Bug Summary

File:clang/lib/Sema/SemaExprObjC.cpp
Warning:line 1993, column 43
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp

1//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective-C expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprObjC.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/TypeLoc.h"
18#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
19#include "clang/Basic/Builtins.h"
20#include "clang/Edit/Commit.h"
21#include "clang/Edit/Rewriters.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ConvertUTF.h"
30
31using namespace clang;
32using namespace sema;
33using llvm::makeArrayRef;
34
35ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
36 ArrayRef<Expr *> Strings) {
37 // Most ObjC strings are formed out of a single piece. However, we *can*
38 // have strings formed out of multiple @ strings with multiple pptokens in
39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
40 // StringLiteral for ObjCStringLiteral to hold onto.
41 StringLiteral *S = cast<StringLiteral>(Strings[0]);
42
43 // If we have a multi-part string, merge it all together.
44 if (Strings.size() != 1) {
45 // Concatenate objc strings.
46 SmallString<128> StrBuf;
47 SmallVector<SourceLocation, 8> StrLocs;
48
49 for (Expr *E : Strings) {
50 S = cast<StringLiteral>(E);
51
52 // ObjC strings can't be wide or UTF.
53 if (!S->isAscii()) {
54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
55 << S->getSourceRange();
56 return true;
57 }
58
59 // Append the string.
60 StrBuf += S->getString();
61
62 // Get the locations of the string tokens.
63 StrLocs.append(S->tokloc_begin(), S->tokloc_end());
64 }
65
66 // Create the aggregate string with the appropriate content and location
67 // information.
68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
69 assert(CAT && "String literal not of constant array type!")((CAT && "String literal not of constant array type!"
) ? static_cast<void> (0) : __assert_fail ("CAT && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 69, __PRETTY_FUNCTION__))
;
70 QualType StrTy = Context.getConstantArrayType(
71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr,
72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers());
73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii,
74 /*Pascal=*/false, StrTy, &StrLocs[0],
75 StrLocs.size());
76 }
77
78 return BuildObjCStringLiteral(AtLocs[0], S);
79}
80
81ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
82 // Verify that this composite string is acceptable for ObjC strings.
83 if (CheckObjCString(S))
84 return true;
85
86 // Initialize the constant string interface lazily. This assumes
87 // the NSString interface is seen in this translation unit. Note: We
88 // don't use NSConstantString, since the runtime team considers this
89 // interface private (even though it appears in the header files).
90 QualType Ty = Context.getObjCConstantStringInterface();
91 if (!Ty.isNull()) {
92 Ty = Context.getObjCObjectPointerType(Ty);
93 } else if (getLangOpts().NoConstantCFStrings) {
94 IdentifierInfo *NSIdent=nullptr;
95 std::string StringClass(getLangOpts().ObjCConstantStringClass);
96
97 if (StringClass.empty())
98 NSIdent = &Context.Idents.get("NSConstantString");
99 else
100 NSIdent = &Context.Idents.get(StringClass);
101
102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
103 LookupOrdinaryName);
104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
105 Context.setObjCConstantStringInterface(StrIF);
106 Ty = Context.getObjCConstantStringInterface();
107 Ty = Context.getObjCObjectPointerType(Ty);
108 } else {
109 // If there is no NSConstantString interface defined then treat this
110 // as error and recover from it.
111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class)
112 << NSIdent << S->getSourceRange();
113 Ty = Context.getObjCIdType();
114 }
115 } else {
116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
118 LookupOrdinaryName);
119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
120 Context.setObjCConstantStringInterface(StrIF);
121 Ty = Context.getObjCConstantStringInterface();
122 Ty = Context.getObjCObjectPointerType(Ty);
123 } else {
124 // If there is no NSString interface defined, implicitly declare
125 // a @class NSString; and use that instead. This is to make sure
126 // type of an NSString literal is represented correctly, instead of
127 // being an 'id' type.
128 Ty = Context.getObjCNSStringType();
129 if (Ty.isNull()) {
130 ObjCInterfaceDecl *NSStringIDecl =
131 ObjCInterfaceDecl::Create (Context,
132 Context.getTranslationUnitDecl(),
133 SourceLocation(), NSIdent,
134 nullptr, nullptr, SourceLocation());
135 Ty = Context.getObjCInterfaceType(NSStringIDecl);
136 Context.setObjCNSStringType(Ty);
137 }
138 Ty = Context.getObjCObjectPointerType(Ty);
139 }
140 }
141
142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
143}
144
145/// Emits an error if the given method does not exist, or if the return
146/// type is not an Objective-C object.
147static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
148 const ObjCInterfaceDecl *Class,
149 Selector Sel, const ObjCMethodDecl *Method) {
150 if (!Method) {
151 // FIXME: Is there a better way to avoid quotes than using getName()?
152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
153 return false;
154 }
155
156 // Make sure the return type is reasonable.
157 QualType ReturnType = Method->getReturnType();
158 if (!ReturnType->isObjCObjectPointerType()) {
159 S.Diag(Loc, diag::err_objc_literal_method_sig)
160 << Sel;
161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
162 << ReturnType;
163 return false;
164 }
165
166 return true;
167}
168
169/// Maps ObjCLiteralKind to NSClassIdKindKind
170static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind(
171 Sema::ObjCLiteralKind LiteralKind) {
172 switch (LiteralKind) {
173 case Sema::LK_Array:
174 return NSAPI::ClassId_NSArray;
175 case Sema::LK_Dictionary:
176 return NSAPI::ClassId_NSDictionary;
177 case Sema::LK_Numeric:
178 return NSAPI::ClassId_NSNumber;
179 case Sema::LK_String:
180 return NSAPI::ClassId_NSString;
181 case Sema::LK_Boxed:
182 return NSAPI::ClassId_NSValue;
183
184 // there is no corresponding matching
185 // between LK_None/LK_Block and NSClassIdKindKind
186 case Sema::LK_Block:
187 case Sema::LK_None:
188 break;
189 }
190 llvm_unreachable("LiteralKind can't be converted into a ClassKind")::llvm::llvm_unreachable_internal("LiteralKind can't be converted into a ClassKind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 190)
;
191}
192
193/// Validates ObjCInterfaceDecl availability.
194/// ObjCInterfaceDecl, used to create ObjC literals, should be defined
195/// if clang not in a debugger mode.
196static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl,
197 SourceLocation Loc,
198 Sema::ObjCLiteralKind LiteralKind) {
199 if (!Decl) {
200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind);
201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind);
202 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
203 << II->getName() << LiteralKind;
204 return false;
205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) {
206 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
207 << Decl->getName() << LiteralKind;
208 S.Diag(Decl->getLocation(), diag::note_forward_class);
209 return false;
210 }
211
212 return true;
213}
214
215/// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind.
216/// Used to create ObjC literals, such as NSDictionary (@{}),
217/// NSArray (@[]) and Boxed Expressions (@())
218static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S,
219 SourceLocation Loc,
220 Sema::ObjCLiteralKind LiteralKind) {
221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind);
222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind);
223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc,
224 Sema::LookupOrdinaryName);
225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) {
227 ASTContext &Context = S.Context;
228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II,
230 nullptr, nullptr, SourceLocation());
231 }
232
233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) {
234 ID = nullptr;
235 }
236
237 return ID;
238}
239
240/// Retrieve the NSNumber factory method that should be used to create
241/// an Objective-C literal for the given type.
242static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
243 QualType NumberType,
244 bool isLiteral = false,
245 SourceRange R = SourceRange()) {
246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind =
247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
248
249 if (!Kind) {
250 if (isLiteral) {
251 S.Diag(Loc, diag::err_invalid_nsnumber_type)
252 << NumberType << R;
253 }
254 return nullptr;
255 }
256
257 // If we already looked up this method, we're done.
258 if (S.NSNumberLiteralMethods[*Kind])
259 return S.NSNumberLiteralMethods[*Kind];
260
261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
262 /*Instance=*/false);
263
264 ASTContext &CX = S.Context;
265
266 // Look up the NSNumber class, if we haven't done so already. It's cached
267 // in the Sema instance.
268 if (!S.NSNumberDecl) {
269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc,
270 Sema::LK_Numeric);
271 if (!S.NSNumberDecl) {
272 return nullptr;
273 }
274 }
275
276 if (S.NSNumberPointer.isNull()) {
277 // generate the pointer to NSNumber type.
278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
280 }
281
282 // Look for the appropriate method within NSNumber.
283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
285 // create a stub definition this NSNumber factory method.
286 TypeSourceInfo *ReturnTInfo = nullptr;
287 Method =
288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl,
290 /*isInstance=*/false, /*isVariadic=*/false,
291 /*isPropertyAccessor=*/false,
292 /*isSynthesizedAccessorStub=*/false,
293 /*isImplicitlyDeclared=*/true,
294 /*isDefined=*/false, ObjCMethodDecl::Required,
295 /*HasRelatedResultType=*/false);
296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
297 SourceLocation(), SourceLocation(),
298 &CX.Idents.get("value"),
299 NumberType, /*TInfo=*/nullptr,
300 SC_None, nullptr);
301 Method->setMethodParams(S.Context, value, None);
302 }
303
304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
305 return nullptr;
306
307 // Note: if the parameter type is out-of-line, we'll catch it later in the
308 // implicit conversion.
309
310 S.NSNumberLiteralMethods[*Kind] = Method;
311 return Method;
312}
313
314/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
315/// numeric literal expression. Type of the expression will be "NSNumber *".
316ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
317 // Determine the type of the literal.
318 QualType NumberType = Number->getType();
319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
320 // In C, character literals have type 'int'. That's not the type we want
321 // to use to determine the Objective-c literal kind.
322 switch (Char->getKind()) {
323 case CharacterLiteral::Ascii:
324 case CharacterLiteral::UTF8:
325 NumberType = Context.CharTy;
326 break;
327
328 case CharacterLiteral::Wide:
329 NumberType = Context.getWideCharType();
330 break;
331
332 case CharacterLiteral::UTF16:
333 NumberType = Context.Char16Ty;
334 break;
335
336 case CharacterLiteral::UTF32:
337 NumberType = Context.Char32Ty;
338 break;
339 }
340 }
341
342 // Look for the appropriate method within NSNumber.
343 // Construct the literal.
344 SourceRange NR(Number->getSourceRange());
345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
346 true, NR);
347 if (!Method)
348 return ExprError();
349
350 // Convert the number to the type that the parameter expects.
351 ParmVarDecl *ParamDecl = Method->parameters()[0];
352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
353 ParamDecl);
354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
355 SourceLocation(),
356 Number);
357 if (ConvertedNumber.isInvalid())
358 return ExprError();
359 Number = ConvertedNumber.get();
360
361 // Use the effective source range of the literal, including the leading '@'.
362 return MaybeBindToTemporary(
363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
364 SourceRange(AtLoc, NR.getEnd())));
365}
366
367ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
368 SourceLocation ValueLoc,
369 bool Value) {
370 ExprResult Inner;
371 if (getLangOpts().CPlusPlus) {
372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
373 } else {
374 // C doesn't actually have a way to represent literal values of type
375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
378 CK_IntegralToBoolean);
379 }
380
381 return BuildObjCNumericLiteral(AtLoc, Inner.get());
382}
383
384/// Check that the given expression is a valid element of an Objective-C
385/// collection literal.
386static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
387 QualType T,
388 bool ArrayLiteral = false) {
389 // If the expression is type-dependent, there's nothing for us to do.
390 if (Element->isTypeDependent())
391 return Element;
392
393 ExprResult Result = S.CheckPlaceholderExpr(Element);
394 if (Result.isInvalid())
395 return ExprError();
396 Element = Result.get();
397
398 // In C++, check for an implicit conversion to an Objective-C object pointer
399 // type.
400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
401 InitializedEntity Entity
402 = InitializedEntity::InitializeParameter(S.Context, T,
403 /*Consumed=*/false);
404 InitializationKind Kind = InitializationKind::CreateCopy(
405 Element->getBeginLoc(), SourceLocation());
406 InitializationSequence Seq(S, Entity, Kind, Element);
407 if (!Seq.Failed())
408 return Seq.Perform(S, Entity, Kind, Element);
409 }
410
411 Expr *OrigElement = Element;
412
413 // Perform lvalue-to-rvalue conversion.
414 Result = S.DefaultLvalueConversion(Element);
415 if (Result.isInvalid())
416 return ExprError();
417 Element = Result.get();
418
419 // Make sure that we have an Objective-C pointer type or block.
420 if (!Element->getType()->isObjCObjectPointerType() &&
421 !Element->getType()->isBlockPointerType()) {
422 bool Recovered = false;
423
424 // If this is potentially an Objective-C numeric literal, add the '@'.
425 if (isa<IntegerLiteral>(OrigElement) ||
426 isa<CharacterLiteral>(OrigElement) ||
427 isa<FloatingLiteral>(OrigElement) ||
428 isa<ObjCBoolLiteralExpr>(OrigElement) ||
429 isa<CXXBoolLiteralExpr>(OrigElement)) {
430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
431 int Which = isa<CharacterLiteral>(OrigElement) ? 1
432 : (isa<CXXBoolLiteralExpr>(OrigElement) ||
433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
434 : 3;
435
436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
437 << Which << OrigElement->getSourceRange()
438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
439
440 Result =
441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement);
442 if (Result.isInvalid())
443 return ExprError();
444
445 Element = Result.get();
446 Recovered = true;
447 }
448 }
449 // If this is potentially an Objective-C string literal, add the '@'.
450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
451 if (String->isAscii()) {
452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
453 << 0 << OrigElement->getSourceRange()
454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
455
456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String);
457 if (Result.isInvalid())
458 return ExprError();
459
460 Element = Result.get();
461 Recovered = true;
462 }
463 }
464
465 if (!Recovered) {
466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element)
467 << Element->getType();
468 return ExprError();
469 }
470 }
471 if (ArrayLiteral)
472 if (ObjCStringLiteral *getString =
473 dyn_cast<ObjCStringLiteral>(OrigElement)) {
474 if (StringLiteral *SL = getString->getString()) {
475 unsigned numConcat = SL->getNumConcatenated();
476 if (numConcat > 1) {
477 // Only warn if the concatenated string doesn't come from a macro.
478 bool hasMacro = false;
479 for (unsigned i = 0; i < numConcat ; ++i)
480 if (SL->getStrTokenLoc(i).isMacroID()) {
481 hasMacro = true;
482 break;
483 }
484 if (!hasMacro)
485 S.Diag(Element->getBeginLoc(),
486 diag::warn_concatenated_nsarray_literal)
487 << Element->getType();
488 }
489 }
490 }
491
492 // Make sure that the element has the type that the container factory
493 // function expects.
494 return S.PerformCopyInitialization(
495 InitializedEntity::InitializeParameter(S.Context, T,
496 /*Consumed=*/false),
497 Element->getBeginLoc(), Element);
498}
499
500ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
501 if (ValueExpr->isTypeDependent()) {
502 ObjCBoxedExpr *BoxedExpr =
503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR);
504 return BoxedExpr;
505 }
506 ObjCMethodDecl *BoxingMethod = nullptr;
507 QualType BoxedType;
508 // Convert the expression to an RValue, so we can check for pointer types...
509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
510 if (RValue.isInvalid()) {
511 return ExprError();
512 }
513 SourceLocation Loc = SR.getBegin();
514 ValueExpr = RValue.get();
515 QualType ValueType(ValueExpr->getType());
516 if (const PointerType *PT = ValueType->getAs<PointerType>()) {
517 QualType PointeeType = PT->getPointeeType();
518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
519
520 if (!NSStringDecl) {
521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
522 Sema::LK_String);
523 if (!NSStringDecl) {
524 return ExprError();
525 }
526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
528 }
529
530 // The boxed expression can be emitted as a compile time constant if it is
531 // a string literal whose character encoding is compatible with UTF-8.
532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr))
533 if (CE->getCastKind() == CK_ArrayToPointerDecay)
534 if (auto *SL =
535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) {
536 assert((SL->isAscii() || SL->isUTF8()) &&(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
537 "unexpected character encoding")(((SL->isAscii() || SL->isUTF8()) && "unexpected character encoding"
) ? static_cast<void> (0) : __assert_fail ("(SL->isAscii() || SL->isUTF8()) && \"unexpected character encoding\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 537, __PRETTY_FUNCTION__))
;
538 StringRef Str = SL->getString();
539 const llvm::UTF8 *StrBegin = Str.bytes_begin();
540 const llvm::UTF8 *StrEnd = Str.bytes_end();
541 // Check that this is a valid UTF-8 string.
542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) {
543 BoxedType = Context.getAttributedType(
544 AttributedType::getNullabilityAttrKind(
545 NullabilityKind::NonNull),
546 NSStringPointer, NSStringPointer);
547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR);
548 }
549
550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string)
551 << NSStringPointer << SL->getSourceRange();
552 }
553
554 if (!StringWithUTF8StringMethod) {
555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
557
558 // Look for the appropriate method within NSString.
559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
561 // Debugger needs to work even if NSString hasn't been defined.
562 TypeSourceInfo *ReturnTInfo = nullptr;
563 ObjCMethodDecl *M = ObjCMethodDecl::Create(
564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String,
565 NSStringPointer, ReturnTInfo, NSStringDecl,
566 /*isInstance=*/false, /*isVariadic=*/false,
567 /*isPropertyAccessor=*/false,
568 /*isSynthesizedAccessorStub=*/false,
569 /*isImplicitlyDeclared=*/true,
570 /*isDefined=*/false, ObjCMethodDecl::Required,
571 /*HasRelatedResultType=*/false);
572 QualType ConstCharType = Context.CharTy.withConst();
573 ParmVarDecl *value =
574 ParmVarDecl::Create(Context, M,
575 SourceLocation(), SourceLocation(),
576 &Context.Idents.get("value"),
577 Context.getPointerType(ConstCharType),
578 /*TInfo=*/nullptr,
579 SC_None, nullptr);
580 M->setMethodParams(Context, value, None);
581 BoxingMethod = M;
582 }
583
584 if (!validateBoxingMethod(*this, Loc, NSStringDecl,
585 stringWithUTF8String, BoxingMethod))
586 return ExprError();
587
588 StringWithUTF8StringMethod = BoxingMethod;
589 }
590
591 BoxingMethod = StringWithUTF8StringMethod;
592 BoxedType = NSStringPointer;
593 // Transfer the nullability from method's return type.
594 Optional<NullabilityKind> Nullability =
595 BoxingMethod->getReturnType()->getNullability(Context);
596 if (Nullability)
597 BoxedType = Context.getAttributedType(
598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType,
599 BoxedType);
600 }
601 } else if (ValueType->isBuiltinType()) {
602 // The other types we support are numeric, char and BOOL/bool. We could also
603 // provide limited support for structure types, such as NSRange, NSRect, and
604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
605 // for more details.
606
607 // Check for a top-level character literal.
608 if (const CharacterLiteral *Char =
609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
610 // In C, character literals have type 'int'. That's not the type we want
611 // to use to determine the Objective-c literal kind.
612 switch (Char->getKind()) {
613 case CharacterLiteral::Ascii:
614 case CharacterLiteral::UTF8:
615 ValueType = Context.CharTy;
616 break;
617
618 case CharacterLiteral::Wide:
619 ValueType = Context.getWideCharType();
620 break;
621
622 case CharacterLiteral::UTF16:
623 ValueType = Context.Char16Ty;
624 break;
625
626 case CharacterLiteral::UTF32:
627 ValueType = Context.Char32Ty;
628 break;
629 }
630 }
631 // FIXME: Do I need to do anything special with BoolTy expressions?
632
633 // Look for the appropriate method within NSNumber.
634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType);
635 BoxedType = NSNumberPointer;
636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
637 if (!ET->getDecl()->isComplete()) {
638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type)
639 << ValueType << ValueExpr->getSourceRange();
640 return ExprError();
641 }
642
643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc,
644 ET->getDecl()->getIntegerType());
645 BoxedType = NSNumberPointer;
646 } else if (ValueType->isObjCBoxableRecordType()) {
647 // Support for structure types, that marked as objc_boxable
648 // struct __attribute__((objc_boxable)) s { ... };
649
650 // Look up the NSValue class, if we haven't done so already. It's cached
651 // in the Sema instance.
652 if (!NSValueDecl) {
653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
654 Sema::LK_Boxed);
655 if (!NSValueDecl) {
656 return ExprError();
657 }
658
659 // generate the pointer to NSValue type.
660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl);
661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject);
662 }
663
664 if (!ValueWithBytesObjCTypeMethod) {
665 IdentifierInfo *II[] = {
666 &Context.Idents.get("valueWithBytes"),
667 &Context.Idents.get("objCType")
668 };
669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II);
670
671 // Look for the appropriate method within NSValue.
672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType);
673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
674 // Debugger needs to work even if NSValue hasn't been defined.
675 TypeSourceInfo *ReturnTInfo = nullptr;
676 ObjCMethodDecl *M = ObjCMethodDecl::Create(
677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType,
678 NSValuePointer, ReturnTInfo, NSValueDecl,
679 /*isInstance=*/false,
680 /*isVariadic=*/false,
681 /*isPropertyAccessor=*/false,
682 /*isSynthesizedAccessorStub=*/false,
683 /*isImplicitlyDeclared=*/true,
684 /*isDefined=*/false, ObjCMethodDecl::Required,
685 /*HasRelatedResultType=*/false);
686
687 SmallVector<ParmVarDecl *, 2> Params;
688
689 ParmVarDecl *bytes =
690 ParmVarDecl::Create(Context, M,
691 SourceLocation(), SourceLocation(),
692 &Context.Idents.get("bytes"),
693 Context.VoidPtrTy.withConst(),
694 /*TInfo=*/nullptr,
695 SC_None, nullptr);
696 Params.push_back(bytes);
697
698 QualType ConstCharType = Context.CharTy.withConst();
699 ParmVarDecl *type =
700 ParmVarDecl::Create(Context, M,
701 SourceLocation(), SourceLocation(),
702 &Context.Idents.get("type"),
703 Context.getPointerType(ConstCharType),
704 /*TInfo=*/nullptr,
705 SC_None, nullptr);
706 Params.push_back(type);
707
708 M->setMethodParams(Context, Params, None);
709 BoxingMethod = M;
710 }
711
712 if (!validateBoxingMethod(*this, Loc, NSValueDecl,
713 ValueWithBytesObjCType, BoxingMethod))
714 return ExprError();
715
716 ValueWithBytesObjCTypeMethod = BoxingMethod;
717 }
718
719 if (!ValueType.isTriviallyCopyableType(Context)) {
720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type)
721 << ValueType << ValueExpr->getSourceRange();
722 return ExprError();
723 }
724
725 BoxingMethod = ValueWithBytesObjCTypeMethod;
726 BoxedType = NSValuePointer;
727 }
728
729 if (!BoxingMethod) {
730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type)
731 << ValueType << ValueExpr->getSourceRange();
732 return ExprError();
733 }
734
735 DiagnoseUseOfDecl(BoxingMethod, Loc);
736
737 ExprResult ConvertedValueExpr;
738 if (ValueType->isObjCBoxableRecordType()) {
739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType);
740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(),
741 ValueExpr);
742 } else {
743 // Convert the expression to the type that the parameter requires.
744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0];
745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context,
746 ParamDecl);
747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(),
748 ValueExpr);
749 }
750
751 if (ConvertedValueExpr.isInvalid())
752 return ExprError();
753 ValueExpr = ConvertedValueExpr.get();
754
755 ObjCBoxedExpr *BoxedExpr =
756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
757 BoxingMethod, SR);
758 return MaybeBindToTemporary(BoxedExpr);
759}
760
761/// Build an ObjC subscript pseudo-object expression, given that
762/// that's supported by the runtime.
763ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
764 Expr *IndexExpr,
765 ObjCMethodDecl *getterMethod,
766 ObjCMethodDecl *setterMethod) {
767 assert(!LangOpts.isSubscriptPointerArithmetic())((!LangOpts.isSubscriptPointerArithmetic()) ? static_cast<
void> (0) : __assert_fail ("!LangOpts.isSubscriptPointerArithmetic()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 767, __PRETTY_FUNCTION__))
;
768
769 // We can't get dependent types here; our callers should have
770 // filtered them out.
771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
772 "base or index cannot have dependent type here")(((!BaseExpr->isTypeDependent() && !IndexExpr->
isTypeDependent()) && "base or index cannot have dependent type here"
) ? static_cast<void> (0) : __assert_fail ("(!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && \"base or index cannot have dependent type here\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 772, __PRETTY_FUNCTION__))
;
773
774 // Filter out placeholders in the index. In theory, overloads could
775 // be preserved here, although that might not actually work correctly.
776 ExprResult Result = CheckPlaceholderExpr(IndexExpr);
777 if (Result.isInvalid())
778 return ExprError();
779 IndexExpr = Result.get();
780
781 // Perform lvalue-to-rvalue conversion on the base.
782 Result = DefaultLvalueConversion(BaseExpr);
783 if (Result.isInvalid())
784 return ExprError();
785 BaseExpr = Result.get();
786
787 // Build the pseudo-object expression.
788 return new (Context) ObjCSubscriptRefExpr(
789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript,
790 getterMethod, setterMethod, RB);
791}
792
793ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
794 SourceLocation Loc = SR.getBegin();
795
796 if (!NSArrayDecl) {
797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
798 Sema::LK_Array);
799 if (!NSArrayDecl) {
800 return ExprError();
801 }
802 }
803
804 // Find the arrayWithObjects:count: method, if we haven't done so already.
805 QualType IdT = Context.getObjCIdType();
806 if (!ArrayWithObjectsMethod) {
807 Selector
808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
810 if (!Method && getLangOpts().DebuggerObjCLiteral) {
811 TypeSourceInfo *ReturnTInfo = nullptr;
812 Method = ObjCMethodDecl::Create(
813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo,
814 Context.getTranslationUnitDecl(), false /*Instance*/,
815 false /*isVariadic*/,
816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
818 ObjCMethodDecl::Required, false);
819 SmallVector<ParmVarDecl *, 2> Params;
820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
821 SourceLocation(),
822 SourceLocation(),
823 &Context.Idents.get("objects"),
824 Context.getPointerType(IdT),
825 /*TInfo=*/nullptr,
826 SC_None, nullptr);
827 Params.push_back(objects);
828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
829 SourceLocation(),
830 SourceLocation(),
831 &Context.Idents.get("cnt"),
832 Context.UnsignedLongTy,
833 /*TInfo=*/nullptr, SC_None,
834 nullptr);
835 Params.push_back(cnt);
836 Method->setMethodParams(Context, Params, None);
837 }
838
839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method))
840 return ExprError();
841
842 // Dig out the type that all elements should be converted to.
843 QualType T = Method->parameters()[0]->getType();
844 const PointerType *PtrT = T->getAs<PointerType>();
845 if (!PtrT ||
846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
848 << Sel;
849 Diag(Method->parameters()[0]->getLocation(),
850 diag::note_objc_literal_method_param)
851 << 0 << T
852 << Context.getPointerType(IdT.withConst());
853 return ExprError();
854 }
855
856 // Check that the 'count' parameter is integral.
857 if (!Method->parameters()[1]->getType()->isIntegerType()) {
858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
859 << Sel;
860 Diag(Method->parameters()[1]->getLocation(),
861 diag::note_objc_literal_method_param)
862 << 1
863 << Method->parameters()[1]->getType()
864 << "integral";
865 return ExprError();
866 }
867
868 // We've found a good +arrayWithObjects:count: method. Save it!
869 ArrayWithObjectsMethod = Method;
870 }
871
872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType();
873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
874
875 // Check that each of the elements provided is valid in a collection literal,
876 // performing conversions as necessary.
877 Expr **ElementsBuffer = Elements.data();
878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
880 ElementsBuffer[I],
881 RequiredType, true);
882 if (Converted.isInvalid())
883 return ExprError();
884
885 ElementsBuffer[I] = Converted.get();
886 }
887
888 QualType Ty
889 = Context.getObjCObjectPointerType(
890 Context.getObjCInterfaceType(NSArrayDecl));
891
892 return MaybeBindToTemporary(
893 ObjCArrayLiteral::Create(Context, Elements, Ty,
894 ArrayWithObjectsMethod, SR));
895}
896
897ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
898 MutableArrayRef<ObjCDictionaryElement> Elements) {
899 SourceLocation Loc = SR.getBegin();
900
901 if (!NSDictionaryDecl) {
902 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
903 Sema::LK_Dictionary);
904 if (!NSDictionaryDecl) {
905 return ExprError();
906 }
907 }
908
909 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
910 // so already.
911 QualType IdT = Context.getObjCIdType();
912 if (!DictionaryWithObjectsMethod) {
913 Selector Sel = NSAPIObj->getNSDictionarySelector(
914 NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
915 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
916 if (!Method && getLangOpts().DebuggerObjCLiteral) {
917 Method = ObjCMethodDecl::Create(
918 Context, SourceLocation(), SourceLocation(), Sel, IdT,
919 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(),
920 false /*Instance*/, false /*isVariadic*/,
921 /*isPropertyAccessor=*/false,
922 /*isSynthesizedAccessorStub=*/false,
923 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
924 ObjCMethodDecl::Required, false);
925 SmallVector<ParmVarDecl *, 3> Params;
926 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
927 SourceLocation(),
928 SourceLocation(),
929 &Context.Idents.get("objects"),
930 Context.getPointerType(IdT),
931 /*TInfo=*/nullptr, SC_None,
932 nullptr);
933 Params.push_back(objects);
934 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
935 SourceLocation(),
936 SourceLocation(),
937 &Context.Idents.get("keys"),
938 Context.getPointerType(IdT),
939 /*TInfo=*/nullptr, SC_None,
940 nullptr);
941 Params.push_back(keys);
942 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
943 SourceLocation(),
944 SourceLocation(),
945 &Context.Idents.get("cnt"),
946 Context.UnsignedLongTy,
947 /*TInfo=*/nullptr, SC_None,
948 nullptr);
949 Params.push_back(cnt);
950 Method->setMethodParams(Context, Params, None);
951 }
952
953 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
954 Method))
955 return ExprError();
956
957 // Dig out the type that all values should be converted to.
958 QualType ValueT = Method->parameters()[0]->getType();
959 const PointerType *PtrValue = ValueT->getAs<PointerType>();
960 if (!PtrValue ||
961 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
962 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
963 << Sel;
964 Diag(Method->parameters()[0]->getLocation(),
965 diag::note_objc_literal_method_param)
966 << 0 << ValueT
967 << Context.getPointerType(IdT.withConst());
968 return ExprError();
969 }
970
971 // Dig out the type that all keys should be converted to.
972 QualType KeyT = Method->parameters()[1]->getType();
973 const PointerType *PtrKey = KeyT->getAs<PointerType>();
974 if (!PtrKey ||
975 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
976 IdT)) {
977 bool err = true;
978 if (PtrKey) {
979 if (QIDNSCopying.isNull()) {
980 // key argument of selector is id<NSCopying>?
981 if (ObjCProtocolDecl *NSCopyingPDecl =
982 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
983 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
984 QIDNSCopying =
985 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { },
986 llvm::makeArrayRef(
987 (ObjCProtocolDecl**) PQ,
988 1),
989 false);
990 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
991 }
992 }
993 if (!QIDNSCopying.isNull())
994 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
995 QIDNSCopying);
996 }
997
998 if (err) {
999 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1000 << Sel;
1001 Diag(Method->parameters()[1]->getLocation(),
1002 diag::note_objc_literal_method_param)
1003 << 1 << KeyT
1004 << Context.getPointerType(IdT.withConst());
1005 return ExprError();
1006 }
1007 }
1008
1009 // Check that the 'count' parameter is integral.
1010 QualType CountType = Method->parameters()[2]->getType();
1011 if (!CountType->isIntegerType()) {
1012 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1013 << Sel;
1014 Diag(Method->parameters()[2]->getLocation(),
1015 diag::note_objc_literal_method_param)
1016 << 2 << CountType
1017 << "integral";
1018 return ExprError();
1019 }
1020
1021 // We've found a good +dictionaryWithObjects:keys:count: method; save it!
1022 DictionaryWithObjectsMethod = Method;
1023 }
1024
1025 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType();
1026 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
1027 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType();
1028 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
1029
1030 // Check that each of the keys and values provided is valid in a collection
1031 // literal, performing conversions as necessary.
1032 bool HasPackExpansions = false;
1033 for (ObjCDictionaryElement &Element : Elements) {
1034 // Check the key.
1035 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key,
1036 KeyT);
1037 if (Key.isInvalid())
1038 return ExprError();
1039
1040 // Check the value.
1041 ExprResult Value
1042 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT);
1043 if (Value.isInvalid())
1044 return ExprError();
1045
1046 Element.Key = Key.get();
1047 Element.Value = Value.get();
1048
1049 if (Element.EllipsisLoc.isInvalid())
1050 continue;
1051
1052 if (!Element.Key->containsUnexpandedParameterPack() &&
1053 !Element.Value->containsUnexpandedParameterPack()) {
1054 Diag(Element.EllipsisLoc,
1055 diag::err_pack_expansion_without_parameter_packs)
1056 << SourceRange(Element.Key->getBeginLoc(),
1057 Element.Value->getEndLoc());
1058 return ExprError();
1059 }
1060
1061 HasPackExpansions = true;
1062 }
1063
1064 QualType Ty
1065 = Context.getObjCObjectPointerType(
1066 Context.getObjCInterfaceType(NSDictionaryDecl));
1067 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create(
1068 Context, Elements, HasPackExpansions, Ty,
1069 DictionaryWithObjectsMethod, SR));
1070}
1071
1072ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
1073 TypeSourceInfo *EncodedTypeInfo,
1074 SourceLocation RParenLoc) {
1075 QualType EncodedType = EncodedTypeInfo->getType();
1076 QualType StrTy;
1077 if (EncodedType->isDependentType())
1078 StrTy = Context.DependentTy;
1079 else {
1080 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
1081 !EncodedType->isVoidType()) // void is handled too.
1082 if (RequireCompleteType(AtLoc, EncodedType,
1083 diag::err_incomplete_type_objc_at_encode,
1084 EncodedTypeInfo->getTypeLoc()))
1085 return ExprError();
1086
1087 std::string Str;
1088 QualType NotEncodedT;
1089 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT);
1090 if (!NotEncodedT.isNull())
1091 Diag(AtLoc, diag::warn_incomplete_encoded_type)
1092 << EncodedType << NotEncodedT;
1093
1094 // The type of @encode is the same as the type of the corresponding string,
1095 // which is an array type.
1096 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size());
1097 }
1098
1099 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
1100}
1101
1102ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
1103 SourceLocation EncodeLoc,
1104 SourceLocation LParenLoc,
1105 ParsedType ty,
1106 SourceLocation RParenLoc) {
1107 // FIXME: Preserve type source info ?
1108 TypeSourceInfo *TInfo;
1109 QualType EncodedType = GetTypeFromParser(ty, &TInfo);
1110 if (!TInfo)
1111 TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
1112 getLocForEndOfToken(LParenLoc));
1113
1114 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
1115}
1116
1117static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
1118 SourceLocation AtLoc,
1119 SourceLocation LParenLoc,
1120 SourceLocation RParenLoc,
1121 ObjCMethodDecl *Method,
1122 ObjCMethodList &MethList) {
1123 ObjCMethodList *M = &MethList;
1124 bool Warned = false;
1125 for (M = M->getNext(); M; M=M->getNext()) {
1126 ObjCMethodDecl *MatchingMethodDecl = M->getMethod();
1127 if (MatchingMethodDecl == Method ||
1128 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) ||
1129 MatchingMethodDecl->getSelector() != Method->getSelector())
1130 continue;
1131 if (!S.MatchTwoMethodDeclarations(Method,
1132 MatchingMethodDecl, Sema::MMS_loose)) {
1133 if (!Warned) {
1134 Warned = true;
1135 S.Diag(AtLoc, diag::warn_multiple_selectors)
1136 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(")
1137 << FixItHint::CreateInsertion(RParenLoc, ")");
1138 S.Diag(Method->getLocation(), diag::note_method_declared_at)
1139 << Method->getDeclName();
1140 }
1141 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at)
1142 << MatchingMethodDecl->getDeclName();
1143 }
1144 }
1145 return Warned;
1146}
1147
1148static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc,
1149 ObjCMethodDecl *Method,
1150 SourceLocation LParenLoc,
1151 SourceLocation RParenLoc,
1152 bool WarnMultipleSelectors) {
1153 if (!WarnMultipleSelectors ||
1154 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation()))
1155 return;
1156 bool Warned = false;
1157 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1158 e = S.MethodPool.end(); b != e; b++) {
1159 // first, instance methods
1160 ObjCMethodList &InstMethList = b->second.first;
1161 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1162 Method, InstMethList))
1163 Warned = true;
1164
1165 // second, class methods
1166 ObjCMethodList &ClsMethList = b->second.second;
1167 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1168 Method, ClsMethList) || Warned)
1169 return;
1170 }
1171}
1172
1173static void HelperToDiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1174 Selector Sel,
1175 ObjCMethodList &MethList,
1176 bool &onlyDirect) {
1177 ObjCMethodList *M = &MethList;
1178 for (M = M->getNext(); M; M = M->getNext()) {
1179 ObjCMethodDecl *Method = M->getMethod();
1180 if (Method->getSelector() != Sel)
1181 continue;
1182 if (!Method->isDirectMethod())
1183 onlyDirect = false;
1184 }
1185}
1186
1187static void DiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc,
1188 Selector Sel, bool &onlyDirect) {
1189 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1190 e = S.MethodPool.end(); b != e; b++) {
1191 // first, instance methods
1192 ObjCMethodList &InstMethList = b->second.first;
1193 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, InstMethList,
1194 onlyDirect);
1195
1196 // second, class methods
1197 ObjCMethodList &ClsMethList = b->second.second;
1198 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, ClsMethList, onlyDirect);
1199 }
1200}
1201
1202ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
1203 SourceLocation AtLoc,
1204 SourceLocation SelLoc,
1205 SourceLocation LParenLoc,
1206 SourceLocation RParenLoc,
1207 bool WarnMultipleSelectors) {
1208 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
1209 SourceRange(LParenLoc, RParenLoc));
1210 if (!Method)
1211 Method = LookupFactoryMethodInGlobalPool(Sel,
1212 SourceRange(LParenLoc, RParenLoc));
1213 if (!Method) {
1214 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) {
1215 Selector MatchedSel = OM->getSelector();
1216 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1),
1217 RParenLoc.getLocWithOffset(-1));
1218 Diag(SelLoc, diag::warn_undeclared_selector_with_typo)
1219 << Sel << MatchedSel
1220 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1221
1222 } else
1223 Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
1224 } else {
1225 bool onlyDirect = Method->isDirectMethod();
1226 DiagnoseDirectSelectorsExpr(*this, AtLoc, Sel, onlyDirect);
1227 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc,
1228 WarnMultipleSelectors);
1229 if (onlyDirect) {
1230 Diag(AtLoc, diag::err_direct_selector_expression)
1231 << Method->getSelector();
1232 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
1233 << Method->getDeclName();
1234 }
1235 }
1236
1237 if (Method &&
1238 Method->getImplementationControl() != ObjCMethodDecl::Optional &&
1239 !getSourceManager().isInSystemHeader(Method->getLocation()))
1240 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc));
1241
1242 // In ARC, forbid the user from using @selector for
1243 // retain/release/autorelease/dealloc/retainCount.
1244 if (getLangOpts().ObjCAutoRefCount) {
1245 switch (Sel.getMethodFamily()) {
1246 case OMF_retain:
1247 case OMF_release:
1248 case OMF_autorelease:
1249 case OMF_retainCount:
1250 case OMF_dealloc:
1251 Diag(AtLoc, diag::err_arc_illegal_selector) <<
1252 Sel << SourceRange(LParenLoc, RParenLoc);
1253 break;
1254
1255 case OMF_None:
1256 case OMF_alloc:
1257 case OMF_copy:
1258 case OMF_finalize:
1259 case OMF_init:
1260 case OMF_mutableCopy:
1261 case OMF_new:
1262 case OMF_self:
1263 case OMF_initialize:
1264 case OMF_performSelector:
1265 break;
1266 }
1267 }
1268 QualType Ty = Context.getObjCSelType();
1269 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
1270}
1271
1272ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
1273 SourceLocation AtLoc,
1274 SourceLocation ProtoLoc,
1275 SourceLocation LParenLoc,
1276 SourceLocation ProtoIdLoc,
1277 SourceLocation RParenLoc) {
1278 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
1279 if (!PDecl) {
1280 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
1281 return true;
1282 }
1283 if (!PDecl->hasDefinition()) {
1284 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl;
1285 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
1286 } else {
1287 PDecl = PDecl->getDefinition();
1288 }
1289
1290 QualType Ty = Context.getObjCProtoType();
1291 if (Ty.isNull())
1292 return true;
1293 Ty = Context.getObjCObjectPointerType(Ty);
1294 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
1295}
1296
1297/// Try to capture an implicit reference to 'self'.
1298ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
1299 DeclContext *DC = getFunctionLevelDeclContext();
1300
1301 // If we're not in an ObjC method, error out. Note that, unlike the
1302 // C++ case, we don't require an instance method --- class methods
1303 // still have a 'self', and we really do still need to capture it!
1304 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
1305 if (!method)
1306 return nullptr;
1307
1308 tryCaptureVariable(method->getSelfDecl(), Loc);
1309
1310 return method;
1311}
1312
1313static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
1314 QualType origType = T;
1315 if (auto nullability = AttributedType::stripOuterNullability(T)) {
1316 if (T == Context.getObjCInstanceType()) {
1317 return Context.getAttributedType(
1318 AttributedType::getNullabilityAttrKind(*nullability),
1319 Context.getObjCIdType(),
1320 Context.getObjCIdType());
1321 }
1322
1323 return origType;
1324 }
1325
1326 if (T == Context.getObjCInstanceType())
1327 return Context.getObjCIdType();
1328
1329 return origType;
1330}
1331
1332/// Determine the result type of a message send based on the receiver type,
1333/// method, and the kind of message send.
1334///
1335/// This is the "base" result type, which will still need to be adjusted
1336/// to account for nullability.
1337static QualType getBaseMessageSendResultType(Sema &S,
1338 QualType ReceiverType,
1339 ObjCMethodDecl *Method,
1340 bool isClassMessage,
1341 bool isSuperMessage) {
1342 assert(Method && "Must have a method")((Method && "Must have a method") ? static_cast<void
> (0) : __assert_fail ("Method && \"Must have a method\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (!Method->hasRelatedResultType())
1344 return Method->getSendResultType(ReceiverType);
1345
1346 ASTContext &Context = S.Context;
1347
1348 // Local function that transfers the nullability of the method's
1349 // result type to the returned result.
1350 auto transferNullability = [&](QualType type) -> QualType {
1351 // If the method's result type has nullability, extract it.
1352 if (auto nullability = Method->getSendResultType(ReceiverType)
1353 ->getNullability(Context)){
1354 // Strip off any outer nullability sugar from the provided type.
1355 (void)AttributedType::stripOuterNullability(type);
1356
1357 // Form a new attributed type using the method result type's nullability.
1358 return Context.getAttributedType(
1359 AttributedType::getNullabilityAttrKind(*nullability),
1360 type,
1361 type);
1362 }
1363
1364 return type;
1365 };
1366
1367 // If a method has a related return type:
1368 // - if the method found is an instance method, but the message send
1369 // was a class message send, T is the declared return type of the method
1370 // found
1371 if (Method->isInstanceMethod() && isClassMessage)
1372 return stripObjCInstanceType(Context,
1373 Method->getSendResultType(ReceiverType));
1374
1375 // - if the receiver is super, T is a pointer to the class of the
1376 // enclosing method definition
1377 if (isSuperMessage) {
1378 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl())
1379 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) {
1380 return transferNullability(
1381 Context.getObjCObjectPointerType(
1382 Context.getObjCInterfaceType(Class)));
1383 }
1384 }
1385
1386 // - if the receiver is the name of a class U, T is a pointer to U
1387 if (ReceiverType->getAsObjCInterfaceType())
1388 return transferNullability(Context.getObjCObjectPointerType(ReceiverType));
1389 // - if the receiver is of type Class or qualified Class type,
1390 // T is the declared return type of the method.
1391 if (ReceiverType->isObjCClassType() ||
1392 ReceiverType->isObjCQualifiedClassType())
1393 return stripObjCInstanceType(Context,
1394 Method->getSendResultType(ReceiverType));
1395
1396 // - if the receiver is id, qualified id, Class, or qualified Class, T
1397 // is the receiver type, otherwise
1398 // - T is the type of the receiver expression.
1399 return transferNullability(ReceiverType);
1400}
1401
1402QualType Sema::getMessageSendResultType(const Expr *Receiver,
1403 QualType ReceiverType,
1404 ObjCMethodDecl *Method,
1405 bool isClassMessage,
1406 bool isSuperMessage) {
1407 // Produce the result type.
1408 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType,
1409 Method,
1410 isClassMessage,
1411 isSuperMessage);
1412
1413 // If this is a class message, ignore the nullability of the receiver.
1414 if (isClassMessage) {
1415 // In a class method, class messages to 'self' that return instancetype can
1416 // be typed as the current class. We can safely do this in ARC because self
1417 // can't be reassigned, and we do it unsafely outside of ARC because in
1418 // practice people never reassign self in class methods and there's some
1419 // virtue in not being aggressively pedantic.
1420 if (Receiver && Receiver->isObjCSelfExpr()) {
1421 assert(ReceiverType->isObjCClassType() && "expected a Class self")((ReceiverType->isObjCClassType() && "expected a Class self"
) ? static_cast<void> (0) : __assert_fail ("ReceiverType->isObjCClassType() && \"expected a Class self\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 1421, __PRETTY_FUNCTION__))
;
1422 QualType T = Method->getSendResultType(ReceiverType);
1423 AttributedType::stripOuterNullability(T);
1424 if (T == Context.getObjCInstanceType()) {
1425 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(
1426 cast<ImplicitParamDecl>(
1427 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl())
1428 ->getDeclContext());
1429 assert(MD->isClassMethod() && "expected a class method")((MD->isClassMethod() && "expected a class method"
) ? static_cast<void> (0) : __assert_fail ("MD->isClassMethod() && \"expected a class method\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 1429, __PRETTY_FUNCTION__))
;
1430 QualType NewResultType = Context.getObjCObjectPointerType(
1431 Context.getObjCInterfaceType(MD->getClassInterface()));
1432 if (auto Nullability = resultType->getNullability(Context))
1433 NewResultType = Context.getAttributedType(
1434 AttributedType::getNullabilityAttrKind(*Nullability),
1435 NewResultType, NewResultType);
1436 return NewResultType;
1437 }
1438 }
1439 return resultType;
1440 }
1441
1442 // There is nothing left to do if the result type cannot have a nullability
1443 // specifier.
1444 if (!resultType->canHaveNullability())
1445 return resultType;
1446
1447 // Map the nullability of the result into a table index.
1448 unsigned receiverNullabilityIdx = 0;
1449 if (auto nullability = ReceiverType->getNullability(Context))
1450 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1451
1452 unsigned resultNullabilityIdx = 0;
1453 if (auto nullability = resultType->getNullability(Context))
1454 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1455
1456 // The table of nullability mappings, indexed by the receiver's nullability
1457 // and then the result type's nullability.
1458 static const uint8_t None = 0;
1459 static const uint8_t NonNull = 1;
1460 static const uint8_t Nullable = 2;
1461 static const uint8_t Unspecified = 3;
1462 static const uint8_t nullabilityMap[4][4] = {
1463 // None NonNull Nullable Unspecified
1464 /* None */ { None, None, Nullable, None },
1465 /* NonNull */ { None, NonNull, Nullable, Unspecified },
1466 /* Nullable */ { Nullable, Nullable, Nullable, Nullable },
1467 /* Unspecified */ { None, Unspecified, Nullable, Unspecified }
1468 };
1469
1470 unsigned newResultNullabilityIdx
1471 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx];
1472 if (newResultNullabilityIdx == resultNullabilityIdx)
1473 return resultType;
1474
1475 // Strip off the existing nullability. This removes as little type sugar as
1476 // possible.
1477 do {
1478 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) {
1479 resultType = attributed->getModifiedType();
1480 } else {
1481 resultType = resultType.getDesugaredType(Context);
1482 }
1483 } while (resultType->getNullability(Context));
1484
1485 // Add nullability back if needed.
1486 if (newResultNullabilityIdx > 0) {
1487 auto newNullability
1488 = static_cast<NullabilityKind>(newResultNullabilityIdx-1);
1489 return Context.getAttributedType(
1490 AttributedType::getNullabilityAttrKind(newNullability),
1491 resultType, resultType);
1492 }
1493
1494 return resultType;
1495}
1496
1497/// Look for an ObjC method whose result type exactly matches the given type.
1498static const ObjCMethodDecl *
1499findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD,
1500 QualType instancetype) {
1501 if (MD->getReturnType() == instancetype)
1502 return MD;
1503
1504 // For these purposes, a method in an @implementation overrides a
1505 // declaration in the @interface.
1506 if (const ObjCImplDecl *impl =
1507 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) {
1508 const ObjCContainerDecl *iface;
1509 if (const ObjCCategoryImplDecl *catImpl =
1510 dyn_cast<ObjCCategoryImplDecl>(impl)) {
1511 iface = catImpl->getCategoryDecl();
1512 } else {
1513 iface = impl->getClassInterface();
1514 }
1515
1516 const ObjCMethodDecl *ifaceMD =
1517 iface->getMethod(MD->getSelector(), MD->isInstanceMethod());
1518 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype);
1519 }
1520
1521 SmallVector<const ObjCMethodDecl *, 4> overrides;
1522 MD->getOverriddenMethods(overrides);
1523 for (unsigned i = 0, e = overrides.size(); i != e; ++i) {
1524 if (const ObjCMethodDecl *result =
1525 findExplicitInstancetypeDeclarer(overrides[i], instancetype))
1526 return result;
1527 }
1528
1529 return nullptr;
1530}
1531
1532void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) {
1533 // Only complain if we're in an ObjC method and the required return
1534 // type doesn't match the method's declared return type.
1535 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext);
1536 if (!MD || !MD->hasRelatedResultType() ||
1537 Context.hasSameUnqualifiedType(destType, MD->getReturnType()))
1538 return;
1539
1540 // Look for a method overridden by this method which explicitly uses
1541 // 'instancetype'.
1542 if (const ObjCMethodDecl *overridden =
1543 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) {
1544 SourceRange range = overridden->getReturnTypeSourceRange();
1545 SourceLocation loc = range.getBegin();
1546 if (loc.isInvalid())
1547 loc = overridden->getLocation();
1548 Diag(loc, diag::note_related_result_type_explicit)
1549 << /*current method*/ 1 << range;
1550 return;
1551 }
1552
1553 // Otherwise, if we have an interesting method family, note that.
1554 // This should always trigger if the above didn't.
1555 if (ObjCMethodFamily family = MD->getMethodFamily())
1556 Diag(MD->getLocation(), diag::note_related_result_type_family)
1557 << /*current method*/ 1
1558 << family;
1559}
1560
1561void Sema::EmitRelatedResultTypeNote(const Expr *E) {
1562 E = E->IgnoreParenImpCasts();
1563 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
1564 if (!MsgSend)
1565 return;
1566
1567 const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
1568 if (!Method)
1569 return;
1570
1571 if (!Method->hasRelatedResultType())
1572 return;
1573
1574 if (Context.hasSameUnqualifiedType(
1575 Method->getReturnType().getNonReferenceType(), MsgSend->getType()))
1576 return;
1577
1578 if (!Context.hasSameUnqualifiedType(Method->getReturnType(),
1579 Context.getObjCInstanceType()))
1580 return;
1581
1582 Diag(Method->getLocation(), diag::note_related_result_type_inferred)
1583 << Method->isInstanceMethod() << Method->getSelector()
1584 << MsgSend->getType();
1585}
1586
1587bool Sema::CheckMessageArgumentTypes(
1588 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args,
1589 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method,
1590 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac,
1591 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType,
1592 ExprValueKind &VK) {
1593 SourceLocation SelLoc;
1594 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
1595 SelLoc = SelectorLocs.front();
1596 else
1597 SelLoc = lbrac;
1598
1599 if (!Method) {
1600 // Apply default argument promotion as for (C99 6.5.2.2p6).
1601 for (unsigned i = 0, e = Args.size(); i != e; i++) {
1602 if (Args[i]->isTypeDependent())
1603 continue;
1604
1605 ExprResult result;
1606 if (getLangOpts().DebuggerSupport) {
1607 QualType paramTy; // ignored
1608 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy);
1609 } else {
1610 result = DefaultArgumentPromotion(Args[i]);
1611 }
1612 if (result.isInvalid())
1613 return true;
1614 Args[i] = result.get();
1615 }
1616
1617 unsigned DiagID;
1618 if (getLangOpts().ObjCAutoRefCount)
1619 DiagID = diag::err_arc_method_not_found;
1620 else
1621 DiagID = isClassMessage ? diag::warn_class_method_not_found
1622 : diag::warn_inst_method_not_found;
1623 if (!getLangOpts().DebuggerSupport) {
1624 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType);
1625 if (OMD && !OMD->isInvalidDecl()) {
1626 if (getLangOpts().ObjCAutoRefCount)
1627 DiagID = diag::err_method_not_found_with_typo;
1628 else
1629 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo
1630 : diag::warn_instance_method_not_found_with_typo;
1631 Selector MatchedSel = OMD->getSelector();
1632 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back());
1633 if (MatchedSel.isUnarySelector())
1634 Diag(SelLoc, DiagID)
1635 << Sel<< isClassMessage << MatchedSel
1636 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1637 else
1638 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel;
1639 }
1640 else
1641 Diag(SelLoc, DiagID)
1642 << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
1643 SelectorLocs.back());
1644 // Find the class to which we are sending this message.
1645 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
1646 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) {
1647 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared);
1648 if (!RecRange.isInvalid())
1649 if (ThisClass->lookupClassMethod(Sel))
1650 Diag(RecRange.getBegin(), diag::note_receiver_expr_here)
1651 << FixItHint::CreateReplacement(RecRange,
1652 ThisClass->getNameAsString());
1653 }
1654 }
1655 }
1656
1657 // In debuggers, we want to use __unknown_anytype for these
1658 // results so that clients can cast them.
1659 if (getLangOpts().DebuggerSupport) {
1660 ReturnType = Context.UnknownAnyTy;
1661 } else {
1662 ReturnType = Context.getObjCIdType();
1663 }
1664 VK = VK_RValue;
1665 return false;
1666 }
1667
1668 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method,
1669 isClassMessage, isSuperMessage);
1670 VK = Expr::getValueKindForType(Method->getReturnType());
1671
1672 unsigned NumNamedArgs = Sel.getNumArgs();
1673 // Method might have more arguments than selector indicates. This is due
1674 // to addition of c-style arguments in method.
1675 if (Method->param_size() > Sel.getNumArgs())
1676 NumNamedArgs = Method->param_size();
1677 // FIXME. This need be cleaned up.
1678 if (Args.size() < NumNamedArgs) {
1679 Diag(SelLoc, diag::err_typecheck_call_too_few_args)
1680 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size());
1681 return false;
1682 }
1683
1684 // Compute the set of type arguments to be substituted into each parameter
1685 // type.
1686 Optional<ArrayRef<QualType>> typeArgs
1687 = ReceiverType->getObjCSubstitutions(Method->getDeclContext());
1688 bool IsError = false;
1689 for (unsigned i = 0; i < NumNamedArgs; i++) {
1690 // We can't do any type-checking on a type-dependent argument.
1691 if (Args[i]->isTypeDependent())
1692 continue;
1693
1694 Expr *argExpr = Args[i];
1695
1696 ParmVarDecl *param = Method->parameters()[i];
1697 assert(argExpr && "CheckMessageArgumentTypes(): missing expression")((argExpr && "CheckMessageArgumentTypes(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"CheckMessageArgumentTypes(): missing expression\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 1697, __PRETTY_FUNCTION__))
;
1698
1699 if (param->hasAttr<NoEscapeAttr>())
1700 if (auto *BE = dyn_cast<BlockExpr>(
1701 argExpr->IgnoreParenNoopCasts(Context)))
1702 BE->getBlockDecl()->setDoesNotEscape();
1703
1704 // Strip the unbridged-cast placeholder expression off unless it's
1705 // a consumed argument.
1706 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
1707 !param->hasAttr<CFConsumedAttr>())
1708 argExpr = stripARCUnbridgedCast(argExpr);
1709
1710 // If the parameter is __unknown_anytype, infer its type
1711 // from the argument.
1712 if (param->getType() == Context.UnknownAnyTy) {
1713 QualType paramType;
1714 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType);
1715 if (argE.isInvalid()) {
1716 IsError = true;
1717 } else {
1718 Args[i] = argE.get();
1719
1720 // Update the parameter type in-place.
1721 param->setType(paramType);
1722 }
1723 continue;
1724 }
1725
1726 QualType origParamType = param->getType();
1727 QualType paramType = param->getType();
1728 if (typeArgs)
1729 paramType = paramType.substObjCTypeArgs(
1730 Context,
1731 *typeArgs,
1732 ObjCSubstitutionContext::Parameter);
1733
1734 if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
1735 paramType,
1736 diag::err_call_incomplete_argument, argExpr))
1737 return true;
1738
1739 InitializedEntity Entity
1740 = InitializedEntity::InitializeParameter(Context, param, paramType);
1741 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr);
1742 if (ArgE.isInvalid())
1743 IsError = true;
1744 else {
1745 Args[i] = ArgE.getAs<Expr>();
1746
1747 // If we are type-erasing a block to a block-compatible
1748 // Objective-C pointer type, we may need to extend the lifetime
1749 // of the block object.
1750 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() &&
1751 Args[i]->getType()->isBlockPointerType() &&
1752 origParamType->isObjCObjectPointerType()) {
1753 ExprResult arg = Args[i];
1754 maybeExtendBlockObject(arg);
1755 Args[i] = arg.get();
1756 }
1757 }
1758 }
1759
1760 // Promote additional arguments to variadic methods.
1761 if (Method->isVariadic()) {
1762 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
1763 if (Args[i]->isTypeDependent())
1764 continue;
1765
1766 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
1767 nullptr);
1768 IsError |= Arg.isInvalid();
1769 Args[i] = Arg.get();
1770 }
1771 } else {
1772 // Check for extra arguments to non-variadic methods.
1773 if (Args.size() != NumNamedArgs) {
1774 Diag(Args[NumNamedArgs]->getBeginLoc(),
1775 diag::err_typecheck_call_too_many_args)
1776 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size())
1777 << Method->getSourceRange()
1778 << SourceRange(Args[NumNamedArgs]->getBeginLoc(),
1779 Args.back()->getEndLoc());
1780 }
1781 }
1782
1783 DiagnoseSentinelCalls(Method, SelLoc, Args);
1784
1785 // Do additional checkings on method.
1786 IsError |= CheckObjCMethodCall(
1787 Method, SelLoc, makeArrayRef(Args.data(), Args.size()));
1788
1789 return IsError;
1790}
1791
1792bool Sema::isSelfExpr(Expr *RExpr) {
1793 // 'self' is objc 'self' in an objc method only.
1794 ObjCMethodDecl *Method =
1795 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
1796 return isSelfExpr(RExpr, Method);
1797}
1798
1799bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) {
1800 if (!method) return false;
1801
1802 receiver = receiver->IgnoreParenLValueCasts();
1803 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
1804 if (DRE->getDecl() == method->getSelfDecl())
1805 return true;
1806 return false;
1807}
1808
1809/// LookupMethodInType - Look up a method in an ObjCObjectType.
1810ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
1811 bool isInstance) {
1812 const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
1813 if (ObjCInterfaceDecl *iface = objType->getInterface()) {
1814 // Look it up in the main interface (and categories, etc.)
1815 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
1816 return method;
1817
1818 // Okay, look for "private" methods declared in any
1819 // @implementations we've seen.
1820 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
1821 return method;
1822 }
1823
1824 // Check qualifiers.
1825 for (const auto *I : objType->quals())
1826 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance))
1827 return method;
1828
1829 return nullptr;
1830}
1831
1832/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
1833/// list of a qualified objective pointer type.
1834ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
1835 const ObjCObjectPointerType *OPT,
1836 bool Instance)
1837{
1838 ObjCMethodDecl *MD = nullptr;
1839 for (const auto *PROTO : OPT->quals()) {
1840 if ((MD = PROTO->lookupMethod(Sel, Instance))) {
1841 return MD;
1842 }
1843 }
1844 return nullptr;
1845}
1846
1847/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
1848/// objective C interface. This is a property reference expression.
1849ExprResult Sema::
1850HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
1851 Expr *BaseExpr, SourceLocation OpLoc,
1852 DeclarationName MemberName,
1853 SourceLocation MemberLoc,
1854 SourceLocation SuperLoc, QualType SuperType,
1855 bool Super) {
1856 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
1857 ObjCInterfaceDecl *IFace = IFaceT->getDecl();
1858
1859 if (!MemberName.isIdentifier()) {
13
Calling 'DeclarationName::isIdentifier'
16
Returning from 'DeclarationName::isIdentifier'
17
Taking false branch
1860 Diag(MemberLoc, diag::err_invalid_property_name)
1861 << MemberName << QualType(OPT, 0);
1862 return ExprError();
1863 }
1864
1865 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1866
1867 SourceRange BaseRange = Super
17.1
'Super' is true
17.1
'Super' is true
? SourceRange(SuperLoc)
18
'?' condition is true
1868 : BaseExpr->getSourceRange();
1869 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
19
Assuming the condition is false
20
Taking false branch
1870 diag::err_property_not_found_forward_class,
1871 MemberName, BaseRange))
1872 return ExprError();
1873
1874 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(
21
Assuming 'PD' is null
22
Taking false branch
1875 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1876 // Check whether we can reference this property.
1877 if (DiagnoseUseOfDecl(PD, MemberLoc))
1878 return ExprError();
1879 if (Super)
1880 return new (Context)
1881 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1882 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1883 else
1884 return new (Context)
1885 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1886 OK_ObjCProperty, MemberLoc, BaseExpr);
1887 }
1888 // Check protocols on qualified interfaces.
1889 for (const auto *I : OPT->quals())
23
Assuming '__begin1' is equal to '__end1'
1890 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
1891 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1892 // Check whether we can reference this property.
1893 if (DiagnoseUseOfDecl(PD, MemberLoc))
1894 return ExprError();
1895
1896 if (Super)
1897 return new (Context) ObjCPropertyRefExpr(
1898 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc,
1899 SuperLoc, SuperType);
1900 else
1901 return new (Context)
1902 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
1903 OK_ObjCProperty, MemberLoc, BaseExpr);
1904 }
1905 // If that failed, look for an "implicit" property by seeing if the nullary
1906 // selector is implemented.
1907
1908 // FIXME: The logic for looking up nullary and unary selectors should be
1909 // shared with the code in ActOnInstanceMessage.
1910
1911 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1912 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1913
1914 // May be found in property's qualified list.
1915 if (!Getter)
24
Assuming 'Getter' is null
25
Taking true branch
1916 Getter = LookupMethodInQualifiedType(Sel, OPT, true);
1917
1918 // If this reference is in an @implementation, check for 'private' methods.
1919 if (!Getter)
26
Assuming 'Getter' is null
27
Taking true branch
1920 Getter = IFace->lookupPrivateMethod(Sel);
1921
1922 if (Getter) {
28
Assuming 'Getter' is null
29
Taking false branch
1923 // Check if we can reference this property.
1924 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1925 return ExprError();
1926 }
1927 // If we found a getter then this may be a valid dot-reference, we
1928 // will look for the matching setter, in case it is needed.
1929 Selector SetterSel =
1930 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1931 PP.getSelectorTable(), Member);
1932 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1933
1934 // May be found in property's qualified list.
1935 if (!Setter)
30
Assuming 'Setter' is null
31
Taking true branch
1936 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
1937
1938 if (!Setter) {
32
Assuming 'Setter' is null
33
Taking true branch
1939 // If this reference is in an @implementation, also check for 'private'
1940 // methods.
1941 Setter = IFace->lookupPrivateMethod(SetterSel);
1942 }
1943
1944 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
34
Assuming 'Setter' is null
35
Taking false branch
1945 return ExprError();
1946
1947 // Special warning if member name used in a property-dot for a setter accessor
1948 // does not use a property with same name; e.g. obj.X = ... for a property with
1949 // name 'x'.
1950 if (Setter
35.1
'Setter' is null
35.1
'Setter' is null
&& Setter->isImplicit() && Setter->isPropertyAccessor() &&
1951 !IFace->FindPropertyDeclaration(
1952 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1953 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) {
1954 // Do not warn if user is using property-dot syntax to make call to
1955 // user named setter.
1956 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter))
1957 Diag(MemberLoc,
1958 diag::warn_property_access_suggest)
1959 << MemberName << QualType(OPT, 0) << PDecl->getName()
1960 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName());
1961 }
1962 }
1963
1964 if (Getter
35.2
'Getter' is null
35.2
'Getter' is null
|| Setter
35.3
'Setter' is null
35.3
'Setter' is null
) {
36
Taking false branch
1965 if (Super)
1966 return new (Context)
1967 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1968 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
1969 else
1970 return new (Context)
1971 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
1972 OK_ObjCProperty, MemberLoc, BaseExpr);
1973
1974 }
1975
1976 // Attempt to correct for typos in property names.
1977 DeclFilterCCC<ObjCPropertyDecl> CCC{};
1978 if (TypoCorrection Corrected = CorrectTypo(
37
Assuming the condition is true
38
Taking true branch
1979 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName,
1980 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) {
1981 DeclarationName TypoResult = Corrected.getCorrection();
1982 if (TypoResult.isIdentifier() &&
39
Calling 'DeclarationName::isIdentifier'
42
Returning from 'DeclarationName::isIdentifier'
44
Taking true branch
1983 TypoResult.getAsIdentifierInfo() == Member) {
43
Assuming the condition is true
1984 // There is no need to try the correction if it is the same.
1985 NamedDecl *ChosenDecl =
1986 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl();
45
Assuming the condition is false
46
'?' condition is false
1987 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl))
47
Assuming 'ChosenDecl' is non-null
48
Assuming 'ChosenDecl' is a 'ObjCPropertyDecl'
49
Taking true branch
1988 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) {
50
'ChosenDecl' is a 'ObjCPropertyDecl'
51
Assuming the condition is true
52
Taking true branch
1989 // This is a class property, we should not use the instance to
1990 // access it.
1991 Diag(MemberLoc, diag::err_class_property_found) << MemberName
1992 << OPT->getInterfaceDecl()->getName()
1993 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(),
53
Called C++ object pointer is null
1994 OPT->getInterfaceDecl()->getName());
1995 return ExprError();
1996 }
1997 } else {
1998 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest)
1999 << MemberName << QualType(OPT, 0));
2000 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
2001 TypoResult, MemberLoc,
2002 SuperLoc, SuperType, Super);
2003 }
2004 }
2005 ObjCInterfaceDecl *ClassDeclared;
2006 if (ObjCIvarDecl *Ivar =
2007 IFace->lookupInstanceVariable(Member, ClassDeclared)) {
2008 QualType T = Ivar->getType();
2009 if (const ObjCObjectPointerType * OBJPT =
2010 T->getAsObjCInterfacePointerType()) {
2011 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
2012 diag::err_property_not_as_forward_class,
2013 MemberName, BaseExpr))
2014 return ExprError();
2015 }
2016 Diag(MemberLoc,
2017 diag::err_ivar_access_using_property_syntax_suggest)
2018 << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
2019 << FixItHint::CreateReplacement(OpLoc, "->");
2020 return ExprError();
2021 }
2022
2023 Diag(MemberLoc, diag::err_property_not_found)
2024 << MemberName << QualType(OPT, 0);
2025 if (Setter)
2026 Diag(Setter->getLocation(), diag::note_getter_unavailable)
2027 << MemberName << BaseExpr->getSourceRange();
2028 return ExprError();
2029}
2030
2031ExprResult Sema::
2032ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
2033 IdentifierInfo &propertyName,
2034 SourceLocation receiverNameLoc,
2035 SourceLocation propertyNameLoc) {
2036
2037 IdentifierInfo *receiverNamePtr = &receiverName;
2038 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
2039 receiverNameLoc);
2040
2041 QualType SuperType;
2042 if (!IFace) {
1
Assuming 'IFace' is null
2
Taking true branch
2043 // If the "receiver" is 'super' in a method, handle it as an expression-like
2044 // property reference.
2045 if (receiverNamePtr->isStr("super")) {
3
Taking true branch
2046 if (ObjCMethodDecl *CurMethod
3.1
'CurMethod' is non-null
3.1
'CurMethod' is non-null
= tryCaptureObjCSelf(receiverNameLoc)) {
4
Taking true branch
2047 if (auto classDecl = CurMethod->getClassInterface()) {
5
Assuming 'classDecl' is non-null
6
Taking true branch
2048 SuperType = QualType(classDecl->getSuperClassType(), 0);
2049 if (CurMethod->isInstanceMethod()) {
7
Assuming the condition is true
8
Taking true branch
2050 if (SuperType.isNull()) {
9
Taking false branch
2051 // The current class does not have a superclass.
2052 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super)
2053 << CurMethod->getClassInterface()->getIdentifier();
2054 return ExprError();
2055 }
2056 QualType T = Context.getObjCObjectPointerType(SuperType);
2057
2058 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(),
10
The object is a 'ObjCObjectPointerType'
12
Calling 'Sema::HandleExprPropertyRefExpr'
2059 /*BaseExpr*/nullptr,
11
Passing null pointer value via 2nd parameter 'BaseExpr'
2060 SourceLocation()/*OpLoc*/,
2061 &propertyName,
2062 propertyNameLoc,
2063 receiverNameLoc, T, true);
2064 }
2065
2066 // Otherwise, if this is a class method, try dispatching to our
2067 // superclass.
2068 IFace = CurMethod->getClassInterface()->getSuperClass();
2069 }
2070 }
2071 }
2072
2073 if (!IFace) {
2074 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier
2075 << tok::l_paren;
2076 return ExprError();
2077 }
2078 }
2079
2080 Selector GetterSel;
2081 Selector SetterSel;
2082 if (auto PD = IFace->FindPropertyDeclaration(
2083 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) {
2084 GetterSel = PD->getGetterName();
2085 SetterSel = PD->getSetterName();
2086 } else {
2087 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName);
2088 SetterSel = SelectorTable::constructSetterSelector(
2089 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName);
2090 }
2091
2092 // Search for a declared property first.
2093 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel);
2094
2095 // If this reference is in an @implementation, check for 'private' methods.
2096 if (!Getter)
2097 Getter = IFace->lookupPrivateClassMethod(GetterSel);
2098
2099 if (Getter) {
2100 // FIXME: refactor/share with ActOnMemberReference().
2101 // Check if we can reference this property.
2102 if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
2103 return ExprError();
2104 }
2105
2106 // Look for the matching setter, in case it is needed.
2107 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2108 if (!Setter) {
2109 // If this reference is in an @implementation, also check for 'private'
2110 // methods.
2111 Setter = IFace->lookupPrivateClassMethod(SetterSel);
2112 }
2113 // Look through local category implementations associated with the class.
2114 if (!Setter)
2115 Setter = IFace->getCategoryClassMethod(SetterSel);
2116
2117 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
2118 return ExprError();
2119
2120 if (Getter || Setter) {
2121 if (!SuperType.isNull())
2122 return new (Context)
2123 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2124 OK_ObjCProperty, propertyNameLoc, receiverNameLoc,
2125 SuperType);
2126
2127 return new (Context) ObjCPropertyRefExpr(
2128 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty,
2129 propertyNameLoc, receiverNameLoc, IFace);
2130 }
2131 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
2132 << &propertyName << Context.getObjCInterfaceType(IFace));
2133}
2134
2135namespace {
2136
2137class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback {
2138 public:
2139 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
2140 // Determine whether "super" is acceptable in the current context.
2141 if (Method && Method->getClassInterface())
2142 WantObjCSuper = Method->getClassInterface()->getSuperClass();
2143 }
2144
2145 bool ValidateCandidate(const TypoCorrection &candidate) override {
2146 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
2147 candidate.isKeyword("super");
2148 }
2149
2150 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2151 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this);
2152 }
2153};
2154
2155} // end anonymous namespace
2156
2157Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
2158 IdentifierInfo *Name,
2159 SourceLocation NameLoc,
2160 bool IsSuper,
2161 bool HasTrailingDot,
2162 ParsedType &ReceiverType) {
2163 ReceiverType = nullptr;
2164
2165 // If the identifier is "super" and there is no trailing dot, we're
2166 // messaging super. If the identifier is "super" and there is a
2167 // trailing dot, it's an instance message.
2168 if (IsSuper && S->isInObjcMethodScope())
2169 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
2170
2171 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
2172 LookupName(Result, S);
2173
2174 switch (Result.getResultKind()) {
2175 case LookupResult::NotFound:
2176 // Normal name lookup didn't find anything. If we're in an
2177 // Objective-C method, look for ivars. If we find one, we're done!
2178 // FIXME: This is a hack. Ivar lookup should be part of normal
2179 // lookup.
2180 if (ObjCMethodDecl *Method = getCurMethodDecl()) {
2181 if (!Method->getClassInterface()) {
2182 // Fall back: let the parser try to parse it as an instance message.
2183 return ObjCInstanceMessage;
2184 }
2185
2186 ObjCInterfaceDecl *ClassDeclared;
2187 if (Method->getClassInterface()->lookupInstanceVariable(Name,
2188 ClassDeclared))
2189 return ObjCInstanceMessage;
2190 }
2191
2192 // Break out; we'll perform typo correction below.
2193 break;
2194
2195 case LookupResult::NotFoundInCurrentInstantiation:
2196 case LookupResult::FoundOverloaded:
2197 case LookupResult::FoundUnresolvedValue:
2198 case LookupResult::Ambiguous:
2199 Result.suppressDiagnostics();
2200 return ObjCInstanceMessage;
2201
2202 case LookupResult::Found: {
2203 // If the identifier is a class or not, and there is a trailing dot,
2204 // it's an instance message.
2205 if (HasTrailingDot)
2206 return ObjCInstanceMessage;
2207 // We found something. If it's a type, then we have a class
2208 // message. Otherwise, it's an instance message.
2209 NamedDecl *ND = Result.getFoundDecl();
2210 QualType T;
2211 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
2212 T = Context.getObjCInterfaceType(Class);
2213 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) {
2214 T = Context.getTypeDeclType(Type);
2215 DiagnoseUseOfDecl(Type, NameLoc);
2216 }
2217 else
2218 return ObjCInstanceMessage;
2219
2220 // We have a class message, and T is the type we're
2221 // messaging. Build source-location information for it.
2222 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2223 ReceiverType = CreateParsedType(T, TSInfo);
2224 return ObjCClassMessage;
2225 }
2226 }
2227
2228 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl());
2229 if (TypoCorrection Corrected = CorrectTypo(
2230 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC,
2231 CTK_ErrorRecovery, nullptr, false, nullptr, false)) {
2232 if (Corrected.isKeyword()) {
2233 // If we've found the keyword "super" (the only keyword that would be
2234 // returned by CorrectTypo), this is a send to super.
2235 diagnoseTypo(Corrected,
2236 PDiag(diag::err_unknown_receiver_suggest) << Name);
2237 return ObjCSuperMessage;
2238 } else if (ObjCInterfaceDecl *Class =
2239 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2240 // If we found a declaration, correct when it refers to an Objective-C
2241 // class.
2242 diagnoseTypo(Corrected,
2243 PDiag(diag::err_unknown_receiver_suggest) << Name);
2244 QualType T = Context.getObjCInterfaceType(Class);
2245 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2246 ReceiverType = CreateParsedType(T, TSInfo);
2247 return ObjCClassMessage;
2248 }
2249 }
2250
2251 // Fall back: let the parser try to parse it as an instance message.
2252 return ObjCInstanceMessage;
2253}
2254
2255ExprResult Sema::ActOnSuperMessage(Scope *S,
2256 SourceLocation SuperLoc,
2257 Selector Sel,
2258 SourceLocation LBracLoc,
2259 ArrayRef<SourceLocation> SelectorLocs,
2260 SourceLocation RBracLoc,
2261 MultiExprArg Args) {
2262 // Determine whether we are inside a method or not.
2263 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
2264 if (!Method) {
2265 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
2266 return ExprError();
2267 }
2268
2269 ObjCInterfaceDecl *Class = Method->getClassInterface();
2270 if (!Class) {
2271 Diag(SuperLoc, diag::err_no_super_class_message)
2272 << Method->getDeclName();
2273 return ExprError();
2274 }
2275
2276 QualType SuperTy(Class->getSuperClassType(), 0);
2277 if (SuperTy.isNull()) {
2278 // The current class does not have a superclass.
2279 Diag(SuperLoc, diag::err_root_class_cannot_use_super)
2280 << Class->getIdentifier();
2281 return ExprError();
2282 }
2283
2284 // We are in a method whose class has a superclass, so 'super'
2285 // is acting as a keyword.
2286 if (Method->getSelector() == Sel)
2287 getCurFunction()->ObjCShouldCallSuper = false;
2288
2289 if (Method->isInstanceMethod()) {
2290 // Since we are in an instance method, this is an instance
2291 // message to the superclass instance.
2292 SuperTy = Context.getObjCObjectPointerType(SuperTy);
2293 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc,
2294 Sel, /*Method=*/nullptr,
2295 LBracLoc, SelectorLocs, RBracLoc, Args);
2296 }
2297
2298 // Since we are in a class method, this is a class message to
2299 // the superclass.
2300 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr,
2301 SuperTy,
2302 SuperLoc, Sel, /*Method=*/nullptr,
2303 LBracLoc, SelectorLocs, RBracLoc, Args);
2304}
2305
2306ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
2307 bool isSuperReceiver,
2308 SourceLocation Loc,
2309 Selector Sel,
2310 ObjCMethodDecl *Method,
2311 MultiExprArg Args) {
2312 TypeSourceInfo *receiverTypeInfo = nullptr;
2313 if (!ReceiverType.isNull())
2314 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
2315
2316 return BuildClassMessage(receiverTypeInfo, ReceiverType,
2317 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
2318 Sel, Method, Loc, Loc, Loc, Args,
2319 /*isImplicit=*/true);
2320}
2321
2322static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
2323 unsigned DiagID,
2324 bool (*refactor)(const ObjCMessageExpr *,
2325 const NSAPI &, edit::Commit &)) {
2326 SourceLocation MsgLoc = Msg->getExprLoc();
2327 if (S.Diags.isIgnored(DiagID, MsgLoc))
2328 return;
2329
2330 SourceManager &SM = S.SourceMgr;
2331 edit::Commit ECommit(SM, S.LangOpts);
2332 if (refactor(Msg,*S.NSAPIObj, ECommit)) {
2333 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
2334 << Msg->getSelector() << Msg->getSourceRange();
2335 // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
2336 if (!ECommit.isCommitable())
2337 return;
2338 for (edit::Commit::edit_iterator
2339 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
2340 const edit::Commit::Edit &Edit = *I;
2341 switch (Edit.Kind) {
2342 case edit::Commit::Act_Insert:
2343 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
2344 Edit.Text,
2345 Edit.BeforePrev));
2346 break;
2347 case edit::Commit::Act_InsertFromRange:
2348 Builder.AddFixItHint(
2349 FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
2350 Edit.getInsertFromRange(SM),
2351 Edit.BeforePrev));
2352 break;
2353 case edit::Commit::Act_Remove:
2354 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
2355 break;
2356 }
2357 }
2358 }
2359}
2360
2361static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
2362 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
2363 edit::rewriteObjCRedundantCallWithLiteral);
2364}
2365
2366static void checkFoundationAPI(Sema &S, SourceLocation Loc,
2367 const ObjCMethodDecl *Method,
2368 ArrayRef<Expr *> Args, QualType ReceiverType,
2369 bool IsClassObjectCall) {
2370 // Check if this is a performSelector method that uses a selector that returns
2371 // a record or a vector type.
2372 if (Method->getSelector().getMethodFamily() != OMF_performSelector ||
2373 Args.empty())
2374 return;
2375 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens());
2376 if (!SE)
2377 return;
2378 ObjCMethodDecl *ImpliedMethod;
2379 if (!IsClassObjectCall) {
2380 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>();
2381 if (!OPT || !OPT->getInterfaceDecl())
2382 return;
2383 ImpliedMethod =
2384 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector());
2385 if (!ImpliedMethod)
2386 ImpliedMethod =
2387 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector());
2388 } else {
2389 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>();
2390 if (!IT)
2391 return;
2392 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector());
2393 if (!ImpliedMethod)
2394 ImpliedMethod =
2395 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector());
2396 }
2397 if (!ImpliedMethod)
2398 return;
2399 QualType Ret = ImpliedMethod->getReturnType();
2400 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) {
2401 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector)
2402 << Method->getSelector()
2403 << (!Ret->isRecordType()
2404 ? /*Vector*/ 2
2405 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0);
2406 S.Diag(ImpliedMethod->getBeginLoc(),
2407 diag::note_objc_unsafe_perform_selector_method_declared_here)
2408 << ImpliedMethod->getSelector() << Ret;
2409 }
2410}
2411
2412/// Diagnose use of %s directive in an NSString which is being passed
2413/// as formatting string to formatting method.
2414static void
2415DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S,
2416 ObjCMethodDecl *Method,
2417 Selector Sel,
2418 Expr **Args, unsigned NumArgs) {
2419 unsigned Idx = 0;
2420 bool Format = false;
2421 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily();
2422 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) {
2423 Idx = 0;
2424 Format = true;
2425 }
2426 else if (Method) {
2427 for (const auto *I : Method->specific_attrs<FormatAttr>()) {
2428 if (S.GetFormatNSStringIdx(I, Idx)) {
2429 Format = true;
2430 break;
2431 }
2432 }
2433 }
2434 if (!Format || NumArgs <= Idx)
2435 return;
2436
2437 Expr *FormatExpr = Args[Idx];
2438 if (ObjCStringLiteral *OSL =
2439 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) {
2440 StringLiteral *FormatString = OSL->getString();
2441 if (S.FormatStringHasSArg(FormatString)) {
2442 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2443 << "%s" << 0 << 0;
2444 if (Method)
2445 S.Diag(Method->getLocation(), diag::note_method_declared_at)
2446 << Method->getDeclName();
2447 }
2448 }
2449}
2450
2451/// Build an Objective-C class message expression.
2452///
2453/// This routine takes care of both normal class messages and
2454/// class messages to the superclass.
2455///
2456/// \param ReceiverTypeInfo Type source information that describes the
2457/// receiver of this message. This may be NULL, in which case we are
2458/// sending to the superclass and \p SuperLoc must be a valid source
2459/// location.
2460
2461/// \param ReceiverType The type of the object receiving the
2462/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
2463/// type as that refers to. For a superclass send, this is the type of
2464/// the superclass.
2465///
2466/// \param SuperLoc The location of the "super" keyword in a
2467/// superclass message.
2468///
2469/// \param Sel The selector to which the message is being sent.
2470///
2471/// \param Method The method that this class message is invoking, if
2472/// already known.
2473///
2474/// \param LBracLoc The location of the opening square bracket ']'.
2475///
2476/// \param RBracLoc The location of the closing square bracket ']'.
2477///
2478/// \param ArgsIn The message arguments.
2479ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
2480 QualType ReceiverType,
2481 SourceLocation SuperLoc,
2482 Selector Sel,
2483 ObjCMethodDecl *Method,
2484 SourceLocation LBracLoc,
2485 ArrayRef<SourceLocation> SelectorLocs,
2486 SourceLocation RBracLoc,
2487 MultiExprArg ArgsIn,
2488 bool isImplicit) {
2489 SourceLocation Loc = SuperLoc.isValid()? SuperLoc
2490 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
2491 if (LBracLoc.isInvalid()) {
2492 Diag(Loc, diag::err_missing_open_square_message_send)
2493 << FixItHint::CreateInsertion(Loc, "[");
2494 LBracLoc = Loc;
2495 }
2496 ArrayRef<SourceLocation> SelectorSlotLocs;
2497 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2498 SelectorSlotLocs = SelectorLocs;
2499 else
2500 SelectorSlotLocs = Loc;
2501 SourceLocation SelLoc = SelectorSlotLocs.front();
2502
2503 if (ReceiverType->isDependentType()) {
2504 // If the receiver type is dependent, we can't type-check anything
2505 // at this point. Build a dependent expression.
2506 unsigned NumArgs = ArgsIn.size();
2507 Expr **Args = ArgsIn.data();
2508 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2508, __PRETTY_FUNCTION__))
;
2509 return ObjCMessageExpr::Create(
2510 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel,
2511 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc,
2512 isImplicit);
2513 }
2514
2515 // Find the class to which we are sending this message.
2516 ObjCInterfaceDecl *Class = nullptr;
2517 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
2518 if (!ClassType || !(Class = ClassType->getInterface())) {
2519 Diag(Loc, diag::err_invalid_receiver_class_message)
2520 << ReceiverType;
2521 return ExprError();
2522 }
2523 assert(Class && "We don't know which class we're messaging?")((Class && "We don't know which class we're messaging?"
) ? static_cast<void> (0) : __assert_fail ("Class && \"We don't know which class we're messaging?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2523, __PRETTY_FUNCTION__))
;
2524 // objc++ diagnoses during typename annotation.
2525 if (!getLangOpts().CPlusPlus)
2526 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs);
2527 // Find the method we are messaging.
2528 if (!Method) {
2529 SourceRange TypeRange
2530 = SuperLoc.isValid()? SourceRange(SuperLoc)
2531 : ReceiverTypeInfo->getTypeLoc().getSourceRange();
2532 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
2533 (getLangOpts().ObjCAutoRefCount
2534 ? diag::err_arc_receiver_forward_class
2535 : diag::warn_receiver_forward_class),
2536 TypeRange)) {
2537 // A forward class used in messaging is treated as a 'Class'
2538 Method = LookupFactoryMethodInGlobalPool(Sel,
2539 SourceRange(LBracLoc, RBracLoc));
2540 if (Method && !getLangOpts().ObjCAutoRefCount)
2541 Diag(Method->getLocation(), diag::note_method_sent_forward_class)
2542 << Method->getDeclName();
2543 }
2544 if (!Method)
2545 Method = Class->lookupClassMethod(Sel);
2546
2547 // If we have an implementation in scope, check "private" methods.
2548 if (!Method)
2549 Method = Class->lookupPrivateClassMethod(Sel);
2550
2551 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs,
2552 nullptr, false, false, Class))
2553 return ExprError();
2554 }
2555
2556 // Check the argument types and determine the result type.
2557 QualType ReturnType;
2558 ExprValueKind VK = VK_RValue;
2559
2560 unsigned NumArgs = ArgsIn.size();
2561 Expr **Args = ArgsIn.data();
2562 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType,
2563 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
2564 Method, true, SuperLoc.isValid(), LBracLoc,
2565 RBracLoc, SourceRange(), ReturnType, VK))
2566 return ExprError();
2567
2568 if (Method && !Method->getReturnType()->isVoidType() &&
2569 RequireCompleteType(LBracLoc, Method->getReturnType(),
2570 diag::err_illegal_message_expr_incomplete_type))
2571 return ExprError();
2572
2573 if (Method && Method->isDirectMethod() && SuperLoc.isValid()) {
2574 Diag(SuperLoc, diag::err_messaging_super_with_direct_method)
2575 << FixItHint::CreateReplacement(
2576 SuperLoc, getLangOpts().ObjCAutoRefCount
2577 ? "self"
2578 : Method->getClassInterface()->getName());
2579 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
2580 << Method->getDeclName();
2581 }
2582
2583 // Warn about explicit call of +initialize on its own class. But not on 'super'.
2584 if (Method && Method->getMethodFamily() == OMF_initialize) {
2585 if (!SuperLoc.isValid()) {
2586 const ObjCInterfaceDecl *ID =
2587 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext());
2588 if (ID == Class) {
2589 Diag(Loc, diag::warn_direct_initialize_call);
2590 Diag(Method->getLocation(), diag::note_method_declared_at)
2591 << Method->getDeclName();
2592 }
2593 }
2594 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2595 // [super initialize] is allowed only within an +initialize implementation
2596 if (CurMeth->getMethodFamily() != OMF_initialize) {
2597 Diag(Loc, diag::warn_direct_super_initialize_call);
2598 Diag(Method->getLocation(), diag::note_method_declared_at)
2599 << Method->getDeclName();
2600 Diag(CurMeth->getLocation(), diag::note_method_declared_at)
2601 << CurMeth->getDeclName();
2602 }
2603 }
2604 }
2605
2606 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
2607
2608 // Construct the appropriate ObjCMessageExpr.
2609 ObjCMessageExpr *Result;
2610 if (SuperLoc.isValid())
2611 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2612 SuperLoc, /*IsInstanceSuper=*/false,
2613 ReceiverType, Sel, SelectorLocs,
2614 Method, makeArrayRef(Args, NumArgs),
2615 RBracLoc, isImplicit);
2616 else {
2617 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2618 ReceiverTypeInfo, Sel, SelectorLocs,
2619 Method, makeArrayRef(Args, NumArgs),
2620 RBracLoc, isImplicit);
2621 if (!isImplicit)
2622 checkCocoaAPI(*this, Result);
2623 }
2624 if (Method)
2625 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
2626 ReceiverType, /*IsClassObjectCall=*/true);
2627 return MaybeBindToTemporary(Result);
2628}
2629
2630// ActOnClassMessage - used for both unary and keyword messages.
2631// ArgExprs is optional - if it is present, the number of expressions
2632// is obtained from Sel.getNumArgs().
2633ExprResult Sema::ActOnClassMessage(Scope *S,
2634 ParsedType Receiver,
2635 Selector Sel,
2636 SourceLocation LBracLoc,
2637 ArrayRef<SourceLocation> SelectorLocs,
2638 SourceLocation RBracLoc,
2639 MultiExprArg Args) {
2640 TypeSourceInfo *ReceiverTypeInfo;
2641 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
2642 if (ReceiverType.isNull())
2643 return ExprError();
2644
2645 if (!ReceiverTypeInfo)
2646 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
2647
2648 return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
2649 /*SuperLoc=*/SourceLocation(), Sel,
2650 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc,
2651 Args);
2652}
2653
2654ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
2655 QualType ReceiverType,
2656 SourceLocation Loc,
2657 Selector Sel,
2658 ObjCMethodDecl *Method,
2659 MultiExprArg Args) {
2660 return BuildInstanceMessage(Receiver, ReceiverType,
2661 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
2662 Sel, Method, Loc, Loc, Loc, Args,
2663 /*isImplicit=*/true);
2664}
2665
2666static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) {
2667 if (!S.NSAPIObj)
2668 return false;
2669 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext());
2670 if (!Protocol)
2671 return false;
2672 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
2673 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>(
2674 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(),
2675 Sema::LookupOrdinaryName))) {
2676 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) {
2677 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl())
2678 return true;
2679 }
2680 }
2681 return false;
2682}
2683
2684/// Build an Objective-C instance message expression.
2685///
2686/// This routine takes care of both normal instance messages and
2687/// instance messages to the superclass instance.
2688///
2689/// \param Receiver The expression that computes the object that will
2690/// receive this message. This may be empty, in which case we are
2691/// sending to the superclass instance and \p SuperLoc must be a valid
2692/// source location.
2693///
2694/// \param ReceiverType The (static) type of the object receiving the
2695/// message. When a \p Receiver expression is provided, this is the
2696/// same type as that expression. For a superclass instance send, this
2697/// is a pointer to the type of the superclass.
2698///
2699/// \param SuperLoc The location of the "super" keyword in a
2700/// superclass instance message.
2701///
2702/// \param Sel The selector to which the message is being sent.
2703///
2704/// \param Method The method that this instance message is invoking, if
2705/// already known.
2706///
2707/// \param LBracLoc The location of the opening square bracket ']'.
2708///
2709/// \param RBracLoc The location of the closing square bracket ']'.
2710///
2711/// \param ArgsIn The message arguments.
2712ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
2713 QualType ReceiverType,
2714 SourceLocation SuperLoc,
2715 Selector Sel,
2716 ObjCMethodDecl *Method,
2717 SourceLocation LBracLoc,
2718 ArrayRef<SourceLocation> SelectorLocs,
2719 SourceLocation RBracLoc,
2720 MultiExprArg ArgsIn,
2721 bool isImplicit) {
2722 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2724, __PRETTY_FUNCTION__))
2723 "SuperLoc must be valid so we can "(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2724, __PRETTY_FUNCTION__))
2724 "use it instead.")(((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
"SuperLoc must be valid so we can " "use it instead.") ? static_cast
<void> (0) : __assert_fail ("(Receiver || SuperLoc.isValid()) && \"If the Receiver is null, the \" \"SuperLoc must be valid so we can \" \"use it instead.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2724, __PRETTY_FUNCTION__))
;
2725
2726 // The location of the receiver.
2727 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc();
2728 SourceRange RecRange =
2729 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange();
2730 ArrayRef<SourceLocation> SelectorSlotLocs;
2731 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2732 SelectorSlotLocs = SelectorLocs;
2733 else
2734 SelectorSlotLocs = Loc;
2735 SourceLocation SelLoc = SelectorSlotLocs.front();
2736
2737 if (LBracLoc.isInvalid()) {
2738 Diag(Loc, diag::err_missing_open_square_message_send)
2739 << FixItHint::CreateInsertion(Loc, "[");
2740 LBracLoc = Loc;
2741 }
2742
2743 // If we have a receiver expression, perform appropriate promotions
2744 // and determine receiver type.
2745 if (Receiver) {
2746 if (Receiver->hasPlaceholderType()) {
2747 ExprResult Result;
2748 if (Receiver->getType() == Context.UnknownAnyTy)
2749 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
2750 else
2751 Result = CheckPlaceholderExpr(Receiver);
2752 if (Result.isInvalid()) return ExprError();
2753 Receiver = Result.get();
2754 }
2755
2756 if (Receiver->isTypeDependent()) {
2757 // If the receiver is type-dependent, we can't type-check anything
2758 // at this point. Build a dependent expression.
2759 unsigned NumArgs = ArgsIn.size();
2760 Expr **Args = ArgsIn.data();
2761 assert(SuperLoc.isInvalid() && "Message to super with dependent type")((SuperLoc.isInvalid() && "Message to super with dependent type"
) ? static_cast<void> (0) : __assert_fail ("SuperLoc.isInvalid() && \"Message to super with dependent type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 2761, __PRETTY_FUNCTION__))
;
2762 return ObjCMessageExpr::Create(
2763 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel,
2764 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs),
2765 RBracLoc, isImplicit);
2766 }
2767
2768 // If necessary, apply function/array conversion to the receiver.
2769 // C99 6.7.5.3p[7,8].
2770 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
2771 if (Result.isInvalid())
2772 return ExprError();
2773 Receiver = Result.get();
2774 ReceiverType = Receiver->getType();
2775
2776 // If the receiver is an ObjC pointer, a block pointer, or an
2777 // __attribute__((NSObject)) pointer, we don't need to do any
2778 // special conversion in order to look up a receiver.
2779 if (ReceiverType->isObjCRetainableType()) {
2780 // do nothing
2781 } else if (!getLangOpts().ObjCAutoRefCount &&
2782 !Context.getObjCIdType().isNull() &&
2783 (ReceiverType->isPointerType() ||
2784 ReceiverType->isIntegerType())) {
2785 // Implicitly convert integers and pointers to 'id' but emit a warning.
2786 // But not in ARC.
2787 Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << RecRange;
2788 if (ReceiverType->isPointerType()) {
2789 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2790 CK_CPointerToObjCPointerCast).get();
2791 } else {
2792 // TODO: specialized warning on null receivers?
2793 bool IsNull = Receiver->isNullPointerConstant(Context,
2794 Expr::NPC_ValueDependentIsNull);
2795 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
2796 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2797 Kind).get();
2798 }
2799 ReceiverType = Receiver->getType();
2800 } else if (getLangOpts().CPlusPlus) {
2801 // The receiver must be a complete type.
2802 if (RequireCompleteType(Loc, Receiver->getType(),
2803 diag::err_incomplete_receiver_type))
2804 return ExprError();
2805
2806 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver);
2807 if (result.isUsable()) {
2808 Receiver = result.get();
2809 ReceiverType = Receiver->getType();
2810 }
2811 }
2812 }
2813
2814 // There's a somewhat weird interaction here where we assume that we
2815 // won't actually have a method unless we also don't need to do some
2816 // of the more detailed type-checking on the receiver.
2817
2818 if (!Method) {
2819 // Handle messages to id and __kindof types (where we use the
2820 // global method pool).
2821 const ObjCObjectType *typeBound = nullptr;
2822 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context,
2823 typeBound);
2824 if (receiverIsIdLike || ReceiverType->isBlockPointerType() ||
2825 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
2826 SmallVector<ObjCMethodDecl*, 4> Methods;
2827 // If we have a type bound, further filter the methods.
2828 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/,
2829 true/*CheckTheOther*/, typeBound);
2830 if (!Methods.empty()) {
2831 // We choose the first method as the initial candidate, then try to
2832 // select a better one.
2833 Method = Methods[0];
2834
2835 if (ObjCMethodDecl *BestMethod =
2836 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods))
2837 Method = BestMethod;
2838
2839 if (!AreMultipleMethodsInGlobalPool(Sel, Method,
2840 SourceRange(LBracLoc, RBracLoc),
2841 receiverIsIdLike, Methods))
2842 DiagnoseUseOfDecl(Method, SelectorSlotLocs);
2843 }
2844 } else if (ReceiverType->isObjCClassOrClassKindOfType() ||
2845 ReceiverType->isObjCQualifiedClassType()) {
2846 // Handle messages to Class.
2847 // We allow sending a message to a qualified Class ("Class<foo>"), which
2848 // is ok as long as one of the protocols implements the selector (if not,
2849 // warn).
2850 if (!ReceiverType->isObjCClassOrClassKindOfType()) {
2851 const ObjCObjectPointerType *QClassTy
2852 = ReceiverType->getAsObjCQualifiedClassType();
2853 // Search protocols for class methods.
2854 Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
2855 if (!Method) {
2856 Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
2857 // warn if instance method found for a Class message.
2858 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) {
2859 Diag(SelLoc, diag::warn_instance_method_on_class_found)
2860 << Method->getSelector() << Sel;
2861 Diag(Method->getLocation(), diag::note_method_declared_at)
2862 << Method->getDeclName();
2863 }
2864 }
2865 } else {
2866 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2867 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
2868 // As a guess, try looking for the method in the current interface.
2869 // This very well may not produce the "right" method.
2870
2871 // First check the public methods in the class interface.
2872 Method = ClassDecl->lookupClassMethod(Sel);
2873
2874 if (!Method)
2875 Method = ClassDecl->lookupPrivateClassMethod(Sel);
2876
2877 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2878 return ExprError();
2879 }
2880 }
2881 if (!Method) {
2882 // If not messaging 'self', look for any factory method named 'Sel'.
2883 if (!Receiver || !isSelfExpr(Receiver)) {
2884 // If no class (factory) method was found, check if an _instance_
2885 // method of the same name exists in the root class only.
2886 SmallVector<ObjCMethodDecl*, 4> Methods;
2887 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2888 false/*InstanceFirst*/,
2889 true/*CheckTheOther*/);
2890 if (!Methods.empty()) {
2891 // We choose the first method as the initial candidate, then try
2892 // to select a better one.
2893 Method = Methods[0];
2894
2895 // If we find an instance method, emit warning.
2896 if (Method->isInstanceMethod()) {
2897 if (const ObjCInterfaceDecl *ID =
2898 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
2899 if (ID->getSuperClass())
2900 Diag(SelLoc, diag::warn_root_inst_method_not_found)
2901 << Sel << SourceRange(LBracLoc, RBracLoc);
2902 }
2903 }
2904
2905 if (ObjCMethodDecl *BestMethod =
2906 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2907 Methods))
2908 Method = BestMethod;
2909 }
2910 }
2911 }
2912 }
2913 } else {
2914 ObjCInterfaceDecl *ClassDecl = nullptr;
2915
2916 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
2917 // long as one of the protocols implements the selector (if not, warn).
2918 // And as long as message is not deprecated/unavailable (warn if it is).
2919 if (const ObjCObjectPointerType *QIdTy
2920 = ReceiverType->getAsObjCQualifiedIdType()) {
2921 // Search protocols for instance methods.
2922 Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
2923 if (!Method)
2924 Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
2925 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
2926 return ExprError();
2927 } else if (const ObjCObjectPointerType *OCIType
2928 = ReceiverType->getAsObjCInterfacePointerType()) {
2929 // We allow sending a message to a pointer to an interface (an object).
2930 ClassDecl = OCIType->getInterfaceDecl();
2931
2932 // Try to complete the type. Under ARC, this is a hard error from which
2933 // we don't try to recover.
2934 // FIXME: In the non-ARC case, this will still be a hard error if the
2935 // definition is found in a module that's not visible.
2936 const ObjCInterfaceDecl *forwardClass = nullptr;
2937 if (RequireCompleteType(Loc, OCIType->getPointeeType(),
2938 getLangOpts().ObjCAutoRefCount
2939 ? diag::err_arc_receiver_forward_instance
2940 : diag::warn_receiver_forward_instance,
2941 RecRange)) {
2942 if (getLangOpts().ObjCAutoRefCount)
2943 return ExprError();
2944
2945 forwardClass = OCIType->getInterfaceDecl();
2946 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc,
2947 diag::note_receiver_is_id);
2948 Method = nullptr;
2949 } else {
2950 Method = ClassDecl->lookupInstanceMethod(Sel);
2951 }
2952
2953 if (!Method)
2954 // Search protocol qualifiers.
2955 Method = LookupMethodInQualifiedType(Sel, OCIType, true);
2956
2957 if (!Method) {
2958 // If we have implementations in scope, check "private" methods.
2959 Method = ClassDecl->lookupPrivateMethod(Sel);
2960
2961 if (!Method && getLangOpts().ObjCAutoRefCount) {
2962 Diag(SelLoc, diag::err_arc_may_not_respond)
2963 << OCIType->getPointeeType() << Sel << RecRange
2964 << SourceRange(SelectorLocs.front(), SelectorLocs.back());
2965 return ExprError();
2966 }
2967
2968 if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
2969 // If we still haven't found a method, look in the global pool. This
2970 // behavior isn't very desirable, however we need it for GCC
2971 // compatibility. FIXME: should we deviate??
2972 if (OCIType->qual_empty()) {
2973 SmallVector<ObjCMethodDecl*, 4> Methods;
2974 CollectMultipleMethodsInGlobalPool(Sel, Methods,
2975 true/*InstanceFirst*/,
2976 false/*CheckTheOther*/);
2977 if (!Methods.empty()) {
2978 // We choose the first method as the initial candidate, then try
2979 // to select a better one.
2980 Method = Methods[0];
2981
2982 if (ObjCMethodDecl *BestMethod =
2983 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
2984 Methods))
2985 Method = BestMethod;
2986
2987 AreMultipleMethodsInGlobalPool(Sel, Method,
2988 SourceRange(LBracLoc, RBracLoc),
2989 true/*receiverIdOrClass*/,
2990 Methods);
2991 }
2992 if (Method && !forwardClass)
2993 Diag(SelLoc, diag::warn_maynot_respond)
2994 << OCIType->getInterfaceDecl()->getIdentifier()
2995 << Sel << RecRange;
2996 }
2997 }
2998 }
2999 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass))
3000 return ExprError();
3001 } else {
3002 // Reject other random receiver types (e.g. structs).
3003 Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << RecRange;
3004 return ExprError();
3005 }
3006 }
3007 }
3008
3009 FunctionScopeInfo *DIFunctionScopeInfo =
3010 (Method && Method->getMethodFamily() == OMF_init)
3011 ? getEnclosingFunction() : nullptr;
3012
3013 if (Method && Method->isDirectMethod()) {
3014 if (ReceiverType->isObjCIdType() && !isImplicit) {
3015 Diag(Receiver->getExprLoc(),
3016 diag::err_messaging_unqualified_id_with_direct_method);
3017 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3018 << Method->getDeclName();
3019 }
3020
3021 // Under ARC, self can't be assigned, and doing a direct call to `self`
3022 // when it's a Class is hence safe. For other cases, we can't trust `self`
3023 // is what we think it is, so we reject it.
3024 if (ReceiverType->isObjCClassType() && !isImplicit &&
3025 !(Receiver->isObjCSelfExpr() && getLangOpts().ObjCAutoRefCount)) {
3026 {
3027 DiagnosticBuilder Builder =
3028 Diag(Receiver->getExprLoc(),
3029 diag::err_messaging_class_with_direct_method);
3030 if (Receiver->isObjCSelfExpr()) {
3031 Builder.AddFixItHint(FixItHint::CreateReplacement(
3032 RecRange, Method->getClassInterface()->getName()));
3033 }
3034 }
3035 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3036 << Method->getDeclName();
3037 }
3038
3039 if (SuperLoc.isValid()) {
3040 {
3041 DiagnosticBuilder Builder =
3042 Diag(SuperLoc, diag::err_messaging_super_with_direct_method);
3043 if (ReceiverType->isObjCClassType()) {
3044 Builder.AddFixItHint(FixItHint::CreateReplacement(
3045 SuperLoc, Method->getClassInterface()->getName()));
3046 } else {
3047 Builder.AddFixItHint(FixItHint::CreateReplacement(SuperLoc, "self"));
3048 }
3049 }
3050 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3051 << Method->getDeclName();
3052 }
3053 } else if (ReceiverType->isObjCIdType() && !isImplicit) {
3054 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id);
3055 }
3056
3057 if (DIFunctionScopeInfo &&
3058 DIFunctionScopeInfo->ObjCIsDesignatedInit &&
3059 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3060 bool isDesignatedInitChain = false;
3061 if (SuperLoc.isValid()) {
3062 if (const ObjCObjectPointerType *
3063 OCIType = ReceiverType->getAsObjCInterfacePointerType()) {
3064 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) {
3065 // Either we know this is a designated initializer or we
3066 // conservatively assume it because we don't know for sure.
3067 if (!ID->declaresOrInheritsDesignatedInitializers() ||
3068 ID->isDesignatedInitializer(Sel)) {
3069 isDesignatedInitChain = true;
3070 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false;
3071 }
3072 }
3073 }
3074 }
3075 if (!isDesignatedInitChain) {
3076 const ObjCMethodDecl *InitMethod = nullptr;
3077 bool isDesignated =
3078 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod);
3079 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 3079, __PRETTY_FUNCTION__))
;
3080 (void)isDesignated;
3081 Diag(SelLoc, SuperLoc.isValid() ?
3082 diag::warn_objc_designated_init_non_designated_init_call :
3083 diag::warn_objc_designated_init_non_super_designated_init_call);
3084 Diag(InitMethod->getLocation(),
3085 diag::note_objc_designated_init_marked_here);
3086 }
3087 }
3088
3089 if (DIFunctionScopeInfo &&
3090 DIFunctionScopeInfo->ObjCIsSecondaryInit &&
3091 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3092 if (SuperLoc.isValid()) {
3093 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call);
3094 } else {
3095 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false;
3096 }
3097 }
3098
3099 // Check the message arguments.
3100 unsigned NumArgs = ArgsIn.size();
3101 Expr **Args = ArgsIn.data();
3102 QualType ReturnType;
3103 ExprValueKind VK = VK_RValue;
3104 bool ClassMessage = (ReceiverType->isObjCClassType() ||
3105 ReceiverType->isObjCQualifiedClassType());
3106 if (CheckMessageArgumentTypes(Receiver, ReceiverType,
3107 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
3108 Method, ClassMessage, SuperLoc.isValid(),
3109 LBracLoc, RBracLoc, RecRange, ReturnType, VK))
3110 return ExprError();
3111
3112 if (Method && !Method->getReturnType()->isVoidType() &&
3113 RequireCompleteType(LBracLoc, Method->getReturnType(),
3114 diag::err_illegal_message_expr_incomplete_type))
3115 return ExprError();
3116
3117 // In ARC, forbid the user from sending messages to
3118 // retain/release/autorelease/dealloc/retainCount explicitly.
3119 if (getLangOpts().ObjCAutoRefCount) {
3120 ObjCMethodFamily family =
3121 (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
3122 switch (family) {
3123 case OMF_init:
3124 if (Method)
3125 checkInitMethod(Method, ReceiverType);
3126 break;
3127
3128 case OMF_None:
3129 case OMF_alloc:
3130 case OMF_copy:
3131 case OMF_finalize:
3132 case OMF_mutableCopy:
3133 case OMF_new:
3134 case OMF_self:
3135 case OMF_initialize:
3136 break;
3137
3138 case OMF_dealloc:
3139 case OMF_retain:
3140 case OMF_release:
3141 case OMF_autorelease:
3142 case OMF_retainCount:
3143 Diag(SelLoc, diag::err_arc_illegal_explicit_message)
3144 << Sel << RecRange;
3145 break;
3146
3147 case OMF_performSelector:
3148 if (Method && NumArgs >= 1) {
3149 if (const auto *SelExp =
3150 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) {
3151 Selector ArgSel = SelExp->getSelector();
3152 ObjCMethodDecl *SelMethod =
3153 LookupInstanceMethodInGlobalPool(ArgSel,
3154 SelExp->getSourceRange());
3155 if (!SelMethod)
3156 SelMethod =
3157 LookupFactoryMethodInGlobalPool(ArgSel,
3158 SelExp->getSourceRange());
3159 if (SelMethod) {
3160 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
3161 switch (SelFamily) {
3162 case OMF_alloc:
3163 case OMF_copy:
3164 case OMF_mutableCopy:
3165 case OMF_new:
3166 case OMF_init:
3167 // Issue error, unless ns_returns_not_retained.
3168 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
3169 // selector names a +1 method
3170 Diag(SelLoc,
3171 diag::err_arc_perform_selector_retains);
3172 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3173 << SelMethod->getDeclName();
3174 }
3175 break;
3176 default:
3177 // +0 call. OK. unless ns_returns_retained.
3178 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
3179 // selector names a +1 method
3180 Diag(SelLoc,
3181 diag::err_arc_perform_selector_retains);
3182 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3183 << SelMethod->getDeclName();
3184 }
3185 break;
3186 }
3187 }
3188 } else {
3189 // error (may leak).
3190 Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
3191 Diag(Args[0]->getExprLoc(), diag::note_used_here);
3192 }
3193 }
3194 break;
3195 }
3196 }
3197
3198 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
3199
3200 // Construct the appropriate ObjCMessageExpr instance.
3201 ObjCMessageExpr *Result;
3202 if (SuperLoc.isValid())
3203 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3204 SuperLoc, /*IsInstanceSuper=*/true,
3205 ReceiverType, Sel, SelectorLocs, Method,
3206 makeArrayRef(Args, NumArgs), RBracLoc,
3207 isImplicit);
3208 else {
3209 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3210 Receiver, Sel, SelectorLocs, Method,
3211 makeArrayRef(Args, NumArgs), RBracLoc,
3212 isImplicit);
3213 if (!isImplicit)
3214 checkCocoaAPI(*this, Result);
3215 }
3216 if (Method) {
3217 bool IsClassObjectCall = ClassMessage;
3218 // 'self' message receivers in class methods should be treated as message
3219 // sends to the class object in order for the semantic checks to be
3220 // performed correctly. Messages to 'super' already count as class messages,
3221 // so they don't need to be handled here.
3222 if (Receiver && isSelfExpr(Receiver)) {
3223 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
3224 if (OPT->getObjectType()->isObjCClass()) {
3225 if (const auto *CurMeth = getCurMethodDecl()) {
3226 IsClassObjectCall = true;
3227 ReceiverType =
3228 Context.getObjCInterfaceType(CurMeth->getClassInterface());
3229 }
3230 }
3231 }
3232 }
3233 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
3234 ReceiverType, IsClassObjectCall);
3235 }
3236
3237 if (getLangOpts().ObjCAutoRefCount) {
3238 // In ARC, annotate delegate init calls.
3239 if (Result->getMethodFamily() == OMF_init &&
3240 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3241 // Only consider init calls *directly* in init implementations,
3242 // not within blocks.
3243 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
3244 if (method && method->getMethodFamily() == OMF_init) {
3245 // The implicit assignment to self means we also don't want to
3246 // consume the result.
3247 Result->setDelegateInitCall(true);
3248 return Result;
3249 }
3250 }
3251
3252 // In ARC, check for message sends which are likely to introduce
3253 // retain cycles.
3254 checkRetainCycles(Result);
3255 }
3256
3257 if (getLangOpts().ObjCWeak) {
3258 if (!isImplicit && Method) {
3259 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) {
3260 bool IsWeak =
3261 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak;
3262 if (!IsWeak && Sel.isUnarySelector())
3263 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak;
3264 if (IsWeak && !isUnevaluatedContext() &&
3265 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc))
3266 getCurFunction()->recordUseOfWeak(Result, Prop);
3267 }
3268 }
3269 }
3270
3271 CheckObjCCircularContainer(Result);
3272
3273 return MaybeBindToTemporary(Result);
3274}
3275
3276static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) {
3277 if (ObjCSelectorExpr *OSE =
3278 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) {
3279 Selector Sel = OSE->getSelector();
3280 SourceLocation Loc = OSE->getAtLoc();
3281 auto Pos = S.ReferencedSelectors.find(Sel);
3282 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc)
3283 S.ReferencedSelectors.erase(Pos);
3284 }
3285}
3286
3287// ActOnInstanceMessage - used for both unary and keyword messages.
3288// ArgExprs is optional - if it is present, the number of expressions
3289// is obtained from Sel.getNumArgs().
3290ExprResult Sema::ActOnInstanceMessage(Scope *S,
3291 Expr *Receiver,
3292 Selector Sel,
3293 SourceLocation LBracLoc,
3294 ArrayRef<SourceLocation> SelectorLocs,
3295 SourceLocation RBracLoc,
3296 MultiExprArg Args) {
3297 if (!Receiver)
3298 return ExprError();
3299
3300 // A ParenListExpr can show up while doing error recovery with invalid code.
3301 if (isa<ParenListExpr>(Receiver)) {
3302 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver);
3303 if (Result.isInvalid()) return ExprError();
3304 Receiver = Result.get();
3305 }
3306
3307 if (RespondsToSelectorSel.isNull()) {
3308 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector");
3309 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId);
3310 }
3311 if (Sel == RespondsToSelectorSel)
3312 RemoveSelectorFromWarningCache(*this, Args[0]);
3313
3314 return BuildInstanceMessage(Receiver, Receiver->getType(),
3315 /*SuperLoc=*/SourceLocation(), Sel,
3316 /*Method=*/nullptr, LBracLoc, SelectorLocs,
3317 RBracLoc, Args);
3318}
3319
3320enum ARCConversionTypeClass {
3321 /// int, void, struct A
3322 ACTC_none,
3323
3324 /// id, void (^)()
3325 ACTC_retainable,
3326
3327 /// id*, id***, void (^*)(),
3328 ACTC_indirectRetainable,
3329
3330 /// void* might be a normal C type, or it might a CF type.
3331 ACTC_voidPtr,
3332
3333 /// struct A*
3334 ACTC_coreFoundation
3335};
3336
3337static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
3338 return (ACTC == ACTC_retainable ||
3339 ACTC == ACTC_coreFoundation ||
3340 ACTC == ACTC_voidPtr);
3341}
3342
3343static bool isAnyCLike(ARCConversionTypeClass ACTC) {
3344 return ACTC == ACTC_none ||
3345 ACTC == ACTC_voidPtr ||
3346 ACTC == ACTC_coreFoundation;
3347}
3348
3349static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
3350 bool isIndirect = false;
3351
3352 // Ignore an outermost reference type.
3353 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
3354 type = ref->getPointeeType();
3355 isIndirect = true;
3356 }
3357
3358 // Drill through pointers and arrays recursively.
3359 while (true) {
3360 if (const PointerType *ptr = type->getAs<PointerType>()) {
3361 type = ptr->getPointeeType();
3362
3363 // The first level of pointer may be the innermost pointer on a CF type.
3364 if (!isIndirect) {
3365 if (type->isVoidType()) return ACTC_voidPtr;
3366 if (type->isRecordType()) return ACTC_coreFoundation;
3367 }
3368 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
3369 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
3370 } else {
3371 break;
3372 }
3373 isIndirect = true;
3374 }
3375
3376 if (isIndirect) {
3377 if (type->isObjCARCBridgableType())
3378 return ACTC_indirectRetainable;
3379 return ACTC_none;
3380 }
3381
3382 if (type->isObjCARCBridgableType())
3383 return ACTC_retainable;
3384
3385 return ACTC_none;
3386}
3387
3388namespace {
3389 /// A result from the cast checker.
3390 enum ACCResult {
3391 /// Cannot be casted.
3392 ACC_invalid,
3393
3394 /// Can be safely retained or not retained.
3395 ACC_bottom,
3396
3397 /// Can be casted at +0.
3398 ACC_plusZero,
3399
3400 /// Can be casted at +1.
3401 ACC_plusOne
3402 };
3403 ACCResult merge(ACCResult left, ACCResult right) {
3404 if (left == right) return left;
3405 if (left == ACC_bottom) return right;
3406 if (right == ACC_bottom) return left;
3407 return ACC_invalid;
3408 }
3409
3410 /// A checker which white-lists certain expressions whose conversion
3411 /// to or from retainable type would otherwise be forbidden in ARC.
3412 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
3413 typedef StmtVisitor<ARCCastChecker, ACCResult> super;
3414
3415 ASTContext &Context;
3416 ARCConversionTypeClass SourceClass;
3417 ARCConversionTypeClass TargetClass;
3418 bool Diagnose;
3419
3420 static bool isCFType(QualType type) {
3421 // Someday this can use ns_bridged. For now, it has to do this.
3422 return type->isCARCBridgableType();
3423 }
3424
3425 public:
3426 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
3427 ARCConversionTypeClass target, bool diagnose)
3428 : Context(Context), SourceClass(source), TargetClass(target),
3429 Diagnose(diagnose) {}
3430
3431 using super::Visit;
3432 ACCResult Visit(Expr *e) {
3433 return super::Visit(e->IgnoreParens());
3434 }
3435
3436 ACCResult VisitStmt(Stmt *s) {
3437 return ACC_invalid;
3438 }
3439
3440 /// Null pointer constants can be casted however you please.
3441 ACCResult VisitExpr(Expr *e) {
3442 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
3443 return ACC_bottom;
3444 return ACC_invalid;
3445 }
3446
3447 /// Objective-C string literals can be safely casted.
3448 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
3449 // If we're casting to any retainable type, go ahead. Global
3450 // strings are immune to retains, so this is bottom.
3451 if (isAnyRetainable(TargetClass)) return ACC_bottom;
3452
3453 return ACC_invalid;
3454 }
3455
3456 /// Look through certain implicit and explicit casts.
3457 ACCResult VisitCastExpr(CastExpr *e) {
3458 switch (e->getCastKind()) {
3459 case CK_NullToPointer:
3460 return ACC_bottom;
3461
3462 case CK_NoOp:
3463 case CK_LValueToRValue:
3464 case CK_BitCast:
3465 case CK_CPointerToObjCPointerCast:
3466 case CK_BlockPointerToObjCPointerCast:
3467 case CK_AnyPointerToBlockPointerCast:
3468 return Visit(e->getSubExpr());
3469
3470 default:
3471 return ACC_invalid;
3472 }
3473 }
3474
3475 /// Look through unary extension.
3476 ACCResult VisitUnaryExtension(UnaryOperator *e) {
3477 return Visit(e->getSubExpr());
3478 }
3479
3480 /// Ignore the LHS of a comma operator.
3481 ACCResult VisitBinComma(BinaryOperator *e) {
3482 return Visit(e->getRHS());
3483 }
3484
3485 /// Conditional operators are okay if both sides are okay.
3486 ACCResult VisitConditionalOperator(ConditionalOperator *e) {
3487 ACCResult left = Visit(e->getTrueExpr());
3488 if (left == ACC_invalid) return ACC_invalid;
3489 return merge(left, Visit(e->getFalseExpr()));
3490 }
3491
3492 /// Look through pseudo-objects.
3493 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
3494 // If we're getting here, we should always have a result.
3495 return Visit(e->getResultExpr());
3496 }
3497
3498 /// Statement expressions are okay if their result expression is okay.
3499 ACCResult VisitStmtExpr(StmtExpr *e) {
3500 return Visit(e->getSubStmt()->body_back());
3501 }
3502
3503 /// Some declaration references are okay.
3504 ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
3505 VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
3506 // References to global constants are okay.
3507 if (isAnyRetainable(TargetClass) &&
3508 isAnyRetainable(SourceClass) &&
3509 var &&
3510 !var->hasDefinition(Context) &&
3511 var->getType().isConstQualified()) {
3512
3513 // In system headers, they can also be assumed to be immune to retains.
3514 // These are things like 'kCFStringTransformToLatin'.
3515 if (Context.getSourceManager().isInSystemHeader(var->getLocation()))
3516 return ACC_bottom;
3517
3518 return ACC_plusZero;
3519 }
3520
3521 // Nothing else.
3522 return ACC_invalid;
3523 }
3524
3525 /// Some calls are okay.
3526 ACCResult VisitCallExpr(CallExpr *e) {
3527 if (FunctionDecl *fn = e->getDirectCallee())
3528 if (ACCResult result = checkCallToFunction(fn))
3529 return result;
3530
3531 return super::VisitCallExpr(e);
3532 }
3533
3534 ACCResult checkCallToFunction(FunctionDecl *fn) {
3535 // Require a CF*Ref return type.
3536 if (!isCFType(fn->getReturnType()))
3537 return ACC_invalid;
3538
3539 if (!isAnyRetainable(TargetClass))
3540 return ACC_invalid;
3541
3542 // Honor an explicit 'not retained' attribute.
3543 if (fn->hasAttr<CFReturnsNotRetainedAttr>())
3544 return ACC_plusZero;
3545
3546 // Honor an explicit 'retained' attribute, except that for
3547 // now we're not going to permit implicit handling of +1 results,
3548 // because it's a bit frightening.
3549 if (fn->hasAttr<CFReturnsRetainedAttr>())
3550 return Diagnose ? ACC_plusOne
3551 : ACC_invalid; // ACC_plusOne if we start accepting this
3552
3553 // Recognize this specific builtin function, which is used by CFSTR.
3554 unsigned builtinID = fn->getBuiltinID();
3555 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
3556 return ACC_bottom;
3557
3558 // Otherwise, don't do anything implicit with an unaudited function.
3559 if (!fn->hasAttr<CFAuditedTransferAttr>())
3560 return ACC_invalid;
3561
3562 // Otherwise, it's +0 unless it follows the create convention.
3563 if (ento::coreFoundation::followsCreateRule(fn))
3564 return Diagnose ? ACC_plusOne
3565 : ACC_invalid; // ACC_plusOne if we start accepting this
3566
3567 return ACC_plusZero;
3568 }
3569
3570 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
3571 return checkCallToMethod(e->getMethodDecl());
3572 }
3573
3574 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
3575 ObjCMethodDecl *method;
3576 if (e->isExplicitProperty())
3577 method = e->getExplicitProperty()->getGetterMethodDecl();
3578 else
3579 method = e->getImplicitPropertyGetter();
3580 return checkCallToMethod(method);
3581 }
3582
3583 ACCResult checkCallToMethod(ObjCMethodDecl *method) {
3584 if (!method) return ACC_invalid;
3585
3586 // Check for message sends to functions returning CF types. We
3587 // just obey the Cocoa conventions with these, even though the
3588 // return type is CF.
3589 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType()))
3590 return ACC_invalid;
3591
3592 // If the method is explicitly marked not-retained, it's +0.
3593 if (method->hasAttr<CFReturnsNotRetainedAttr>())
3594 return ACC_plusZero;
3595
3596 // If the method is explicitly marked as returning retained, or its
3597 // selector follows a +1 Cocoa convention, treat it as +1.
3598 if (method->hasAttr<CFReturnsRetainedAttr>())
3599 return ACC_plusOne;
3600
3601 switch (method->getSelector().getMethodFamily()) {
3602 case OMF_alloc:
3603 case OMF_copy:
3604 case OMF_mutableCopy:
3605 case OMF_new:
3606 return ACC_plusOne;
3607
3608 default:
3609 // Otherwise, treat it as +0.
3610 return ACC_plusZero;
3611 }
3612 }
3613 };
3614} // end anonymous namespace
3615
3616bool Sema::isKnownName(StringRef name) {
3617 if (name.empty())
3618 return false;
3619 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
3620 Sema::LookupOrdinaryName);
3621 return LookupName(R, TUScope, false);
3622}
3623
3624static void addFixitForObjCARCConversion(Sema &S,
3625 DiagnosticBuilder &DiagB,
3626 Sema::CheckedConversionKind CCK,
3627 SourceLocation afterLParen,
3628 QualType castType,
3629 Expr *castExpr,
3630 Expr *realCast,
3631 const char *bridgeKeyword,
3632 const char *CFBridgeName) {
3633 // We handle C-style and implicit casts here.
3634 switch (CCK) {
3635 case Sema::CCK_ImplicitConversion:
3636 case Sema::CCK_ForBuiltinOverloadedOp:
3637 case Sema::CCK_CStyleCast:
3638 case Sema::CCK_OtherCast:
3639 break;
3640 case Sema::CCK_FunctionalCast:
3641 return;
3642 }
3643
3644 if (CFBridgeName) {
3645 if (CCK == Sema::CCK_OtherCast) {
3646 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3647 SourceRange range(NCE->getOperatorLoc(),
3648 NCE->getAngleBrackets().getEnd());
3649 SmallString<32> BridgeCall;
3650
3651 SourceManager &SM = S.getSourceManager();
3652 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3653 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3654 BridgeCall += ' ';
3655
3656 BridgeCall += CFBridgeName;
3657 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall));
3658 }
3659 return;
3660 }
3661 Expr *castedE = castExpr;
3662 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
3663 castedE = CCE->getSubExpr();
3664 castedE = castedE->IgnoreImpCasts();
3665 SourceRange range = castedE->getSourceRange();
3666
3667 SmallString<32> BridgeCall;
3668
3669 SourceManager &SM = S.getSourceManager();
3670 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3671 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
3672 BridgeCall += ' ';
3673
3674 BridgeCall += CFBridgeName;
3675
3676 if (isa<ParenExpr>(castedE)) {
3677 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3678 BridgeCall));
3679 } else {
3680 BridgeCall += '(';
3681 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3682 BridgeCall));
3683 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3684 S.getLocForEndOfToken(range.getEnd()),
3685 ")"));
3686 }
3687 return;
3688 }
3689
3690 if (CCK == Sema::CCK_CStyleCast) {
3691 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
3692 } else if (CCK == Sema::CCK_OtherCast) {
3693 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3694 std::string castCode = "(";
3695 castCode += bridgeKeyword;
3696 castCode += castType.getAsString();
3697 castCode += ")";
3698 SourceRange Range(NCE->getOperatorLoc(),
3699 NCE->getAngleBrackets().getEnd());
3700 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode));
3701 }
3702 } else {
3703 std::string castCode = "(";
3704 castCode += bridgeKeyword;
3705 castCode += castType.getAsString();
3706 castCode += ")";
3707 Expr *castedE = castExpr->IgnoreImpCasts();
3708 SourceRange range = castedE->getSourceRange();
3709 if (isa<ParenExpr>(castedE)) {
3710 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3711 castCode));
3712 } else {
3713 castCode += "(";
3714 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3715 castCode));
3716 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3717 S.getLocForEndOfToken(range.getEnd()),
3718 ")"));
3719 }
3720 }
3721}
3722
3723template <typename T>
3724static inline T *getObjCBridgeAttr(const TypedefType *TD) {
3725 TypedefNameDecl *TDNDecl = TD->getDecl();
3726 QualType QT = TDNDecl->getUnderlyingType();
3727 if (QT->isPointerType()) {
3728 QT = QT->getPointeeType();
3729 if (const RecordType *RT = QT->getAs<RecordType>())
3730 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl())
3731 return RD->getAttr<T>();
3732 }
3733 return nullptr;
3734}
3735
3736static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T,
3737 TypedefNameDecl *&TDNDecl) {
3738 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3739 TDNDecl = TD->getDecl();
3740 if (ObjCBridgeRelatedAttr *ObjCBAttr =
3741 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD))
3742 return ObjCBAttr;
3743 T = TDNDecl->getUnderlyingType();
3744 }
3745 return nullptr;
3746}
3747
3748static void
3749diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
3750 QualType castType, ARCConversionTypeClass castACTC,
3751 Expr *castExpr, Expr *realCast,
3752 ARCConversionTypeClass exprACTC,
3753 Sema::CheckedConversionKind CCK) {
3754 SourceLocation loc =
3755 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
3756
3757 if (S.makeUnavailableInSystemHeader(loc,
3758 UnavailableAttr::IR_ARCForbiddenConversion))
3759 return;
3760
3761 QualType castExprType = castExpr->getType();
3762 // Defer emitting a diagnostic for bridge-related casts; that will be
3763 // handled by CheckObjCBridgeRelatedConversions.
3764 TypedefNameDecl *TDNDecl = nullptr;
3765 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable &&
3766 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) ||
3767 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable &&
3768 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl)))
3769 return;
3770
3771 unsigned srcKind = 0;
3772 switch (exprACTC) {
3773 case ACTC_none:
3774 case ACTC_coreFoundation:
3775 case ACTC_voidPtr:
3776 srcKind = (castExprType->isPointerType() ? 1 : 0);
3777 break;
3778 case ACTC_retainable:
3779 srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
3780 break;
3781 case ACTC_indirectRetainable:
3782 srcKind = 4;
3783 break;
3784 }
3785
3786 // Check whether this could be fixed with a bridge cast.
3787 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin());
3788 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
3789
3790 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1;
3791
3792 // Bridge from an ARC type to a CF type.
3793 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
3794
3795 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3796 << convKindForDiag
3797 << 2 // of C pointer type
3798 << castExprType
3799 << unsigned(castType->isBlockPointerType()) // to ObjC|block type
3800 << castType
3801 << castRange
3802 << castExpr->getSourceRange();
3803 bool br = S.isKnownName("CFBridgingRelease");
3804 ACCResult CreateRule =
3805 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3806 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 3806, __PRETTY_FUNCTION__))
;
3807 if (CreateRule != ACC_plusOne)
3808 {
3809 DiagnosticBuilder DiagB =
3810 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3811 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3812
3813 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3814 castType, castExpr, realCast, "__bridge ",
3815 nullptr);
3816 }
3817 if (CreateRule != ACC_plusZero)
3818 {
3819 DiagnosticBuilder DiagB =
3820 (CCK == Sema::CCK_OtherCast && !br) ?
3821 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType :
3822 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3823 diag::note_arc_bridge_transfer)
3824 << castExprType << br;
3825
3826 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3827 castType, castExpr, realCast, "__bridge_transfer ",
3828 br ? "CFBridgingRelease" : nullptr);
3829 }
3830
3831 return;
3832 }
3833
3834 // Bridge from a CF type to an ARC type.
3835 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
3836 bool br = S.isKnownName("CFBridgingRetain");
3837 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3838 << convKindForDiag
3839 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
3840 << castExprType
3841 << 2 // to C pointer type
3842 << castType
3843 << castRange
3844 << castExpr->getSourceRange();
3845 ACCResult CreateRule =
3846 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3847 assert(CreateRule != ACC_bottom && "This cast should already be accepted.")((CreateRule != ACC_bottom && "This cast should already be accepted."
) ? static_cast<void> (0) : __assert_fail ("CreateRule != ACC_bottom && \"This cast should already be accepted.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 3847, __PRETTY_FUNCTION__))
;
3848 if (CreateRule != ACC_plusOne)
3849 {
3850 DiagnosticBuilder DiagB =
3851 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
3852 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3853 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3854 castType, castExpr, realCast, "__bridge ",
3855 nullptr);
3856 }
3857 if (CreateRule != ACC_plusZero)
3858 {
3859 DiagnosticBuilder DiagB =
3860 (CCK == Sema::CCK_OtherCast && !br) ?
3861 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType :
3862 S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3863 diag::note_arc_bridge_retained)
3864 << castType << br;
3865
3866 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3867 castType, castExpr, realCast, "__bridge_retained ",
3868 br ? "CFBridgingRetain" : nullptr);
3869 }
3870
3871 return;
3872 }
3873
3874 S.Diag(loc, diag::err_arc_mismatched_cast)
3875 << !convKindForDiag
3876 << srcKind << castExprType << castType
3877 << castRange << castExpr->getSourceRange();
3878}
3879
3880template <typename TB>
3881static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr,
3882 bool &HadTheAttribute, bool warn) {
3883 QualType T = castExpr->getType();
3884 HadTheAttribute = false;
3885 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3886 TypedefNameDecl *TDNDecl = TD->getDecl();
3887 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3888 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3889 HadTheAttribute = true;
3890 if (Parm->isStr("id"))
3891 return true;
3892
3893 NamedDecl *Target = nullptr;
3894 // Check for an existing type with this name.
3895 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3896 Sema::LookupOrdinaryName);
3897 if (S.LookupName(R, S.TUScope)) {
3898 Target = R.getFoundDecl();
3899 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3900 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target);
3901 if (const ObjCObjectPointerType *InterfacePointerType =
3902 castType->getAsObjCInterfacePointerType()) {
3903 ObjCInterfaceDecl *CastClass
3904 = InterfacePointerType->getObjectType()->getInterface();
3905 if ((CastClass == ExprClass) ||
3906 (CastClass && CastClass->isSuperClassOf(ExprClass)))
3907 return true;
3908 if (warn)
3909 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3910 << T << Target->getName() << castType->getPointeeType();
3911 return false;
3912 } else if (castType->isObjCIdType() ||
3913 (S.Context.ObjCObjectAdoptsQTypeProtocols(
3914 castType, ExprClass)))
3915 // ok to cast to 'id'.
3916 // casting to id<p-list> is ok if bridge type adopts all of
3917 // p-list protocols.
3918 return true;
3919 else {
3920 if (warn) {
3921 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
3922 << T << Target->getName() << castType;
3923 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3924 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3925 }
3926 return false;
3927 }
3928 }
3929 } else if (!castType->isObjCIdType()) {
3930 S.Diag(castExpr->getBeginLoc(),
3931 diag::err_objc_cf_bridged_not_interface)
3932 << castExpr->getType() << Parm;
3933 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3934 if (Target)
3935 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3936 }
3937 return true;
3938 }
3939 return false;
3940 }
3941 T = TDNDecl->getUnderlyingType();
3942 }
3943 return true;
3944}
3945
3946template <typename TB>
3947static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr,
3948 bool &HadTheAttribute, bool warn) {
3949 QualType T = castType;
3950 HadTheAttribute = false;
3951 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
3952 TypedefNameDecl *TDNDecl = TD->getDecl();
3953 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
3954 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
3955 HadTheAttribute = true;
3956 if (Parm->isStr("id"))
3957 return true;
3958
3959 NamedDecl *Target = nullptr;
3960 // Check for an existing type with this name.
3961 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
3962 Sema::LookupOrdinaryName);
3963 if (S.LookupName(R, S.TUScope)) {
3964 Target = R.getFoundDecl();
3965 if (Target && isa<ObjCInterfaceDecl>(Target)) {
3966 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target);
3967 if (const ObjCObjectPointerType *InterfacePointerType =
3968 castExpr->getType()->getAsObjCInterfacePointerType()) {
3969 ObjCInterfaceDecl *ExprClass
3970 = InterfacePointerType->getObjectType()->getInterface();
3971 if ((CastClass == ExprClass) ||
3972 (ExprClass && CastClass->isSuperClassOf(ExprClass)))
3973 return true;
3974 if (warn) {
3975 S.Diag(castExpr->getBeginLoc(),
3976 diag::warn_objc_invalid_bridge_to_cf)
3977 << castExpr->getType()->getPointeeType() << T;
3978 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3979 }
3980 return false;
3981 } else if (castExpr->getType()->isObjCIdType() ||
3982 (S.Context.QIdProtocolsAdoptObjCObjectProtocols(
3983 castExpr->getType(), CastClass)))
3984 // ok to cast an 'id' expression to a CFtype.
3985 // ok to cast an 'id<plist>' expression to CFtype provided plist
3986 // adopts all of CFtype's ObjetiveC's class plist.
3987 return true;
3988 else {
3989 if (warn) {
3990 S.Diag(castExpr->getBeginLoc(),
3991 diag::warn_objc_invalid_bridge_to_cf)
3992 << castExpr->getType() << castType;
3993 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
3994 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
3995 }
3996 return false;
3997 }
3998 }
3999 }
4000 S.Diag(castExpr->getBeginLoc(),
4001 diag::err_objc_ns_bridged_invalid_cfobject)
4002 << castExpr->getType() << castType;
4003 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4004 if (Target)
4005 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
4006 return true;
4007 }
4008 return false;
4009 }
4010 T = TDNDecl->getUnderlyingType();
4011 }
4012 return true;
4013}
4014
4015void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) {
4016 if (!getLangOpts().ObjC)
4017 return;
4018 // warn in presence of __bridge casting to or from a toll free bridge cast.
4019 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType());
4020 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4021 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) {
4022 bool HasObjCBridgeAttr;
4023 bool ObjCBridgeAttrWillNotWarn =
4024 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4025 false);
4026 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4027 return;
4028 bool HasObjCBridgeMutableAttr;
4029 bool ObjCBridgeMutableAttrWillNotWarn =
4030 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4031 HasObjCBridgeMutableAttr, false);
4032 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4033 return;
4034
4035 if (HasObjCBridgeAttr)
4036 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4037 true);
4038 else if (HasObjCBridgeMutableAttr)
4039 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4040 HasObjCBridgeMutableAttr, true);
4041 }
4042 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) {
4043 bool HasObjCBridgeAttr;
4044 bool ObjCBridgeAttrWillNotWarn =
4045 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4046 false);
4047 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4048 return;
4049 bool HasObjCBridgeMutableAttr;
4050 bool ObjCBridgeMutableAttrWillNotWarn =
4051 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4052 HasObjCBridgeMutableAttr, false);
4053 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4054 return;
4055
4056 if (HasObjCBridgeAttr)
4057 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4058 true);
4059 else if (HasObjCBridgeMutableAttr)
4060 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4061 HasObjCBridgeMutableAttr, true);
4062 }
4063}
4064
4065void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) {
4066 QualType SrcType = castExpr->getType();
4067 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) {
4068 if (PRE->isExplicitProperty()) {
4069 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty())
4070 SrcType = PDecl->getType();
4071 }
4072 else if (PRE->isImplicitProperty()) {
4073 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter())
4074 SrcType = Getter->getReturnType();
4075 }
4076 }
4077
4078 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType);
4079 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType);
4080 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation)
4081 return;
4082 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType,
4083 castExpr);
4084}
4085
4086bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
4087 CastKind &Kind) {
4088 if (!getLangOpts().ObjC)
4089 return false;
4090 ARCConversionTypeClass exprACTC =
4091 classifyTypeForARCConversion(castExpr->getType());
4092 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4093 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) ||
4094 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) {
4095 CheckTollFreeBridgeCast(castType, castExpr);
4096 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast
4097 : CK_CPointerToObjCPointerCast;
4098 return true;
4099 }
4100 return false;
4101}
4102
4103bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc,
4104 QualType DestType, QualType SrcType,
4105 ObjCInterfaceDecl *&RelatedClass,
4106 ObjCMethodDecl *&ClassMethod,
4107 ObjCMethodDecl *&InstanceMethod,
4108 TypedefNameDecl *&TDNDecl,
4109 bool CfToNs, bool Diagnose) {
4110 QualType T = CfToNs ? SrcType : DestType;
4111 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl);
4112 if (!ObjCBAttr)
4113 return false;
4114
4115 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass();
4116 IdentifierInfo *CMId = ObjCBAttr->getClassMethod();
4117 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod();
4118 if (!RCId)
4119 return false;
4120 NamedDecl *Target = nullptr;
4121 // Check for an existing type with this name.
4122 LookupResult R(*this, DeclarationName(RCId), SourceLocation(),
4123 Sema::LookupOrdinaryName);
4124 if (!LookupName(R, TUScope)) {
4125 if (Diagnose) {
4126 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId
4127 << SrcType << DestType;
4128 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4129 }
4130 return false;
4131 }
4132 Target = R.getFoundDecl();
4133 if (Target && isa<ObjCInterfaceDecl>(Target))
4134 RelatedClass = cast<ObjCInterfaceDecl>(Target);
4135 else {
4136 if (Diagnose) {
4137 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId
4138 << SrcType << DestType;
4139 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4140 if (Target)
4141 Diag(Target->getBeginLoc(), diag::note_declared_at);
4142 }
4143 return false;
4144 }
4145
4146 // Check for an existing class method with the given selector name.
4147 if (CfToNs && CMId) {
4148 Selector Sel = Context.Selectors.getUnarySelector(CMId);
4149 ClassMethod = RelatedClass->lookupMethod(Sel, false);
4150 if (!ClassMethod) {
4151 if (Diagnose) {
4152 Diag(Loc, diag::err_objc_bridged_related_known_method)
4153 << SrcType << DestType << Sel << false;
4154 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4155 }
4156 return false;
4157 }
4158 }
4159
4160 // Check for an existing instance method with the given selector name.
4161 if (!CfToNs && IMId) {
4162 Selector Sel = Context.Selectors.getNullarySelector(IMId);
4163 InstanceMethod = RelatedClass->lookupMethod(Sel, true);
4164 if (!InstanceMethod) {
4165 if (Diagnose) {
4166 Diag(Loc, diag::err_objc_bridged_related_known_method)
4167 << SrcType << DestType << Sel << true;
4168 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4169 }
4170 return false;
4171 }
4172 }
4173 return true;
4174}
4175
4176bool
4177Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc,
4178 QualType DestType, QualType SrcType,
4179 Expr *&SrcExpr, bool Diagnose) {
4180 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType);
4181 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType);
4182 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable);
4183 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation);
4184 if (!CfToNs && !NsToCf)
4185 return false;
4186
4187 ObjCInterfaceDecl *RelatedClass;
4188 ObjCMethodDecl *ClassMethod = nullptr;
4189 ObjCMethodDecl *InstanceMethod = nullptr;
4190 TypedefNameDecl *TDNDecl = nullptr;
4191 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass,
4192 ClassMethod, InstanceMethod, TDNDecl,
4193 CfToNs, Diagnose))
4194 return false;
4195
4196 if (CfToNs) {
4197 // Implicit conversion from CF to ObjC object is needed.
4198 if (ClassMethod) {
4199 if (Diagnose) {
4200 std::string ExpressionString = "[";
4201 ExpressionString += RelatedClass->getNameAsString();
4202 ExpressionString += " ";
4203 ExpressionString += ClassMethod->getSelector().getAsString();
4204 SourceLocation SrcExprEndLoc =
4205 getLocForEndOfToken(SrcExpr->getEndLoc());
4206 // Provide a fixit: [RelatedClass ClassMethod SrcExpr]
4207 Diag(Loc, diag::err_objc_bridged_related_known_method)
4208 << SrcType << DestType << ClassMethod->getSelector() << false
4209 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(),
4210 ExpressionString)
4211 << FixItHint::CreateInsertion(SrcExprEndLoc, "]");
4212 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4213 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4214
4215 QualType receiverType = Context.getObjCInterfaceType(RelatedClass);
4216 // Argument.
4217 Expr *args[] = { SrcExpr };
4218 ExprResult msg = BuildClassMessageImplicit(receiverType, false,
4219 ClassMethod->getLocation(),
4220 ClassMethod->getSelector(), ClassMethod,
4221 MultiExprArg(args, 1));
4222 SrcExpr = msg.get();
4223 }
4224 return true;
4225 }
4226 }
4227 else {
4228 // Implicit conversion from ObjC type to CF object is needed.
4229 if (InstanceMethod) {
4230 if (Diagnose) {
4231 std::string ExpressionString;
4232 SourceLocation SrcExprEndLoc =
4233 getLocForEndOfToken(SrcExpr->getEndLoc());
4234 if (InstanceMethod->isPropertyAccessor())
4235 if (const ObjCPropertyDecl *PDecl =
4236 InstanceMethod->findPropertyDecl()) {
4237 // fixit: ObjectExpr.propertyname when it is aproperty accessor.
4238 ExpressionString = ".";
4239 ExpressionString += PDecl->getNameAsString();
4240 Diag(Loc, diag::err_objc_bridged_related_known_method)
4241 << SrcType << DestType << InstanceMethod->getSelector() << true
4242 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4243 }
4244 if (ExpressionString.empty()) {
4245 // Provide a fixit: [ObjectExpr InstanceMethod]
4246 ExpressionString = " ";
4247 ExpressionString += InstanceMethod->getSelector().getAsString();
4248 ExpressionString += "]";
4249
4250 Diag(Loc, diag::err_objc_bridged_related_known_method)
4251 << SrcType << DestType << InstanceMethod->getSelector() << true
4252 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[")
4253 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4254 }
4255 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4256 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4257
4258 ExprResult msg =
4259 BuildInstanceMessageImplicit(SrcExpr, SrcType,
4260 InstanceMethod->getLocation(),
4261 InstanceMethod->getSelector(),
4262 InstanceMethod, None);
4263 SrcExpr = msg.get();
4264 }
4265 return true;
4266 }
4267 }
4268 return false;
4269}
4270
4271Sema::ARCConversionResult
4272Sema::CheckObjCConversion(SourceRange castRange, QualType castType,
4273 Expr *&castExpr, CheckedConversionKind CCK,
4274 bool Diagnose, bool DiagnoseCFAudited,
4275 BinaryOperatorKind Opc) {
4276 QualType castExprType = castExpr->getType();
4277
4278 // For the purposes of the classification, we assume reference types
4279 // will bind to temporaries.
4280 QualType effCastType = castType;
4281 if (const ReferenceType *ref = castType->getAs<ReferenceType>())
4282 effCastType = ref->getPointeeType();
4283
4284 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
4285 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
4286 if (exprACTC == castACTC) {
4287 // Check for viability and report error if casting an rvalue to a
4288 // life-time qualifier.
4289 if (castACTC == ACTC_retainable &&
4290 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
4291 castType != castExprType) {
4292 const Type *DT = castType.getTypePtr();
4293 QualType QDT = castType;
4294 // We desugar some types but not others. We ignore those
4295 // that cannot happen in a cast; i.e. auto, and those which
4296 // should not be de-sugared; i.e typedef.
4297 if (const ParenType *PT = dyn_cast<ParenType>(DT))
4298 QDT = PT->desugar();
4299 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
4300 QDT = TP->desugar();
4301 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
4302 QDT = AT->desugar();
4303 if (QDT != castType &&
4304 QDT.getObjCLifetime() != Qualifiers::OCL_None) {
4305 if (Diagnose) {
4306 SourceLocation loc = (castRange.isValid() ? castRange.getBegin()
4307 : castExpr->getExprLoc());
4308 Diag(loc, diag::err_arc_nolifetime_behavior);
4309 }
4310 return ACR_error;
4311 }
4312 }
4313 return ACR_okay;
4314 }
4315
4316 // The life-time qualifier cast check above is all we need for ObjCWeak.
4317 // ObjCAutoRefCount has more restrictions on what is legal.
4318 if (!getLangOpts().ObjCAutoRefCount)
4319 return ACR_okay;
4320
4321 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
4322
4323 // Allow all of these types to be cast to integer types (but not
4324 // vice-versa).
4325 if (castACTC == ACTC_none && castType->isIntegralType(Context))
4326 return ACR_okay;
4327
4328 // Allow casts between pointers to lifetime types (e.g., __strong id*)
4329 // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
4330 // must be explicit.
4331 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
4332 return ACR_okay;
4333 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
4334 isCast(CCK))
4335 return ACR_okay;
4336
4337 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
4338 // For invalid casts, fall through.
4339 case ACC_invalid:
4340 break;
4341
4342 // Do nothing for both bottom and +0.
4343 case ACC_bottom:
4344 case ACC_plusZero:
4345 return ACR_okay;
4346
4347 // If the result is +1, consume it here.
4348 case ACC_plusOne:
4349 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
4350 CK_ARCConsumeObject, castExpr,
4351 nullptr, VK_RValue);
4352 Cleanup.setExprNeedsCleanups(true);
4353 return ACR_okay;
4354 }
4355
4356 // If this is a non-implicit cast from id or block type to a
4357 // CoreFoundation type, delay complaining in case the cast is used
4358 // in an acceptable context.
4359 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK))
4360 return ACR_unbridged;
4361
4362 // Issue a diagnostic about a missing @-sign when implicit casting a cstring
4363 // to 'NSString *', instead of falling through to report a "bridge cast"
4364 // diagnostic.
4365 if (castACTC == ACTC_retainable && exprACTC == ACTC_none &&
4366 ConversionToObjCStringLiteralCheck(castType, castExpr, Diagnose))
4367 return ACR_error;
4368
4369 // Do not issue "bridge cast" diagnostic when implicit casting
4370 // a retainable object to a CF type parameter belonging to an audited
4371 // CF API function. Let caller issue a normal type mismatched diagnostic
4372 // instead.
4373 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable ||
4374 castACTC != ACTC_coreFoundation) &&
4375 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable &&
4376 (Opc == BO_NE || Opc == BO_EQ))) {
4377 if (Diagnose)
4378 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr,
4379 castExpr, exprACTC, CCK);
4380 return ACR_error;
4381 }
4382 return ACR_okay;
4383}
4384
4385/// Given that we saw an expression with the ARCUnbridgedCastTy
4386/// placeholder type, complain bitterly.
4387void Sema::diagnoseARCUnbridgedCast(Expr *e) {
4388 // We expect the spurious ImplicitCastExpr to already have been stripped.
4389 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ?
static_cast<void> (0) : __assert_fail ("!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4389, __PRETTY_FUNCTION__))
;
4390 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
4391
4392 SourceRange castRange;
4393 QualType castType;
4394 CheckedConversionKind CCK;
4395
4396 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
4397 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
4398 castType = cast->getTypeAsWritten();
4399 CCK = CCK_CStyleCast;
4400 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
4401 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
4402 castType = cast->getTypeAsWritten();
4403 CCK = CCK_OtherCast;
4404 } else {
4405 llvm_unreachable("Unexpected ImplicitCastExpr")::llvm::llvm_unreachable_internal("Unexpected ImplicitCastExpr"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4405)
;
4406 }
4407
4408 ARCConversionTypeClass castACTC =
4409 classifyTypeForARCConversion(castType.getNonReferenceType());
4410
4411 Expr *castExpr = realCast->getSubExpr();
4412 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable)((classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable
) ? static_cast<void> (0) : __assert_fail ("classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4412, __PRETTY_FUNCTION__))
;
4413
4414 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
4415 castExpr, realCast, ACTC_retainable, CCK);
4416}
4417
4418/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
4419/// type, remove the placeholder cast.
4420Expr *Sema::stripARCUnbridgedCast(Expr *e) {
4421 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4421, __PRETTY_FUNCTION__))
;
4422
4423 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
4424 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
4425 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
4426 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
4427 assert(uo->getOpcode() == UO_Extension)((uo->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("uo->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4427, __PRETTY_FUNCTION__))
;
4428 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
4429 return new (Context)
4430 UnaryOperator(sub, UO_Extension, sub->getType(), sub->getValueKind(),
4431 sub->getObjectKind(), uo->getOperatorLoc(), false);
4432 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
4433 assert(!gse->isResultDependent())((!gse->isResultDependent()) ? static_cast<void> (0)
: __assert_fail ("!gse->isResultDependent()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4433, __PRETTY_FUNCTION__))
;
4434
4435 unsigned n = gse->getNumAssocs();
4436 SmallVector<Expr *, 4> subExprs;
4437 SmallVector<TypeSourceInfo *, 4> subTypes;
4438 subExprs.reserve(n);
4439 subTypes.reserve(n);
4440 for (const GenericSelectionExpr::Association assoc : gse->associations()) {
4441 subTypes.push_back(assoc.getTypeSourceInfo());
4442 Expr *sub = assoc.getAssociationExpr();
4443 if (assoc.isSelected())
4444 sub = stripARCUnbridgedCast(sub);
4445 subExprs.push_back(sub);
4446 }
4447
4448 return GenericSelectionExpr::Create(
4449 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes,
4450 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(),
4451 gse->containsUnexpandedParameterPack(), gse->getResultIndex());
4452 } else {
4453 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!")((isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"
) ? static_cast<void> (0) : __assert_fail ("isa<ImplicitCastExpr>(e) && \"bad form of unbridged cast!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaExprObjC.cpp"
, 4453, __PRETTY_FUNCTION__))
;
4454 return cast<ImplicitCastExpr>(e)->getSubExpr();
4455 }
4456}
4457
4458bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
4459 QualType exprType) {
4460 QualType canCastType =
4461 Context.getCanonicalType(castType).getUnqualifiedType();
4462 QualType canExprType =
4463 Context.getCanonicalType(exprType).getUnqualifiedType();
4464 if (isa<ObjCObjectPointerType>(canCastType) &&
4465 castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
4466 canExprType->isObjCObjectPointerType()) {
4467 if (const ObjCObjectPointerType *ObjT =
4468 canExprType->getAs<ObjCObjectPointerType>())
4469 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
4470 return !ObjI->isArcWeakrefUnavailable();
4471 }
4472 return true;
4473}
4474
4475/// Look for an ObjCReclaimReturnedObject cast and destroy it.
4476static Expr *maybeUndoReclaimObject(Expr *e) {
4477 Expr *curExpr = e, *prevExpr = nullptr;
4478
4479 // Walk down the expression until we hit an implicit cast of kind
4480 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast.
4481 while (true) {
4482 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) {
4483 prevExpr = curExpr;
4484 curExpr = pe->getSubExpr();
4485 continue;
4486 }
4487
4488 if (auto *ce = dyn_cast<CastExpr>(curExpr)) {
4489 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce))
4490 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) {
4491 if (!prevExpr)
4492 return ice->getSubExpr();
4493 if (auto *pe = dyn_cast<ParenExpr>(prevExpr))
4494 pe->setSubExpr(ice->getSubExpr());
4495 else
4496 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr());
4497 return e;
4498 }
4499
4500 prevExpr = curExpr;
4501 curExpr = ce->getSubExpr();
4502 continue;
4503 }
4504
4505 // Break out of the loop if curExpr is neither a Paren nor a Cast.
4506 break;
4507 }
4508
4509 return e;
4510}
4511
4512ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
4513 ObjCBridgeCastKind Kind,
4514 SourceLocation BridgeKeywordLoc,
4515 TypeSourceInfo *TSInfo,
4516 Expr *SubExpr) {
4517 ExprResult SubResult = UsualUnaryConversions(SubExpr);
4518 if (SubResult.isInvalid()) return ExprError();
4519 SubExpr = SubResult.get();
4520
4521 QualType T = TSInfo->getType();
4522 QualType FromType = SubExpr->getType();
4523
4524 CastKind CK;
4525
4526 bool MustConsume = false;
4527 if (T->isDependentType() || SubExpr->isTypeDependent()) {
4528 // Okay: we'll build a dependent expression type.
4529 CK = CK_Dependent;
4530 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
4531 // Casting CF -> id
4532 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
4533 : CK_CPointerToObjCPointerCast);
4534 switch (Kind) {
4535 case OBC_Bridge:
4536 break;
4537
4538 case OBC_BridgeRetained: {
4539 bool br = isKnownName("CFBridgingRelease");
4540 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4541 << 2
4542 << FromType
4543 << (T->isBlockPointerType()? 1 : 0)
4544 << T
4545 << SubExpr->getSourceRange()
4546 << Kind;
4547 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4548 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
4549 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
4550 << FromType << br
4551 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4552 br ? "CFBridgingRelease "
4553 : "__bridge_transfer ");
4554
4555 Kind = OBC_Bridge;
4556 break;
4557 }
4558
4559 case OBC_BridgeTransfer:
4560 // We must consume the Objective-C object produced by the cast.
4561 MustConsume = true;
4562 break;
4563 }
4564 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
4565 // Okay: id -> CF
4566 CK = CK_BitCast;
4567 switch (Kind) {
4568 case OBC_Bridge:
4569 // Reclaiming a value that's going to be __bridge-casted to CF
4570 // is very dangerous, so we don't do it.
4571 SubExpr = maybeUndoReclaimObject(SubExpr);
4572 break;
4573
4574 case OBC_BridgeRetained:
4575 // Produce the object before casting it.
4576 SubExpr = ImplicitCastExpr::Create(Context, FromType,
4577 CK_ARCProduceObject,
4578 SubExpr, nullptr, VK_RValue);
4579 break;
4580
4581 case OBC_BridgeTransfer: {
4582 bool br = isKnownName("CFBridgingRetain");
4583 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4584 << (FromType->isBlockPointerType()? 1 : 0)
4585 << FromType
4586 << 2
4587 << T
4588 << SubExpr->getSourceRange()
4589 << Kind;
4590
4591 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4592 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
4593 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
4594 << T << br
4595 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4596 br ? "CFBridgingRetain " : "__bridge_retained");
4597
4598 Kind = OBC_Bridge;
4599 break;
4600 }
4601 }
4602 } else {
4603 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
4604 << FromType << T << Kind
4605 << SubExpr->getSourceRange()
4606 << TSInfo->getTypeLoc().getSourceRange();
4607 return ExprError();
4608 }
4609
4610 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
4611 BridgeKeywordLoc,
4612 TSInfo, SubExpr);
4613
4614 if (MustConsume) {
4615 Cleanup.setExprNeedsCleanups(true);
4616 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
4617 nullptr, VK_RValue);
4618 }
4619
4620 return Result;
4621}
4622
4623ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
4624 SourceLocation LParenLoc,
4625 ObjCBridgeCastKind Kind,
4626 SourceLocation BridgeKeywordLoc,
4627 ParsedType Type,
4628 SourceLocation RParenLoc,
4629 Expr *SubExpr) {
4630 TypeSourceInfo *TSInfo = nullptr;
4631 QualType T = GetTypeFromParser(Type, &TSInfo);
4632 if (Kind == OBC_Bridge)
4633 CheckTollFreeBridgeCast(T, SubExpr);
4634 if (!TSInfo)
4635 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
4636 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
4637 SubExpr);
4638}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h

1//===- DeclarationName.h - Representation of declaration names --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the DeclarationName and DeclarationNameTable classes.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLARATIONNAME_H
14#define LLVM_CLANG_AST_DECLARATIONNAME_H
15
16#include "clang/AST/Type.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/SourceLocation.h"
22#include "llvm/ADT/DenseMapInfo.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/type_traits.h"
26#include <cassert>
27#include <cstdint>
28#include <cstring>
29#include <string>
30
31namespace clang {
32
33class ASTContext;
34template <typename> class CanQual;
35class DeclarationName;
36class DeclarationNameTable;
37class MultiKeywordSelector;
38struct PrintingPolicy;
39class TemplateDecl;
40class TypeSourceInfo;
41class UsingDirectiveDecl;
42
43using CanQualType = CanQual<Type>;
44
45namespace detail {
46
47/// CXXSpecialNameExtra records the type associated with one of the "special"
48/// kinds of declaration names in C++, e.g., constructors, destructors, and
49/// conversion functions. Note that CXXSpecialName is used for C++ constructor,
50/// destructor and conversion functions, but the actual kind is not stored in
51/// CXXSpecialName. Instead we use three different FoldingSet<CXXSpecialName>
52/// in DeclarationNameTable.
53class alignas(IdentifierInfoAlignment) CXXSpecialNameExtra
54 : public llvm::FoldingSetNode {
55 friend class clang::DeclarationName;
56 friend class clang::DeclarationNameTable;
57
58 /// The type associated with this declaration name.
59 QualType Type;
60
61 /// Extra information associated with this declaration name that
62 /// can be used by the front end. All bits are really needed
63 /// so it is not possible to stash something in the low order bits.
64 void *FETokenInfo;
65
66 CXXSpecialNameExtra(QualType QT) : Type(QT), FETokenInfo(nullptr) {}
67
68public:
69 void Profile(llvm::FoldingSetNodeID &ID) {
70 ID.AddPointer(Type.getAsOpaquePtr());
71 }
72};
73
74/// Contains extra information for the name of a C++ deduction guide.
75class alignas(IdentifierInfoAlignment) CXXDeductionGuideNameExtra
76 : public detail::DeclarationNameExtra,
77 public llvm::FoldingSetNode {
78 friend class clang::DeclarationName;
79 friend class clang::DeclarationNameTable;
80
81 /// The template named by the deduction guide.
82 TemplateDecl *Template;
83
84 /// Extra information associated with this operator name that
85 /// can be used by the front end. All bits are really needed
86 /// so it is not possible to stash something in the low order bits.
87 void *FETokenInfo;
88
89 CXXDeductionGuideNameExtra(TemplateDecl *TD)
90 : DeclarationNameExtra(CXXDeductionGuideName), Template(TD),
91 FETokenInfo(nullptr) {}
92
93public:
94 void Profile(llvm::FoldingSetNodeID &ID) { ID.AddPointer(Template); }
95};
96
97/// Contains extra information for the name of an overloaded operator
98/// in C++, such as "operator+. This do not includes literal or conversion
99/// operators. For literal operators see CXXLiteralOperatorIdName and for
100/// conversion operators see CXXSpecialNameExtra.
101class alignas(IdentifierInfoAlignment) CXXOperatorIdName {
102 friend class clang::DeclarationName;
103 friend class clang::DeclarationNameTable;
104
105 /// The kind of this operator.
106 OverloadedOperatorKind Kind = OO_None;
107
108 /// Extra information associated with this operator name that
109 /// can be used by the front end. All bits are really needed
110 /// so it is not possible to stash something in the low order bits.
111 void *FETokenInfo = nullptr;
112};
113
114/// Contains the actual identifier that makes up the
115/// name of a C++ literal operator.
116class alignas(IdentifierInfoAlignment) CXXLiteralOperatorIdName
117 : public detail::DeclarationNameExtra,
118 public llvm::FoldingSetNode {
119 friend class clang::DeclarationName;
120 friend class clang::DeclarationNameTable;
121
122 IdentifierInfo *ID;
123
124 /// Extra information associated with this operator name that
125 /// can be used by the front end. All bits are really needed
126 /// so it is not possible to stash something in the low order bits.
127 void *FETokenInfo;
128
129 CXXLiteralOperatorIdName(IdentifierInfo *II)
130 : DeclarationNameExtra(CXXLiteralOperatorName), ID(II),
131 FETokenInfo(nullptr) {}
132
133public:
134 void Profile(llvm::FoldingSetNodeID &FSID) { FSID.AddPointer(ID); }
135};
136
137} // namespace detail
138
139/// The name of a declaration. In the common case, this just stores
140/// an IdentifierInfo pointer to a normal name. However, it also provides
141/// encodings for Objective-C selectors (optimizing zero- and one-argument
142/// selectors, which make up 78% percent of all selectors in Cocoa.h),
143/// special C++ names for constructors, destructors, and conversion functions,
144/// and C++ overloaded operators.
145class DeclarationName {
146 friend class DeclarationNameTable;
147 friend class NamedDecl;
148
149 /// StoredNameKind represent the kind of name that is actually stored in the
150 /// upper bits of the Ptr field. This is only used internally.
151 ///
152 /// NameKind, StoredNameKind, and DeclarationNameExtra::ExtraKind
153 /// must satisfy the following properties. These properties enable
154 /// efficient conversion between the various kinds.
155 ///
156 /// * The first seven enumerators of StoredNameKind must have the same
157 /// numerical value as the first seven enumerators of NameKind.
158 /// This enable efficient conversion between the two enumerations
159 /// in the usual case.
160 ///
161 /// * The enumerations values of DeclarationNameExtra::ExtraKind must start
162 /// at zero, and correspond to the numerical value of the first non-inline
163 /// enumeration values of NameKind minus an offset. This makes conversion
164 /// between DeclarationNameExtra::ExtraKind and NameKind possible with
165 /// a single addition/substraction.
166 ///
167 /// * The enumeration values of Selector::IdentifierInfoFlag must correspond
168 /// to the relevant enumeration values of StoredNameKind.
169 /// More specifically:
170 /// * ZeroArg == StoredObjCZeroArgSelector,
171 /// * OneArg == StoredObjCOneArgSelector,
172 /// * MultiArg == StoredDeclarationNameExtra
173 ///
174 /// * PtrMask must mask the low 3 bits of Ptr.
175 enum StoredNameKind {
176 StoredIdentifier = 0,
177 StoredObjCZeroArgSelector = Selector::ZeroArg,
178 StoredObjCOneArgSelector = Selector::OneArg,
179 StoredCXXConstructorName = 3,
180 StoredCXXDestructorName = 4,
181 StoredCXXConversionFunctionName = 5,
182 StoredCXXOperatorName = 6,
183 StoredDeclarationNameExtra = Selector::MultiArg,
184 PtrMask = 7,
185 UncommonNameKindOffset = 8
186 };
187
188 static_assert(alignof(IdentifierInfo) >= 8 &&
189 alignof(detail::DeclarationNameExtra) >= 8 &&
190 alignof(detail::CXXSpecialNameExtra) >= 8 &&
191 alignof(detail::CXXOperatorIdName) >= 8 &&
192 alignof(detail::CXXDeductionGuideNameExtra) >= 8 &&
193 alignof(detail::CXXLiteralOperatorIdName) >= 8,
194 "The various classes that DeclarationName::Ptr can point to"
195 " must be at least aligned to 8 bytes!");
196
197public:
198 /// The kind of the name stored in this DeclarationName.
199 /// The first 7 enumeration values are stored inline and correspond
200 /// to frequently used kinds. The rest is stored in DeclarationNameExtra
201 /// and correspond to infrequently used kinds.
202 enum NameKind {
203 Identifier = StoredIdentifier,
204 ObjCZeroArgSelector = StoredObjCZeroArgSelector,
205 ObjCOneArgSelector = StoredObjCOneArgSelector,
206 CXXConstructorName = StoredCXXConstructorName,
207 CXXDestructorName = StoredCXXDestructorName,
208 CXXConversionFunctionName = StoredCXXConversionFunctionName,
209 CXXOperatorName = StoredCXXOperatorName,
210 CXXDeductionGuideName = UncommonNameKindOffset +
211 detail::DeclarationNameExtra::CXXDeductionGuideName,
212 CXXLiteralOperatorName =
213 UncommonNameKindOffset +
214 detail::DeclarationNameExtra::CXXLiteralOperatorName,
215 CXXUsingDirective = UncommonNameKindOffset +
216 detail::DeclarationNameExtra::CXXUsingDirective,
217 ObjCMultiArgSelector = UncommonNameKindOffset +
218 detail::DeclarationNameExtra::ObjCMultiArgSelector
219 };
220
221private:
222 /// The lowest three bits of Ptr are used to express what kind of name
223 /// we're actually storing, using the values of StoredNameKind. Depending
224 /// on the kind of name this is, the upper bits of Ptr may have one
225 /// of several different meanings:
226 ///
227 /// StoredIdentifier - The name is a normal identifier, and Ptr is
228 /// a normal IdentifierInfo pointer.
229 ///
230 /// StoredObjCZeroArgSelector - The name is an Objective-C
231 /// selector with zero arguments, and Ptr is an IdentifierInfo
232 /// pointer pointing to the selector name.
233 ///
234 /// StoredObjCOneArgSelector - The name is an Objective-C selector
235 /// with one argument, and Ptr is an IdentifierInfo pointer
236 /// pointing to the selector name.
237 ///
238 /// StoredCXXConstructorName - The name of a C++ constructor,
239 /// Ptr points to a CXXSpecialNameExtra.
240 ///
241 /// StoredCXXDestructorName - The name of a C++ destructor,
242 /// Ptr points to a CXXSpecialNameExtra.
243 ///
244 /// StoredCXXConversionFunctionName - The name of a C++ conversion function,
245 /// Ptr points to a CXXSpecialNameExtra.
246 ///
247 /// StoredCXXOperatorName - The name of an overloaded C++ operator,
248 /// Ptr points to a CXXOperatorIdName.
249 ///
250 /// StoredDeclarationNameExtra - Ptr is actually a pointer to a
251 /// DeclarationNameExtra structure, whose first value will tell us
252 /// whether this is an Objective-C selector, C++ deduction guide,
253 /// C++ literal operator, or C++ using directive.
254 uintptr_t Ptr = 0;
255
256 StoredNameKind getStoredNameKind() const {
257 return static_cast<StoredNameKind>(Ptr & PtrMask);
258 }
259
260 void *getPtr() const { return reinterpret_cast<void *>(Ptr & ~PtrMask); }
261
262 void setPtrAndKind(const void *P, StoredNameKind Kind) {
263 uintptr_t PAsInteger = reinterpret_cast<uintptr_t>(P);
264 assert((Kind & ~PtrMask) == 0 &&(((Kind & ~PtrMask) == 0 && "Invalid StoredNameKind in setPtrAndKind!"
) ? static_cast<void> (0) : __assert_fail ("(Kind & ~PtrMask) == 0 && \"Invalid StoredNameKind in setPtrAndKind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 265, __PRETTY_FUNCTION__))
265 "Invalid StoredNameKind in setPtrAndKind!")(((Kind & ~PtrMask) == 0 && "Invalid StoredNameKind in setPtrAndKind!"
) ? static_cast<void> (0) : __assert_fail ("(Kind & ~PtrMask) == 0 && \"Invalid StoredNameKind in setPtrAndKind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 265, __PRETTY_FUNCTION__))
;
266 assert((PAsInteger & PtrMask) == 0 &&(((PAsInteger & PtrMask) == 0 && "Improperly aligned pointer in setPtrAndKind!"
) ? static_cast<void> (0) : __assert_fail ("(PAsInteger & PtrMask) == 0 && \"Improperly aligned pointer in setPtrAndKind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 267, __PRETTY_FUNCTION__))
267 "Improperly aligned pointer in setPtrAndKind!")(((PAsInteger & PtrMask) == 0 && "Improperly aligned pointer in setPtrAndKind!"
) ? static_cast<void> (0) : __assert_fail ("(PAsInteger & PtrMask) == 0 && \"Improperly aligned pointer in setPtrAndKind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 267, __PRETTY_FUNCTION__))
;
268 Ptr = PAsInteger | Kind;
269 }
270
271 /// Construct a declaration name from a DeclarationNameExtra.
272 DeclarationName(detail::DeclarationNameExtra *Name) {
273 setPtrAndKind(Name, StoredDeclarationNameExtra);
274 }
275
276 /// Construct a declaration name from a CXXSpecialNameExtra.
277 DeclarationName(detail::CXXSpecialNameExtra *Name,
278 StoredNameKind StoredKind) {
279 assert((StoredKind == StoredCXXConstructorName ||(((StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName
|| StoredKind == StoredCXXConversionFunctionName) &&
"Invalid StoredNameKind when constructing a DeclarationName"
" from a CXXSpecialNameExtra!") ? static_cast<void> (0
) : __assert_fail ("(StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName || StoredKind == StoredCXXConversionFunctionName) && \"Invalid StoredNameKind when constructing a DeclarationName\" \" from a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 283, __PRETTY_FUNCTION__))
280 StoredKind == StoredCXXDestructorName ||(((StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName
|| StoredKind == StoredCXXConversionFunctionName) &&
"Invalid StoredNameKind when constructing a DeclarationName"
" from a CXXSpecialNameExtra!") ? static_cast<void> (0
) : __assert_fail ("(StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName || StoredKind == StoredCXXConversionFunctionName) && \"Invalid StoredNameKind when constructing a DeclarationName\" \" from a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 283, __PRETTY_FUNCTION__))
281 StoredKind == StoredCXXConversionFunctionName) &&(((StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName
|| StoredKind == StoredCXXConversionFunctionName) &&
"Invalid StoredNameKind when constructing a DeclarationName"
" from a CXXSpecialNameExtra!") ? static_cast<void> (0
) : __assert_fail ("(StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName || StoredKind == StoredCXXConversionFunctionName) && \"Invalid StoredNameKind when constructing a DeclarationName\" \" from a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 283, __PRETTY_FUNCTION__))
282 "Invalid StoredNameKind when constructing a DeclarationName"(((StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName
|| StoredKind == StoredCXXConversionFunctionName) &&
"Invalid StoredNameKind when constructing a DeclarationName"
" from a CXXSpecialNameExtra!") ? static_cast<void> (0
) : __assert_fail ("(StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName || StoredKind == StoredCXXConversionFunctionName) && \"Invalid StoredNameKind when constructing a DeclarationName\" \" from a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 283, __PRETTY_FUNCTION__))
283 " from a CXXSpecialNameExtra!")(((StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName
|| StoredKind == StoredCXXConversionFunctionName) &&
"Invalid StoredNameKind when constructing a DeclarationName"
" from a CXXSpecialNameExtra!") ? static_cast<void> (0
) : __assert_fail ("(StoredKind == StoredCXXConstructorName || StoredKind == StoredCXXDestructorName || StoredKind == StoredCXXConversionFunctionName) && \"Invalid StoredNameKind when constructing a DeclarationName\" \" from a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 283, __PRETTY_FUNCTION__))
;
284 setPtrAndKind(Name, StoredKind);
285 }
286
287 /// Construct a DeclarationName from a CXXOperatorIdName.
288 DeclarationName(detail::CXXOperatorIdName *Name) {
289 setPtrAndKind(Name, StoredCXXOperatorName);
290 }
291
292 /// Assert that the stored pointer points to an IdentifierInfo and return it.
293 IdentifierInfo *castAsIdentifierInfo() const {
294 assert((getStoredNameKind() == StoredIdentifier) &&(((getStoredNameKind() == StoredIdentifier) && "DeclarationName does not store an IdentifierInfo!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredIdentifier) && \"DeclarationName does not store an IdentifierInfo!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 295, __PRETTY_FUNCTION__))
295 "DeclarationName does not store an IdentifierInfo!")(((getStoredNameKind() == StoredIdentifier) && "DeclarationName does not store an IdentifierInfo!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredIdentifier) && \"DeclarationName does not store an IdentifierInfo!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 295, __PRETTY_FUNCTION__))
;
296 return static_cast<IdentifierInfo *>(getPtr());
297 }
298
299 /// Assert that the stored pointer points to a DeclarationNameExtra
300 /// and return it.
301 detail::DeclarationNameExtra *castAsExtra() const {
302 assert((getStoredNameKind() == StoredDeclarationNameExtra) &&(((getStoredNameKind() == StoredDeclarationNameExtra) &&
"DeclarationName does not store an Extra structure!") ? static_cast
<void> (0) : __assert_fail ("(getStoredNameKind() == StoredDeclarationNameExtra) && \"DeclarationName does not store an Extra structure!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 303, __PRETTY_FUNCTION__))
303 "DeclarationName does not store an Extra structure!")(((getStoredNameKind() == StoredDeclarationNameExtra) &&
"DeclarationName does not store an Extra structure!") ? static_cast
<void> (0) : __assert_fail ("(getStoredNameKind() == StoredDeclarationNameExtra) && \"DeclarationName does not store an Extra structure!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 303, __PRETTY_FUNCTION__))
;
304 return static_cast<detail::DeclarationNameExtra *>(getPtr());
305 }
306
307 /// Assert that the stored pointer points to a CXXSpecialNameExtra
308 /// and return it.
309 detail::CXXSpecialNameExtra *castAsCXXSpecialNameExtra() const {
310 assert((getStoredNameKind() == StoredCXXConstructorName ||(((getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind
() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName
) && "DeclarationName does not store a CXXSpecialNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName) && \"DeclarationName does not store a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 313, __PRETTY_FUNCTION__))
311 getStoredNameKind() == StoredCXXDestructorName ||(((getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind
() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName
) && "DeclarationName does not store a CXXSpecialNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName) && \"DeclarationName does not store a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 313, __PRETTY_FUNCTION__))
312 getStoredNameKind() == StoredCXXConversionFunctionName) &&(((getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind
() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName
) && "DeclarationName does not store a CXXSpecialNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName) && \"DeclarationName does not store a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 313, __PRETTY_FUNCTION__))
313 "DeclarationName does not store a CXXSpecialNameExtra!")(((getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind
() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName
) && "DeclarationName does not store a CXXSpecialNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXConstructorName || getStoredNameKind() == StoredCXXDestructorName || getStoredNameKind() == StoredCXXConversionFunctionName) && \"DeclarationName does not store a CXXSpecialNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 313, __PRETTY_FUNCTION__))
;
314 return static_cast<detail::CXXSpecialNameExtra *>(getPtr());
315 }
316
317 /// Assert that the stored pointer points to a CXXOperatorIdName
318 /// and return it.
319 detail::CXXOperatorIdName *castAsCXXOperatorIdName() const {
320 assert((getStoredNameKind() == StoredCXXOperatorName) &&(((getStoredNameKind() == StoredCXXOperatorName) && "DeclarationName does not store a CXXOperatorIdName!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXOperatorName) && \"DeclarationName does not store a CXXOperatorIdName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 321, __PRETTY_FUNCTION__))
321 "DeclarationName does not store a CXXOperatorIdName!")(((getStoredNameKind() == StoredCXXOperatorName) && "DeclarationName does not store a CXXOperatorIdName!"
) ? static_cast<void> (0) : __assert_fail ("(getStoredNameKind() == StoredCXXOperatorName) && \"DeclarationName does not store a CXXOperatorIdName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 321, __PRETTY_FUNCTION__))
;
322 return static_cast<detail::CXXOperatorIdName *>(getPtr());
323 }
324
325 /// Assert that the stored pointer points to a CXXDeductionGuideNameExtra
326 /// and return it.
327 detail::CXXDeductionGuideNameExtra *castAsCXXDeductionGuideNameExtra() const {
328 assert(getNameKind() == CXXDeductionGuideName &&((getNameKind() == CXXDeductionGuideName && "DeclarationName does not store a CXXDeductionGuideNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("getNameKind() == CXXDeductionGuideName && \"DeclarationName does not store a CXXDeductionGuideNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 329, __PRETTY_FUNCTION__))
329 "DeclarationName does not store a CXXDeductionGuideNameExtra!")((getNameKind() == CXXDeductionGuideName && "DeclarationName does not store a CXXDeductionGuideNameExtra!"
) ? static_cast<void> (0) : __assert_fail ("getNameKind() == CXXDeductionGuideName && \"DeclarationName does not store a CXXDeductionGuideNameExtra!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 329, __PRETTY_FUNCTION__))
;
330 return static_cast<detail::CXXDeductionGuideNameExtra *>(getPtr());
331 }
332
333 /// Assert that the stored pointer points to a CXXLiteralOperatorIdName
334 /// and return it.
335 detail::CXXLiteralOperatorIdName *castAsCXXLiteralOperatorIdName() const {
336 assert(getNameKind() == CXXLiteralOperatorName &&((getNameKind() == CXXLiteralOperatorName && "DeclarationName does not store a CXXLiteralOperatorIdName!"
) ? static_cast<void> (0) : __assert_fail ("getNameKind() == CXXLiteralOperatorName && \"DeclarationName does not store a CXXLiteralOperatorIdName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 337, __PRETTY_FUNCTION__))
337 "DeclarationName does not store a CXXLiteralOperatorIdName!")((getNameKind() == CXXLiteralOperatorName && "DeclarationName does not store a CXXLiteralOperatorIdName!"
) ? static_cast<void> (0) : __assert_fail ("getNameKind() == CXXLiteralOperatorName && \"DeclarationName does not store a CXXLiteralOperatorIdName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 337, __PRETTY_FUNCTION__))
;
338 return static_cast<detail::CXXLiteralOperatorIdName *>(getPtr());
339 }
340
341 /// Get and set the FETokenInfo in the less common cases where the
342 /// declaration name do not point to an identifier.
343 void *getFETokenInfoSlow() const;
344 void setFETokenInfoSlow(void *T);
345
346public:
347 /// Construct an empty declaration name.
348 DeclarationName() { setPtrAndKind(nullptr, StoredIdentifier); }
349
350 /// Construct a declaration name from an IdentifierInfo *.
351 DeclarationName(const IdentifierInfo *II) {
352 setPtrAndKind(II, StoredIdentifier);
353 }
354
355 /// Construct a declaration name from an Objective-C selector.
356 DeclarationName(Selector Sel) : Ptr(Sel.InfoPtr) {}
357
358 /// Returns the name for all C++ using-directives.
359 static DeclarationName getUsingDirectiveName() {
360 // Single instance of DeclarationNameExtra for using-directive
361 static detail::DeclarationNameExtra UDirExtra(
362 detail::DeclarationNameExtra::CXXUsingDirective);
363 return DeclarationName(&UDirExtra);
364 }
365
366 /// Evaluates true when this declaration name is non-empty.
367 explicit operator bool() const {
368 return getPtr() || (getStoredNameKind() != StoredIdentifier);
369 }
370
371 /// Evaluates true when this declaration name is empty.
372 bool isEmpty() const { return !*this; }
373
374 /// Predicate functions for querying what type of name this is.
375 bool isIdentifier() const { return getStoredNameKind() == StoredIdentifier; }
14
Assuming the condition is true
15
Returning the value 1, which participates in a condition later
40
Assuming the condition is true
41
Returning the value 1, which participates in a condition later
376 bool isObjCZeroArgSelector() const {
377 return getStoredNameKind() == StoredObjCZeroArgSelector;
378 }
379 bool isObjCOneArgSelector() const {
380 return getStoredNameKind() == StoredObjCOneArgSelector;
381 }
382
383 /// Determine what kind of name this is.
384 NameKind getNameKind() const {
385 // We rely on the fact that the first 7 NameKind and StoredNameKind
386 // have the same numerical value. This makes the usual case efficient.
387 StoredNameKind StoredKind = getStoredNameKind();
388 if (StoredKind != StoredDeclarationNameExtra)
389 return static_cast<NameKind>(StoredKind);
390 // We have to consult DeclarationNameExtra. We rely on the fact that the
391 // enumeration values of ExtraKind correspond to the enumeration values of
392 // NameKind minus an offset of UncommonNameKindOffset.
393 unsigned ExtraKind = castAsExtra()->getKind();
394 return static_cast<NameKind>(UncommonNameKindOffset + ExtraKind);
395 }
396
397 /// Determines whether the name itself is dependent, e.g., because it
398 /// involves a C++ type that is itself dependent.
399 ///
400 /// Note that this does not capture all of the notions of "dependent name",
401 /// because an identifier can be a dependent name if it is used as the
402 /// callee in a call expression with dependent arguments.
403 bool isDependentName() const;
404
405 /// Retrieve the human-readable string for this name.
406 std::string getAsString() const;
407
408 /// Retrieve the IdentifierInfo * stored in this declaration name,
409 /// or null if this declaration name isn't a simple identifier.
410 IdentifierInfo *getAsIdentifierInfo() const {
411 if (isIdentifier())
412 return castAsIdentifierInfo();
413 return nullptr;
414 }
415
416 /// Get the representation of this declaration name as an opaque integer.
417 uintptr_t getAsOpaqueInteger() const { return Ptr; }
418
419 /// Get the representation of this declaration name as an opaque pointer.
420 void *getAsOpaquePtr() const { return reinterpret_cast<void *>(Ptr); }
421
422 /// Get a declaration name from an opaque pointer returned by getAsOpaquePtr.
423 static DeclarationName getFromOpaquePtr(void *P) {
424 DeclarationName N;
425 N.Ptr = reinterpret_cast<uintptr_t>(P);
426 return N;
427 }
428
429 /// Get a declaration name from an opaque integer
430 /// returned by getAsOpaqueInteger.
431 static DeclarationName getFromOpaqueInteger(uintptr_t P) {
432 DeclarationName N;
433 N.Ptr = P;
434 return N;
435 }
436
437 /// If this name is one of the C++ names (of a constructor, destructor,
438 /// or conversion function), return the type associated with that name.
439 QualType getCXXNameType() const {
440 if (getStoredNameKind() == StoredCXXConstructorName ||
441 getStoredNameKind() == StoredCXXDestructorName ||
442 getStoredNameKind() == StoredCXXConversionFunctionName) {
443 assert(getPtr() && "getCXXNameType on a null DeclarationName!")((getPtr() && "getCXXNameType on a null DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getCXXNameType on a null DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 443, __PRETTY_FUNCTION__))
;
444 return castAsCXXSpecialNameExtra()->Type;
445 }
446 return QualType();
447 }
448
449 /// If this name is the name of a C++ deduction guide, return the
450 /// template associated with that name.
451 TemplateDecl *getCXXDeductionGuideTemplate() const {
452 if (getNameKind() == CXXDeductionGuideName) {
453 assert(getPtr() &&((getPtr() && "getCXXDeductionGuideTemplate on a null DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getCXXDeductionGuideTemplate on a null DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 454, __PRETTY_FUNCTION__))
454 "getCXXDeductionGuideTemplate on a null DeclarationName!")((getPtr() && "getCXXDeductionGuideTemplate on a null DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getCXXDeductionGuideTemplate on a null DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 454, __PRETTY_FUNCTION__))
;
455 return castAsCXXDeductionGuideNameExtra()->Template;
456 }
457 return nullptr;
458 }
459
460 /// If this name is the name of an overloadable operator in C++
461 /// (e.g., @c operator+), retrieve the kind of overloaded operator.
462 OverloadedOperatorKind getCXXOverloadedOperator() const {
463 if (getStoredNameKind() == StoredCXXOperatorName) {
464 assert(getPtr() && "getCXXOverloadedOperator on a null DeclarationName!")((getPtr() && "getCXXOverloadedOperator on a null DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getCXXOverloadedOperator on a null DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 464, __PRETTY_FUNCTION__))
;
465 return castAsCXXOperatorIdName()->Kind;
466 }
467 return OO_None;
468 }
469
470 /// If this name is the name of a literal operator,
471 /// retrieve the identifier associated with it.
472 IdentifierInfo *getCXXLiteralIdentifier() const {
473 if (getNameKind() == CXXLiteralOperatorName) {
474 assert(getPtr() && "getCXXLiteralIdentifier on a null DeclarationName!")((getPtr() && "getCXXLiteralIdentifier on a null DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getCXXLiteralIdentifier on a null DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 474, __PRETTY_FUNCTION__))
;
475 return castAsCXXLiteralOperatorIdName()->ID;
476 }
477 return nullptr;
478 }
479
480 /// Get the Objective-C selector stored in this declaration name.
481 Selector getObjCSelector() const {
482 assert((getNameKind() == ObjCZeroArgSelector ||(((getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector
|| getNameKind() == ObjCMultiArgSelector || !getPtr()) &&
"Not a selector!") ? static_cast<void> (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || !getPtr()) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 485, __PRETTY_FUNCTION__))
483 getNameKind() == ObjCOneArgSelector ||(((getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector
|| getNameKind() == ObjCMultiArgSelector || !getPtr()) &&
"Not a selector!") ? static_cast<void> (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || !getPtr()) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 485, __PRETTY_FUNCTION__))
484 getNameKind() == ObjCMultiArgSelector || !getPtr()) &&(((getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector
|| getNameKind() == ObjCMultiArgSelector || !getPtr()) &&
"Not a selector!") ? static_cast<void> (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || !getPtr()) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 485, __PRETTY_FUNCTION__))
485 "Not a selector!")(((getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector
|| getNameKind() == ObjCMultiArgSelector || !getPtr()) &&
"Not a selector!") ? static_cast<void> (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || !getPtr()) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 485, __PRETTY_FUNCTION__))
;
486 return Selector(Ptr);
487 }
488
489 /// Get and set FETokenInfo. The language front-end is allowed to associate
490 /// arbitrary metadata with some kinds of declaration names, including normal
491 /// identifiers and C++ constructors, destructors, and conversion functions.
492 void *getFETokenInfo() const {
493 assert(getPtr() && "getFETokenInfo on an empty DeclarationName!")((getPtr() && "getFETokenInfo on an empty DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"getFETokenInfo on an empty DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 493, __PRETTY_FUNCTION__))
;
494 if (getStoredNameKind() == StoredIdentifier)
495 return castAsIdentifierInfo()->getFETokenInfo();
496 return getFETokenInfoSlow();
497 }
498
499 void setFETokenInfo(void *T) {
500 assert(getPtr() && "setFETokenInfo on an empty DeclarationName!")((getPtr() && "setFETokenInfo on an empty DeclarationName!"
) ? static_cast<void> (0) : __assert_fail ("getPtr() && \"setFETokenInfo on an empty DeclarationName!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 500, __PRETTY_FUNCTION__))
;
501 if (getStoredNameKind() == StoredIdentifier)
502 castAsIdentifierInfo()->setFETokenInfo(T);
503 else
504 setFETokenInfoSlow(T);
505 }
506
507 /// Determine whether the specified names are identical.
508 friend bool operator==(DeclarationName LHS, DeclarationName RHS) {
509 return LHS.Ptr == RHS.Ptr;
510 }
511
512 /// Determine whether the specified names are different.
513 friend bool operator!=(DeclarationName LHS, DeclarationName RHS) {
514 return LHS.Ptr != RHS.Ptr;
515 }
516
517 static DeclarationName getEmptyMarker() {
518 DeclarationName Name;
519 Name.Ptr = uintptr_t(-1);
520 return Name;
521 }
522
523 static DeclarationName getTombstoneMarker() {
524 DeclarationName Name;
525 Name.Ptr = uintptr_t(-2);
526 return Name;
527 }
528
529 static int compare(DeclarationName LHS, DeclarationName RHS);
530
531 void print(raw_ostream &OS, const PrintingPolicy &Policy) const;
532
533 void dump() const;
534};
535
536raw_ostream &operator<<(raw_ostream &OS, DeclarationName N);
537
538/// Ordering on two declaration names. If both names are identifiers,
539/// this provides a lexicographical ordering.
540inline bool operator<(DeclarationName LHS, DeclarationName RHS) {
541 return DeclarationName::compare(LHS, RHS) < 0;
542}
543
544/// Ordering on two declaration names. If both names are identifiers,
545/// this provides a lexicographical ordering.
546inline bool operator>(DeclarationName LHS, DeclarationName RHS) {
547 return DeclarationName::compare(LHS, RHS) > 0;
548}
549
550/// Ordering on two declaration names. If both names are identifiers,
551/// this provides a lexicographical ordering.
552inline bool operator<=(DeclarationName LHS, DeclarationName RHS) {
553 return DeclarationName::compare(LHS, RHS) <= 0;
554}
555
556/// Ordering on two declaration names. If both names are identifiers,
557/// this provides a lexicographical ordering.
558inline bool operator>=(DeclarationName LHS, DeclarationName RHS) {
559 return DeclarationName::compare(LHS, RHS) >= 0;
560}
561
562/// DeclarationNameTable is used to store and retrieve DeclarationName
563/// instances for the various kinds of declaration names, e.g., normal
564/// identifiers, C++ constructor names, etc. This class contains
565/// uniqued versions of each of the C++ special names, which can be
566/// retrieved using its member functions (e.g., getCXXConstructorName).
567class DeclarationNameTable {
568 /// Used to allocate elements in the FoldingSets below.
569 const ASTContext &Ctx;
570
571 /// Manage the uniqued CXXSpecialNameExtra representing C++ constructors.
572 /// getCXXConstructorName and getCXXSpecialName can be used to obtain
573 /// a DeclarationName from the corresponding type of the constructor.
574 llvm::FoldingSet<detail::CXXSpecialNameExtra> CXXConstructorNames;
575
576 /// Manage the uniqued CXXSpecialNameExtra representing C++ destructors.
577 /// getCXXDestructorName and getCXXSpecialName can be used to obtain
578 /// a DeclarationName from the corresponding type of the destructor.
579 llvm::FoldingSet<detail::CXXSpecialNameExtra> CXXDestructorNames;
580
581 /// Manage the uniqued CXXSpecialNameExtra representing C++ conversion
582 /// functions. getCXXConversionFunctionName and getCXXSpecialName can be
583 /// used to obtain a DeclarationName from the corresponding type of the
584 /// conversion function.
585 llvm::FoldingSet<detail::CXXSpecialNameExtra> CXXConversionFunctionNames;
586
587 /// Manage the uniqued CXXOperatorIdName, which contain extra information
588 /// for the name of overloaded C++ operators. getCXXOperatorName
589 /// can be used to obtain a DeclarationName from the operator kind.
590 detail::CXXOperatorIdName CXXOperatorNames[NUM_OVERLOADED_OPERATORS];
591
592 /// Manage the uniqued CXXLiteralOperatorIdName, which contain extra
593 /// information for the name of C++ literal operators.
594 /// getCXXLiteralOperatorName can be used to obtain a DeclarationName
595 /// from the corresponding IdentifierInfo.
596 llvm::FoldingSet<detail::CXXLiteralOperatorIdName> CXXLiteralOperatorNames;
597
598 /// Manage the uniqued CXXDeductionGuideNameExtra, which contain
599 /// extra information for the name of a C++ deduction guide.
600 /// getCXXDeductionGuideName can be used to obtain a DeclarationName
601 /// from the corresponding template declaration.
602 llvm::FoldingSet<detail::CXXDeductionGuideNameExtra> CXXDeductionGuideNames;
603
604public:
605 DeclarationNameTable(const ASTContext &C);
606 DeclarationNameTable(const DeclarationNameTable &) = delete;
607 DeclarationNameTable &operator=(const DeclarationNameTable &) = delete;
608 DeclarationNameTable(DeclarationNameTable &&) = delete;
609 DeclarationNameTable &operator=(DeclarationNameTable &&) = delete;
610 ~DeclarationNameTable() = default;
611
612 /// Create a declaration name that is a simple identifier.
613 DeclarationName getIdentifier(const IdentifierInfo *ID) {
614 return DeclarationName(ID);
615 }
616
617 /// Returns the name of a C++ constructor for the given Type.
618 DeclarationName getCXXConstructorName(CanQualType Ty);
619
620 /// Returns the name of a C++ destructor for the given Type.
621 DeclarationName getCXXDestructorName(CanQualType Ty);
622
623 /// Returns the name of a C++ deduction guide for the given template.
624 DeclarationName getCXXDeductionGuideName(TemplateDecl *TD);
625
626 /// Returns the name of a C++ conversion function for the given Type.
627 DeclarationName getCXXConversionFunctionName(CanQualType Ty);
628
629 /// Returns a declaration name for special kind of C++ name,
630 /// e.g., for a constructor, destructor, or conversion function.
631 /// Kind must be one of:
632 /// * DeclarationName::CXXConstructorName,
633 /// * DeclarationName::CXXDestructorName or
634 /// * DeclarationName::CXXConversionFunctionName
635 DeclarationName getCXXSpecialName(DeclarationName::NameKind Kind,
636 CanQualType Ty);
637
638 /// Get the name of the overloadable C++ operator corresponding to Op.
639 DeclarationName getCXXOperatorName(OverloadedOperatorKind Op) {
640 return DeclarationName(&CXXOperatorNames[Op]);
641 }
642
643 /// Get the name of the literal operator function with II as the identifier.
644 DeclarationName getCXXLiteralOperatorName(IdentifierInfo *II);
645};
646
647/// DeclarationNameLoc - Additional source/type location info
648/// for a declaration name. Needs a DeclarationName in order
649/// to be interpreted correctly.
650struct DeclarationNameLoc {
651 // The source location for identifier stored elsewhere.
652 // struct {} Identifier;
653
654 // Type info for constructors, destructors and conversion functions.
655 // Locations (if any) for the tilde (destructor) or operator keyword
656 // (conversion) are stored elsewhere.
657 struct NT {
658 TypeSourceInfo *TInfo;
659 };
660
661 // The location (if any) of the operator keyword is stored elsewhere.
662 struct CXXOpName {
663 unsigned BeginOpNameLoc;
664 unsigned EndOpNameLoc;
665 };
666
667 // The location (if any) of the operator keyword is stored elsewhere.
668 struct CXXLitOpName {
669 unsigned OpNameLoc;
670 };
671
672 // struct {} CXXUsingDirective;
673 // struct {} ObjCZeroArgSelector;
674 // struct {} ObjCOneArgSelector;
675 // struct {} ObjCMultiArgSelector;
676 union {
677 struct NT NamedType;
678 struct CXXOpName CXXOperatorName;
679 struct CXXLitOpName CXXLiteralOperatorName;
680 };
681
682 DeclarationNameLoc(DeclarationName Name);
683
684 // FIXME: this should go away once all DNLocs are properly initialized.
685 DeclarationNameLoc() { memset((void*) this, 0, sizeof(*this)); }
686};
687
688/// DeclarationNameInfo - A collector data type for bundling together
689/// a DeclarationName and the correspnding source/type location info.
690struct DeclarationNameInfo {
691private:
692 /// Name - The declaration name, also encoding name kind.
693 DeclarationName Name;
694
695 /// Loc - The main source location for the declaration name.
696 SourceLocation NameLoc;
697
698 /// Info - Further source/type location info for special kinds of names.
699 DeclarationNameLoc LocInfo;
700
701public:
702 // FIXME: remove it.
703 DeclarationNameInfo() = default;
704
705 DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc)
706 : Name(Name), NameLoc(NameLoc), LocInfo(Name) {}
707
708 DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc,
709 DeclarationNameLoc LocInfo)
710 : Name(Name), NameLoc(NameLoc), LocInfo(LocInfo) {}
711
712 /// getName - Returns the embedded declaration name.
713 DeclarationName getName() const { return Name; }
714
715 /// setName - Sets the embedded declaration name.
716 void setName(DeclarationName N) { Name = N; }
717
718 /// getLoc - Returns the main location of the declaration name.
719 SourceLocation getLoc() const { return NameLoc; }
720
721 /// setLoc - Sets the main location of the declaration name.
722 void setLoc(SourceLocation L) { NameLoc = L; }
723
724 const DeclarationNameLoc &getInfo() const { return LocInfo; }
725 DeclarationNameLoc &getInfo() { return LocInfo; }
726 void setInfo(const DeclarationNameLoc &Info) { LocInfo = Info; }
727
728 /// getNamedTypeInfo - Returns the source type info associated to
729 /// the name. Assumes it is a constructor, destructor or conversion.
730 TypeSourceInfo *getNamedTypeInfo() const {
731 if (Name.getNameKind() != DeclarationName::CXXConstructorName &&
732 Name.getNameKind() != DeclarationName::CXXDestructorName &&
733 Name.getNameKind() != DeclarationName::CXXConversionFunctionName)
734 return nullptr;
735 return LocInfo.NamedType.TInfo;
736 }
737
738 /// setNamedTypeInfo - Sets the source type info associated to
739 /// the name. Assumes it is a constructor, destructor or conversion.
740 void setNamedTypeInfo(TypeSourceInfo *TInfo) {
741 assert(Name.getNameKind() == DeclarationName::CXXConstructorName ||((Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXDestructorName || Name
.getNameKind() == DeclarationName::CXXConversionFunctionName)
? static_cast<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 743, __PRETTY_FUNCTION__))
742 Name.getNameKind() == DeclarationName::CXXDestructorName ||((Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXDestructorName || Name
.getNameKind() == DeclarationName::CXXConversionFunctionName)
? static_cast<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 743, __PRETTY_FUNCTION__))
743 Name.getNameKind() == DeclarationName::CXXConversionFunctionName)((Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXDestructorName || Name
.getNameKind() == DeclarationName::CXXConversionFunctionName)
? static_cast<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 743, __PRETTY_FUNCTION__))
;
744 LocInfo.NamedType.TInfo = TInfo;
745 }
746
747 /// getCXXOperatorNameRange - Gets the range of the operator name
748 /// (without the operator keyword). Assumes it is a (non-literal) operator.
749 SourceRange getCXXOperatorNameRange() const {
750 if (Name.getNameKind() != DeclarationName::CXXOperatorName)
751 return SourceRange();
752 return SourceRange(
753 SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.BeginOpNameLoc),
754 SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.EndOpNameLoc)
755 );
756 }
757
758 /// setCXXOperatorNameRange - Sets the range of the operator name
759 /// (without the operator keyword). Assumes it is a C++ operator.
760 void setCXXOperatorNameRange(SourceRange R) {
761 assert(Name.getNameKind() == DeclarationName::CXXOperatorName)((Name.getNameKind() == DeclarationName::CXXOperatorName) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 761, __PRETTY_FUNCTION__))
;
762 LocInfo.CXXOperatorName.BeginOpNameLoc = R.getBegin().getRawEncoding();
763 LocInfo.CXXOperatorName.EndOpNameLoc = R.getEnd().getRawEncoding();
764 }
765
766 /// getCXXLiteralOperatorNameLoc - Returns the location of the literal
767 /// operator name (not the operator keyword).
768 /// Assumes it is a literal operator.
769 SourceLocation getCXXLiteralOperatorNameLoc() const {
770 if (Name.getNameKind() != DeclarationName::CXXLiteralOperatorName)
771 return SourceLocation();
772 return SourceLocation::
773 getFromRawEncoding(LocInfo.CXXLiteralOperatorName.OpNameLoc);
774 }
775
776 /// setCXXLiteralOperatorNameLoc - Sets the location of the literal
777 /// operator name (not the operator keyword).
778 /// Assumes it is a literal operator.
779 void setCXXLiteralOperatorNameLoc(SourceLocation Loc) {
780 assert(Name.getNameKind() == DeclarationName::CXXLiteralOperatorName)((Name.getNameKind() == DeclarationName::CXXLiteralOperatorName
) ? static_cast<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXLiteralOperatorName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/DeclarationName.h"
, 780, __PRETTY_FUNCTION__))
;
781 LocInfo.CXXLiteralOperatorName.OpNameLoc = Loc.getRawEncoding();
782 }
783
784 /// Determine whether this name involves a template parameter.
785 bool isInstantiationDependent() const;
786
787 /// Determine whether this name contains an unexpanded
788 /// parameter pack.
789 bool containsUnexpandedParameterPack() const;
790
791 /// getAsString - Retrieve the human-readable string for this name.
792 std::string getAsString() const;
793
794 /// printName - Print the human-readable name to a stream.
795 void printName(raw_ostream &OS, PrintingPolicy Policy) const;
796
797 /// getBeginLoc - Retrieve the location of the first token.
798 SourceLocation getBeginLoc() const { return NameLoc; }
799
800 /// getSourceRange - The range of the declaration name.
801 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
802 return SourceRange(getBeginLoc(), getEndLoc());
803 }
804
805 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
806 SourceLocation EndLoc = getEndLocPrivate();
807 return EndLoc.isValid() ? EndLoc : getBeginLoc();
808 }
809
810private:
811 SourceLocation getEndLocPrivate() const;
812};
813
814/// Insertion operator for diagnostics. This allows sending DeclarationName's
815/// into a diagnostic with <<.
816inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
817 DeclarationName N) {
818 DB.AddTaggedVal(N.getAsOpaqueInteger(),
819 DiagnosticsEngine::ak_declarationname);
820 return DB;
821}
822
823/// Insertion operator for partial diagnostics. This allows binding
824/// DeclarationName's into a partial diagnostic with <<.
825inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
826 DeclarationName N) {
827 PD.AddTaggedVal(N.getAsOpaqueInteger(),
828 DiagnosticsEngine::ak_declarationname);
829 return PD;
830}
831
832raw_ostream &operator<<(raw_ostream &OS, DeclarationNameInfo DNInfo);
833
834} // namespace clang
835
836namespace llvm {
837
838/// Define DenseMapInfo so that DeclarationNames can be used as keys
839/// in DenseMap and DenseSets.
840template<>
841struct DenseMapInfo<clang::DeclarationName> {
842 static inline clang::DeclarationName getEmptyKey() {
843 return clang::DeclarationName::getEmptyMarker();
844 }
845
846 static inline clang::DeclarationName getTombstoneKey() {
847 return clang::DeclarationName::getTombstoneMarker();
848 }
849
850 static unsigned getHashValue(clang::DeclarationName Name) {
851 return DenseMapInfo<void*>::getHashValue(Name.getAsOpaquePtr());
852 }
853
854 static inline bool
855 isEqual(clang::DeclarationName LHS, clang::DeclarationName RHS) {
856 return LHS == RHS;
857 }
858};
859
860} // namespace llvm
861
862// The definition of AssumedTemplateStorage is factored out of TemplateName to
863// resolve a cyclic dependency between it and DeclarationName (via Type).
864namespace clang {
865
866/// A structure for storing the information associated with a name that has
867/// been assumed to be a template name (despite finding no TemplateDecls).
868class AssumedTemplateStorage : public UncommonTemplateNameStorage {
869 friend class ASTContext;
870
871 AssumedTemplateStorage(DeclarationName Name)
872 : UncommonTemplateNameStorage(Assumed, 0), Name(Name) {}
873 DeclarationName Name;
874
875public:
876 /// Get the name of the template.
877 DeclarationName getDeclName() const { return Name; }
878};
879
880} // namespace clang
881
882#endif // LLVM_CLANG_AST_DECLARATIONNAME_H