependent
4383/// decltype(expr) types.
4384///
4385/// This class is used internally by the ASTContext to manage
4386/// canonical, dependent types, only. Clients will only see instances
4387/// of this class via DecltypeType nodes.
4388class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4389 const ASTContext &Context;
4390
4391public:
4392 DependentDecltypeType(const ASTContext &Context, Expr *E);
4393
4394 void Profile(llvm::FoldingSetNodeID &ID) {
4395 Profile(ID, Context, getUnderlyingExpr());
4396 }
4397
4398 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4399 Expr *E);
4400};
4401
4402/// A unary type transform, which is a type constructed from another.
4403class UnaryTransformType : public Type {
4404public:
4405 enum UTTKind {
4406 EnumUnderlyingType
4407 };
4408
4409private:
4410 /// The untransformed type.
4411 QualType BaseType;
4412
4413 /// The transformed type if not dependent, otherwise the same as BaseType.
4414 QualType UnderlyingType;
4415
4416 UTTKind UKind;
4417
4418protected:
4419 friend class ASTContext;
4420
4421 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4422 QualType CanonicalTy);
4423
4424public:
4425 bool isSugared() const { return !isDependentType(); }
4426 QualType desugar() const { return UnderlyingType; }
4427
4428 QualType getUnderlyingType() const { return UnderlyingType; }
4429 QualType getBaseType() const { return BaseType; }
4430
4431 UTTKind getUTTKind() const { return UKind; }
4432
4433 static bool classof(const Type *T) {
4434 return T->getTypeClass() == UnaryTransform;
4435 }
4436};
4437
4438/// Internal representation of canonical, dependent
4439/// __underlying_type(type) types.
4440///
4441/// This class is used internally by the ASTContext to manage
4442/// canonical, dependent types, only. Clients will only see instances
4443/// of this class via UnaryTransformType nodes.
4444class DependentUnaryTransformType : public UnaryTransformType,
4445 public llvm::FoldingSetNode {
4446public:
4447 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4448 UTTKind UKind);
4449
4450 void Profile(llvm::FoldingSetNodeID &ID) {
4451 Profile(ID, getBaseType(), getUTTKind());
4452 }
4453
4454 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4455 UTTKind UKind) {
4456 ID.AddPointer(BaseType.getAsOpaquePtr());
4457 ID.AddInteger((unsigned)UKind);
4458 }
4459};
4460
4461class TagType : public Type {
4462 friend class ASTReader;
4463 template <class T> friend class serialization::AbstractTypeReader;
4464
4465 /// Stores the TagDecl associated with this type. The decl may point to any
4466 /// TagDecl that declares the entity.
4467 TagDecl *decl;
4468
4469protected:
4470 TagType(TypeClass TC, const TagDecl *D, QualType can);
4471
4472public:
4473 TagDecl *getDecl() const;
4474
4475 /// Determines whether this type is in the process of being defined.
4476 bool isBeingDefined() const;
4477
4478 static bool classof(const Type *T) {
4479 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4480 }
4481};
4482
4483/// A helper class that allows the use of isa/cast/dyncast
4484/// to detect TagType objects of structs/unions/classes.
4485class RecordType : public TagType {
4486protected:
4487 friend class ASTContext; // ASTContext creates these.
4488
4489 explicit RecordType(const RecordDecl *D)
4490 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4491 explicit RecordType(TypeClass TC, RecordDecl *D)
4492 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4493
4494public:
4495 RecordDecl *getDecl() const {
4496 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4497 }
4498
4499 /// Recursively check all fields in the record for const-ness. If any field
4500 /// is declared const, return true. Otherwise, return false.
4501 bool hasConstFields() const;
4502
4503 bool isSugared() const { return false; }
4504 QualType desugar() const { return QualType(this, 0); }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4507};
4508
4509/// A helper class that allows the use of isa/cast/dyncast
4510/// to detect TagType objects of enums.
4511class EnumType : public TagType {
4512 friend class ASTContext; // ASTContext creates these.
4513
4514 explicit EnumType(const EnumDecl *D)
4515 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4516
4517public:
4518 EnumDecl *getDecl() const {
4519 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4520 }
4521
4522 bool isSugared() const { return false; }
4523 QualType desugar() const { return QualType(this, 0); }
4524
4525 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4526};
4527
4528/// An attributed type is a type to which a type attribute has been applied.
4529///
4530/// The "modified type" is the fully-sugared type to which the attributed
4531/// type was applied; generally it is not canonically equivalent to the
4532/// attributed type. The "equivalent type" is the minimally-desugared type
4533/// which the type is canonically equivalent to.
4534///
4535/// For example, in the following attributed type:
4536/// int32_t __attribute__((vector_size(16)))
4537/// - the modified type is the TypedefType for int32_t
4538/// - the equivalent type is VectorType(16, int32_t)
4539/// - the canonical type is VectorType(16, int)
4540class AttributedType : public Type, public llvm::FoldingSetNode {
4541public:
4542 using Kind = attr::Kind;
4543
4544private:
4545 friend class ASTContext; // ASTContext creates these
4546
4547 QualType ModifiedType;
4548 QualType EquivalentType;
4549
4550 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4551 QualType equivalent)
4552 : Type(Attributed, canon, equivalent->isDependentType(),
4553 equivalent->isInstantiationDependentType(),
4554 equivalent->isVariablyModifiedType(),
4555 equivalent->containsUnexpandedParameterPack()),
4556 ModifiedType(modified), EquivalentType(equivalent) {
4557 AttributedTypeBits.AttrKind = attrKind;
4558 }
4559
4560public:
4561 Kind getAttrKind() const {
4562 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4563 }
4564
4565 QualType getModifiedType() const { return ModifiedType; }
4566 QualType getEquivalentType() const { return EquivalentType; }
4567
4568 bool isSugared() const { return true; }
4569 QualType desugar() const { return getEquivalentType(); }
4570
4571 /// Does this attribute behave like a type qualifier?
4572 ///
4573 /// A type qualifier adjusts a type to provide specialized rules for
4574 /// a specific object, like the standard const and volatile qualifiers.
4575 /// This includes attributes controlling things like nullability,
4576 /// address spaces, and ARC ownership. The value of the object is still
4577 /// largely described by the modified type.
4578 ///
4579 /// In contrast, many type attributes "rewrite" their modified type to
4580 /// produce a fundamentally different type, not necessarily related in any
4581 /// formalizable way to the original type. For example, calling convention
4582 /// and vector attributes are not simple type qualifiers.
4583 ///
4584 /// Type qualifiers are often, but not always, reflected in the canonical
4585 /// type.
4586 bool isQualifier() const;
4587
4588 bool isMSTypeSpec() const;
4589
4590 bool isCallingConv() const;
4591
4592 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4593
4594 /// Retrieve the attribute kind corresponding to the given
4595 /// nullability kind.
4596 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4597 switch (kind) {
4598 case NullabilityKind::NonNull:
4599 return attr::TypeNonNull;
4600
4601 case NullabilityKind::Nullable:
4602 return attr::TypeNullable;
4603
4604 case NullabilityKind::Unspecified:
4605 return attr::TypeNullUnspecified;
4606 }
4607 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4607)
;
4608 }
4609
4610 /// Strip off the top-level nullability annotation on the given
4611 /// type, if it's there.
4612 ///
4613 /// \param T The type to strip. If the type is exactly an
4614 /// AttributedType specifying nullability (without looking through
4615 /// type sugar), the nullability is returned and this type changed
4616 /// to the underlying modified type.
4617 ///
4618 /// \returns the top-level nullability, if present.
4619 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4620
4621 void Profile(llvm::FoldingSetNodeID &ID) {
4622 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4623 }
4624
4625 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4626 QualType modified, QualType equivalent) {
4627 ID.AddInteger(attrKind);
4628 ID.AddPointer(modified.getAsOpaquePtr());
4629 ID.AddPointer(equivalent.getAsOpaquePtr());
4630 }
4631
4632 static bool classof(const Type *T) {
4633 return T->getTypeClass() == Attributed;
4634 }
4635};
4636
4637class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4638 friend class ASTContext; // ASTContext creates these
4639
4640 // Helper data collector for canonical types.
4641 struct CanonicalTTPTInfo {
4642 unsigned Depth : 15;
4643 unsigned ParameterPack : 1;
4644 unsigned Index : 16;
4645 };
4646
4647 union {
4648 // Info for the canonical type.
4649 CanonicalTTPTInfo CanTTPTInfo;
4650
4651 // Info for the non-canonical type.
4652 TemplateTypeParmDecl *TTPDecl;
4653 };
4654
4655 /// Build a non-canonical type.
4656 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4657 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4658 /*InstantiationDependent=*/true,
4659 /*VariablyModified=*/false,
4660 Canon->containsUnexpandedParameterPack()),
4661 TTPDecl(TTPDecl) {}
4662
4663 /// Build the canonical type.
4664 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4665 : Type(TemplateTypeParm, QualType(this, 0),
4666 /*Dependent=*/true,
4667 /*InstantiationDependent=*/true,
4668 /*VariablyModified=*/false, PP) {
4669 CanTTPTInfo.Depth = D;
4670 CanTTPTInfo.Index = I;
4671 CanTTPTInfo.ParameterPack = PP;
4672 }
4673
4674 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4675 QualType Can = getCanonicalTypeInternal();
4676 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4677 }
4678
4679public:
4680 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4681 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4682 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4683
4684 TemplateTypeParmDecl *getDecl() const {
4685 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4686 }
4687
4688 IdentifierInfo *getIdentifier() const;
4689
4690 bool isSugared() const { return false; }
4691 QualType desugar() const { return QualType(this, 0); }
4692
4693 void Profile(llvm::FoldingSetNodeID &ID) {
4694 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4695 }
4696
4697 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4698 unsigned Index, bool ParameterPack,
4699 TemplateTypeParmDecl *TTPDecl) {
4700 ID.AddInteger(Depth);
4701 ID.AddInteger(Index);
4702 ID.AddBoolean(ParameterPack);
4703 ID.AddPointer(TTPDecl);
4704 }
4705
4706 static bool classof(const Type *T) {
4707 return T->getTypeClass() == TemplateTypeParm;
4708 }
4709};
4710
4711/// Represents the result of substituting a type for a template
4712/// type parameter.
4713///
4714/// Within an instantiated template, all template type parameters have
4715/// been replaced with these. They are used solely to record that a
4716/// type was originally written as a template type parameter;
4717/// therefore they are never canonical.
4718class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4719 friend class ASTContext;
4720
4721 // The original type parameter.
4722 const TemplateTypeParmType *Replaced;
4723
4724 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4725 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4726 Canon->isInstantiationDependentType(),
4727 Canon->isVariablyModifiedType(),
4728 Canon->containsUnexpandedParameterPack()),
4729 Replaced(Param) {}
4730
4731public:
4732 /// Gets the template parameter that was substituted for.
4733 const TemplateTypeParmType *getReplacedParameter() const {
4734 return Replaced;
4735 }
4736
4737 /// Gets the type that was substituted for the template
4738 /// parameter.
4739 QualType getReplacementType() const {
4740 return getCanonicalTypeInternal();
4741 }
4742
4743 bool isSugared() const { return true; }
4744 QualType desugar() const { return getReplacementType(); }
4745
4746 void Profile(llvm::FoldingSetNodeID &ID) {
4747 Profile(ID, getReplacedParameter(), getReplacementType());
4748 }
4749
4750 static void Profile(llvm::FoldingSetNodeID &ID,
4751 const TemplateTypeParmType *Replaced,
4752 QualType Replacement) {
4753 ID.AddPointer(Replaced);
4754 ID.AddPointer(Replacement.getAsOpaquePtr());
4755 }
4756
4757 static bool classof(const Type *T) {
4758 return T->getTypeClass() == SubstTemplateTypeParm;
4759 }
4760};
4761
4762/// Represents the result of substituting a set of types for a template
4763/// type parameter pack.
4764///
4765/// When a pack expansion in the source code contains multiple parameter packs
4766/// and those parameter packs correspond to different levels of template
4767/// parameter lists, this type node is used to represent a template type
4768/// parameter pack from an outer level, which has already had its argument pack
4769/// substituted but that still lives within a pack expansion that itself
4770/// could not be instantiated. When actually performing a substitution into
4771/// that pack expansion (e.g., when all template parameters have corresponding
4772/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4773/// at the current pack substitution index.
4774class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4775 friend class ASTContext;
4776
4777 /// The original type parameter.
4778 const TemplateTypeParmType *Replaced;
4779
4780 /// A pointer to the set of template arguments that this
4781 /// parameter pack is instantiated with.
4782 const TemplateArgument *Arguments;
4783
4784 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4785 QualType Canon,
4786 const TemplateArgument &ArgPack);
4787
4788public:
4789 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4790
4791 /// Gets the template parameter that was substituted for.
4792 const TemplateTypeParmType *getReplacedParameter() const {
4793 return Replaced;
4794 }
4795
4796 unsigned getNumArgs() const {
4797 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4798 }
4799
4800 bool isSugared() const { return false; }
4801 QualType desugar() const { return QualType(this, 0); }
4802
4803 TemplateArgument getArgumentPack() const;
4804
4805 void Profile(llvm::FoldingSetNodeID &ID);
4806 static void Profile(llvm::FoldingSetNodeID &ID,
4807 const TemplateTypeParmType *Replaced,
4808 const TemplateArgument &ArgPack);
4809
4810 static bool classof(const Type *T) {
4811 return T->getTypeClass() == SubstTemplateTypeParmPack;
4812 }
4813};
4814
4815/// Common base class for placeholders for types that get replaced by
4816/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4817/// class template types, and (eventually) constrained type names from the C++
4818/// Concepts TS.
4819///
4820/// These types are usually a placeholder for a deduced type. However, before
4821/// the initializer is attached, or (usually) if the initializer is
4822/// type-dependent, there is no deduced type and the type is canonical. In
4823/// the latter case, it is also a dependent type.
4824class DeducedType : public Type {
4825protected:
4826 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4827 bool IsInstantiationDependent, bool ContainsParameterPack)
4828 : Type(TC,
4829 // FIXME: Retain the sugared deduced type?
4830 DeducedAsType.isNull() ? QualType(this, 0)
4831 : DeducedAsType.getCanonicalType(),
4832 IsDependent, IsInstantiationDependent,
4833 /*VariablyModified=*/false, ContainsParameterPack) {
4834 if (!DeducedAsType.isNull()) {
4835 if (DeducedAsType->isDependentType())
4836 setDependent();
4837 if (DeducedAsType->isInstantiationDependentType())
4838 setInstantiationDependent();
4839 if (DeducedAsType->containsUnexpandedParameterPack())
4840 setContainsUnexpandedParameterPack();
4841 }
4842 }
4843
4844public:
4845 bool isSugared() const { return !isCanonicalUnqualified(); }
4846 QualType desugar() const { return getCanonicalTypeInternal(); }
4847
4848 /// Get the type deduced for this placeholder type, or null if it's
4849 /// either not been deduced or was deduced to a dependent type.
4850 QualType getDeducedType() const {
4851 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4852 }
4853 bool isDeduced() const {
4854 return !isCanonicalUnqualified() || isDependentType();
4855 }
4856
4857 static bool classof(const Type *T) {
4858 return T->getTypeClass() == Auto ||
4859 T->getTypeClass() == DeducedTemplateSpecialization;
4860 }
4861};
4862
4863/// Represents a C++11 auto or C++14 decltype(auto) type.
4864class AutoType : public DeducedType, public llvm::FoldingSetNode {
4865 friend class ASTContext; // ASTContext creates these
4866
4867 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4868 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4869 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4870 IsDeducedAsDependent, IsDeducedAsPack) {
4871 AutoTypeBits.Keyword = (unsigned)Keyword;
4872 }
4873
4874public:
4875 bool isDecltypeAuto() const {
4876 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4877 }
4878
4879 AutoTypeKeyword getKeyword() const {
4880 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4881 }
4882
4883 void Profile(llvm::FoldingSetNodeID &ID) {
4884 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4885 containsUnexpandedParameterPack());
4886 }
4887
4888 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4889 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4890 ID.AddPointer(Deduced.getAsOpaquePtr());
4891 ID.AddInteger((unsigned)Keyword);
4892 ID.AddBoolean(IsDependent);
4893 ID.AddBoolean(IsPack);
4894 }
4895
4896 static bool classof(const Type *T) {
4897 return T->getTypeClass() == Auto;
4898 }
4899};
4900
4901/// Represents a C++17 deduced template specialization type.
4902class DeducedTemplateSpecializationType : public DeducedType,
4903 public llvm::FoldingSetNode {
4904 friend class ASTContext; // ASTContext creates these
4905
4906 /// The name of the template whose arguments will be deduced.
4907 TemplateName Template;
4908
4909 DeducedTemplateSpecializationType(TemplateName Template,
4910 QualType DeducedAsType,
4911 bool IsDeducedAsDependent)
4912 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4913 IsDeducedAsDependent || Template.isDependent(),
4914 IsDeducedAsDependent || Template.isInstantiationDependent(),
4915 Template.containsUnexpandedParameterPack()),
4916 Template(Template) {}
4917
4918public:
4919 /// Retrieve the name of the template that we are deducing.
4920 TemplateName getTemplateName() const { return Template;}
4921
4922 void Profile(llvm::FoldingSetNodeID &ID) {
4923 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4924 }
4925
4926 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4927 QualType Deduced, bool IsDependent) {
4928 Template.Profile(ID);
4929 ID.AddPointer(Deduced.getAsOpaquePtr());
4930 ID.AddBoolean(IsDependent);
4931 }
4932
4933 static bool classof(const Type *T) {
4934 return T->getTypeClass() == DeducedTemplateSpecialization;
4935 }
4936};
4937
4938/// Represents a type template specialization; the template
4939/// must be a class template, a type alias template, or a template
4940/// template parameter. A template which cannot be resolved to one of
4941/// these, e.g. because it is written with a dependent scope
4942/// specifier, is instead represented as a
4943/// @c DependentTemplateSpecializationType.
4944///
4945/// A non-dependent template specialization type is always "sugar",
4946/// typically for a \c RecordType. For example, a class template
4947/// specialization type of \c vector<int> will refer to a tag type for
4948/// the instantiation \c std::vector<int, std::allocator<int>>
4949///
4950/// Template specializations are dependent if either the template or
4951/// any of the template arguments are dependent, in which case the
4952/// type may also be canonical.
4953///
4954/// Instances of this type are allocated with a trailing array of
4955/// TemplateArguments, followed by a QualType representing the
4956/// non-canonical aliased type when the template is a type alias
4957/// template.
4958class alignas(8) TemplateSpecializationType
4959 : public Type,
4960 public llvm::FoldingSetNode {
4961 friend class ASTContext; // ASTContext creates these
4962
4963 /// The name of the template being specialized. This is
4964 /// either a TemplateName::Template (in which case it is a
4965 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4966 /// TypeAliasTemplateDecl*), a
4967 /// TemplateName::SubstTemplateTemplateParmPack, or a
4968 /// TemplateName::SubstTemplateTemplateParm (in which case the
4969 /// replacement must, recursively, be one of these).
4970 TemplateName Template;
4971
4972 TemplateSpecializationType(TemplateName T,
4973 ArrayRef<TemplateArgument> Args,
4974 QualType Canon,
4975 QualType Aliased);
4976
4977public:
4978 /// Determine whether any of the given template arguments are dependent.
4979 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4980 bool &InstantiationDependent);
4981
4982 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4983 bool &InstantiationDependent);
4984
4985 /// True if this template specialization type matches a current
4986 /// instantiation in the context in which it is found.
4987 bool isCurrentInstantiation() const {
4988 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4989 }
4990
4991 /// Determine if this template specialization type is for a type alias
4992 /// template that has been substituted.
4993 ///
4994 /// Nearly every template specialization type whose template is an alias
4995 /// template will be substituted. However, this is not the case when
4996 /// the specialization contains a pack expansion but the template alias
4997 /// does not have a corresponding parameter pack, e.g.,
4998 ///
4999 /// \code
5000 /// template<typename T, typename U, typename V> struct S;
5001 /// template<typename T, typename U> using A = S<T, int, U>;
5002 /// template<typename... Ts> struct X {
5003 /// typedef A<Ts...> type; // not a type alias
5004 /// };
5005 /// \endcode
5006 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5007
5008 /// Get the aliased type, if this is a specialization of a type alias
5009 /// template.
5010 QualType getAliasedType() const {
5011 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5011, __PRETTY_FUNCTION__))
;
5012 return *reinterpret_cast<const QualType*>(end());
5013 }
5014
5015 using iterator = const TemplateArgument *;
5016
5017 iterator begin() const { return getArgs(); }
5018 iterator end() const; // defined inline in TemplateBase.h
5019
5020 /// Retrieve the name of the template that we are specializing.
5021 TemplateName getTemplateName() const { return Template; }
5022
5023 /// Retrieve the template arguments.
5024 const TemplateArgument *getArgs() const {
5025 return reinterpret_cast<const TemplateArgument *>(this + 1);
5026 }
5027
5028 /// Retrieve the number of template arguments.
5029 unsigned getNumArgs() const {
5030 return TemplateSpecializationTypeBits.NumArgs;
5031 }
5032
5033 /// Retrieve a specific template argument as a type.
5034 /// \pre \c isArgType(Arg)
5035 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5036
5037 ArrayRef<TemplateArgument> template_arguments() const {
5038 return {getArgs(), getNumArgs()};
5039 }
5040
5041 bool isSugared() const {
5042 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5043 }
5044
5045 QualType desugar() const {
5046 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5047 }
5048
5049 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5050 Profile(ID, Template, template_arguments(), Ctx);
5051 if (isTypeAlias())
5052 getAliasedType().Profile(ID);
5053 }
5054
5055 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5056 ArrayRef<TemplateArgument> Args,
5057 const ASTContext &Context);
5058
5059 static bool classof(const Type *T) {
5060 return T->getTypeClass() == TemplateSpecialization;
5061 }
5062};
5063
5064/// Print a template argument list, including the '<' and '>'
5065/// enclosing the template arguments.
5066void printTemplateArgumentList(raw_ostream &OS,
5067 ArrayRef<TemplateArgument> Args,
5068 const PrintingPolicy &Policy);
5069
5070void printTemplateArgumentList(raw_ostream &OS,
5071 ArrayRef<TemplateArgumentLoc> Args,
5072 const PrintingPolicy &Policy);
5073
5074void printTemplateArgumentList(raw_ostream &OS,
5075 const TemplateArgumentListInfo &Args,
5076 const PrintingPolicy &Policy);
5077
5078/// The injected class name of a C++ class template or class
5079/// template partial specialization. Used to record that a type was
5080/// spelled with a bare identifier rather than as a template-id; the
5081/// equivalent for non-templated classes is just RecordType.
5082///
5083/// Injected class name types are always dependent. Template
5084/// instantiation turns these into RecordTypes.
5085///
5086/// Injected class name types are always canonical. This works
5087/// because it is impossible to compare an injected class name type
5088/// with the corresponding non-injected template type, for the same
5089/// reason that it is impossible to directly compare template
5090/// parameters from different dependent contexts: injected class name
5091/// types can only occur within the scope of a particular templated
5092/// declaration, and within that scope every template specialization
5093/// will canonicalize to the injected class name (when appropriate
5094/// according to the rules of the language).
5095class InjectedClassNameType : public Type {
5096 friend class ASTContext; // ASTContext creates these.
5097 friend class ASTNodeImporter;
5098 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5099 // currently suitable for AST reading, too much
5100 // interdependencies.
5101 template <class T> friend class serialization::AbstractTypeReader;
5102
5103 CXXRecordDecl *Decl;
5104
5105 /// The template specialization which this type represents.
5106 /// For example, in
5107 /// template <class T> class A { ... };
5108 /// this is A<T>, whereas in
5109 /// template <class X, class Y> class A<B<X,Y> > { ... };
5110 /// this is A<B<X,Y> >.
5111 ///
5112 /// It is always unqualified, always a template specialization type,
5113 /// and always dependent.
5114 QualType InjectedType;
5115
5116 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5117 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5118 /*InstantiationDependent=*/true,
5119 /*VariablyModified=*/false,
5120 /*ContainsUnexpandedParameterPack=*/false),
5121 Decl(D), InjectedType(TST) {
5122 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5122, __PRETTY_FUNCTION__))
;
5123 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5123, __PRETTY_FUNCTION__))
;
5124 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5124, __PRETTY_FUNCTION__))
;
5125 }
5126
5127public:
5128 QualType getInjectedSpecializationType() const { return InjectedType; }
5129
5130 const TemplateSpecializationType *getInjectedTST() const {
5131 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5132 }
5133
5134 TemplateName getTemplateName() const {
5135 return getInjectedTST()->getTemplateName();
5136 }
5137
5138 CXXRecordDecl *getDecl() const;
5139
5140 bool isSugared() const { return false; }
5141 QualType desugar() const { return QualType(this, 0); }
5142
5143 static bool classof(const Type *T) {
5144 return T->getTypeClass() == InjectedClassName;
5145 }
5146};
5147
5148/// The kind of a tag type.
5149enum TagTypeKind {
5150 /// The "struct" keyword.
5151 TTK_Struct,
5152
5153 /// The "__interface" keyword.
5154 TTK_Interface,
5155
5156 /// The "union" keyword.
5157 TTK_Union,
5158
5159 /// The "class" keyword.
5160 TTK_Class,
5161
5162 /// The "enum" keyword.
5163 TTK_Enum
5164};
5165
5166/// The elaboration keyword that precedes a qualified type name or
5167/// introduces an elaborated-type-specifier.
5168enum ElaboratedTypeKeyword {
5169 /// The "struct" keyword introduces the elaborated-type-specifier.
5170 ETK_Struct,
5171
5172 /// The "__interface" keyword introduces the elaborated-type-specifier.
5173 ETK_Interface,
5174
5175 /// The "union" keyword introduces the elaborated-type-specifier.
5176 ETK_Union,
5177
5178 /// The "class" keyword introduces the elaborated-type-specifier.
5179 ETK_Class,
5180
5181 /// The "enum" keyword introduces the elaborated-type-specifier.
5182 ETK_Enum,
5183
5184 /// The "typename" keyword precedes the qualified type name, e.g.,
5185 /// \c typename T::type.
5186 ETK_Typename,
5187
5188 /// No keyword precedes the qualified type name.
5189 ETK_None
5190};
5191
5192/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5193/// The keyword in stored in the free bits of the base class.
5194/// Also provides a few static helpers for converting and printing
5195/// elaborated type keyword and tag type kind enumerations.
5196class TypeWithKeyword : public Type {
5197protected:
5198 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5199 QualType Canonical, bool Dependent,
5200 bool InstantiationDependent, bool VariablyModified,
5201 bool ContainsUnexpandedParameterPack)
5202 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5203 ContainsUnexpandedParameterPack) {
5204 TypeWithKeywordBits.Keyword = Keyword;
5205 }
5206
5207public:
5208 ElaboratedTypeKeyword getKeyword() const {
5209 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5210 }
5211
5212 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5213 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5214
5215 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5216 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5217 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5218
5219 /// Converts a TagTypeKind into an elaborated type keyword.
5220 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5221
5222 /// Converts an elaborated type keyword into a TagTypeKind.
5223 /// It is an error to provide an elaborated type keyword
5224 /// which *isn't* a tag kind here.
5225 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5226
5227 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5228
5229 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5230
5231 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5232 return getKeywordName(getKeywordForTagTypeKind(Kind));
5233 }
5234
5235 class CannotCastToThisType {};
5236 static CannotCastToThisType classof(const Type *);
5237};
5238
5239/// Represents a type that was referred to using an elaborated type
5240/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5241/// or both.
5242///
5243/// This type is used to keep track of a type name as written in the
5244/// source code, including tag keywords and any nested-name-specifiers.
5245/// The type itself is always "sugar", used to express what was written
5246/// in the source code but containing no additional semantic information.
5247class ElaboratedType final
5248 : public TypeWithKeyword,
5249 public llvm::FoldingSetNode,
5250 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5251 friend class ASTContext; // ASTContext creates these
5252 friend TrailingObjects;
5253
5254 /// The nested name specifier containing the qualifier.
5255 NestedNameSpecifier *NNS;
5256
5257 /// The type that this qualified name refers to.
5258 QualType NamedType;
5259
5260 /// The (re)declaration of this tag type owned by this occurrence is stored
5261 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5262 /// it, or obtain a null pointer if there is none.
5263
5264 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5265 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5266 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5267 NamedType->isDependentType(),
5268 NamedType->isInstantiationDependentType(),
5269 NamedType->isVariablyModifiedType(),
5270 NamedType->containsUnexpandedParameterPack()),
5271 NNS(NNS), NamedType(NamedType) {
5272 ElaboratedTypeBits.HasOwnedTagDecl = false;
5273 if (OwnedTagDecl) {
5274 ElaboratedTypeBits.HasOwnedTagDecl = true;
5275 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5276 }
5277 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5278 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5279 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
;
5280 }
5281
5282public:
5283 /// Retrieve the qualification on this type.
5284 NestedNameSpecifier *getQualifier() const { return NNS; }
5285
5286 /// Retrieve the type named by the qualified-id.
5287 QualType getNamedType() const { return NamedType; }
5288
5289 /// Remove a single level of sugar.
5290 QualType desugar() const { return getNamedType(); }
5291
5292 /// Returns whether this type directly provides sugar.
5293 bool isSugared() const { return true; }
5294
5295 /// Return the (re)declaration of this type owned by this occurrence of this
5296 /// type, or nullptr if there is none.
5297 TagDecl *getOwnedTagDecl() const {
5298 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5299 : nullptr;
5300 }
5301
5302 void Profile(llvm::FoldingSetNodeID &ID) {
5303 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5304 }
5305
5306 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5307 NestedNameSpecifier *NNS, QualType NamedType,
5308 TagDecl *OwnedTagDecl) {
5309 ID.AddInteger(Keyword);
5310 ID.AddPointer(NNS);
5311 NamedType.Profile(ID);
5312 ID.AddPointer(OwnedTagDecl);
5313 }
5314
5315 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5316};
5317
5318/// Represents a qualified type name for which the type name is
5319/// dependent.
5320///
5321/// DependentNameType represents a class of dependent types that involve a
5322/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5323/// name of a type. The DependentNameType may start with a "typename" (for a
5324/// typename-specifier), "class", "struct", "union", or "enum" (for a
5325/// dependent elaborated-type-specifier), or nothing (in contexts where we
5326/// know that we must be referring to a type, e.g., in a base class specifier).
5327/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5328/// mode, this type is used with non-dependent names to delay name lookup until
5329/// instantiation.
5330class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5331 friend class ASTContext; // ASTContext creates these
5332
5333 /// The nested name specifier containing the qualifier.
5334 NestedNameSpecifier *NNS;
5335
5336 /// The type that this typename specifier refers to.
5337 const IdentifierInfo *Name;
5338
5339 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5340 const IdentifierInfo *Name, QualType CanonType)
5341 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5342 /*InstantiationDependent=*/true,
5343 /*VariablyModified=*/false,
5344 NNS->containsUnexpandedParameterPack()),
5345 NNS(NNS), Name(Name) {}
5346
5347public:
5348 /// Retrieve the qualification on this type.
5349 NestedNameSpecifier *getQualifier() const { return NNS; }
5350
5351 /// Retrieve the type named by the typename specifier as an identifier.
5352 ///
5353 /// This routine will return a non-NULL identifier pointer when the
5354 /// form of the original typename was terminated by an identifier,
5355 /// e.g., "typename T::type".
5356 const IdentifierInfo *getIdentifier() const {
5357 return Name;
5358 }
5359
5360 bool isSugared() const { return false; }
5361 QualType desugar() const { return QualType(this, 0); }
5362
5363 void Profile(llvm::FoldingSetNodeID &ID) {
5364 Profile(ID, getKeyword(), NNS, Name);
5365 }
5366
5367 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5368 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5369 ID.AddInteger(Keyword);
5370 ID.AddPointer(NNS);
5371 ID.AddPointer(Name);
5372 }
5373
5374 static bool classof(const Type *T) {
5375 return T->getTypeClass() == DependentName;
5376 }
5377};
5378
5379/// Represents a template specialization type whose template cannot be
5380/// resolved, e.g.
5381/// A<T>::template B<T>
5382class alignas(8) DependentTemplateSpecializationType
5383 : public TypeWithKeyword,
5384 public llvm::FoldingSetNode {
5385 friend class ASTContext; // ASTContext creates these
5386
5387 /// The nested name specifier containing the qualifier.
5388 NestedNameSpecifier *NNS;
5389
5390 /// The identifier of the template.
5391 const IdentifierInfo *Name;
5392
5393 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5394 NestedNameSpecifier *NNS,
5395 const IdentifierInfo *Name,
5396 ArrayRef<TemplateArgument> Args,
5397 QualType Canon);
5398
5399 const TemplateArgument *getArgBuffer() const {
5400 return reinterpret_cast<const TemplateArgument*>(this+1);
5401 }
5402
5403 TemplateArgument *getArgBuffer() {
5404 return reinterpret_cast<TemplateArgument*>(this+1);
5405 }
5406
5407public:
5408 NestedNameSpecifier *getQualifier() const { return NNS; }
5409 const IdentifierInfo *getIdentifier() const { return Name; }
5410
5411 /// Retrieve the template arguments.
5412 const TemplateArgument *getArgs() const {
5413 return getArgBuffer();
5414 }
5415
5416 /// Retrieve the number of template arguments.
5417 unsigned getNumArgs() const {
5418 return DependentTemplateSpecializationTypeBits.NumArgs;
5419 }
5420
5421 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5422
5423 ArrayRef<TemplateArgument> template_arguments() const {
5424 return {getArgs(), getNumArgs()};
5425 }
5426
5427 using iterator = const TemplateArgument *;
5428
5429 iterator begin() const { return getArgs(); }
5430 iterator end() const; // inline in TemplateBase.h
5431
5432 bool isSugared() const { return false; }
5433 QualType desugar() const { return QualType(this, 0); }
5434
5435 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5436 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5437 }
5438
5439 static void Profile(llvm::FoldingSetNodeID &ID,
5440 const ASTContext &Context,
5441 ElaboratedTypeKeyword Keyword,
5442 NestedNameSpecifier *Qualifier,
5443 const IdentifierInfo *Name,
5444 ArrayRef<TemplateArgument> Args);
5445
5446 static bool classof(const Type *T) {
5447 return T->getTypeClass() == DependentTemplateSpecialization;
5448 }
5449};
5450
5451/// Represents a pack expansion of types.
5452///
5453/// Pack expansions are part of C++11 variadic templates. A pack
5454/// expansion contains a pattern, which itself contains one or more
5455/// "unexpanded" parameter packs. When instantiated, a pack expansion
5456/// produces a series of types, each instantiated from the pattern of
5457/// the expansion, where the Ith instantiation of the pattern uses the
5458/// Ith arguments bound to each of the unexpanded parameter packs. The
5459/// pack expansion is considered to "expand" these unexpanded
5460/// parameter packs.
5461///
5462/// \code
5463/// template<typename ...Types> struct tuple;
5464///
5465/// template<typename ...Types>
5466/// struct tuple_of_references {
5467/// typedef tuple<Types&...> type;
5468/// };
5469/// \endcode
5470///
5471/// Here, the pack expansion \c Types&... is represented via a
5472/// PackExpansionType whose pattern is Types&.
5473class PackExpansionType : public Type, public llvm::FoldingSetNode {
5474 friend class ASTContext; // ASTContext creates these
5475
5476 /// The pattern of the pack expansion.
5477 QualType Pattern;
5478
5479 PackExpansionType(QualType Pattern, QualType Canon,
5480 Optional<unsigned> NumExpansions)
5481 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5482 /*InstantiationDependent=*/true,
5483 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5484 /*ContainsUnexpandedParameterPack=*/false),
5485 Pattern(Pattern) {
5486 PackExpansionTypeBits.NumExpansions =
5487 NumExpansions ? *NumExpansions + 1 : 0;
5488 }
5489
5490public:
5491 /// Retrieve the pattern of this pack expansion, which is the
5492 /// type that will be repeatedly instantiated when instantiating the
5493 /// pack expansion itself.
5494 QualType getPattern() const { return Pattern; }
5495
5496 /// Retrieve the number of expansions that this pack expansion will
5497 /// generate, if known.
5498 Optional<unsigned> getNumExpansions() const {
5499 if (PackExpansionTypeBits.NumExpansions)
5500 return PackExpansionTypeBits.NumExpansions - 1;
5501 return None;
5502 }
5503
5504 bool isSugared() const { return !Pattern->isDependentType(); }
5505 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5506
5507 void Profile(llvm::FoldingSetNodeID &ID) {
5508 Profile(ID, getPattern(), getNumExpansions());
5509 }
5510
5511 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5512 Optional<unsigned> NumExpansions) {
5513 ID.AddPointer(Pattern.getAsOpaquePtr());
5514 ID.AddBoolean(NumExpansions.hasValue());
5515 if (NumExpansions)
5516 ID.AddInteger(*NumExpansions);
5517 }
5518
5519 static bool classof(const Type *T) {
5520 return T->getTypeClass() == PackExpansion;
5521 }
5522};
5523
5524/// This class wraps the list of protocol qualifiers. For types that can
5525/// take ObjC protocol qualifers, they can subclass this class.
5526template <class T>
5527class ObjCProtocolQualifiers {
5528protected:
5529 ObjCProtocolQualifiers() = default;
5530
5531 ObjCProtocolDecl * const *getProtocolStorage() const {
5532 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5533 }
5534
5535 ObjCProtocolDecl **getProtocolStorage() {
5536 return static_cast<T*>(this)->getProtocolStorageImpl();
5537 }
5538
5539 void setNumProtocols(unsigned N) {
5540 static_cast<T*>(this)->setNumProtocolsImpl(N);
5541 }
5542
5543 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5544 setNumProtocols(protocols.size());
5545 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
5546 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
;
5547 if (!protocols.empty())
5548 memcpy(getProtocolStorage(), protocols.data(),
5549 protocols.size() * sizeof(ObjCProtocolDecl*));
5550 }
5551
5552public:
5553 using qual_iterator = ObjCProtocolDecl * const *;
5554 using qual_range = llvm::iterator_range<qual_iterator>;
5555
5556 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5557 qual_iterator qual_begin() const { return getProtocolStorage(); }
5558 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5559
5560 bool qual_empty() const { return getNumProtocols() == 0; }
5561
5562 /// Return the number of qualifying protocols in this type, or 0 if
5563 /// there are none.
5564 unsigned getNumProtocols() const {
5565 return static_cast<const T*>(this)->getNumProtocolsImpl();
5566 }
5567
5568 /// Fetch a protocol by index.
5569 ObjCProtocolDecl *getProtocol(unsigned I) const {
5570 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5570, __PRETTY_FUNCTION__))
;
5571 return qual_begin()[I];
5572 }
5573
5574 /// Retrieve all of the protocol qualifiers.
5575 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5576 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5577 }
5578};
5579
5580/// Represents a type parameter type in Objective C. It can take
5581/// a list of protocols.
5582class ObjCTypeParamType : public Type,
5583 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5584 public llvm::FoldingSetNode {
5585 friend class ASTContext;
5586 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5587
5588 /// The number of protocols stored on this type.
5589 unsigned NumProtocols : 6;
5590
5591 ObjCTypeParamDecl *OTPDecl;
5592
5593 /// The protocols are stored after the ObjCTypeParamType node. In the
5594 /// canonical type, the list of protocols are sorted alphabetically
5595 /// and uniqued.
5596 ObjCProtocolDecl **getProtocolStorageImpl();
5597
5598 /// Return the number of qualifying protocols in this interface type,
5599 /// or 0 if there are none.
5600 unsigned getNumProtocolsImpl() const {
5601 return NumProtocols;
5602 }
5603
5604 void setNumProtocolsImpl(unsigned N) {
5605 NumProtocols = N;
5606 }
5607
5608 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5609 QualType can,
5610 ArrayRef<ObjCProtocolDecl *> protocols);
5611
5612public:
5613 bool isSugared() const { return true; }
5614 QualType desugar() const { return getCanonicalTypeInternal(); }
5615
5616 static bool classof(const Type *T) {
5617 return T->getTypeClass() == ObjCTypeParam;
5618 }
5619
5620 void Profile(llvm::FoldingSetNodeID &ID);
5621 static void Profile(llvm::FoldingSetNodeID &ID,
5622 const ObjCTypeParamDecl *OTPDecl,
5623 ArrayRef<ObjCProtocolDecl *> protocols);
5624
5625 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5626};
5627
5628/// Represents a class type in Objective C.
5629///
5630/// Every Objective C type is a combination of a base type, a set of
5631/// type arguments (optional, for parameterized classes) and a list of
5632/// protocols.
5633///
5634/// Given the following declarations:
5635/// \code
5636/// \@class C<T>;
5637/// \@protocol P;
5638/// \endcode
5639///
5640/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5641/// with base C and no protocols.
5642///
5643/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5644/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5645/// protocol list.
5646/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5647/// and protocol list [P].
5648///
5649/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5650/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5651/// and no protocols.
5652///
5653/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5654/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5655/// this should get its own sugar class to better represent the source.
5656class ObjCObjectType : public Type,
5657 public ObjCProtocolQualifiers<ObjCObjectType> {
5658 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5659
5660 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5661 // after the ObjCObjectPointerType node.
5662 // ObjCObjectType.NumProtocols - the number of protocols stored
5663 // after the type arguments of ObjCObjectPointerType node.
5664 //
5665 // These protocols are those written directly on the type. If
5666 // protocol qualifiers ever become additive, the iterators will need
5667 // to get kindof complicated.
5668 //
5669 // In the canonical object type, these are sorted alphabetically
5670 // and uniqued.
5671
5672 /// Either a BuiltinType or an InterfaceType or sugar for either.
5673 QualType BaseType;
5674
5675 /// Cached superclass type.
5676 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5677 CachedSuperClassType;
5678
5679 QualType *getTypeArgStorage();
5680 const QualType *getTypeArgStorage() const {
5681 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5682 }
5683
5684 ObjCProtocolDecl **getProtocolStorageImpl();
5685 /// Return the number of qualifying protocols in this interface type,
5686 /// or 0 if there are none.
5687 unsigned getNumProtocolsImpl() const {
5688 return ObjCObjectTypeBits.NumProtocols;
5689 }
5690 void setNumProtocolsImpl(unsigned N) {
5691 ObjCObjectTypeBits.NumProtocols = N;
5692 }
5693
5694protected:
5695 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5696
5697 ObjCObjectType(QualType Canonical, QualType Base,
5698 ArrayRef<QualType> typeArgs,
5699 ArrayRef<ObjCProtocolDecl *> protocols,
5700 bool isKindOf);
5701
5702 ObjCObjectType(enum Nonce_ObjCInterface)
5703 : Type(ObjCInterface, QualType(), false, false, false, false),
5704 BaseType(QualType(this_(), 0)) {
5705 ObjCObjectTypeBits.NumProtocols = 0;
5706 ObjCObjectTypeBits.NumTypeArgs = 0;
5707 ObjCObjectTypeBits.IsKindOf = 0;
5708 }
5709
5710 void computeSuperClassTypeSlow() const;
5711
5712public:
5713 /// Gets the base type of this object type. This is always (possibly
5714 /// sugar for) one of:
5715 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5716 /// user, which is a typedef for an ObjCObjectPointerType)
5717 /// - the 'Class' builtin type (same caveat)
5718 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5719 QualType getBaseType() const { return BaseType; }
5720
5721 bool isObjCId() const {
5722 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5723 }
5724
5725 bool isObjCClass() const {
5726 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5727 }
5728
5729 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5730 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5731 bool isObjCUnqualifiedIdOrClass() const {
5732 if (!qual_empty()) return false;
5733 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5734 return T->getKind() == BuiltinType::ObjCId ||
5735 T->getKind() == BuiltinType::ObjCClass;
5736 return false;
5737 }
5738 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5739 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5740
5741 /// Gets the interface declaration for this object type, if the base type
5742 /// really is an interface.
5743 ObjCInterfaceDecl *getInterface() const;
5744
5745 /// Determine whether this object type is "specialized", meaning
5746 /// that it has type arguments.
5747 bool isSpecialized() const;
5748
5749 /// Determine whether this object type was written with type arguments.
5750 bool isSpecializedAsWritten() const {
5751 return ObjCObjectTypeBits.NumTypeArgs > 0;
5752 }
5753
5754 /// Determine whether this object type is "unspecialized", meaning
5755 /// that it has no type arguments.
5756 bool isUnspecialized() const { return !isSpecialized(); }
5757
5758 /// Determine whether this object type is "unspecialized" as
5759 /// written, meaning that it has no type arguments.
5760 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5761
5762 /// Retrieve the type arguments of this object type (semantically).
5763 ArrayRef<QualType> getTypeArgs() const;
5764
5765 /// Retrieve the type arguments of this object type as they were
5766 /// written.
5767 ArrayRef<QualType> getTypeArgsAsWritten() const {
5768 return llvm::makeArrayRef(getTypeArgStorage(),
5769 ObjCObjectTypeBits.NumTypeArgs);
5770 }
5771
5772 /// Whether this is a "__kindof" type as written.
5773 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5774
5775 /// Whether this ia a "__kindof" type (semantically).
5776 bool isKindOfType() const;
5777
5778 /// Retrieve the type of the superclass of this object type.
5779 ///
5780 /// This operation substitutes any type arguments into the
5781 /// superclass of the current class type, potentially producing a
5782 /// specialization of the superclass type. Produces a null type if
5783 /// there is no superclass.
5784 QualType getSuperClassType() const {
5785 if (!CachedSuperClassType.getInt())
5786 computeSuperClassTypeSlow();
5787
5788 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5788, __PRETTY_FUNCTION__))
;
5789 return QualType(CachedSuperClassType.getPointer(), 0);
5790 }
5791
5792 /// Strip off the Objective-C "kindof" type and (with it) any
5793 /// protocol qualifiers.
5794 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5795
5796 bool isSugared() const { return false; }
5797 QualType desugar() const { return QualType(this, 0); }
5798
5799 static bool classof(const Type *T) {
5800 return T->getTypeClass() == ObjCObject ||
5801 T->getTypeClass() == ObjCInterface;
5802 }
5803};
5804
5805/// A class providing a concrete implementation
5806/// of ObjCObjectType, so as to not increase the footprint of
5807/// ObjCInterfaceType. Code outside of ASTContext and the core type
5808/// system should not reference this type.
5809class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5810 friend class ASTContext;
5811
5812 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5813 // will need to be modified.
5814
5815 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5816 ArrayRef<QualType> typeArgs,
5817 ArrayRef<ObjCProtocolDecl *> protocols,
5818 bool isKindOf)
5819 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5820
5821public:
5822 void Profile(llvm::FoldingSetNodeID &ID);
5823 static void Profile(llvm::FoldingSetNodeID &ID,
5824 QualType Base,
5825 ArrayRef<QualType> typeArgs,
5826 ArrayRef<ObjCProtocolDecl *> protocols,
5827 bool isKindOf);
5828};
5829
5830inline QualType *ObjCObjectType::getTypeArgStorage() {
5831 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5832}
5833
5834inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5835 return reinterpret_cast<ObjCProtocolDecl**>(
5836 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5837}
5838
5839inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5840 return reinterpret_cast<ObjCProtocolDecl**>(
5841 static_cast<ObjCTypeParamType*>(this)+1);
5842}
5843
5844/// Interfaces are the core concept in Objective-C for object oriented design.
5845/// They basically correspond to C++ classes. There are two kinds of interface
5846/// types: normal interfaces like `NSString`, and qualified interfaces, which
5847/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5848///
5849/// ObjCInterfaceType guarantees the following properties when considered
5850/// as a subtype of its superclass, ObjCObjectType:
5851/// - There are no protocol qualifiers. To reinforce this, code which
5852/// tries to invoke the protocol methods via an ObjCInterfaceType will
5853/// fail to compile.
5854/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5855/// T->getBaseType() == QualType(T, 0).
5856class ObjCInterfaceType : public ObjCObjectType {
5857 friend class ASTContext; // ASTContext creates these.
5858 friend class ASTReader;
5859 friend class ObjCInterfaceDecl;
5860 template <class T> friend class serialization::AbstractTypeReader;
5861
5862 mutable ObjCInterfaceDecl *Decl;
5863
5864 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5865 : ObjCObjectType(Nonce_ObjCInterface),
5866 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5867
5868public:
5869 /// Get the declaration of this interface.
5870 ObjCInterfaceDecl *getDecl() const { return Decl; }
5871
5872 bool isSugared() const { return false; }
5873 QualType desugar() const { return QualType(this, 0); }
5874
5875 static bool classof(const Type *T) {
5876 return T->getTypeClass() == ObjCInterface;
5877 }
5878
5879 // Nonsense to "hide" certain members of ObjCObjectType within this
5880 // class. People asking for protocols on an ObjCInterfaceType are
5881 // not going to get what they want: ObjCInterfaceTypes are
5882 // guaranteed to have no protocols.
5883 enum {
5884 qual_iterator,
5885 qual_begin,
5886 qual_end,
5887 getNumProtocols,
5888 getProtocol
5889 };
5890};
5891
5892inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5893 QualType baseType = getBaseType();
5894 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5895 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5896 return T->getDecl();
5897
5898 baseType = ObjT->getBaseType();
5899 }
5900
5901 return nullptr;
5902}
5903
5904/// Represents a pointer to an Objective C object.
5905///
5906/// These are constructed from pointer declarators when the pointee type is
5907/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5908/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5909/// and 'Class<P>' are translated into these.
5910///
5911/// Pointers to pointers to Objective C objects are still PointerTypes;
5912/// only the first level of pointer gets it own type implementation.
5913class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5914 friend class ASTContext; // ASTContext creates these.
5915
5916 QualType PointeeType;
5917
5918 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5919 : Type(ObjCObjectPointer, Canonical,
5920 Pointee->isDependentType(),
5921 Pointee->isInstantiationDependentType(),
5922 Pointee->isVariablyModifiedType(),
5923 Pointee->containsUnexpandedParameterPack()),
5924 PointeeType(Pointee) {}
5925
5926public:
5927 /// Gets the type pointed to by this ObjC pointer.
5928 /// The result will always be an ObjCObjectType or sugar thereof.
5929 QualType getPointeeType() const { return PointeeType; }
5930
5931 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5932 ///
5933 /// This method is equivalent to getPointeeType() except that
5934 /// it discards any typedefs (or other sugar) between this
5935 /// type and the "outermost" object type. So for:
5936 /// \code
5937 /// \@class A; \@protocol P; \@protocol Q;
5938 /// typedef A<P> AP;
5939 /// typedef A A1;
5940 /// typedef A1<P> A1P;
5941 /// typedef A1P<Q> A1PQ;
5942 /// \endcode
5943 /// For 'A*', getObjectType() will return 'A'.
5944 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5945 /// For 'AP*', getObjectType() will return 'A<P>'.
5946 /// For 'A1*', getObjectType() will return 'A'.
5947 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5948 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5949 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5950 /// adding protocols to a protocol-qualified base discards the
5951 /// old qualifiers (for now). But if it didn't, getObjectType()
5952 /// would return 'A1P<Q>' (and we'd have to make iterating over
5953 /// qualifiers more complicated).
5954 const ObjCObjectType *getObjectType() const {
5955 return PointeeType->castAs<ObjCObjectType>();
5956 }
5957
5958 /// If this pointer points to an Objective C
5959 /// \@interface type, gets the type for that interface. Any protocol
5960 /// qualifiers on the interface are ignored.
5961 ///
5962 /// \return null if the base type for this pointer is 'id' or 'Class'
5963 const ObjCInterfaceType *getInterfaceType() const;
5964
5965 /// If this pointer points to an Objective \@interface
5966 /// type, gets the declaration for that interface.
5967 ///
5968 /// \return null if the base type for this pointer is 'id' or 'Class'
5969 ObjCInterfaceDecl *getInterfaceDecl() const {
5970 return getObjectType()->getInterface();
5971 }
5972
5973 /// True if this is equivalent to the 'id' type, i.e. if
5974 /// its object type is the primitive 'id' type with no protocols.
5975 bool isObjCIdType() const {
5976 return getObjectType()->isObjCUnqualifiedId();
5977 }
5978
5979 /// True if this is equivalent to the 'Class' type,
5980 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5981 bool isObjCClassType() const {
5982 return getObjectType()->isObjCUnqualifiedClass();
5983 }
5984
5985 /// True if this is equivalent to the 'id' or 'Class' type,
5986 bool isObjCIdOrClassType() const {
5987 return getObjectType()->isObjCUnqualifiedIdOrClass();
5988 }
5989
5990 /// True if this is equivalent to 'id<P>' for some non-empty set of
5991 /// protocols.
5992 bool isObjCQualifiedIdType() const {
5993 return getObjectType()->isObjCQualifiedId();
5994 }
5995
5996 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5997 /// protocols.
5998 bool isObjCQualifiedClassType() const {
5999 return getObjectType()->isObjCQualifiedClass();
6000 }
6001
6002 /// Whether this is a "__kindof" type.
6003 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6004
6005 /// Whether this type is specialized, meaning that it has type arguments.
6006 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6007
6008 /// Whether this type is specialized, meaning that it has type arguments.
6009 bool isSpecializedAsWritten() const {
6010 return getObjectType()->isSpecializedAsWritten();
6011 }
6012
6013 /// Whether this type is unspecialized, meaning that is has no type arguments.
6014 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6015
6016 /// Determine whether this object type is "unspecialized" as
6017 /// written, meaning that it has no type arguments.
6018 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6019
6020 /// Retrieve the type arguments for this type.
6021 ArrayRef<QualType> getTypeArgs() const {
6022 return getObjectType()->getTypeArgs();
6023 }
6024
6025 /// Retrieve the type arguments for this type.
6026 ArrayRef<QualType> getTypeArgsAsWritten() const {
6027 return getObjectType()->getTypeArgsAsWritten();
6028 }
6029
6030 /// An iterator over the qualifiers on the object type. Provided
6031 /// for convenience. This will always iterate over the full set of
6032 /// protocols on a type, not just those provided directly.
6033 using qual_iterator = ObjCObjectType::qual_iterator;
6034 using qual_range = llvm::iterator_range<qual_iterator>;
6035
6036 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6037
6038 qual_iterator qual_begin() const {
6039 return getObjectType()->qual_begin();
6040 }
6041
6042 qual_iterator qual_end() const {
6043 return getObjectType()->qual_end();
6044 }
6045
6046 bool qual_empty() const { return getObjectType()->qual_empty(); }
6047
6048 /// Return the number of qualifying protocols on the object type.
6049 unsigned getNumProtocols() const {
6050 return getObjectType()->getNumProtocols();
6051 }
6052
6053 /// Retrieve a qualifying protocol by index on the object type.
6054 ObjCProtocolDecl *getProtocol(unsigned I) const {
6055 return getObjectType()->getProtocol(I);
6056 }
6057
6058 bool isSugared() const { return false; }
6059 QualType desugar() const { return QualType(this, 0); }
6060
6061 /// Retrieve the type of the superclass of this object pointer type.
6062 ///
6063 /// This operation substitutes any type arguments into the
6064 /// superclass of the current class type, potentially producing a
6065 /// pointer to a specialization of the superclass type. Produces a
6066 /// null type if there is no superclass.
6067 QualType getSuperClassType() const;
6068
6069 /// Strip off the Objective-C "kindof" type and (with it) any
6070 /// protocol qualifiers.
6071 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6072 const ASTContext &ctx) const;
6073
6074 void Profile(llvm::FoldingSetNodeID &ID) {
6075 Profile(ID, getPointeeType());
6076 }
6077
6078 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6079 ID.AddPointer(T.getAsOpaquePtr());
6080 }
6081
6082 static bool classof(const Type *T) {
6083 return T->getTypeClass() == ObjCObjectPointer;
6084 }
6085};
6086
6087class AtomicType : public Type, public llvm::FoldingSetNode {
6088 friend class ASTContext; // ASTContext creates these.
6089
6090 QualType ValueType;
6091
6092 AtomicType(QualType ValTy, QualType Canonical)
6093 : Type(Atomic, Canonical, ValTy->isDependentType(),
6094 ValTy->isInstantiationDependentType(),
6095 ValTy->isVariablyModifiedType(),
6096 ValTy->containsUnexpandedParameterPack()),
6097 ValueType(ValTy) {}
6098
6099public:
6100 /// Gets the type contained by this atomic type, i.e.
6101 /// the type returned by performing an atomic load of this atomic type.
6102 QualType getValueType() const { return ValueType; }
6103
6104 bool isSugared() const { return false; }
6105 QualType desugar() const { return QualType(this, 0); }
6106
6107 void Profile(llvm::FoldingSetNodeID &ID) {
6108 Profile(ID, getValueType());
6109 }
6110
6111 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6112 ID.AddPointer(T.getAsOpaquePtr());
6113 }
6114
6115 static bool classof(const Type *T) {
6116 return T->getTypeClass() == Atomic;
6117 }
6118};
6119
6120/// PipeType - OpenCL20.
6121class PipeType : public Type, public llvm::FoldingSetNode {
6122 friend class ASTContext; // ASTContext creates these.
6123
6124 QualType ElementType;
6125 bool isRead;
6126
6127 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6128 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6129 elemType->isInstantiationDependentType(),
6130 elemType->isVariablyModifiedType(),
6131 elemType->containsUnexpandedParameterPack()),
6132 ElementType(elemType), isRead(isRead) {}
6133
6134public:
6135 QualType getElementType() const { return ElementType; }
6136
6137 bool isSugared() const { return false; }
6138
6139 QualType desugar() const { return QualType(this, 0); }
6140
6141 void Profile(llvm::FoldingSetNodeID &ID) {
6142 Profile(ID, getElementType(), isReadOnly());
6143 }
6144
6145 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6146 ID.AddPointer(T.getAsOpaquePtr());
6147 ID.AddBoolean(isRead);
6148 }
6149
6150 static bool classof(const Type *T) {
6151 return T->getTypeClass() == Pipe;
6152 }
6153
6154 bool isReadOnly() const { return isRead; }
6155};
6156
6157/// A qualifier set is used to build a set of qualifiers.
6158class QualifierCollector : public Qualifiers {
6159public:
6160 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6161
6162 /// Collect any qualifiers on the given type and return an
6163 /// unqualified type. The qualifiers are assumed to be consistent
6164 /// with those already in the type.
6165 const Type *strip(QualType type) {
6166 addFastQualifiers(type.getLocalFastQualifiers());
6167 if (!type.hasLocalNonFastQualifiers())
6168 return type.getTypePtrUnsafe();
6169
6170 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6171 addConsistentQualifiers(extQuals->getQualifiers());
6172 return extQuals->getBaseType();
6173 }
6174
6175 /// Apply the collected qualifiers to the given type.
6176 QualType apply(const ASTContext &Context, QualType QT) const;
6177
6178 /// Apply the collected qualifiers to the given type.
6179 QualType apply(const ASTContext &Context, const Type* T) const;
6180};
6181
6182/// A container of type source information.
6183///
6184/// A client can read the relevant info using TypeLoc wrappers, e.g:
6185/// @code
6186/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6187/// TL.getBeginLoc().print(OS, SrcMgr);
6188/// @endcode
6189class alignas(8) TypeSourceInfo {
6190 // Contains a memory block after the class, used for type source information,
6191 // allocated by ASTContext.
6192 friend class ASTContext;
6193
6194 QualType Ty;
6195
6196 TypeSourceInfo(QualType ty) : Ty(ty) {}
6197
6198public:
6199 /// Return the type wrapped by this type source info.
6200 QualType getType() const { return Ty; }
6201
6202 /// Return the TypeLoc wrapper for the type source info.
6203 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6204
6205 /// Override the type stored in this TypeSourceInfo. Use with caution!
6206 void overrideType(QualType T) { Ty = T; }
6207};
6208
6209// Inline function definitions.
6210
6211inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6212 SplitQualType desugar =
6213 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6214 desugar.Quals.addConsistentQualifiers(Quals);
6215 return desugar;
6216}
6217
6218inline const Type *QualType::getTypePtr() const {
6219 return getCommonPtr()->BaseType;
6220}
6221
6222inline const Type *QualType::getTypePtrOrNull() const {
6223 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6224}
6225
6226inline SplitQualType QualType::split() const {
6227 if (!hasLocalNonFastQualifiers())
6228 return SplitQualType(getTypePtrUnsafe(),
6229 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6230
6231 const ExtQuals *eq = getExtQualsUnsafe();
6232 Qualifiers qs = eq->getQualifiers();
6233 qs.addFastQualifiers(getLocalFastQualifiers());
6234 return SplitQualType(eq->getBaseType(), qs);
6235}
6236
6237inline Qualifiers QualType::getLocalQualifiers() const {
6238 Qualifiers Quals;
6239 if (hasLocalNonFastQualifiers())
6240 Quals = getExtQualsUnsafe()->getQualifiers();
6241 Quals.addFastQualifiers(getLocalFastQualifiers());
6242 return Quals;
6243}
6244
6245inline Qualifiers QualType::getQualifiers() const {
6246 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6247 quals.addFastQualifiers(getLocalFastQualifiers());
6248 return quals;
6249}
6250
6251inline unsigned QualType::getCVRQualifiers() const {
6252 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6253 cvr |= getLocalCVRQualifiers();
6254 return cvr;
6255}
6256
6257inline QualType QualType::getCanonicalType() const {
6258 QualType canon = getCommonPtr()->CanonicalType;
6259 return canon.withFastQualifiers(getLocalFastQualifiers());
6260}
6261
6262inline bool QualType::isCanonical() const {
6263 return getTypePtr()->isCanonicalUnqualified();
6264}
6265
6266inline bool QualType::isCanonicalAsParam() const {
6267 if (!isCanonical()) return false;
6268 if (hasLocalQualifiers()) return false;
6269
6270 const Type *T = getTypePtr();
6271 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6272 return false;
6273
6274 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6275}
6276
6277inline bool QualType::isConstQualified() const {
6278 return isLocalConstQualified() ||
6279 getCommonPtr()->CanonicalType.isLocalConstQualified();
6280}
6281
6282inline bool QualType::isRestrictQualified() const {
6283 return isLocalRestrictQualified() ||
6284 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6285}
6286
6287
6288inline bool QualType::isVolatileQualified() const {
6289 return isLocalVolatileQualified() ||
6290 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6291}
6292
6293inline bool QualType::hasQualifiers() const {
6294 return hasLocalQualifiers() ||
6295 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6296}
6297
6298inline QualType QualType::getUnqualifiedType() const {
6299 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6300 return QualType(getTypePtr(), 0);
6301
6302 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6303}
6304
6305inline SplitQualType QualType::getSplitUnqualifiedType() const {
6306 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6307 return split();
6308
6309 return getSplitUnqualifiedTypeImpl(*this);
6310}
6311
6312inline void QualType::removeLocalConst() {
6313 removeLocalFastQualifiers(Qualifiers::Const);
6314}
6315
6316inline void QualType::removeLocalRestrict() {
6317 removeLocalFastQualifiers(Qualifiers::Restrict);
6318}
6319
6320inline void QualType::removeLocalVolatile() {
6321 removeLocalFastQualifiers(Qualifiers::Volatile);
6322}
6323
6324inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6325 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 6325, __PRETTY_FUNCTION__))
;
6326 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6327 "Fast bits differ from CVR bits!");
6328
6329 // Fast path: we don't need to touch the slow qualifiers.
6330 removeLocalFastQualifiers(Mask);
6331}
6332
6333/// Check if this type has any address space qualifier.
6334inline bool QualType::hasAddressSpace() const {
6335 return getQualifiers().hasAddressSpace();
6336}
6337
6338/// Return the address space of this type.
6339inline LangAS QualType::getAddressSpace() const {
6340 return getQualifiers().getAddressSpace();
6341}
6342
6343/// Return the gc attribute of this type.
6344inline Qualifiers::GC QualType::getObjCGCAttr() const {
6345 return getQualifiers().getObjCGCAttr();
6346}
6347
6348inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6349 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6350 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6351 return false;
6352}
6353
6354inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6355 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6356 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6357 return false;
6358}
6359
6360inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6361 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6362 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6363 return false;
6364}
6365
6366inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6367 if (const auto *PT = t.getAs<PointerType>()) {
6368 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6369 return FT->getExtInfo();
6370 } else if (const auto *FT = t.getAs<FunctionType>())
6371 return FT->getExtInfo();
6372
6373 return FunctionType::ExtInfo();
6374}
6375
6376inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6377 return getFunctionExtInfo(*t);
6378}
6379
6380/// Determine whether this type is more
6381/// qualified than the Other type. For example, "const volatile int"
6382/// is more qualified than "const int", "volatile int", and
6383/// "int". However, it is not more qualified than "const volatile
6384/// int".
6385inline bool QualType::isMoreQualifiedThan(QualType other) const {
6386 Qualifiers MyQuals = getQualifiers();
6387 Qualifiers OtherQuals = other.getQualifiers();
6388 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6389}
6390
6391/// Determine whether this type is at last
6392/// as qualified as the Other type. For example, "const volatile
6393/// int" is at least as qualified as "const int", "volatile int",
6394/// "int", and "const volatile int".
6395inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6396 Qualifiers OtherQuals = other.getQualifiers();
6397
6398 // Ignore __unaligned qualifier if this type is a void.
6399 if (getUnqualifiedType()->isVoidType())
6400 OtherQuals.removeUnaligned();
6401
6402 return getQualifiers().compatiblyIncludes(OtherQuals);
6403}
6404
6405/// If Type is a reference type (e.g., const
6406/// int&), returns the type that the reference refers to ("const
6407/// int"). Otherwise, returns the type itself. This routine is used
6408/// throughout Sema to implement C++ 5p6:
6409///
6410/// If an expression initially has the type "reference to T" (8.3.2,
6411/// 8.5.3), the type is adjusted to "T" prior to any further
6412/// analysis, the expression designates the object or function
6413/// denoted by the reference, and the expression is an lvalue.
6414inline QualType QualType::getNonReferenceType() const {
6415 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6416 return RefType->getPointeeType();
6417 else
6418 return *this;
6419}
6420
6421inline bool QualType::isCForbiddenLValueType() const {
6422 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6423 getTypePtr()->isFunctionType());
6424}
6425
6426/// Tests whether the type is categorized as a fundamental type.
6427///
6428/// \returns True for types specified in C++0x [basic.fundamental].
6429inline bool Type::isFundamentalType() const {
6430 return isVoidType() ||
6431 isNullPtrType() ||
6432 // FIXME: It's really annoying that we don't have an
6433 // 'isArithmeticType()' which agrees with the standard definition.
6434 (isArithmeticType() && !isEnumeralType());
6435}
6436
6437/// Tests whether the type is categorized as a compound type.
6438///
6439/// \returns True for types specified in C++0x [basic.compound].
6440inline bool Type::isCompoundType() const {
6441 // C++0x [basic.compound]p1:
6442 // Compound types can be constructed in the following ways:
6443 // -- arrays of objects of a given type [...];
6444 return isArrayType() ||
6445 // -- functions, which have parameters of given types [...];
6446 isFunctionType() ||
6447 // -- pointers to void or objects or functions [...];
6448 isPointerType() ||
6449 // -- references to objects or functions of a given type. [...]
6450 isReferenceType() ||
6451 // -- classes containing a sequence of objects of various types, [...];
6452 isRecordType() ||
6453 // -- unions, which are classes capable of containing objects of different
6454 // types at different times;
6455 isUnionType() ||
6456 // -- enumerations, which comprise a set of named constant values. [...];
6457 isEnumeralType() ||
6458 // -- pointers to non-static class members, [...].
6459 isMemberPointerType();
6460}
6461
6462inline bool Type::isFunctionType() const {
6463 return isa<FunctionType>(CanonicalType);
6464}
6465
6466inline bool Type::isPointerType() const {
6467 return isa<PointerType>(CanonicalType);
6468}
6469
6470inline bool Type::isAnyPointerType() const {
6471 return isPointerType() || isObjCObjectPointerType();
6472}
6473
6474inline bool Type::isBlockPointerType() const {
6475 return isa<BlockPointerType>(CanonicalType);
6476}
6477
6478inline bool Type::isReferenceType() const {
6479 return isa<ReferenceType>(CanonicalType);
6480}
6481
6482inline bool Type::isLValueReferenceType() const {
6483 return isa<LValueReferenceType>(CanonicalType);
6484}
6485
6486inline bool Type::isRValueReferenceType() const {
6487 return isa<RValueReferenceType>(CanonicalType);
6488}
6489
6490inline bool Type::isObjectPointerType() const {
6491 // Note: an "object pointer type" is not the same thing as a pointer to an
6492 // object type; rather, it is a pointer to an object type or a pointer to cv
6493 // void.
6494 if (const auto *T = getAs<PointerType>())
6495 return !T->getPointeeType()->isFunctionType();
6496 else
6497 return false;
6498}
6499
6500inline bool Type::isFunctionPointerType() const {
6501 if (const auto *T = getAs<PointerType>())
6502 return T->getPointeeType()->isFunctionType();
6503 else
6504 return false;
6505}
6506
6507inline bool Type::isFunctionReferenceType() const {
6508 if (const auto *T = getAs<ReferenceType>())
6509 return T->getPointeeType()->isFunctionType();
6510 else
6511 return false;
6512}
6513
6514inline bool Type::isMemberPointerType() const {
6515 return isa<MemberPointerType>(CanonicalType);
6516}
6517
6518inline bool Type::isMemberFunctionPointerType() const {
6519 if (const auto *T = getAs<MemberPointerType>())
6520 return T->isMemberFunctionPointer();
6521 else
6522 return false;
6523}
6524
6525inline bool Type::isMemberDataPointerType() const {
6526 if (const auto *T = getAs<MemberPointerType>())
6527 return T->isMemberDataPointer();
6528 else
6529 return false;
6530}
6531
6532inline bool Type::isArrayType() const {
6533 return isa<ArrayType>(CanonicalType);
6534}
6535
6536inline bool Type::isConstantArrayType() const {
6537 return isa<ConstantArrayType>(CanonicalType);
6538}
6539
6540inline bool Type::isIncompleteArrayType() const {
6541 return isa<IncompleteArrayType>(CanonicalType);
6542}
6543
6544inline bool Type::isVariableArrayType() const {
6545 return isa<VariableArrayType>(CanonicalType);
6546}
6547
6548inline bool Type::isDependentSizedArrayType() const {
6549 return isa<DependentSizedArrayType>(CanonicalType);
6550}
6551
6552inline bool Type::isBuiltinType() const {
6553 return isa<BuiltinType>(CanonicalType);
6554}
6555
6556inline bool Type::isRecordType() const {
6557 return isa<RecordType>(CanonicalType);
6558}
6559
6560inline bool Type::isEnumeralType() const {
6561 return isa<EnumType>(CanonicalType);
6562}
6563
6564inline bool Type::isAnyComplexType() const {
6565 return isa<ComplexType>(CanonicalType);
6566}
6567
6568inline bool Type::isVectorType() const {
6569 return isa<VectorType>(CanonicalType);
6570}
6571
6572inline bool Type::isExtVectorType() const {
6573 return isa<ExtVectorType>(CanonicalType);
6574}
6575
6576inline bool Type::isDependentAddressSpaceType() const {
6577 return isa<DependentAddressSpaceType>(CanonicalType);
6578}
6579
6580inline bool Type::isObjCObjectPointerType() const {
6581 return isa<ObjCObjectPointerType>(CanonicalType);
39
Assuming field 'CanonicalType' is a 'ObjCObjectPointerType'
40
Returning the value 1, which participates in a condition later
6582}
6583
6584inline bool Type::isObjCObjectType() const {
6585 return isa<ObjCObjectType>(CanonicalType);
6586}
6587
6588inline bool Type::isObjCObjectOrInterfaceType() const {
6589 return isa<ObjCInterfaceType>(CanonicalType) ||
6590 isa<ObjCObjectType>(CanonicalType);
6591}
6592
6593inline bool Type::isAtomicType() const {
6594 return isa<AtomicType>(CanonicalType);
6595}
6596
6597inline bool Type::isUndeducedAutoType() const {
6598 return isa<AutoType>(CanonicalType);
6599}
6600
6601inline bool Type::isObjCQualifiedIdType() const {
6602 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6603 return OPT->isObjCQualifiedIdType();
6604 return false;
6605}
6606
6607inline bool Type::isObjCQualifiedClassType() const {
6608 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6609 return OPT->isObjCQualifiedClassType();
6610 return false;
6611}
6612
6613inline bool Type::isObjCIdType() const {
6614 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6615 return OPT->isObjCIdType();
6616 return false;
6617}
6618
6619inline bool Type::isObjCClassType() const {
6620 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6621 return OPT->isObjCClassType();
6622 return false;
6623}
6624
6625inline bool Type::isObjCSelType() const {
6626 if (const auto *OPT = getAs<PointerType>())
6627 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6628 return false;
6629}
6630
6631inline bool Type::isObjCBuiltinType() const {
6632 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6633}
6634
6635inline bool Type::isDecltypeType() const {
6636 return isa<DecltypeType>(this);
6637}
6638
6639#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6640 inline bool Type::is##Id##Type() const { \
6641 return isSpecificBuiltinType(BuiltinType::Id); \
6642 }
6643#include "clang/Basic/OpenCLImageTypes.def"
6644
6645inline bool Type::isSamplerT() const {
6646 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6647}
6648
6649inline bool Type::isEventT() const {
6650 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6651}
6652
6653inline bool Type::isClkEventT() const {
6654 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6655}
6656
6657inline bool Type::isQueueT() const {
6658 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6659}
6660
6661inline bool Type::isReserveIDT() const {
6662 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6663}
6664
6665inline bool Type::isImageType() const {
6666#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6667 return
6668#include "clang/Basic/OpenCLImageTypes.def"
6669 false; // end boolean or operation
6670}
6671
6672inline bool Type::isPipeType() const {
6673 return isa<PipeType>(CanonicalType);
6674}
6675
6676#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6677 inline bool Type::is##Id##Type() const { \
6678 return isSpecificBuiltinType(BuiltinType::Id); \
6679 }
6680#include "clang/Basic/OpenCLExtensionTypes.def"
6681
6682inline bool Type::isOCLIntelSubgroupAVCType() const {
6683#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6684 isOCLIntelSubgroupAVC##Id##Type() ||
6685 return
6686#include "clang/Basic/OpenCLExtensionTypes.def"
6687 false; // end of boolean or operation
6688}
6689
6690inline bool Type::isOCLExtOpaqueType() const {
6691#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6692 return
6693#include "clang/Basic/OpenCLExtensionTypes.def"
6694 false; // end of boolean or operation
6695}
6696
6697inline bool Type::isOpenCLSpecificType() const {
6698 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6699 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6700}
6701
6702inline bool Type::isTemplateTypeParmType() const {
6703 return isa<TemplateTypeParmType>(CanonicalType);
6704}
6705
6706inline bool Type::isSpecificBuiltinType(unsigned K) const {
6707 if (const BuiltinType *BT = getAs<BuiltinType>())
6708 if (BT->getKind() == (BuiltinType::Kind) K)
6709 return true;
6710 return false;
6711}
6712
6713inline bool Type::isPlaceholderType() const {
6714 if (const auto *BT = dyn_cast<BuiltinType>(this))
6715 return BT->isPlaceholderType();
6716 return false;
6717}
6718
6719inline const BuiltinType *Type::getAsPlaceholderType() const {
6720 if (const auto *BT = dyn_cast<BuiltinType>(this))
6721 if (BT->isPlaceholderType())
6722 return BT;
6723 return nullptr;
6724}
6725
6726inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6727 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 6727, __PRETTY_FUNCTION__))
;
6728 if (const auto *BT = dyn_cast<BuiltinType>(this))
6729 return (BT->getKind() == (BuiltinType::Kind) K);
6730 return false;
6731}
6732
6733inline bool Type::isNonOverloadPlaceholderType() const {
6734 if (const auto *BT = dyn_cast<BuiltinType>(this))
6735 return BT->isNonOverloadPlaceholderType();
6736 return false;
6737}
6738
6739inline bool Type::isVoidType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() == BuiltinType::Void;
6742 return false;
6743}
6744
6745inline bool Type::isHalfType() const {
6746 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6747 return BT->getKind() == BuiltinType::Half;
6748 // FIXME: Should we allow complex __fp16? Probably not.
6749 return false;
6750}
6751
6752inline bool Type::isFloat16Type() const {
6753 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6754 return BT->getKind() == BuiltinType::Float16;
6755 return false;
6756}
6757
6758inline bool Type::isFloat128Type() const {
6759 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6760 return BT->getKind() == BuiltinType::Float128;
6761 return false;
6762}
6763
6764inline bool Type::isNullPtrType() const {
6765 if (const auto *BT = getAs<BuiltinType>())
6766 return BT->getKind() == BuiltinType::NullPtr;
6767 return false;
6768}
6769
6770bool IsEnumDeclComplete(EnumDecl *);
6771bool IsEnumDeclScoped(EnumDecl *);
6772
6773inline bool Type::isIntegerType() const {
6774 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6775 return BT->getKind() >= BuiltinType::Bool &&
6776 BT->getKind() <= BuiltinType::Int128;
6777 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6778 // Incomplete enum types are not treated as integer types.
6779 // FIXME: In C++, enum types are never integer types.
6780 return IsEnumDeclComplete(ET->getDecl()) &&
6781 !IsEnumDeclScoped(ET->getDecl());
6782 }
6783 return false;
6784}
6785
6786inline bool Type::isFixedPointType() const {
6787 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6788 return BT->getKind() >= BuiltinType::ShortAccum &&
6789 BT->getKind() <= BuiltinType::SatULongFract;
6790 }
6791 return false;
6792}
6793
6794inline bool Type::isFixedPointOrIntegerType() const {
6795 return isFixedPointType() || isIntegerType();
6796}
6797
6798inline bool Type::isSaturatedFixedPointType() const {
6799 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6800 return BT->getKind() >= BuiltinType::SatShortAccum &&
6801 BT->getKind() <= BuiltinType::SatULongFract;
6802 }
6803 return false;
6804}
6805
6806inline bool Type::isUnsaturatedFixedPointType() const {
6807 return isFixedPointType() && !isSaturatedFixedPointType();
6808}
6809
6810inline bool Type::isSignedFixedPointType() const {
6811 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6812 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6813 BT->getKind() <= BuiltinType::LongAccum) ||
6814 (BT->getKind() >= BuiltinType::ShortFract &&
6815 BT->getKind() <= BuiltinType::LongFract) ||
6816 (BT->getKind() >= BuiltinType::SatShortAccum &&
6817 BT->getKind() <= BuiltinType::SatLongAccum) ||
6818 (BT->getKind() >= BuiltinType::SatShortFract &&
6819 BT->getKind() <= BuiltinType::SatLongFract));
6820 }
6821 return false;
6822}
6823
6824inline bool Type::isUnsignedFixedPointType() const {
6825 return isFixedPointType() && !isSignedFixedPointType();
6826}
6827
6828inline bool Type::isScalarType() const {
6829 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6830 return BT->getKind() > BuiltinType::Void &&
6831 BT->getKind() <= BuiltinType::NullPtr;
6832 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6833 // Enums are scalar types, but only if they are defined. Incomplete enums
6834 // are not treated as scalar types.
6835 return IsEnumDeclComplete(ET->getDecl());
6836 return isa<PointerType>(CanonicalType) ||
6837 isa<BlockPointerType>(CanonicalType) ||
6838 isa<MemberPointerType>(CanonicalType) ||
6839 isa<ComplexType>(CanonicalType) ||
6840 isa<ObjCObjectPointerType>(CanonicalType);
6841}
6842
6843inline bool Type::isIntegralOrEnumerationType() const {
6844 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6845 return BT->getKind() >= BuiltinType::Bool &&
6846 BT->getKind() <= BuiltinType::Int128;
6847
6848 // Check for a complete enum type; incomplete enum types are not properly an
6849 // enumeration type in the sense required here.
6850 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6851 return IsEnumDeclComplete(ET->getDecl());
6852
6853 return false;
6854}
6855
6856inline bool Type::isBooleanType() const {
6857 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6858 return BT->getKind() == BuiltinType::Bool;
6859 return false;
6860}
6861
6862inline bool Type::isUndeducedType() const {
6863 auto *DT = getContainedDeducedType();
6864 return DT && !DT->isDeduced();
6865}
6866
6867/// Determines whether this is a type for which one can define
6868/// an overloaded operator.
6869inline bool Type::isOverloadableType() const {
6870 return isDependentType() || isRecordType() || isEnumeralType();
6871}
6872
6873/// Determines whether this type can decay to a pointer type.
6874inline bool Type::canDecayToPointerType() const {
6875 return isFunctionType() || isArrayType();
6876}
6877
6878inline bool Type::hasPointerRepresentation() const {
6879 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6880 isObjCObjectPointerType() || isNullPtrType());
6881}
6882
6883inline bool Type::hasObjCPointerRepresentation() const {
6884 return isObjCObjectPointerType();
6885}
6886
6887inline const Type *Type::getBaseElementTypeUnsafe() const {
6888 const Type *type = this;
6889 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6890 type = arrayType->getElementType().getTypePtr();
6891 return type;
6892}
6893
6894inline const Type *Type::getPointeeOrArrayElementType() const {
6895 const Type *type = this;
6896 if (type->isAnyPointerType())
6897 return type->getPointeeType().getTypePtr();
6898 else if (type->isArrayType())
6899 return type->getBaseElementTypeUnsafe();
6900 return type;
6901}
6902/// Insertion operator for diagnostics. This allows sending address spaces into
6903/// a diagnostic with <<.
6904inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6905 LangAS AS) {
6906 DB.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6907 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6908 return DB;
6909}
6910
6911/// Insertion operator for partial diagnostics. This allows sending adress
6912/// spaces into a diagnostic with <<.
6913inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6914 LangAS AS) {
6915 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6916 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6917 return PD;
6918}
6919
6920/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6921/// diagnostic with <<.
6922inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6923 Qualifiers Q) {
6924 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6925 DiagnosticsEngine::ArgumentKind::ak_qual);
6926 return DB;
6927}
6928
6929/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6930/// into a diagnostic with <<.
6931inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6932 Qualifiers Q) {
6933 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6934 DiagnosticsEngine::ArgumentKind::ak_qual);
6935 return PD;
6936}
6937
6938/// Insertion operator for diagnostics. This allows sending QualType's into a
6939/// diagnostic with <<.
6940inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6941 QualType T) {
6942 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6943 DiagnosticsEngine::ak_qualtype);
6944 return DB;
6945}
6946
6947/// Insertion operator for partial diagnostics. This allows sending QualType's
6948/// into a diagnostic with <<.
6949inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6950 QualType T) {
6951 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6952 DiagnosticsEngine::ak_qualtype);
6953 return PD;
6954}
6955
6956// Helper class template that is used by Type::getAs to ensure that one does
6957// not try to look through a qualified type to get to an array type.
6958template <typename T>
6959using TypeIsArrayType =
6960 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6961 std::is_base_of<ArrayType, T>::value>;
6962
6963// Member-template getAs<specific type>'.
6964template <typename T> const T *Type::getAs() const {
6965 static_assert(!TypeIsArrayType<T>::value,
6966 "ArrayType cannot be used with getAs!");
6967
6968 // If this is directly a T type, return it.
6969 if (const auto *Ty = dyn_cast<T>(this))
6970 return Ty;
6971
6972 // If the canonical form of this type isn't the right kind, reject it.
6973 if (!isa<T>(CanonicalType))
6974 return nullptr;
6975
6976 // If this is a typedef for the type, strip the typedef off without
6977 // losing all typedef information.
6978 return cast<T>(getUnqualifiedDesugaredType());
6979}
6980
6981template <typename T> const T *Type::getAsAdjusted() const {
6982 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6983
6984 // If this is directly a T type, return it.
6985 if (const auto *Ty = dyn_cast<T>(this))
6986 return Ty;
6987
6988 // If the canonical form of this type isn't the right kind, reject it.
6989 if (!isa<T>(CanonicalType))
6990 return nullptr;
6991
6992 // Strip off type adjustments that do not modify the underlying nature of the
6993 // type.
6994 const Type *Ty = this;
6995 while (Ty) {
6996 if (const auto *A = dyn_cast<AttributedType>(Ty))
6997 Ty = A->getModifiedType().getTypePtr();
6998 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6999 Ty = E->desugar().getTypePtr();
7000 else if (const auto *P = dyn_cast<ParenType>(Ty))
7001 Ty = P->desugar().getTypePtr();
7002 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7003 Ty = A->desugar().getTypePtr();
7004 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7005 Ty = M->desugar().getTypePtr();
7006 else
7007 break;
7008 }
7009
7010 // Just because the canonical type is correct does not mean we can use cast<>,
7011 // since we may not have stripped off all the sugar down to the base type.
7012 return dyn_cast<T>(Ty);
7013}
7014
7015inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7016 // If this is directly an array type, return it.
7017 if (const auto *arr = dyn_cast<ArrayType>(this))
7018 return arr;
7019
7020 // If the canonical form of this type isn't the right kind, reject it.
7021 if (!isa<ArrayType>(CanonicalType))
7022 return nullptr;
7023
7024 // If this is a typedef for the type, strip the typedef off without
7025 // losing all typedef information.
7026 return cast<ArrayType>(getUnqualifiedDesugaredType());
7027}
7028
7029template <typename T> const T *Type::castAs() const {
7030 static_assert(!TypeIsArrayType<T>::value,
7031 "ArrayType cannot be used with castAs!");
7032
7033 if (const auto *ty = dyn_cast<T>(this)) return ty;
7034 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7034, __PRETTY_FUNCTION__))
;
7035 return cast<T>(getUnqualifiedDesugaredType());
7036}
7037
7038inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7039 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7039, __PRETTY_FUNCTION__))
;
7040 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7041 return cast<ArrayType>(getUnqualifiedDesugaredType());
7042}
7043
7044DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7045 QualType CanonicalPtr)
7046 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7047#ifndef NDEBUG
7048 QualType Adjusted = getAdjustedType();
7049 (void)AttributedType::stripOuterNullability(Adjusted);
7050 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7050, __PRETTY_FUNCTION__))
;
7051#endif
7052}
7053
7054QualType DecayedType::getPointeeType() const {
7055 QualType Decayed = getDecayedType();
7056 (void)AttributedType::stripOuterNullability(Decayed);
7057 return cast<PointerType>(Decayed)->getPointeeType();
7058}
7059
7060// Get the decimal string representation of a fixed point type, represented
7061// as a scaled integer.
7062// TODO: At some point, we should change the arguments to instead just accept an
7063// APFixedPoint instead of APSInt and scale.
7064void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7065 unsigned Scale);
7066
7067} // namespace clang
7068
7069#endif // LLVM_CLANG_AST_TYPE_H