Bug Summary

File:build/source/clang/lib/Sema/SemaInit.cpp
Warning:line 2918, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1680807975 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-04-06-205148-16299-1 -x c++ /build/source/clang/lib/Sema/SemaInit.cpp
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/CharInfo.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Sema/Designator.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/SemaInternal.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// Sema Initialization Checking
36//===----------------------------------------------------------------------===//
37
38/// Check whether T is compatible with a wide character type (wchar_t,
39/// char16_t or char32_t).
40static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41 if (Context.typesAreCompatible(Context.getWideCharType(), T))
42 return true;
43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44 return Context.typesAreCompatible(Context.Char16Ty, T) ||
45 Context.typesAreCompatible(Context.Char32Ty, T);
46 }
47 return false;
48}
49
50enum StringInitFailureKind {
51 SIF_None,
52 SIF_NarrowStringIntoWideChar,
53 SIF_WideStringIntoChar,
54 SIF_IncompatWideStringIntoWideChar,
55 SIF_UTF8StringIntoPlainChar,
56 SIF_PlainStringIntoUTF8Char,
57 SIF_Other
58};
59
60/// Check whether the array of type AT can be initialized by the Init
61/// expression by means of string initialization. Returns SIF_None if so,
62/// otherwise returns a StringInitFailureKind that describes why the
63/// initialization would not work.
64static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65 ASTContext &Context) {
66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67 return SIF_Other;
68
69 // See if this is a string literal or @encode.
70 Init = Init->IgnoreParens();
71
72 // Handle @encode, which is a narrow string.
73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74 return SIF_None;
75
76 // Otherwise we can only handle string literals.
77 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78 if (!SL)
79 return SIF_Other;
80
81 const QualType ElemTy =
82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83
84 auto IsCharOrUnsignedChar = [](const QualType &T) {
85 const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr());
86 return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar;
87 };
88
89 switch (SL->getKind()) {
90 case StringLiteral::UTF8:
91 // char8_t array can be initialized with a UTF-8 string.
92 // - C++20 [dcl.init.string] (DR)
93 // Additionally, an array of char or unsigned char may be initialized
94 // by a UTF-8 string literal.
95 if (ElemTy->isChar8Type() ||
96 (Context.getLangOpts().Char8 &&
97 IsCharOrUnsignedChar(ElemTy.getCanonicalType())))
98 return SIF_None;
99 [[fallthrough]];
100 case StringLiteral::Ordinary:
101 // char array can be initialized with a narrow string.
102 // Only allow char x[] = "foo"; not char x[] = L"foo";
103 if (ElemTy->isCharType())
104 return (SL->getKind() == StringLiteral::UTF8 &&
105 Context.getLangOpts().Char8)
106 ? SIF_UTF8StringIntoPlainChar
107 : SIF_None;
108 if (ElemTy->isChar8Type())
109 return SIF_PlainStringIntoUTF8Char;
110 if (IsWideCharCompatible(ElemTy, Context))
111 return SIF_NarrowStringIntoWideChar;
112 return SIF_Other;
113 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
114 // "An array with element type compatible with a qualified or unqualified
115 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
116 // string literal with the corresponding encoding prefix (L, u, or U,
117 // respectively), optionally enclosed in braces.
118 case StringLiteral::UTF16:
119 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
120 return SIF_None;
121 if (ElemTy->isCharType() || ElemTy->isChar8Type())
122 return SIF_WideStringIntoChar;
123 if (IsWideCharCompatible(ElemTy, Context))
124 return SIF_IncompatWideStringIntoWideChar;
125 return SIF_Other;
126 case StringLiteral::UTF32:
127 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
128 return SIF_None;
129 if (ElemTy->isCharType() || ElemTy->isChar8Type())
130 return SIF_WideStringIntoChar;
131 if (IsWideCharCompatible(ElemTy, Context))
132 return SIF_IncompatWideStringIntoWideChar;
133 return SIF_Other;
134 case StringLiteral::Wide:
135 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
136 return SIF_None;
137 if (ElemTy->isCharType() || ElemTy->isChar8Type())
138 return SIF_WideStringIntoChar;
139 if (IsWideCharCompatible(ElemTy, Context))
140 return SIF_IncompatWideStringIntoWideChar;
141 return SIF_Other;
142 }
143
144 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "clang/lib/Sema/SemaInit.cpp", 144)
;
145}
146
147static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
148 ASTContext &Context) {
149 const ArrayType *arrayType = Context.getAsArrayType(declType);
150 if (!arrayType)
151 return SIF_Other;
152 return IsStringInit(init, arrayType, Context);
153}
154
155bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
156 return ::IsStringInit(Init, AT, Context) == SIF_None;
157}
158
159/// Update the type of a string literal, including any surrounding parentheses,
160/// to match the type of the object which it is initializing.
161static void updateStringLiteralType(Expr *E, QualType Ty) {
162 while (true) {
163 E->setType(Ty);
164 E->setValueKind(VK_PRValue);
165 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
166 break;
167 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
168 E = PE->getSubExpr();
169 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
170 assert(UO->getOpcode() == UO_Extension)(static_cast <bool> (UO->getOpcode() == UO_Extension
) ? void (0) : __assert_fail ("UO->getOpcode() == UO_Extension"
, "clang/lib/Sema/SemaInit.cpp", 170, __extension__ __PRETTY_FUNCTION__
))
;
171 E = UO->getSubExpr();
172 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
173 E = GSE->getResultExpr();
174 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
175 E = CE->getChosenSubExpr();
176 } else {
177 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "clang/lib/Sema/SemaInit.cpp", 177)
;
178 }
179 }
180}
181
182/// Fix a compound literal initializing an array so it's correctly marked
183/// as an rvalue.
184static void updateGNUCompoundLiteralRValue(Expr *E) {
185 while (true) {
186 E->setValueKind(VK_PRValue);
187 if (isa<CompoundLiteralExpr>(E)) {
188 break;
189 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
190 E = PE->getSubExpr();
191 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
192 assert(UO->getOpcode() == UO_Extension)(static_cast <bool> (UO->getOpcode() == UO_Extension
) ? void (0) : __assert_fail ("UO->getOpcode() == UO_Extension"
, "clang/lib/Sema/SemaInit.cpp", 192, __extension__ __PRETTY_FUNCTION__
))
;
193 E = UO->getSubExpr();
194 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
195 E = GSE->getResultExpr();
196 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
197 E = CE->getChosenSubExpr();
198 } else {
199 llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init"
, "clang/lib/Sema/SemaInit.cpp", 199)
;
200 }
201 }
202}
203
204static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
205 Sema &S) {
206 // Get the length of the string as parsed.
207 auto *ConstantArrayTy =
208 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
209 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
210
211 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
212 // C99 6.7.8p14. We have an array of character type with unknown size
213 // being initialized to a string literal.
214 llvm::APInt ConstVal(32, StrLength);
215 // Return a new array type (C99 6.7.8p22).
216 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
217 ConstVal, nullptr,
218 ArrayType::Normal, 0);
219 updateStringLiteralType(Str, DeclT);
220 return;
221 }
222
223 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
224
225 // We have an array of character type with known size. However,
226 // the size may be smaller or larger than the string we are initializing.
227 // FIXME: Avoid truncation for 64-bit length strings.
228 if (S.getLangOpts().CPlusPlus) {
229 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
230 // For Pascal strings it's OK to strip off the terminating null character,
231 // so the example below is valid:
232 //
233 // unsigned char a[2] = "\pa";
234 if (SL->isPascal())
235 StrLength--;
236 }
237
238 // [dcl.init.string]p2
239 if (StrLength > CAT->getSize().getZExtValue())
240 S.Diag(Str->getBeginLoc(),
241 diag::err_initializer_string_for_char_array_too_long)
242 << CAT->getSize().getZExtValue() << StrLength
243 << Str->getSourceRange();
244 } else {
245 // C99 6.7.8p14.
246 if (StrLength-1 > CAT->getSize().getZExtValue())
247 S.Diag(Str->getBeginLoc(),
248 diag::ext_initializer_string_for_char_array_too_long)
249 << Str->getSourceRange();
250 }
251
252 // Set the type to the actual size that we are initializing. If we have
253 // something like:
254 // char x[1] = "foo";
255 // then this will set the string literal's type to char[1].
256 updateStringLiteralType(Str, DeclT);
257}
258
259//===----------------------------------------------------------------------===//
260// Semantic checking for initializer lists.
261//===----------------------------------------------------------------------===//
262
263namespace {
264
265/// Semantic checking for initializer lists.
266///
267/// The InitListChecker class contains a set of routines that each
268/// handle the initialization of a certain kind of entity, e.g.,
269/// arrays, vectors, struct/union types, scalars, etc. The
270/// InitListChecker itself performs a recursive walk of the subobject
271/// structure of the type to be initialized, while stepping through
272/// the initializer list one element at a time. The IList and Index
273/// parameters to each of the Check* routines contain the active
274/// (syntactic) initializer list and the index into that initializer
275/// list that represents the current initializer. Each routine is
276/// responsible for moving that Index forward as it consumes elements.
277///
278/// Each Check* routine also has a StructuredList/StructuredIndex
279/// arguments, which contains the current "structured" (semantic)
280/// initializer list and the index into that initializer list where we
281/// are copying initializers as we map them over to the semantic
282/// list. Once we have completed our recursive walk of the subobject
283/// structure, we will have constructed a full semantic initializer
284/// list.
285///
286/// C99 designators cause changes in the initializer list traversal,
287/// because they make the initialization "jump" into a specific
288/// subobject and then continue the initialization from that
289/// point. CheckDesignatedInitializer() recursively steps into the
290/// designated subobject and manages backing out the recursion to
291/// initialize the subobjects after the one designated.
292///
293/// If an initializer list contains any designators, we build a placeholder
294/// structured list even in 'verify only' mode, so that we can track which
295/// elements need 'empty' initializtion.
296class InitListChecker {
297 Sema &SemaRef;
298 bool hadError = false;
299 bool VerifyOnly; // No diagnostics.
300 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
301 bool InOverloadResolution;
302 InitListExpr *FullyStructuredList = nullptr;
303 NoInitExpr *DummyExpr = nullptr;
304
305 NoInitExpr *getDummyInit() {
306 if (!DummyExpr)
307 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
308 return DummyExpr;
309 }
310
311 void CheckImplicitInitList(const InitializedEntity &Entity,
312 InitListExpr *ParentIList, QualType T,
313 unsigned &Index, InitListExpr *StructuredList,
314 unsigned &StructuredIndex);
315 void CheckExplicitInitList(const InitializedEntity &Entity,
316 InitListExpr *IList, QualType &T,
317 InitListExpr *StructuredList,
318 bool TopLevelObject = false);
319 void CheckListElementTypes(const InitializedEntity &Entity,
320 InitListExpr *IList, QualType &DeclType,
321 bool SubobjectIsDesignatorContext,
322 unsigned &Index,
323 InitListExpr *StructuredList,
324 unsigned &StructuredIndex,
325 bool TopLevelObject = false);
326 void CheckSubElementType(const InitializedEntity &Entity,
327 InitListExpr *IList, QualType ElemType,
328 unsigned &Index,
329 InitListExpr *StructuredList,
330 unsigned &StructuredIndex,
331 bool DirectlyDesignated = false);
332 void CheckComplexType(const InitializedEntity &Entity,
333 InitListExpr *IList, QualType DeclType,
334 unsigned &Index,
335 InitListExpr *StructuredList,
336 unsigned &StructuredIndex);
337 void CheckScalarType(const InitializedEntity &Entity,
338 InitListExpr *IList, QualType DeclType,
339 unsigned &Index,
340 InitListExpr *StructuredList,
341 unsigned &StructuredIndex);
342 void CheckReferenceType(const InitializedEntity &Entity,
343 InitListExpr *IList, QualType DeclType,
344 unsigned &Index,
345 InitListExpr *StructuredList,
346 unsigned &StructuredIndex);
347 void CheckVectorType(const InitializedEntity &Entity,
348 InitListExpr *IList, QualType DeclType, unsigned &Index,
349 InitListExpr *StructuredList,
350 unsigned &StructuredIndex);
351 void CheckStructUnionTypes(const InitializedEntity &Entity,
352 InitListExpr *IList, QualType DeclType,
353 CXXRecordDecl::base_class_range Bases,
354 RecordDecl::field_iterator Field,
355 bool SubobjectIsDesignatorContext, unsigned &Index,
356 InitListExpr *StructuredList,
357 unsigned &StructuredIndex,
358 bool TopLevelObject = false);
359 void CheckArrayType(const InitializedEntity &Entity,
360 InitListExpr *IList, QualType &DeclType,
361 llvm::APSInt elementIndex,
362 bool SubobjectIsDesignatorContext, unsigned &Index,
363 InitListExpr *StructuredList,
364 unsigned &StructuredIndex);
365 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
366 InitListExpr *IList, DesignatedInitExpr *DIE,
367 unsigned DesigIdx,
368 QualType &CurrentObjectType,
369 RecordDecl::field_iterator *NextField,
370 llvm::APSInt *NextElementIndex,
371 unsigned &Index,
372 InitListExpr *StructuredList,
373 unsigned &StructuredIndex,
374 bool FinishSubobjectInit,
375 bool TopLevelObject);
376 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
377 QualType CurrentObjectType,
378 InitListExpr *StructuredList,
379 unsigned StructuredIndex,
380 SourceRange InitRange,
381 bool IsFullyOverwritten = false);
382 void UpdateStructuredListElement(InitListExpr *StructuredList,
383 unsigned &StructuredIndex,
384 Expr *expr);
385 InitListExpr *createInitListExpr(QualType CurrentObjectType,
386 SourceRange InitRange,
387 unsigned ExpectedNumInits);
388 int numArrayElements(QualType DeclType);
389 int numStructUnionElements(QualType DeclType);
390
391 ExprResult PerformEmptyInit(SourceLocation Loc,
392 const InitializedEntity &Entity);
393
394 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
395 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
396 bool FullyOverwritten = true) {
397 // Overriding an initializer via a designator is valid with C99 designated
398 // initializers, but ill-formed with C++20 designated initializers.
399 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
400 ? diag::ext_initializer_overrides
401 : diag::warn_initializer_overrides;
402
403 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
404 // In overload resolution, we have to strictly enforce the rules, and so
405 // don't allow any overriding of prior initializers. This matters for a
406 // case such as:
407 //
408 // union U { int a, b; };
409 // struct S { int a, b; };
410 // void f(U), f(S);
411 //
412 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
413 // consistency, we disallow all overriding of prior initializers in
414 // overload resolution, not only overriding of union members.
415 hadError = true;
416 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
417 // If we'll be keeping around the old initializer but overwriting part of
418 // the object it initialized, and that object is not trivially
419 // destructible, this can leak. Don't allow that, not even as an
420 // extension.
421 //
422 // FIXME: It might be reasonable to allow this in cases where the part of
423 // the initializer that we're overriding has trivial destruction.
424 DiagID = diag::err_initializer_overrides_destructed;
425 } else if (!OldInit->getSourceRange().isValid()) {
426 // We need to check on source range validity because the previous
427 // initializer does not have to be an explicit initializer. e.g.,
428 //
429 // struct P { int a, b; };
430 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
431 //
432 // There is an overwrite taking place because the first braced initializer
433 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
434 //
435 // Such overwrites are harmless, so we don't diagnose them. (Note that in
436 // C++, this cannot be reached unless we've already seen and diagnosed a
437 // different conformance issue, such as a mixture of designated and
438 // non-designated initializers or a multi-level designator.)
439 return;
440 }
441
442 if (!VerifyOnly) {
443 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
444 << NewInitRange << FullyOverwritten << OldInit->getType();
445 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
446 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
447 << OldInit->getSourceRange();
448 }
449 }
450
451 // Explanation on the "FillWithNoInit" mode:
452 //
453 // Assume we have the following definitions (Case#1):
454 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
455 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
456 //
457 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
458 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
459 //
460 // But if we have (Case#2):
461 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
462 //
463 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
464 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
465 //
466 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
467 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
468 // initializers but with special "NoInitExpr" place holders, which tells the
469 // CodeGen not to generate any initializers for these parts.
470 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
471 const InitializedEntity &ParentEntity,
472 InitListExpr *ILE, bool &RequiresSecondPass,
473 bool FillWithNoInit);
474 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
475 const InitializedEntity &ParentEntity,
476 InitListExpr *ILE, bool &RequiresSecondPass,
477 bool FillWithNoInit = false);
478 void FillInEmptyInitializations(const InitializedEntity &Entity,
479 InitListExpr *ILE, bool &RequiresSecondPass,
480 InitListExpr *OuterILE, unsigned OuterIndex,
481 bool FillWithNoInit = false);
482 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
483 Expr *InitExpr, FieldDecl *Field,
484 bool TopLevelObject);
485 void CheckEmptyInitializable(const InitializedEntity &Entity,
486 SourceLocation Loc);
487
488public:
489 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
490 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
491 bool InOverloadResolution = false);
492 bool HadError() { return hadError; }
493
494 // Retrieves the fully-structured initializer list used for
495 // semantic analysis and code generation.
496 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
497};
498
499} // end anonymous namespace
500
501ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
502 const InitializedEntity &Entity) {
503 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
504 true);
505 MultiExprArg SubInit;
506 Expr *InitExpr;
507 InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc);
508
509 // C++ [dcl.init.aggr]p7:
510 // If there are fewer initializer-clauses in the list than there are
511 // members in the aggregate, then each member not explicitly initialized
512 // ...
513 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
514 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
515 if (EmptyInitList) {
516 // C++1y / DR1070:
517 // shall be initialized [...] from an empty initializer list.
518 //
519 // We apply the resolution of this DR to C++11 but not C++98, since C++98
520 // does not have useful semantics for initialization from an init list.
521 // We treat this as copy-initialization, because aggregate initialization
522 // always performs copy-initialization on its elements.
523 //
524 // Only do this if we're initializing a class type, to avoid filling in
525 // the initializer list where possible.
526 InitExpr = VerifyOnly
527 ? &DummyInitList
528 : new (SemaRef.Context)
529 InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc);
530 InitExpr->setType(SemaRef.Context.VoidTy);
531 SubInit = InitExpr;
532 Kind = InitializationKind::CreateCopy(Loc, Loc);
533 } else {
534 // C++03:
535 // shall be value-initialized.
536 }
537
538 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
539 // libstdc++4.6 marks the vector default constructor as explicit in
540 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
541 // stlport does so too. Look for std::__debug for libstdc++, and for
542 // std:: for stlport. This is effectively a compiler-side implementation of
543 // LWG2193.
544 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
545 InitializationSequence::FK_ExplicitConstructor) {
546 OverloadCandidateSet::iterator Best;
547 OverloadingResult O =
548 InitSeq.getFailedCandidateSet()
549 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
550 (void)O;
551 assert(O == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (O == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "clang/lib/Sema/SemaInit.cpp", 551, __extension__ __PRETTY_FUNCTION__
))
;
552 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
553 CXXRecordDecl *R = CtorDecl->getParent();
554
555 if (CtorDecl->getMinRequiredArguments() == 0 &&
556 CtorDecl->isExplicit() && R->getDeclName() &&
557 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
558 bool IsInStd = false;
559 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
560 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
561 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
562 IsInStd = true;
563 }
564
565 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
566 .Cases("basic_string", "deque", "forward_list", true)
567 .Cases("list", "map", "multimap", "multiset", true)
568 .Cases("priority_queue", "queue", "set", "stack", true)
569 .Cases("unordered_map", "unordered_set", "vector", true)
570 .Default(false)) {
571 InitSeq.InitializeFrom(
572 SemaRef, Entity,
573 InitializationKind::CreateValue(Loc, Loc, Loc, true),
574 MultiExprArg(), /*TopLevelOfInitList=*/false,
575 TreatUnavailableAsInvalid);
576 // Emit a warning for this. System header warnings aren't shown
577 // by default, but people working on system headers should see it.
578 if (!VerifyOnly) {
579 SemaRef.Diag(CtorDecl->getLocation(),
580 diag::warn_invalid_initializer_from_system_header);
581 if (Entity.getKind() == InitializedEntity::EK_Member)
582 SemaRef.Diag(Entity.getDecl()->getLocation(),
583 diag::note_used_in_initialization_here);
584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
585 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
586 }
587 }
588 }
589 }
590 if (!InitSeq) {
591 if (!VerifyOnly) {
592 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
593 if (Entity.getKind() == InitializedEntity::EK_Member)
594 SemaRef.Diag(Entity.getDecl()->getLocation(),
595 diag::note_in_omitted_aggregate_initializer)
596 << /*field*/1 << Entity.getDecl();
597 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
598 bool IsTrailingArrayNewMember =
599 Entity.getParent() &&
600 Entity.getParent()->isVariableLengthArrayNew();
601 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
602 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
603 << Entity.getElementIndex();
604 }
605 }
606 hadError = true;
607 return ExprError();
608 }
609
610 return VerifyOnly ? ExprResult()
611 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
612}
613
614void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
615 SourceLocation Loc) {
616 // If we're building a fully-structured list, we'll check this at the end
617 // once we know which elements are actually initialized. Otherwise, we know
618 // that there are no designators so we can just check now.
619 if (FullyStructuredList)
620 return;
621 PerformEmptyInit(Loc, Entity);
622}
623
624void InitListChecker::FillInEmptyInitForBase(
625 unsigned Init, const CXXBaseSpecifier &Base,
626 const InitializedEntity &ParentEntity, InitListExpr *ILE,
627 bool &RequiresSecondPass, bool FillWithNoInit) {
628 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
629 SemaRef.Context, &Base, false, &ParentEntity);
630
631 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
632 ExprResult BaseInit = FillWithNoInit
633 ? new (SemaRef.Context) NoInitExpr(Base.getType())
634 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
635 if (BaseInit.isInvalid()) {
636 hadError = true;
637 return;
638 }
639
640 if (!VerifyOnly) {
641 assert(Init < ILE->getNumInits() && "should have been expanded")(static_cast <bool> (Init < ILE->getNumInits() &&
"should have been expanded") ? void (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "clang/lib/Sema/SemaInit.cpp", 641, __extension__ __PRETTY_FUNCTION__
))
;
642 ILE->setInit(Init, BaseInit.getAs<Expr>());
643 }
644 } else if (InitListExpr *InnerILE =
645 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
646 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
647 ILE, Init, FillWithNoInit);
648 } else if (DesignatedInitUpdateExpr *InnerDIUE =
649 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
650 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
651 RequiresSecondPass, ILE, Init,
652 /*FillWithNoInit =*/true);
653 }
654}
655
656void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
657 const InitializedEntity &ParentEntity,
658 InitListExpr *ILE,
659 bool &RequiresSecondPass,
660 bool FillWithNoInit) {
661 SourceLocation Loc = ILE->getEndLoc();
662 unsigned NumInits = ILE->getNumInits();
663 InitializedEntity MemberEntity
664 = InitializedEntity::InitializeMember(Field, &ParentEntity);
665
666 if (Init >= NumInits || !ILE->getInit(Init)) {
667 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
668 if (!RType->getDecl()->isUnion())
669 assert((Init < NumInits || VerifyOnly) &&(static_cast <bool> ((Init < NumInits || VerifyOnly)
&& "This ILE should have been expanded") ? void (0) :
__assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "clang/lib/Sema/SemaInit.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
670 "This ILE should have been expanded")(static_cast <bool> ((Init < NumInits || VerifyOnly)
&& "This ILE should have been expanded") ? void (0) :
__assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "clang/lib/Sema/SemaInit.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
;
671
672 if (FillWithNoInit) {
673 assert(!VerifyOnly && "should not fill with no-init in verify-only mode")(static_cast <bool> (!VerifyOnly && "should not fill with no-init in verify-only mode"
) ? void (0) : __assert_fail ("!VerifyOnly && \"should not fill with no-init in verify-only mode\""
, "clang/lib/Sema/SemaInit.cpp", 673, __extension__ __PRETTY_FUNCTION__
))
;
674 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
675 if (Init < NumInits)
676 ILE->setInit(Init, Filler);
677 else
678 ILE->updateInit(SemaRef.Context, Init, Filler);
679 return;
680 }
681 // C++1y [dcl.init.aggr]p7:
682 // If there are fewer initializer-clauses in the list than there are
683 // members in the aggregate, then each member not explicitly initialized
684 // shall be initialized from its brace-or-equal-initializer [...]
685 if (Field->hasInClassInitializer()) {
686 if (VerifyOnly)
687 return;
688
689 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
690 if (DIE.isInvalid()) {
691 hadError = true;
692 return;
693 }
694 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
695 if (Init < NumInits)
696 ILE->setInit(Init, DIE.get());
697 else {
698 ILE->updateInit(SemaRef.Context, Init, DIE.get());
699 RequiresSecondPass = true;
700 }
701 return;
702 }
703
704 if (Field->getType()->isReferenceType()) {
705 if (!VerifyOnly) {
706 // C++ [dcl.init.aggr]p9:
707 // If an incomplete or empty initializer-list leaves a
708 // member of reference type uninitialized, the program is
709 // ill-formed.
710 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
711 << Field->getType()
712 << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm())
713 ->getSourceRange();
714 SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member);
715 }
716 hadError = true;
717 return;
718 }
719
720 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
721 if (MemberInit.isInvalid()) {
722 hadError = true;
723 return;
724 }
725
726 if (hadError || VerifyOnly) {
727 // Do nothing
728 } else if (Init < NumInits) {
729 ILE->setInit(Init, MemberInit.getAs<Expr>());
730 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
731 // Empty initialization requires a constructor call, so
732 // extend the initializer list to include the constructor
733 // call and make a note that we'll need to take another pass
734 // through the initializer list.
735 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
736 RequiresSecondPass = true;
737 }
738 } else if (InitListExpr *InnerILE
739 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
740 FillInEmptyInitializations(MemberEntity, InnerILE,
741 RequiresSecondPass, ILE, Init, FillWithNoInit);
742 } else if (DesignatedInitUpdateExpr *InnerDIUE =
743 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
744 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
745 RequiresSecondPass, ILE, Init,
746 /*FillWithNoInit =*/true);
747 }
748}
749
750/// Recursively replaces NULL values within the given initializer list
751/// with expressions that perform value-initialization of the
752/// appropriate type, and finish off the InitListExpr formation.
753void
754InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
755 InitListExpr *ILE,
756 bool &RequiresSecondPass,
757 InitListExpr *OuterILE,
758 unsigned OuterIndex,
759 bool FillWithNoInit) {
760 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "clang/lib/Sema/SemaInit.cpp", 761, __extension__ __PRETTY_FUNCTION__
))
761 "Should not have void type")(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "clang/lib/Sema/SemaInit.cpp", 761, __extension__ __PRETTY_FUNCTION__
))
;
762
763 // We don't need to do any checks when just filling NoInitExprs; that can't
764 // fail.
765 if (FillWithNoInit && VerifyOnly)
766 return;
767
768 // If this is a nested initializer list, we might have changed its contents
769 // (and therefore some of its properties, such as instantiation-dependence)
770 // while filling it in. Inform the outer initializer list so that its state
771 // can be updated to match.
772 // FIXME: We should fully build the inner initializers before constructing
773 // the outer InitListExpr instead of mutating AST nodes after they have
774 // been used as subexpressions of other nodes.
775 struct UpdateOuterILEWithUpdatedInit {
776 InitListExpr *Outer;
777 unsigned OuterIndex;
778 ~UpdateOuterILEWithUpdatedInit() {
779 if (Outer)
780 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
781 }
782 } UpdateOuterRAII = {OuterILE, OuterIndex};
783
784 // A transparent ILE is not performing aggregate initialization and should
785 // not be filled in.
786 if (ILE->isTransparent())
787 return;
788
789 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
790 const RecordDecl *RDecl = RType->getDecl();
791 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
792 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
793 Entity, ILE, RequiresSecondPass, FillWithNoInit);
794 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
795 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
796 for (auto *Field : RDecl->fields()) {
797 if (Field->hasInClassInitializer()) {
798 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
799 FillWithNoInit);
800 break;
801 }
802 }
803 } else {
804 // The fields beyond ILE->getNumInits() are default initialized, so in
805 // order to leave them uninitialized, the ILE is expanded and the extra
806 // fields are then filled with NoInitExpr.
807 unsigned NumElems = numStructUnionElements(ILE->getType());
808 if (RDecl->hasFlexibleArrayMember())
809 ++NumElems;
810 if (!VerifyOnly && ILE->getNumInits() < NumElems)
811 ILE->resizeInits(SemaRef.Context, NumElems);
812
813 unsigned Init = 0;
814
815 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
816 for (auto &Base : CXXRD->bases()) {
817 if (hadError)
818 return;
819
820 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
821 FillWithNoInit);
822 ++Init;
823 }
824 }
825
826 for (auto *Field : RDecl->fields()) {
827 if (Field->isUnnamedBitfield())
828 continue;
829
830 if (hadError)
831 return;
832
833 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
834 FillWithNoInit);
835 if (hadError)
836 return;
837
838 ++Init;
839
840 // Only look at the first initialization of a union.
841 if (RDecl->isUnion())
842 break;
843 }
844 }
845
846 return;
847 }
848
849 QualType ElementType;
850
851 InitializedEntity ElementEntity = Entity;
852 unsigned NumInits = ILE->getNumInits();
853 unsigned NumElements = NumInits;
854 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
855 ElementType = AType->getElementType();
856 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
857 NumElements = CAType->getSize().getZExtValue();
858 // For an array new with an unknown bound, ask for one additional element
859 // in order to populate the array filler.
860 if (Entity.isVariableLengthArrayNew())
861 ++NumElements;
862 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
863 0, Entity);
864 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
865 ElementType = VType->getElementType();
866 NumElements = VType->getNumElements();
867 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
868 0, Entity);
869 } else
870 ElementType = ILE->getType();
871
872 bool SkipEmptyInitChecks = false;
873 for (unsigned Init = 0; Init != NumElements; ++Init) {
874 if (hadError)
875 return;
876
877 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
878 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
879 ElementEntity.setElementIndex(Init);
880
881 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
882 return;
883
884 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
885 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
886 ILE->setInit(Init, ILE->getArrayFiller());
887 else if (!InitExpr && !ILE->hasArrayFiller()) {
888 // In VerifyOnly mode, there's no point performing empty initialization
889 // more than once.
890 if (SkipEmptyInitChecks)
891 continue;
892
893 Expr *Filler = nullptr;
894
895 if (FillWithNoInit)
896 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
897 else {
898 ExprResult ElementInit =
899 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
900 if (ElementInit.isInvalid()) {
901 hadError = true;
902 return;
903 }
904
905 Filler = ElementInit.getAs<Expr>();
906 }
907
908 if (hadError) {
909 // Do nothing
910 } else if (VerifyOnly) {
911 SkipEmptyInitChecks = true;
912 } else if (Init < NumInits) {
913 // For arrays, just set the expression used for value-initialization
914 // of the "holes" in the array.
915 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
916 ILE->setArrayFiller(Filler);
917 else
918 ILE->setInit(Init, Filler);
919 } else {
920 // For arrays, just set the expression used for value-initialization
921 // of the rest of elements and exit.
922 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
923 ILE->setArrayFiller(Filler);
924 return;
925 }
926
927 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
928 // Empty initialization requires a constructor call, so
929 // extend the initializer list to include the constructor
930 // call and make a note that we'll need to take another pass
931 // through the initializer list.
932 ILE->updateInit(SemaRef.Context, Init, Filler);
933 RequiresSecondPass = true;
934 }
935 }
936 } else if (InitListExpr *InnerILE
937 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
938 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
939 ILE, Init, FillWithNoInit);
940 } else if (DesignatedInitUpdateExpr *InnerDIUE =
941 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
942 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
943 RequiresSecondPass, ILE, Init,
944 /*FillWithNoInit =*/true);
945 }
946 }
947}
948
949static bool hasAnyDesignatedInits(const InitListExpr *IL) {
950 for (const Stmt *Init : *IL)
951 if (Init && isa<DesignatedInitExpr>(Init))
952 return true;
953 return false;
954}
955
956InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
957 InitListExpr *IL, QualType &T, bool VerifyOnly,
958 bool TreatUnavailableAsInvalid,
959 bool InOverloadResolution)
960 : SemaRef(S), VerifyOnly(VerifyOnly),
961 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
962 InOverloadResolution(InOverloadResolution) {
963 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
964 FullyStructuredList =
965 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
966
967 // FIXME: Check that IL isn't already the semantic form of some other
968 // InitListExpr. If it is, we'd create a broken AST.
969 if (!VerifyOnly)
970 FullyStructuredList->setSyntacticForm(IL);
971 }
972
973 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
974 /*TopLevelObject=*/true);
975
976 if (!hadError && FullyStructuredList) {
977 bool RequiresSecondPass = false;
978 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
979 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
980 if (RequiresSecondPass && !hadError)
981 FillInEmptyInitializations(Entity, FullyStructuredList,
982 RequiresSecondPass, nullptr, 0);
983 }
984 if (hadError && FullyStructuredList)
985 FullyStructuredList->markError();
986}
987
988int InitListChecker::numArrayElements(QualType DeclType) {
989 // FIXME: use a proper constant
990 int maxElements = 0x7FFFFFFF;
991 if (const ConstantArrayType *CAT =
992 SemaRef.Context.getAsConstantArrayType(DeclType)) {
993 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
994 }
995 return maxElements;
996}
997
998int InitListChecker::numStructUnionElements(QualType DeclType) {
999 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
1000 int InitializableMembers = 0;
1001 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
1002 InitializableMembers += CXXRD->getNumBases();
1003 for (const auto *Field : structDecl->fields())
1004 if (!Field->isUnnamedBitfield())
1005 ++InitializableMembers;
1006
1007 if (structDecl->isUnion())
1008 return std::min(InitializableMembers, 1);
1009 return InitializableMembers - structDecl->hasFlexibleArrayMember();
1010}
1011
1012/// Determine whether Entity is an entity for which it is idiomatic to elide
1013/// the braces in aggregate initialization.
1014static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1015 // Recursive initialization of the one and only field within an aggregate
1016 // class is considered idiomatic. This case arises in particular for
1017 // initialization of std::array, where the C++ standard suggests the idiom of
1018 //
1019 // std::array<T, N> arr = {1, 2, 3};
1020 //
1021 // (where std::array is an aggregate struct containing a single array field.
1022
1023 if (!Entity.getParent())
1024 return false;
1025
1026 // Allows elide brace initialization for aggregates with empty base.
1027 if (Entity.getKind() == InitializedEntity::EK_Base) {
1028 auto *ParentRD =
1029 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1030 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1031 return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1032 }
1033
1034 // Allow brace elision if the only subobject is a field.
1035 if (Entity.getKind() == InitializedEntity::EK_Member) {
1036 auto *ParentRD =
1037 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1038 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1039 if (CXXRD->getNumBases()) {
1040 return false;
1041 }
1042 }
1043 auto FieldIt = ParentRD->field_begin();
1044 assert(FieldIt != ParentRD->field_end() &&(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "clang/lib/Sema/SemaInit.cpp", 1045, __extension__ __PRETTY_FUNCTION__
))
1045 "no fields but have initializer for member?")(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "clang/lib/Sema/SemaInit.cpp", 1045, __extension__ __PRETTY_FUNCTION__
))
;
1046 return ++FieldIt == ParentRD->field_end();
1047 }
1048
1049 return false;
1050}
1051
1052/// Check whether the range of the initializer \p ParentIList from element
1053/// \p Index onwards can be used to initialize an object of type \p T. Update
1054/// \p Index to indicate how many elements of the list were consumed.
1055///
1056/// This also fills in \p StructuredList, from element \p StructuredIndex
1057/// onwards, with the fully-braced, desugared form of the initialization.
1058void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1059 InitListExpr *ParentIList,
1060 QualType T, unsigned &Index,
1061 InitListExpr *StructuredList,
1062 unsigned &StructuredIndex) {
1063 int maxElements = 0;
1064
1065 if (T->isArrayType())
1066 maxElements = numArrayElements(T);
1067 else if (T->isRecordType())
1068 maxElements = numStructUnionElements(T);
1069 else if (T->isVectorType())
1070 maxElements = T->castAs<VectorType>()->getNumElements();
1071 else
1072 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "clang/lib/Sema/SemaInit.cpp", 1072)
;
1073
1074 if (maxElements == 0) {
1075 if (!VerifyOnly)
1076 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1077 diag::err_implicit_empty_initializer);
1078 ++Index;
1079 hadError = true;
1080 return;
1081 }
1082
1083 // Build a structured initializer list corresponding to this subobject.
1084 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1085 ParentIList, Index, T, StructuredList, StructuredIndex,
1086 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1087 ParentIList->getSourceRange().getEnd()));
1088 unsigned StructuredSubobjectInitIndex = 0;
1089
1090 // Check the element types and build the structural subobject.
1091 unsigned StartIndex = Index;
1092 CheckListElementTypes(Entity, ParentIList, T,
1093 /*SubobjectIsDesignatorContext=*/false, Index,
1094 StructuredSubobjectInitList,
1095 StructuredSubobjectInitIndex);
1096
1097 if (StructuredSubobjectInitList) {
1098 StructuredSubobjectInitList->setType(T);
1099
1100 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1101 // Update the structured sub-object initializer so that it's ending
1102 // range corresponds with the end of the last initializer it used.
1103 if (EndIndex < ParentIList->getNumInits() &&
1104 ParentIList->getInit(EndIndex)) {
1105 SourceLocation EndLoc
1106 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1107 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1108 }
1109
1110 // Complain about missing braces.
1111 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1112 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1113 !isIdiomaticBraceElisionEntity(Entity)) {
1114 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1115 diag::warn_missing_braces)
1116 << StructuredSubobjectInitList->getSourceRange()
1117 << FixItHint::CreateInsertion(
1118 StructuredSubobjectInitList->getBeginLoc(), "{")
1119 << FixItHint::CreateInsertion(
1120 SemaRef.getLocForEndOfToken(
1121 StructuredSubobjectInitList->getEndLoc()),
1122 "}");
1123 }
1124
1125 // Warn if this type won't be an aggregate in future versions of C++.
1126 auto *CXXRD = T->getAsCXXRecordDecl();
1127 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1128 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1129 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1130 << StructuredSubobjectInitList->getSourceRange() << T;
1131 }
1132 }
1133}
1134
1135/// Warn that \p Entity was of scalar type and was initialized by a
1136/// single-element braced initializer list.
1137static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1138 SourceRange Braces) {
1139 // Don't warn during template instantiation. If the initialization was
1140 // non-dependent, we warned during the initial parse; otherwise, the
1141 // type might not be scalar in some uses of the template.
1142 if (S.inTemplateInstantiation())
1143 return;
1144
1145 unsigned DiagID = 0;
1146
1147 switch (Entity.getKind()) {
1148 case InitializedEntity::EK_VectorElement:
1149 case InitializedEntity::EK_ComplexElement:
1150 case InitializedEntity::EK_ArrayElement:
1151 case InitializedEntity::EK_Parameter:
1152 case InitializedEntity::EK_Parameter_CF_Audited:
1153 case InitializedEntity::EK_TemplateParameter:
1154 case InitializedEntity::EK_Result:
1155 // Extra braces here are suspicious.
1156 DiagID = diag::warn_braces_around_init;
1157 break;
1158
1159 case InitializedEntity::EK_Member:
1160 // Warn on aggregate initialization but not on ctor init list or
1161 // default member initializer.
1162 if (Entity.getParent())
1163 DiagID = diag::warn_braces_around_init;
1164 break;
1165
1166 case InitializedEntity::EK_Variable:
1167 case InitializedEntity::EK_LambdaCapture:
1168 // No warning, might be direct-list-initialization.
1169 // FIXME: Should we warn for copy-list-initialization in these cases?
1170 break;
1171
1172 case InitializedEntity::EK_New:
1173 case InitializedEntity::EK_Temporary:
1174 case InitializedEntity::EK_CompoundLiteralInit:
1175 // No warning, braces are part of the syntax of the underlying construct.
1176 break;
1177
1178 case InitializedEntity::EK_RelatedResult:
1179 // No warning, we already warned when initializing the result.
1180 break;
1181
1182 case InitializedEntity::EK_Exception:
1183 case InitializedEntity::EK_Base:
1184 case InitializedEntity::EK_Delegating:
1185 case InitializedEntity::EK_BlockElement:
1186 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1187 case InitializedEntity::EK_Binding:
1188 case InitializedEntity::EK_StmtExprResult:
1189 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "clang/lib/Sema/SemaInit.cpp", 1189)
;
1190 }
1191
1192 if (DiagID) {
1193 S.Diag(Braces.getBegin(), DiagID)
1194 << Entity.getType()->isSizelessBuiltinType() << Braces
1195 << FixItHint::CreateRemoval(Braces.getBegin())
1196 << FixItHint::CreateRemoval(Braces.getEnd());
1197 }
1198}
1199
1200/// Check whether the initializer \p IList (that was written with explicit
1201/// braces) can be used to initialize an object of type \p T.
1202///
1203/// This also fills in \p StructuredList with the fully-braced, desugared
1204/// form of the initialization.
1205void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1206 InitListExpr *IList, QualType &T,
1207 InitListExpr *StructuredList,
1208 bool TopLevelObject) {
1209 unsigned Index = 0, StructuredIndex = 0;
1210 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1211 Index, StructuredList, StructuredIndex, TopLevelObject);
1212 if (StructuredList) {
1213 QualType ExprTy = T;
1214 if (!ExprTy->isArrayType())
1215 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1216 if (!VerifyOnly)
1217 IList->setType(ExprTy);
1218 StructuredList->setType(ExprTy);
1219 }
1220 if (hadError)
1221 return;
1222
1223 // Don't complain for incomplete types, since we'll get an error elsewhere.
1224 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1225 // We have leftover initializers
1226 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1227 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1228 hadError = ExtraInitsIsError;
1229 if (VerifyOnly) {
1230 return;
1231 } else if (StructuredIndex == 1 &&
1232 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1233 SIF_None) {
1234 unsigned DK =
1235 ExtraInitsIsError
1236 ? diag::err_excess_initializers_in_char_array_initializer
1237 : diag::ext_excess_initializers_in_char_array_initializer;
1238 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1239 << IList->getInit(Index)->getSourceRange();
1240 } else if (T->isSizelessBuiltinType()) {
1241 unsigned DK = ExtraInitsIsError
1242 ? diag::err_excess_initializers_for_sizeless_type
1243 : diag::ext_excess_initializers_for_sizeless_type;
1244 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1245 << T << IList->getInit(Index)->getSourceRange();
1246 } else {
1247 int initKind = T->isArrayType() ? 0 :
1248 T->isVectorType() ? 1 :
1249 T->isScalarType() ? 2 :
1250 T->isUnionType() ? 3 :
1251 4;
1252
1253 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1254 : diag::ext_excess_initializers;
1255 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1256 << initKind << IList->getInit(Index)->getSourceRange();
1257 }
1258 }
1259
1260 if (!VerifyOnly) {
1261 if (T->isScalarType() && IList->getNumInits() == 1 &&
1262 !isa<InitListExpr>(IList->getInit(0)))
1263 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1264
1265 // Warn if this is a class type that won't be an aggregate in future
1266 // versions of C++.
1267 auto *CXXRD = T->getAsCXXRecordDecl();
1268 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1269 // Don't warn if there's an equivalent default constructor that would be
1270 // used instead.
1271 bool HasEquivCtor = false;
1272 if (IList->getNumInits() == 0) {
1273 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1274 HasEquivCtor = CD && !CD->isDeleted();
1275 }
1276
1277 if (!HasEquivCtor) {
1278 SemaRef.Diag(IList->getBeginLoc(),
1279 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1280 << IList->getSourceRange() << T;
1281 }
1282 }
1283 }
1284}
1285
1286void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1287 InitListExpr *IList,
1288 QualType &DeclType,
1289 bool SubobjectIsDesignatorContext,
1290 unsigned &Index,
1291 InitListExpr *StructuredList,
1292 unsigned &StructuredIndex,
1293 bool TopLevelObject) {
1294 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1295 // Explicitly braced initializer for complex type can be real+imaginary
1296 // parts.
1297 CheckComplexType(Entity, IList, DeclType, Index,
1298 StructuredList, StructuredIndex);
1299 } else if (DeclType->isScalarType()) {
1300 CheckScalarType(Entity, IList, DeclType, Index,
1301 StructuredList, StructuredIndex);
1302 } else if (DeclType->isVectorType()) {
1303 CheckVectorType(Entity, IList, DeclType, Index,
1304 StructuredList, StructuredIndex);
1305 } else if (DeclType->isRecordType()) {
1306 assert(DeclType->isAggregateType() &&(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "clang/lib/Sema/SemaInit.cpp", 1307, __extension__ __PRETTY_FUNCTION__
))
1307 "non-aggregate records should be handed in CheckSubElementType")(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "clang/lib/Sema/SemaInit.cpp", 1307, __extension__ __PRETTY_FUNCTION__
))
;
1308 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1309 auto Bases =
1310 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1311 CXXRecordDecl::base_class_iterator());
1312 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1313 Bases = CXXRD->bases();
1314 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1315 SubobjectIsDesignatorContext, Index, StructuredList,
1316 StructuredIndex, TopLevelObject);
1317 } else if (DeclType->isArrayType()) {
1318 llvm::APSInt Zero(
1319 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1320 false);
1321 CheckArrayType(Entity, IList, DeclType, Zero,
1322 SubobjectIsDesignatorContext, Index,
1323 StructuredList, StructuredIndex);
1324 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1325 // This type is invalid, issue a diagnostic.
1326 ++Index;
1327 if (!VerifyOnly)
1328 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1329 << DeclType;
1330 hadError = true;
1331 } else if (DeclType->isReferenceType()) {
1332 CheckReferenceType(Entity, IList, DeclType, Index,
1333 StructuredList, StructuredIndex);
1334 } else if (DeclType->isObjCObjectType()) {
1335 if (!VerifyOnly)
1336 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1337 hadError = true;
1338 } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1339 DeclType->isSizelessBuiltinType()) {
1340 // Checks for scalar type are sufficient for these types too.
1341 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1342 StructuredIndex);
1343 } else {
1344 if (!VerifyOnly)
1345 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1346 << DeclType;
1347 hadError = true;
1348 }
1349}
1350
1351void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1352 InitListExpr *IList,
1353 QualType ElemType,
1354 unsigned &Index,
1355 InitListExpr *StructuredList,
1356 unsigned &StructuredIndex,
1357 bool DirectlyDesignated) {
1358 Expr *expr = IList->getInit(Index);
1359
1360 if (ElemType->isReferenceType())
1361 return CheckReferenceType(Entity, IList, ElemType, Index,
1362 StructuredList, StructuredIndex);
1363
1364 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1365 if (SubInitList->getNumInits() == 1 &&
1366 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1367 SIF_None) {
1368 // FIXME: It would be more faithful and no less correct to include an
1369 // InitListExpr in the semantic form of the initializer list in this case.
1370 expr = SubInitList->getInit(0);
1371 }
1372 // Nested aggregate initialization and C++ initialization are handled later.
1373 } else if (isa<ImplicitValueInitExpr>(expr)) {
1374 // This happens during template instantiation when we see an InitListExpr
1375 // that we've already checked once.
1376 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "clang/lib/Sema/SemaInit.cpp", 1377, __extension__ __PRETTY_FUNCTION__
))
1377 "found implicit initialization for the wrong type")(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "clang/lib/Sema/SemaInit.cpp", 1377, __extension__ __PRETTY_FUNCTION__
))
;
1378 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1379 ++Index;
1380 return;
1381 }
1382
1383 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1384 // C++ [dcl.init.aggr]p2:
1385 // Each member is copy-initialized from the corresponding
1386 // initializer-clause.
1387
1388 // FIXME: Better EqualLoc?
1389 InitializationKind Kind =
1390 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1391
1392 // Vector elements can be initialized from other vectors in which case
1393 // we need initialization entity with a type of a vector (and not a vector
1394 // element!) initializing multiple vector elements.
1395 auto TmpEntity =
1396 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1397 ? InitializedEntity::InitializeTemporary(ElemType)
1398 : Entity;
1399
1400 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1401 /*TopLevelOfInitList*/ true);
1402
1403 // C++14 [dcl.init.aggr]p13:
1404 // If the assignment-expression can initialize a member, the member is
1405 // initialized. Otherwise [...] brace elision is assumed
1406 //
1407 // Brace elision is never performed if the element is not an
1408 // assignment-expression.
1409 if (Seq || isa<InitListExpr>(expr)) {
1410 if (!VerifyOnly) {
1411 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1412 if (Result.isInvalid())
1413 hadError = true;
1414
1415 UpdateStructuredListElement(StructuredList, StructuredIndex,
1416 Result.getAs<Expr>());
1417 } else if (!Seq) {
1418 hadError = true;
1419 } else if (StructuredList) {
1420 UpdateStructuredListElement(StructuredList, StructuredIndex,
1421 getDummyInit());
1422 }
1423 ++Index;
1424 return;
1425 }
1426
1427 // Fall through for subaggregate initialization
1428 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1429 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1430 return CheckScalarType(Entity, IList, ElemType, Index,
1431 StructuredList, StructuredIndex);
1432 } else if (const ArrayType *arrayType =
1433 SemaRef.Context.getAsArrayType(ElemType)) {
1434 // arrayType can be incomplete if we're initializing a flexible
1435 // array member. There's nothing we can do with the completed
1436 // type here, though.
1437
1438 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1439 // FIXME: Should we do this checking in verify-only mode?
1440 if (!VerifyOnly)
1441 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1442 if (StructuredList)
1443 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1444 ++Index;
1445 return;
1446 }
1447
1448 // Fall through for subaggregate initialization.
1449
1450 } else {
1451 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "clang/lib/Sema/SemaInit.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 ElemType->isOpenCLSpecificType()) && "Unexpected type")(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "clang/lib/Sema/SemaInit.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
;
1453
1454 // C99 6.7.8p13:
1455 //
1456 // The initializer for a structure or union object that has
1457 // automatic storage duration shall be either an initializer
1458 // list as described below, or a single expression that has
1459 // compatible structure or union type. In the latter case, the
1460 // initial value of the object, including unnamed members, is
1461 // that of the expression.
1462 ExprResult ExprRes = expr;
1463 if (SemaRef.CheckSingleAssignmentConstraints(
1464 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1465 if (ExprRes.isInvalid())
1466 hadError = true;
1467 else {
1468 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1469 if (ExprRes.isInvalid())
1470 hadError = true;
1471 }
1472 UpdateStructuredListElement(StructuredList, StructuredIndex,
1473 ExprRes.getAs<Expr>());
1474 ++Index;
1475 return;
1476 }
1477 ExprRes.get();
1478 // Fall through for subaggregate initialization
1479 }
1480
1481 // C++ [dcl.init.aggr]p12:
1482 //
1483 // [...] Otherwise, if the member is itself a non-empty
1484 // subaggregate, brace elision is assumed and the initializer is
1485 // considered for the initialization of the first member of
1486 // the subaggregate.
1487 // OpenCL vector initializer is handled elsewhere.
1488 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1489 ElemType->isAggregateType()) {
1490 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1491 StructuredIndex);
1492 ++StructuredIndex;
1493
1494 // In C++20, brace elision is not permitted for a designated initializer.
1495 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1496 if (InOverloadResolution)
1497 hadError = true;
1498 if (!VerifyOnly) {
1499 SemaRef.Diag(expr->getBeginLoc(),
1500 diag::ext_designated_init_brace_elision)
1501 << expr->getSourceRange()
1502 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1503 << FixItHint::CreateInsertion(
1504 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1505 }
1506 }
1507 } else {
1508 if (!VerifyOnly) {
1509 // We cannot initialize this element, so let PerformCopyInitialization
1510 // produce the appropriate diagnostic. We already checked that this
1511 // initialization will fail.
1512 ExprResult Copy =
1513 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1514 /*TopLevelOfInitList=*/true);
1515 (void)Copy;
1516 assert(Copy.isInvalid() &&(static_cast <bool> (Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? void (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "clang/lib/Sema/SemaInit.cpp", 1517, __extension__ __PRETTY_FUNCTION__
))
1517 "expected non-aggregate initialization to fail")(static_cast <bool> (Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? void (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "clang/lib/Sema/SemaInit.cpp", 1517, __extension__ __PRETTY_FUNCTION__
))
;
1518 }
1519 hadError = true;
1520 ++Index;
1521 ++StructuredIndex;
1522 }
1523}
1524
1525void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1526 InitListExpr *IList, QualType DeclType,
1527 unsigned &Index,
1528 InitListExpr *StructuredList,
1529 unsigned &StructuredIndex) {
1530 assert(Index == 0 && "Index in explicit init list must be zero")(static_cast <bool> (Index == 0 && "Index in explicit init list must be zero"
) ? void (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "clang/lib/Sema/SemaInit.cpp", 1530, __extension__ __PRETTY_FUNCTION__
))
;
1531
1532 // As an extension, clang supports complex initializers, which initialize
1533 // a complex number component-wise. When an explicit initializer list for
1534 // a complex number contains two initializers, this extension kicks in:
1535 // it expects the initializer list to contain two elements convertible to
1536 // the element type of the complex type. The first element initializes
1537 // the real part, and the second element intitializes the imaginary part.
1538
1539 if (IList->getNumInits() < 2)
1540 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1541 StructuredIndex);
1542
1543 // This is an extension in C. (The builtin _Complex type does not exist
1544 // in the C++ standard.)
1545 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1546 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1547 << IList->getSourceRange();
1548
1549 // Initialize the complex number.
1550 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1551 InitializedEntity ElementEntity =
1552 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1553
1554 for (unsigned i = 0; i < 2; ++i) {
1555 ElementEntity.setElementIndex(Index);
1556 CheckSubElementType(ElementEntity, IList, elementType, Index,
1557 StructuredList, StructuredIndex);
1558 }
1559}
1560
1561void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1562 InitListExpr *IList, QualType DeclType,
1563 unsigned &Index,
1564 InitListExpr *StructuredList,
1565 unsigned &StructuredIndex) {
1566 if (Index >= IList->getNumInits()) {
1567 if (!VerifyOnly) {
1568 if (SemaRef.getLangOpts().CPlusPlus) {
1569 if (DeclType->isSizelessBuiltinType())
1570 SemaRef.Diag(IList->getBeginLoc(),
1571 SemaRef.getLangOpts().CPlusPlus11
1572 ? diag::warn_cxx98_compat_empty_sizeless_initializer
1573 : diag::err_empty_sizeless_initializer)
1574 << DeclType << IList->getSourceRange();
1575 else
1576 SemaRef.Diag(IList->getBeginLoc(),
1577 SemaRef.getLangOpts().CPlusPlus11
1578 ? diag::warn_cxx98_compat_empty_scalar_initializer
1579 : diag::err_empty_scalar_initializer)
1580 << IList->getSourceRange();
1581 }
1582 }
1583 hadError =
1584 SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11;
1585 ++Index;
1586 ++StructuredIndex;
1587 return;
1588 }
1589
1590 Expr *expr = IList->getInit(Index);
1591 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1592 // FIXME: This is invalid, and accepting it causes overload resolution
1593 // to pick the wrong overload in some corner cases.
1594 if (!VerifyOnly)
1595 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1596 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1597
1598 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1599 StructuredIndex);
1600 return;
1601 } else if (isa<DesignatedInitExpr>(expr)) {
1602 if (!VerifyOnly)
1603 SemaRef.Diag(expr->getBeginLoc(),
1604 diag::err_designator_for_scalar_or_sizeless_init)
1605 << DeclType->isSizelessBuiltinType() << DeclType
1606 << expr->getSourceRange();
1607 hadError = true;
1608 ++Index;
1609 ++StructuredIndex;
1610 return;
1611 }
1612
1613 ExprResult Result;
1614 if (VerifyOnly) {
1615 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1616 Result = getDummyInit();
1617 else
1618 Result = ExprError();
1619 } else {
1620 Result =
1621 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1622 /*TopLevelOfInitList=*/true);
1623 }
1624
1625 Expr *ResultExpr = nullptr;
1626
1627 if (Result.isInvalid())
1628 hadError = true; // types weren't compatible.
1629 else {
1630 ResultExpr = Result.getAs<Expr>();
1631
1632 if (ResultExpr != expr && !VerifyOnly) {
1633 // The type was promoted, update initializer list.
1634 // FIXME: Why are we updating the syntactic init list?
1635 IList->setInit(Index, ResultExpr);
1636 }
1637 }
1638 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1639 ++Index;
1640}
1641
1642void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1643 InitListExpr *IList, QualType DeclType,
1644 unsigned &Index,
1645 InitListExpr *StructuredList,
1646 unsigned &StructuredIndex) {
1647 if (Index >= IList->getNumInits()) {
1648 // FIXME: It would be wonderful if we could point at the actual member. In
1649 // general, it would be useful to pass location information down the stack,
1650 // so that we know the location (or decl) of the "current object" being
1651 // initialized.
1652 if (!VerifyOnly)
1653 SemaRef.Diag(IList->getBeginLoc(),
1654 diag::err_init_reference_member_uninitialized)
1655 << DeclType << IList->getSourceRange();
1656 hadError = true;
1657 ++Index;
1658 ++StructuredIndex;
1659 return;
1660 }
1661
1662 Expr *expr = IList->getInit(Index);
1663 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1664 if (!VerifyOnly)
1665 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1666 << DeclType << IList->getSourceRange();
1667 hadError = true;
1668 ++Index;
1669 ++StructuredIndex;
1670 return;
1671 }
1672
1673 ExprResult Result;
1674 if (VerifyOnly) {
1675 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1676 Result = getDummyInit();
1677 else
1678 Result = ExprError();
1679 } else {
1680 Result =
1681 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1682 /*TopLevelOfInitList=*/true);
1683 }
1684
1685 if (Result.isInvalid())
1686 hadError = true;
1687
1688 expr = Result.getAs<Expr>();
1689 // FIXME: Why are we updating the syntactic init list?
1690 if (!VerifyOnly && expr)
1691 IList->setInit(Index, expr);
1692
1693 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1694 ++Index;
1695}
1696
1697void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1698 InitListExpr *IList, QualType DeclType,
1699 unsigned &Index,
1700 InitListExpr *StructuredList,
1701 unsigned &StructuredIndex) {
1702 const VectorType *VT = DeclType->castAs<VectorType>();
1703 unsigned maxElements = VT->getNumElements();
1704 unsigned numEltsInit = 0;
1705 QualType elementType = VT->getElementType();
1706
1707 if (Index >= IList->getNumInits()) {
1708 // Make sure the element type can be value-initialized.
1709 CheckEmptyInitializable(
1710 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1711 IList->getEndLoc());
1712 return;
1713 }
1714
1715 if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) {
1716 // If the initializing element is a vector, try to copy-initialize
1717 // instead of breaking it apart (which is doomed to failure anyway).
1718 Expr *Init = IList->getInit(Index);
1719 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1720 ExprResult Result;
1721 if (VerifyOnly) {
1722 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1723 Result = getDummyInit();
1724 else
1725 Result = ExprError();
1726 } else {
1727 Result =
1728 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1729 /*TopLevelOfInitList=*/true);
1730 }
1731
1732 Expr *ResultExpr = nullptr;
1733 if (Result.isInvalid())
1734 hadError = true; // types weren't compatible.
1735 else {
1736 ResultExpr = Result.getAs<Expr>();
1737
1738 if (ResultExpr != Init && !VerifyOnly) {
1739 // The type was promoted, update initializer list.
1740 // FIXME: Why are we updating the syntactic init list?
1741 IList->setInit(Index, ResultExpr);
1742 }
1743 }
1744 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1745 ++Index;
1746 return;
1747 }
1748
1749 InitializedEntity ElementEntity =
1750 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1751
1752 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1753 // Don't attempt to go past the end of the init list
1754 if (Index >= IList->getNumInits()) {
1755 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1756 break;
1757 }
1758
1759 ElementEntity.setElementIndex(Index);
1760 CheckSubElementType(ElementEntity, IList, elementType, Index,
1761 StructuredList, StructuredIndex);
1762 }
1763
1764 if (VerifyOnly)
1765 return;
1766
1767 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1768 const VectorType *T = Entity.getType()->castAs<VectorType>();
1769 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1770 T->getVectorKind() == VectorType::NeonPolyVector)) {
1771 // The ability to use vector initializer lists is a GNU vector extension
1772 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1773 // endian machines it works fine, however on big endian machines it
1774 // exhibits surprising behaviour:
1775 //
1776 // uint32x2_t x = {42, 64};
1777 // return vget_lane_u32(x, 0); // Will return 64.
1778 //
1779 // Because of this, explicitly call out that it is non-portable.
1780 //
1781 SemaRef.Diag(IList->getBeginLoc(),
1782 diag::warn_neon_vector_initializer_non_portable);
1783
1784 const char *typeCode;
1785 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1786
1787 if (elementType->isFloatingType())
1788 typeCode = "f";
1789 else if (elementType->isSignedIntegerType())
1790 typeCode = "s";
1791 else if (elementType->isUnsignedIntegerType())
1792 typeCode = "u";
1793 else
1794 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "clang/lib/Sema/SemaInit.cpp"
, 1794)
;
1795
1796 SemaRef.Diag(IList->getBeginLoc(),
1797 SemaRef.Context.getTypeSize(VT) > 64
1798 ? diag::note_neon_vector_initializer_non_portable_q
1799 : diag::note_neon_vector_initializer_non_portable)
1800 << typeCode << typeSize;
1801 }
1802
1803 return;
1804 }
1805
1806 InitializedEntity ElementEntity =
1807 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1808
1809 // OpenCL and HLSL initializers allow vectors to be constructed from vectors.
1810 for (unsigned i = 0; i < maxElements; ++i) {
1811 // Don't attempt to go past the end of the init list
1812 if (Index >= IList->getNumInits())
1813 break;
1814
1815 ElementEntity.setElementIndex(Index);
1816
1817 QualType IType = IList->getInit(Index)->getType();
1818 if (!IType->isVectorType()) {
1819 CheckSubElementType(ElementEntity, IList, elementType, Index,
1820 StructuredList, StructuredIndex);
1821 ++numEltsInit;
1822 } else {
1823 QualType VecType;
1824 const VectorType *IVT = IType->castAs<VectorType>();
1825 unsigned numIElts = IVT->getNumElements();
1826
1827 if (IType->isExtVectorType())
1828 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1829 else
1830 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1831 IVT->getVectorKind());
1832 CheckSubElementType(ElementEntity, IList, VecType, Index,
1833 StructuredList, StructuredIndex);
1834 numEltsInit += numIElts;
1835 }
1836 }
1837
1838 // OpenCL and HLSL require all elements to be initialized.
1839 if (numEltsInit != maxElements) {
1840 if (!VerifyOnly)
1841 SemaRef.Diag(IList->getBeginLoc(),
1842 diag::err_vector_incorrect_num_initializers)
1843 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1844 hadError = true;
1845 }
1846}
1847
1848/// Check if the type of a class element has an accessible destructor, and marks
1849/// it referenced. Returns true if we shouldn't form a reference to the
1850/// destructor.
1851///
1852/// Aggregate initialization requires a class element's destructor be
1853/// accessible per 11.6.1 [dcl.init.aggr]:
1854///
1855/// The destructor for each element of class type is potentially invoked
1856/// (15.4 [class.dtor]) from the context where the aggregate initialization
1857/// occurs.
1858static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1859 Sema &SemaRef) {
1860 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1861 if (!CXXRD)
1862 return false;
1863
1864 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1865 SemaRef.CheckDestructorAccess(Loc, Destructor,
1866 SemaRef.PDiag(diag::err_access_dtor_temp)
1867 << ElementType);
1868 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1869 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1870}
1871
1872void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1873 InitListExpr *IList, QualType &DeclType,
1874 llvm::APSInt elementIndex,
1875 bool SubobjectIsDesignatorContext,
1876 unsigned &Index,
1877 InitListExpr *StructuredList,
1878 unsigned &StructuredIndex) {
1879 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1880
1881 if (!VerifyOnly) {
1882 if (checkDestructorReference(arrayType->getElementType(),
1883 IList->getEndLoc(), SemaRef)) {
1884 hadError = true;
1885 return;
1886 }
1887 }
1888
1889 // Check for the special-case of initializing an array with a string.
1890 if (Index < IList->getNumInits()) {
1891 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1892 SIF_None) {
1893 // We place the string literal directly into the resulting
1894 // initializer list. This is the only place where the structure
1895 // of the structured initializer list doesn't match exactly,
1896 // because doing so would involve allocating one character
1897 // constant for each string.
1898 // FIXME: Should we do these checks in verify-only mode too?
1899 if (!VerifyOnly)
1900 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1901 if (StructuredList) {
1902 UpdateStructuredListElement(StructuredList, StructuredIndex,
1903 IList->getInit(Index));
1904 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1905 }
1906 ++Index;
1907 return;
1908 }
1909 }
1910 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1911 // Check for VLAs; in standard C it would be possible to check this
1912 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1913 // them in all sorts of strange places).
1914 bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus;
1915 if (!VerifyOnly) {
1916 // C2x 6.7.9p4: An entity of variable length array type shall not be
1917 // initialized except by an empty initializer.
1918 //
1919 // The C extension warnings are issued from ParseBraceInitializer() and
1920 // do not need to be issued here. However, we continue to issue an error
1921 // in the case there are initializers or we are compiling C++. We allow
1922 // use of VLAs in C++, but it's not clear we want to allow {} to zero
1923 // init a VLA in C++ in all cases (such as with non-trivial constructors).
1924 // FIXME: should we allow this construct in C++ when it makes sense to do
1925 // so?
1926 if (HasErr)
1927 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1928 diag::err_variable_object_no_init)
1929 << VAT->getSizeExpr()->getSourceRange();
1930 }
1931 hadError = HasErr;
1932 ++Index;
1933 ++StructuredIndex;
1934 return;
1935 }
1936
1937 // We might know the maximum number of elements in advance.
1938 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1939 elementIndex.isUnsigned());
1940 bool maxElementsKnown = false;
1941 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1942 maxElements = CAT->getSize();
1943 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1944 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1945 maxElementsKnown = true;
1946 }
1947
1948 QualType elementType = arrayType->getElementType();
1949 while (Index < IList->getNumInits()) {
1950 Expr *Init = IList->getInit(Index);
1951 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1952 // If we're not the subobject that matches up with the '{' for
1953 // the designator, we shouldn't be handling the
1954 // designator. Return immediately.
1955 if (!SubobjectIsDesignatorContext)
1956 return;
1957
1958 // Handle this designated initializer. elementIndex will be
1959 // updated to be the next array element we'll initialize.
1960 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1961 DeclType, nullptr, &elementIndex, Index,
1962 StructuredList, StructuredIndex, true,
1963 false)) {
1964 hadError = true;
1965 continue;
1966 }
1967
1968 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1969 maxElements = maxElements.extend(elementIndex.getBitWidth());
1970 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1971 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1972 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1973
1974 // If the array is of incomplete type, keep track of the number of
1975 // elements in the initializer.
1976 if (!maxElementsKnown && elementIndex > maxElements)
1977 maxElements = elementIndex;
1978
1979 continue;
1980 }
1981
1982 // If we know the maximum number of elements, and we've already
1983 // hit it, stop consuming elements in the initializer list.
1984 if (maxElementsKnown && elementIndex == maxElements)
1985 break;
1986
1987 InitializedEntity ElementEntity =
1988 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1989 Entity);
1990 // Check this element.
1991 CheckSubElementType(ElementEntity, IList, elementType, Index,
1992 StructuredList, StructuredIndex);
1993 ++elementIndex;
1994
1995 // If the array is of incomplete type, keep track of the number of
1996 // elements in the initializer.
1997 if (!maxElementsKnown && elementIndex > maxElements)
1998 maxElements = elementIndex;
1999 }
2000 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
2001 // If this is an incomplete array type, the actual type needs to
2002 // be calculated here.
2003 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
2004 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
2005 // Sizing an array implicitly to zero is not allowed by ISO C,
2006 // but is supported by GNU.
2007 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
2008 }
2009
2010 DeclType = SemaRef.Context.getConstantArrayType(
2011 elementType, maxElements, nullptr, ArrayType::Normal, 0);
2012 }
2013 if (!hadError) {
2014 // If there are any members of the array that get value-initialized, check
2015 // that is possible. That happens if we know the bound and don't have
2016 // enough elements, or if we're performing an array new with an unknown
2017 // bound.
2018 if ((maxElementsKnown && elementIndex < maxElements) ||
2019 Entity.isVariableLengthArrayNew())
2020 CheckEmptyInitializable(
2021 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
2022 IList->getEndLoc());
2023 }
2024}
2025
2026bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
2027 Expr *InitExpr,
2028 FieldDecl *Field,
2029 bool TopLevelObject) {
2030 // Handle GNU flexible array initializers.
2031 unsigned FlexArrayDiag;
2032 if (isa<InitListExpr>(InitExpr) &&
2033 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2034 // Empty flexible array init always allowed as an extension
2035 FlexArrayDiag = diag::ext_flexible_array_init;
2036 } else if (!TopLevelObject) {
2037 // Disallow flexible array init on non-top-level object
2038 FlexArrayDiag = diag::err_flexible_array_init;
2039 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2040 // Disallow flexible array init on anything which is not a variable.
2041 FlexArrayDiag = diag::err_flexible_array_init;
2042 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2043 // Disallow flexible array init on local variables.
2044 FlexArrayDiag = diag::err_flexible_array_init;
2045 } else {
2046 // Allow other cases.
2047 FlexArrayDiag = diag::ext_flexible_array_init;
2048 }
2049
2050 if (!VerifyOnly) {
2051 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2052 << InitExpr->getBeginLoc();
2053 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2054 << Field;
2055 }
2056
2057 return FlexArrayDiag != diag::ext_flexible_array_init;
2058}
2059
2060void InitListChecker::CheckStructUnionTypes(
2061 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2062 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2063 bool SubobjectIsDesignatorContext, unsigned &Index,
2064 InitListExpr *StructuredList, unsigned &StructuredIndex,
2065 bool TopLevelObject) {
2066 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2067
2068 // If the record is invalid, some of it's members are invalid. To avoid
2069 // confusion, we forgo checking the initializer for the entire record.
2070 if (structDecl->isInvalidDecl()) {
2071 // Assume it was supposed to consume a single initializer.
2072 ++Index;
2073 hadError = true;
2074 return;
2075 }
2076
2077 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2078 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2079
2080 if (!VerifyOnly)
2081 for (FieldDecl *FD : RD->fields()) {
2082 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2083 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2084 hadError = true;
2085 return;
2086 }
2087 }
2088
2089 // If there's a default initializer, use it.
2090 if (isa<CXXRecordDecl>(RD) &&
2091 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2092 if (!StructuredList)
2093 return;
2094 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2095 Field != FieldEnd; ++Field) {
2096 if (Field->hasInClassInitializer()) {
2097 StructuredList->setInitializedFieldInUnion(*Field);
2098 // FIXME: Actually build a CXXDefaultInitExpr?
2099 return;
2100 }
2101 }
2102 }
2103
2104 // Value-initialize the first member of the union that isn't an unnamed
2105 // bitfield.
2106 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2107 Field != FieldEnd; ++Field) {
2108 if (!Field->isUnnamedBitfield()) {
2109 CheckEmptyInitializable(
2110 InitializedEntity::InitializeMember(*Field, &Entity),
2111 IList->getEndLoc());
2112 if (StructuredList)
2113 StructuredList->setInitializedFieldInUnion(*Field);
2114 break;
2115 }
2116 }
2117 return;
2118 }
2119
2120 bool InitializedSomething = false;
2121
2122 // If we have any base classes, they are initialized prior to the fields.
2123 for (auto &Base : Bases) {
2124 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2125
2126 // Designated inits always initialize fields, so if we see one, all
2127 // remaining base classes have no explicit initializer.
2128 if (Init && isa<DesignatedInitExpr>(Init))
2129 Init = nullptr;
2130
2131 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2132 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2133 SemaRef.Context, &Base, false, &Entity);
2134 if (Init) {
2135 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2136 StructuredList, StructuredIndex);
2137 InitializedSomething = true;
2138 } else {
2139 CheckEmptyInitializable(BaseEntity, InitLoc);
2140 }
2141
2142 if (!VerifyOnly)
2143 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2144 hadError = true;
2145 return;
2146 }
2147 }
2148
2149 // If structDecl is a forward declaration, this loop won't do
2150 // anything except look at designated initializers; That's okay,
2151 // because an error should get printed out elsewhere. It might be
2152 // worthwhile to skip over the rest of the initializer, though.
2153 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2154 RecordDecl::field_iterator FieldEnd = RD->field_end();
2155 size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
2156 return isa<FieldDecl>(D) || isa<RecordDecl>(D);
2157 });
2158 bool CheckForMissingFields =
2159 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2160 bool HasDesignatedInit = false;
2161
2162 while (Index < IList->getNumInits()) {
2163 Expr *Init = IList->getInit(Index);
2164 SourceLocation InitLoc = Init->getBeginLoc();
2165
2166 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2167 // If we're not the subobject that matches up with the '{' for
2168 // the designator, we shouldn't be handling the
2169 // designator. Return immediately.
2170 if (!SubobjectIsDesignatorContext)
2171 return;
2172
2173 HasDesignatedInit = true;
2174
2175 // Handle this designated initializer. Field will be updated to
2176 // the next field that we'll be initializing.
2177 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2178 DeclType, &Field, nullptr, Index,
2179 StructuredList, StructuredIndex,
2180 true, TopLevelObject))
2181 hadError = true;
2182 else if (!VerifyOnly) {
2183 // Find the field named by the designated initializer.
2184 RecordDecl::field_iterator F = RD->field_begin();
2185 while (std::next(F) != Field)
2186 ++F;
2187 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2188 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2189 hadError = true;
2190 return;
2191 }
2192 }
2193
2194 InitializedSomething = true;
2195
2196 // Disable check for missing fields when designators are used.
2197 // This matches gcc behaviour.
2198 CheckForMissingFields = false;
2199 continue;
2200 }
2201
2202 // Check if this is an initializer of forms:
2203 //
2204 // struct foo f = {};
2205 // struct foo g = {0};
2206 //
2207 // These are okay for randomized structures. [C99 6.7.8p19]
2208 //
2209 // Also, if there is only one element in the structure, we allow something
2210 // like this, because it's really not randomized in the tranditional sense.
2211 //
2212 // struct foo h = {bar};
2213 auto IsZeroInitializer = [&](const Expr *I) {
2214 if (IList->getNumInits() == 1) {
2215 if (NumRecordDecls == 1)
2216 return true;
2217 if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2218 return IL->getValue().isZero();
2219 }
2220 return false;
2221 };
2222
2223 // Don't allow non-designated initializers on randomized structures.
2224 if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2225 if (!VerifyOnly)
2226 SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2227 hadError = true;
2228 break;
2229 }
2230
2231 if (Field == FieldEnd) {
2232 // We've run out of fields. We're done.
2233 break;
2234 }
2235
2236 // We've already initialized a member of a union. We're done.
2237 if (InitializedSomething && DeclType->isUnionType())
2238 break;
2239
2240 // If we've hit the flexible array member at the end, we're done.
2241 if (Field->getType()->isIncompleteArrayType())
2242 break;
2243
2244 if (Field->isUnnamedBitfield()) {
2245 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2246 ++Field;
2247 continue;
2248 }
2249
2250 // Make sure we can use this declaration.
2251 bool InvalidUse;
2252 if (VerifyOnly)
2253 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2254 else
2255 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2256 *Field, IList->getInit(Index)->getBeginLoc());
2257 if (InvalidUse) {
2258 ++Index;
2259 ++Field;
2260 hadError = true;
2261 continue;
2262 }
2263
2264 if (!VerifyOnly) {
2265 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2266 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2267 hadError = true;
2268 return;
2269 }
2270 }
2271
2272 InitializedEntity MemberEntity =
2273 InitializedEntity::InitializeMember(*Field, &Entity);
2274 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2275 StructuredList, StructuredIndex);
2276 InitializedSomething = true;
2277
2278 if (DeclType->isUnionType() && StructuredList) {
2279 // Initialize the first field within the union.
2280 StructuredList->setInitializedFieldInUnion(*Field);
2281 }
2282
2283 ++Field;
2284 }
2285
2286 // Emit warnings for missing struct field initializers.
2287 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2288 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2289 !DeclType->isUnionType()) {
2290 // It is possible we have one or more unnamed bitfields remaining.
2291 // Find first (if any) named field and emit warning.
2292 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2293 it != end; ++it) {
2294 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2295 SemaRef.Diag(IList->getSourceRange().getEnd(),
2296 diag::warn_missing_field_initializers) << *it;
2297 break;
2298 }
2299 }
2300 }
2301
2302 // Check that any remaining fields can be value-initialized if we're not
2303 // building a structured list. (If we are, we'll check this later.)
2304 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2305 !Field->getType()->isIncompleteArrayType()) {
2306 for (; Field != FieldEnd && !hadError; ++Field) {
2307 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2308 CheckEmptyInitializable(
2309 InitializedEntity::InitializeMember(*Field, &Entity),
2310 IList->getEndLoc());
2311 }
2312 }
2313
2314 // Check that the types of the remaining fields have accessible destructors.
2315 if (!VerifyOnly) {
2316 // If the initializer expression has a designated initializer, check the
2317 // elements for which a designated initializer is not provided too.
2318 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2319 : Field;
2320 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2321 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2322 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2323 hadError = true;
2324 return;
2325 }
2326 }
2327 }
2328
2329 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2330 Index >= IList->getNumInits())
2331 return;
2332
2333 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2334 TopLevelObject)) {
2335 hadError = true;
2336 ++Index;
2337 return;
2338 }
2339
2340 InitializedEntity MemberEntity =
2341 InitializedEntity::InitializeMember(*Field, &Entity);
2342
2343 if (isa<InitListExpr>(IList->getInit(Index)))
2344 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2345 StructuredList, StructuredIndex);
2346 else
2347 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2348 StructuredList, StructuredIndex);
2349}
2350
2351/// Expand a field designator that refers to a member of an
2352/// anonymous struct or union into a series of field designators that
2353/// refers to the field within the appropriate subobject.
2354///
2355static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2356 DesignatedInitExpr *DIE,
2357 unsigned DesigIdx,
2358 IndirectFieldDecl *IndirectField) {
2359 typedef DesignatedInitExpr::Designator Designator;
2360
2361 // Build the replacement designators.
2362 SmallVector<Designator, 4> Replacements;
2363 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2364 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2365 if (PI + 1 == PE)
2366 Replacements.push_back(Designator::CreateFieldDesignator(
2367 (IdentifierInfo *)nullptr, DIE->getDesignator(DesigIdx)->getDotLoc(),
2368 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2369 else
2370 Replacements.push_back(Designator::CreateFieldDesignator(
2371 (IdentifierInfo *)nullptr, SourceLocation(), SourceLocation()));
2372 assert(isa<FieldDecl>(*PI))(static_cast <bool> (isa<FieldDecl>(*PI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(*PI)", "clang/lib/Sema/SemaInit.cpp"
, 2372, __extension__ __PRETTY_FUNCTION__))
;
2373 Replacements.back().setField(cast<FieldDecl>(*PI));
2374 }
2375
2376 // Expand the current designator into the set of replacement
2377 // designators, so we have a full subobject path down to where the
2378 // member of the anonymous struct/union is actually stored.
2379 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2380 &Replacements[0] + Replacements.size());
2381}
2382
2383static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2384 DesignatedInitExpr *DIE) {
2385 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2386 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2387 for (unsigned I = 0; I < NumIndexExprs; ++I)
2388 IndexExprs[I] = DIE->getSubExpr(I + 1);
2389 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2390 IndexExprs,
2391 DIE->getEqualOrColonLoc(),
2392 DIE->usesGNUSyntax(), DIE->getInit());
2393}
2394
2395namespace {
2396
2397// Callback to only accept typo corrections that are for field members of
2398// the given struct or union.
2399class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2400 public:
2401 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2402 : Record(RD) {}
2403
2404 bool ValidateCandidate(const TypoCorrection &candidate) override {
2405 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2406 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2407 }
2408
2409 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2410 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2411 }
2412
2413 private:
2414 RecordDecl *Record;
2415};
2416
2417} // end anonymous namespace
2418
2419/// Check the well-formedness of a C99 designated initializer.
2420///
2421/// Determines whether the designated initializer @p DIE, which
2422/// resides at the given @p Index within the initializer list @p
2423/// IList, is well-formed for a current object of type @p DeclType
2424/// (C99 6.7.8). The actual subobject that this designator refers to
2425/// within the current subobject is returned in either
2426/// @p NextField or @p NextElementIndex (whichever is appropriate).
2427///
2428/// @param IList The initializer list in which this designated
2429/// initializer occurs.
2430///
2431/// @param DIE The designated initializer expression.
2432///
2433/// @param DesigIdx The index of the current designator.
2434///
2435/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2436/// into which the designation in @p DIE should refer.
2437///
2438/// @param NextField If non-NULL and the first designator in @p DIE is
2439/// a field, this will be set to the field declaration corresponding
2440/// to the field named by the designator. On input, this is expected to be
2441/// the next field that would be initialized in the absence of designation,
2442/// if the complete object being initialized is a struct.
2443///
2444/// @param NextElementIndex If non-NULL and the first designator in @p
2445/// DIE is an array designator or GNU array-range designator, this
2446/// will be set to the last index initialized by this designator.
2447///
2448/// @param Index Index into @p IList where the designated initializer
2449/// @p DIE occurs.
2450///
2451/// @param StructuredList The initializer list expression that
2452/// describes all of the subobject initializers in the order they'll
2453/// actually be initialized.
2454///
2455/// @returns true if there was an error, false otherwise.
2456bool
2457InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2458 InitListExpr *IList,
2459 DesignatedInitExpr *DIE,
2460 unsigned DesigIdx,
2461 QualType &CurrentObjectType,
2462 RecordDecl::field_iterator *NextField,
2463 llvm::APSInt *NextElementIndex,
2464 unsigned &Index,
2465 InitListExpr *StructuredList,
2466 unsigned &StructuredIndex,
2467 bool FinishSubobjectInit,
2468 bool TopLevelObject) {
2469 if (DesigIdx == DIE->size()) {
1
Assuming the condition is false
2
Taking false branch
2470 // C++20 designated initialization can result in direct-list-initialization
2471 // of the designated subobject. This is the only way that we can end up
2472 // performing direct initialization as part of aggregate initialization, so
2473 // it needs special handling.
2474 if (DIE->isDirectInit()) {
2475 Expr *Init = DIE->getInit();
2476 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"designator result in direct non-list initialization?") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "clang/lib/Sema/SemaInit.cpp", 2477, __extension__ __PRETTY_FUNCTION__
))
2477 "designator result in direct non-list initialization?")(static_cast <bool> (isa<InitListExpr>(Init) &&
"designator result in direct non-list initialization?") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "clang/lib/Sema/SemaInit.cpp", 2477, __extension__ __PRETTY_FUNCTION__
))
;
2478 InitializationKind Kind = InitializationKind::CreateDirectList(
2479 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2480 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2481 /*TopLevelOfInitList*/ true);
2482 if (StructuredList) {
2483 ExprResult Result = VerifyOnly
2484 ? getDummyInit()
2485 : Seq.Perform(SemaRef, Entity, Kind, Init);
2486 UpdateStructuredListElement(StructuredList, StructuredIndex,
2487 Result.get());
2488 }
2489 ++Index;
2490 return !Seq;
2491 }
2492
2493 // Check the actual initialization for the designated object type.
2494 bool prevHadError = hadError;
2495
2496 // Temporarily remove the designator expression from the
2497 // initializer list that the child calls see, so that we don't try
2498 // to re-process the designator.
2499 unsigned OldIndex = Index;
2500 IList->setInit(OldIndex, DIE->getInit());
2501
2502 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2503 StructuredIndex, /*DirectlyDesignated=*/true);
2504
2505 // Restore the designated initializer expression in the syntactic
2506 // form of the initializer list.
2507 if (IList->getInit(OldIndex) != DIE->getInit())
2508 DIE->setInit(IList->getInit(OldIndex));
2509 IList->setInit(OldIndex, DIE);
2510
2511 return hadError && !prevHadError;
2512 }
2513
2514 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2515 bool IsFirstDesignator = (DesigIdx == 0);
3
Assuming 'DesigIdx' is equal to 0
2516 if (IsFirstDesignator
3.1
'IsFirstDesignator' is true
? FullyStructuredList : StructuredList
) {
4
'?' condition is true
5
Assuming pointer value is null
6
Taking false branch
2517 // Determine the structural initializer list that corresponds to the
2518 // current subobject.
2519 if (IsFirstDesignator)
2520 StructuredList = FullyStructuredList;
2521 else {
2522 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2523 StructuredList->getInit(StructuredIndex) : nullptr;
2524 if (!ExistingInit && StructuredList->hasArrayFiller())
2525 ExistingInit = StructuredList->getArrayFiller();
2526
2527 if (!ExistingInit)
2528 StructuredList = getStructuredSubobjectInit(
2529 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2530 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2531 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2532 StructuredList = Result;
2533 else {
2534 // We are creating an initializer list that initializes the
2535 // subobjects of the current object, but there was already an
2536 // initialization that completely initialized the current
2537 // subobject, e.g., by a compound literal:
2538 //
2539 // struct X { int a, b; };
2540 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2541 //
2542 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2543 // designated initializer re-initializes only its current object
2544 // subobject [0].b.
2545 diagnoseInitOverride(ExistingInit,
2546 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2547 /*FullyOverwritten=*/false);
2548
2549 if (!VerifyOnly) {
2550 if (DesignatedInitUpdateExpr *E =
2551 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2552 StructuredList = E->getUpdater();
2553 else {
2554 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2555 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2556 ExistingInit, DIE->getEndLoc());
2557 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2558 StructuredList = DIUE->getUpdater();
2559 }
2560 } else {
2561 // We don't need to track the structured representation of a
2562 // designated init update of an already-fully-initialized object in
2563 // verify-only mode. The only reason we would need the structure is
2564 // to determine where the uninitialized "holes" are, and in this
2565 // case, we know there aren't any and we can't introduce any.
2566 StructuredList = nullptr;
2567 }
2568 }
2569 }
2570 }
2571
2572 if (D->isFieldDesignator()) {
7
Taking false branch
2573 // C99 6.7.8p7:
2574 //
2575 // If a designator has the form
2576 //
2577 // . identifier
2578 //
2579 // then the current object (defined below) shall have
2580 // structure or union type and the identifier shall be the
2581 // name of a member of that type.
2582 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2583 if (!RT) {
2584 SourceLocation Loc = D->getDotLoc();
2585 if (Loc.isInvalid())
2586 Loc = D->getFieldLoc();
2587 if (!VerifyOnly)
2588 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2589 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2590 ++Index;
2591 return true;
2592 }
2593
2594 FieldDecl *KnownField = D->getField();
2595 if (!KnownField) {
2596 const IdentifierInfo *FieldName = D->getFieldName();
2597 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2598 for (NamedDecl *ND : Lookup) {
2599 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2600 KnownField = FD;
2601 break;
2602 }
2603 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2604 // In verify mode, don't modify the original.
2605 if (VerifyOnly)
2606 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2607 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2608 D = DIE->getDesignator(DesigIdx);
2609 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2610 break;
2611 }
2612 }
2613 if (!KnownField) {
2614 if (VerifyOnly) {
2615 ++Index;
2616 return true; // No typo correction when just trying this out.
2617 }
2618
2619 // Name lookup found something, but it wasn't a field.
2620 if (!Lookup.empty()) {
2621 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2622 << FieldName;
2623 SemaRef.Diag(Lookup.front()->getLocation(),
2624 diag::note_field_designator_found);
2625 ++Index;
2626 return true;
2627 }
2628
2629 // Name lookup didn't find anything.
2630 // Determine whether this was a typo for another field name.
2631 FieldInitializerValidatorCCC CCC(RT->getDecl());
2632 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2633 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2634 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2635 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2636 SemaRef.diagnoseTypo(
2637 Corrected,
2638 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2639 << FieldName << CurrentObjectType);
2640 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2641 hadError = true;
2642 } else {
2643 // Typo correction didn't find anything.
2644 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2645 << FieldName << CurrentObjectType;
2646 ++Index;
2647 return true;
2648 }
2649 }
2650 }
2651
2652 unsigned NumBases = 0;
2653 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2654 NumBases = CXXRD->getNumBases();
2655
2656 unsigned FieldIndex = NumBases;
2657
2658 for (auto *FI : RT->getDecl()->fields()) {
2659 if (FI->isUnnamedBitfield())
2660 continue;
2661 if (declaresSameEntity(KnownField, FI)) {
2662 KnownField = FI;
2663 break;
2664 }
2665 ++FieldIndex;
2666 }
2667
2668 RecordDecl::field_iterator Field =
2669 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2670
2671 // All of the fields of a union are located at the same place in
2672 // the initializer list.
2673 if (RT->getDecl()->isUnion()) {
2674 FieldIndex = 0;
2675 if (StructuredList) {
2676 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2677 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2678 assert(StructuredList->getNumInits() == 1(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "clang/lib/Sema/SemaInit.cpp", 2679, __extension__ __PRETTY_FUNCTION__
))
2679 && "A union should never have more than one initializer!")(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "clang/lib/Sema/SemaInit.cpp", 2679, __extension__ __PRETTY_FUNCTION__
))
;
2680
2681 Expr *ExistingInit = StructuredList->getInit(0);
2682 if (ExistingInit) {
2683 // We're about to throw away an initializer, emit warning.
2684 diagnoseInitOverride(
2685 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2686 }
2687
2688 // remove existing initializer
2689 StructuredList->resizeInits(SemaRef.Context, 0);
2690 StructuredList->setInitializedFieldInUnion(nullptr);
2691 }
2692
2693 StructuredList->setInitializedFieldInUnion(*Field);
2694 }
2695 }
2696
2697 // Make sure we can use this declaration.
2698 bool InvalidUse;
2699 if (VerifyOnly)
2700 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2701 else
2702 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2703 if (InvalidUse) {
2704 ++Index;
2705 return true;
2706 }
2707
2708 // C++20 [dcl.init.list]p3:
2709 // The ordered identifiers in the designators of the designated-
2710 // initializer-list shall form a subsequence of the ordered identifiers
2711 // in the direct non-static data members of T.
2712 //
2713 // Note that this is not a condition on forming the aggregate
2714 // initialization, only on actually performing initialization,
2715 // so it is not checked in VerifyOnly mode.
2716 //
2717 // FIXME: This is the only reordering diagnostic we produce, and it only
2718 // catches cases where we have a top-level field designator that jumps
2719 // backwards. This is the only such case that is reachable in an
2720 // otherwise-valid C++20 program, so is the only case that's required for
2721 // conformance, but for consistency, we should diagnose all the other
2722 // cases where a designator takes us backwards too.
2723 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2724 NextField &&
2725 (*NextField == RT->getDecl()->field_end() ||
2726 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2727 // Find the field that we just initialized.
2728 FieldDecl *PrevField = nullptr;
2729 for (auto FI = RT->getDecl()->field_begin();
2730 FI != RT->getDecl()->field_end(); ++FI) {
2731 if (FI->isUnnamedBitfield())
2732 continue;
2733 if (*NextField != RT->getDecl()->field_end() &&
2734 declaresSameEntity(*FI, **NextField))
2735 break;
2736 PrevField = *FI;
2737 }
2738
2739 if (PrevField &&
2740 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2741 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2742 << KnownField << PrevField << DIE->getSourceRange();
2743
2744 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2745 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2746 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2747 SemaRef.Diag(PrevInit->getBeginLoc(),
2748 diag::note_previous_field_init)
2749 << PrevField << PrevInit->getSourceRange();
2750 }
2751 }
2752 }
2753 }
2754
2755
2756 // Update the designator with the field declaration.
2757 if (!VerifyOnly)
2758 D->setField(*Field);
2759
2760 // Make sure that our non-designated initializer list has space
2761 // for a subobject corresponding to this field.
2762 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2763 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2764
2765 // This designator names a flexible array member.
2766 if (Field->getType()->isIncompleteArrayType()) {
2767 bool Invalid = false;
2768 if ((DesigIdx + 1) != DIE->size()) {
2769 // We can't designate an object within the flexible array
2770 // member (because GCC doesn't allow it).
2771 if (!VerifyOnly) {
2772 DesignatedInitExpr::Designator *NextD
2773 = DIE->getDesignator(DesigIdx + 1);
2774 SemaRef.Diag(NextD->getBeginLoc(),
2775 diag::err_designator_into_flexible_array_member)
2776 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2777 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2778 << *Field;
2779 }
2780 Invalid = true;
2781 }
2782
2783 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2784 !isa<StringLiteral>(DIE->getInit())) {
2785 // The initializer is not an initializer list.
2786 if (!VerifyOnly) {
2787 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2788 diag::err_flexible_array_init_needs_braces)
2789 << DIE->getInit()->getSourceRange();
2790 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2791 << *Field;
2792 }
2793 Invalid = true;
2794 }
2795
2796 // Check GNU flexible array initializer.
2797 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2798 TopLevelObject))
2799 Invalid = true;
2800
2801 if (Invalid) {
2802 ++Index;
2803 return true;
2804 }
2805
2806 // Initialize the array.
2807 bool prevHadError = hadError;
2808 unsigned newStructuredIndex = FieldIndex;
2809 unsigned OldIndex = Index;
2810 IList->setInit(Index, DIE->getInit());
2811
2812 InitializedEntity MemberEntity =
2813 InitializedEntity::InitializeMember(*Field, &Entity);
2814 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2815 StructuredList, newStructuredIndex);
2816
2817 IList->setInit(OldIndex, DIE);
2818 if (hadError && !prevHadError) {
2819 ++Field;
2820 ++FieldIndex;
2821 if (NextField)
2822 *NextField = Field;
2823 StructuredIndex = FieldIndex;
2824 return true;
2825 }
2826 } else {
2827 // Recurse to check later designated subobjects.
2828 QualType FieldType = Field->getType();
2829 unsigned newStructuredIndex = FieldIndex;
2830
2831 InitializedEntity MemberEntity =
2832 InitializedEntity::InitializeMember(*Field, &Entity);
2833 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2834 FieldType, nullptr, nullptr, Index,
2835 StructuredList, newStructuredIndex,
2836 FinishSubobjectInit, false))
2837 return true;
2838 }
2839
2840 // Find the position of the next field to be initialized in this
2841 // subobject.
2842 ++Field;
2843 ++FieldIndex;
2844
2845 // If this the first designator, our caller will continue checking
2846 // the rest of this struct/class/union subobject.
2847 if (IsFirstDesignator) {
2848 if (NextField)
2849 *NextField = Field;
2850 StructuredIndex = FieldIndex;
2851 return false;
2852 }
2853
2854 if (!FinishSubobjectInit)
2855 return false;
2856
2857 // We've already initialized something in the union; we're done.
2858 if (RT->getDecl()->isUnion())
2859 return hadError;
2860
2861 // Check the remaining fields within this class/struct/union subobject.
2862 bool prevHadError = hadError;
2863
2864 auto NoBases =
2865 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2866 CXXRecordDecl::base_class_iterator());
2867 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2868 false, Index, StructuredList, FieldIndex);
2869 return hadError && !prevHadError;
2870 }
2871
2872 // C99 6.7.8p6:
2873 //
2874 // If a designator has the form
2875 //
2876 // [ constant-expression ]
2877 //
2878 // then the current object (defined below) shall have array
2879 // type and the expression shall be an integer constant
2880 // expression. If the array is of unknown size, any
2881 // nonnegative value is valid.
2882 //
2883 // Additionally, cope with the GNU extension that permits
2884 // designators of the form
2885 //
2886 // [ constant-expression ... constant-expression ]
2887 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2888 if (!AT) {
8
Assuming 'AT' is non-null
9
Taking false branch
2889 if (!VerifyOnly)
2890 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2891 << CurrentObjectType;
2892 ++Index;
2893 return true;
2894 }
2895
2896 Expr *IndexExpr = nullptr;
2897 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2898 if (D->isArrayDesignator()) {
2899 IndexExpr = DIE->getArrayIndex(*D);
2900 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2901 DesignatedEndIndex = DesignatedStartIndex;
2902 } else {
2903 assert(D->isArrayRangeDesignator() && "Need array-range designator")(static_cast <bool> (D->isArrayRangeDesignator() &&
"Need array-range designator") ? void (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "clang/lib/Sema/SemaInit.cpp", 2903, __extension__ __PRETTY_FUNCTION__
))
;
10
Taking false branch
11
'?' condition is true
2904
2905 DesignatedStartIndex =
2906 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2907 DesignatedEndIndex =
2908 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2909 IndexExpr = DIE->getArrayRangeEnd(*D);
2910
2911 // Codegen can't handle evaluating array range designators that have side
2912 // effects, because we replicate the AST value for each initialized element.
2913 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2914 // elements with something that has a side effect, so codegen can emit an
2915 // "error unsupported" error instead of miscompiling the app.
2916 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
12
Assuming the condition is true
15
Taking true branch
2917 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
13
Assuming the condition is true
14
Assuming field 'VerifyOnly' is false
2918 FullyStructuredList->sawArrayRangeDesignator();
16
Called C++ object pointer is null
2919 }
2920
2921 if (isa<ConstantArrayType>(AT)) {
2922 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2923 DesignatedStartIndex
2924 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2925 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2926 DesignatedEndIndex
2927 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2928 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2929 if (DesignatedEndIndex >= MaxElements) {
2930 if (!VerifyOnly)
2931 SemaRef.Diag(IndexExpr->getBeginLoc(),
2932 diag::err_array_designator_too_large)
2933 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2934 << IndexExpr->getSourceRange();
2935 ++Index;
2936 return true;
2937 }
2938 } else {
2939 unsigned DesignatedIndexBitWidth =
2940 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2941 DesignatedStartIndex =
2942 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2943 DesignatedEndIndex =
2944 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2945 DesignatedStartIndex.setIsUnsigned(true);
2946 DesignatedEndIndex.setIsUnsigned(true);
2947 }
2948
2949 bool IsStringLiteralInitUpdate =
2950 StructuredList && StructuredList->isStringLiteralInit();
2951 if (IsStringLiteralInitUpdate && VerifyOnly) {
2952 // We're just verifying an update to a string literal init. We don't need
2953 // to split the string up into individual characters to do that.
2954 StructuredList = nullptr;
2955 } else if (IsStringLiteralInitUpdate) {
2956 // We're modifying a string literal init; we have to decompose the string
2957 // so we can modify the individual characters.
2958 ASTContext &Context = SemaRef.Context;
2959 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2960
2961 // Compute the character type
2962 QualType CharTy = AT->getElementType();
2963
2964 // Compute the type of the integer literals.
2965 QualType PromotedCharTy = CharTy;
2966 if (Context.isPromotableIntegerType(CharTy))
2967 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2968 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2969
2970 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2971 // Get the length of the string.
2972 uint64_t StrLen = SL->getLength();
2973 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2974 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2975 StructuredList->resizeInits(Context, StrLen);
2976
2977 // Build a literal for each character in the string, and put them into
2978 // the init list.
2979 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2980 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2981 Expr *Init = new (Context) IntegerLiteral(
2982 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2983 if (CharTy != PromotedCharTy)
2984 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2985 Init, nullptr, VK_PRValue,
2986 FPOptionsOverride());
2987 StructuredList->updateInit(Context, i, Init);
2988 }
2989 } else {
2990 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2991 std::string Str;
2992 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2993
2994 // Get the length of the string.
2995 uint64_t StrLen = Str.size();
2996 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2997 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2998 StructuredList->resizeInits(Context, StrLen);
2999
3000 // Build a literal for each character in the string, and put them into
3001 // the init list.
3002 for (unsigned i = 0, e = StrLen; i != e; ++i) {
3003 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
3004 Expr *Init = new (Context) IntegerLiteral(
3005 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
3006 if (CharTy != PromotedCharTy)
3007 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
3008 Init, nullptr, VK_PRValue,
3009 FPOptionsOverride());
3010 StructuredList->updateInit(Context, i, Init);
3011 }
3012 }
3013 }
3014
3015 // Make sure that our non-designated initializer list has space
3016 // for a subobject corresponding to this array element.
3017 if (StructuredList &&
3018 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
3019 StructuredList->resizeInits(SemaRef.Context,
3020 DesignatedEndIndex.getZExtValue() + 1);
3021
3022 // Repeatedly perform subobject initializations in the range
3023 // [DesignatedStartIndex, DesignatedEndIndex].
3024
3025 // Move to the next designator
3026 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
3027 unsigned OldIndex = Index;
3028
3029 InitializedEntity ElementEntity =
3030 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3031
3032 while (DesignatedStartIndex <= DesignatedEndIndex) {
3033 // Recurse to check later designated subobjects.
3034 QualType ElementType = AT->getElementType();
3035 Index = OldIndex;
3036
3037 ElementEntity.setElementIndex(ElementIndex);
3038 if (CheckDesignatedInitializer(
3039 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3040 nullptr, Index, StructuredList, ElementIndex,
3041 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3042 false))
3043 return true;
3044
3045 // Move to the next index in the array that we'll be initializing.
3046 ++DesignatedStartIndex;
3047 ElementIndex = DesignatedStartIndex.getZExtValue();
3048 }
3049
3050 // If this the first designator, our caller will continue checking
3051 // the rest of this array subobject.
3052 if (IsFirstDesignator) {
3053 if (NextElementIndex)
3054 *NextElementIndex = DesignatedStartIndex;
3055 StructuredIndex = ElementIndex;
3056 return false;
3057 }
3058
3059 if (!FinishSubobjectInit)
3060 return false;
3061
3062 // Check the remaining elements within this array subobject.
3063 bool prevHadError = hadError;
3064 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3065 /*SubobjectIsDesignatorContext=*/false, Index,
3066 StructuredList, ElementIndex);
3067 return hadError && !prevHadError;
3068}
3069
3070// Get the structured initializer list for a subobject of type
3071// @p CurrentObjectType.
3072InitListExpr *
3073InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3074 QualType CurrentObjectType,
3075 InitListExpr *StructuredList,
3076 unsigned StructuredIndex,
3077 SourceRange InitRange,
3078 bool IsFullyOverwritten) {
3079 if (!StructuredList)
3080 return nullptr;
3081
3082 Expr *ExistingInit = nullptr;
3083 if (StructuredIndex < StructuredList->getNumInits())
3084 ExistingInit = StructuredList->getInit(StructuredIndex);
3085
3086 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3087 // There might have already been initializers for subobjects of the current
3088 // object, but a subsequent initializer list will overwrite the entirety
3089 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3090 //
3091 // struct P { char x[6]; };
3092 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3093 //
3094 // The first designated initializer is ignored, and l.x is just "f".
3095 if (!IsFullyOverwritten)
3096 return Result;
3097
3098 if (ExistingInit) {
3099 // We are creating an initializer list that initializes the
3100 // subobjects of the current object, but there was already an
3101 // initialization that completely initialized the current
3102 // subobject:
3103 //
3104 // struct X { int a, b; };
3105 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3106 //
3107 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3108 // designated initializer overwrites the [0].b initializer
3109 // from the prior initialization.
3110 //
3111 // When the existing initializer is an expression rather than an
3112 // initializer list, we cannot decompose and update it in this way.
3113 // For example:
3114 //
3115 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3116 //
3117 // This case is handled by CheckDesignatedInitializer.
3118 diagnoseInitOverride(ExistingInit, InitRange);
3119 }
3120
3121 unsigned ExpectedNumInits = 0;
3122 if (Index < IList->getNumInits()) {
3123 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3124 ExpectedNumInits = Init->getNumInits();
3125 else
3126 ExpectedNumInits = IList->getNumInits() - Index;
3127 }
3128
3129 InitListExpr *Result =
3130 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3131
3132 // Link this new initializer list into the structured initializer
3133 // lists.
3134 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3135 return Result;
3136}
3137
3138InitListExpr *
3139InitListChecker::createInitListExpr(QualType CurrentObjectType,
3140 SourceRange InitRange,
3141 unsigned ExpectedNumInits) {
3142 InitListExpr *Result = new (SemaRef.Context) InitListExpr(
3143 SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd());
3144
3145 QualType ResultType = CurrentObjectType;
3146 if (!ResultType->isArrayType())
3147 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3148 Result->setType(ResultType);
3149
3150 // Pre-allocate storage for the structured initializer list.
3151 unsigned NumElements = 0;
3152
3153 if (const ArrayType *AType
3154 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3155 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3156 NumElements = CAType->getSize().getZExtValue();
3157 // Simple heuristic so that we don't allocate a very large
3158 // initializer with many empty entries at the end.
3159 if (NumElements > ExpectedNumInits)
3160 NumElements = 0;
3161 }
3162 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3163 NumElements = VType->getNumElements();
3164 } else if (CurrentObjectType->isRecordType()) {
3165 NumElements = numStructUnionElements(CurrentObjectType);
3166 }
3167
3168 Result->reserveInits(SemaRef.Context, NumElements);
3169
3170 return Result;
3171}
3172
3173/// Update the initializer at index @p StructuredIndex within the
3174/// structured initializer list to the value @p expr.
3175void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3176 unsigned &StructuredIndex,
3177 Expr *expr) {
3178 // No structured initializer list to update
3179 if (!StructuredList)
3180 return;
3181
3182 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3183 StructuredIndex, expr)) {
3184 // This initializer overwrites a previous initializer.
3185 // No need to diagnose when `expr` is nullptr because a more relevant
3186 // diagnostic has already been issued and this diagnostic is potentially
3187 // noise.
3188 if (expr)
3189 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3190 }
3191
3192 ++StructuredIndex;
3193}
3194
3195/// Determine whether we can perform aggregate initialization for the purposes
3196/// of overload resolution.
3197bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3198 const InitializedEntity &Entity, InitListExpr *From) {
3199 QualType Type = Entity.getType();
3200 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3201 /*TreatUnavailableAsInvalid=*/false,
3202 /*InOverloadResolution=*/true);
3203 return !Check.HadError();
3204}
3205
3206/// Check that the given Index expression is a valid array designator
3207/// value. This is essentially just a wrapper around
3208/// VerifyIntegerConstantExpression that also checks for negative values
3209/// and produces a reasonable diagnostic if there is a
3210/// failure. Returns the index expression, possibly with an implicit cast
3211/// added, on success. If everything went okay, Value will receive the
3212/// value of the constant expression.
3213static ExprResult
3214CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3215 SourceLocation Loc = Index->getBeginLoc();
3216
3217 // Make sure this is an integer constant expression.
3218 ExprResult Result =
3219 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3220 if (Result.isInvalid())
3221 return Result;
3222
3223 if (Value.isSigned() && Value.isNegative())
3224 return S.Diag(Loc, diag::err_array_designator_negative)
3225 << toString(Value, 10) << Index->getSourceRange();
3226
3227 Value.setIsUnsigned(true);
3228 return Result;
3229}
3230
3231ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3232 SourceLocation EqualOrColonLoc,
3233 bool GNUSyntax,
3234 ExprResult Init) {
3235 typedef DesignatedInitExpr::Designator ASTDesignator;
3236
3237 bool Invalid = false;
3238 SmallVector<ASTDesignator, 32> Designators;
3239 SmallVector<Expr *, 32> InitExpressions;
3240
3241 // Build designators and check array designator expressions.
3242 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3243 const Designator &D = Desig.getDesignator(Idx);
3244
3245 if (D.isFieldDesignator()) {
3246 Designators.push_back(ASTDesignator::CreateFieldDesignator(
3247 D.getField(), D.getDotLoc(), D.getFieldLoc()));
3248 } else if (D.isArrayDesignator()) {
3249 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3250 llvm::APSInt IndexValue;
3251 if (!Index->isTypeDependent() && !Index->isValueDependent())
3252 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3253 if (!Index)
3254 Invalid = true;
3255 else {
3256 Designators.push_back(ASTDesignator::CreateArrayDesignator(
3257 InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc()));
3258 InitExpressions.push_back(Index);
3259 }
3260 } else if (D.isArrayRangeDesignator()) {
3261 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3262 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3263 llvm::APSInt StartValue;
3264 llvm::APSInt EndValue;
3265 bool StartDependent = StartIndex->isTypeDependent() ||
3266 StartIndex->isValueDependent();
3267 bool EndDependent = EndIndex->isTypeDependent() ||
3268 EndIndex->isValueDependent();
3269 if (!StartDependent)
3270 StartIndex =
3271 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3272 if (!EndDependent)
3273 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3274
3275 if (!StartIndex || !EndIndex)
3276 Invalid = true;
3277 else {
3278 // Make sure we're comparing values with the same bit width.
3279 if (StartDependent || EndDependent) {
3280 // Nothing to compute.
3281 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3282 EndValue = EndValue.extend(StartValue.getBitWidth());
3283 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3284 StartValue = StartValue.extend(EndValue.getBitWidth());
3285
3286 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3287 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3288 << toString(StartValue, 10) << toString(EndValue, 10)
3289 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3290 Invalid = true;
3291 } else {
3292 Designators.push_back(ASTDesignator::CreateArrayRangeDesignator(
3293 InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(),
3294 D.getRBracketLoc()));
3295 InitExpressions.push_back(StartIndex);
3296 InitExpressions.push_back(EndIndex);
3297 }
3298 }
3299 }
3300 }
3301
3302 if (Invalid || Init.isInvalid())
3303 return ExprError();
3304
3305 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3306 EqualOrColonLoc, GNUSyntax,
3307 Init.getAs<Expr>());
3308}
3309
3310//===----------------------------------------------------------------------===//
3311// Initialization entity
3312//===----------------------------------------------------------------------===//
3313
3314InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3315 const InitializedEntity &Parent)
3316 : Parent(&Parent), Index(Index)
3317{
3318 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3319 Kind = EK_ArrayElement;
3320 Type = AT->getElementType();
3321 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3322 Kind = EK_VectorElement;
3323 Type = VT->getElementType();
3324 } else {
3325 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3326 assert(CT && "Unexpected type")(static_cast <bool> (CT && "Unexpected type") ?
void (0) : __assert_fail ("CT && \"Unexpected type\""
, "clang/lib/Sema/SemaInit.cpp", 3326, __extension__ __PRETTY_FUNCTION__
))
;
3327 Kind = EK_ComplexElement;
3328 Type = CT->getElementType();
3329 }
3330}
3331
3332InitializedEntity
3333InitializedEntity::InitializeBase(ASTContext &Context,
3334 const CXXBaseSpecifier *Base,
3335 bool IsInheritedVirtualBase,
3336 const InitializedEntity *Parent) {
3337 InitializedEntity Result;
3338 Result.Kind = EK_Base;
3339 Result.Parent = Parent;
3340 Result.Base = {Base, IsInheritedVirtualBase};
3341 Result.Type = Base->getType();
3342 return Result;
3343}
3344
3345DeclarationName InitializedEntity::getName() const {
3346 switch (getKind()) {
3347 case EK_Parameter:
3348 case EK_Parameter_CF_Audited: {
3349 ParmVarDecl *D = Parameter.getPointer();
3350 return (D ? D->getDeclName() : DeclarationName());
3351 }
3352
3353 case EK_Variable:
3354 case EK_Member:
3355 case EK_Binding:
3356 case EK_TemplateParameter:
3357 return Variable.VariableOrMember->getDeclName();
3358
3359 case EK_LambdaCapture:
3360 return DeclarationName(Capture.VarID);
3361
3362 case EK_Result:
3363 case EK_StmtExprResult:
3364 case EK_Exception:
3365 case EK_New:
3366 case EK_Temporary:
3367 case EK_Base:
3368 case EK_Delegating:
3369 case EK_ArrayElement:
3370 case EK_VectorElement:
3371 case EK_ComplexElement:
3372 case EK_BlockElement:
3373 case EK_LambdaToBlockConversionBlockElement:
3374 case EK_CompoundLiteralInit:
3375 case EK_RelatedResult:
3376 return DeclarationName();
3377 }
3378
3379 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "clang/lib/Sema/SemaInit.cpp"
, 3379)
;
3380}
3381
3382ValueDecl *InitializedEntity::getDecl() const {
3383 switch (getKind()) {
3384 case EK_Variable:
3385 case EK_Member:
3386 case EK_Binding:
3387 case EK_TemplateParameter:
3388 return Variable.VariableOrMember;
3389
3390 case EK_Parameter:
3391 case EK_Parameter_CF_Audited:
3392 return Parameter.getPointer();
3393
3394 case EK_Result:
3395 case EK_StmtExprResult:
3396 case EK_Exception:
3397 case EK_New:
3398 case EK_Temporary:
3399 case EK_Base:
3400 case EK_Delegating:
3401 case EK_ArrayElement:
3402 case EK_VectorElement:
3403 case EK_ComplexElement:
3404 case EK_BlockElement:
3405 case EK_LambdaToBlockConversionBlockElement:
3406 case EK_LambdaCapture:
3407 case EK_CompoundLiteralInit:
3408 case EK_RelatedResult:
3409 return nullptr;
3410 }
3411
3412 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "clang/lib/Sema/SemaInit.cpp"
, 3412)
;
3413}
3414
3415bool InitializedEntity::allowsNRVO() const {
3416 switch (getKind()) {
3417 case EK_Result:
3418 case EK_Exception:
3419 return LocAndNRVO.NRVO;
3420
3421 case EK_StmtExprResult:
3422 case EK_Variable:
3423 case EK_Parameter:
3424 case EK_Parameter_CF_Audited:
3425 case EK_TemplateParameter:
3426 case EK_Member:
3427 case EK_Binding:
3428 case EK_New:
3429 case EK_Temporary:
3430 case EK_CompoundLiteralInit:
3431 case EK_Base:
3432 case EK_Delegating:
3433 case EK_ArrayElement:
3434 case EK_VectorElement:
3435 case EK_ComplexElement:
3436 case EK_BlockElement:
3437 case EK_LambdaToBlockConversionBlockElement:
3438 case EK_LambdaCapture:
3439 case EK_RelatedResult:
3440 break;
3441 }
3442
3443 return false;
3444}
3445
3446unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3447 assert(getParent() != this)(static_cast <bool> (getParent() != this) ? void (0) : __assert_fail
("getParent() != this", "clang/lib/Sema/SemaInit.cpp", 3447,
__extension__ __PRETTY_FUNCTION__))
;
3448 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3449 for (unsigned I = 0; I != Depth; ++I)
3450 OS << "`-";
3451
3452 switch (getKind()) {
3453 case EK_Variable: OS << "Variable"; break;
3454 case EK_Parameter: OS << "Parameter"; break;
3455 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3456 break;
3457 case EK_TemplateParameter: OS << "TemplateParameter"; break;
3458 case EK_Result: OS << "Result"; break;
3459 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3460 case EK_Exception: OS << "Exception"; break;
3461 case EK_Member: OS << "Member"; break;
3462 case EK_Binding: OS << "Binding"; break;
3463 case EK_New: OS << "New"; break;
3464 case EK_Temporary: OS << "Temporary"; break;
3465 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3466 case EK_RelatedResult: OS << "RelatedResult"; break;
3467 case EK_Base: OS << "Base"; break;
3468 case EK_Delegating: OS << "Delegating"; break;
3469 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3470 case EK_VectorElement: OS << "VectorElement " << Index; break;
3471 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3472 case EK_BlockElement: OS << "Block"; break;
3473 case EK_LambdaToBlockConversionBlockElement:
3474 OS << "Block (lambda)";
3475 break;
3476 case EK_LambdaCapture:
3477 OS << "LambdaCapture ";
3478 OS << DeclarationName(Capture.VarID);
3479 break;
3480 }
3481
3482 if (auto *D = getDecl()) {
3483 OS << " ";
3484 D->printQualifiedName(OS);
3485 }
3486
3487 OS << " '" << getType() << "'\n";
3488
3489 return Depth + 1;
3490}
3491
3492LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3493 dumpImpl(llvm::errs());
3494}
3495
3496//===----------------------------------------------------------------------===//
3497// Initialization sequence
3498//===----------------------------------------------------------------------===//
3499
3500void InitializationSequence::Step::Destroy() {
3501 switch (Kind) {
3502 case SK_ResolveAddressOfOverloadedFunction:
3503 case SK_CastDerivedToBasePRValue:
3504 case SK_CastDerivedToBaseXValue:
3505 case SK_CastDerivedToBaseLValue:
3506 case SK_BindReference:
3507 case SK_BindReferenceToTemporary:
3508 case SK_FinalCopy:
3509 case SK_ExtraneousCopyToTemporary:
3510 case SK_UserConversion:
3511 case SK_QualificationConversionPRValue:
3512 case SK_QualificationConversionXValue:
3513 case SK_QualificationConversionLValue:
3514 case SK_FunctionReferenceConversion:
3515 case SK_AtomicConversion:
3516 case SK_ListInitialization:
3517 case SK_UnwrapInitList:
3518 case SK_RewrapInitList:
3519 case SK_ConstructorInitialization:
3520 case SK_ConstructorInitializationFromList:
3521 case SK_ZeroInitialization:
3522 case SK_CAssignment:
3523 case SK_StringInit:
3524 case SK_ObjCObjectConversion:
3525 case SK_ArrayLoopIndex:
3526 case SK_ArrayLoopInit:
3527 case SK_ArrayInit:
3528 case SK_GNUArrayInit:
3529 case SK_ParenthesizedArrayInit:
3530 case SK_PassByIndirectCopyRestore:
3531 case SK_PassByIndirectRestore:
3532 case SK_ProduceObjCObject:
3533 case SK_StdInitializerList:
3534 case SK_StdInitializerListConstructorCall:
3535 case SK_OCLSamplerInit:
3536 case SK_OCLZeroOpaqueType:
3537 case SK_ParenthesizedListInit:
3538 break;
3539
3540 case SK_ConversionSequence:
3541 case SK_ConversionSequenceNoNarrowing:
3542 delete ICS;
3543 }
3544}
3545
3546bool InitializationSequence::isDirectReferenceBinding() const {
3547 // There can be some lvalue adjustments after the SK_BindReference step.
3548 for (const Step &S : llvm::reverse(Steps)) {
3549 if (S.Kind == SK_BindReference)
3550 return true;
3551 if (S.Kind == SK_BindReferenceToTemporary)
3552 return false;
3553 }
3554 return false;
3555}
3556
3557bool InitializationSequence::isAmbiguous() const {
3558 if (!Failed())
3559 return false;
3560
3561 switch (getFailureKind()) {
3562 case FK_TooManyInitsForReference:
3563 case FK_ParenthesizedListInitForReference:
3564 case FK_ArrayNeedsInitList:
3565 case FK_ArrayNeedsInitListOrStringLiteral:
3566 case FK_ArrayNeedsInitListOrWideStringLiteral:
3567 case FK_NarrowStringIntoWideCharArray:
3568 case FK_WideStringIntoCharArray:
3569 case FK_IncompatWideStringIntoWideChar:
3570 case FK_PlainStringIntoUTF8Char:
3571 case FK_UTF8StringIntoPlainChar:
3572 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3573 case FK_NonConstLValueReferenceBindingToTemporary:
3574 case FK_NonConstLValueReferenceBindingToBitfield:
3575 case FK_NonConstLValueReferenceBindingToVectorElement:
3576 case FK_NonConstLValueReferenceBindingToMatrixElement:
3577 case FK_NonConstLValueReferenceBindingToUnrelated:
3578 case FK_RValueReferenceBindingToLValue:
3579 case FK_ReferenceAddrspaceMismatchTemporary:
3580 case FK_ReferenceInitDropsQualifiers:
3581 case FK_ReferenceInitFailed:
3582 case FK_ConversionFailed:
3583 case FK_ConversionFromPropertyFailed:
3584 case FK_TooManyInitsForScalar:
3585 case FK_ParenthesizedListInitForScalar:
3586 case FK_ReferenceBindingToInitList:
3587 case FK_InitListBadDestinationType:
3588 case FK_DefaultInitOfConst:
3589 case FK_Incomplete:
3590 case FK_ArrayTypeMismatch:
3591 case FK_NonConstantArrayInit:
3592 case FK_ListInitializationFailed:
3593 case FK_VariableLengthArrayHasInitializer:
3594 case FK_PlaceholderType:
3595 case FK_ExplicitConstructor:
3596 case FK_AddressOfUnaddressableFunction:
3597 case FK_ParenthesizedListInitFailed:
3598 return false;
3599
3600 case FK_ReferenceInitOverloadFailed:
3601 case FK_UserConversionOverloadFailed:
3602 case FK_ConstructorOverloadFailed:
3603 case FK_ListConstructorOverloadFailed:
3604 return FailedOverloadResult == OR_Ambiguous;
3605 }
3606
3607 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "clang/lib/Sema/SemaInit.cpp"
, 3607)
;
3608}
3609
3610bool InitializationSequence::isConstructorInitialization() const {
3611 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3612}
3613
3614void
3615InitializationSequence
3616::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3617 DeclAccessPair Found,
3618 bool HadMultipleCandidates) {
3619 Step S;
3620 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3621 S.Type = Function->getType();
3622 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3623 S.Function.Function = Function;
3624 S.Function.FoundDecl = Found;
3625 Steps.push_back(S);
3626}
3627
3628void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3629 ExprValueKind VK) {
3630 Step S;
3631 switch (VK) {
3632 case VK_PRValue:
3633 S.Kind = SK_CastDerivedToBasePRValue;
3634 break;
3635 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3636 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3637 }
3638 S.Type = BaseType;
3639 Steps.push_back(S);
3640}
3641
3642void InitializationSequence::AddReferenceBindingStep(QualType T,
3643 bool BindingTemporary) {
3644 Step S;
3645 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3646 S.Type = T;
3647 Steps.push_back(S);
3648}
3649
3650void InitializationSequence::AddFinalCopy(QualType T) {
3651 Step S;
3652 S.Kind = SK_FinalCopy;
3653 S.Type = T;
3654 Steps.push_back(S);
3655}
3656
3657void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3658 Step S;
3659 S.Kind = SK_ExtraneousCopyToTemporary;
3660 S.Type = T;
3661 Steps.push_back(S);
3662}
3663
3664void
3665InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3666 DeclAccessPair FoundDecl,
3667 QualType T,
3668 bool HadMultipleCandidates) {
3669 Step S;
3670 S.Kind = SK_UserConversion;
3671 S.Type = T;
3672 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3673 S.Function.Function = Function;
3674 S.Function.FoundDecl = FoundDecl;
3675 Steps.push_back(S);
3676}
3677
3678void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3679 ExprValueKind VK) {
3680 Step S;
3681 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3682 switch (VK) {
3683 case VK_PRValue:
3684 S.Kind = SK_QualificationConversionPRValue;
3685 break;
3686 case VK_XValue:
3687 S.Kind = SK_QualificationConversionXValue;
3688 break;
3689 case VK_LValue:
3690 S.Kind = SK_QualificationConversionLValue;
3691 break;
3692 }
3693 S.Type = Ty;
3694 Steps.push_back(S);
3695}
3696
3697void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3698 Step S;
3699 S.Kind = SK_FunctionReferenceConversion;
3700 S.Type = Ty;
3701 Steps.push_back(S);
3702}
3703
3704void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3705 Step S;
3706 S.Kind = SK_AtomicConversion;
3707 S.Type = Ty;
3708 Steps.push_back(S);
3709}
3710
3711void InitializationSequence::AddConversionSequenceStep(
3712 const ImplicitConversionSequence &ICS, QualType T,
3713 bool TopLevelOfInitList) {
3714 Step S;
3715 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3716 : SK_ConversionSequence;
3717 S.Type = T;
3718 S.ICS = new ImplicitConversionSequence(ICS);
3719 Steps.push_back(S);
3720}
3721
3722void InitializationSequence::AddListInitializationStep(QualType T) {
3723 Step S;
3724 S.Kind = SK_ListInitialization;
3725 S.Type = T;
3726 Steps.push_back(S);
3727}
3728
3729void InitializationSequence::AddConstructorInitializationStep(
3730 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3731 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3732 Step S;
3733 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3734 : SK_ConstructorInitializationFromList
3735 : SK_ConstructorInitialization;
3736 S.Type = T;
3737 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3738 S.Function.Function = Constructor;
3739 S.Function.FoundDecl = FoundDecl;
3740 Steps.push_back(S);
3741}
3742
3743void InitializationSequence::AddZeroInitializationStep(QualType T) {
3744 Step S;
3745 S.Kind = SK_ZeroInitialization;
3746 S.Type = T;
3747 Steps.push_back(S);
3748}
3749
3750void InitializationSequence::AddCAssignmentStep(QualType T) {
3751 Step S;
3752 S.Kind = SK_CAssignment;
3753 S.Type = T;
3754 Steps.push_back(S);
3755}
3756
3757void InitializationSequence::AddStringInitStep(QualType T) {
3758 Step S;
3759 S.Kind = SK_StringInit;
3760 S.Type = T;
3761 Steps.push_back(S);
3762}
3763
3764void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3765 Step S;
3766 S.Kind = SK_ObjCObjectConversion;
3767 S.Type = T;
3768 Steps.push_back(S);
3769}
3770
3771void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3772 Step S;
3773 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3774 S.Type = T;
3775 Steps.push_back(S);
3776}
3777
3778void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3779 Step S;
3780 S.Kind = SK_ArrayLoopIndex;
3781 S.Type = EltT;
3782 Steps.insert(Steps.begin(), S);
3783
3784 S.Kind = SK_ArrayLoopInit;
3785 S.Type = T;
3786 Steps.push_back(S);
3787}
3788
3789void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3790 Step S;
3791 S.Kind = SK_ParenthesizedArrayInit;
3792 S.Type = T;
3793 Steps.push_back(S);
3794}
3795
3796void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3797 bool shouldCopy) {
3798 Step s;
3799 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3800 : SK_PassByIndirectRestore);
3801 s.Type = type;
3802 Steps.push_back(s);
3803}
3804
3805void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3806 Step S;
3807 S.Kind = SK_ProduceObjCObject;
3808 S.Type = T;
3809 Steps.push_back(S);
3810}
3811
3812void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3813 Step S;
3814 S.Kind = SK_StdInitializerList;
3815 S.Type = T;
3816 Steps.push_back(S);
3817}
3818
3819void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3820 Step S;
3821 S.Kind = SK_OCLSamplerInit;
3822 S.Type = T;
3823 Steps.push_back(S);
3824}
3825
3826void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3827 Step S;
3828 S.Kind = SK_OCLZeroOpaqueType;
3829 S.Type = T;
3830 Steps.push_back(S);
3831}
3832
3833void InitializationSequence::AddParenthesizedListInitStep(QualType T) {
3834 Step S;
3835 S.Kind = SK_ParenthesizedListInit;
3836 S.Type = T;
3837 Steps.push_back(S);
3838}
3839
3840void InitializationSequence::RewrapReferenceInitList(QualType T,
3841 InitListExpr *Syntactic) {
3842 assert(Syntactic->getNumInits() == 1 &&(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "clang/lib/Sema/SemaInit.cpp", 3843, __extension__ __PRETTY_FUNCTION__
))
3843 "Can only rewrap trivial init lists.")(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "clang/lib/Sema/SemaInit.cpp", 3843, __extension__ __PRETTY_FUNCTION__
))
;
3844 Step S;
3845 S.Kind = SK_UnwrapInitList;
3846 S.Type = Syntactic->getInit(0)->getType();
3847 Steps.insert(Steps.begin(), S);
3848
3849 S.Kind = SK_RewrapInitList;
3850 S.Type = T;
3851 S.WrappingSyntacticList = Syntactic;
3852 Steps.push_back(S);
3853}
3854
3855void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3856 OverloadingResult Result) {
3857 setSequenceKind(FailedSequence);
3858 this->Failure = Failure;
3859 this->FailedOverloadResult = Result;
3860}
3861
3862//===----------------------------------------------------------------------===//
3863// Attempt initialization
3864//===----------------------------------------------------------------------===//
3865
3866/// Tries to add a zero initializer. Returns true if that worked.
3867static bool
3868maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3869 const InitializedEntity &Entity) {
3870 if (Entity.getKind() != InitializedEntity::EK_Variable)
3871 return false;
3872
3873 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3874 if (VD->getInit() || VD->getEndLoc().isMacroID())
3875 return false;
3876
3877 QualType VariableTy = VD->getType().getCanonicalType();
3878 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3879 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3880 if (!Init.empty()) {
3881 Sequence.AddZeroInitializationStep(Entity.getType());
3882 Sequence.SetZeroInitializationFixit(Init, Loc);
3883 return true;
3884 }
3885 return false;
3886}
3887
3888static void MaybeProduceObjCObject(Sema &S,
3889 InitializationSequence &Sequence,
3890 const InitializedEntity &Entity) {
3891 if (!S.getLangOpts().ObjCAutoRefCount) return;
3892
3893 /// When initializing a parameter, produce the value if it's marked
3894 /// __attribute__((ns_consumed)).
3895 if (Entity.isParameterKind()) {
3896 if (!Entity.isParameterConsumed())
3897 return;
3898
3899 assert(Entity.getType()->isObjCRetainableType() &&(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "clang/lib/Sema/SemaInit.cpp", 3900, __extension__ __PRETTY_FUNCTION__
))
3900 "consuming an object of unretainable type?")(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "clang/lib/Sema/SemaInit.cpp", 3900, __extension__ __PRETTY_FUNCTION__
))
;
3901 Sequence.AddProduceObjCObjectStep(Entity.getType());
3902
3903 /// When initializing a return value, if the return type is a
3904 /// retainable type, then returns need to immediately retain the
3905 /// object. If an autorelease is required, it will be done at the
3906 /// last instant.
3907 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3908 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3909 if (!Entity.getType()->isObjCRetainableType())
3910 return;
3911
3912 Sequence.AddProduceObjCObjectStep(Entity.getType());
3913 }
3914}
3915
3916static void TryListInitialization(Sema &S,
3917 const InitializedEntity &Entity,
3918 const InitializationKind &Kind,
3919 InitListExpr *InitList,
3920 InitializationSequence &Sequence,
3921 bool TreatUnavailableAsInvalid);
3922
3923/// When initializing from init list via constructor, handle
3924/// initialization of an object of type std::initializer_list<T>.
3925///
3926/// \return true if we have handled initialization of an object of type
3927/// std::initializer_list<T>, false otherwise.
3928static bool TryInitializerListConstruction(Sema &S,
3929 InitListExpr *List,
3930 QualType DestType,
3931 InitializationSequence &Sequence,
3932 bool TreatUnavailableAsInvalid) {
3933 QualType E;
3934 if (!S.isStdInitializerList(DestType, &E))
3935 return false;
3936
3937 if (!S.isCompleteType(List->getExprLoc(), E)) {
3938 Sequence.setIncompleteTypeFailure(E);
3939 return true;
3940 }
3941
3942 // Try initializing a temporary array from the init list.
3943 QualType ArrayType = S.Context.getConstantArrayType(
3944 E.withConst(),
3945 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3946 List->getNumInits()),
3947 nullptr, clang::ArrayType::Normal, 0);
3948 InitializedEntity HiddenArray =
3949 InitializedEntity::InitializeTemporary(ArrayType);
3950 InitializationKind Kind = InitializationKind::CreateDirectList(
3951 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3952 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3953 TreatUnavailableAsInvalid);
3954 if (Sequence)
3955 Sequence.AddStdInitializerListConstructionStep(DestType);
3956 return true;
3957}
3958
3959/// Determine if the constructor has the signature of a copy or move
3960/// constructor for the type T of the class in which it was found. That is,
3961/// determine if its first parameter is of type T or reference to (possibly
3962/// cv-qualified) T.
3963static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3964 const ConstructorInfo &Info) {
3965 if (Info.Constructor->getNumParams() == 0)
3966 return false;
3967
3968 QualType ParmT =
3969 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3970 QualType ClassT =
3971 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3972
3973 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3974}
3975
3976static OverloadingResult
3977ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3978 MultiExprArg Args,
3979 OverloadCandidateSet &CandidateSet,
3980 QualType DestType,
3981 DeclContext::lookup_result Ctors,
3982 OverloadCandidateSet::iterator &Best,
3983 bool CopyInitializing, bool AllowExplicit,
3984 bool OnlyListConstructors, bool IsListInit,
3985 bool SecondStepOfCopyInit = false) {
3986 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3987 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3988
3989 for (NamedDecl *D : Ctors) {
3990 auto Info = getConstructorInfo(D);
3991 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3992 continue;
3993
3994 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3995 continue;
3996
3997 // C++11 [over.best.ics]p4:
3998 // ... and the constructor or user-defined conversion function is a
3999 // candidate by
4000 // - 13.3.1.3, when the argument is the temporary in the second step
4001 // of a class copy-initialization, or
4002 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
4003 // - the second phase of 13.3.1.7 when the initializer list has exactly
4004 // one element that is itself an initializer list, and the target is
4005 // the first parameter of a constructor of class X, and the conversion
4006 // is to X or reference to (possibly cv-qualified X),
4007 // user-defined conversion sequences are not considered.
4008 bool SuppressUserConversions =
4009 SecondStepOfCopyInit ||
4010 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4011 hasCopyOrMoveCtorParam(S.Context, Info));
4012
4013 if (Info.ConstructorTmpl)
4014 S.AddTemplateOverloadCandidate(
4015 Info.ConstructorTmpl, Info.FoundDecl,
4016 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
4017 /*PartialOverloading=*/false, AllowExplicit);
4018 else {
4019 // C++ [over.match.copy]p1:
4020 // - When initializing a temporary to be bound to the first parameter
4021 // of a constructor [for type T] that takes a reference to possibly
4022 // cv-qualified T as its first argument, called with a single
4023 // argument in the context of direct-initialization, explicit
4024 // conversion functions are also considered.
4025 // FIXME: What if a constructor template instantiates to such a signature?
4026 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4027 Args.size() == 1 &&
4028 hasCopyOrMoveCtorParam(S.Context, Info);
4029 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4030 CandidateSet, SuppressUserConversions,
4031 /*PartialOverloading=*/false, AllowExplicit,
4032 AllowExplicitConv);
4033 }
4034 }
4035
4036 // FIXME: Work around a bug in C++17 guaranteed copy elision.
4037 //
4038 // When initializing an object of class type T by constructor
4039 // ([over.match.ctor]) or by list-initialization ([over.match.list])
4040 // from a single expression of class type U, conversion functions of
4041 // U that convert to the non-reference type cv T are candidates.
4042 // Explicit conversion functions are only candidates during
4043 // direct-initialization.
4044 //
4045 // Note: SecondStepOfCopyInit is only ever true in this case when
4046 // evaluating whether to produce a C++98 compatibility warning.
4047 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4048 !SecondStepOfCopyInit) {
4049 Expr *Initializer = Args[0];
4050 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4051 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4052 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4053 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4054 NamedDecl *D = *I;
4055 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4056 D = D->getUnderlyingDecl();
4057
4058 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4059 CXXConversionDecl *Conv;
4060 if (ConvTemplate)
4061 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4062 else
4063 Conv = cast<CXXConversionDecl>(D);
4064
4065 if (ConvTemplate)
4066 S.AddTemplateConversionCandidate(
4067 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4068 CandidateSet, AllowExplicit, AllowExplicit,
4069 /*AllowResultConversion*/ false);
4070 else
4071 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4072 DestType, CandidateSet, AllowExplicit,
4073 AllowExplicit,
4074 /*AllowResultConversion*/ false);
4075 }
4076 }
4077 }
4078
4079 // Perform overload resolution and return the result.
4080 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4081}
4082
4083/// Attempt initialization by constructor (C++ [dcl.init]), which
4084/// enumerates the constructors of the initialized entity and performs overload
4085/// resolution to select the best.
4086/// \param DestType The destination class type.
4087/// \param DestArrayType The destination type, which is either DestType or
4088/// a (possibly multidimensional) array of DestType.
4089/// \param IsListInit Is this list-initialization?
4090/// \param IsInitListCopy Is this non-list-initialization resulting from a
4091/// list-initialization from {x} where x is the same
4092/// type as the entity?
4093static void TryConstructorInitialization(Sema &S,
4094 const InitializedEntity &Entity,
4095 const InitializationKind &Kind,
4096 MultiExprArg Args, QualType DestType,
4097 QualType DestArrayType,
4098 InitializationSequence &Sequence,
4099 bool IsListInit = false,
4100 bool IsInitListCopy = false) {
4101 assert(((!IsListInit && !IsInitListCopy) ||(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "clang/lib/Sema/SemaInit.cpp", 4104, __extension__ __PRETTY_FUNCTION__
))
4102 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "clang/lib/Sema/SemaInit.cpp", 4104, __extension__ __PRETTY_FUNCTION__
))
4103 "IsListInit/IsInitListCopy must come with a single initializer list "(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "clang/lib/Sema/SemaInit.cpp", 4104, __extension__ __PRETTY_FUNCTION__
))
4104 "argument.")(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "clang/lib/Sema/SemaInit.cpp", 4104, __extension__ __PRETTY_FUNCTION__
))
;
4105 InitListExpr *ILE =
4106 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4107 MultiExprArg UnwrappedArgs =
4108 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4109
4110 // The type we're constructing needs to be complete.
4111 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4112 Sequence.setIncompleteTypeFailure(DestType);
4113 return;
4114 }
4115
4116 // C++17 [dcl.init]p17:
4117 // - If the initializer expression is a prvalue and the cv-unqualified
4118 // version of the source type is the same class as the class of the
4119 // destination, the initializer expression is used to initialize the
4120 // destination object.
4121 // Per DR (no number yet), this does not apply when initializing a base
4122 // class or delegating to another constructor from a mem-initializer.
4123 // ObjC++: Lambda captured by the block in the lambda to block conversion
4124 // should avoid copy elision.
4125 if (S.getLangOpts().CPlusPlus17 &&
4126 Entity.getKind() != InitializedEntity::EK_Base &&
4127 Entity.getKind() != InitializedEntity::EK_Delegating &&
4128 Entity.getKind() !=
4129 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4130 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4131 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4132 // Convert qualifications if necessary.
4133 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4134 if (ILE)
4135 Sequence.RewrapReferenceInitList(DestType, ILE);
4136 return;
4137 }
4138
4139 const RecordType *DestRecordType = DestType->getAs<RecordType>();
4140 assert(DestRecordType && "Constructor initialization requires record type")(static_cast <bool> (DestRecordType && "Constructor initialization requires record type"
) ? void (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "clang/lib/Sema/SemaInit.cpp", 4140, __extension__ __PRETTY_FUNCTION__
))
;
4141 CXXRecordDecl *DestRecordDecl
4142 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4143
4144 // Build the candidate set directly in the initialization sequence
4145 // structure, so that it will persist if we fail.
4146 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4147
4148 // Determine whether we are allowed to call explicit constructors or
4149 // explicit conversion operators.
4150 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4151 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4152
4153 // - Otherwise, if T is a class type, constructors are considered. The
4154 // applicable constructors are enumerated, and the best one is chosen
4155 // through overload resolution.
4156 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4157
4158 OverloadingResult Result = OR_No_Viable_Function;
4159 OverloadCandidateSet::iterator Best;
4160 bool AsInitializerList = false;
4161
4162 // C++11 [over.match.list]p1, per DR1467:
4163 // When objects of non-aggregate type T are list-initialized, such that
4164 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4165 // according to the rules in this section, overload resolution selects
4166 // the constructor in two phases:
4167 //
4168 // - Initially, the candidate functions are the initializer-list
4169 // constructors of the class T and the argument list consists of the
4170 // initializer list as a single argument.
4171 if (IsListInit) {
4172 AsInitializerList = true;
4173
4174 // If the initializer list has no elements and T has a default constructor,
4175 // the first phase is omitted.
4176 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4177 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4178 CandidateSet, DestType, Ctors, Best,
4179 CopyInitialization, AllowExplicit,
4180 /*OnlyListConstructors=*/true,
4181 IsListInit);
4182 }
4183
4184 // C++11 [over.match.list]p1:
4185 // - If no viable initializer-list constructor is found, overload resolution
4186 // is performed again, where the candidate functions are all the
4187 // constructors of the class T and the argument list consists of the
4188 // elements of the initializer list.
4189 if (Result == OR_No_Viable_Function) {
4190 AsInitializerList = false;
4191 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4192 CandidateSet, DestType, Ctors, Best,
4193 CopyInitialization, AllowExplicit,
4194 /*OnlyListConstructors=*/false,
4195 IsListInit);
4196 }
4197 if (Result) {
4198 Sequence.SetOverloadFailure(
4199 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4200 : InitializationSequence::FK_ConstructorOverloadFailed,
4201 Result);
4202
4203 if (Result != OR_Deleted)
4204 return;
4205 }
4206
4207 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4208
4209 // In C++17, ResolveConstructorOverload can select a conversion function
4210 // instead of a constructor.
4211 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4212 // Add the user-defined conversion step that calls the conversion function.
4213 QualType ConvType = CD->getConversionType();
4214 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "clang/lib/Sema/SemaInit.cpp", 4215, __extension__ __PRETTY_FUNCTION__
))
4215 "should not have selected this conversion function")(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "clang/lib/Sema/SemaInit.cpp", 4215, __extension__ __PRETTY_FUNCTION__
))
;
4216 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4217 HadMultipleCandidates);
4218 if (!S.Context.hasSameType(ConvType, DestType))
4219 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4220 if (IsListInit)
4221 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4222 return;
4223 }
4224
4225 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4226 if (Result != OR_Deleted) {
4227 // C++11 [dcl.init]p6:
4228 // If a program calls for the default initialization of an object
4229 // of a const-qualified type T, T shall be a class type with a
4230 // user-provided default constructor.
4231 // C++ core issue 253 proposal:
4232 // If the implicit default constructor initializes all subobjects, no
4233 // initializer should be required.
4234 // The 253 proposal is for example needed to process libstdc++ headers
4235 // in 5.x.
4236 if (Kind.getKind() == InitializationKind::IK_Default &&
4237 Entity.getType().isConstQualified()) {
4238 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4239 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4240 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4241 return;
4242 }
4243 }
4244
4245 // C++11 [over.match.list]p1:
4246 // In copy-list-initialization, if an explicit constructor is chosen, the
4247 // initializer is ill-formed.
4248 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4249 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4250 return;
4251 }
4252 }
4253
4254 // [class.copy.elision]p3:
4255 // In some copy-initialization contexts, a two-stage overload resolution
4256 // is performed.
4257 // If the first overload resolution selects a deleted function, we also
4258 // need the initialization sequence to decide whether to perform the second
4259 // overload resolution.
4260 // For deleted functions in other contexts, there is no need to get the
4261 // initialization sequence.
4262 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4263 return;
4264
4265 // Add the constructor initialization step. Any cv-qualification conversion is
4266 // subsumed by the initialization.
4267 Sequence.AddConstructorInitializationStep(
4268 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4269 IsListInit | IsInitListCopy, AsInitializerList);
4270}
4271
4272static bool
4273ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4274 Expr *Initializer,
4275 QualType &SourceType,
4276 QualType &UnqualifiedSourceType,
4277 QualType UnqualifiedTargetType,
4278 InitializationSequence &Sequence) {
4279 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4280 S.Context.OverloadTy) {
4281 DeclAccessPair Found;
4282 bool HadMultipleCandidates = false;
4283 if (FunctionDecl *Fn
4284 = S.ResolveAddressOfOverloadedFunction(Initializer,
4285 UnqualifiedTargetType,
4286 false, Found,
4287 &HadMultipleCandidates)) {
4288 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4289 HadMultipleCandidates);
4290 SourceType = Fn->getType();
4291 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4292 } else if (!UnqualifiedTargetType->isRecordType()) {
4293 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4294 return true;
4295 }
4296 }
4297 return false;
4298}
4299
4300static void TryReferenceInitializationCore(Sema &S,
4301 const InitializedEntity &Entity,
4302 const InitializationKind &Kind,
4303 Expr *Initializer,
4304 QualType cv1T1, QualType T1,
4305 Qualifiers T1Quals,
4306 QualType cv2T2, QualType T2,
4307 Qualifiers T2Quals,
4308 InitializationSequence &Sequence);
4309
4310static void TryValueInitialization(Sema &S,
4311 const InitializedEntity &Entity,
4312 const InitializationKind &Kind,
4313 InitializationSequence &Sequence,
4314 InitListExpr *InitList = nullptr);
4315
4316/// Attempt list initialization of a reference.
4317static void TryReferenceListInitialization(Sema &S,
4318 const InitializedEntity &Entity,
4319 const InitializationKind &Kind,
4320 InitListExpr *InitList,
4321 InitializationSequence &Sequence,
4322 bool TreatUnavailableAsInvalid) {
4323 // First, catch C++03 where this isn't possible.
4324 if (!S.getLangOpts().CPlusPlus11) {
4325 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4326 return;
4327 }
4328 // Can't reference initialize a compound literal.
4329 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4330 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4331 return;
4332 }
4333
4334 QualType DestType = Entity.getType();
4335 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4336 Qualifiers T1Quals;
4337 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4338
4339 // Reference initialization via an initializer list works thus:
4340 // If the initializer list consists of a single element that is
4341 // reference-related to the referenced type, bind directly to that element
4342 // (possibly creating temporaries).
4343 // Otherwise, initialize a temporary with the initializer list and
4344 // bind to that.
4345 if (InitList->getNumInits() == 1) {
4346 Expr *Initializer = InitList->getInit(0);
4347 QualType cv2T2 = S.getCompletedType(Initializer);
4348 Qualifiers T2Quals;
4349 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4350
4351 // If this fails, creating a temporary wouldn't work either.
4352 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4353 T1, Sequence))
4354 return;
4355
4356 SourceLocation DeclLoc = Initializer->getBeginLoc();
4357 Sema::ReferenceCompareResult RefRelationship
4358 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4359 if (RefRelationship >= Sema::Ref_Related) {
4360 // Try to bind the reference here.
4361 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4362 T1Quals, cv2T2, T2, T2Quals, Sequence);
4363 if (Sequence)
4364 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4365 return;
4366 }
4367
4368 // Update the initializer if we've resolved an overloaded function.
4369 if (Sequence.step_begin() != Sequence.step_end())
4370 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4371 }
4372 // Perform address space compatibility check.
4373 QualType cv1T1IgnoreAS = cv1T1;
4374 if (T1Quals.hasAddressSpace()) {
4375 Qualifiers T2Quals;
4376 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4377 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4378 Sequence.SetFailed(
4379 InitializationSequence::FK_ReferenceInitDropsQualifiers);
4380 return;
4381 }
4382 // Ignore address space of reference type at this point and perform address
4383 // space conversion after the reference binding step.
4384 cv1T1IgnoreAS =
4385 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4386 }
4387 // Not reference-related. Create a temporary and bind to that.
4388 InitializedEntity TempEntity =
4389 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4390
4391 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4392 TreatUnavailableAsInvalid);
4393 if (Sequence) {
4394 if (DestType->isRValueReferenceType() ||
4395 (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4396 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4397 /*BindingTemporary=*/true);
4398 if (T1Quals.hasAddressSpace())
4399 Sequence.AddQualificationConversionStep(
4400 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4401 } else
4402 Sequence.SetFailed(
4403 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4404 }
4405}
4406
4407/// Attempt list initialization (C++0x [dcl.init.list])
4408static void TryListInitialization(Sema &S,
4409 const InitializedEntity &Entity,
4410 const InitializationKind &Kind,
4411 InitListExpr *InitList,
4412 InitializationSequence &Sequence,
4413 bool TreatUnavailableAsInvalid) {
4414 QualType DestType = Entity.getType();
4415
4416 // C++ doesn't allow scalar initialization with more than one argument.
4417 // But C99 complex numbers are scalars and it makes sense there.
4418 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4419 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4420 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4421 return;
4422 }
4423 if (DestType->isReferenceType()) {
4424 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4425 TreatUnavailableAsInvalid);
4426 return;
4427 }
4428
4429 if (DestType->isRecordType() &&
4430 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4431 Sequence.setIncompleteTypeFailure(DestType);
4432 return;
4433 }
4434
4435 // C++11 [dcl.init.list]p3, per DR1467:
4436 // - If T is a class type and the initializer list has a single element of
4437 // type cv U, where U is T or a class derived from T, the object is
4438 // initialized from that element (by copy-initialization for
4439 // copy-list-initialization, or by direct-initialization for
4440 // direct-list-initialization).
4441 // - Otherwise, if T is a character array and the initializer list has a
4442 // single element that is an appropriately-typed string literal
4443 // (8.5.2 [dcl.init.string]), initialization is performed as described
4444 // in that section.
4445 // - Otherwise, if T is an aggregate, [...] (continue below).
4446 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4447 if (DestType->isRecordType()) {
4448 QualType InitType = InitList->getInit(0)->getType();
4449 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4450 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4451 Expr *InitListAsExpr = InitList;
4452 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4453 DestType, Sequence,
4454 /*InitListSyntax*/false,
4455 /*IsInitListCopy*/true);
4456 return;
4457 }
4458 }
4459 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4460 Expr *SubInit[1] = {InitList->getInit(0)};
4461 if (!isa<VariableArrayType>(DestAT) &&
4462 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4463 InitializationKind SubKind =
4464 Kind.getKind() == InitializationKind::IK_DirectList
4465 ? InitializationKind::CreateDirect(Kind.getLocation(),
4466 InitList->getLBraceLoc(),
4467 InitList->getRBraceLoc())
4468 : Kind;
4469 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4470 /*TopLevelOfInitList*/ true,
4471 TreatUnavailableAsInvalid);
4472
4473 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4474 // the element is not an appropriately-typed string literal, in which
4475 // case we should proceed as in C++11 (below).
4476 if (Sequence) {
4477 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4478 return;
4479 }
4480 }
4481 }
4482 }
4483
4484 // C++11 [dcl.init.list]p3:
4485 // - If T is an aggregate, aggregate initialization is performed.
4486 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4487 (S.getLangOpts().CPlusPlus11 &&
4488 S.isStdInitializerList(DestType, nullptr))) {
4489 if (S.getLangOpts().CPlusPlus11) {
4490 // - Otherwise, if the initializer list has no elements and T is a
4491 // class type with a default constructor, the object is
4492 // value-initialized.
4493 if (InitList->getNumInits() == 0) {
4494 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4495 if (S.LookupDefaultConstructor(RD)) {
4496 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4497 return;
4498 }
4499 }
4500
4501 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4502 // an initializer_list object constructed [...]
4503 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4504 TreatUnavailableAsInvalid))
4505 return;
4506
4507 // - Otherwise, if T is a class type, constructors are considered.
4508 Expr *InitListAsExpr = InitList;
4509 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4510 DestType, Sequence, /*InitListSyntax*/true);
4511 } else
4512 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4513 return;
4514 }
4515
4516 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4517 InitList->getNumInits() == 1) {
4518 Expr *E = InitList->getInit(0);
4519
4520 // - Otherwise, if T is an enumeration with a fixed underlying type,
4521 // the initializer-list has a single element v, and the initialization
4522 // is direct-list-initialization, the object is initialized with the
4523 // value T(v); if a narrowing conversion is required to convert v to
4524 // the underlying type of T, the program is ill-formed.
4525 auto *ET = DestType->getAs<EnumType>();
4526 if (S.getLangOpts().CPlusPlus17 &&
4527 Kind.getKind() == InitializationKind::IK_DirectList &&
4528 ET && ET->getDecl()->isFixed() &&
4529 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4530 (E->getType()->isIntegralOrUnscopedEnumerationType() ||
4531 E->getType()->isFloatingType())) {
4532 // There are two ways that T(v) can work when T is an enumeration type.
4533 // If there is either an implicit conversion sequence from v to T or
4534 // a conversion function that can convert from v to T, then we use that.
4535 // Otherwise, if v is of integral, unscoped enumeration, or floating-point
4536 // type, it is converted to the enumeration type via its underlying type.
4537 // There is no overlap possible between these two cases (except when the
4538 // source value is already of the destination type), and the first
4539 // case is handled by the general case for single-element lists below.
4540 ImplicitConversionSequence ICS;
4541 ICS.setStandard();
4542 ICS.Standard.setAsIdentityConversion();
4543 if (!E->isPRValue())
4544 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4545 // If E is of a floating-point type, then the conversion is ill-formed
4546 // due to narrowing, but go through the motions in order to produce the
4547 // right diagnostic.
4548 ICS.Standard.Second = E->getType()->isFloatingType()
4549 ? ICK_Floating_Integral
4550 : ICK_Integral_Conversion;
4551 ICS.Standard.setFromType(E->getType());
4552 ICS.Standard.setToType(0, E->getType());
4553 ICS.Standard.setToType(1, DestType);
4554 ICS.Standard.setToType(2, DestType);
4555 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4556 /*TopLevelOfInitList*/true);
4557 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4558 return;
4559 }
4560
4561 // - Otherwise, if the initializer list has a single element of type E
4562 // [...references are handled above...], the object or reference is
4563 // initialized from that element (by copy-initialization for
4564 // copy-list-initialization, or by direct-initialization for
4565 // direct-list-initialization); if a narrowing conversion is required
4566 // to convert the element to T, the program is ill-formed.
4567 //
4568 // Per core-24034, this is direct-initialization if we were performing
4569 // direct-list-initialization and copy-initialization otherwise.
4570 // We can't use InitListChecker for this, because it always performs
4571 // copy-initialization. This only matters if we might use an 'explicit'
4572 // conversion operator, or for the special case conversion of nullptr_t to
4573 // bool, so we only need to handle those cases.
4574 //
4575 // FIXME: Why not do this in all cases?
4576 Expr *Init = InitList->getInit(0);
4577 if (Init->getType()->isRecordType() ||
4578 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4579 InitializationKind SubKind =
4580 Kind.getKind() == InitializationKind::IK_DirectList
4581 ? InitializationKind::CreateDirect(Kind.getLocation(),
4582 InitList->getLBraceLoc(),
4583 InitList->getRBraceLoc())
4584 : Kind;
4585 Expr *SubInit[1] = { Init };
4586 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4587 /*TopLevelOfInitList*/true,
4588 TreatUnavailableAsInvalid);
4589 if (Sequence)
4590 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4591 return;
4592 }
4593 }
4594
4595 InitListChecker CheckInitList(S, Entity, InitList,
4596 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4597 if (CheckInitList.HadError()) {
4598 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4599 return;
4600 }
4601
4602 // Add the list initialization step with the built init list.
4603 Sequence.AddListInitializationStep(DestType);
4604}
4605
4606/// Try a reference initialization that involves calling a conversion
4607/// function.
4608static OverloadingResult TryRefInitWithConversionFunction(
4609 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4610 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4611 InitializationSequence &Sequence) {
4612 QualType DestType = Entity.getType();
4613 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4614 QualType T1 = cv1T1.getUnqualifiedType();
4615 QualType cv2T2 = Initializer->getType();
4616 QualType T2 = cv2T2.getUnqualifiedType();
4617
4618 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "clang/lib/Sema/SemaInit.cpp", 4619, __extension__ __PRETTY_FUNCTION__
))
4619 "Must have incompatible references when binding via conversion")(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "clang/lib/Sema/SemaInit.cpp", 4619, __extension__ __PRETTY_FUNCTION__
))
;
4620
4621 // Build the candidate set directly in the initialization sequence
4622 // structure, so that it will persist if we fail.
4623 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4624 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4625
4626 // Determine whether we are allowed to call explicit conversion operators.
4627 // Note that none of [over.match.copy], [over.match.conv], nor
4628 // [over.match.ref] permit an explicit constructor to be chosen when
4629 // initializing a reference, not even for direct-initialization.
4630 bool AllowExplicitCtors = false;
4631 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4632
4633 const RecordType *T1RecordType = nullptr;
4634 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4635 S.isCompleteType(Kind.getLocation(), T1)) {
4636 // The type we're converting to is a class type. Enumerate its constructors
4637 // to see if there is a suitable conversion.
4638 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4639
4640 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4641 auto Info = getConstructorInfo(D);
4642 if (!Info.Constructor)
4643 continue;
4644
4645 if (!Info.Constructor->isInvalidDecl() &&
4646 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4647 if (Info.ConstructorTmpl)
4648 S.AddTemplateOverloadCandidate(
4649 Info.ConstructorTmpl, Info.FoundDecl,
4650 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4651 /*SuppressUserConversions=*/true,
4652 /*PartialOverloading*/ false, AllowExplicitCtors);
4653 else
4654 S.AddOverloadCandidate(
4655 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4656 /*SuppressUserConversions=*/true,
4657 /*PartialOverloading*/ false, AllowExplicitCtors);
4658 }
4659 }
4660 }
4661 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4662 return OR_No_Viable_Function;
4663
4664 const RecordType *T2RecordType = nullptr;
4665 if ((T2RecordType = T2->getAs<RecordType>()) &&
4666 S.isCompleteType(Kind.getLocation(), T2)) {
4667 // The type we're converting from is a class type, enumerate its conversion
4668 // functions.
4669 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4670
4671 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4672 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4673 NamedDecl *D = *I;
4674 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4675 if (isa<UsingShadowDecl>(D))
4676 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4677
4678 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4679 CXXConversionDecl *Conv;
4680 if (ConvTemplate)
4681 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4682 else
4683 Conv = cast<CXXConversionDecl>(D);
4684
4685 // If the conversion function doesn't return a reference type,
4686 // it can't be considered for this conversion unless we're allowed to
4687 // consider rvalues.
4688 // FIXME: Do we need to make sure that we only consider conversion
4689 // candidates with reference-compatible results? That might be needed to
4690 // break recursion.
4691 if ((AllowRValues ||
4692 Conv->getConversionType()->isLValueReferenceType())) {
4693 if (ConvTemplate)
4694 S.AddTemplateConversionCandidate(
4695 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4696 CandidateSet,
4697 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4698 else
4699 S.AddConversionCandidate(
4700 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4701 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4702 }
4703 }
4704 }
4705 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4706 return OR_No_Viable_Function;
4707
4708 SourceLocation DeclLoc = Initializer->getBeginLoc();
4709
4710 // Perform overload resolution. If it fails, return the failed result.
4711 OverloadCandidateSet::iterator Best;
4712 if (OverloadingResult Result
4713 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4714 return Result;
4715
4716 FunctionDecl *Function = Best->Function;
4717 // This is the overload that will be used for this initialization step if we
4718 // use this initialization. Mark it as referenced.
4719 Function->setReferenced();
4720
4721 // Compute the returned type and value kind of the conversion.
4722 QualType cv3T3;
4723 if (isa<CXXConversionDecl>(Function))
4724 cv3T3 = Function->getReturnType();
4725 else
4726 cv3T3 = T1;
4727
4728 ExprValueKind VK = VK_PRValue;
4729 if (cv3T3->isLValueReferenceType())
4730 VK = VK_LValue;
4731 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4732 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4733 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4734
4735 // Add the user-defined conversion step.
4736 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4737 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4738 HadMultipleCandidates);
4739
4740 // Determine whether we'll need to perform derived-to-base adjustments or
4741 // other conversions.
4742 Sema::ReferenceConversions RefConv;
4743 Sema::ReferenceCompareResult NewRefRelationship =
4744 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4745
4746 // Add the final conversion sequence, if necessary.
4747 if (NewRefRelationship == Sema::Ref_Incompatible) {
4748 assert(!isa<CXXConstructorDecl>(Function) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "clang/lib/Sema/SemaInit.cpp", 4749, __extension__ __PRETTY_FUNCTION__
))
4749 "should not have conversion after constructor")(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "clang/lib/Sema/SemaInit.cpp", 4749, __extension__ __PRETTY_FUNCTION__
))
;
4750
4751 ImplicitConversionSequence ICS;
4752 ICS.setStandard();
4753 ICS.Standard = Best->FinalConversion;
4754 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4755
4756 // Every implicit conversion results in a prvalue, except for a glvalue
4757 // derived-to-base conversion, which we handle below.
4758 cv3T3 = ICS.Standard.getToType(2);
4759 VK = VK_PRValue;
4760 }
4761
4762 // If the converted initializer is a prvalue, its type T4 is adjusted to
4763 // type "cv1 T4" and the temporary materialization conversion is applied.
4764 //
4765 // We adjust the cv-qualifications to match the reference regardless of
4766 // whether we have a prvalue so that the AST records the change. In this
4767 // case, T4 is "cv3 T3".
4768 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4769 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4770 Sequence.AddQualificationConversionStep(cv1T4, VK);
4771 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4772 VK = IsLValueRef ? VK_LValue : VK_XValue;
4773
4774 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4775 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4776 else if (RefConv & Sema::ReferenceConversions::ObjC)
4777 Sequence.AddObjCObjectConversionStep(cv1T1);
4778 else if (RefConv & Sema::ReferenceConversions::Function)
4779 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4780 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4781 if (!S.Context.hasSameType(cv1T4, cv1T1))
4782 Sequence.AddQualificationConversionStep(cv1T1, VK);
4783 }
4784
4785 return OR_Success;
4786}
4787
4788static void CheckCXX98CompatAccessibleCopy(Sema &S,
4789 const InitializedEntity &Entity,
4790 Expr *CurInitExpr);
4791
4792/// Attempt reference initialization (C++0x [dcl.init.ref])
4793static void TryReferenceInitialization(Sema &S,
4794 const InitializedEntity &Entity,
4795 const InitializationKind &Kind,
4796 Expr *Initializer,
4797 InitializationSequence &Sequence) {
4798 QualType DestType = Entity.getType();
4799 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4800 Qualifiers T1Quals;
4801 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4802 QualType cv2T2 = S.getCompletedType(Initializer);
4803 Qualifiers T2Quals;
4804 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4805
4806 // If the initializer is the address of an overloaded function, try
4807 // to resolve the overloaded function. If all goes well, T2 is the
4808 // type of the resulting function.
4809 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4810 T1, Sequence))
4811 return;
4812
4813 // Delegate everything else to a subfunction.
4814 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4815 T1Quals, cv2T2, T2, T2Quals, Sequence);
4816}
4817
4818/// Determine whether an expression is a non-referenceable glvalue (one to
4819/// which a reference can never bind). Attempting to bind a reference to
4820/// such a glvalue will always create a temporary.
4821static bool isNonReferenceableGLValue(Expr *E) {
4822 return E->refersToBitField() || E->refersToVectorElement() ||
4823 E->refersToMatrixElement();
4824}
4825
4826/// Reference initialization without resolving overloaded functions.
4827///
4828/// We also can get here in C if we call a builtin which is declared as
4829/// a function with a parameter of reference type (such as __builtin_va_end()).
4830static void TryReferenceInitializationCore(Sema &S,
4831 const InitializedEntity &Entity,
4832 const InitializationKind &Kind,
4833 Expr *Initializer,
4834 QualType cv1T1, QualType T1,
4835 Qualifiers T1Quals,
4836 QualType cv2T2, QualType T2,
4837 Qualifiers T2Quals,
4838 InitializationSequence &Sequence) {
4839 QualType DestType = Entity.getType();
4840 SourceLocation DeclLoc = Initializer->getBeginLoc();
4841
4842 // Compute some basic properties of the types and the initializer.
4843 bool isLValueRef = DestType->isLValueReferenceType();
4844 bool isRValueRef = !isLValueRef;
4845 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4846
4847 Sema::ReferenceConversions RefConv;
4848 Sema::ReferenceCompareResult RefRelationship =
4849 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4850
4851 // C++0x [dcl.init.ref]p5:
4852 // A reference to type "cv1 T1" is initialized by an expression of type
4853 // "cv2 T2" as follows:
4854 //
4855 // - If the reference is an lvalue reference and the initializer
4856 // expression
4857 // Note the analogous bullet points for rvalue refs to functions. Because
4858 // there are no function rvalues in C++, rvalue refs to functions are treated
4859 // like lvalue refs.
4860 OverloadingResult ConvOvlResult = OR_Success;
4861 bool T1Function = T1->isFunctionType();
4862 if (isLValueRef || T1Function) {
4863 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4864 (RefRelationship == Sema::Ref_Compatible ||
4865 (Kind.isCStyleOrFunctionalCast() &&
4866 RefRelationship == Sema::Ref_Related))) {
4867 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4868 // reference-compatible with "cv2 T2," or
4869 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4870 Sema::ReferenceConversions::ObjC)) {
4871 // If we're converting the pointee, add any qualifiers first;
4872 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4873 if (RefConv & (Sema::ReferenceConversions::Qualification))
4874 Sequence.AddQualificationConversionStep(
4875 S.Context.getQualifiedType(T2, T1Quals),
4876 Initializer->getValueKind());
4877 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4878 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4879 else
4880 Sequence.AddObjCObjectConversionStep(cv1T1);
4881 } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4882 // Perform a (possibly multi-level) qualification conversion.
4883 Sequence.AddQualificationConversionStep(cv1T1,
4884 Initializer->getValueKind());
4885 } else if (RefConv & Sema::ReferenceConversions::Function) {
4886 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4887 }
4888
4889 // We only create a temporary here when binding a reference to a
4890 // bit-field or vector element. Those cases are't supposed to be
4891 // handled by this bullet, but the outcome is the same either way.
4892 Sequence.AddReferenceBindingStep(cv1T1, false);
4893 return;
4894 }
4895
4896 // - has a class type (i.e., T2 is a class type), where T1 is not
4897 // reference-related to T2, and can be implicitly converted to an
4898 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4899 // with "cv3 T3" (this conversion is selected by enumerating the
4900 // applicable conversion functions (13.3.1.6) and choosing the best
4901 // one through overload resolution (13.3)),
4902 // If we have an rvalue ref to function type here, the rhs must be
4903 // an rvalue. DR1287 removed the "implicitly" here.
4904 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4905 (isLValueRef || InitCategory.isRValue())) {
4906 if (S.getLangOpts().CPlusPlus) {
4907 // Try conversion functions only for C++.
4908 ConvOvlResult = TryRefInitWithConversionFunction(
4909 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4910 /*IsLValueRef*/ isLValueRef, Sequence);
4911 if (ConvOvlResult == OR_Success)
4912 return;
4913 if (ConvOvlResult != OR_No_Viable_Function)
4914 Sequence.SetOverloadFailure(
4915 InitializationSequence::FK_ReferenceInitOverloadFailed,
4916 ConvOvlResult);
4917 } else {
4918 ConvOvlResult = OR_No_Viable_Function;
4919 }
4920 }
4921 }
4922
4923 // - Otherwise, the reference shall be an lvalue reference to a
4924 // non-volatile const type (i.e., cv1 shall be const), or the reference
4925 // shall be an rvalue reference.
4926 // For address spaces, we interpret this to mean that an addr space
4927 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4928 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4929 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4930 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4931 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4932 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4933 Sequence.SetOverloadFailure(
4934 InitializationSequence::FK_ReferenceInitOverloadFailed,
4935 ConvOvlResult);
4936 else if (!InitCategory.isLValue())
4937 Sequence.SetFailed(
4938 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4939 ? InitializationSequence::
4940 FK_NonConstLValueReferenceBindingToTemporary
4941 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4942 else {
4943 InitializationSequence::FailureKind FK;
4944 switch (RefRelationship) {
4945 case Sema::Ref_Compatible:
4946 if (Initializer->refersToBitField())
4947 FK = InitializationSequence::
4948 FK_NonConstLValueReferenceBindingToBitfield;
4949 else if (Initializer->refersToVectorElement())
4950 FK = InitializationSequence::
4951 FK_NonConstLValueReferenceBindingToVectorElement;
4952 else if (Initializer->refersToMatrixElement())
4953 FK = InitializationSequence::
4954 FK_NonConstLValueReferenceBindingToMatrixElement;
4955 else
4956 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "clang/lib/Sema/SemaInit.cpp", 4956)
;
4957 break;
4958 case Sema::Ref_Related:
4959 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4960 break;
4961 case Sema::Ref_Incompatible:
4962 FK = InitializationSequence::
4963 FK_NonConstLValueReferenceBindingToUnrelated;
4964 break;
4965 }
4966 Sequence.SetFailed(FK);
4967 }
4968 return;
4969 }
4970
4971 // - If the initializer expression
4972 // - is an
4973 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4974 // [1z] rvalue (but not a bit-field) or
4975 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4976 //
4977 // Note: functions are handled above and below rather than here...
4978 if (!T1Function &&
4979 (RefRelationship == Sema::Ref_Compatible ||
4980 (Kind.isCStyleOrFunctionalCast() &&
4981 RefRelationship == Sema::Ref_Related)) &&
4982 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4983 (InitCategory.isPRValue() &&
4984 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4985 T2->isArrayType())))) {
4986 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4987 if (InitCategory.isPRValue() && T2->isRecordType()) {
4988 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4989 // compiler the freedom to perform a copy here or bind to the
4990 // object, while C++0x requires that we bind directly to the
4991 // object. Hence, we always bind to the object without making an
4992 // extra copy. However, in C++03 requires that we check for the
4993 // presence of a suitable copy constructor:
4994 //
4995 // The constructor that would be used to make the copy shall
4996 // be callable whether or not the copy is actually done.
4997 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4998 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4999 else if (S.getLangOpts().CPlusPlus11)
5000 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
5001 }
5002
5003 // C++1z [dcl.init.ref]/5.2.1.2:
5004 // If the converted initializer is a prvalue, its type T4 is adjusted
5005 // to type "cv1 T4" and the temporary materialization conversion is
5006 // applied.
5007 // Postpone address space conversions to after the temporary materialization
5008 // conversion to allow creating temporaries in the alloca address space.
5009 auto T1QualsIgnoreAS = T1Quals;
5010 auto T2QualsIgnoreAS = T2Quals;
5011 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5012 T1QualsIgnoreAS.removeAddressSpace();
5013 T2QualsIgnoreAS.removeAddressSpace();
5014 }
5015 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
5016 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
5017 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
5018 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
5019 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
5020 // Add addr space conversion if required.
5021 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5022 auto T4Quals = cv1T4.getQualifiers();
5023 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
5024 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
5025 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5026 cv1T4 = cv1T4WithAS;
5027 }
5028
5029 // In any case, the reference is bound to the resulting glvalue (or to
5030 // an appropriate base class subobject).
5031 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5032 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5033 else if (RefConv & Sema::ReferenceConversions::ObjC)
5034 Sequence.AddObjCObjectConversionStep(cv1T1);
5035 else if (RefConv & Sema::ReferenceConversions::Qualification) {
5036 if (!S.Context.hasSameType(cv1T4, cv1T1))
5037 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5038 }
5039 return;
5040 }
5041
5042 // - has a class type (i.e., T2 is a class type), where T1 is not
5043 // reference-related to T2, and can be implicitly converted to an
5044 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
5045 // where "cv1 T1" is reference-compatible with "cv3 T3",
5046 //
5047 // DR1287 removes the "implicitly" here.
5048 if (T2->isRecordType()) {
5049 if (RefRelationship == Sema::Ref_Incompatible) {
5050 ConvOvlResult = TryRefInitWithConversionFunction(
5051 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5052 /*IsLValueRef*/ isLValueRef, Sequence);
5053 if (ConvOvlResult)
5054 Sequence.SetOverloadFailure(
5055 InitializationSequence::FK_ReferenceInitOverloadFailed,
5056 ConvOvlResult);
5057
5058 return;
5059 }
5060
5061 if (RefRelationship == Sema::Ref_Compatible &&
5062 isRValueRef && InitCategory.isLValue()) {
5063 Sequence.SetFailed(
5064 InitializationSequence::FK_RValueReferenceBindingToLValue);
5065 return;
5066 }
5067
5068 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5069 return;
5070 }
5071
5072 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
5073 // from the initializer expression using the rules for a non-reference
5074 // copy-initialization (8.5). The reference is then bound to the
5075 // temporary. [...]
5076
5077 // Ignore address space of reference type at this point and perform address
5078 // space conversion after the reference binding step.
5079 QualType cv1T1IgnoreAS =
5080 T1Quals.hasAddressSpace()
5081 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5082 : cv1T1;
5083
5084 InitializedEntity TempEntity =
5085 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5086
5087 // FIXME: Why do we use an implicit conversion here rather than trying
5088 // copy-initialization?
5089 ImplicitConversionSequence ICS
5090 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5091 /*SuppressUserConversions=*/false,
5092 Sema::AllowedExplicit::None,
5093 /*FIXME:InOverloadResolution=*/false,
5094 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5095 /*AllowObjCWritebackConversion=*/false);
5096
5097 if (ICS.isBad()) {
5098 // FIXME: Use the conversion function set stored in ICS to turn
5099 // this into an overloading ambiguity diagnostic. However, we need
5100 // to keep that set as an OverloadCandidateSet rather than as some
5101 // other kind of set.
5102 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5103 Sequence.SetOverloadFailure(
5104 InitializationSequence::FK_ReferenceInitOverloadFailed,
5105 ConvOvlResult);
5106 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5107 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5108 else
5109 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5110 return;
5111 } else {
5112 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5113 }
5114
5115 // [...] If T1 is reference-related to T2, cv1 must be the
5116 // same cv-qualification as, or greater cv-qualification
5117 // than, cv2; otherwise, the program is ill-formed.
5118 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5119 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5120 if (RefRelationship == Sema::Ref_Related &&
5121 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5122 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5123 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5124 return;
5125 }
5126
5127 // [...] If T1 is reference-related to T2 and the reference is an rvalue
5128 // reference, the initializer expression shall not be an lvalue.
5129 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5130 InitCategory.isLValue()) {
5131 Sequence.SetFailed(
5132 InitializationSequence::FK_RValueReferenceBindingToLValue);
5133 return;
5134 }
5135
5136 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5137
5138 if (T1Quals.hasAddressSpace()) {
5139 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5140 LangAS::Default)) {
5141 Sequence.SetFailed(
5142 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5143 return;
5144 }
5145 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5146 : VK_XValue);
5147 }
5148}
5149
5150/// Attempt character array initialization from a string literal
5151/// (C++ [dcl.init.string], C99 6.7.8).
5152static void TryStringLiteralInitialization(Sema &S,
5153 const InitializedEntity &Entity,
5154 const InitializationKind &Kind,
5155 Expr *Initializer,
5156 InitializationSequence &Sequence) {
5157 Sequence.AddStringInitStep(Entity.getType());
5158}
5159
5160/// Attempt value initialization (C++ [dcl.init]p7).
5161static void TryValueInitialization(Sema &S,
5162 const InitializedEntity &Entity,
5163 const InitializationKind &Kind,
5164 InitializationSequence &Sequence,
5165 InitListExpr *InitList) {
5166 assert((!InitList || InitList->getNumInits() == 0) &&(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "clang/lib/Sema/SemaInit.cpp", 5167, __extension__ __PRETTY_FUNCTION__
))
5167 "Shouldn't use value-init for non-empty init lists")(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "clang/lib/Sema/SemaInit.cpp", 5167, __extension__ __PRETTY_FUNCTION__
))
;
5168
5169 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5170 //
5171 // To value-initialize an object of type T means:
5172 QualType T = Entity.getType();
5173
5174 // -- if T is an array type, then each element is value-initialized;
5175 T = S.Context.getBaseElementType(T);
5176
5177 if (const RecordType *RT = T->getAs<RecordType>()) {
5178 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5179 bool NeedZeroInitialization = true;
5180 // C++98:
5181 // -- if T is a class type (clause 9) with a user-declared constructor
5182 // (12.1), then the default constructor for T is called (and the
5183 // initialization is ill-formed if T has no accessible default
5184 // constructor);
5185 // C++11:
5186 // -- if T is a class type (clause 9) with either no default constructor
5187 // (12.1 [class.ctor]) or a default constructor that is user-provided
5188 // or deleted, then the object is default-initialized;
5189 //
5190 // Note that the C++11 rule is the same as the C++98 rule if there are no
5191 // defaulted or deleted constructors, so we just use it unconditionally.
5192 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5193 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5194 NeedZeroInitialization = false;
5195
5196 // -- if T is a (possibly cv-qualified) non-union class type without a
5197 // user-provided or deleted default constructor, then the object is
5198 // zero-initialized and, if T has a non-trivial default constructor,
5199 // default-initialized;
5200 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5201 // constructor' part was removed by DR1507.
5202 if (NeedZeroInitialization)
5203 Sequence.AddZeroInitializationStep(Entity.getType());
5204
5205 // C++03:
5206 // -- if T is a non-union class type without a user-declared constructor,
5207 // then every non-static data member and base class component of T is
5208 // value-initialized;
5209 // [...] A program that calls for [...] value-initialization of an
5210 // entity of reference type is ill-formed.
5211 //
5212 // C++11 doesn't need this handling, because value-initialization does not
5213 // occur recursively there, and the implicit default constructor is
5214 // defined as deleted in the problematic cases.
5215 if (!S.getLangOpts().CPlusPlus11 &&
5216 ClassDecl->hasUninitializedReferenceMember()) {
5217 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5218 return;
5219 }
5220
5221 // If this is list-value-initialization, pass the empty init list on when
5222 // building the constructor call. This affects the semantics of a few
5223 // things (such as whether an explicit default constructor can be called).
5224 Expr *InitListAsExpr = InitList;
5225 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5226 bool InitListSyntax = InitList;
5227
5228 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5229 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5230 return TryConstructorInitialization(
5231 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5232 }
5233 }
5234
5235 Sequence.AddZeroInitializationStep(Entity.getType());
5236}
5237
5238/// Attempt default initialization (C++ [dcl.init]p6).
5239static void TryDefaultInitialization(Sema &S,
5240 const InitializedEntity &Entity,
5241 const InitializationKind &Kind,
5242 InitializationSequence &Sequence) {
5243 assert(Kind.getKind() == InitializationKind::IK_Default)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Default) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "clang/lib/Sema/SemaInit.cpp", 5243, __extension__ __PRETTY_FUNCTION__
))
;
5244
5245 // C++ [dcl.init]p6:
5246 // To default-initialize an object of type T means:
5247 // - if T is an array type, each element is default-initialized;
5248 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5249
5250 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5251 // constructor for T is called (and the initialization is ill-formed if
5252 // T has no accessible default constructor);
5253 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5254 TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType,
5255 Entity.getType(), Sequence);
5256 return;
5257 }
5258
5259 // - otherwise, no initialization is performed.
5260
5261 // If a program calls for the default initialization of an object of
5262 // a const-qualified type T, T shall be a class type with a user-provided
5263 // default constructor.
5264 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5265 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5266 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5267 return;
5268 }
5269
5270 // If the destination type has a lifetime property, zero-initialize it.
5271 if (DestType.getQualifiers().hasObjCLifetime()) {
5272 Sequence.AddZeroInitializationStep(Entity.getType());
5273 return;
5274 }
5275}
5276
5277static void TryOrBuildParenListInitialization(
5278 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5279 ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly,
5280 ExprResult *Result = nullptr) {
5281 unsigned ArgIndexToProcess = 0;
5282 SmallVector<Expr *, 4> InitExprs;
5283 QualType ResultType;
5284 Expr *ArrayFiller = nullptr;
5285 FieldDecl *InitializedFieldInUnion = nullptr;
5286
5287 // Process entities (i.e. array members, base classes, or class fields) by
5288 // adding an initialization expression to InitExprs for each entity to
5289 // initialize.
5290 auto ProcessEntities = [&](auto Range) -> bool {
5291 bool IsUnionType = Entity.getType()->isUnionType();
5292 for (InitializedEntity SubEntity : Range) {
5293 // Unions should only have one initializer expression.
5294 // If there are more initializers than it will be caught when we check
5295 // whether Index equals Args.size().
5296 if (ArgIndexToProcess == 1 && IsUnionType)
5297 return true;
5298
5299 bool IsMember = SubEntity.getKind() == InitializedEntity::EK_Member;
5300
5301 // Unnamed bitfields should not be initialized at all, either with an arg
5302 // or by default.
5303 if (IsMember && cast<FieldDecl>(SubEntity.getDecl())->isUnnamedBitfield())
5304 continue;
5305
5306 if (ArgIndexToProcess < Args.size()) {
5307 // There are still expressions in Args that haven't been processed.
5308 // Let's match them to the current entity to initialize.
5309 Expr *E = Args[ArgIndexToProcess++];
5310
5311 // Incomplete array types indicate flexible array members. Do not allow
5312 // paren list initializations of structs with these members, as GCC
5313 // doesn't either.
5314 if (IsMember) {
5315 auto *FD = cast<FieldDecl>(SubEntity.getDecl());
5316 if (FD->getType()->isIncompleteArrayType()) {
5317 if (!VerifyOnly) {
5318 S.Diag(E->getBeginLoc(), diag::err_flexible_array_init)
5319 << SourceRange(E->getBeginLoc(), E->getEndLoc());
5320 S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD;
5321 }
5322 Sequence.SetFailed(
5323 InitializationSequence::FK_ParenthesizedListInitFailed);
5324 return false;
5325 }
5326 }
5327
5328 InitializationKind SubKind = InitializationKind::CreateForInit(
5329 E->getExprLoc(), /*isDirectInit=*/false, E);
5330 InitializationSequence SubSeq(S, SubEntity, SubKind, E);
5331
5332 if (SubSeq.Failed()) {
5333 if (!VerifyOnly)
5334 SubSeq.Diagnose(S, SubEntity, SubKind, E);
5335 else
5336 Sequence.SetFailed(
5337 InitializationSequence::FK_ParenthesizedListInitFailed);
5338
5339 return false;
5340 }
5341 if (!VerifyOnly) {
5342 ExprResult ER = SubSeq.Perform(S, SubEntity, SubKind, E);
5343 InitExprs.push_back(ER.get());
5344 if (IsMember && IsUnionType)
5345 InitializedFieldInUnion = cast<FieldDecl>(SubEntity.getDecl());
5346 }
5347 } else {
5348 // We've processed all of the args, but there are still entities that
5349 // have to be initialized.
5350 if (IsMember) {
5351 // C++ [dcl.init]p17.6.2.2
5352 // The remaining elements are initialized with their default member
5353 // initializers, if any
5354 auto *FD = cast<FieldDecl>(SubEntity.getDecl());
5355 if (Expr *ICE = FD->getInClassInitializer(); ICE && !VerifyOnly) {
5356 ExprResult DIE = S.BuildCXXDefaultInitExpr(FD->getLocation(), FD);
5357 if (DIE.isInvalid())
5358 return false;
5359 S.checkInitializerLifetime(SubEntity, DIE.get());
5360 InitExprs.push_back(DIE.get());
5361 continue;
5362 };
5363 }
5364 // Remaining class elements without default member initializers and
5365 // array elements are value initialized:
5366 //
5367 // C++ [dcl.init]p17.6.2.2
5368 // The remaining elements...otherwise are value initialzed
5369 //
5370 // C++ [dcl.init]p17.5
5371 // if the destination type is an array, the object is initialized as
5372 // . follows. Let x1, . . . , xk be the elements of the expression-list
5373 // ...Let n denote the array size...the ith array element is...value-
5374 // initialized for each k < i <= n.
5375 InitializationKind SubKind = InitializationKind::CreateValue(
5376 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true);
5377 InitializationSequence SubSeq(S, SubEntity, SubKind, std::nullopt);
5378 if (SubSeq.Failed()) {
5379 if (!VerifyOnly)
5380 SubSeq.Diagnose(S, SubEntity, SubKind, std::nullopt);
5381 return false;
5382 }
5383 if (!VerifyOnly) {
5384 ExprResult ER = SubSeq.Perform(S, SubEntity, SubKind, std::nullopt);
5385 if (SubEntity.getKind() == InitializedEntity::EK_ArrayElement) {
5386 ArrayFiller = ER.get();
5387 return true;
5388 }
5389 InitExprs.push_back(ER.get());
5390 }
5391 }
5392 }
5393 return true;
5394 };
5395
5396 if (const ArrayType *AT =
5397 S.getASTContext().getAsArrayType(Entity.getType())) {
5398
5399 SmallVector<InitializedEntity, 4> ElementEntities;
5400 uint64_t ArrayLength;
5401 // C++ [dcl.init]p17.5
5402 // if the destination type is an array, the object is initialized as
5403 // follows. Let x1, . . . , xk be the elements of the expression-list. If
5404 // the destination type is an array of unknown bound, it is define as
5405 // having k elements.
5406 if (const ConstantArrayType *CAT =
5407 S.getASTContext().getAsConstantArrayType(Entity.getType()))
5408 ArrayLength = CAT->getSize().getZExtValue();
5409 else
5410 ArrayLength = Args.size();
5411
5412 if (ArrayLength >= Args.size()) {
5413 for (uint64_t I = 0; I < ArrayLength; ++I)
5414 ElementEntities.push_back(
5415 InitializedEntity::InitializeElement(S.getASTContext(), I, Entity));
5416
5417 if (!ProcessEntities(ElementEntities))
5418 return;
5419
5420 ResultType = S.Context.getConstantArrayType(
5421 AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength),
5422 nullptr, ArrayType::Normal, 0);
5423 }
5424 } else if (auto *RT = Entity.getType()->getAs<RecordType>()) {
5425 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5426
5427 auto BaseRange = map_range(RD->bases(), [&S](auto &base) {
5428 return InitializedEntity::InitializeBase(S.getASTContext(), &base, false);
5429 });
5430 auto FieldRange = map_range(RD->fields(), [](auto *field) {
5431 return InitializedEntity::InitializeMember(field);
5432 });
5433
5434 if (!ProcessEntities(BaseRange))
5435 return;
5436
5437 if (!ProcessEntities(FieldRange))
5438 return;
5439
5440 ResultType = Entity.getType();
5441 }
5442
5443 // Not all of the args have been processed, so there must've been more args
5444 // than were required to initialize the element.
5445 if (ArgIndexToProcess < Args.size()) {
5446 Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed);
5447 if (!VerifyOnly) {
5448 QualType T = Entity.getType();
5449 int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4;
5450 SourceRange ExcessInitSR(Args[ArgIndexToProcess]->getBeginLoc(),
5451 Args.back()->getEndLoc());
5452 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5453 << InitKind << ExcessInitSR;
5454 }
5455 return;
5456 }
5457
5458 if (VerifyOnly) {
5459 Sequence.setSequenceKind(InitializationSequence::NormalSequence);
5460 Sequence.AddParenthesizedListInitStep(Entity.getType());
5461 } else if (Result) {
5462 SourceRange SR = Kind.getParenOrBraceRange();
5463 auto *CPLIE = CXXParenListInitExpr::Create(
5464 S.getASTContext(), InitExprs, ResultType, Args.size(),
5465 Kind.getLocation(), SR.getBegin(), SR.getEnd());
5466 if (ArrayFiller)
5467 CPLIE->setArrayFiller(ArrayFiller);
5468 if (InitializedFieldInUnion)
5469 CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion);
5470 *Result = CPLIE;
5471 S.Diag(Kind.getLocation(),
5472 diag::warn_cxx17_compat_aggregate_init_paren_list)
5473 << Kind.getLocation() << SR << ResultType;
5474 }
5475
5476 return;
5477}
5478
5479/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5480/// which enumerates all conversion functions and performs overload resolution
5481/// to select the best.
5482static void TryUserDefinedConversion(Sema &S,
5483 QualType DestType,
5484 const InitializationKind &Kind,
5485 Expr *Initializer,
5486 InitializationSequence &Sequence,
5487 bool TopLevelOfInitList) {
5488 assert(!DestType->isReferenceType() && "References are handled elsewhere")(static_cast <bool> (!DestType->isReferenceType() &&
"References are handled elsewhere") ? void (0) : __assert_fail
("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "clang/lib/Sema/SemaInit.cpp", 5488, __extension__ __PRETTY_FUNCTION__
))
;
5489 QualType SourceType = Initializer->getType();
5490 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "clang/lib/Sema/SemaInit.cpp", 5491, __extension__ __PRETTY_FUNCTION__
))
5491 "Must have a class type to perform a user-defined conversion")(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "clang/lib/Sema/SemaInit.cpp", 5491, __extension__ __PRETTY_FUNCTION__
))
;
5492
5493 // Build the candidate set directly in the initialization sequence
5494 // structure, so that it will persist if we fail.
5495 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5496 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5497 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5498
5499 // Determine whether we are allowed to call explicit constructors or
5500 // explicit conversion operators.
5501 bool AllowExplicit = Kind.AllowExplicit();
5502
5503 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5504 // The type we're converting to is a class type. Enumerate its constructors
5505 // to see if there is a suitable conversion.
5506 CXXRecordDecl *DestRecordDecl
5507 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5508
5509 // Try to complete the type we're converting to.
5510 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5511 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5512 auto Info = getConstructorInfo(D);
5513 if (!Info.Constructor)
5514 continue;
5515
5516 if (!Info.Constructor->isInvalidDecl() &&
5517 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5518 if (Info.ConstructorTmpl)
5519 S.AddTemplateOverloadCandidate(
5520 Info.ConstructorTmpl, Info.FoundDecl,
5521 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5522 /*SuppressUserConversions=*/true,
5523 /*PartialOverloading*/ false, AllowExplicit);
5524 else
5525 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5526 Initializer, CandidateSet,
5527 /*SuppressUserConversions=*/true,
5528 /*PartialOverloading*/ false, AllowExplicit);
5529 }
5530 }
5531 }
5532 }
5533
5534 SourceLocation DeclLoc = Initializer->getBeginLoc();
5535
5536 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5537 // The type we're converting from is a class type, enumerate its conversion
5538 // functions.
5539
5540 // We can only enumerate the conversion functions for a complete type; if
5541 // the type isn't complete, simply skip this step.
5542 if (S.isCompleteType(DeclLoc, SourceType)) {
5543 CXXRecordDecl *SourceRecordDecl
5544 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5545
5546 const auto &Conversions =
5547 SourceRecordDecl->getVisibleConversionFunctions();
5548 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5549 NamedDecl *D = *I;
5550 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5551 if (isa<UsingShadowDecl>(D))
5552 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5553
5554 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5555 CXXConversionDecl *Conv;
5556 if (ConvTemplate)
5557 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5558 else
5559 Conv = cast<CXXConversionDecl>(D);
5560
5561 if (ConvTemplate)
5562 S.AddTemplateConversionCandidate(
5563 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5564 CandidateSet, AllowExplicit, AllowExplicit);
5565 else
5566 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5567 DestType, CandidateSet, AllowExplicit,
5568 AllowExplicit);
5569 }
5570 }
5571 }
5572
5573 // Perform overload resolution. If it fails, return the failed result.
5574 OverloadCandidateSet::iterator Best;
5575 if (OverloadingResult Result
5576 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5577 Sequence.SetOverloadFailure(
5578 InitializationSequence::FK_UserConversionOverloadFailed, Result);
5579
5580 // [class.copy.elision]p3:
5581 // In some copy-initialization contexts, a two-stage overload resolution
5582 // is performed.
5583 // If the first overload resolution selects a deleted function, we also
5584 // need the initialization sequence to decide whether to perform the second
5585 // overload resolution.
5586 if (!(Result == OR_Deleted &&
5587 Kind.getKind() == InitializationKind::IK_Copy))
5588 return;
5589 }
5590
5591 FunctionDecl *Function = Best->Function;
5592 Function->setReferenced();
5593 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5594
5595 if (isa<CXXConstructorDecl>(Function)) {
5596 // Add the user-defined conversion step. Any cv-qualification conversion is
5597 // subsumed by the initialization. Per DR5, the created temporary is of the
5598 // cv-unqualified type of the destination.
5599 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5600 DestType.getUnqualifiedType(),
5601 HadMultipleCandidates);
5602
5603 // C++14 and before:
5604 // - if the function is a constructor, the call initializes a temporary
5605 // of the cv-unqualified version of the destination type. The [...]
5606 // temporary [...] is then used to direct-initialize, according to the
5607 // rules above, the object that is the destination of the
5608 // copy-initialization.
5609 // Note that this just performs a simple object copy from the temporary.
5610 //
5611 // C++17:
5612 // - if the function is a constructor, the call is a prvalue of the
5613 // cv-unqualified version of the destination type whose return object
5614 // is initialized by the constructor. The call is used to
5615 // direct-initialize, according to the rules above, the object that
5616 // is the destination of the copy-initialization.
5617 // Therefore we need to do nothing further.
5618 //
5619 // FIXME: Mark this copy as extraneous.
5620 if (!S.getLangOpts().CPlusPlus17)
5621 Sequence.AddFinalCopy(DestType);
5622 else if (DestType.hasQualifiers())
5623 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5624 return;
5625 }
5626
5627 // Add the user-defined conversion step that calls the conversion function.
5628 QualType ConvType = Function->getCallResultType();
5629 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5630 HadMultipleCandidates);
5631
5632 if (ConvType->getAs<RecordType>()) {
5633 // The call is used to direct-initialize [...] the object that is the
5634 // destination of the copy-initialization.
5635 //
5636 // In C++17, this does not call a constructor if we enter /17.6.1:
5637 // - If the initializer expression is a prvalue and the cv-unqualified
5638 // version of the source type is the same as the class of the
5639 // destination [... do not make an extra copy]
5640 //
5641 // FIXME: Mark this copy as extraneous.
5642 if (!S.getLangOpts().CPlusPlus17 ||
5643 Function->getReturnType()->isReferenceType() ||
5644 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5645 Sequence.AddFinalCopy(DestType);
5646 else if (!S.Context.hasSameType(ConvType, DestType))
5647 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5648 return;
5649 }
5650
5651 // If the conversion following the call to the conversion function
5652 // is interesting, add it as a separate step.
5653 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5654 Best->FinalConversion.Third) {
5655 ImplicitConversionSequence ICS;
5656 ICS.setStandard();
5657 ICS.Standard = Best->FinalConversion;
5658 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5659 }
5660}
5661
5662/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5663/// a function with a pointer return type contains a 'return false;' statement.
5664/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5665/// code using that header.
5666///
5667/// Work around this by treating 'return false;' as zero-initializing the result
5668/// if it's used in a pointer-returning function in a system header.
5669static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5670 const InitializedEntity &Entity,
5671 const Expr *Init) {
5672 return S.getLangOpts().CPlusPlus11 &&
5673 Entity.getKind() == InitializedEntity::EK_Result &&
5674 Entity.getType()->isPointerType() &&
5675 isa<CXXBoolLiteralExpr>(Init) &&
5676 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5677 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5678}
5679
5680/// The non-zero enum values here are indexes into diagnostic alternatives.
5681enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5682
5683/// Determines whether this expression is an acceptable ICR source.
5684static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5685 bool isAddressOf, bool &isWeakAccess) {
5686 // Skip parens.
5687 e = e->IgnoreParens();
5688
5689 // Skip address-of nodes.
5690 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5691 if (op->getOpcode() == UO_AddrOf)
5692 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5693 isWeakAccess);
5694
5695 // Skip certain casts.
5696 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5697 switch (ce->getCastKind()) {
5698 case CK_Dependent:
5699 case CK_BitCast:
5700 case CK_LValueBitCast:
5701 case CK_NoOp:
5702 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5703
5704 case CK_ArrayToPointerDecay:
5705 return IIK_nonscalar;
5706
5707 case CK_NullToPointer:
5708 return IIK_okay;
5709
5710 default:
5711 break;
5712 }
5713
5714 // If we have a declaration reference, it had better be a local variable.
5715 } else if (isa<DeclRefExpr>(e)) {
5716 // set isWeakAccess to true, to mean that there will be an implicit
5717 // load which requires a cleanup.
5718 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5719 isWeakAccess = true;
5720
5721 if (!isAddressOf) return IIK_nonlocal;
5722
5723 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5724 if (!var) return IIK_nonlocal;
5725
5726 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5727
5728 // If we have a conditional operator, check both sides.
5729 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5730 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5731 isWeakAccess))
5732 return iik;
5733
5734 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5735
5736 // These are never scalar.
5737 } else if (isa<ArraySubscriptExpr>(e)) {
5738 return IIK_nonscalar;
5739
5740 // Otherwise, it needs to be a null pointer constant.
5741 } else {
5742 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5743 ? IIK_okay : IIK_nonlocal);
5744 }
5745
5746 return IIK_nonlocal;
5747}
5748
5749/// Check whether the given expression is a valid operand for an
5750/// indirect copy/restore.
5751static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5752 assert(src->isPRValue())(static_cast <bool> (src->isPRValue()) ? void (0) : __assert_fail
("src->isPRValue()", "clang/lib/Sema/SemaInit.cpp", 5752,
__extension__ __PRETTY_FUNCTION__))
;
5753 bool isWeakAccess = false;
5754 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5755 // If isWeakAccess to true, there will be an implicit
5756 // load which requires a cleanup.
5757 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5758 S.Cleanup.setExprNeedsCleanups(true);
5759
5760 if (iik == IIK_okay) return;
5761
5762 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5763 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5764 << src->getSourceRange();
5765}
5766
5767/// Determine whether we have compatible array types for the
5768/// purposes of GNU by-copy array initialization.
5769static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5770 const ArrayType *Source) {
5771 // If the source and destination array types are equivalent, we're
5772 // done.
5773 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5774 return true;
5775
5776 // Make sure that the element types are the same.
5777 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5778 return false;
5779
5780 // The only mismatch we allow is when the destination is an
5781 // incomplete array type and the source is a constant array type.
5782 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5783}
5784
5785static bool tryObjCWritebackConversion(Sema &S,
5786 InitializationSequence &Sequence,
5787 const InitializedEntity &Entity,
5788 Expr *Initializer) {
5789 bool ArrayDecay = false;
5790 QualType ArgType = Initializer->getType();
5791 QualType ArgPointee;
5792 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5793 ArrayDecay = true;
5794 ArgPointee = ArgArrayType->getElementType();
5795 ArgType = S.Context.getPointerType(ArgPointee);
5796 }
5797
5798 // Handle write-back conversion.
5799 QualType ConvertedArgType;
5800 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5801 ConvertedArgType))
5802 return false;
5803
5804 // We should copy unless we're passing to an argument explicitly
5805 // marked 'out'.
5806 bool ShouldCopy = true;
5807 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5808 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5809
5810 // Do we need an lvalue conversion?
5811 if (ArrayDecay || Initializer->isGLValue()) {
5812 ImplicitConversionSequence ICS;
5813 ICS.setStandard();
5814 ICS.Standard.setAsIdentityConversion();
5815
5816 QualType ResultType;
5817 if (ArrayDecay) {
5818 ICS.Standard.First = ICK_Array_To_Pointer;
5819 ResultType = S.Context.getPointerType(ArgPointee);
5820 } else {
5821 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5822 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5823 }
5824
5825 Sequence.AddConversionSequenceStep(ICS, ResultType);
5826 }
5827
5828 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5829 return true;
5830}
5831
5832static bool TryOCLSamplerInitialization(Sema &S,
5833 InitializationSequence &Sequence,
5834 QualType DestType,
5835 Expr *Initializer) {
5836 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5837 (!Initializer->isIntegerConstantExpr(S.Context) &&
5838 !Initializer->getType()->isSamplerT()))
5839 return false;
5840
5841 Sequence.AddOCLSamplerInitStep(DestType);
5842 return true;
5843}
5844
5845static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5846 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5847 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5848}
5849
5850static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5851 InitializationSequence &Sequence,
5852 QualType DestType,
5853 Expr *Initializer) {
5854 if (!S.getLangOpts().OpenCL)
5855 return false;
5856
5857 //
5858 // OpenCL 1.2 spec, s6.12.10
5859 //
5860 // The event argument can also be used to associate the
5861 // async_work_group_copy with a previous async copy allowing
5862 // an event to be shared by multiple async copies; otherwise
5863 // event should be zero.
5864 //
5865 if (DestType->isEventT() || DestType->isQueueT()) {
5866 if (!IsZeroInitializer(Initializer, S))
5867 return false;
5868
5869 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5870 return true;
5871 }
5872
5873 // We should allow zero initialization for all types defined in the
5874 // cl_intel_device_side_avc_motion_estimation extension, except
5875 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5876 if (S.getOpenCLOptions().isAvailableOption(
5877 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5878 DestType->isOCLIntelSubgroupAVCType()) {
5879 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5880 DestType->isOCLIntelSubgroupAVCMceResultType())
5881 return false;
5882 if (!IsZeroInitializer(Initializer, S))
5883 return false;
5884
5885 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5886 return true;
5887 }
5888
5889 return false;
5890}
5891
5892InitializationSequence::InitializationSequence(
5893 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5894 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5895 : FailedOverloadResult(OR_Success),
5896 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5897 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5898 TreatUnavailableAsInvalid);
5899}
5900
5901/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5902/// address of that function, this returns true. Otherwise, it returns false.
5903static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5904 auto *DRE = dyn_cast<DeclRefExpr>(E);
5905 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5906 return false;
5907
5908 return !S.checkAddressOfFunctionIsAvailable(
5909 cast<FunctionDecl>(DRE->getDecl()));
5910}
5911
5912/// Determine whether we can perform an elementwise array copy for this kind
5913/// of entity.
5914static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5915 switch (Entity.getKind()) {
5916 case InitializedEntity::EK_LambdaCapture:
5917 // C++ [expr.prim.lambda]p24:
5918 // For array members, the array elements are direct-initialized in
5919 // increasing subscript order.
5920 return true;
5921
5922 case InitializedEntity::EK_Variable:
5923 // C++ [dcl.decomp]p1:
5924 // [...] each element is copy-initialized or direct-initialized from the
5925 // corresponding element of the assignment-expression [...]
5926 return isa<DecompositionDecl>(Entity.getDecl());
5927
5928 case InitializedEntity::EK_Member:
5929 // C++ [class.copy.ctor]p14:
5930 // - if the member is an array, each element is direct-initialized with
5931 // the corresponding subobject of x
5932 return Entity.isImplicitMemberInitializer();
5933
5934 case InitializedEntity::EK_ArrayElement:
5935 // All the above cases are intended to apply recursively, even though none
5936 // of them actually say that.
5937 if (auto *E = Entity.getParent())
5938 return canPerformArrayCopy(*E);
5939 break;
5940
5941 default:
5942 break;
5943 }
5944
5945 return false;
5946}
5947
5948void InitializationSequence::InitializeFrom(Sema &S,
5949 const InitializedEntity &Entity,
5950 const InitializationKind &Kind,
5951 MultiExprArg Args,
5952 bool TopLevelOfInitList,
5953 bool TreatUnavailableAsInvalid) {
5954 ASTContext &Context = S.Context;
5955
5956 // Eliminate non-overload placeholder types in the arguments. We
5957 // need to do this before checking whether types are dependent
5958 // because lowering a pseudo-object expression might well give us
5959 // something of dependent type.
5960 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5961 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5962 // FIXME: should we be doing this here?
5963 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5964 if (result.isInvalid()) {
5965 SetFailed(FK_PlaceholderType);
5966 return;
5967 }
5968 Args[I] = result.get();
5969 }
5970
5971 // C++0x [dcl.init]p16:
5972 // The semantics of initializers are as follows. The destination type is
5973 // the type of the object or reference being initialized and the source
5974 // type is the type of the initializer expression. The source type is not
5975 // defined when the initializer is a braced-init-list or when it is a
5976 // parenthesized list of expressions.
5977 QualType DestType = Entity.getType();
5978
5979 if (DestType->isDependentType() ||
5980 Expr::hasAnyTypeDependentArguments(Args)) {
5981 SequenceKind = DependentSequence;
5982 return;
5983 }
5984
5985 // Almost everything is a normal sequence.
5986 setSequenceKind(NormalSequence);
5987
5988 QualType SourceType;
5989 Expr *Initializer = nullptr;
5990 if (Args.size() == 1) {
5991 Initializer = Args[0];
5992 if (S.getLangOpts().ObjC) {
5993 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5994 DestType, Initializer->getType(),
5995 Initializer) ||
5996 S.CheckConversionToObjCLiteral(DestType, Initializer))
5997 Args[0] = Initializer;
5998 }
5999 if (!isa<InitListExpr>(Initializer))
6000 SourceType = Initializer->getType();
6001 }
6002
6003 // - If the initializer is a (non-parenthesized) braced-init-list, the
6004 // object is list-initialized (8.5.4).
6005 if (Kind.getKind() != InitializationKind::IK_Direct) {
6006 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
6007 TryListInitialization(S, Entity, Kind, InitList, *this,
6008 TreatUnavailableAsInvalid);
6009 return;
6010 }
6011 }
6012
6013 // - If the destination type is a reference type, see 8.5.3.
6014 if (DestType->isReferenceType()) {
6015 // C++0x [dcl.init.ref]p1:
6016 // A variable declared to be a T& or T&&, that is, "reference to type T"
6017 // (8.3.2), shall be initialized by an object, or function, of type T or
6018 // by an object that can be converted into a T.
6019 // (Therefore, multiple arguments are not permitted.)
6020 if (Args.size() != 1)
6021 SetFailed(FK_TooManyInitsForReference);
6022 // C++17 [dcl.init.ref]p5:
6023 // A reference [...] is initialized by an expression [...] as follows:
6024 // If the initializer is not an expression, presumably we should reject,
6025 // but the standard fails to actually say so.
6026 else if (isa<InitListExpr>(Args[0]))
6027 SetFailed(FK_ParenthesizedListInitForReference);
6028 else
6029 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
6030 return;
6031 }
6032
6033 // - If the initializer is (), the object is value-initialized.
6034 if (Kind.getKind() == InitializationKind::IK_Value ||
6035 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
6036 TryValueInitialization(S, Entity, Kind, *this);
6037 return;
6038 }
6039
6040 // Handle default initialization.
6041 if (Kind.getKind() == InitializationKind::IK_Default) {
6042 TryDefaultInitialization(S, Entity, Kind, *this);
6043 return;
6044 }
6045
6046 // - If the destination type is an array of characters, an array of
6047 // char16_t, an array of char32_t, or an array of wchar_t, and the
6048 // initializer is a string literal, see 8.5.2.
6049 // - Otherwise, if the destination type is an array, the program is
6050 // ill-formed.
6051 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
6052 if (Initializer && isa<VariableArrayType>(DestAT)) {
6053 SetFailed(FK_VariableLengthArrayHasInitializer);
6054 return;
6055 }
6056
6057 if (Initializer) {
6058 switch (IsStringInit(Initializer, DestAT, Context)) {
6059 case SIF_None:
6060 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
6061 return;
6062 case SIF_NarrowStringIntoWideChar:
6063 SetFailed(FK_NarrowStringIntoWideCharArray);
6064 return;
6065 case SIF_WideStringIntoChar:
6066 SetFailed(FK_WideStringIntoCharArray);
6067 return;
6068 case SIF_IncompatWideStringIntoWideChar:
6069 SetFailed(FK_IncompatWideStringIntoWideChar);
6070 return;
6071 case SIF_PlainStringIntoUTF8Char:
6072 SetFailed(FK_PlainStringIntoUTF8Char);
6073 return;
6074 case SIF_UTF8StringIntoPlainChar:
6075 SetFailed(FK_UTF8StringIntoPlainChar);
6076 return;
6077 case SIF_Other:
6078 break;
6079 }
6080 }
6081
6082 // Some kinds of initialization permit an array to be initialized from
6083 // another array of the same type, and perform elementwise initialization.
6084 if (Initializer && isa<ConstantArrayType>(DestAT) &&
6085 S.Context.hasSameUnqualifiedType(Initializer->getType(),
6086 Entity.getType()) &&
6087 canPerformArrayCopy(Entity)) {
6088 // If source is a prvalue, use it directly.
6089 if (Initializer->isPRValue()) {
6090 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
6091 return;
6092 }
6093
6094 // Emit element-at-a-time copy loop.
6095 InitializedEntity Element =
6096 InitializedEntity::InitializeElement(S.Context, 0, Entity);
6097 QualType InitEltT =
6098 Context.getAsArrayType(Initializer->getType())->getElementType();
6099 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
6100 Initializer->getValueKind(),
6101 Initializer->getObjectKind());
6102 Expr *OVEAsExpr = &OVE;
6103 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
6104 TreatUnavailableAsInvalid);
6105 if (!Failed())
6106 AddArrayInitLoopStep(Entity.getType(), InitEltT);
6107 return;
6108 }
6109
6110 // Note: as an GNU C extension, we allow initialization of an
6111 // array from a compound literal that creates an array of the same
6112 // type, so long as the initializer has no side effects.
6113 if (!S.getLangOpts().CPlusPlus && Initializer &&
6114 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
6115 Initializer->getType()->isArrayType()) {
6116 const ArrayType *SourceAT
6117 = Context.getAsArrayType(Initializer->getType());
6118 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
6119 SetFailed(FK_ArrayTypeMismatch);
6120 else if (Initializer->HasSideEffects(S.Context))
6121 SetFailed(FK_NonConstantArrayInit);
6122 else {
6123 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
6124 }
6125 }
6126 // Note: as a GNU C++ extension, we allow list-initialization of a
6127 // class member of array type from a parenthesized initializer list.
6128 else if (S.getLangOpts().CPlusPlus &&
6129 Entity.getKind() == InitializedEntity::EK_Member &&
6130 Initializer && isa<InitListExpr>(Initializer)) {
6131 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
6132 *this, TreatUnavailableAsInvalid);
6133 AddParenthesizedArrayInitStep(DestType);
6134 } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList &&
6135 Kind.getKind() == InitializationKind::IK_Direct)
6136 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6137 /*VerifyOnly=*/true);
6138 else if (DestAT->getElementType()->isCharType())
6139 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
6140 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
6141 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
6142 else
6143 SetFailed(FK_ArrayNeedsInitList);
6144
6145 return;
6146 }
6147
6148 // Determine whether we should consider writeback conversions for
6149 // Objective-C ARC.
6150 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
6151 Entity.isParameterKind();
6152
6153 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
6154 return;
6155
6156 // We're at the end of the line for C: it's either a write-back conversion
6157 // or it's a C assignment. There's no need to check anything else.
6158 if (!S.getLangOpts().CPlusPlus) {
6159 // If allowed, check whether this is an Objective-C writeback conversion.
6160 if (allowObjCWritebackConversion &&
6161 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
6162 return;
6163 }
6164
6165 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
6166 return;
6167
6168 // Handle initialization in C
6169 AddCAssignmentStep(DestType);
6170 MaybeProduceObjCObject(S, *this, Entity);
6171 return;
6172 }
6173
6174 assert(S.getLangOpts().CPlusPlus)(static_cast <bool> (S.getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("S.getLangOpts().CPlusPlus", "clang/lib/Sema/SemaInit.cpp"
, 6174, __extension__ __PRETTY_FUNCTION__))
;
6175
6176 // - If the destination type is a (possibly cv-qualified) class type:
6177 if (DestType->isRecordType()) {
6178 // - If the initialization is direct-initialization, or if it is
6179 // copy-initialization where the cv-unqualified version of the
6180 // source type is the same class as, or a derived class of, the
6181 // class of the destination, constructors are considered. [...]
6182 if (Kind.getKind() == InitializationKind::IK_Direct ||
6183 (Kind.getKind() == InitializationKind::IK_Copy &&
6184 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
6185 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) {
6186 TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType,
6187 *this);
6188
6189 // We fall back to the "no matching constructor" path if the
6190 // failed candidate set has functions other than the three default
6191 // constructors. For example, conversion function.
6192 if (const auto *RD =
6193 dyn_cast<CXXRecordDecl>(DestType->getAs<RecordType>()->getDecl());
6194 // In general, we should call isCompleteType for RD to check its
6195 // completeness, we don't call it here as it was already called in the
6196 // above TryConstructorInitialization.
6197 S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() &&
6198 RD->isAggregate() && Failed() &&
6199 getFailureKind() == FK_ConstructorOverloadFailed) {
6200 // Do not attempt paren list initialization if overload resolution
6201 // resolves to a deleted function .
6202 //
6203 // We may reach this condition if we have a union wrapping a class with
6204 // a non-trivial copy or move constructor and we call one of those two
6205 // constructors. The union is an aggregate, but the matched constructor
6206 // is implicitly deleted, so we need to prevent aggregate initialization
6207 // (otherwise, it'll attempt aggregate initialization by initializing
6208 // the first element with a reference to the union).
6209 OverloadCandidateSet::iterator Best;
6210 OverloadingResult OR = getFailedCandidateSet().BestViableFunction(
6211 S, Kind.getLocation(), Best);
6212 if (OR != OverloadingResult::OR_Deleted) {
6213 // C++20 [dcl.init] 17.6.2.2:
6214 // - Otherwise, if no constructor is viable, the destination type is
6215 // an
6216 // aggregate class, and the initializer is a parenthesized
6217 // expression-list.
6218 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6219 /*VerifyOnly=*/true);
6220 }
6221 }
6222 } else {
6223 // - Otherwise (i.e., for the remaining copy-initialization cases),
6224 // user-defined conversion sequences that can convert from the
6225 // source type to the destination type or (when a conversion
6226 // function is used) to a derived class thereof are enumerated as
6227 // described in 13.3.1.4, and the best one is chosen through
6228 // overload resolution (13.3).
6229 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6230 TopLevelOfInitList);
6231 }
6232 return;
6233 }
6234
6235 assert(Args.size() >= 1 && "Zero-argument case handled above")(static_cast <bool> (Args.size() >= 1 && "Zero-argument case handled above"
) ? void (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "clang/lib/Sema/SemaInit.cpp", 6235, __extension__ __PRETTY_FUNCTION__
))
;
6236
6237 // For HLSL ext vector types we allow list initialization behavior for C++
6238 // constructor syntax. This is accomplished by converting initialization
6239 // arguments an InitListExpr late.
6240 if (S.getLangOpts().HLSL && DestType->isExtVectorType() &&
6241 (SourceType.isNull() ||
6242 !Context.hasSameUnqualifiedType(SourceType, DestType))) {
6243
6244 llvm::SmallVector<Expr *> InitArgs;
6245 for (auto *Arg : Args) {
6246 if (Arg->getType()->isExtVectorType()) {
6247 const auto *VTy = Arg->getType()->castAs<ExtVectorType>();
6248 unsigned Elm = VTy->getNumElements();
6249 for (unsigned Idx = 0; Idx < Elm; ++Idx) {
6250 InitArgs.emplace_back(new (Context) ArraySubscriptExpr(
6251 Arg,
6252 IntegerLiteral::Create(
6253 Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx),
6254 Context.IntTy, SourceLocation()),
6255 VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(),
6256 SourceLocation()));
6257 }
6258 } else
6259 InitArgs.emplace_back(Arg);
6260 }
6261 InitListExpr *ILE = new (Context) InitListExpr(
6262 S.getASTContext(), SourceLocation(), InitArgs, SourceLocation());
6263 Args[0] = ILE;
6264 AddListInitializationStep(DestType);
6265 return;
6266 }
6267
6268 // The remaining cases all need a source type.
6269 if (Args.size() > 1) {
6270 SetFailed(FK_TooManyInitsForScalar);
6271 return;
6272 } else if (isa<InitListExpr>(Args[0])) {
6273 SetFailed(FK_ParenthesizedListInitForScalar);
6274 return;
6275 }
6276
6277 // - Otherwise, if the source type is a (possibly cv-qualified) class
6278 // type, conversion functions are considered.
6279 if (!SourceType.isNull() && SourceType->isRecordType()) {
6280 // For a conversion to _Atomic(T) from either T or a class type derived
6281 // from T, initialize the T object then convert to _Atomic type.
6282 bool NeedAtomicConversion = false;
6283 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
6284 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
6285 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
6286 Atomic->getValueType())) {
6287 DestType = Atomic->getValueType();
6288 NeedAtomicConversion = true;
6289 }
6290 }
6291
6292 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6293 TopLevelOfInitList);
6294 MaybeProduceObjCObject(S, *this, Entity);
6295 if (!Failed() && NeedAtomicConversion)
6296 AddAtomicConversionStep(Entity.getType());
6297 return;
6298 }
6299
6300 // - Otherwise, if the initialization is direct-initialization, the source
6301 // type is std::nullptr_t, and the destination type is bool, the initial
6302 // value of the object being initialized is false.
6303 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6304 DestType->isBooleanType() &&
6305 Kind.getKind() == InitializationKind::IK_Direct) {
6306 AddConversionSequenceStep(
6307 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6308 Initializer->isGLValue()),
6309 DestType);
6310 return;
6311 }
6312
6313 // - Otherwise, the initial value of the object being initialized is the
6314 // (possibly converted) value of the initializer expression. Standard
6315 // conversions (Clause 4) will be used, if necessary, to convert the
6316 // initializer expression to the cv-unqualified version of the
6317 // destination type; no user-defined conversions are considered.
6318
6319 ImplicitConversionSequence ICS
6320 = S.TryImplicitConversion(Initializer, DestType,
6321 /*SuppressUserConversions*/true,
6322 Sema::AllowedExplicit::None,
6323 /*InOverloadResolution*/ false,
6324 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6325 allowObjCWritebackConversion);
6326
6327 if (ICS.isStandard() &&
6328 ICS.Standard.Second == ICK_Writeback_Conversion) {
6329 // Objective-C ARC writeback conversion.
6330
6331 // We should copy unless we're passing to an argument explicitly
6332 // marked 'out'.
6333 bool ShouldCopy = true;
6334 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6335 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6336
6337 // If there was an lvalue adjustment, add it as a separate conversion.
6338 if (ICS.Standard.First == ICK_Array_To_Pointer ||
6339 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6340 ImplicitConversionSequence LvalueICS;
6341 LvalueICS.setStandard();
6342 LvalueICS.Standard.setAsIdentityConversion();
6343 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6344 LvalueICS.Standard.First = ICS.Standard.First;
6345 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6346 }
6347
6348 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6349 } else if (ICS.isBad()) {
6350 DeclAccessPair dap;
6351 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6352 AddZeroInitializationStep(Entity.getType());
6353 } else if (Initializer->getType() == Context.OverloadTy &&
6354 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6355 false, dap))
6356 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6357 else if (Initializer->getType()->isFunctionType() &&
6358 isExprAnUnaddressableFunction(S, Initializer))
6359 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6360 else
6361 SetFailed(InitializationSequence::FK_ConversionFailed);
6362 } else {
6363 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6364
6365 MaybeProduceObjCObject(S, *this, Entity);
6366 }
6367}
6368
6369InitializationSequence::~InitializationSequence() {
6370 for (auto &S : Steps)
6371 S.Destroy();
6372}
6373
6374//===----------------------------------------------------------------------===//
6375// Perform initialization
6376//===----------------------------------------------------------------------===//
6377static Sema::AssignmentAction
6378getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6379 switch(Entity.getKind()) {
6380 case InitializedEntity::EK_Variable:
6381 case InitializedEntity::EK_New:
6382 case InitializedEntity::EK_Exception:
6383 case InitializedEntity::EK_Base:
6384 case InitializedEntity::EK_Delegating:
6385 return Sema::AA_Initializing;
6386
6387 case InitializedEntity::EK_Parameter:
6388 if (Entity.getDecl() &&
6389 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6390 return Sema::AA_Sending;
6391
6392 return Sema::AA_Passing;
6393
6394 case InitializedEntity::EK_Parameter_CF_Audited:
6395 if (Entity.getDecl() &&
6396 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6397 return Sema::AA_Sending;
6398
6399 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6400
6401 case InitializedEntity::EK_Result:
6402 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6403 return Sema::AA_Returning;
6404
6405 case InitializedEntity::EK_Temporary:
6406 case InitializedEntity::EK_RelatedResult:
6407 // FIXME: Can we tell apart casting vs. converting?
6408 return Sema::AA_Casting;
6409
6410 case InitializedEntity::EK_TemplateParameter:
6411 // This is really initialization, but refer to it as conversion for
6412 // consistency with CheckConvertedConstantExpression.
6413 return Sema::AA_Converting;
6414
6415 case InitializedEntity::EK_Member:
6416 case InitializedEntity::EK_Binding:
6417 case InitializedEntity::EK_ArrayElement:
6418 case InitializedEntity::EK_VectorElement:
6419 case InitializedEntity::EK_ComplexElement:
6420 case InitializedEntity::EK_BlockElement:
6421 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6422 case InitializedEntity::EK_LambdaCapture:
6423 case InitializedEntity::EK_CompoundLiteralInit:
6424 return Sema::AA_Initializing;
6425 }
6426
6427 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "clang/lib/Sema/SemaInit.cpp"
, 6427)
;
6428}
6429
6430/// Whether we should bind a created object as a temporary when
6431/// initializing the given entity.
6432static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6433 switch (Entity.getKind()) {
6434 case InitializedEntity::EK_ArrayElement:
6435 case InitializedEntity::EK_Member:
6436 case InitializedEntity::EK_Result:
6437 case InitializedEntity::EK_StmtExprResult:
6438 case InitializedEntity::EK_New:
6439 case InitializedEntity::EK_Variable:
6440 case InitializedEntity::EK_Base:
6441 case InitializedEntity::EK_Delegating:
6442 case InitializedEntity::EK_VectorElement:
6443 case InitializedEntity::EK_ComplexElement:
6444 case InitializedEntity::EK_Exception:
6445 case InitializedEntity::EK_BlockElement:
6446 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6447 case InitializedEntity::EK_LambdaCapture:
6448 case InitializedEntity::EK_CompoundLiteralInit:
6449 case InitializedEntity::EK_TemplateParameter:
6450 return false;
6451
6452 case InitializedEntity::EK_Parameter:
6453 case InitializedEntity::EK_Parameter_CF_Audited:
6454 case InitializedEntity::EK_Temporary:
6455 case InitializedEntity::EK_RelatedResult:
6456 case InitializedEntity::EK_Binding:
6457 return true;
6458 }
6459
6460 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "clang/lib/Sema/SemaInit.cpp", 6460)
;
6461}
6462
6463/// Whether the given entity, when initialized with an object
6464/// created for that initialization, requires destruction.
6465static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6466 switch (Entity.getKind()) {
6467 case InitializedEntity::EK_Result:
6468 case InitializedEntity::EK_StmtExprResult:
6469 case InitializedEntity::EK_New:
6470 case InitializedEntity::EK_Base:
6471 case InitializedEntity::EK_Delegating:
6472 case InitializedEntity::EK_VectorElement:
6473 case InitializedEntity::EK_ComplexElement:
6474 case InitializedEntity::EK_BlockElement:
6475 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6476 case InitializedEntity::EK_LambdaCapture:
6477 return false;
6478
6479 case InitializedEntity::EK_Member:
6480 case InitializedEntity::EK_Binding:
6481 case InitializedEntity::EK_Variable:
6482 case InitializedEntity::EK_Parameter:
6483 case InitializedEntity::EK_Parameter_CF_Audited:
6484 case InitializedEntity::EK_TemplateParameter:
6485 case InitializedEntity::EK_Temporary:
6486 case InitializedEntity::EK_ArrayElement:
6487 case InitializedEntity::EK_Exception:
6488 case InitializedEntity::EK_CompoundLiteralInit:
6489 case InitializedEntity::EK_RelatedResult:
6490 return true;
6491 }
6492
6493 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "clang/lib/Sema/SemaInit.cpp", 6493)
;
6494}
6495
6496/// Get the location at which initialization diagnostics should appear.
6497static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6498 Expr *Initializer) {
6499 switch (Entity.getKind()) {
6500 case InitializedEntity::EK_Result:
6501 case InitializedEntity::EK_StmtExprResult:
6502 return Entity.getReturnLoc();
6503
6504 case InitializedEntity::EK_Exception:
6505 return Entity.getThrowLoc();
6506
6507 case InitializedEntity::EK_Variable:
6508 case InitializedEntity::EK_Binding:
6509 return Entity.getDecl()->getLocation();
6510
6511 case InitializedEntity::EK_LambdaCapture:
6512 return Entity.getCaptureLoc();
6513
6514 case InitializedEntity::EK_ArrayElement:
6515 case InitializedEntity::EK_Member:
6516 case InitializedEntity::EK_Parameter:
6517 case InitializedEntity::EK_Parameter_CF_Audited:
6518 case InitializedEntity::EK_TemplateParameter:
6519 case InitializedEntity::EK_Temporary:
6520 case InitializedEntity::EK_New:
6521 case InitializedEntity::EK_Base:
6522 case InitializedEntity::EK_Delegating:
6523 case InitializedEntity::EK_VectorElement:
6524 case InitializedEntity::EK_ComplexElement:
6525 case InitializedEntity::EK_BlockElement:
6526 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6527 case InitializedEntity::EK_CompoundLiteralInit:
6528 case InitializedEntity::EK_RelatedResult:
6529 return Initializer->getBeginLoc();
6530 }
6531 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "clang/lib/Sema/SemaInit.cpp", 6531)
;
6532}
6533
6534/// Make a (potentially elidable) temporary copy of the object
6535/// provided by the given initializer by calling the appropriate copy
6536/// constructor.
6537///
6538/// \param S The Sema object used for type-checking.
6539///
6540/// \param T The type of the temporary object, which must either be
6541/// the type of the initializer expression or a superclass thereof.
6542///
6543/// \param Entity The entity being initialized.
6544///
6545/// \param CurInit The initializer expression.
6546///
6547/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6548/// is permitted in C++03 (but not C++0x) when binding a reference to
6549/// an rvalue.
6550///
6551/// \returns An expression that copies the initializer expression into
6552/// a temporary object, or an error expression if a copy could not be
6553/// created.
6554static ExprResult CopyObject(Sema &S,
6555 QualType T,
6556 const InitializedEntity &Entity,
6557 ExprResult CurInit,
6558 bool IsExtraneousCopy) {
6559 if (CurInit.isInvalid())
6560 return CurInit;
6561 // Determine which class type we're copying to.
6562 Expr *CurInitExpr = (Expr *)CurInit.get();
6563 CXXRecordDecl *Class = nullptr;
6564 if (const RecordType *Record = T->getAs<RecordType>())
6565 Class = cast<CXXRecordDecl>(Record->getDecl());
6566 if (!Class)
6567 return CurInit;
6568
6569 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6570
6571 // Make sure that the type we are copying is complete.
6572 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6573 return CurInit;
6574
6575 // Perform overload resolution using the class's constructors. Per
6576 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6577 // is direct-initialization.
6578 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6579 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6580
6581 OverloadCandidateSet::iterator Best;
6582 switch (ResolveConstructorOverload(
6583 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6584 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6585 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6586 /*SecondStepOfCopyInit=*/true)) {
6587 case OR_Success:
6588 break;
6589
6590 case OR_No_Viable_Function:
6591 CandidateSet.NoteCandidates(
6592 PartialDiagnosticAt(
6593 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6594 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6595 : diag::err_temp_copy_no_viable)
6596 << (int)Entity.getKind() << CurInitExpr->getType()
6597 << CurInitExpr->getSourceRange()),
6598 S, OCD_AllCandidates, CurInitExpr);
6599 if (!IsExtraneousCopy || S.isSFINAEContext())
6600 return ExprError();
6601 return CurInit;
6602
6603 case OR_Ambiguous:
6604 CandidateSet.NoteCandidates(
6605 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6606 << (int)Entity.getKind()
6607 << CurInitExpr->getType()
6608 << CurInitExpr->getSourceRange()),
6609 S, OCD_AmbiguousCandidates, CurInitExpr);
6610 return ExprError();
6611
6612 case OR_Deleted:
6613 S.Diag(Loc, diag::err_temp_copy_deleted)
6614 << (int)Entity.getKind() << CurInitExpr->getType()
6615 << CurInitExpr->getSourceRange();
6616 S.NoteDeletedFunction(Best->Function);
6617 return ExprError();
6618 }
6619
6620 bool HadMultipleCandidates = CandidateSet.size() > 1;
6621
6622 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6623 SmallVector<Expr*, 8> ConstructorArgs;
6624 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6625
6626 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6627 IsExtraneousCopy);
6628
6629 if (IsExtraneousCopy) {
6630 // If this is a totally extraneous copy for C++03 reference
6631 // binding purposes, just return the original initialization
6632 // expression. We don't generate an (elided) copy operation here
6633 // because doing so would require us to pass down a flag to avoid
6634 // infinite recursion, where each step adds another extraneous,
6635 // elidable copy.
6636
6637 // Instantiate the default arguments of any extra parameters in
6638 // the selected copy constructor, as if we were going to create a
6639 // proper call to the copy constructor.
6640 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6641 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6642 if (S.RequireCompleteType(Loc, Parm->getType(),
6643 diag::err_call_incomplete_argument))
6644 break;
6645
6646 // Build the default argument expression; we don't actually care
6647 // if this succeeds or not, because this routine will complain
6648 // if there was a problem.
6649 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6650 }
6651
6652 return CurInitExpr;
6653 }
6654
6655 // Determine the arguments required to actually perform the
6656 // constructor call (we might have derived-to-base conversions, or
6657 // the copy constructor may have default arguments).
6658 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6659 ConstructorArgs))
6660 return ExprError();
6661
6662 // C++0x [class.copy]p32:
6663 // When certain criteria are met, an implementation is allowed to
6664 // omit the copy/move construction of a class object, even if the
6665 // copy/move constructor and/or destructor for the object have
6666 // side effects. [...]
6667 // - when a temporary class object that has not been bound to a
6668 // reference (12.2) would be copied/moved to a class object
6669 // with the same cv-unqualified type, the copy/move operation
6670 // can be omitted by constructing the temporary object
6671 // directly into the target of the omitted copy/move
6672 //
6673 // Note that the other three bullets are handled elsewhere. Copy
6674 // elision for return statements and throw expressions are handled as part
6675 // of constructor initialization, while copy elision for exception handlers
6676 // is handled by the run-time.
6677 //
6678 // FIXME: If the function parameter is not the same type as the temporary, we
6679 // should still be able to elide the copy, but we don't have a way to
6680 // represent in the AST how much should be elided in this case.
6681 bool Elidable =
6682 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6683 S.Context.hasSameUnqualifiedType(
6684 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6685 CurInitExpr->getType());
6686
6687 // Actually perform the constructor call.
6688 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6689 Elidable,
6690 ConstructorArgs,
6691 HadMultipleCandidates,
6692 /*ListInit*/ false,
6693 /*StdInitListInit*/ false,
6694 /*ZeroInit*/ false,
6695 CXXConstructExpr::CK_Complete,
6696 SourceRange());
6697
6698 // If we're supposed to bind temporaries, do so.
6699 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6700 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6701 return CurInit;
6702}
6703
6704/// Check whether elidable copy construction for binding a reference to
6705/// a temporary would have succeeded if we were building in C++98 mode, for
6706/// -Wc++98-compat.
6707static void CheckCXX98CompatAccessibleCopy(Sema &S,
6708 const InitializedEntity &Entity,
6709 Expr *CurInitExpr) {
6710 assert(S.getLangOpts().CPlusPlus11)(static_cast <bool> (S.getLangOpts().CPlusPlus11) ? void
(0) : __assert_fail ("S.getLangOpts().CPlusPlus11", "clang/lib/Sema/SemaInit.cpp"
, 6710, __extension__ __PRETTY_FUNCTION__))
;
6711
6712 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6713 if (!Record)
6714 return;
6715
6716 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6717 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6718 return;
6719
6720 // Find constructors which would have been considered.
6721 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6722 DeclContext::lookup_result Ctors =
6723 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6724
6725 // Perform overload resolution.
6726 OverloadCandidateSet::iterator Best;
6727 OverloadingResult OR = ResolveConstructorOverload(
6728 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6729 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6730 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6731 /*SecondStepOfCopyInit=*/true);
6732
6733 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6734 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6735 << CurInitExpr->getSourceRange();
6736
6737 switch (OR) {
6738 case OR_Success:
6739 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6740 Best->FoundDecl, Entity, Diag);
6741 // FIXME: Check default arguments as far as that's possible.
6742 break;
6743
6744 case OR_No_Viable_Function:
6745 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6746 OCD_AllCandidates, CurInitExpr);
6747 break;
6748
6749 case OR_Ambiguous:
6750 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6751 OCD_AmbiguousCandidates, CurInitExpr);
6752 break;
6753
6754 case OR_Deleted:
6755 S.Diag(Loc, Diag);
6756 S.NoteDeletedFunction(Best->Function);
6757 break;
6758 }
6759}
6760
6761void InitializationSequence::PrintInitLocationNote(Sema &S,
6762 const InitializedEntity &Entity) {
6763 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6764 if (Entity.getDecl()->getLocation().isInvalid())
6765 return;
6766
6767 if (Entity.getDecl()->getDeclName())
6768 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6769 << Entity.getDecl()->getDeclName();
6770 else
6771 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6772 }
6773 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6774 Entity.getMethodDecl())
6775 S.Diag(Entity.getMethodDecl()->getLocation(),
6776 diag::note_method_return_type_change)
6777 << Entity.getMethodDecl()->getDeclName();
6778}
6779
6780/// Returns true if the parameters describe a constructor initialization of
6781/// an explicit temporary object, e.g. "Point(x, y)".
6782static bool isExplicitTemporary(const InitializedEntity &Entity,
6783 const InitializationKind &Kind,
6784 unsigned NumArgs) {
6785 switch (Entity.getKind()) {
6786 case InitializedEntity::EK_Temporary:
6787 case InitializedEntity::EK_CompoundLiteralInit:
6788 case InitializedEntity::EK_RelatedResult:
6789 break;
6790 default:
6791 return false;
6792 }
6793
6794 switch (Kind.getKind()) {
6795 case InitializationKind::IK_DirectList:
6796 return true;
6797 // FIXME: Hack to work around cast weirdness.
6798 case InitializationKind::IK_Direct:
6799 case InitializationKind::IK_Value:
6800 return NumArgs != 1;
6801 default:
6802 return false;
6803 }
6804}
6805
6806static ExprResult
6807PerformConstructorInitialization(Sema &S,
6808 const InitializedEntity &Entity,
6809 const InitializationKind &Kind,
6810 MultiExprArg Args,
6811 const InitializationSequence::Step& Step,
6812 bool &ConstructorInitRequiresZeroInit,
6813 bool IsListInitialization,
6814 bool IsStdInitListInitialization,
6815 SourceLocation LBraceLoc,
6816 SourceLocation RBraceLoc) {
6817 unsigned NumArgs = Args.size();
6818 CXXConstructorDecl *Constructor
6819 = cast<CXXConstructorDecl>(Step.Function.Function);
6820 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6821
6822 // Build a call to the selected constructor.
6823 SmallVector<Expr*, 8> ConstructorArgs;
6824 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6825 ? Kind.getEqualLoc()
6826 : Kind.getLocation();
6827
6828 if (Kind.getKind() == InitializationKind::IK_Default) {
6829 // Force even a trivial, implicit default constructor to be
6830 // semantically checked. We do this explicitly because we don't build
6831 // the definition for completely trivial constructors.
6832 assert(Constructor->getParent() && "No parent class for constructor.")(static_cast <bool> (Constructor->getParent() &&
"No parent class for constructor.") ? void (0) : __assert_fail
("Constructor->getParent() && \"No parent class for constructor.\""
, "clang/lib/Sema/SemaInit.cpp", 6832, __extension__ __PRETTY_FUNCTION__
))
;
6833 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6834 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6835 S.runWithSufficientStackSpace(Loc, [&] {
6836 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6837 });
6838 }
6839 }
6840
6841 ExprResult CurInit((Expr *)nullptr);
6842
6843 // C++ [over.match.copy]p1:
6844 // - When initializing a temporary to be bound to the first parameter
6845 // of a constructor that takes a reference to possibly cv-qualified
6846 // T as its first argument, called with a single argument in the
6847 // context of direct-initialization, explicit conversion functions
6848 // are also considered.
6849 bool AllowExplicitConv =
6850 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6851 hasCopyOrMoveCtorParam(S.Context,
6852 getConstructorInfo(Step.Function.FoundDecl));
6853
6854 // Determine the arguments required to actually perform the constructor
6855 // call.
6856 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6857 ConstructorArgs, AllowExplicitConv,
6858 IsListInitialization))
6859 return ExprError();
6860
6861 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6862 // An explicitly-constructed temporary, e.g., X(1, 2).
6863 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6864 return ExprError();
6865
6866 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6867 if (!TSInfo)
6868 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6869 SourceRange ParenOrBraceRange =
6870 (Kind.getKind() == InitializationKind::IK_DirectList)
6871 ? SourceRange(LBraceLoc, RBraceLoc)
6872 : Kind.getParenOrBraceRange();
6873
6874 CXXConstructorDecl *CalleeDecl = Constructor;
6875 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6876 Step.Function.FoundDecl.getDecl())) {
6877 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6878 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6879 return ExprError();
6880 }
6881 S.MarkFunctionReferenced(Loc, CalleeDecl);
6882
6883 CurInit = S.CheckForImmediateInvocation(
6884 CXXTemporaryObjectExpr::Create(
6885 S.Context, CalleeDecl,
6886 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6887 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6888 IsListInitialization, IsStdInitListInitialization,
6889 ConstructorInitRequiresZeroInit),
6890 CalleeDecl);
6891 } else {
6892 CXXConstructExpr::ConstructionKind ConstructKind =
6893 CXXConstructExpr::CK_Complete;
6894
6895 if (Entity.getKind() == InitializedEntity::EK_Base) {
6896 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6897 CXXConstructExpr::CK_VirtualBase :
6898 CXXConstructExpr::CK_NonVirtualBase;
6899 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6900 ConstructKind = CXXConstructExpr::CK_Delegating;
6901 }
6902
6903 // Only get the parenthesis or brace range if it is a list initialization or
6904 // direct construction.
6905 SourceRange ParenOrBraceRange;
6906 if (IsListInitialization)
6907 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6908 else if (Kind.getKind() == InitializationKind::IK_Direct)
6909 ParenOrBraceRange = Kind.getParenOrBraceRange();
6910
6911 // If the entity allows NRVO, mark the construction as elidable
6912 // unconditionally.
6913 if (Entity.allowsNRVO())
6914 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6915 Step.Function.FoundDecl,
6916 Constructor, /*Elidable=*/true,
6917 ConstructorArgs,
6918 HadMultipleCandidates,
6919 IsListInitialization,
6920 IsStdInitListInitialization,
6921 ConstructorInitRequiresZeroInit,
6922 ConstructKind,
6923 ParenOrBraceRange);
6924 else
6925 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6926 Step.Function.FoundDecl,
6927 Constructor,
6928 ConstructorArgs,
6929 HadMultipleCandidates,
6930 IsListInitialization,
6931 IsStdInitListInitialization,
6932 ConstructorInitRequiresZeroInit,
6933 ConstructKind,
6934 ParenOrBraceRange);
6935 }
6936 if (CurInit.isInvalid())
6937 return ExprError();
6938
6939 // Only check access if all of that succeeded.
6940 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6941 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6942 return ExprError();
6943
6944 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6945 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6946 return ExprError();
6947
6948 if (shouldBindAsTemporary(Entity))
6949 CurInit = S.MaybeBindToTemporary(CurInit.get());
6950
6951 return CurInit;
6952}
6953
6954namespace {
6955enum LifetimeKind {
6956 /// The lifetime of a temporary bound to this entity ends at the end of the
6957 /// full-expression, and that's (probably) fine.
6958 LK_FullExpression,
6959
6960 /// The lifetime of a temporary bound to this entity is extended to the
6961 /// lifeitme of the entity itself.
6962 LK_Extended,
6963
6964 /// The lifetime of a temporary bound to this entity probably ends too soon,
6965 /// because the entity is allocated in a new-expression.
6966 LK_New,
6967
6968 /// The lifetime of a temporary bound to this entity ends too soon, because
6969 /// the entity is a return object.
6970 LK_Return,
6971
6972 /// The lifetime of a temporary bound to this entity ends too soon, because
6973 /// the entity is the result of a statement expression.
6974 LK_StmtExprResult,
6975
6976 /// This is a mem-initializer: if it would extend a temporary (other than via
6977 /// a default member initializer), the program is ill-formed.
6978 LK_MemInitializer,
6979};
6980using LifetimeResult =
6981 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6982}
6983
6984/// Determine the declaration which an initialized entity ultimately refers to,
6985/// for the purpose of lifetime-extending a temporary bound to a reference in
6986/// the initialization of \p Entity.
6987static LifetimeResult getEntityLifetime(
6988 const InitializedEntity *Entity,
6989 const InitializedEntity *InitField = nullptr) {
6990 // C++11 [class.temporary]p5:
6991 switch (Entity->getKind()) {
6992 case InitializedEntity::EK_Variable:
6993 // The temporary [...] persists for the lifetime of the reference
6994 return {Entity, LK_Extended};
6995
6996 case InitializedEntity::EK_Member:
6997 // For subobjects, we look at the complete object.
6998 if (Entity->getParent())
6999 return getEntityLifetime(Entity->getParent(), Entity);
7000
7001 // except:
7002 // C++17 [class.base.init]p8:
7003 // A temporary expression bound to a reference member in a
7004 // mem-initializer is ill-formed.
7005 // C++17 [class.base.init]p11:
7006 // A temporary expression bound to a reference member from a
7007 // default member initializer is ill-formed.
7008 //
7009 // The context of p11 and its example suggest that it's only the use of a
7010 // default member initializer from a constructor that makes the program
7011 // ill-formed, not its mere existence, and that it can even be used by
7012 // aggregate initialization.
7013 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
7014 : LK_MemInitializer};
7015
7016 case InitializedEntity::EK_Binding:
7017 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
7018 // type.
7019 return {Entity, LK_Extended};
7020
7021 case InitializedEntity::EK_Parameter:
7022 case InitializedEntity::EK_Parameter_CF_Audited:
7023 // -- A temporary bound to a reference parameter in a function call
7024 // persists until the completion of the full-expression containing
7025 // the call.
7026 return {nullptr, LK_FullExpression};
7027
7028 case InitializedEntity::EK_TemplateParameter:
7029 // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
7030 return {nullptr, LK_FullExpression};
7031
7032 case InitializedEntity::EK_Result:
7033 // -- The lifetime of a temporary bound to the returned value in a
7034 // function return statement is not extended; the temporary is
7035 // destroyed at the end of the full-expression in the return statement.
7036 return {nullptr, LK_Return};
7037
7038 case InitializedEntity::EK_StmtExprResult:
7039 // FIXME: Should we lifetime-extend through the result of a statement
7040 // expression?
7041 return {nullptr, LK_StmtExprResult};
7042
7043 case InitializedEntity::EK_New:
7044 // -- A temporary bound to a reference in a new-initializer persists
7045 // until the completion of the full-expression containing the
7046 // new-initializer.
7047 return {nullptr, LK_New};
7048
7049 case InitializedEntity::EK_Temporary:
7050 case InitializedEntity::EK_CompoundLiteralInit:
7051 case InitializedEntity::EK_RelatedResult:
7052 // We don't yet know the storage duration of the surrounding temporary.
7053 // Assume it's got full-expression duration for now, it will patch up our
7054 // storage duration if that's not correct.
7055 return {nullptr, LK_FullExpression};
7056
7057 case InitializedEntity::EK_ArrayElement:
7058 // For subobjects, we look at the complete object.
7059 return getEntityLifetime(Entity->getParent(), InitField);
7060
7061 case InitializedEntity::EK_Base:
7062 // For subobjects, we look at the complete object.
7063 if (Entity->getParent())
7064 return getEntityLifetime(Entity->getParent(), InitField);
7065 return {InitField, LK_MemInitializer};
7066
7067 case InitializedEntity::EK_Delegating:
7068 // We can reach this case for aggregate initialization in a constructor:
7069 // struct A { int &&r; };
7070 // struct B : A { B() : A{0} {} };
7071 // In this case, use the outermost field decl as the context.
7072 return {InitField, LK_MemInitializer};
7073
7074 case InitializedEntity::EK_BlockElement:
7075 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
7076 case InitializedEntity::EK_LambdaCapture:
7077 case InitializedEntity::EK_VectorElement:
7078 case InitializedEntity::EK_ComplexElement:
7079 return {nullptr, LK_FullExpression};
7080
7081 case InitializedEntity::EK_Exception:
7082 // FIXME: Can we diagnose lifetime problems with exceptions?
7083 return {nullptr, LK_FullExpression};
7084 }
7085 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "clang/lib/Sema/SemaInit.cpp"
, 7085)
;
7086}
7087
7088namespace {
7089enum ReferenceKind {
7090 /// Lifetime would be extended by a reference binding to a temporary.
7091 RK_ReferenceBinding,
7092 /// Lifetime would be extended by a std::initializer_list object binding to
7093 /// its backing array.
7094 RK_StdInitializerList,
7095};
7096
7097/// A temporary or local variable. This will be one of:
7098/// * A MaterializeTemporaryExpr.
7099/// * A DeclRefExpr whose declaration is a local.
7100/// * An AddrLabelExpr.
7101/// * A BlockExpr for a block with captures.
7102using Local = Expr*;
7103
7104/// Expressions we stepped over when looking for the local state. Any steps
7105/// that would inhibit lifetime extension or take us out of subexpressions of
7106/// the initializer are included.
7107struct IndirectLocalPathEntry {
7108 enum EntryKind {
7109 DefaultInit,
7110 AddressOf,
7111 VarInit,
7112 LValToRVal,
7113 LifetimeBoundCall,
7114 TemporaryCopy,
7115 LambdaCaptureInit,
7116 GslReferenceInit,
7117 GslPointerInit
7118 } Kind;
7119 Expr *E;
7120 union {
7121 const Decl *D = nullptr;
7122 const LambdaCapture *Capture;
7123 };
7124 IndirectLocalPathEntry() {}
7125 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
7126 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
7127 : Kind(K), E(E), D(D) {}
7128 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
7129 : Kind(K), E(E), Capture(Capture) {}
7130};
7131
7132using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
7133
7134struct RevertToOldSizeRAII {
7135 IndirectLocalPath &Path;
7136 unsigned OldSize = Path.size();
7137 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
7138 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
7139};
7140
7141using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
7142 ReferenceKind RK)>;
7143}
7144
7145static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
7146 for (auto E : Path)
7147 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
7148 return true;
7149 return false;
7150}
7151
7152static bool pathContainsInit(IndirectLocalPath &Path) {
7153 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
7154 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
7155 E.Kind == IndirectLocalPathEntry::VarInit;
7156 });
7157}
7158
7159static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7160 Expr *Init, LocalVisitor Visit,
7161 bool RevisitSubinits,
7162 bool EnableLifetimeWarnings);
7163
7164static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7165 Expr *Init, ReferenceKind RK,
7166 LocalVisitor Visit,
7167 bool EnableLifetimeWarnings);
7168
7169template <typename T> static bool isRecordWithAttr(QualType Type) {
7170 if (auto *RD = Type->getAsCXXRecordDecl())
7171 return RD->hasAttr<T>();
7172 return false;
7173}
7174
7175// Decl::isInStdNamespace will return false for iterators in some STL
7176// implementations due to them being defined in a namespace outside of the std
7177// namespace.
7178static bool isInStlNamespace(const Decl *D) {
7179 const DeclContext *DC = D->getDeclContext();
7180 if (!DC)
7181 return false;
7182 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
7183 if (const IdentifierInfo *II = ND->getIdentifier()) {
7184 StringRef Name = II->getName();
7185 if (Name.size() >= 2 && Name.front() == '_' &&
7186 (Name[1] == '_' || isUppercase(Name[1])))
7187 return true;
7188 }
7189
7190 return DC->isStdNamespace();
7191}
7192
7193static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
7194 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
7195 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
7196 return true;
7197 if (!isInStlNamespace(Callee->getParent()))
7198 return false;
7199 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
7200 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
7201 return false;
7202 if (Callee->getReturnType()->isPointerType() ||
7203 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
7204 if (!Callee->getIdentifier())
7205 return false;
7206 return llvm::StringSwitch<bool>(Callee->getName())
7207 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7208 .Cases("end", "rend", "cend", "crend", true)
7209 .Cases("c_str", "data", "get", true)
7210 // Map and set types.
7211 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
7212 .Default(false);
7213 } else if (Callee->getReturnType()->isReferenceType()) {
7214 if (!Callee->getIdentifier()) {
7215 auto OO = Callee->getOverloadedOperator();
7216 return OO == OverloadedOperatorKind::OO_Subscript ||
7217 OO == OverloadedOperatorKind::OO_Star;
7218 }
7219 return llvm::StringSwitch<bool>(Callee->getName())
7220 .Cases("front", "back", "at", "top", "value", true)
7221 .Default(false);
7222 }
7223 return false;
7224}
7225
7226static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
7227 if (!FD->getIdentifier() || FD->getNumParams() != 1)
7228 return false;
7229 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
7230 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
7231 return false;
7232 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
7233 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
7234 return false;
7235 if (FD->getReturnType()->isPointerType() ||
7236 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
7237 return llvm::StringSwitch<bool>(FD->getName())
7238 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7239 .Cases("end", "rend", "cend", "crend", true)
7240 .Case("data", true)
7241 .Default(false);
7242 } else if (FD->getReturnType()->isReferenceType()) {
7243 return llvm::StringSwitch<bool>(FD->getName())
7244 .Cases("get", "any_cast", true)
7245 .Default(false);
7246 }
7247 return false;
7248}
7249
7250static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
7251 LocalVisitor Visit) {
7252 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
7253 // We are not interested in the temporary base objects of gsl Pointers:
7254 // Temp().ptr; // Here ptr might not dangle.
7255 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
7256 return;
7257 // Once we initialized a value with a reference, it can no longer dangle.
7258 if (!Value) {
7259 for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
7260 if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
7261 continue;
7262 if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
7263 return;
7264 break;
7265 }
7266 }
7267 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
7268 : IndirectLocalPathEntry::GslReferenceInit,
7269 Arg, D});
7270 if (Arg->isGLValue())
7271 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7272 Visit,
7273 /*EnableLifetimeWarnings=*/true);
7274 else
7275 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7276 /*EnableLifetimeWarnings=*/true);
7277 Path.pop_back();
7278 };
7279
7280 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7281 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
7282 if (MD && shouldTrackImplicitObjectArg(MD))
7283 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
7284 !MD->getReturnType()->isReferenceType());
7285 return;
7286 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
7287 FunctionDecl *Callee = OCE->getDirectCallee();
7288 if (Callee && Callee->isCXXInstanceMember() &&
7289 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
7290 VisitPointerArg(Callee, OCE->getArg(0),
7291 !Callee->getReturnType()->isReferenceType());
7292 return;
7293 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
7294 FunctionDecl *Callee = CE->getDirectCallee();
7295 if (Callee && shouldTrackFirstArgument(Callee))
7296 VisitPointerArg(Callee, CE->getArg(0),
7297 !Callee->getReturnType()->isReferenceType());
7298 return;
7299 }
7300
7301 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7302 const auto *Ctor = CCE->getConstructor();
7303 const CXXRecordDecl *RD = Ctor->getParent();
7304 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7305 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7306 }
7307}
7308
7309static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7310 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7311 if (!TSI)
7312 return false;
7313 // Don't declare this variable in the second operand of the for-statement;
7314 // GCC miscompiles that by ending its lifetime before evaluating the
7315 // third operand. See gcc.gnu.org/PR86769.
7316 AttributedTypeLoc ATL;
7317 for (TypeLoc TL = TSI->getTypeLoc();
7318 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7319 TL = ATL.getModifiedLoc()) {
7320 if (ATL.getAttrAs<LifetimeBoundAttr>())
7321 return true;
7322 }
7323
7324 // Assume that all assignment operators with a "normal" return type return
7325 // *this, that is, an lvalue reference that is the same type as the implicit
7326 // object parameter (or the LHS for a non-member operator$=).
7327 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7328 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7329 QualType RetT = FD->getReturnType();
7330 if (RetT->isLValueReferenceType()) {
7331 ASTContext &Ctx = FD->getASTContext();
7332 QualType LHST;
7333 auto *MD = dyn_cast<CXXMethodDecl>(FD);
7334 if (MD && MD->isCXXInstanceMember())
7335 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7336 else
7337 LHST = MD->getParamDecl(0)->getType();
7338 if (Ctx.hasSameType(RetT, LHST))
7339 return true;
7340 }
7341 }
7342
7343 return false;
7344}
7345
7346static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7347 LocalVisitor Visit) {
7348 const FunctionDecl *Callee;
7349 ArrayRef<Expr*> Args;
7350
7351 if (auto *CE = dyn_cast<CallExpr>(Call)) {
7352 Callee = CE->getDirectCallee();
7353 Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
7354 } else {
7355 auto *CCE = cast<CXXConstructExpr>(Call);
7356 Callee = CCE->getConstructor();
7357 Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs());
7358 }
7359 if (!Callee)
7360 return;
7361
7362 Expr *ObjectArg = nullptr;
7363 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7364 ObjectArg = Args[0];
7365 Args = Args.slice(1);
7366 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7367 ObjectArg = MCE->getImplicitObjectArgument();
7368 }
7369
7370 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7371 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7372 if (Arg->isGLValue())
7373 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7374 Visit,
7375 /*EnableLifetimeWarnings=*/false);
7376 else
7377 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7378 /*EnableLifetimeWarnings=*/false);
7379 Path.pop_back();
7380 };
7381
7382 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7383 VisitLifetimeBoundArg(Callee, ObjectArg);
7384
7385 for (unsigned I = 0,
7386 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7387 I != N; ++I) {
7388 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7389 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7390 }
7391}
7392
7393/// Visit the locals that would be reachable through a reference bound to the
7394/// glvalue expression \c Init.
7395static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7396 Expr *Init, ReferenceKind RK,
7397 LocalVisitor Visit,
7398 bool EnableLifetimeWarnings) {
7399 RevertToOldSizeRAII RAII(Path);
7400
7401 // Walk past any constructs which we can lifetime-extend across.
7402 Expr *Old;
7403 do {
7404 Old = Init;
7405
7406 if (auto *FE = dyn_cast<FullExpr>(Init))
7407 Init = FE->getSubExpr();
7408
7409 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7410 // If this is just redundant braces around an initializer, step over it.
7411 if (ILE->isTransparent())
7412 Init = ILE->getInit(0);
7413 }
7414
7415 // Step over any subobject adjustments; we may have a materialized
7416 // temporary inside them.
7417 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7418
7419 // Per current approach for DR1376, look through casts to reference type
7420 // when performing lifetime extension.
7421 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7422 if (CE->getSubExpr()->isGLValue())
7423 Init = CE->getSubExpr();
7424
7425 // Per the current approach for DR1299, look through array element access
7426 // on array glvalues when performing lifetime extension.
7427 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7428 Init = ASE->getBase();
7429 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7430 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7431 Init = ICE->getSubExpr();
7432 else
7433 // We can't lifetime extend through this but we might still find some
7434 // retained temporaries.
7435 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7436 EnableLifetimeWarnings);
7437 }
7438
7439 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7440 // constructor inherits one as an implicit mem-initializer.
7441 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7442 Path.push_back(
7443 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7444 Init = DIE->getExpr();
7445 }
7446 } while (Init != Old);
7447
7448 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7449 if (Visit(Path, Local(MTE), RK))
7450 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7451 EnableLifetimeWarnings);
7452 }
7453
7454 if (isa<CallExpr>(Init)) {
7455 if (EnableLifetimeWarnings)
7456 handleGslAnnotatedTypes(Path, Init, Visit);
7457 return visitLifetimeBoundArguments(Path, Init, Visit);
7458 }
7459
7460 switch (Init->getStmtClass()) {
7461 case Stmt::DeclRefExprClass: {
7462 // If we find the name of a local non-reference parameter, we could have a
7463 // lifetime problem.
7464 auto *DRE = cast<DeclRefExpr>(Init);
7465 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7466 if (VD && VD->hasLocalStorage() &&
7467 !DRE->refersToEnclosingVariableOrCapture()) {
7468 if (!VD->getType()->isReferenceType()) {
7469 Visit(Path, Local(DRE), RK);
7470 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7471 // The lifetime of a reference parameter is unknown; assume it's OK
7472 // for now.
7473 break;
7474 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7475 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7476 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7477 RK_ReferenceBinding, Visit,
7478 EnableLifetimeWarnings);
7479 }
7480 }
7481 break;
7482 }
7483
7484 case Stmt::UnaryOperatorClass: {
7485 // The only unary operator that make sense to handle here
7486 // is Deref. All others don't resolve to a "name." This includes
7487 // handling all sorts of rvalues passed to a unary operator.
7488 const UnaryOperator *U = cast<UnaryOperator>(Init);
7489 if (U->getOpcode() == UO_Deref)
7490 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7491 EnableLifetimeWarnings);
7492 break;
7493 }
7494
7495 case Stmt::OMPArraySectionExprClass: {
7496 visitLocalsRetainedByInitializer(Path,
7497 cast<OMPArraySectionExpr>(Init)->getBase(),
7498 Visit, true, EnableLifetimeWarnings);
7499 break;
7500 }
7501
7502 case Stmt::ConditionalOperatorClass:
7503 case Stmt::BinaryConditionalOperatorClass: {
7504 auto *C = cast<AbstractConditionalOperator>(Init);
7505 if (!C->getTrueExpr()->getType()->isVoidType())
7506 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7507 EnableLifetimeWarnings);
7508 if (!C->getFalseExpr()->getType()->isVoidType())
7509 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7510 EnableLifetimeWarnings);
7511 break;
7512 }
7513
7514 // FIXME: Visit the left-hand side of an -> or ->*.
7515
7516 default:
7517 break;
7518 }
7519}
7520
7521/// Visit the locals that would be reachable through an object initialized by
7522/// the prvalue expression \c Init.
7523static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7524 Expr *Init, LocalVisitor Visit,
7525 bool RevisitSubinits,
7526 bool EnableLifetimeWarnings) {
7527 RevertToOldSizeRAII RAII(Path);
7528
7529 Expr *Old;
7530 do {
7531 Old = Init;
7532
7533 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7534 // constructor inherits one as an implicit mem-initializer.
7535 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7536 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7537 Init = DIE->getExpr();
7538 }
7539
7540 if (auto *FE = dyn_cast<FullExpr>(Init))
7541 Init = FE->getSubExpr();
7542
7543 // Dig out the expression which constructs the extended temporary.
7544 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7545
7546 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7547 Init = BTE->getSubExpr();
7548
7549 Init = Init->IgnoreParens();
7550
7551 // Step over value-preserving rvalue casts.
7552 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7553 switch (CE->getCastKind()) {
7554 case CK_LValueToRValue:
7555 // If we can match the lvalue to a const object, we can look at its
7556 // initializer.
7557 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7558 return visitLocalsRetainedByReferenceBinding(
7559 Path, Init, RK_ReferenceBinding,
7560 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7561 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7562 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7563 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7564 !isVarOnPath(Path, VD)) {
7565 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7566 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7567 EnableLifetimeWarnings);
7568 }
7569 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7570 if (MTE->getType().isConstQualified())
7571 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7572 true, EnableLifetimeWarnings);
7573 }
7574 return false;
7575 }, EnableLifetimeWarnings);
7576
7577 // We assume that objects can be retained by pointers cast to integers,
7578 // but not if the integer is cast to floating-point type or to _Complex.
7579 // We assume that casts to 'bool' do not preserve enough information to
7580 // retain a local object.
7581 case CK_NoOp:
7582 case CK_BitCast:
7583 case CK_BaseToDerived:
7584 case CK_DerivedToBase:
7585 case CK_UncheckedDerivedToBase:
7586 case CK_Dynamic:
7587 case CK_ToUnion:
7588 case CK_UserDefinedConversion:
7589 case CK_ConstructorConversion:
7590 case CK_IntegralToPointer:
7591 case CK_PointerToIntegral:
7592 case CK_VectorSplat:
7593 case CK_IntegralCast:
7594 case CK_CPointerToObjCPointerCast:
7595 case CK_BlockPointerToObjCPointerCast:
7596 case CK_AnyPointerToBlockPointerCast:
7597 case CK_AddressSpaceConversion:
7598 break;
7599
7600 case CK_ArrayToPointerDecay:
7601 // Model array-to-pointer decay as taking the address of the array
7602 // lvalue.
7603 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7604 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7605 RK_ReferenceBinding, Visit,
7606 EnableLifetimeWarnings);
7607
7608 default:
7609 return;
7610 }
7611
7612 Init = CE->getSubExpr();
7613 }
7614 } while (Old != Init);
7615
7616 // C++17 [dcl.init.list]p6:
7617 // initializing an initializer_list object from the array extends the
7618 // lifetime of the array exactly like binding a reference to a temporary.
7619 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7620 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7621 RK_StdInitializerList, Visit,
7622 EnableLifetimeWarnings);
7623
7624 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7625 // We already visited the elements of this initializer list while
7626 // performing the initialization. Don't visit them again unless we've
7627 // changed the lifetime of the initialized entity.
7628 if (!RevisitSubinits)
7629 return;
7630
7631 if (ILE->isTransparent())
7632 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7633 RevisitSubinits,
7634 EnableLifetimeWarnings);
7635
7636 if (ILE->getType()->isArrayType()) {
7637 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7638 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7639 RevisitSubinits,
7640 EnableLifetimeWarnings);
7641 return;
7642 }
7643
7644 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7645 assert(RD->isAggregate() && "aggregate init on non-aggregate")(static_cast <bool> (RD->isAggregate() && "aggregate init on non-aggregate"
) ? void (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "clang/lib/Sema/SemaInit.cpp", 7645, __extension__ __PRETTY_FUNCTION__
))
;
7646
7647 // If we lifetime-extend a braced initializer which is initializing an
7648 // aggregate, and that aggregate contains reference members which are
7649 // bound to temporaries, those temporaries are also lifetime-extended.
7650 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7651 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7652 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7653 RK_ReferenceBinding, Visit,
7654 EnableLifetimeWarnings);
7655 else {
7656 unsigned Index = 0;
7657 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7658 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7659 RevisitSubinits,
7660 EnableLifetimeWarnings);
7661 for (const auto *I : RD->fields()) {
7662 if (Index >= ILE->getNumInits())
7663 break;
7664 if (I->isUnnamedBitfield())
7665 continue;
7666 Expr *SubInit = ILE->getInit(Index);
7667 if (I->getType()->isReferenceType())
7668 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7669 RK_ReferenceBinding, Visit,
7670 EnableLifetimeWarnings);
7671 else
7672 // This might be either aggregate-initialization of a member or
7673 // initialization of a std::initializer_list object. Regardless,
7674 // we should recursively lifetime-extend that initializer.
7675 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7676 RevisitSubinits,
7677 EnableLifetimeWarnings);
7678 ++Index;
7679 }
7680 }
7681 }
7682 return;
7683 }
7684
7685 // The lifetime of an init-capture is that of the closure object constructed
7686 // by a lambda-expression.
7687 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7688 LambdaExpr::capture_iterator CapI = LE->capture_begin();
7689 for (Expr *E : LE->capture_inits()) {
7690 assert(CapI != LE->capture_end())(static_cast <bool> (CapI != LE->capture_end()) ? void
(0) : __assert_fail ("CapI != LE->capture_end()", "clang/lib/Sema/SemaInit.cpp"
, 7690, __extension__ __PRETTY_FUNCTION__))
;
7691 const LambdaCapture &Cap = *CapI++;
7692 if (!E)
7693 continue;
7694 if (Cap.capturesVariable())
7695 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7696 if (E->isGLValue())
7697 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7698 Visit, EnableLifetimeWarnings);
7699 else
7700 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7701 EnableLifetimeWarnings);
7702 if (Cap.capturesVariable())
7703 Path.pop_back();
7704 }
7705 }
7706
7707 // Assume that a copy or move from a temporary references the same objects
7708 // that the temporary does.
7709 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7710 if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7711 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7712 Expr *Arg = MTE->getSubExpr();
7713 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7714 CCE->getConstructor()});
7715 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7716 /*EnableLifetimeWarnings*/false);
7717 Path.pop_back();
7718 }
7719 }
7720 }
7721
7722 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7723 if (EnableLifetimeWarnings)
7724 handleGslAnnotatedTypes(Path, Init, Visit);
7725 return visitLifetimeBoundArguments(Path, Init, Visit);
7726 }
7727
7728 switch (Init->getStmtClass()) {
7729 case Stmt::UnaryOperatorClass: {
7730 auto *UO = cast<UnaryOperator>(Init);
7731 // If the initializer is the address of a local, we could have a lifetime
7732 // problem.
7733 if (UO->getOpcode() == UO_AddrOf) {
7734 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7735 // it. Don't produce a redundant warning about the lifetime of the
7736 // temporary.
7737 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7738 return;
7739
7740 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7741 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7742 RK_ReferenceBinding, Visit,
7743 EnableLifetimeWarnings);
7744 }
7745 break;
7746 }
7747
7748 case Stmt::BinaryOperatorClass: {
7749 // Handle pointer arithmetic.
7750 auto *BO = cast<BinaryOperator>(Init);
7751 BinaryOperatorKind BOK = BO->getOpcode();
7752 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7753 break;
7754
7755 if (BO->getLHS()->getType()->isPointerType())
7756 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7757 EnableLifetimeWarnings);
7758 else if (BO->getRHS()->getType()->isPointerType())
7759 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7760 EnableLifetimeWarnings);
7761 break;
7762 }
7763
7764 case Stmt::ConditionalOperatorClass:
7765 case Stmt::BinaryConditionalOperatorClass: {
7766 auto *C = cast<AbstractConditionalOperator>(Init);
7767 // In C++, we can have a throw-expression operand, which has 'void' type
7768 // and isn't interesting from a lifetime perspective.
7769 if (!C->getTrueExpr()->getType()->isVoidType())
7770 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7771 EnableLifetimeWarnings);
7772 if (!C->getFalseExpr()->getType()->isVoidType())
7773 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7774 EnableLifetimeWarnings);
7775 break;
7776 }
7777
7778 case Stmt::BlockExprClass:
7779 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7780 // This is a local block, whose lifetime is that of the function.
7781 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7782 }
7783 break;
7784
7785 case Stmt::AddrLabelExprClass:
7786 // We want to warn if the address of a label would escape the function.
7787 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7788 break;
7789
7790 default:
7791 break;
7792 }
7793}
7794
7795/// Whether a path to an object supports lifetime extension.
7796enum PathLifetimeKind {
7797 /// Lifetime-extend along this path.
7798 Extend,
7799 /// We should lifetime-extend, but we don't because (due to technical
7800 /// limitations) we can't. This happens for default member initializers,
7801 /// which we don't clone for every use, so we don't have a unique
7802 /// MaterializeTemporaryExpr to update.
7803 ShouldExtend,
7804 /// Do not lifetime extend along this path.
7805 NoExtend
7806};
7807
7808/// Determine whether this is an indirect path to a temporary that we are
7809/// supposed to lifetime-extend along.
7810static PathLifetimeKind
7811shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7812 PathLifetimeKind Kind = PathLifetimeKind::Extend;
7813 for (auto Elem : Path) {
7814 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7815 Kind = PathLifetimeKind::ShouldExtend;
7816 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7817 return PathLifetimeKind::NoExtend;
7818 }
7819 return Kind;
7820}
7821
7822/// Find the range for the first interesting entry in the path at or after I.
7823static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7824 Expr *E) {
7825 for (unsigned N = Path.size(); I != N; ++I) {
7826 switch (Path[I].Kind) {
7827 case IndirectLocalPathEntry::AddressOf:
7828 case IndirectLocalPathEntry::LValToRVal:
7829 case IndirectLocalPathEntry::LifetimeBoundCall:
7830 case IndirectLocalPathEntry::TemporaryCopy:
7831 case IndirectLocalPathEntry::GslReferenceInit:
7832 case IndirectLocalPathEntry::GslPointerInit:
7833 // These exist primarily to mark the path as not permitting or
7834 // supporting lifetime extension.
7835 break;
7836
7837 case IndirectLocalPathEntry::VarInit:
7838 if (cast<VarDecl>(Path[I].D)->isImplicit())
7839 return SourceRange();
7840 [[fallthrough]];
7841 case IndirectLocalPathEntry::DefaultInit:
7842 return Path[I].E->getSourceRange();
7843
7844 case IndirectLocalPathEntry::LambdaCaptureInit:
7845 if (!Path[I].Capture->capturesVariable())
7846 continue;
7847 return Path[I].E->getSourceRange();
7848 }
7849 }
7850 return E->getSourceRange();
7851}
7852
7853static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7854 for (const auto &It : llvm::reverse(Path)) {
7855 if (It.Kind == IndirectLocalPathEntry::VarInit)
7856 continue;
7857 if (It.Kind == IndirectLocalPathEntry::AddressOf)
7858 continue;
7859 if (It.Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7860 continue;
7861 return It.Kind == IndirectLocalPathEntry::GslPointerInit ||
7862 It.Kind == IndirectLocalPathEntry::GslReferenceInit;
7863 }
7864 return false;
7865}
7866
7867void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7868 Expr *Init) {
7869 LifetimeResult LR = getEntityLifetime(&Entity);
7870 LifetimeKind LK = LR.getInt();
7871 const InitializedEntity *ExtendingEntity = LR.getPointer();
7872
7873 // If this entity doesn't have an interesting lifetime, don't bother looking
7874 // for temporaries within its initializer.
7875 if (LK == LK_FullExpression)
7876 return;
7877
7878 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7879 ReferenceKind RK) -> bool {
7880 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7881 SourceLocation DiagLoc = DiagRange.getBegin();
7882
7883 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7884
7885 bool IsGslPtrInitWithGslTempOwner = false;
7886 bool IsLocalGslOwner = false;
7887 if (pathOnlyInitializesGslPointer(Path)) {
7888 if (isa<DeclRefExpr>(L)) {
7889 // We do not want to follow the references when returning a pointer originating
7890 // from a local owner to avoid the following false positive:
7891 // int &p = *localUniquePtr;
7892 // someContainer.add(std::move(localUniquePtr));
7893 // return p;
7894 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7895 if (pathContainsInit(Path) || !IsLocalGslOwner)
7896 return false;
7897 } else {
7898 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7899 isRecordWithAttr<OwnerAttr>(MTE->getType());
7900 // Skipping a chain of initializing gsl::Pointer annotated objects.
7901 // We are looking only for the final source to find out if it was
7902 // a local or temporary owner or the address of a local variable/param.
7903 if (!IsGslPtrInitWithGslTempOwner)
7904 return true;
7905 }
7906 }
7907
7908 switch (LK) {
7909 case LK_FullExpression:
7910 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "clang/lib/Sema/SemaInit.cpp"
, 7910)
;
7911
7912 case LK_Extended: {
7913 if (!MTE) {
7914 // The initialized entity has lifetime beyond the full-expression,
7915 // and the local entity does too, so don't warn.
7916 //
7917 // FIXME: We should consider warning if a static / thread storage
7918 // duration variable retains an automatic storage duration local.
7919 return false;
7920 }
7921
7922 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7923 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7924 return false;
7925 }
7926
7927 switch (shouldLifetimeExtendThroughPath(Path)) {
7928 case PathLifetimeKind::Extend:
7929 // Update the storage duration of the materialized temporary.
7930 // FIXME: Rebuild the expression instead of mutating it.
7931 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7932 ExtendingEntity->allocateManglingNumber());
7933 // Also visit the temporaries lifetime-extended by this initializer.
7934 return true;
7935
7936 case PathLifetimeKind::ShouldExtend:
7937 // We're supposed to lifetime-extend the temporary along this path (per
7938 // the resolution of DR1815), but we don't support that yet.
7939 //
7940 // FIXME: Properly handle this situation. Perhaps the easiest approach
7941 // would be to clone the initializer expression on each use that would
7942 // lifetime extend its temporaries.
7943 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7944 << RK << DiagRange;
7945 break;
7946
7947 case PathLifetimeKind::NoExtend:
7948 // If the path goes through the initialization of a variable or field,
7949 // it can't possibly reach a temporary created in this full-expression.
7950 // We will have already diagnosed any problems with the initializer.
7951 if (pathContainsInit(Path))
7952 return false;
7953
7954 Diag(DiagLoc, diag::warn_dangling_variable)
7955 << RK << !Entity.getParent()
7956 << ExtendingEntity->getDecl()->isImplicit()
7957 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7958 break;
7959 }
7960 break;
7961 }
7962
7963 case LK_MemInitializer: {
7964 if (isa<MaterializeTemporaryExpr>(L)) {
7965 // Under C++ DR1696, if a mem-initializer (or a default member
7966 // initializer used by the absence of one) would lifetime-extend a
7967 // temporary, the program is ill-formed.
7968 if (auto *ExtendingDecl =
7969 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7970 if (IsGslPtrInitWithGslTempOwner) {
7971 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7972 << ExtendingDecl << DiagRange;
7973 Diag(ExtendingDecl->getLocation(),
7974 diag::note_ref_or_ptr_member_declared_here)
7975 << true;
7976 return false;
7977 }
7978 bool IsSubobjectMember = ExtendingEntity != &Entity;
7979 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7980 PathLifetimeKind::NoExtend
7981 ? diag::err_dangling_member
7982 : diag::warn_dangling_member)
7983 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7984 // Don't bother adding a note pointing to the field if we're inside
7985 // its default member initializer; our primary diagnostic points to
7986 // the same place in that case.
7987 if (Path.empty() ||
7988 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7989 Diag(ExtendingDecl->getLocation(),
7990 diag::note_lifetime_extending_member_declared_here)
7991 << RK << IsSubobjectMember;
7992 }
7993 } else {
7994 // We have a mem-initializer but no particular field within it; this
7995 // is either a base class or a delegating initializer directly
7996 // initializing the base-class from something that doesn't live long
7997 // enough.
7998 //
7999 // FIXME: Warn on this.
8000 return false;
8001 }
8002 } else {
8003 // Paths via a default initializer can only occur during error recovery
8004 // (there's no other way that a default initializer can refer to a
8005 // local). Don't produce a bogus warning on those cases.
8006 if (pathContainsInit(Path))
8007 return false;
8008
8009 // Suppress false positives for code like the one below:
8010 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
8011 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
8012 return false;
8013
8014 auto *DRE = dyn_cast<DeclRefExpr>(L);
8015 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
8016 if (!VD) {
8017 // A member was initialized to a local block.
8018 // FIXME: Warn on this.
8019 return false;
8020 }
8021
8022 if (auto *Member =
8023 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
8024 bool IsPointer = !Member->getType()->isReferenceType();
8025 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
8026 : diag::warn_bind_ref_member_to_parameter)
8027 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
8028 Diag(Member->getLocation(),
8029 diag::note_ref_or_ptr_member_declared_here)
8030 << (unsigned)IsPointer;
8031 }
8032 }
8033 break;
8034 }
8035
8036 case LK_New:
8037 if (isa<MaterializeTemporaryExpr>(L)) {
8038 if (IsGslPtrInitWithGslTempOwner)
8039 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
8040 else
8041 Diag(DiagLoc, RK == RK_ReferenceBinding
8042 ? diag::warn_new_dangling_reference
8043 : diag::warn_new_dangling_initializer_list)
8044 << !Entity.getParent() << DiagRange;
8045 } else {
8046 // We can't determine if the allocation outlives the local declaration.
8047 return false;
8048 }
8049 break;
8050
8051 case LK_Return:
8052 case LK_StmtExprResult:
8053 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
8054 // We can't determine if the local variable outlives the statement
8055 // expression.
8056 if (LK == LK_StmtExprResult)
8057 return false;
8058 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
8059 << Entity.getType()->isReferenceType() << DRE->getDecl()
8060 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
8061 } else if (isa<BlockExpr>(L)) {
8062 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
8063 } else if (isa<AddrLabelExpr>(L)) {
8064 // Don't warn when returning a label from a statement expression.
8065 // Leaving the scope doesn't end its lifetime.
8066 if (LK == LK_StmtExprResult)
8067 return false;
8068 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
8069 } else {
8070 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
8071 << Entity.getType()->isReferenceType() << DiagRange;
8072 }
8073 break;
8074 }
8075
8076 for (unsigned I = 0; I != Path.size(); ++I) {
8077 auto Elem = Path[I];
8078
8079 switch (Elem.Kind) {
8080 case IndirectLocalPathEntry::AddressOf:
8081 case IndirectLocalPathEntry::LValToRVal:
8082 // These exist primarily to mark the path as not permitting or
8083 // supporting lifetime extension.
8084 break;
8085
8086 case IndirectLocalPathEntry::LifetimeBoundCall:
8087 case IndirectLocalPathEntry::TemporaryCopy:
8088 case IndirectLocalPathEntry::GslPointerInit:
8089 case IndirectLocalPathEntry::GslReferenceInit:
8090 // FIXME: Consider adding a note for these.
8091 break;
8092
8093 case IndirectLocalPathEntry::DefaultInit: {
8094 auto *FD = cast<FieldDecl>(Elem.D);
8095 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
8096 << FD << nextPathEntryRange(Path, I + 1, L);
8097 break;
8098 }
8099
8100 case IndirectLocalPathEntry::VarInit: {
8101 const VarDecl *VD = cast<VarDecl>(Elem.D);
8102 Diag(VD->getLocation(), diag::note_local_var_initializer)
8103 << VD->getType()->isReferenceType()
8104 << VD->isImplicit() << VD->getDeclName()
8105 << nextPathEntryRange(Path, I + 1, L);
8106 break;
8107 }
8108
8109 case IndirectLocalPathEntry::LambdaCaptureInit:
8110 if (!Elem.Capture->capturesVariable())
8111 break;
8112 // FIXME: We can't easily tell apart an init-capture from a nested
8113 // capture of an init-capture.
8114 const ValueDecl *VD = Elem.Capture->getCapturedVar();
8115 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
8116 << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
8117 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
8118 << nextPathEntryRange(Path, I + 1, L);
8119 break;
8120 }
8121 }
8122
8123 // We didn't lifetime-extend, so don't go any further; we don't need more
8124 // warnings or errors on inner temporaries within this one's initializer.
8125 return false;
8126 };
8127
8128 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
8129 diag::warn_dangling_lifetime_pointer, SourceLocation());
8130 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
8131 if (Init->isGLValue())
8132 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
8133 TemporaryVisitor,
8134 EnableLifetimeWarnings);
8135 else
8136 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
8137 EnableLifetimeWarnings);
8138}
8139
8140static void DiagnoseNarrowingInInitList(Sema &S,
8141 const ImplicitConversionSequence &ICS,
8142 QualType PreNarrowingType,
8143 QualType EntityType,
8144 const Expr *PostInit);
8145
8146/// Provide warnings when std::move is used on construction.
8147static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
8148 bool IsReturnStmt) {
8149 if (!InitExpr)
8150 return;
8151
8152 if (S.inTemplateInstantiation())
8153 return;
8154
8155 QualType DestType = InitExpr->getType();
8156 if (!DestType->isRecordType())
8157 return;
8158
8159 unsigned DiagID = 0;
8160 if (IsReturnStmt) {
8161 const CXXConstructExpr *CCE =
8162 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
8163 if (!CCE || CCE->getNumArgs() != 1)
8164 return;
8165
8166 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
8167 return;
8168
8169 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
8170 }
8171
8172 // Find the std::move call and get the argument.
8173 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
8174 if (!CE || !CE->isCallToStdMove())
8175 return;
8176
8177 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
8178
8179 if (IsReturnStmt) {
8180 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
8181 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
8182 return;
8183
8184 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
8185 if (!VD || !VD->hasLocalStorage())
8186 return;
8187
8188 // __block variables are not moved implicitly.
8189 if (VD->hasAttr<BlocksAttr>())
8190 return;
8191
8192 QualType SourceType = VD->getType();
8193 if (!SourceType->isRecordType())
8194 return;
8195
8196 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
8197 return;
8198 }
8199
8200 // If we're returning a function parameter, copy elision
8201 // is not possible.
8202 if (isa<ParmVarDecl>(VD))
8203 DiagID = diag::warn_redundant_move_on_return;
8204 else
8205 DiagID = diag::warn_pessimizing_move_on_return;
8206 } else {
8207 DiagID = diag::warn_pessimizing_move_on_initialization;
8208 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
8209 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
8210 return;
8211 }
8212
8213 S.Diag(CE->getBeginLoc(), DiagID);
8214
8215 // Get all the locations for a fix-it. Don't emit the fix-it if any location
8216 // is within a macro.
8217 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
8218 if (CallBegin.isMacroID())
8219 return;
8220 SourceLocation RParen = CE->getRParenLoc();
8221 if (RParen.isMacroID())
8222 return;
8223 SourceLocation LParen;
8224 SourceLocation ArgLoc = Arg->getBeginLoc();
8225
8226 // Special testing for the argument location. Since the fix-it needs the
8227 // location right before the argument, the argument location can be in a
8228 // macro only if it is at the beginning of the macro.
8229 while (ArgLoc.isMacroID() &&
8230 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
8231 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
8232 }
8233
8234 if (LParen.isMacroID())
8235 return;
8236
8237 LParen = ArgLoc.getLocWithOffset(-1);
8238
8239 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
8240 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
8241 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
8242}
8243
8244static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
8245 // Check to see if we are dereferencing a null pointer. If so, this is
8246 // undefined behavior, so warn about it. This only handles the pattern
8247 // "*null", which is a very syntactic check.
8248 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
8249 if (UO->getOpcode() == UO_Deref &&
8250 UO->getSubExpr()->IgnoreParenCasts()->
8251 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
8252 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
8253 S.PDiag(diag::warn_binding_null_to_reference)
8254 << UO->getSubExpr()->getSourceRange());
8255 }
8256}
8257
8258MaterializeTemporaryExpr *
8259Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
8260 bool BoundToLvalueReference) {
8261 auto MTE = new (Context)
8262 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
8263
8264 // Order an ExprWithCleanups for lifetime marks.
8265 //
8266 // TODO: It'll be good to have a single place to check the access of the
8267 // destructor and generate ExprWithCleanups for various uses. Currently these
8268 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
8269 // but there may be a chance to merge them.
8270 Cleanup.setExprNeedsCleanups(false);
8271 return MTE;
8272}
8273
8274ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
8275 // In C++98, we don't want to implicitly create an xvalue.
8276 // FIXME: This means that AST consumers need to deal with "prvalues" that
8277 // denote materialized temporaries. Maybe we should add another ValueKind
8278 // for "xvalue pretending to be a prvalue" for C++98 support.
8279 if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
8280 return E;
8281
8282 // C++1z [conv.rval]/1: T shall be a complete type.
8283 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
8284 // If so, we should check for a non-abstract class type here too.
8285 QualType T = E->getType();
8286 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
8287 return ExprError();
8288
8289 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
8290}
8291
8292ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
8293 ExprValueKind VK,
8294 CheckedConversionKind CCK) {
8295
8296 CastKind CK = CK_NoOp;
8297
8298 if (VK == VK_PRValue) {
8299 auto PointeeTy = Ty->getPointeeType();
8300 auto ExprPointeeTy = E->getType()->getPointeeType();
8301 if (!PointeeTy.isNull() &&
8302 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8303 CK = CK_AddressSpaceConversion;
8304 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8305 CK = CK_AddressSpaceConversion;
8306 }
8307
8308 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8309}
8310
8311ExprResult InitializationSequence::Perform(Sema &S,
8312 const InitializedEntity &Entity,
8313 const InitializationKind &Kind,
8314 MultiExprArg Args,
8315 QualType *ResultType) {
8316 if (Failed()) {
8317 Diagnose(S, Entity, Kind, Args);
8318 return ExprError();
8319 }
8320 if (!ZeroInitializationFixit.empty()) {
8321 const Decl *D = Entity.getDecl();
8322 const auto *VD = dyn_cast_or_null<VarDecl>(D);
8323 QualType DestType = Entity.getType();
8324
8325 // The initialization would have succeeded with this fixit. Since the fixit
8326 // is on the error, we need to build a valid AST in this case, so this isn't
8327 // handled in the Failed() branch above.
8328 if (!DestType->isRecordType() && VD && VD->isConstexpr()) {
8329 // Use a more useful diagnostic for constexpr variables.
8330 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
8331 << VD
8332 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8333 ZeroInitializationFixit);
8334 } else {
8335 unsigned DiagID = diag::err_default_init_const;
8336 if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>())
8337 DiagID = diag::ext_default_init_const;
8338
8339 S.Diag(Kind.getLocation(), DiagID)
8340 << DestType << (bool)DestType->getAs<RecordType>()
8341 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8342 ZeroInitializationFixit);
8343 }
8344 }
8345
8346 if (getKind() == DependentSequence) {
8347 // If the declaration is a non-dependent, incomplete array type
8348 // that has an initializer, then its type will be completed once
8349 // the initializer is instantiated.
8350 if (ResultType && !Entity.getType()->isDependentType() &&
8351 Args.size() == 1) {
8352 QualType DeclType = Entity.getType();
8353 if (const IncompleteArrayType *ArrayT
8354 = S.Context.getAsIncompleteArrayType(DeclType)) {
8355 // FIXME: We don't currently have the ability to accurately
8356 // compute the length of an initializer list without
8357 // performing full type-checking of the initializer list
8358 // (since we have to determine where braces are implicitly
8359 // introduced and such). So, we fall back to making the array
8360 // type a dependently-sized array type with no specified
8361 // bound.
8362 if (isa<InitListExpr>((Expr *)Args[0])) {
8363 SourceRange Brackets;
8364
8365 // Scavange the location of the brackets from the entity, if we can.
8366 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8367 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8368 TypeLoc TL = TInfo->getTypeLoc();
8369 if (IncompleteArrayTypeLoc ArrayLoc =
8370 TL.getAs<IncompleteArrayTypeLoc>())
8371 Brackets = ArrayLoc.getBracketsRange();
8372 }
8373 }
8374
8375 *ResultType
8376 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8377 /*NumElts=*/nullptr,
8378 ArrayT->getSizeModifier(),
8379 ArrayT->getIndexTypeCVRQualifiers(),
8380 Brackets);
8381 }
8382
8383 }
8384 }
8385 if (Kind.getKind() == InitializationKind::IK_Direct &&
8386 !Kind.isExplicitCast()) {
8387 // Rebuild the ParenListExpr.
8388 SourceRange ParenRange = Kind.getParenOrBraceRange();
8389 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8390 Args);
8391 }
8392 assert(Kind.getKind() == InitializationKind::IK_Copy ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "clang/lib/Sema/SemaInit.cpp", 8394, __extension__ __PRETTY_FUNCTION__
))
8393 Kind.isExplicitCast() ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "clang/lib/Sema/SemaInit.cpp", 8394, __extension__ __PRETTY_FUNCTION__
))
8394 Kind.getKind() == InitializationKind::IK_DirectList)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "clang/lib/Sema/SemaInit.cpp", 8394, __extension__ __PRETTY_FUNCTION__
))
;
8395 return ExprResult(Args[0]);
8396 }
8397
8398 // No steps means no initialization.
8399 if (Steps.empty())
8400 return ExprResult((Expr *)nullptr);
8401
8402 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8403 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8404 !Entity.isParamOrTemplateParamKind()) {
8405 // Produce a C++98 compatibility warning if we are initializing a reference
8406 // from an initializer list. For parameters, we produce a better warning
8407 // elsewhere.
8408 Expr *Init = Args[0];
8409 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8410 << Init->getSourceRange();
8411 }
8412
8413 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8414 QualType ETy = Entity.getType();
8415 bool HasGlobalAS = ETy.hasAddressSpace() &&
8416 ETy.getAddressSpace() == LangAS::opencl_global;
8417
8418 if (S.getLangOpts().OpenCLVersion >= 200 &&
8419 ETy->isAtomicType() && !HasGlobalAS &&
8420 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8421 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8422 << 1
8423 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8424 return ExprError();
8425 }
8426
8427 QualType DestType = Entity.getType().getNonReferenceType();
8428 // FIXME: Ugly hack around the fact that Entity.getType() is not
8429 // the same as Entity.getDecl()->getType() in cases involving type merging,
8430 // and we want latter when it makes sense.
8431 if (ResultType)
8432 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8433 Entity.getType();
8434
8435 ExprResult CurInit((Expr *)nullptr);
8436 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8437
8438 // HLSL allows vector initialization to function like list initialization, but
8439 // use the syntax of a C++-like constructor.
8440 bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() &&
8441 isa<InitListExpr>(Args[0]);
8442 (void)IsHLSLVectorInit;
8443
8444 // For initialization steps that start with a single initializer,
8445 // grab the only argument out the Args and place it into the "current"
8446 // initializer.
8447 switch (Steps.front().Kind) {
8448 case SK_ResolveAddressOfOverloadedFunction:
8449 case SK_CastDerivedToBasePRValue:
8450 case SK_CastDerivedToBaseXValue:
8451 case SK_CastDerivedToBaseLValue:
8452 case SK_BindReference:
8453 case SK_BindReferenceToTemporary:
8454 case SK_FinalCopy:
8455 case SK_ExtraneousCopyToTemporary:
8456 case SK_UserConversion:
8457 case SK_QualificationConversionLValue:
8458 case SK_QualificationConversionXValue:
8459 case SK_QualificationConversionPRValue:
8460 case SK_FunctionReferenceConversion:
8461 case SK_AtomicConversion:
8462 case SK_ConversionSequence:
8463 case SK_ConversionSequenceNoNarrowing:
8464 case SK_ListInitialization:
8465 case SK_UnwrapInitList:
8466 case SK_RewrapInitList:
8467 case SK_CAssignment:
8468 case SK_StringInit:
8469 case SK_ObjCObjectConversion:
8470 case SK_ArrayLoopIndex:
8471 case SK_ArrayLoopInit:
8472 case SK_ArrayInit:
8473 case SK_GNUArrayInit:
8474 case SK_ParenthesizedArrayInit:
8475 case SK_PassByIndirectCopyRestore:
8476 case SK_PassByIndirectRestore:
8477 case SK_ProduceObjCObject:
8478 case SK_StdInitializerList:
8479 case SK_OCLSamplerInit:
8480 case SK_OCLZeroOpaqueType: {
8481 assert(Args.size() == 1 || IsHLSLVectorInit)(static_cast <bool> (Args.size() == 1 || IsHLSLVectorInit
) ? void (0) : __assert_fail ("Args.size() == 1 || IsHLSLVectorInit"
, "clang/lib/Sema/SemaInit.cpp", 8481, __extension__ __PRETTY_FUNCTION__
))
;
8482 CurInit = Args[0];
8483 if (!CurInit.get()) return ExprError();
8484 break;
8485 }
8486
8487 case SK_ConstructorInitialization:
8488 case SK_ConstructorInitializationFromList:
8489 case SK_StdInitializerListConstructorCall:
8490 case SK_ZeroInitialization:
8491 case SK_ParenthesizedListInit:
8492 break;
8493 }
8494
8495 // Promote from an unevaluated context to an unevaluated list context in
8496 // C++11 list-initialization; we need to instantiate entities usable in
8497 // constant expressions here in order to perform narrowing checks =(
8498 EnterExpressionEvaluationContext Evaluated(
8499 S, EnterExpressionEvaluationContext::InitList,
8500 CurInit.get() && isa<InitListExpr>(CurInit.get()));
8501
8502 // C++ [class.abstract]p2:
8503 // no objects of an abstract class can be created except as subobjects
8504 // of a class derived from it
8505 auto checkAbstractType = [&](QualType T) -> bool {
8506 if (Entity.getKind() == InitializedEntity::EK_Base ||
8507 Entity.getKind() == InitializedEntity::EK_Delegating)
8508 return false;
8509 return S.RequireNonAbstractType(Kind.getLocation(), T,
8510 diag::err_allocation_of_abstract_type);
8511 };
8512
8513 // Walk through the computed steps for the initialization sequence,
8514 // performing the specified conversions along the way.
8515 bool ConstructorInitRequiresZeroInit = false;
8516 for (step_iterator Step = step_begin(), StepEnd = step_end();
8517 Step != StepEnd; ++Step) {
8518 if (CurInit.isInvalid())
8519 return ExprError();
8520
8521 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8522
8523 switch (Step->Kind) {
8524 case SK_ResolveAddressOfOverloadedFunction:
8525 // Overload resolution determined which function invoke; update the
8526 // initializer to reflect that choice.
8527 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8528 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8529 return ExprError();
8530 CurInit = S.FixOverloadedFunctionReference(CurInit,
8531 Step->Function.FoundDecl,
8532 Step->Function.Function);
8533 // We might get back another placeholder expression if we resolved to a
8534 // builtin.
8535 if (!CurInit.isInvalid())
8536 CurInit = S.CheckPlaceholderExpr(CurInit.get());
8537 break;
8538
8539 case SK_CastDerivedToBasePRValue:
8540 case SK_CastDerivedToBaseXValue:
8541 case SK_CastDerivedToBaseLValue: {
8542 // We have a derived-to-base cast that produces either an rvalue or an
8543 // lvalue. Perform that cast.
8544
8545 CXXCastPath BasePath;
8546
8547 // Casts to inaccessible base classes are allowed with C-style casts.
8548 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8549 if (S.CheckDerivedToBaseConversion(
8550 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8551 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8552 return ExprError();
8553
8554 ExprValueKind VK =
8555 Step->Kind == SK_CastDerivedToBaseLValue
8556 ? VK_LValue
8557 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8558 : VK_PRValue);
8559 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8560 CK_DerivedToBase, CurInit.get(),
8561 &BasePath, VK, FPOptionsOverride());
8562 break;
8563 }
8564
8565 case SK_BindReference:
8566 // Reference binding does not have any corresponding ASTs.
8567
8568 // Check exception specifications
8569 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8570 return ExprError();
8571
8572 // We don't check for e.g. function pointers here, since address
8573 // availability checks should only occur when the function first decays
8574 // into a pointer or reference.
8575 if (CurInit.get()->getType()->isFunctionProtoType()) {
8576 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8577 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8578 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8579 DRE->getBeginLoc()))
8580 return ExprError();
8581 }
8582 }
8583 }
8584
8585 CheckForNullPointerDereference(S, CurInit.get());
8586 break;
8587
8588 case SK_BindReferenceToTemporary: {
8589 // Make sure the "temporary" is actually an rvalue.
8590 assert(CurInit.get()->isPRValue() && "not a temporary")(static_cast <bool> (CurInit.get()->isPRValue() &&
"not a temporary") ? void (0) : __assert_fail ("CurInit.get()->isPRValue() && \"not a temporary\""
, "clang/lib/Sema/SemaInit.cpp", 8590, __extension__ __PRETTY_FUNCTION__
))
;
8591
8592 // Check exception specifications
8593 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8594 return ExprError();
8595
8596 QualType MTETy = Step->Type;
8597
8598 // When this is an incomplete array type (such as when this is
8599 // initializing an array of unknown bounds from an init list), use THAT
8600 // type instead so that we propagate the array bounds.
8601 if (MTETy->isIncompleteArrayType() &&
8602 !CurInit.get()->getType()->isIncompleteArrayType() &&
8603 S.Context.hasSameType(
8604 MTETy->getPointeeOrArrayElementType(),
8605 CurInit.get()->getType()->getPointeeOrArrayElementType()))
8606 MTETy = CurInit.get()->getType();
8607
8608 // Materialize the temporary into memory.
8609 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8610 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8611 CurInit = MTE;
8612
8613 // If we're extending this temporary to automatic storage duration -- we
8614 // need to register its cleanup during the full-expression's cleanups.
8615 if (MTE->getStorageDuration() == SD_Automatic &&
8616 MTE->getType().isDestructedType())
8617 S.Cleanup.setExprNeedsCleanups(true);
8618 break;
8619 }
8620
8621 case SK_FinalCopy:
8622 if (checkAbstractType(Step->Type))
8623 return ExprError();
8624
8625 // If the overall initialization is initializing a temporary, we already
8626 // bound our argument if it was necessary to do so. If not (if we're
8627 // ultimately initializing a non-temporary), our argument needs to be
8628 // bound since it's initializing a function parameter.
8629 // FIXME: This is a mess. Rationalize temporary destruction.
8630 if (!shouldBindAsTemporary(Entity))
8631 CurInit = S.MaybeBindToTemporary(CurInit.get());
8632 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8633 /*IsExtraneousCopy=*/false);
8634 break;
8635
8636 case SK_ExtraneousCopyToTemporary:
8637 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8638 /*IsExtraneousCopy=*/true);
8639 break;
8640
8641 case SK_UserConversion: {
8642 // We have a user-defined conversion that invokes either a constructor
8643 // or a conversion function.
8644 CastKind CastKind;
8645 FunctionDecl *Fn = Step->Function.Function;
8646 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8647 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8648 bool CreatedObject = false;
8649 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8650 // Build a call to the selected constructor.
8651 SmallVector<Expr*, 8> ConstructorArgs;
8652 SourceLocation Loc = CurInit.get()->getBeginLoc();
8653
8654 // Determine the arguments required to actually perform the constructor
8655 // call.
8656 Expr *Arg = CurInit.get();
8657 if (S.CompleteConstructorCall(Constructor, Step->Type,
8658 MultiExprArg(&Arg, 1), Loc,
8659 ConstructorArgs))
8660 return ExprError();
8661
8662 // Build an expression that constructs a temporary.
8663 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8664 FoundFn, Constructor,
8665 ConstructorArgs,
8666 HadMultipleCandidates,
8667 /*ListInit*/ false,
8668 /*StdInitListInit*/ false,
8669 /*ZeroInit*/ false,
8670 CXXConstructExpr::CK_Complete,
8671 SourceRange());
8672 if (CurInit.isInvalid())
8673 return ExprError();
8674
8675 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8676 Entity);
8677 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8678 return ExprError();
8679
8680 CastKind = CK_ConstructorConversion;
8681 CreatedObject = true;
8682 } else {
8683 // Build a call to the conversion function.
8684 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8685 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8686 FoundFn);
8687 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8688 return ExprError();
8689
8690 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8691 HadMultipleCandidates);
8692 if (CurInit.isInvalid())
8693 return ExprError();
8694
8695 CastKind = CK_UserDefinedConversion;
8696 CreatedObject = Conversion->getReturnType()->isRecordType();
8697 }
8698
8699 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8700 return ExprError();
8701
8702 CurInit = ImplicitCastExpr::Create(
8703 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8704 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8705
8706 if (shouldBindAsTemporary(Entity))
8707 // The overall entity is temporary, so this expression should be
8708 // destroyed at the end of its full-expression.
8709 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8710 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8711 // The object outlasts the full-expression, but we need to prepare for
8712 // a destructor being run on it.
8713 // FIXME: It makes no sense to do this here. This should happen
8714 // regardless of how we initialized the entity.
8715 QualType T = CurInit.get()->getType();
8716 if (const RecordType *Record = T->getAs<RecordType>()) {
8717 CXXDestructorDecl *Destructor
8718 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8719 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8720 S.PDiag(diag::err_access_dtor_temp) << T);
8721 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8722 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8723 return ExprError();
8724 }
8725 }
8726 break;
8727 }
8728
8729 case SK_QualificationConversionLValue:
8730 case SK_QualificationConversionXValue:
8731 case SK_QualificationConversionPRValue: {
8732 // Perform a qualification conversion; these can never go wrong.
8733 ExprValueKind VK =
8734 Step->Kind == SK_QualificationConversionLValue
8735 ? VK_LValue
8736 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8737 : VK_PRValue);
8738 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8739 break;
8740 }
8741
8742 case SK_FunctionReferenceConversion:
8743 assert(CurInit.get()->isLValue() &&(static_cast <bool> (CurInit.get()->isLValue() &&
"function reference should be lvalue") ? void (0) : __assert_fail
("CurInit.get()->isLValue() && \"function reference should be lvalue\""
, "clang/lib/Sema/SemaInit.cpp", 8744, __extension__ __PRETTY_FUNCTION__
))
8744 "function reference should be lvalue")(static_cast <bool> (CurInit.get()->isLValue() &&
"function reference should be lvalue") ? void (0) : __assert_fail
("CurInit.get()->isLValue() && \"function reference should be lvalue\""
, "clang/lib/Sema/SemaInit.cpp", 8744, __extension__ __PRETTY_FUNCTION__
))
;
8745 CurInit =
8746 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8747 break;
8748
8749 case SK_AtomicConversion: {
8750 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic")(static_cast <bool> (CurInit.get()->isPRValue() &&
"cannot convert glvalue to atomic") ? void (0) : __assert_fail
("CurInit.get()->isPRValue() && \"cannot convert glvalue to atomic\""
, "clang/lib/Sema/SemaInit.cpp", 8750, __extension__ __PRETTY_FUNCTION__
))
;
8751 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8752 CK_NonAtomicToAtomic, VK_PRValue);
8753 break;
8754 }
8755
8756 case SK_ConversionSequence:
8757 case SK_ConversionSequenceNoNarrowing: {
8758 if (const auto *FromPtrType =
8759 CurInit.get()->getType()->getAs<PointerType>()) {
8760 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8761 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8762 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8763 // Do not check static casts here because they are checked earlier
8764 // in Sema::ActOnCXXNamedCast()
8765 if (!Kind.isStaticCast()) {
8766 S.Diag(CurInit.get()->getExprLoc(),
8767 diag::warn_noderef_to_dereferenceable_pointer)
8768 << CurInit.get()->getSourceRange();
8769 }
8770 }
8771 }
8772 }
8773
8774 Sema::CheckedConversionKind CCK
8775 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8776 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8777 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8778 : Sema::CCK_ImplicitConversion;
8779 ExprResult CurInitExprRes =
8780 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8781 getAssignmentAction(Entity), CCK);
8782 if (CurInitExprRes.isInvalid())
8783 return ExprError();
8784
8785 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8786
8787 CurInit = CurInitExprRes;
8788
8789 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8790 S.getLangOpts().CPlusPlus)
8791 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8792 CurInit.get());
8793
8794 break;
8795 }
8796
8797 case SK_ListInitialization: {
8798 if (checkAbstractType(Step->Type))
8799 return ExprError();
8800
8801 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8802 // If we're not initializing the top-level entity, we need to create an
8803 // InitializeTemporary entity for our target type.
8804 QualType Ty = Step->Type;
8805 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8806 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8807 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8808 InitListChecker PerformInitList(S, InitEntity,
8809 InitList, Ty, /*VerifyOnly=*/false,
8810 /*TreatUnavailableAsInvalid=*/false);
8811 if (PerformInitList.HadError())
8812 return ExprError();
8813
8814 // Hack: We must update *ResultType if available in order to set the
8815 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8816 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8817 if (ResultType &&
8818 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8819 if ((*ResultType)->isRValueReferenceType())
8820 Ty = S.Context.getRValueReferenceType(Ty);
8821 else if ((*ResultType)->isLValueReferenceType())
8822 Ty = S.Context.getLValueReferenceType(Ty,
8823 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8824 *ResultType = Ty;
8825 }
8826
8827 InitListExpr *StructuredInitList =
8828 PerformInitList.getFullyStructuredList();
8829 CurInit.get();
8830 CurInit = shouldBindAsTemporary(InitEntity)
8831 ? S.MaybeBindToTemporary(StructuredInitList)
8832 : StructuredInitList;
8833 break;
8834 }
8835
8836 case SK_ConstructorInitializationFromList: {
8837 if (checkAbstractType(Step->Type))
8838 return ExprError();
8839
8840 // When an initializer list is passed for a parameter of type "reference
8841 // to object", we don't get an EK_Temporary entity, but instead an
8842 // EK_Parameter entity with reference type.
8843 // FIXME: This is a hack. What we really should do is create a user
8844 // conversion step for this case, but this makes it considerably more
8845 // complicated. For now, this will do.
8846 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8847 Entity.getType().getNonReferenceType());
8848 bool UseTemporary = Entity.getType()->isReferenceType();
8849 assert(Args.size() == 1 && "expected a single argument for list init")(static_cast <bool> (Args.size() == 1 && "expected a single argument for list init"
) ? void (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "clang/lib/Sema/SemaInit.cpp", 8849, __extension__ __PRETTY_FUNCTION__
))
;
8850 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8851 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8852 << InitList->getSourceRange();
8853 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8854 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8855 Entity,
8856 Kind, Arg, *Step,
8857 ConstructorInitRequiresZeroInit,
8858 /*IsListInitialization*/true,
8859 /*IsStdInitListInit*/false,
8860 InitList->getLBraceLoc(),
8861 InitList->getRBraceLoc());
8862 break;
8863 }
8864
8865 case SK_UnwrapInitList:
8866 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8867 break;
8868
8869 case SK_RewrapInitList: {
8870 Expr *E = CurInit.get();
8871 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8872 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8873 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8874 ILE->setSyntacticForm(Syntactic);
8875 ILE->setType(E->getType());
8876 ILE->setValueKind(E->getValueKind());
8877 CurInit = ILE;
8878 break;
8879 }
8880
8881 case SK_ConstructorInitialization:
8882 case SK_StdInitializerListConstructorCall: {
8883 if (checkAbstractType(Step->Type))
8884 return ExprError();
8885
8886 // When an initializer list is passed for a parameter of type "reference
8887 // to object", we don't get an EK_Temporary entity, but instead an
8888 // EK_Parameter entity with reference type.
8889 // FIXME: This is a hack. What we really should do is create a user
8890 // conversion step for this case, but this makes it considerably more
8891 // complicated. For now, this will do.
8892 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8893 Entity.getType().getNonReferenceType());
8894 bool UseTemporary = Entity.getType()->isReferenceType();
8895 bool IsStdInitListInit =
8896 Step->Kind == SK_StdInitializerListConstructorCall;
8897 Expr *Source = CurInit.get();
8898 SourceRange Range = Kind.hasParenOrBraceRange()
8899 ? Kind.getParenOrBraceRange()
8900 : SourceRange();
8901 CurInit = PerformConstructorInitialization(
8902 S, UseTemporary ? TempEntity : Entity, Kind,
8903 Source ? MultiExprArg(Source) : Args, *Step,
8904 ConstructorInitRequiresZeroInit,
8905 /*IsListInitialization*/ IsStdInitListInit,
8906 /*IsStdInitListInitialization*/ IsStdInitListInit,
8907 /*LBraceLoc*/ Range.getBegin(),
8908 /*RBraceLoc*/ Range.getEnd());
8909 break;
8910 }
8911
8912 case SK_ZeroInitialization: {
8913 step_iterator NextStep = Step;
8914 ++NextStep;
8915 if (NextStep != StepEnd &&
8916 (NextStep->Kind == SK_ConstructorInitialization ||
8917 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8918 // The need for zero-initialization is recorded directly into
8919 // the call to the object's constructor within the next step.
8920 ConstructorInitRequiresZeroInit = true;
8921 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8922 S.getLangOpts().CPlusPlus &&
8923 !Kind.isImplicitValueInit()) {
8924 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8925 if (!TSInfo)
8926 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8927 Kind.getRange().getBegin());
8928
8929 CurInit = new (S.Context) CXXScalarValueInitExpr(
8930 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8931 Kind.getRange().getEnd());
8932 } else {
8933 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8934 }
8935 break;
8936 }
8937
8938 case SK_CAssignment: {
8939 QualType SourceType = CurInit.get()->getType();
8940
8941 // Save off the initial CurInit in case we need to emit a diagnostic
8942 ExprResult InitialCurInit = CurInit;
8943 ExprResult Result = CurInit;
8944 Sema::AssignConvertType ConvTy =
8945 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8946 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8947 if (Result.isInvalid())
8948 return ExprError();
8949 CurInit = Result;
8950
8951 // If this is a call, allow conversion to a transparent union.
8952 ExprResult CurInitExprRes = CurInit;
8953 if (ConvTy != Sema::Compatible &&
8954 Entity.isParameterKind() &&
8955 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8956 == Sema::Compatible)
8957 ConvTy = Sema::Compatible;
8958 if (CurInitExprRes.isInvalid())
8959 return ExprError();
8960 CurInit = CurInitExprRes;
8961
8962 bool Complained;
8963 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8964 Step->Type, SourceType,
8965 InitialCurInit.get(),
8966 getAssignmentAction(Entity, true),
8967 &Complained)) {
8968 PrintInitLocationNote(S, Entity);
8969 return ExprError();
8970 } else if (Complained)
8971 PrintInitLocationNote(S, Entity);
8972 break;
8973 }
8974
8975 case SK_StringInit: {
8976 QualType Ty = Step->Type;
8977 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8978 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8979 S.Context.getAsArrayType(Ty), S);
8980 break;
8981 }
8982
8983 case SK_ObjCObjectConversion:
8984 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8985 CK_ObjCObjectLValueCast,
8986 CurInit.get()->getValueKind());
8987 break;
8988
8989 case SK_ArrayLoopIndex: {
8990 Expr *Cur = CurInit.get();
8991 Expr *BaseExpr = new (S.Context)
8992 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8993 Cur->getValueKind(), Cur->getObjectKind(), Cur);
8994 Expr *IndexExpr =
8995 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8996 CurInit = S.CreateBuiltinArraySubscriptExpr(
8997 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8998 ArrayLoopCommonExprs.push_back(BaseExpr);
8999 break;
9000 }
9001
9002 case SK_ArrayLoopInit: {
9003 assert(!ArrayLoopCommonExprs.empty() &&(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "clang/lib/Sema/SemaInit.cpp", 9004, __extension__ __PRETTY_FUNCTION__
))
9004 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "clang/lib/Sema/SemaInit.cpp", 9004, __extension__ __PRETTY_FUNCTION__
))
;
9005 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
9006 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
9007 CurInit.get());
9008 break;
9009 }
9010
9011 case SK_GNUArrayInit:
9012 // Okay: we checked everything before creating this step. Note that
9013 // this is a GNU extension.
9014 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
9015 << Step->Type << CurInit.get()->getType()
9016 << CurInit.get()->getSourceRange();
9017 updateGNUCompoundLiteralRValue(CurInit.get());
9018 [[fallthrough]];
9019 case SK_ArrayInit:
9020 // If the destination type is an incomplete array type, update the
9021 // type accordingly.
9022 if (ResultType) {
9023 if (const IncompleteArrayType *IncompleteDest
9024 = S.Context.getAsIncompleteArrayType(Step->Type)) {
9025 if (const ConstantArrayType *ConstantSource
9026 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
9027 *ResultType = S.Context.getConstantArrayType(
9028 IncompleteDest->getElementType(),
9029 ConstantSource->getSize(),
9030 ConstantSource->getSizeExpr(),
9031 ArrayType::Normal, 0);
9032 }
9033 }
9034 }
9035 break;
9036
9037 case SK_ParenthesizedArrayInit:
9038 // Okay: we checked everything before creating this step. Note that
9039 // this is a GNU extension.
9040 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
9041 << CurInit.get()->getSourceRange();
9042 break;
9043
9044 case SK_PassByIndirectCopyRestore:
9045 case SK_PassByIndirectRestore:
9046 checkIndirectCopyRestoreSource(S, CurInit.get());
9047 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
9048 CurInit.get(), Step->Type,
9049 Step->Kind == SK_PassByIndirectCopyRestore);
9050 break;
9051
9052 case SK_ProduceObjCObject:
9053 CurInit = ImplicitCastExpr::Create(
9054 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
9055 VK_PRValue, FPOptionsOverride());
9056 break;
9057
9058 case SK_StdInitializerList: {
9059 S.Diag(CurInit.get()->getExprLoc(),
9060 diag::warn_cxx98_compat_initializer_list_init)
9061 << CurInit.get()->getSourceRange();
9062
9063 // Materialize the temporary into memory.
9064 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
9065 CurInit.get()->getType(), CurInit.get(),
9066 /*BoundToLvalueReference=*/false);
9067
9068 // Wrap it in a construction of a std::initializer_list<T>.
9069 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
9070
9071 // Bind the result, in case the library has given initializer_list a
9072 // non-trivial destructor.
9073 if (shouldBindAsTemporary(Entity))
9074 CurInit = S.MaybeBindToTemporary(CurInit.get());
9075 break;
9076 }
9077
9078 case SK_OCLSamplerInit: {
9079 // Sampler initialization have 5 cases:
9080 // 1. function argument passing
9081 // 1a. argument is a file-scope variable
9082 // 1b. argument is a function-scope variable
9083 // 1c. argument is one of caller function's parameters
9084 // 2. variable initialization
9085 // 2a. initializing a file-scope variable
9086 // 2b. initializing a function-scope variable
9087 //
9088 // For file-scope variables, since they cannot be initialized by function
9089 // call of __translate_sampler_initializer in LLVM IR, their references
9090 // need to be replaced by a cast from their literal initializers to
9091 // sampler type. Since sampler variables can only be used in function
9092 // calls as arguments, we only need to replace them when handling the
9093 // argument passing.
9094 assert(Step->Type->isSamplerT() &&(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "clang/lib/Sema/SemaInit.cpp", 9095, __extension__ __PRETTY_FUNCTION__
))
9095 "Sampler initialization on non-sampler type.")(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "clang/lib/Sema/SemaInit.cpp", 9095, __extension__ __PRETTY_FUNCTION__
))
;
9096 Expr *Init = CurInit.get()->IgnoreParens();
9097 QualType SourceType = Init->getType();
9098 // Case 1
9099 if (Entity.isParameterKind()) {
9100 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
9101 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
9102 << SourceType;
9103 break;
9104 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
9105 auto Var = cast<VarDecl>(DRE->getDecl());
9106 // Case 1b and 1c
9107 // No cast from integer to sampler is needed.
9108 if (!Var->hasGlobalStorage()) {
9109 CurInit = ImplicitCastExpr::Create(
9110 S.Context, Step->Type, CK_LValueToRValue, Init,
9111 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
9112 break;
9113 }
9114 // Case 1a
9115 // For function call with a file-scope sampler variable as argument,
9116 // get the integer literal.
9117 // Do not diagnose if the file-scope variable does not have initializer
9118 // since this has already been diagnosed when parsing the variable
9119 // declaration.
9120 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
9121 break;
9122 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
9123 Var->getInit()))->getSubExpr();
9124 SourceType = Init->getType();
9125 }
9126 } else {
9127 // Case 2
9128 // Check initializer is 32 bit integer constant.
9129 // If the initializer is taken from global variable, do not diagnose since
9130 // this has already been done when parsing the variable declaration.
9131 if (!Init->isConstantInitializer(S.Context, false))
9132 break;
9133
9134 if (!SourceType->isIntegerType() ||
9135 32 != S.Context.getIntWidth(SourceType)) {
9136 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
9137 << SourceType;
9138 break;
9139 }
9140
9141 Expr::EvalResult EVResult;
9142 Init->EvaluateAsInt(EVResult, S.Context);
9143 llvm::APSInt Result = EVResult.Val.getInt();
9144 const uint64_t SamplerValue = Result.getLimitedValue();
9145 // 32-bit value of sampler's initializer is interpreted as
9146 // bit-field with the following structure:
9147 // |unspecified|Filter|Addressing Mode| Normalized Coords|
9148 // |31 6|5 4|3 1| 0|
9149 // This structure corresponds to enum values of sampler properties
9150 // defined in SPIR spec v1.2 and also opencl-c.h
9151 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
9152 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
9153 if (FilterMode != 1 && FilterMode != 2 &&
9154 !S.getOpenCLOptions().isAvailableOption(
9155 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
9156 S.Diag(Kind.getLocation(),
9157 diag::warn_sampler_initializer_invalid_bits)
9158 << "Filter Mode";
9159 if (AddressingMode > 4)
9160 S.Diag(Kind.getLocation(),
9161 diag::warn_sampler_initializer_invalid_bits)
9162 << "Addressing Mode";
9163 }
9164
9165 // Cases 1a, 2a and 2b
9166 // Insert cast from integer to sampler.
9167 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
9168 CK_IntToOCLSampler);
9169 break;
9170 }
9171 case SK_OCLZeroOpaqueType: {
9172 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "clang/lib/Sema/SemaInit.cpp", 9174, __extension__ __PRETTY_FUNCTION__
))
9173 Step->Type->isOCLIntelSubgroupAVCType()) &&(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "clang/lib/Sema/SemaInit.cpp", 9174, __extension__ __PRETTY_FUNCTION__
))
9174 "Wrong type for initialization of OpenCL opaque type.")(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "clang/lib/Sema/SemaInit.cpp", 9174, __extension__ __PRETTY_FUNCTION__
))
;
9175
9176 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
9177 CK_ZeroToOCLOpaqueType,
9178 CurInit.get()->getValueKind());
9179 break;
9180 }
9181 case SK_ParenthesizedListInit: {
9182 CurInit = nullptr;
9183 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
9184 /*VerifyOnly=*/false, &CurInit);
9185 if (CurInit.get() && ResultType)
9186 *ResultType = CurInit.get()->getType();
9187 if (shouldBindAsTemporary(Entity))
9188 CurInit = S.MaybeBindToTemporary(CurInit.get());
9189 break;
9190 }
9191 }
9192 }
9193
9194 // Check whether the initializer has a shorter lifetime than the initialized
9195 // entity, and if not, either lifetime-extend or warn as appropriate.
9196 if (auto *Init = CurInit.get())
9197 S.checkInitializerLifetime(Entity, Init);
9198
9199 // Diagnose non-fatal problems with the completed initialization.
9200 if (Entity.getKind() == InitializedEntity::EK_Member &&
9201 cast<FieldDecl>(Entity.getDecl())->isBitField())
9202 S.CheckBitFieldInitialization(Kind.getLocation(),
9203 cast<FieldDecl>(Entity.getDecl()),
9204 CurInit.get());
9205
9206 // Check for std::move on construction.
9207 if (const Expr *E = CurInit.get()) {
9208 CheckMoveOnConstruction(S, E,
9209 Entity.getKind() == InitializedEntity::EK_Result);
9210 }
9211
9212 return CurInit;
9213}
9214
9215/// Somewhere within T there is an uninitialized reference subobject.
9216/// Dig it out and diagnose it.
9217static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
9218 QualType T) {
9219 if (T->isReferenceType()) {
9220 S.Diag(Loc, diag::err_reference_without_init)
9221 << T.getNonReferenceType();
9222 return true;
9223 }
9224
9225 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
9226 if (!RD || !RD->hasUninitializedReferenceMember())
9227 return false;
9228
9229 for (const auto *FI : RD->fields()) {
9230 if (FI->isUnnamedBitfield())
9231 continue;
9232
9233 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
9234 S.Diag(Loc, diag::note_value_initialization_here) << RD;
9235 return true;
9236 }
9237 }
9238
9239 for (const auto &BI : RD->bases()) {
9240 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
9241 S.Diag(Loc, diag::note_value_initialization_here) << RD;
9242 return true;
9243 }
9244 }
9245
9246 return false;
9247}
9248
9249
9250//===----------------------------------------------------------------------===//
9251// Diagnose initialization failures
9252//===----------------------------------------------------------------------===//
9253
9254/// Emit notes associated with an initialization that failed due to a
9255/// "simple" conversion failure.
9256static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
9257 Expr *op) {
9258 QualType destType = entity.getType();
9259 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
9260 op->getType()->isObjCObjectPointerType()) {
9261
9262 // Emit a possible note about the conversion failing because the
9263 // operand is a message send with a related result type.
9264 S.EmitRelatedResultTypeNote(op);
9265
9266 // Emit a possible note about a return failing because we're
9267 // expecting a related result type.
9268 if (entity.getKind() == InitializedEntity::EK_Result)
9269 S.EmitRelatedResultTypeNoteForReturn(destType);
9270 }
9271 QualType fromType = op->getType();
9272 QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
9273 QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
9274 auto *fromDecl = fromType->getPointeeCXXRecordDecl();
9275 auto *destDecl = destType->getPointeeCXXRecordDecl();
9276 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
9277 destDecl->getDeclKind() == Decl::CXXRecord &&
9278 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
9279 !fromDecl->hasDefinition() &&
9280 destPointeeType.getQualifiers().compatiblyIncludes(
9281 fromPointeeType.getQualifiers()))
9282 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
9283 << S.getASTContext().getTagDeclType(fromDecl)
9284 << S.getASTContext().getTagDeclType(destDecl);
9285}
9286
9287static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
9288 InitListExpr *InitList) {
9289 QualType DestType = Entity.getType();
9290
9291 QualType E;
9292 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
9293 QualType ArrayType = S.Context.getConstantArrayType(
9294 E.withConst(),
9295 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
9296 InitList->getNumInits()),
9297 nullptr, clang::ArrayType::Normal, 0);
9298 InitializedEntity HiddenArray =
9299 InitializedEntity::InitializeTemporary(ArrayType);
9300 return diagnoseListInit(S, HiddenArray, InitList);
9301 }
9302
9303 if (DestType->isReferenceType()) {
9304 // A list-initialization failure for a reference means that we tried to
9305 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
9306 // inner initialization failed.
9307 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
9308 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
9309 SourceLocation Loc = InitList->getBeginLoc();
9310 if (auto *D = Entity.getDecl())
9311 Loc = D->getLocation();
9312 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
9313 return;
9314 }
9315
9316 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
9317 /*VerifyOnly=*/false,
9318 /*TreatUnavailableAsInvalid=*/false);
9319 assert(DiagnoseInitList.HadError() &&(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "clang/lib/Sema/SemaInit.cpp", 9320, __extension__ __PRETTY_FUNCTION__
))
9320 "Inconsistent init list check result.")(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "clang/lib/Sema/SemaInit.cpp", 9320, __extension__ __PRETTY_FUNCTION__
))
;
9321}
9322
9323bool InitializationSequence::Diagnose(Sema &S,
9324 const InitializedEntity &Entity,
9325 const InitializationKind &Kind,
9326 ArrayRef<Expr *> Args) {
9327 if (!Failed())
9328 return false;
9329
9330 // When we want to diagnose only one element of a braced-init-list,
9331 // we need to factor it out.
9332 Expr *OnlyArg;
9333 if (Args.size() == 1) {
9334 auto *List = dyn_cast<InitListExpr>(Args[0]);
9335 if (List && List->getNumInits() == 1)
9336 OnlyArg = List->getInit(0);
9337 else
9338 OnlyArg = Args[0];
9339 }
9340 else
9341 OnlyArg = nullptr;
9342
9343 QualType DestType = Entity.getType();
9344 switch (Failure) {
9345 case FK_TooManyInitsForReference:
9346 // FIXME: Customize for the initialized entity?
9347 if (Args.empty()) {
9348 // Dig out the reference subobject which is uninitialized and diagnose it.
9349 // If this is value-initialization, this could be nested some way within
9350 // the target type.
9351 assert(Kind.getKind() == InitializationKind::IK_Value ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "clang/lib/Sema/SemaInit.cpp", 9352, __extension__ __PRETTY_FUNCTION__
))
9352 DestType->isReferenceType())(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "clang/lib/Sema/SemaInit.cpp", 9352, __extension__ __PRETTY_FUNCTION__
))
;
9353 bool Diagnosed =
9354 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9355 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")(static_cast <bool> (Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? void (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "clang/lib/Sema/SemaInit.cpp", 9355, __extension__ __PRETTY_FUNCTION__
))
;
9356 (void)Diagnosed;
9357 } else // FIXME: diagnostic below could be better!
9358 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9359 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9360 break;
9361 case FK_ParenthesizedListInitForReference:
9362 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9363 << 1 << Entity.getType() << Args[0]->getSourceRange();
9364 break;
9365
9366 case FK_ArrayNeedsInitList:
9367 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9368 break;
9369 case FK_ArrayNeedsInitListOrStringLiteral:
9370 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9371 break;
9372 case FK_ArrayNeedsInitListOrWideStringLiteral:
9373 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9374 break;
9375 case FK_NarrowStringIntoWideCharArray:
9376 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9377 break;
9378 case FK_WideStringIntoCharArray:
9379 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9380 break;
9381 case FK_IncompatWideStringIntoWideChar:
9382 S.Diag(Kind.getLocation(),
9383 diag::err_array_init_incompat_wide_string_into_wchar);
9384 break;
9385 case FK_PlainStringIntoUTF8Char:
9386 S.Diag(Kind.getLocation(),
9387 diag::err_array_init_plain_string_into_char8_t);
9388 S.Diag(Args.front()->getBeginLoc(),
9389 diag::note_array_init_plain_string_into_char8_t)
9390 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9391 break;
9392 case FK_UTF8StringIntoPlainChar:
9393 S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char)
9394 << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20;
9395 break;
9396 case FK_ArrayTypeMismatch:
9397 case FK_NonConstantArrayInit:
9398 S.Diag(Kind.getLocation(),
9399 (Failure == FK_ArrayTypeMismatch
9400 ? diag::err_array_init_different_type
9401 : diag::err_array_init_non_constant_array))
9402 << DestType.getNonReferenceType()
9403 << OnlyArg->getType()
9404 << Args[0]->getSourceRange();
9405 break;
9406
9407 case FK_VariableLengthArrayHasInitializer:
9408 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9409 << Args[0]->getSourceRange();
9410 break;
9411
9412 case FK_AddressOfOverloadFailed: {
9413 DeclAccessPair Found;
9414 S.ResolveAddressOfOverloadedFunction(OnlyArg,
9415 DestType.getNonReferenceType(),
9416 true,
9417 Found);
9418 break;
9419 }
9420
9421 case FK_AddressOfUnaddressableFunction: {
9422 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9423 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9424 OnlyArg->getBeginLoc());
9425 break;
9426 }
9427
9428 case FK_ReferenceInitOverloadFailed:
9429 case FK_UserConversionOverloadFailed:
9430 switch (FailedOverloadResult) {
9431 case OR_Ambiguous:
9432
9433 FailedCandidateSet.NoteCandidates(
9434 PartialDiagnosticAt(
9435 Kind.getLocation(),
9436 Failure == FK_UserConversionOverloadFailed
9437 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9438 << OnlyArg->getType() << DestType
9439 << Args[0]->getSourceRange())
9440 : (S.PDiag(diag::err_ref_init_ambiguous)
9441 << DestType << OnlyArg->getType()
9442 << Args[0]->getSourceRange())),
9443 S, OCD_AmbiguousCandidates, Args);
9444 break;
9445
9446 case OR_No_Viable_Function: {
9447 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9448 if (!S.RequireCompleteType(Kind.getLocation(),
9449 DestType.getNonReferenceType(),
9450 diag::err_typecheck_nonviable_condition_incomplete,
9451 OnlyArg->getType(), Args[0]->getSourceRange()))
9452 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9453 << (Entity.getKind() == InitializedEntity::EK_Result)
9454 << OnlyArg->getType() << Args[0]->getSourceRange()
9455 << DestType.getNonReferenceType();
9456
9457 FailedCandidateSet.NoteCandidates(S, Args, Cands);
9458 break;
9459 }
9460 case OR_Deleted: {
9461 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9462 << OnlyArg->getType() << DestType.getNonReferenceType()
9463 << Args[0]->getSourceRange();
9464 OverloadCandidateSet::iterator Best;
9465 OverloadingResult Ovl
9466 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9467 if (Ovl == OR_Deleted) {
9468 S.NoteDeletedFunction(Best->Function);
9469 } else {
9470 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "clang/lib/Sema/SemaInit.cpp", 9470)
;
9471 }
9472 break;
9473 }
9474
9475 case OR_Success:
9476 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"clang/lib/Sema/SemaInit.cpp", 9476)
;
9477 }
9478 break;
9479
9480 case FK_NonConstLValueReferenceBindingToTemporary:
9481 if (isa<InitListExpr>(Args[0])) {
9482 S.Diag(Kind.getLocation(),
9483 diag::err_lvalue_reference_bind_to_initlist)
9484 << DestType.getNonReferenceType().isVolatileQualified()
9485 << DestType.getNonReferenceType()
9486 << Args[0]->getSourceRange();
9487 break;
9488 }
9489 [[fallthrough]];
9490
9491 case FK_NonConstLValueReferenceBindingToUnrelated:
9492 S.Diag(Kind.getLocation(),
9493 Failure == FK_NonConstLValueReferenceBindingToTemporary
9494 ? diag::err_lvalue_reference_bind_to_temporary
9495 : diag::err_lvalue_reference_bind_to_unrelated)
9496 << DestType.getNonReferenceType().isVolatileQualified()
9497 << DestType.getNonReferenceType()
9498 << OnlyArg->getType()
9499 << Args[0]->getSourceRange();
9500 break;
9501
9502 case FK_NonConstLValueReferenceBindingToBitfield: {
9503 // We don't necessarily have an unambiguous source bit-field.
9504 FieldDecl *BitField = Args[0]->getSourceBitField();
9505 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9506 << DestType.isVolatileQualified()
9507 << (BitField ? BitField->getDeclName() : DeclarationName())
9508 << (BitField != nullptr)
9509 << Args[0]->getSourceRange();
9510 if (BitField)
9511 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9512 break;
9513 }
9514
9515 case FK_NonConstLValueReferenceBindingToVectorElement:
9516 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9517 << DestType.isVolatileQualified()
9518 << Args[0]->getSourceRange();
9519 break;
9520
9521 case FK_NonConstLValueReferenceBindingToMatrixElement:
9522 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9523 << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9524 break;
9525
9526 case FK_RValueReferenceBindingToLValue:
9527 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9528 << DestType.getNonReferenceType() << OnlyArg->getType()
9529 << Args[0]->getSourceRange();
9530 break;
9531
9532 case FK_ReferenceAddrspaceMismatchTemporary:
9533 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9534 << DestType << Args[0]->getSourceRange();
9535 break;
9536
9537 case FK_ReferenceInitDropsQualifiers: {
9538 QualType SourceType = OnlyArg->getType();
9539 QualType NonRefType = DestType.getNonReferenceType();
9540 Qualifiers DroppedQualifiers =
9541 SourceType.getQualifiers() - NonRefType.getQualifiers();
9542
9543 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9544 SourceType.getQualifiers()))
9545 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9546 << NonRefType << SourceType << 1 /*addr space*/
9547 << Args[0]->getSourceRange();
9548 else if (DroppedQualifiers.hasQualifiers())
9549 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9550 << NonRefType << SourceType << 0 /*cv quals*/
9551 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9552 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9553 else
9554 // FIXME: Consider decomposing the type and explaining which qualifiers
9555 // were dropped where, or on which level a 'const' is missing, etc.
9556 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9557 << NonRefType << SourceType << 2 /*incompatible quals*/
9558 << Args[0]->getSourceRange();
9559 break;
9560 }
9561
9562 case FK_ReferenceInitFailed:
9563 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9564 << DestType.getNonReferenceType()
9565 << DestType.getNonReferenceType()->isIncompleteType()
9566 << OnlyArg->isLValue()
9567 << OnlyArg->getType()
9568 << Args[0]->getSourceRange();
9569 emitBadConversionNotes(S, Entity, Args[0]);
9570 break;
9571
9572 case FK_ConversionFailed: {
9573 QualType FromType = OnlyArg->getType();
9574 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9575 << (int)Entity.getKind()
9576 << DestType
9577 << OnlyArg->isLValue()
9578 << FromType
9579 << Args[0]->getSourceRange();
9580 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9581 S.Diag(Kind.getLocation(), PDiag);
9582 emitBadConversionNotes(S, Entity, Args[0]);
9583 break;
9584 }
9585
9586 case FK_ConversionFromPropertyFailed:
9587 // No-op. This error has already been reported.
9588 break;
9589
9590 case FK_TooManyInitsForScalar: {
9591 SourceRange R;
9592
9593 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9594 if (InitList && InitList->getNumInits() >= 1) {
9595 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9596 } else {
9597 assert(Args.size() > 1 && "Expected multiple initializers!")(static_cast <bool> (Args.size() > 1 && "Expected multiple initializers!"
) ? void (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "clang/lib/Sema/SemaInit.cpp", 9597, __extension__ __PRETTY_FUNCTION__
))
;
9598 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9599 }
9600
9601 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9602 if (Kind.isCStyleOrFunctionalCast())
9603 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9604 << R;
9605 else
9606 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9607 << /*scalar=*/2 << R;
9608 break;
9609 }
9610
9611 case FK_ParenthesizedListInitForScalar:
9612 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9613 << 0 << Entity.getType() << Args[0]->getSourceRange();
9614 break;
9615
9616 case FK_ReferenceBindingToInitList:
9617 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9618 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9619 break;
9620
9621 case FK_InitListBadDestinationType:
9622 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9623 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9624 break;
9625
9626 case FK_ListConstructorOverloadFailed:
9627 case FK_ConstructorOverloadFailed: {
9628 SourceRange ArgsRange;
9629 if (Args.size())
9630 ArgsRange =
9631 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9632
9633 if (Failure == FK_ListConstructorOverloadFailed) {
9634 assert(Args.size() == 1 &&(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "clang/lib/Sema/SemaInit.cpp", 9635, __extension__ __PRETTY_FUNCTION__
))
9635 "List construction from other than 1 argument.")(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "clang/lib/Sema/SemaInit.cpp", 9635, __extension__ __PRETTY_FUNCTION__
))
;
9636 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9637 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9638 }
9639
9640 // FIXME: Using "DestType" for the entity we're printing is probably
9641 // bad.
9642 switch (FailedOverloadResult) {
9643 case OR_Ambiguous:
9644 FailedCandidateSet.NoteCandidates(
9645 PartialDiagnosticAt(Kind.getLocation(),
9646 S.PDiag(diag::err_ovl_ambiguous_init)
9647 << DestType << ArgsRange),
9648 S, OCD_AmbiguousCandidates, Args);
9649 break;
9650
9651 case OR_No_Viable_Function:
9652 if (Kind.getKind() == InitializationKind::IK_Default &&
9653 (Entity.getKind() == InitializedEntity::EK_Base ||
9654 Entity.getKind() == InitializedEntity::EK_Member) &&
9655 isa<CXXConstructorDecl>(S.CurContext)) {
9656 // This is implicit default initialization of a member or
9657 // base within a constructor. If no viable function was
9658 // found, notify the user that they need to explicitly
9659 // initialize this base/member.
9660 CXXConstructorDecl *Constructor
9661 = cast<CXXConstructorDecl>(S.CurContext);
9662 const CXXRecordDecl *InheritedFrom = nullptr;
9663 if (auto Inherited = Constructor->getInheritedConstructor())
9664 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9665 if (Entity.getKind() == InitializedEntity::EK_Base) {
9666 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9667 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9668 << S.Context.getTypeDeclType(Constructor->getParent())
9669 << /*base=*/0
9670 << Entity.getType()
9671 << InheritedFrom;
9672
9673 RecordDecl *BaseDecl
9674 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9675 ->getDecl();
9676 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9677 << S.Context.getTagDeclType(BaseDecl);
9678 } else {
9679 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9680 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9681 << S.Context.getTypeDeclType(Constructor->getParent())
9682 << /*member=*/1
9683 << Entity.getName()
9684 << InheritedFrom;
9685 S.Diag(Entity.getDecl()->getLocation(),
9686 diag::note_member_declared_at);
9687
9688 if (const RecordType *Record
9689 = Entity.getType()->getAs<RecordType>())
9690 S.Diag(Record->getDecl()->getLocation(),
9691 diag::note_previous_decl)
9692 << S.Context.getTagDeclType(Record->getDecl());
9693 }
9694 break;
9695 }
9696
9697 FailedCandidateSet.NoteCandidates(
9698 PartialDiagnosticAt(
9699 Kind.getLocation(),
9700 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9701 << DestType << ArgsRange),
9702 S, OCD_AllCandidates, Args);
9703 break;
9704
9705 case OR_Deleted: {
9706 OverloadCandidateSet::iterator Best;
9707 OverloadingResult Ovl
9708 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9709 if (Ovl != OR_Deleted) {
9710 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9711 << DestType << ArgsRange;
9712 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "clang/lib/Sema/SemaInit.cpp", 9712)
;
9713 break;
9714 }
9715
9716 // If this is a defaulted or implicitly-declared function, then
9717 // it was implicitly deleted. Make it clear that the deletion was
9718 // implicit.
9719 if (S.isImplicitlyDeleted(Best->Function))
9720 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9721 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9722 << DestType << ArgsRange;
9723 else
9724 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9725 << DestType << ArgsRange;
9726
9727 S.NoteDeletedFunction(Best->Function);
9728 break;
9729 }
9730
9731 case OR_Success:
9732 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"clang/lib/Sema/SemaInit.cpp", 9732)
;
9733 }
9734 }
9735 break;
9736
9737 case FK_DefaultInitOfConst:
9738 if (Entity.getKind() == InitializedEntity::EK_Member &&
9739 isa<CXXConstructorDecl>(S.CurContext)) {
9740 // This is implicit default-initialization of a const member in
9741 // a constructor. Complain that it needs to be explicitly
9742 // initialized.
9743 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9744 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9745 << (Constructor->getInheritedConstructor() ? 2 :
9746 Constructor->isImplicit() ? 1 : 0)
9747 << S.Context.getTypeDeclType(Constructor->getParent())
9748 << /*const=*/1
9749 << Entity.getName();
9750 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9751 << Entity.getName();
9752 } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Entity.getDecl());
9753 VD && VD->isConstexpr()) {
9754 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
9755 << VD;
9756 } else {
9757 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9758 << DestType << (bool)DestType->getAs<RecordType>();
9759 }
9760 break;
9761
9762 case FK_Incomplete:
9763 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9764 diag::err_init_incomplete_type);
9765 break;
9766
9767 case FK_ListInitializationFailed: {
9768 // Run the init list checker again to emit diagnostics.
9769 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9770 diagnoseListInit(S, Entity, InitList);
9771 break;
9772 }
9773
9774 case FK_PlaceholderType: {
9775 // FIXME: Already diagnosed!
9776 break;
9777 }
9778
9779 case FK_ExplicitConstructor: {
9780 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9781 << Args[0]->getSourceRange();
9782 OverloadCandidateSet::iterator Best;
9783 OverloadingResult Ovl
9784 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9785 (void)Ovl;
9786 assert(Ovl == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (Ovl == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "clang/lib/Sema/SemaInit.cpp", 9786, __extension__ __PRETTY_FUNCTION__
))
;
9787 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9788 S.Diag(CtorDecl->getLocation(),
9789 diag::note_explicit_ctor_deduction_guide_here) << false;
9790 break;
9791 }
9792
9793 case FK_ParenthesizedListInitFailed:
9794 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
9795 /*VerifyOnly=*/false);
9796 break;
9797 }
9798
9799 PrintInitLocationNote(S, Entity);
9800 return true;
9801}
9802
9803void InitializationSequence::dump(raw_ostream &OS) const {
9804 switch (SequenceKind) {
9805 case FailedSequence: {
9806 OS << "Failed sequence: ";
9807 switch (Failure) {
9808 case FK_TooManyInitsForReference:
9809 OS << "too many initializers for reference";
9810 break;
9811
9812 case FK_ParenthesizedListInitForReference:
9813 OS << "parenthesized list init for reference";
9814 break;
9815
9816 case FK_ArrayNeedsInitList:
9817 OS << "array requires initializer list";
9818 break;
9819
9820 case FK_AddressOfUnaddressableFunction:
9821 OS << "address of unaddressable function was taken";
9822 break;
9823
9824 case FK_ArrayNeedsInitListOrStringLiteral:
9825 OS << "array requires initializer list or string literal";
9826 break;
9827
9828 case FK_ArrayNeedsInitListOrWideStringLiteral:
9829 OS << "array requires initializer list or wide string literal";
9830 break;
9831
9832 case FK_NarrowStringIntoWideCharArray:
9833 OS << "narrow string into wide char array";
9834 break;
9835
9836 case FK_WideStringIntoCharArray:
9837 OS << "wide string into char array";
9838 break;
9839
9840 case FK_IncompatWideStringIntoWideChar:
9841 OS << "incompatible wide string into wide char array";
9842 break;
9843
9844 case FK_PlainStringIntoUTF8Char:
9845 OS << "plain string literal into char8_t array";
9846 break;
9847
9848 case FK_UTF8StringIntoPlainChar:
9849 OS << "u8 string literal into char array";
9850 break;
9851
9852 case FK_ArrayTypeMismatch:
9853 OS << "array type mismatch";
9854 break;
9855
9856 case FK_NonConstantArrayInit:
9857 OS << "non-constant array initializer";
9858 break;
9859
9860 case FK_AddressOfOverloadFailed:
9861 OS << "address of overloaded function failed";
9862 break;
9863
9864 case FK_ReferenceInitOverloadFailed:
9865 OS << "overload resolution for reference initialization failed";
9866 break;
9867
9868 case FK_NonConstLValueReferenceBindingToTemporary:
9869 OS << "non-const lvalue reference bound to temporary";
9870 break;
9871
9872 case FK_NonConstLValueReferenceBindingToBitfield:
9873 OS << "non-const lvalue reference bound to bit-field";
9874 break;
9875
9876 case FK_NonConstLValueReferenceBindingToVectorElement:
9877 OS << "non-const lvalue reference bound to vector element";
9878 break;
9879
9880 case FK_NonConstLValueReferenceBindingToMatrixElement:
9881 OS << "non-const lvalue reference bound to matrix element";
9882 break;
9883
9884 case FK_NonConstLValueReferenceBindingToUnrelated:
9885 OS << "non-const lvalue reference bound to unrelated type";
9886 break;
9887
9888 case FK_RValueReferenceBindingToLValue:
9889 OS << "rvalue reference bound to an lvalue";
9890 break;
9891
9892 case FK_ReferenceInitDropsQualifiers:
9893 OS << "reference initialization drops qualifiers";
9894 break;
9895
9896 case FK_ReferenceAddrspaceMismatchTemporary:
9897 OS << "reference with mismatching address space bound to temporary";
9898 break;
9899
9900 case FK_ReferenceInitFailed:
9901 OS << "reference initialization failed";
9902 break;
9903
9904 case FK_ConversionFailed:
9905 OS << "conversion failed";
9906 break;
9907
9908 case FK_ConversionFromPropertyFailed:
9909 OS << "conversion from property failed";
9910 break;
9911
9912 case FK_TooManyInitsForScalar:
9913 OS << "too many initializers for scalar";
9914 break;
9915
9916 case FK_ParenthesizedListInitForScalar:
9917 OS << "parenthesized list init for reference";
9918 break;
9919
9920 case FK_ReferenceBindingToInitList:
9921 OS << "referencing binding to initializer list";
9922 break;
9923
9924 case FK_InitListBadDestinationType:
9925 OS << "initializer list for non-aggregate, non-scalar type";
9926 break;
9927
9928 case FK_UserConversionOverloadFailed:
9929 OS << "overloading failed for user-defined conversion";
9930 break;
9931
9932 case FK_ConstructorOverloadFailed:
9933 OS << "constructor overloading failed";
9934 break;
9935
9936 case FK_DefaultInitOfConst:
9937 OS << "default initialization of a const variable";
9938 break;
9939
9940 case FK_Incomplete:
9941 OS << "initialization of incomplete type";
9942 break;
9943
9944 case FK_ListInitializationFailed:
9945 OS << "list initialization checker failure";
9946 break;
9947
9948 case FK_VariableLengthArrayHasInitializer:
9949 OS << "variable length array has an initializer";
9950 break;
9951
9952 case FK_PlaceholderType:
9953 OS << "initializer expression isn't contextually valid";
9954 break;
9955
9956 case FK_ListConstructorOverloadFailed:
9957 OS << "list constructor overloading failed";
9958 break;
9959
9960 case FK_ExplicitConstructor:
9961 OS << "list copy initialization chose explicit constructor";
9962 break;
9963
9964 case FK_ParenthesizedListInitFailed:
9965 OS << "parenthesized list initialization failed";
9966 break;
9967 }
9968 OS << '\n';
9969 return;
9970 }
9971
9972 case DependentSequence:
9973 OS << "Dependent sequence\n";
9974 return;
9975
9976 case NormalSequence:
9977 OS << "Normal sequence: ";
9978 break;
9979 }
9980
9981 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9982 if (S != step_begin()) {
9983 OS << " -> ";
9984 }
9985
9986 switch (S->Kind) {
9987 case SK_ResolveAddressOfOverloadedFunction:
9988 OS << "resolve address of overloaded function";
9989 break;
9990
9991 case SK_CastDerivedToBasePRValue:
9992 OS << "derived-to-base (prvalue)";
9993 break;
9994
9995 case SK_CastDerivedToBaseXValue:
9996 OS << "derived-to-base (xvalue)";
9997 break;
9998
9999 case SK_CastDerivedToBaseLValue:
10000 OS << "derived-to-base (lvalue)";
10001 break;
10002
10003 case SK_BindReference:
10004 OS << "bind reference to lvalue";
10005 break;
10006
10007 case SK_BindReferenceToTemporary:
10008 OS << "bind reference to a temporary";
10009 break;
10010
10011 case SK_FinalCopy:
10012 OS << "final copy in class direct-initialization";
10013 break;
10014
10015 case SK_ExtraneousCopyToTemporary:
10016 OS << "extraneous C++03 copy to temporary";
10017 break;
10018
10019 case SK_UserConversion:
10020 OS << "user-defined conversion via " << *S->Function.Function;
10021 break;
10022
10023 case SK_QualificationConversionPRValue:
10024 OS << "qualification conversion (prvalue)";
10025 break;
10026
10027 case SK_QualificationConversionXValue:
10028 OS << "qualification conversion (xvalue)";
10029 break;
10030
10031 case SK_QualificationConversionLValue:
10032 OS << "qualification conversion (lvalue)";
10033 break;
10034
10035 case SK_FunctionReferenceConversion:
10036 OS << "function reference conversion";
10037 break;
10038
10039 case SK_AtomicConversion:
10040 OS << "non-atomic-to-atomic conversion";
10041 break;
10042
10043 case SK_ConversionSequence:
10044 OS << "implicit conversion sequence (";
10045 S->ICS->dump(); // FIXME: use OS
10046 OS << ")";
10047 break;
10048
10049 case SK_ConversionSequenceNoNarrowing:
10050 OS << "implicit conversion sequence with narrowing prohibited (";
10051 S->ICS->dump(); // FIXME: use OS
10052 OS << ")";
10053 break;
10054
10055 case SK_ListInitialization:
10056 OS << "list aggregate initialization";
10057 break;
10058
10059 case SK_UnwrapInitList:
10060 OS << "unwrap reference initializer list";
10061 break;
10062
10063 case SK_RewrapInitList:
10064 OS << "rewrap reference initializer list";
10065 break;
10066
10067 case SK_ConstructorInitialization:
10068 OS << "constructor initialization";
10069 break;
10070
10071 case SK_ConstructorInitializationFromList:
10072 OS << "list initialization via constructor";
10073 break;
10074
10075 case SK_ZeroInitialization:
10076 OS << "zero initialization";
10077 break;
10078
10079 case SK_CAssignment:
10080 OS << "C assignment";
10081 break;
10082
10083 case SK_StringInit:
10084 OS << "string initialization";
10085 break;
10086
10087 case SK_ObjCObjectConversion:
10088 OS << "Objective-C object conversion";
10089 break;
10090
10091 case SK_ArrayLoopIndex:
10092 OS << "indexing for array initialization loop";
10093 break;
10094
10095 case SK_ArrayLoopInit:
10096 OS << "array initialization loop";
10097 break;
10098
10099 case SK_ArrayInit:
10100 OS << "array initialization";
10101 break;
10102
10103 case SK_GNUArrayInit:
10104 OS << "array initialization (GNU extension)";
10105 break;
10106
10107 case SK_ParenthesizedArrayInit:
10108 OS << "parenthesized array initialization";
10109 break;
10110
10111 case SK_PassByIndirectCopyRestore:
10112 OS << "pass by indirect copy and restore";
10113 break;
10114
10115 case SK_PassByIndirectRestore:
10116 OS << "pass by indirect restore";
10117 break;
10118
10119 case SK_ProduceObjCObject:
10120 OS << "Objective-C object retension";
10121 break;
10122
10123 case SK_StdInitializerList:
10124 OS << "std::initializer_list from initializer list";
10125 break;
10126
10127 case SK_StdInitializerListConstructorCall:
10128 OS << "list initialization from std::initializer_list";
10129 break;
10130
10131 case SK_OCLSamplerInit:
10132 OS << "OpenCL sampler_t from integer constant";
10133 break;
10134
10135 case SK_OCLZeroOpaqueType:
10136 OS << "OpenCL opaque type from zero";
10137 break;
10138 case SK_ParenthesizedListInit:
10139 OS << "initialization from a parenthesized list of values";
10140 break;
10141 }
10142
10143 OS << " [" << S->Type << ']';
10144 }
10145
10146 OS << '\n';
10147}
10148
10149void InitializationSequence::dump() const {
10150 dump(llvm::errs());
10151}
10152
10153static bool NarrowingErrs(const LangOptions &L) {
10154 return L.CPlusPlus11 &&
10155 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
10156}
10157
10158static void DiagnoseNarrowingInInitList(Sema &S,
10159 const ImplicitConversionSequence &ICS,
10160 QualType PreNarrowingType,
10161 QualType EntityType,
10162 const Expr *PostInit) {
10163 const StandardConversionSequence *SCS = nullptr;
10164 switch (ICS.getKind()) {
10165 case ImplicitConversionSequence::StandardConversion:
10166 SCS = &ICS.Standard;
10167 break;
10168 case ImplicitConversionSequence::UserDefinedConversion:
10169 SCS = &ICS.UserDefined.After;
10170 break;
10171 case ImplicitConversionSequence::AmbiguousConversion:
10172 case ImplicitConversionSequence::StaticObjectArgumentConversion:
10173 case ImplicitConversionSequence::EllipsisConversion:
10174 case ImplicitConversionSequence::BadConversion:
10175 return;
10176 }
10177
10178 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
10179 APValue ConstantValue;
10180 QualType ConstantType;
10181 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
10182 ConstantType)) {
10183 case NK_Not_Narrowing:
10184 case NK_Dependent_Narrowing:
10185 // No narrowing occurred.
10186 return;
10187
10188 case NK_Type_Narrowing:
10189 // This was a floating-to-integer conversion, which is always considered a
10190 // narrowing conversion even if the value is a constant and can be
10191 // represented exactly as an integer.
10192 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
10193 ? diag::ext_init_list_type_narrowing
10194 : diag::warn_init_list_type_narrowing)
10195 << PostInit->getSourceRange()
10196 << PreNarrowingType.getLocalUnqualifiedType()
10197 << EntityType.getLocalUnqualifiedType();
10198 break;
10199
10200 case NK_Constant_Narrowing:
10201 // A constant value was narrowed.
10202 S.Diag(PostInit->getBeginLoc(),
10203 NarrowingErrs(S.getLangOpts())
10204 ? diag::ext_init_list_constant_narrowing
10205 : diag::warn_init_list_constant_narrowing)
10206 << PostInit->getSourceRange()
10207 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
10208 << EntityType.getLocalUnqualifiedType();
10209 break;
10210
10211 case NK_Variable_Narrowing:
10212 // A variable's value may have been narrowed.
10213 S.Diag(PostInit->getBeginLoc(),
10214 NarrowingErrs(S.getLangOpts())
10215 ? diag::ext_init_list_variable_narrowing
10216 : diag::warn_init_list_variable_narrowing)
10217 << PostInit->getSourceRange()
10218 << PreNarrowingType.getLocalUnqualifiedType()
10219 << EntityType.getLocalUnqualifiedType();
10220 break;
10221 }
10222
10223 SmallString<128> StaticCast;
10224 llvm::raw_svector_ostream OS(StaticCast);
10225 OS << "static_cast<";
10226 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
10227 // It's important to use the typedef's name if there is one so that the
10228 // fixit doesn't break code using types like int64_t.
10229 //
10230 // FIXME: This will break if the typedef requires qualification. But
10231 // getQualifiedNameAsString() includes non-machine-parsable components.
10232 OS << *TT->getDecl();
10233 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
10234 OS << BT->getName(S.getLangOpts());
10235 else {
10236 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
10237 // with a broken cast.
10238 return;
10239 }
10240 OS << ">(";
10241 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
10242 << PostInit->getSourceRange()
10243 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
10244 << FixItHint::CreateInsertion(
10245 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
10246}
10247
10248//===----------------------------------------------------------------------===//
10249// Initialization helper functions
10250//===----------------------------------------------------------------------===//
10251bool
10252Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
10253 ExprResult Init) {
10254 if (Init.isInvalid())
10255 return false;
10256
10257 Expr *InitE = Init.get();
10258 assert(InitE && "No initialization expression")(static_cast <bool> (InitE && "No initialization expression"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression\""
, "clang/lib/Sema/SemaInit.cpp", 10258, __extension__ __PRETTY_FUNCTION__
))
;
10259
10260 InitializationKind Kind =
10261 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
10262 InitializationSequence Seq(*this, Entity, Kind, InitE);
10263 return !Seq.Failed();
10264}
10265
10266ExprResult
10267Sema::PerformCopyInitialization(const InitializedEntity &Entity,
10268 SourceLocation EqualLoc,
10269 ExprResult Init,
10270 bool TopLevelOfInitList,
10271 bool AllowExplicit) {
10272 if (Init.isInvalid())
10273 return ExprError();
10274
10275 Expr *InitE = Init.get();
10276 assert(InitE && "No initialization expression?")(static_cast <bool> (InitE && "No initialization expression?"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "clang/lib/Sema/SemaInit.cpp", 10276, __extension__ __PRETTY_FUNCTION__
))
;
10277
10278 if (EqualLoc.isInvalid())
10279 EqualLoc = InitE->getBeginLoc();
10280
10281 InitializationKind Kind = InitializationKind::CreateCopy(
10282 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
10283 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
10284
10285 // Prevent infinite recursion when performing parameter copy-initialization.
10286 const bool ShouldTrackCopy =
10287 Entity.isParameterKind() && Seq.isConstructorInitialization();
10288 if (ShouldTrackCopy) {
10289 if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
10290 Seq.SetOverloadFailure(
10291 InitializationSequence::FK_ConstructorOverloadFailed,
10292 OR_No_Viable_Function);
10293
10294 // Try to give a meaningful diagnostic note for the problematic
10295 // constructor.
10296 const auto LastStep = Seq.step_end() - 1;
10297 assert(LastStep->Kind ==(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "clang/lib/Sema/SemaInit.cpp", 10298, __extension__ __PRETTY_FUNCTION__
))
10298 InitializationSequence::SK_ConstructorInitialization)(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "clang/lib/Sema/SemaInit.cpp", 10298, __extension__ __PRETTY_FUNCTION__
))
;
10299 const FunctionDecl *Function = LastStep->Function.Function;
10300 auto Candidate =
10301 llvm::find_if(Seq.getFailedCandidateSet(),
10302 [Function](const OverloadCandidate &Candidate) -> bool {
10303 return Candidate.Viable &&
10304 Candidate.Function == Function &&
10305 Candidate.Conversions.size() > 0;
10306 });
10307 if (Candidate != Seq.getFailedCandidateSet().end() &&
10308 Function->getNumParams() > 0) {
10309 Candidate->Viable = false;
10310 Candidate->FailureKind = ovl_fail_bad_conversion;
10311 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
10312 InitE,
10313 Function->getParamDecl(0)->getType());
10314 }
10315 }
10316 CurrentParameterCopyTypes.push_back(Entity.getType());
10317 }
10318
10319 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
10320
10321 if (ShouldTrackCopy)
10322 CurrentParameterCopyTypes.pop_back();
10323
10324 return Result;
10325}
10326
10327/// Determine whether RD is, or is derived from, a specialization of CTD.
10328static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
10329 ClassTemplateDecl *CTD) {
10330 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
10331 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
10332 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
10333 };
10334 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
10335}
10336
10337QualType Sema::DeduceTemplateSpecializationFromInitializer(
10338 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
10339 const InitializationKind &Kind, MultiExprArg Inits) {
10340 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10341 TSInfo->getType()->getContainedDeducedType());
10342 assert(DeducedTST && "not a deduced template specialization type")(static_cast <bool> (DeducedTST && "not a deduced template specialization type"
) ? void (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "clang/lib/Sema/SemaInit.cpp", 10342, __extension__ __PRETTY_FUNCTION__
))
;
10343
10344 auto TemplateName = DeducedTST->getTemplateName();
10345 if (TemplateName.isDependent())
10346 return SubstAutoTypeDependent(TSInfo->getType());
10347
10348 // We can only perform deduction for class templates.
10349 auto *Template =
10350 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10351 if (!Template) {
10352 Diag(Kind.getLocation(),
10353 diag::err_deduced_non_class_template_specialization_type)
10354 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10355 if (auto *TD = TemplateName.getAsTemplateDecl())
10356 Diag(TD->getLocation(), diag::note_template_decl_here);
10357 return QualType();
10358 }
10359
10360 // Can't deduce from dependent arguments.
10361 if (Expr::hasAnyTypeDependentArguments(Inits)) {
10362 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10363 diag::warn_cxx14_compat_class_template_argument_deduction)
10364 << TSInfo->getTypeLoc().getSourceRange() << 0;
10365 return SubstAutoTypeDependent(TSInfo->getType());
10366 }
10367
10368 // FIXME: Perform "exact type" matching first, per CWG discussion?
10369 // Or implement this via an implied 'T(T) -> T' deduction guide?
10370
10371 // FIXME: Do we need/want a std::initializer_list<T> special case?
10372
10373 // Look up deduction guides, including those synthesized from constructors.
10374 //
10375 // C++1z [over.match.class.deduct]p1:
10376 // A set of functions and function templates is formed comprising:
10377 // - For each constructor of the class template designated by the
10378 // template-name, a function template [...]
10379 // - For each deduction-guide, a function or function template [...]
10380 DeclarationNameInfo NameInfo(
10381 Context.DeclarationNames.getCXXDeductionGuideName(Template),
10382 TSInfo->getTypeLoc().getEndLoc());
10383 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10384 LookupQualifiedName(Guides, Template->getDeclContext());
10385
10386 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10387 // clear on this, but they're not found by name so access does not apply.
10388 Guides.suppressDiagnostics();
10389
10390 // Figure out if this is list-initialization.
10391 InitListExpr *ListInit =
10392 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10393 ? dyn_cast<InitListExpr>(Inits[0])
10394 : nullptr;
10395
10396 // C++1z [over.match.class.deduct]p1:
10397 // Initialization and overload resolution are performed as described in
10398 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10399 // (as appropriate for the type of initialization performed) for an object
10400 // of a hypothetical class type, where the selected functions and function
10401 // templates are considered to be the constructors of that class type
10402 //
10403 // Since we know we're initializing a class type of a type unrelated to that
10404 // of the initializer, this reduces to something fairly reasonable.
10405 OverloadCandidateSet Candidates(Kind.getLocation(),
10406 OverloadCandidateSet::CSK_Normal);
10407 OverloadCandidateSet::iterator Best;
10408
10409 bool HasAnyDeductionGuide = false;
10410 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10411
10412 auto tryToResolveOverload =
10413 [&](bool OnlyListConstructors) -> OverloadingResult {
10414 Candidates.clear(OverloadCandidateSet::CSK_Normal);
10415 HasAnyDeductionGuide = false;
10416
10417 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10418 NamedDecl *D = (*I)->getUnderlyingDecl();
10419 if (D->isInvalidDecl())
10420 continue;
10421
10422 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10423 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10424 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10425 if (!GD)
10426 continue;
10427
10428 if (!GD->isImplicit())
10429 HasAnyDeductionGuide = true;
10430
10431 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10432 // For copy-initialization, the candidate functions are all the
10433 // converting constructors (12.3.1) of that class.
10434 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10435 // The converting constructors of T are candidate functions.
10436 if (!AllowExplicit) {
10437 // Overload resolution checks whether the deduction guide is declared
10438 // explicit for us.
10439
10440 // When looking for a converting constructor, deduction guides that
10441 // could never be called with one argument are not interesting to
10442 // check or note.
10443 if (GD->getMinRequiredArguments() > 1 ||
10444 (GD->getNumParams() == 0 && !GD->isVariadic()))
10445 continue;
10446 }
10447
10448 // C++ [over.match.list]p1.1: (first phase list initialization)
10449 // Initially, the candidate functions are the initializer-list
10450 // constructors of the class T
10451 if (OnlyListConstructors && !isInitListConstructor(GD))
10452 continue;
10453
10454 // C++ [over.match.list]p1.2: (second phase list initialization)
10455 // the candidate functions are all the constructors of the class T
10456 // C++ [over.match.ctor]p1: (all other cases)
10457 // the candidate functions are all the constructors of the class of
10458 // the object being initialized
10459
10460 // C++ [over.best.ics]p4:
10461 // When [...] the constructor [...] is a candidate by
10462 // - [over.match.copy] (in all cases)
10463 // FIXME: The "second phase of [over.match.list] case can also
10464 // theoretically happen here, but it's not clear whether we can
10465 // ever have a parameter of the right type.
10466 bool SuppressUserConversions = Kind.isCopyInit();
10467
10468 if (TD)
10469 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10470 Inits, Candidates, SuppressUserConversions,
10471 /*PartialOverloading*/ false,
10472 AllowExplicit);
10473 else
10474 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10475 SuppressUserConversions,
10476 /*PartialOverloading*/ false, AllowExplicit);
10477 }
10478 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10479 };
10480
10481 OverloadingResult Result = OR_No_Viable_Function;
10482
10483 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10484 // try initializer-list constructors.
10485 if (ListInit) {
10486 bool TryListConstructors = true;
10487
10488 // Try list constructors unless the list is empty and the class has one or
10489 // more default constructors, in which case those constructors win.
10490 if (!ListInit->getNumInits()) {
10491 for (NamedDecl *D : Guides) {
10492 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10493 if (FD && FD->getMinRequiredArguments() == 0) {
10494 TryListConstructors = false;
10495 break;
10496 }
10497 }
10498 } else if (ListInit->getNumInits() == 1) {
10499 // C++ [over.match.class.deduct]:
10500 // As an exception, the first phase in [over.match.list] (considering
10501 // initializer-list constructors) is omitted if the initializer list
10502 // consists of a single expression of type cv U, where U is a
10503 // specialization of C or a class derived from a specialization of C.
10504 Expr *E = ListInit->getInit(0);
10505 auto *RD = E->getType()->getAsCXXRecordDecl();
10506 if (!isa<InitListExpr>(E) && RD &&
10507 isCompleteType(Kind.getLocation(), E->getType()) &&
10508 isOrIsDerivedFromSpecializationOf(RD, Template))
10509 TryListConstructors = false;
10510 }
10511
10512 if (TryListConstructors)
10513 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10514 // Then unwrap the initializer list and try again considering all
10515 // constructors.
10516 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10517 }
10518
10519 // If list-initialization fails, or if we're doing any other kind of
10520 // initialization, we (eventually) consider constructors.
10521 if (Result == OR_No_Viable_Function)
10522 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10523
10524 switch (Result) {
10525 case OR_Ambiguous:
10526 // FIXME: For list-initialization candidates, it'd usually be better to
10527 // list why they were not viable when given the initializer list itself as
10528 // an argument.
10529 Candidates.NoteCandidates(
10530 PartialDiagnosticAt(
10531 Kind.getLocation(),
10532 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10533 << TemplateName),
10534 *this, OCD_AmbiguousCandidates, Inits);
10535 return QualType();
10536
10537 case OR_No_Viable_Function: {
10538 CXXRecordDecl *Primary =
10539 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10540 bool Complete =
10541 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10542 Candidates.NoteCandidates(
10543 PartialDiagnosticAt(
10544 Kind.getLocation(),
10545 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10546 : diag::err_deduced_class_template_incomplete)
10547 << TemplateName << !Guides.empty()),
10548 *this, OCD_AllCandidates, Inits);
10549 return QualType();
10550 }
10551
10552 case OR_Deleted: {
10553 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10554 << TemplateName;
10555 NoteDeletedFunction(Best->Function);
10556 return QualType();
10557 }
10558
10559 case OR_Success:
10560 // C++ [over.match.list]p1:
10561 // In copy-list-initialization, if an explicit constructor is chosen, the
10562 // initialization is ill-formed.
10563 if (Kind.isCopyInit() && ListInit &&
10564 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10565 bool IsDeductionGuide = !Best->Function->isImplicit();
10566 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10567 << TemplateName << IsDeductionGuide;
10568 Diag(Best->Function->getLocation(),
10569 diag::note_explicit_ctor_deduction_guide_here)
10570 << IsDeductionGuide;
10571 return QualType();
10572 }
10573
10574 // Make sure we didn't select an unusable deduction guide, and mark it
10575 // as referenced.
10576 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10577 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10578 break;
10579 }
10580
10581 // C++ [dcl.type.class.deduct]p1:
10582 // The placeholder is replaced by the return type of the function selected
10583 // by overload resolution for class template deduction.
10584 QualType DeducedType =
10585 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10586 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10587 diag::warn_cxx14_compat_class_template_argument_deduction)
10588 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10589
10590 // Warn if CTAD was used on a type that does not have any user-defined
10591 // deduction guides.
10592 if (!HasAnyDeductionGuide) {
10593 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10594 diag::warn_ctad_maybe_unsupported)
10595 << TemplateName;
10596 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10597 }
10598
10599 return DeducedType;
10600}