File: | clang/lib/Sema/SemaInit.cpp |
Warning: | line 8817, column 32 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for initializers. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/DeclObjC.h" |
15 | #include "clang/AST/ExprCXX.h" |
16 | #include "clang/AST/ExprObjC.h" |
17 | #include "clang/AST/ExprOpenMP.h" |
18 | #include "clang/AST/TypeLoc.h" |
19 | #include "clang/Basic/CharInfo.h" |
20 | #include "clang/Basic/TargetInfo.h" |
21 | #include "clang/Sema/Designator.h" |
22 | #include "clang/Sema/Initialization.h" |
23 | #include "clang/Sema/Lookup.h" |
24 | #include "clang/Sema/SemaInternal.h" |
25 | #include "llvm/ADT/APInt.h" |
26 | #include "llvm/ADT/SmallString.h" |
27 | #include "llvm/Support/ErrorHandling.h" |
28 | #include "llvm/Support/raw_ostream.h" |
29 | |
30 | using namespace clang; |
31 | |
32 | //===----------------------------------------------------------------------===// |
33 | // Sema Initialization Checking |
34 | //===----------------------------------------------------------------------===// |
35 | |
36 | /// Check whether T is compatible with a wide character type (wchar_t, |
37 | /// char16_t or char32_t). |
38 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
39 | if (Context.typesAreCompatible(Context.getWideCharType(), T)) |
40 | return true; |
41 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
42 | return Context.typesAreCompatible(Context.Char16Ty, T) || |
43 | Context.typesAreCompatible(Context.Char32Ty, T); |
44 | } |
45 | return false; |
46 | } |
47 | |
48 | enum StringInitFailureKind { |
49 | SIF_None, |
50 | SIF_NarrowStringIntoWideChar, |
51 | SIF_WideStringIntoChar, |
52 | SIF_IncompatWideStringIntoWideChar, |
53 | SIF_UTF8StringIntoPlainChar, |
54 | SIF_PlainStringIntoUTF8Char, |
55 | SIF_Other |
56 | }; |
57 | |
58 | /// Check whether the array of type AT can be initialized by the Init |
59 | /// expression by means of string initialization. Returns SIF_None if so, |
60 | /// otherwise returns a StringInitFailureKind that describes why the |
61 | /// initialization would not work. |
62 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
63 | ASTContext &Context) { |
64 | if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) |
65 | return SIF_Other; |
66 | |
67 | // See if this is a string literal or @encode. |
68 | Init = Init->IgnoreParens(); |
69 | |
70 | // Handle @encode, which is a narrow string. |
71 | if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) |
72 | return SIF_None; |
73 | |
74 | // Otherwise we can only handle string literals. |
75 | StringLiteral *SL = dyn_cast<StringLiteral>(Init); |
76 | if (!SL) |
77 | return SIF_Other; |
78 | |
79 | const QualType ElemTy = |
80 | Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); |
81 | |
82 | switch (SL->getKind()) { |
83 | case StringLiteral::UTF8: |
84 | // char8_t array can be initialized with a UTF-8 string. |
85 | if (ElemTy->isChar8Type()) |
86 | return SIF_None; |
87 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
88 | case StringLiteral::Ascii: |
89 | // char array can be initialized with a narrow string. |
90 | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
91 | if (ElemTy->isCharType()) |
92 | return (SL->getKind() == StringLiteral::UTF8 && |
93 | Context.getLangOpts().Char8) |
94 | ? SIF_UTF8StringIntoPlainChar |
95 | : SIF_None; |
96 | if (ElemTy->isChar8Type()) |
97 | return SIF_PlainStringIntoUTF8Char; |
98 | if (IsWideCharCompatible(ElemTy, Context)) |
99 | return SIF_NarrowStringIntoWideChar; |
100 | return SIF_Other; |
101 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
102 | // "An array with element type compatible with a qualified or unqualified |
103 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
104 | // string literal with the corresponding encoding prefix (L, u, or U, |
105 | // respectively), optionally enclosed in braces. |
106 | case StringLiteral::UTF16: |
107 | if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) |
108 | return SIF_None; |
109 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
110 | return SIF_WideStringIntoChar; |
111 | if (IsWideCharCompatible(ElemTy, Context)) |
112 | return SIF_IncompatWideStringIntoWideChar; |
113 | return SIF_Other; |
114 | case StringLiteral::UTF32: |
115 | if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) |
116 | return SIF_None; |
117 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
118 | return SIF_WideStringIntoChar; |
119 | if (IsWideCharCompatible(ElemTy, Context)) |
120 | return SIF_IncompatWideStringIntoWideChar; |
121 | return SIF_Other; |
122 | case StringLiteral::Wide: |
123 | if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) |
124 | return SIF_None; |
125 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
126 | return SIF_WideStringIntoChar; |
127 | if (IsWideCharCompatible(ElemTy, Context)) |
128 | return SIF_IncompatWideStringIntoWideChar; |
129 | return SIF_Other; |
130 | } |
131 | |
132 | llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 132); |
133 | } |
134 | |
135 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
136 | ASTContext &Context) { |
137 | const ArrayType *arrayType = Context.getAsArrayType(declType); |
138 | if (!arrayType) |
139 | return SIF_Other; |
140 | return IsStringInit(init, arrayType, Context); |
141 | } |
142 | |
143 | /// Update the type of a string literal, including any surrounding parentheses, |
144 | /// to match the type of the object which it is initializing. |
145 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
146 | while (true) { |
147 | E->setType(Ty); |
148 | E->setValueKind(VK_RValue); |
149 | if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { |
150 | break; |
151 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
152 | E = PE->getSubExpr(); |
153 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
154 | assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void> (0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 154, __PRETTY_FUNCTION__)); |
155 | E = UO->getSubExpr(); |
156 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { |
157 | E = GSE->getResultExpr(); |
158 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { |
159 | E = CE->getChosenSubExpr(); |
160 | } else { |
161 | llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 161); |
162 | } |
163 | } |
164 | } |
165 | |
166 | /// Fix a compound literal initializing an array so it's correctly marked |
167 | /// as an rvalue. |
168 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
169 | while (true) { |
170 | E->setValueKind(VK_RValue); |
171 | if (isa<CompoundLiteralExpr>(E)) { |
172 | break; |
173 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
174 | E = PE->getSubExpr(); |
175 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
176 | assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void> (0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 176, __PRETTY_FUNCTION__)); |
177 | E = UO->getSubExpr(); |
178 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { |
179 | E = GSE->getResultExpr(); |
180 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { |
181 | E = CE->getChosenSubExpr(); |
182 | } else { |
183 | llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 183); |
184 | } |
185 | } |
186 | } |
187 | |
188 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
189 | Sema &S) { |
190 | // Get the length of the string as parsed. |
191 | auto *ConstantArrayTy = |
192 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
193 | uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); |
194 | |
195 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
196 | // C99 6.7.8p14. We have an array of character type with unknown size |
197 | // being initialized to a string literal. |
198 | llvm::APInt ConstVal(32, StrLength); |
199 | // Return a new array type (C99 6.7.8p22). |
200 | DeclT = S.Context.getConstantArrayType(IAT->getElementType(), |
201 | ConstVal, nullptr, |
202 | ArrayType::Normal, 0); |
203 | updateStringLiteralType(Str, DeclT); |
204 | return; |
205 | } |
206 | |
207 | const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
208 | |
209 | // We have an array of character type with known size. However, |
210 | // the size may be smaller or larger than the string we are initializing. |
211 | // FIXME: Avoid truncation for 64-bit length strings. |
212 | if (S.getLangOpts().CPlusPlus) { |
213 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { |
214 | // For Pascal strings it's OK to strip off the terminating null character, |
215 | // so the example below is valid: |
216 | // |
217 | // unsigned char a[2] = "\pa"; |
218 | if (SL->isPascal()) |
219 | StrLength--; |
220 | } |
221 | |
222 | // [dcl.init.string]p2 |
223 | if (StrLength > CAT->getSize().getZExtValue()) |
224 | S.Diag(Str->getBeginLoc(), |
225 | diag::err_initializer_string_for_char_array_too_long) |
226 | << Str->getSourceRange(); |
227 | } else { |
228 | // C99 6.7.8p14. |
229 | if (StrLength-1 > CAT->getSize().getZExtValue()) |
230 | S.Diag(Str->getBeginLoc(), |
231 | diag::ext_initializer_string_for_char_array_too_long) |
232 | << Str->getSourceRange(); |
233 | } |
234 | |
235 | // Set the type to the actual size that we are initializing. If we have |
236 | // something like: |
237 | // char x[1] = "foo"; |
238 | // then this will set the string literal's type to char[1]. |
239 | updateStringLiteralType(Str, DeclT); |
240 | } |
241 | |
242 | //===----------------------------------------------------------------------===// |
243 | // Semantic checking for initializer lists. |
244 | //===----------------------------------------------------------------------===// |
245 | |
246 | namespace { |
247 | |
248 | /// Semantic checking for initializer lists. |
249 | /// |
250 | /// The InitListChecker class contains a set of routines that each |
251 | /// handle the initialization of a certain kind of entity, e.g., |
252 | /// arrays, vectors, struct/union types, scalars, etc. The |
253 | /// InitListChecker itself performs a recursive walk of the subobject |
254 | /// structure of the type to be initialized, while stepping through |
255 | /// the initializer list one element at a time. The IList and Index |
256 | /// parameters to each of the Check* routines contain the active |
257 | /// (syntactic) initializer list and the index into that initializer |
258 | /// list that represents the current initializer. Each routine is |
259 | /// responsible for moving that Index forward as it consumes elements. |
260 | /// |
261 | /// Each Check* routine also has a StructuredList/StructuredIndex |
262 | /// arguments, which contains the current "structured" (semantic) |
263 | /// initializer list and the index into that initializer list where we |
264 | /// are copying initializers as we map them over to the semantic |
265 | /// list. Once we have completed our recursive walk of the subobject |
266 | /// structure, we will have constructed a full semantic initializer |
267 | /// list. |
268 | /// |
269 | /// C99 designators cause changes in the initializer list traversal, |
270 | /// because they make the initialization "jump" into a specific |
271 | /// subobject and then continue the initialization from that |
272 | /// point. CheckDesignatedInitializer() recursively steps into the |
273 | /// designated subobject and manages backing out the recursion to |
274 | /// initialize the subobjects after the one designated. |
275 | /// |
276 | /// If an initializer list contains any designators, we build a placeholder |
277 | /// structured list even in 'verify only' mode, so that we can track which |
278 | /// elements need 'empty' initializtion. |
279 | class InitListChecker { |
280 | Sema &SemaRef; |
281 | bool hadError = false; |
282 | bool VerifyOnly; // No diagnostics. |
283 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
284 | bool InOverloadResolution; |
285 | InitListExpr *FullyStructuredList = nullptr; |
286 | NoInitExpr *DummyExpr = nullptr; |
287 | |
288 | NoInitExpr *getDummyInit() { |
289 | if (!DummyExpr) |
290 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
291 | return DummyExpr; |
292 | } |
293 | |
294 | void CheckImplicitInitList(const InitializedEntity &Entity, |
295 | InitListExpr *ParentIList, QualType T, |
296 | unsigned &Index, InitListExpr *StructuredList, |
297 | unsigned &StructuredIndex); |
298 | void CheckExplicitInitList(const InitializedEntity &Entity, |
299 | InitListExpr *IList, QualType &T, |
300 | InitListExpr *StructuredList, |
301 | bool TopLevelObject = false); |
302 | void CheckListElementTypes(const InitializedEntity &Entity, |
303 | InitListExpr *IList, QualType &DeclType, |
304 | bool SubobjectIsDesignatorContext, |
305 | unsigned &Index, |
306 | InitListExpr *StructuredList, |
307 | unsigned &StructuredIndex, |
308 | bool TopLevelObject = false); |
309 | void CheckSubElementType(const InitializedEntity &Entity, |
310 | InitListExpr *IList, QualType ElemType, |
311 | unsigned &Index, |
312 | InitListExpr *StructuredList, |
313 | unsigned &StructuredIndex); |
314 | void CheckComplexType(const InitializedEntity &Entity, |
315 | InitListExpr *IList, QualType DeclType, |
316 | unsigned &Index, |
317 | InitListExpr *StructuredList, |
318 | unsigned &StructuredIndex); |
319 | void CheckScalarType(const InitializedEntity &Entity, |
320 | InitListExpr *IList, QualType DeclType, |
321 | unsigned &Index, |
322 | InitListExpr *StructuredList, |
323 | unsigned &StructuredIndex); |
324 | void CheckReferenceType(const InitializedEntity &Entity, |
325 | InitListExpr *IList, QualType DeclType, |
326 | unsigned &Index, |
327 | InitListExpr *StructuredList, |
328 | unsigned &StructuredIndex); |
329 | void CheckVectorType(const InitializedEntity &Entity, |
330 | InitListExpr *IList, QualType DeclType, unsigned &Index, |
331 | InitListExpr *StructuredList, |
332 | unsigned &StructuredIndex); |
333 | void CheckStructUnionTypes(const InitializedEntity &Entity, |
334 | InitListExpr *IList, QualType DeclType, |
335 | CXXRecordDecl::base_class_range Bases, |
336 | RecordDecl::field_iterator Field, |
337 | bool SubobjectIsDesignatorContext, unsigned &Index, |
338 | InitListExpr *StructuredList, |
339 | unsigned &StructuredIndex, |
340 | bool TopLevelObject = false); |
341 | void CheckArrayType(const InitializedEntity &Entity, |
342 | InitListExpr *IList, QualType &DeclType, |
343 | llvm::APSInt elementIndex, |
344 | bool SubobjectIsDesignatorContext, unsigned &Index, |
345 | InitListExpr *StructuredList, |
346 | unsigned &StructuredIndex); |
347 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
348 | InitListExpr *IList, DesignatedInitExpr *DIE, |
349 | unsigned DesigIdx, |
350 | QualType &CurrentObjectType, |
351 | RecordDecl::field_iterator *NextField, |
352 | llvm::APSInt *NextElementIndex, |
353 | unsigned &Index, |
354 | InitListExpr *StructuredList, |
355 | unsigned &StructuredIndex, |
356 | bool FinishSubobjectInit, |
357 | bool TopLevelObject); |
358 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
359 | QualType CurrentObjectType, |
360 | InitListExpr *StructuredList, |
361 | unsigned StructuredIndex, |
362 | SourceRange InitRange, |
363 | bool IsFullyOverwritten = false); |
364 | void UpdateStructuredListElement(InitListExpr *StructuredList, |
365 | unsigned &StructuredIndex, |
366 | Expr *expr); |
367 | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
368 | SourceRange InitRange, |
369 | unsigned ExpectedNumInits); |
370 | int numArrayElements(QualType DeclType); |
371 | int numStructUnionElements(QualType DeclType); |
372 | |
373 | ExprResult PerformEmptyInit(SourceLocation Loc, |
374 | const InitializedEntity &Entity); |
375 | |
376 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
377 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
378 | bool FullyOverwritten = true) { |
379 | // Overriding an initializer via a designator is valid with C99 designated |
380 | // initializers, but ill-formed with C++20 designated initializers. |
381 | unsigned DiagID = SemaRef.getLangOpts().CPlusPlus |
382 | ? diag::ext_initializer_overrides |
383 | : diag::warn_initializer_overrides; |
384 | |
385 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
386 | // In overload resolution, we have to strictly enforce the rules, and so |
387 | // don't allow any overriding of prior initializers. This matters for a |
388 | // case such as: |
389 | // |
390 | // union U { int a, b; }; |
391 | // struct S { int a, b; }; |
392 | // void f(U), f(S); |
393 | // |
394 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
395 | // consistency, we disallow all overriding of prior initializers in |
396 | // overload resolution, not only overriding of union members. |
397 | hadError = true; |
398 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
399 | // If we'll be keeping around the old initializer but overwriting part of |
400 | // the object it initialized, and that object is not trivially |
401 | // destructible, this can leak. Don't allow that, not even as an |
402 | // extension. |
403 | // |
404 | // FIXME: It might be reasonable to allow this in cases where the part of |
405 | // the initializer that we're overriding has trivial destruction. |
406 | DiagID = diag::err_initializer_overrides_destructed; |
407 | } else if (!OldInit->getSourceRange().isValid()) { |
408 | // We need to check on source range validity because the previous |
409 | // initializer does not have to be an explicit initializer. e.g., |
410 | // |
411 | // struct P { int a, b; }; |
412 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
413 | // |
414 | // There is an overwrite taking place because the first braced initializer |
415 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
416 | // |
417 | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
418 | // C++, this cannot be reached unless we've already seen and diagnosed a |
419 | // different conformance issue, such as a mixture of designated and |
420 | // non-designated initializers or a multi-level designator.) |
421 | return; |
422 | } |
423 | |
424 | if (!VerifyOnly) { |
425 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) |
426 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
427 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) |
428 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) |
429 | << OldInit->getSourceRange(); |
430 | } |
431 | } |
432 | |
433 | // Explanation on the "FillWithNoInit" mode: |
434 | // |
435 | // Assume we have the following definitions (Case#1): |
436 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
437 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
438 | // |
439 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
440 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
441 | // |
442 | // But if we have (Case#2): |
443 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
444 | // |
445 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
446 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
447 | // |
448 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
449 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
450 | // initializers but with special "NoInitExpr" place holders, which tells the |
451 | // CodeGen not to generate any initializers for these parts. |
452 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
453 | const InitializedEntity &ParentEntity, |
454 | InitListExpr *ILE, bool &RequiresSecondPass, |
455 | bool FillWithNoInit); |
456 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
457 | const InitializedEntity &ParentEntity, |
458 | InitListExpr *ILE, bool &RequiresSecondPass, |
459 | bool FillWithNoInit = false); |
460 | void FillInEmptyInitializations(const InitializedEntity &Entity, |
461 | InitListExpr *ILE, bool &RequiresSecondPass, |
462 | InitListExpr *OuterILE, unsigned OuterIndex, |
463 | bool FillWithNoInit = false); |
464 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
465 | Expr *InitExpr, FieldDecl *Field, |
466 | bool TopLevelObject); |
467 | void CheckEmptyInitializable(const InitializedEntity &Entity, |
468 | SourceLocation Loc); |
469 | |
470 | public: |
471 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
472 | QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, |
473 | bool InOverloadResolution = false); |
474 | bool HadError() { return hadError; } |
475 | |
476 | // Retrieves the fully-structured initializer list used for |
477 | // semantic analysis and code generation. |
478 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
479 | }; |
480 | |
481 | } // end anonymous namespace |
482 | |
483 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
484 | const InitializedEntity &Entity) { |
485 | InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
486 | true); |
487 | MultiExprArg SubInit; |
488 | Expr *InitExpr; |
489 | InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); |
490 | |
491 | // C++ [dcl.init.aggr]p7: |
492 | // If there are fewer initializer-clauses in the list than there are |
493 | // members in the aggregate, then each member not explicitly initialized |
494 | // ... |
495 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
496 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
497 | if (EmptyInitList) { |
498 | // C++1y / DR1070: |
499 | // shall be initialized [...] from an empty initializer list. |
500 | // |
501 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
502 | // does not have useful semantics for initialization from an init list. |
503 | // We treat this as copy-initialization, because aggregate initialization |
504 | // always performs copy-initialization on its elements. |
505 | // |
506 | // Only do this if we're initializing a class type, to avoid filling in |
507 | // the initializer list where possible. |
508 | InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) |
509 | InitListExpr(SemaRef.Context, Loc, None, Loc); |
510 | InitExpr->setType(SemaRef.Context.VoidTy); |
511 | SubInit = InitExpr; |
512 | Kind = InitializationKind::CreateCopy(Loc, Loc); |
513 | } else { |
514 | // C++03: |
515 | // shall be value-initialized. |
516 | } |
517 | |
518 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
519 | // libstdc++4.6 marks the vector default constructor as explicit in |
520 | // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. |
521 | // stlport does so too. Look for std::__debug for libstdc++, and for |
522 | // std:: for stlport. This is effectively a compiler-side implementation of |
523 | // LWG2193. |
524 | if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == |
525 | InitializationSequence::FK_ExplicitConstructor) { |
526 | OverloadCandidateSet::iterator Best; |
527 | OverloadingResult O = |
528 | InitSeq.getFailedCandidateSet() |
529 | .BestViableFunction(SemaRef, Kind.getLocation(), Best); |
530 | (void)O; |
531 | assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution" ) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 531, __PRETTY_FUNCTION__)); |
532 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
533 | CXXRecordDecl *R = CtorDecl->getParent(); |
534 | |
535 | if (CtorDecl->getMinRequiredArguments() == 0 && |
536 | CtorDecl->isExplicit() && R->getDeclName() && |
537 | SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { |
538 | bool IsInStd = false; |
539 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
540 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
541 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
542 | IsInStd = true; |
543 | } |
544 | |
545 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
546 | .Cases("basic_string", "deque", "forward_list", true) |
547 | .Cases("list", "map", "multimap", "multiset", true) |
548 | .Cases("priority_queue", "queue", "set", "stack", true) |
549 | .Cases("unordered_map", "unordered_set", "vector", true) |
550 | .Default(false)) { |
551 | InitSeq.InitializeFrom( |
552 | SemaRef, Entity, |
553 | InitializationKind::CreateValue(Loc, Loc, Loc, true), |
554 | MultiExprArg(), /*TopLevelOfInitList=*/false, |
555 | TreatUnavailableAsInvalid); |
556 | // Emit a warning for this. System header warnings aren't shown |
557 | // by default, but people working on system headers should see it. |
558 | if (!VerifyOnly) { |
559 | SemaRef.Diag(CtorDecl->getLocation(), |
560 | diag::warn_invalid_initializer_from_system_header); |
561 | if (Entity.getKind() == InitializedEntity::EK_Member) |
562 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
563 | diag::note_used_in_initialization_here); |
564 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
565 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
566 | } |
567 | } |
568 | } |
569 | } |
570 | if (!InitSeq) { |
571 | if (!VerifyOnly) { |
572 | InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); |
573 | if (Entity.getKind() == InitializedEntity::EK_Member) |
574 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
575 | diag::note_in_omitted_aggregate_initializer) |
576 | << /*field*/1 << Entity.getDecl(); |
577 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
578 | bool IsTrailingArrayNewMember = |
579 | Entity.getParent() && |
580 | Entity.getParent()->isVariableLengthArrayNew(); |
581 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
582 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
583 | << Entity.getElementIndex(); |
584 | } |
585 | } |
586 | hadError = true; |
587 | return ExprError(); |
588 | } |
589 | |
590 | return VerifyOnly ? ExprResult() |
591 | : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); |
592 | } |
593 | |
594 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
595 | SourceLocation Loc) { |
596 | // If we're building a fully-structured list, we'll check this at the end |
597 | // once we know which elements are actually initialized. Otherwise, we know |
598 | // that there are no designators so we can just check now. |
599 | if (FullyStructuredList) |
600 | return; |
601 | PerformEmptyInit(Loc, Entity); |
602 | } |
603 | |
604 | void InitListChecker::FillInEmptyInitForBase( |
605 | unsigned Init, const CXXBaseSpecifier &Base, |
606 | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
607 | bool &RequiresSecondPass, bool FillWithNoInit) { |
608 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
609 | SemaRef.Context, &Base, false, &ParentEntity); |
610 | |
611 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
612 | ExprResult BaseInit = FillWithNoInit |
613 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
614 | : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); |
615 | if (BaseInit.isInvalid()) { |
616 | hadError = true; |
617 | return; |
618 | } |
619 | |
620 | if (!VerifyOnly) { |
621 | assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 621, __PRETTY_FUNCTION__)); |
622 | ILE->setInit(Init, BaseInit.getAs<Expr>()); |
623 | } |
624 | } else if (InitListExpr *InnerILE = |
625 | dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
626 | FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, |
627 | ILE, Init, FillWithNoInit); |
628 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
629 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
630 | FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), |
631 | RequiresSecondPass, ILE, Init, |
632 | /*FillWithNoInit =*/true); |
633 | } |
634 | } |
635 | |
636 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
637 | const InitializedEntity &ParentEntity, |
638 | InitListExpr *ILE, |
639 | bool &RequiresSecondPass, |
640 | bool FillWithNoInit) { |
641 | SourceLocation Loc = ILE->getEndLoc(); |
642 | unsigned NumInits = ILE->getNumInits(); |
643 | InitializedEntity MemberEntity |
644 | = InitializedEntity::InitializeMember(Field, &ParentEntity); |
645 | |
646 | if (Init >= NumInits || !ILE->getInit(Init)) { |
647 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
648 | if (!RType->getDecl()->isUnion()) |
649 | assert((Init < NumInits || VerifyOnly) &&(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 650, __PRETTY_FUNCTION__)) |
650 | "This ILE should have been expanded")(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 650, __PRETTY_FUNCTION__)); |
651 | |
652 | if (FillWithNoInit) { |
653 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode")((!VerifyOnly && "should not fill with no-init in verify-only mode" ) ? static_cast<void> (0) : __assert_fail ("!VerifyOnly && \"should not fill with no-init in verify-only mode\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 653, __PRETTY_FUNCTION__)); |
654 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
655 | if (Init < NumInits) |
656 | ILE->setInit(Init, Filler); |
657 | else |
658 | ILE->updateInit(SemaRef.Context, Init, Filler); |
659 | return; |
660 | } |
661 | // C++1y [dcl.init.aggr]p7: |
662 | // If there are fewer initializer-clauses in the list than there are |
663 | // members in the aggregate, then each member not explicitly initialized |
664 | // shall be initialized from its brace-or-equal-initializer [...] |
665 | if (Field->hasInClassInitializer()) { |
666 | if (VerifyOnly) |
667 | return; |
668 | |
669 | ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
670 | if (DIE.isInvalid()) { |
671 | hadError = true; |
672 | return; |
673 | } |
674 | SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); |
675 | if (Init < NumInits) |
676 | ILE->setInit(Init, DIE.get()); |
677 | else { |
678 | ILE->updateInit(SemaRef.Context, Init, DIE.get()); |
679 | RequiresSecondPass = true; |
680 | } |
681 | return; |
682 | } |
683 | |
684 | if (Field->getType()->isReferenceType()) { |
685 | if (!VerifyOnly) { |
686 | // C++ [dcl.init.aggr]p9: |
687 | // If an incomplete or empty initializer-list leaves a |
688 | // member of reference type uninitialized, the program is |
689 | // ill-formed. |
690 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
691 | << Field->getType() |
692 | << ILE->getSyntacticForm()->getSourceRange(); |
693 | SemaRef.Diag(Field->getLocation(), |
694 | diag::note_uninit_reference_member); |
695 | } |
696 | hadError = true; |
697 | return; |
698 | } |
699 | |
700 | ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); |
701 | if (MemberInit.isInvalid()) { |
702 | hadError = true; |
703 | return; |
704 | } |
705 | |
706 | if (hadError || VerifyOnly) { |
707 | // Do nothing |
708 | } else if (Init < NumInits) { |
709 | ILE->setInit(Init, MemberInit.getAs<Expr>()); |
710 | } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { |
711 | // Empty initialization requires a constructor call, so |
712 | // extend the initializer list to include the constructor |
713 | // call and make a note that we'll need to take another pass |
714 | // through the initializer list. |
715 | ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); |
716 | RequiresSecondPass = true; |
717 | } |
718 | } else if (InitListExpr *InnerILE |
719 | = dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
720 | FillInEmptyInitializations(MemberEntity, InnerILE, |
721 | RequiresSecondPass, ILE, Init, FillWithNoInit); |
722 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
723 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
724 | FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), |
725 | RequiresSecondPass, ILE, Init, |
726 | /*FillWithNoInit =*/true); |
727 | } |
728 | } |
729 | |
730 | /// Recursively replaces NULL values within the given initializer list |
731 | /// with expressions that perform value-initialization of the |
732 | /// appropriate type, and finish off the InitListExpr formation. |
733 | void |
734 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
735 | InitListExpr *ILE, |
736 | bool &RequiresSecondPass, |
737 | InitListExpr *OuterILE, |
738 | unsigned OuterIndex, |
739 | bool FillWithNoInit) { |
740 | assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type" ) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 741, __PRETTY_FUNCTION__)) |
741 | "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type" ) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 741, __PRETTY_FUNCTION__)); |
742 | |
743 | // We don't need to do any checks when just filling NoInitExprs; that can't |
744 | // fail. |
745 | if (FillWithNoInit && VerifyOnly) |
746 | return; |
747 | |
748 | // If this is a nested initializer list, we might have changed its contents |
749 | // (and therefore some of its properties, such as instantiation-dependence) |
750 | // while filling it in. Inform the outer initializer list so that its state |
751 | // can be updated to match. |
752 | // FIXME: We should fully build the inner initializers before constructing |
753 | // the outer InitListExpr instead of mutating AST nodes after they have |
754 | // been used as subexpressions of other nodes. |
755 | struct UpdateOuterILEWithUpdatedInit { |
756 | InitListExpr *Outer; |
757 | unsigned OuterIndex; |
758 | ~UpdateOuterILEWithUpdatedInit() { |
759 | if (Outer) |
760 | Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); |
761 | } |
762 | } UpdateOuterRAII = {OuterILE, OuterIndex}; |
763 | |
764 | // A transparent ILE is not performing aggregate initialization and should |
765 | // not be filled in. |
766 | if (ILE->isTransparent()) |
767 | return; |
768 | |
769 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
770 | const RecordDecl *RDecl = RType->getDecl(); |
771 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) |
772 | FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), |
773 | Entity, ILE, RequiresSecondPass, FillWithNoInit); |
774 | else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && |
775 | cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { |
776 | for (auto *Field : RDecl->fields()) { |
777 | if (Field->hasInClassInitializer()) { |
778 | FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, |
779 | FillWithNoInit); |
780 | break; |
781 | } |
782 | } |
783 | } else { |
784 | // The fields beyond ILE->getNumInits() are default initialized, so in |
785 | // order to leave them uninitialized, the ILE is expanded and the extra |
786 | // fields are then filled with NoInitExpr. |
787 | unsigned NumElems = numStructUnionElements(ILE->getType()); |
788 | if (RDecl->hasFlexibleArrayMember()) |
789 | ++NumElems; |
790 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
791 | ILE->resizeInits(SemaRef.Context, NumElems); |
792 | |
793 | unsigned Init = 0; |
794 | |
795 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
796 | for (auto &Base : CXXRD->bases()) { |
797 | if (hadError) |
798 | return; |
799 | |
800 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
801 | FillWithNoInit); |
802 | ++Init; |
803 | } |
804 | } |
805 | |
806 | for (auto *Field : RDecl->fields()) { |
807 | if (Field->isUnnamedBitfield()) |
808 | continue; |
809 | |
810 | if (hadError) |
811 | return; |
812 | |
813 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
814 | FillWithNoInit); |
815 | if (hadError) |
816 | return; |
817 | |
818 | ++Init; |
819 | |
820 | // Only look at the first initialization of a union. |
821 | if (RDecl->isUnion()) |
822 | break; |
823 | } |
824 | } |
825 | |
826 | return; |
827 | } |
828 | |
829 | QualType ElementType; |
830 | |
831 | InitializedEntity ElementEntity = Entity; |
832 | unsigned NumInits = ILE->getNumInits(); |
833 | unsigned NumElements = NumInits; |
834 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { |
835 | ElementType = AType->getElementType(); |
836 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
837 | NumElements = CAType->getSize().getZExtValue(); |
838 | // For an array new with an unknown bound, ask for one additional element |
839 | // in order to populate the array filler. |
840 | if (Entity.isVariableLengthArrayNew()) |
841 | ++NumElements; |
842 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
843 | 0, Entity); |
844 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
845 | ElementType = VType->getElementType(); |
846 | NumElements = VType->getNumElements(); |
847 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
848 | 0, Entity); |
849 | } else |
850 | ElementType = ILE->getType(); |
851 | |
852 | bool SkipEmptyInitChecks = false; |
853 | for (unsigned Init = 0; Init != NumElements; ++Init) { |
854 | if (hadError) |
855 | return; |
856 | |
857 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
858 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
859 | ElementEntity.setElementIndex(Init); |
860 | |
861 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
862 | return; |
863 | |
864 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
865 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
866 | ILE->setInit(Init, ILE->getArrayFiller()); |
867 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
868 | // In VerifyOnly mode, there's no point performing empty initialization |
869 | // more than once. |
870 | if (SkipEmptyInitChecks) |
871 | continue; |
872 | |
873 | Expr *Filler = nullptr; |
874 | |
875 | if (FillWithNoInit) |
876 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
877 | else { |
878 | ExprResult ElementInit = |
879 | PerformEmptyInit(ILE->getEndLoc(), ElementEntity); |
880 | if (ElementInit.isInvalid()) { |
881 | hadError = true; |
882 | return; |
883 | } |
884 | |
885 | Filler = ElementInit.getAs<Expr>(); |
886 | } |
887 | |
888 | if (hadError) { |
889 | // Do nothing |
890 | } else if (VerifyOnly) { |
891 | SkipEmptyInitChecks = true; |
892 | } else if (Init < NumInits) { |
893 | // For arrays, just set the expression used for value-initialization |
894 | // of the "holes" in the array. |
895 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
896 | ILE->setArrayFiller(Filler); |
897 | else |
898 | ILE->setInit(Init, Filler); |
899 | } else { |
900 | // For arrays, just set the expression used for value-initialization |
901 | // of the rest of elements and exit. |
902 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
903 | ILE->setArrayFiller(Filler); |
904 | return; |
905 | } |
906 | |
907 | if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { |
908 | // Empty initialization requires a constructor call, so |
909 | // extend the initializer list to include the constructor |
910 | // call and make a note that we'll need to take another pass |
911 | // through the initializer list. |
912 | ILE->updateInit(SemaRef.Context, Init, Filler); |
913 | RequiresSecondPass = true; |
914 | } |
915 | } |
916 | } else if (InitListExpr *InnerILE |
917 | = dyn_cast_or_null<InitListExpr>(InitExpr)) { |
918 | FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, |
919 | ILE, Init, FillWithNoInit); |
920 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
921 | dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { |
922 | FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), |
923 | RequiresSecondPass, ILE, Init, |
924 | /*FillWithNoInit =*/true); |
925 | } |
926 | } |
927 | } |
928 | |
929 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
930 | for (const Stmt *Init : *IL) |
931 | if (Init && isa<DesignatedInitExpr>(Init)) |
932 | return true; |
933 | return false; |
934 | } |
935 | |
936 | InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, |
937 | InitListExpr *IL, QualType &T, bool VerifyOnly, |
938 | bool TreatUnavailableAsInvalid, |
939 | bool InOverloadResolution) |
940 | : SemaRef(S), VerifyOnly(VerifyOnly), |
941 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
942 | InOverloadResolution(InOverloadResolution) { |
943 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
944 | FullyStructuredList = |
945 | createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); |
946 | |
947 | // FIXME: Check that IL isn't already the semantic form of some other |
948 | // InitListExpr. If it is, we'd create a broken AST. |
949 | if (!VerifyOnly) |
950 | FullyStructuredList->setSyntacticForm(IL); |
951 | } |
952 | |
953 | CheckExplicitInitList(Entity, IL, T, FullyStructuredList, |
954 | /*TopLevelObject=*/true); |
955 | |
956 | if (!hadError && FullyStructuredList) { |
957 | bool RequiresSecondPass = false; |
958 | FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, |
959 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
960 | if (RequiresSecondPass && !hadError) |
961 | FillInEmptyInitializations(Entity, FullyStructuredList, |
962 | RequiresSecondPass, nullptr, 0); |
963 | } |
964 | } |
965 | |
966 | int InitListChecker::numArrayElements(QualType DeclType) { |
967 | // FIXME: use a proper constant |
968 | int maxElements = 0x7FFFFFFF; |
969 | if (const ConstantArrayType *CAT = |
970 | SemaRef.Context.getAsConstantArrayType(DeclType)) { |
971 | maxElements = static_cast<int>(CAT->getSize().getZExtValue()); |
972 | } |
973 | return maxElements; |
974 | } |
975 | |
976 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
977 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
978 | int InitializableMembers = 0; |
979 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) |
980 | InitializableMembers += CXXRD->getNumBases(); |
981 | for (const auto *Field : structDecl->fields()) |
982 | if (!Field->isUnnamedBitfield()) |
983 | ++InitializableMembers; |
984 | |
985 | if (structDecl->isUnion()) |
986 | return std::min(InitializableMembers, 1); |
987 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
988 | } |
989 | |
990 | /// Determine whether Entity is an entity for which it is idiomatic to elide |
991 | /// the braces in aggregate initialization. |
992 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
993 | // Recursive initialization of the one and only field within an aggregate |
994 | // class is considered idiomatic. This case arises in particular for |
995 | // initialization of std::array, where the C++ standard suggests the idiom of |
996 | // |
997 | // std::array<T, N> arr = {1, 2, 3}; |
998 | // |
999 | // (where std::array is an aggregate struct containing a single array field. |
1000 | |
1001 | // FIXME: Should aggregate initialization of a struct with a single |
1002 | // base class and no members also suppress the warning? |
1003 | if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) |
1004 | return false; |
1005 | |
1006 | auto *ParentRD = |
1007 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1008 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) |
1009 | if (CXXRD->getNumBases()) |
1010 | return false; |
1011 | |
1012 | auto FieldIt = ParentRD->field_begin(); |
1013 | assert(FieldIt != ParentRD->field_end() &&((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?" ) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1014, __PRETTY_FUNCTION__)) |
1014 | "no fields but have initializer for member?")((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?" ) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1014, __PRETTY_FUNCTION__)); |
1015 | return ++FieldIt == ParentRD->field_end(); |
1016 | } |
1017 | |
1018 | /// Check whether the range of the initializer \p ParentIList from element |
1019 | /// \p Index onwards can be used to initialize an object of type \p T. Update |
1020 | /// \p Index to indicate how many elements of the list were consumed. |
1021 | /// |
1022 | /// This also fills in \p StructuredList, from element \p StructuredIndex |
1023 | /// onwards, with the fully-braced, desugared form of the initialization. |
1024 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
1025 | InitListExpr *ParentIList, |
1026 | QualType T, unsigned &Index, |
1027 | InitListExpr *StructuredList, |
1028 | unsigned &StructuredIndex) { |
1029 | int maxElements = 0; |
1030 | |
1031 | if (T->isArrayType()) |
1032 | maxElements = numArrayElements(T); |
1033 | else if (T->isRecordType()) |
1034 | maxElements = numStructUnionElements(T); |
1035 | else if (T->isVectorType()) |
1036 | maxElements = T->castAs<VectorType>()->getNumElements(); |
1037 | else |
1038 | llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1038); |
1039 | |
1040 | if (maxElements == 0) { |
1041 | if (!VerifyOnly) |
1042 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), |
1043 | diag::err_implicit_empty_initializer); |
1044 | ++Index; |
1045 | hadError = true; |
1046 | return; |
1047 | } |
1048 | |
1049 | // Build a structured initializer list corresponding to this subobject. |
1050 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
1051 | ParentIList, Index, T, StructuredList, StructuredIndex, |
1052 | SourceRange(ParentIList->getInit(Index)->getBeginLoc(), |
1053 | ParentIList->getSourceRange().getEnd())); |
1054 | unsigned StructuredSubobjectInitIndex = 0; |
1055 | |
1056 | // Check the element types and build the structural subobject. |
1057 | unsigned StartIndex = Index; |
1058 | CheckListElementTypes(Entity, ParentIList, T, |
1059 | /*SubobjectIsDesignatorContext=*/false, Index, |
1060 | StructuredSubobjectInitList, |
1061 | StructuredSubobjectInitIndex); |
1062 | |
1063 | if (StructuredSubobjectInitList) { |
1064 | StructuredSubobjectInitList->setType(T); |
1065 | |
1066 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
1067 | // Update the structured sub-object initializer so that it's ending |
1068 | // range corresponds with the end of the last initializer it used. |
1069 | if (EndIndex < ParentIList->getNumInits() && |
1070 | ParentIList->getInit(EndIndex)) { |
1071 | SourceLocation EndLoc |
1072 | = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); |
1073 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
1074 | } |
1075 | |
1076 | // Complain about missing braces. |
1077 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
1078 | !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && |
1079 | !isIdiomaticBraceElisionEntity(Entity)) { |
1080 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1081 | diag::warn_missing_braces) |
1082 | << StructuredSubobjectInitList->getSourceRange() |
1083 | << FixItHint::CreateInsertion( |
1084 | StructuredSubobjectInitList->getBeginLoc(), "{") |
1085 | << FixItHint::CreateInsertion( |
1086 | SemaRef.getLocForEndOfToken( |
1087 | StructuredSubobjectInitList->getEndLoc()), |
1088 | "}"); |
1089 | } |
1090 | |
1091 | // Warn if this type won't be an aggregate in future versions of C++. |
1092 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1093 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1094 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1095 | diag::warn_cxx2a_compat_aggregate_init_with_ctors) |
1096 | << StructuredSubobjectInitList->getSourceRange() << T; |
1097 | } |
1098 | } |
1099 | } |
1100 | |
1101 | /// Warn that \p Entity was of scalar type and was initialized by a |
1102 | /// single-element braced initializer list. |
1103 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
1104 | SourceRange Braces) { |
1105 | // Don't warn during template instantiation. If the initialization was |
1106 | // non-dependent, we warned during the initial parse; otherwise, the |
1107 | // type might not be scalar in some uses of the template. |
1108 | if (S.inTemplateInstantiation()) |
1109 | return; |
1110 | |
1111 | unsigned DiagID = 0; |
1112 | |
1113 | switch (Entity.getKind()) { |
1114 | case InitializedEntity::EK_VectorElement: |
1115 | case InitializedEntity::EK_ComplexElement: |
1116 | case InitializedEntity::EK_ArrayElement: |
1117 | case InitializedEntity::EK_Parameter: |
1118 | case InitializedEntity::EK_Parameter_CF_Audited: |
1119 | case InitializedEntity::EK_Result: |
1120 | // Extra braces here are suspicious. |
1121 | DiagID = diag::warn_braces_around_scalar_init; |
1122 | break; |
1123 | |
1124 | case InitializedEntity::EK_Member: |
1125 | // Warn on aggregate initialization but not on ctor init list or |
1126 | // default member initializer. |
1127 | if (Entity.getParent()) |
1128 | DiagID = diag::warn_braces_around_scalar_init; |
1129 | break; |
1130 | |
1131 | case InitializedEntity::EK_Variable: |
1132 | case InitializedEntity::EK_LambdaCapture: |
1133 | // No warning, might be direct-list-initialization. |
1134 | // FIXME: Should we warn for copy-list-initialization in these cases? |
1135 | break; |
1136 | |
1137 | case InitializedEntity::EK_New: |
1138 | case InitializedEntity::EK_Temporary: |
1139 | case InitializedEntity::EK_CompoundLiteralInit: |
1140 | // No warning, braces are part of the syntax of the underlying construct. |
1141 | break; |
1142 | |
1143 | case InitializedEntity::EK_RelatedResult: |
1144 | // No warning, we already warned when initializing the result. |
1145 | break; |
1146 | |
1147 | case InitializedEntity::EK_Exception: |
1148 | case InitializedEntity::EK_Base: |
1149 | case InitializedEntity::EK_Delegating: |
1150 | case InitializedEntity::EK_BlockElement: |
1151 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
1152 | case InitializedEntity::EK_Binding: |
1153 | case InitializedEntity::EK_StmtExprResult: |
1154 | llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1154); |
1155 | } |
1156 | |
1157 | if (DiagID) { |
1158 | S.Diag(Braces.getBegin(), DiagID) |
1159 | << Braces |
1160 | << FixItHint::CreateRemoval(Braces.getBegin()) |
1161 | << FixItHint::CreateRemoval(Braces.getEnd()); |
1162 | } |
1163 | } |
1164 | |
1165 | /// Check whether the initializer \p IList (that was written with explicit |
1166 | /// braces) can be used to initialize an object of type \p T. |
1167 | /// |
1168 | /// This also fills in \p StructuredList with the fully-braced, desugared |
1169 | /// form of the initialization. |
1170 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
1171 | InitListExpr *IList, QualType &T, |
1172 | InitListExpr *StructuredList, |
1173 | bool TopLevelObject) { |
1174 | unsigned Index = 0, StructuredIndex = 0; |
1175 | CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, |
1176 | Index, StructuredList, StructuredIndex, TopLevelObject); |
1177 | if (StructuredList) { |
1178 | QualType ExprTy = T; |
1179 | if (!ExprTy->isArrayType()) |
1180 | ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); |
1181 | if (!VerifyOnly) |
1182 | IList->setType(ExprTy); |
1183 | StructuredList->setType(ExprTy); |
1184 | } |
1185 | if (hadError) |
1186 | return; |
1187 | |
1188 | // Don't complain for incomplete types, since we'll get an error elsewhere. |
1189 | if (Index < IList->getNumInits() && !T->isIncompleteType()) { |
1190 | // We have leftover initializers |
1191 | bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || |
1192 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
1193 | hadError = ExtraInitsIsError; |
1194 | if (VerifyOnly) { |
1195 | return; |
1196 | } else if (StructuredIndex == 1 && |
1197 | IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == |
1198 | SIF_None) { |
1199 | unsigned DK = |
1200 | ExtraInitsIsError |
1201 | ? diag::err_excess_initializers_in_char_array_initializer |
1202 | : diag::ext_excess_initializers_in_char_array_initializer; |
1203 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1204 | << IList->getInit(Index)->getSourceRange(); |
1205 | } else { |
1206 | int initKind = T->isArrayType() ? 0 : |
1207 | T->isVectorType() ? 1 : |
1208 | T->isScalarType() ? 2 : |
1209 | T->isUnionType() ? 3 : |
1210 | 4; |
1211 | |
1212 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
1213 | : diag::ext_excess_initializers; |
1214 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1215 | << initKind << IList->getInit(Index)->getSourceRange(); |
1216 | } |
1217 | } |
1218 | |
1219 | if (!VerifyOnly) { |
1220 | if (T->isScalarType() && IList->getNumInits() == 1 && |
1221 | !isa<InitListExpr>(IList->getInit(0))) |
1222 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
1223 | |
1224 | // Warn if this is a class type that won't be an aggregate in future |
1225 | // versions of C++. |
1226 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1227 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1228 | // Don't warn if there's an equivalent default constructor that would be |
1229 | // used instead. |
1230 | bool HasEquivCtor = false; |
1231 | if (IList->getNumInits() == 0) { |
1232 | auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); |
1233 | HasEquivCtor = CD && !CD->isDeleted(); |
1234 | } |
1235 | |
1236 | if (!HasEquivCtor) { |
1237 | SemaRef.Diag(IList->getBeginLoc(), |
1238 | diag::warn_cxx2a_compat_aggregate_init_with_ctors) |
1239 | << IList->getSourceRange() << T; |
1240 | } |
1241 | } |
1242 | } |
1243 | } |
1244 | |
1245 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
1246 | InitListExpr *IList, |
1247 | QualType &DeclType, |
1248 | bool SubobjectIsDesignatorContext, |
1249 | unsigned &Index, |
1250 | InitListExpr *StructuredList, |
1251 | unsigned &StructuredIndex, |
1252 | bool TopLevelObject) { |
1253 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
1254 | // Explicitly braced initializer for complex type can be real+imaginary |
1255 | // parts. |
1256 | CheckComplexType(Entity, IList, DeclType, Index, |
1257 | StructuredList, StructuredIndex); |
1258 | } else if (DeclType->isScalarType()) { |
1259 | CheckScalarType(Entity, IList, DeclType, Index, |
1260 | StructuredList, StructuredIndex); |
1261 | } else if (DeclType->isVectorType()) { |
1262 | CheckVectorType(Entity, IList, DeclType, Index, |
1263 | StructuredList, StructuredIndex); |
1264 | } else if (DeclType->isRecordType()) { |
1265 | assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1266, __PRETTY_FUNCTION__)) |
1266 | "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1266, __PRETTY_FUNCTION__)); |
1267 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
1268 | auto Bases = |
1269 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
1270 | CXXRecordDecl::base_class_iterator()); |
1271 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
1272 | Bases = CXXRD->bases(); |
1273 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), |
1274 | SubobjectIsDesignatorContext, Index, StructuredList, |
1275 | StructuredIndex, TopLevelObject); |
1276 | } else if (DeclType->isArrayType()) { |
1277 | llvm::APSInt Zero( |
1278 | SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), |
1279 | false); |
1280 | CheckArrayType(Entity, IList, DeclType, Zero, |
1281 | SubobjectIsDesignatorContext, Index, |
1282 | StructuredList, StructuredIndex); |
1283 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
1284 | // This type is invalid, issue a diagnostic. |
1285 | ++Index; |
1286 | if (!VerifyOnly) |
1287 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1288 | << DeclType; |
1289 | hadError = true; |
1290 | } else if (DeclType->isReferenceType()) { |
1291 | CheckReferenceType(Entity, IList, DeclType, Index, |
1292 | StructuredList, StructuredIndex); |
1293 | } else if (DeclType->isObjCObjectType()) { |
1294 | if (!VerifyOnly) |
1295 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; |
1296 | hadError = true; |
1297 | } else if (DeclType->isOCLIntelSubgroupAVCType()) { |
1298 | // Checks for scalar type are sufficient for these types too. |
1299 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1300 | StructuredIndex); |
1301 | } else { |
1302 | if (!VerifyOnly) |
1303 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1304 | << DeclType; |
1305 | hadError = true; |
1306 | } |
1307 | } |
1308 | |
1309 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
1310 | InitListExpr *IList, |
1311 | QualType ElemType, |
1312 | unsigned &Index, |
1313 | InitListExpr *StructuredList, |
1314 | unsigned &StructuredIndex) { |
1315 | Expr *expr = IList->getInit(Index); |
1316 | |
1317 | if (ElemType->isReferenceType()) |
1318 | return CheckReferenceType(Entity, IList, ElemType, Index, |
1319 | StructuredList, StructuredIndex); |
1320 | |
1321 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { |
1322 | if (SubInitList->getNumInits() == 1 && |
1323 | IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == |
1324 | SIF_None) { |
1325 | // FIXME: It would be more faithful and no less correct to include an |
1326 | // InitListExpr in the semantic form of the initializer list in this case. |
1327 | expr = SubInitList->getInit(0); |
1328 | } |
1329 | // Nested aggregate initialization and C++ initialization are handled later. |
1330 | } else if (isa<ImplicitValueInitExpr>(expr)) { |
1331 | // This happens during template instantiation when we see an InitListExpr |
1332 | // that we've already checked once. |
1333 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) && "found implicit initialization for the wrong type") ? static_cast <void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1334, __PRETTY_FUNCTION__)) |
1334 | "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) && "found implicit initialization for the wrong type") ? static_cast <void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1334, __PRETTY_FUNCTION__)); |
1335 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1336 | ++Index; |
1337 | return; |
1338 | } |
1339 | |
1340 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { |
1341 | // C++ [dcl.init.aggr]p2: |
1342 | // Each member is copy-initialized from the corresponding |
1343 | // initializer-clause. |
1344 | |
1345 | // FIXME: Better EqualLoc? |
1346 | InitializationKind Kind = |
1347 | InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); |
1348 | |
1349 | // Vector elements can be initialized from other vectors in which case |
1350 | // we need initialization entity with a type of a vector (and not a vector |
1351 | // element!) initializing multiple vector elements. |
1352 | auto TmpEntity = |
1353 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
1354 | ? InitializedEntity::InitializeTemporary(ElemType) |
1355 | : Entity; |
1356 | |
1357 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
1358 | /*TopLevelOfInitList*/ true); |
1359 | |
1360 | // C++14 [dcl.init.aggr]p13: |
1361 | // If the assignment-expression can initialize a member, the member is |
1362 | // initialized. Otherwise [...] brace elision is assumed |
1363 | // |
1364 | // Brace elision is never performed if the element is not an |
1365 | // assignment-expression. |
1366 | if (Seq || isa<InitListExpr>(expr)) { |
1367 | if (!VerifyOnly) { |
1368 | ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); |
1369 | if (Result.isInvalid()) |
1370 | hadError = true; |
1371 | |
1372 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1373 | Result.getAs<Expr>()); |
1374 | } else if (!Seq) { |
1375 | hadError = true; |
1376 | } else if (StructuredList) { |
1377 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1378 | getDummyInit()); |
1379 | } |
1380 | ++Index; |
1381 | return; |
1382 | } |
1383 | |
1384 | // Fall through for subaggregate initialization |
1385 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
1386 | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
1387 | return CheckScalarType(Entity, IList, ElemType, Index, |
1388 | StructuredList, StructuredIndex); |
1389 | } else if (const ArrayType *arrayType = |
1390 | SemaRef.Context.getAsArrayType(ElemType)) { |
1391 | // arrayType can be incomplete if we're initializing a flexible |
1392 | // array member. There's nothing we can do with the completed |
1393 | // type here, though. |
1394 | |
1395 | if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { |
1396 | // FIXME: Should we do this checking in verify-only mode? |
1397 | if (!VerifyOnly) |
1398 | CheckStringInit(expr, ElemType, arrayType, SemaRef); |
1399 | if (StructuredList) |
1400 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1401 | ++Index; |
1402 | return; |
1403 | } |
1404 | |
1405 | // Fall through for subaggregate initialization. |
1406 | |
1407 | } else { |
1408 | assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && "Unexpected type" ) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1409, __PRETTY_FUNCTION__)) |
1409 | ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && "Unexpected type" ) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1409, __PRETTY_FUNCTION__)); |
1410 | |
1411 | // C99 6.7.8p13: |
1412 | // |
1413 | // The initializer for a structure or union object that has |
1414 | // automatic storage duration shall be either an initializer |
1415 | // list as described below, or a single expression that has |
1416 | // compatible structure or union type. In the latter case, the |
1417 | // initial value of the object, including unnamed members, is |
1418 | // that of the expression. |
1419 | ExprResult ExprRes = expr; |
1420 | if (SemaRef.CheckSingleAssignmentConstraints( |
1421 | ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { |
1422 | if (ExprRes.isInvalid()) |
1423 | hadError = true; |
1424 | else { |
1425 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); |
1426 | if (ExprRes.isInvalid()) |
1427 | hadError = true; |
1428 | } |
1429 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1430 | ExprRes.getAs<Expr>()); |
1431 | ++Index; |
1432 | return; |
1433 | } |
1434 | ExprRes.get(); |
1435 | // Fall through for subaggregate initialization |
1436 | } |
1437 | |
1438 | // C++ [dcl.init.aggr]p12: |
1439 | // |
1440 | // [...] Otherwise, if the member is itself a non-empty |
1441 | // subaggregate, brace elision is assumed and the initializer is |
1442 | // considered for the initialization of the first member of |
1443 | // the subaggregate. |
1444 | // OpenCL vector initializer is handled elsewhere. |
1445 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
1446 | ElemType->isAggregateType()) { |
1447 | CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, |
1448 | StructuredIndex); |
1449 | ++StructuredIndex; |
1450 | } else { |
1451 | if (!VerifyOnly) { |
1452 | // We cannot initialize this element, so let PerformCopyInitialization |
1453 | // produce the appropriate diagnostic. We already checked that this |
1454 | // initialization will fail. |
1455 | ExprResult Copy = |
1456 | SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, |
1457 | /*TopLevelOfInitList=*/true); |
1458 | (void)Copy; |
1459 | assert(Copy.isInvalid() &&((Copy.isInvalid() && "expected non-aggregate initialization to fail" ) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1460, __PRETTY_FUNCTION__)) |
1460 | "expected non-aggregate initialization to fail")((Copy.isInvalid() && "expected non-aggregate initialization to fail" ) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1460, __PRETTY_FUNCTION__)); |
1461 | } |
1462 | hadError = true; |
1463 | ++Index; |
1464 | ++StructuredIndex; |
1465 | } |
1466 | } |
1467 | |
1468 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
1469 | InitListExpr *IList, QualType DeclType, |
1470 | unsigned &Index, |
1471 | InitListExpr *StructuredList, |
1472 | unsigned &StructuredIndex) { |
1473 | assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero" ) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1473, __PRETTY_FUNCTION__)); |
1474 | |
1475 | // As an extension, clang supports complex initializers, which initialize |
1476 | // a complex number component-wise. When an explicit initializer list for |
1477 | // a complex number contains two two initializers, this extension kicks in: |
1478 | // it exepcts the initializer list to contain two elements convertible to |
1479 | // the element type of the complex type. The first element initializes |
1480 | // the real part, and the second element intitializes the imaginary part. |
1481 | |
1482 | if (IList->getNumInits() != 2) |
1483 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1484 | StructuredIndex); |
1485 | |
1486 | // This is an extension in C. (The builtin _Complex type does not exist |
1487 | // in the C++ standard.) |
1488 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
1489 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) |
1490 | << IList->getSourceRange(); |
1491 | |
1492 | // Initialize the complex number. |
1493 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
1494 | InitializedEntity ElementEntity = |
1495 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1496 | |
1497 | for (unsigned i = 0; i < 2; ++i) { |
1498 | ElementEntity.setElementIndex(Index); |
1499 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1500 | StructuredList, StructuredIndex); |
1501 | } |
1502 | } |
1503 | |
1504 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
1505 | InitListExpr *IList, QualType DeclType, |
1506 | unsigned &Index, |
1507 | InitListExpr *StructuredList, |
1508 | unsigned &StructuredIndex) { |
1509 | if (Index >= IList->getNumInits()) { |
1510 | if (!VerifyOnly) |
1511 | SemaRef.Diag(IList->getBeginLoc(), |
1512 | SemaRef.getLangOpts().CPlusPlus11 |
1513 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
1514 | : diag::err_empty_scalar_initializer) |
1515 | << IList->getSourceRange(); |
1516 | hadError = !SemaRef.getLangOpts().CPlusPlus11; |
1517 | ++Index; |
1518 | ++StructuredIndex; |
1519 | return; |
1520 | } |
1521 | |
1522 | Expr *expr = IList->getInit(Index); |
1523 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { |
1524 | // FIXME: This is invalid, and accepting it causes overload resolution |
1525 | // to pick the wrong overload in some corner cases. |
1526 | if (!VerifyOnly) |
1527 | SemaRef.Diag(SubIList->getBeginLoc(), |
1528 | diag::ext_many_braces_around_scalar_init) |
1529 | << SubIList->getSourceRange(); |
1530 | |
1531 | CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, |
1532 | StructuredIndex); |
1533 | return; |
1534 | } else if (isa<DesignatedInitExpr>(expr)) { |
1535 | if (!VerifyOnly) |
1536 | SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) |
1537 | << DeclType << expr->getSourceRange(); |
1538 | hadError = true; |
1539 | ++Index; |
1540 | ++StructuredIndex; |
1541 | return; |
1542 | } |
1543 | |
1544 | ExprResult Result; |
1545 | if (VerifyOnly) { |
1546 | if (SemaRef.CanPerformCopyInitialization(Entity, expr)) |
1547 | Result = getDummyInit(); |
1548 | else |
1549 | Result = ExprError(); |
1550 | } else { |
1551 | Result = |
1552 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1553 | /*TopLevelOfInitList=*/true); |
1554 | } |
1555 | |
1556 | Expr *ResultExpr = nullptr; |
1557 | |
1558 | if (Result.isInvalid()) |
1559 | hadError = true; // types weren't compatible. |
1560 | else { |
1561 | ResultExpr = Result.getAs<Expr>(); |
1562 | |
1563 | if (ResultExpr != expr && !VerifyOnly) { |
1564 | // The type was promoted, update initializer list. |
1565 | // FIXME: Why are we updating the syntactic init list? |
1566 | IList->setInit(Index, ResultExpr); |
1567 | } |
1568 | } |
1569 | if (hadError) |
1570 | ++StructuredIndex; |
1571 | else |
1572 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
1573 | ++Index; |
1574 | } |
1575 | |
1576 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
1577 | InitListExpr *IList, QualType DeclType, |
1578 | unsigned &Index, |
1579 | InitListExpr *StructuredList, |
1580 | unsigned &StructuredIndex) { |
1581 | if (Index >= IList->getNumInits()) { |
1582 | // FIXME: It would be wonderful if we could point at the actual member. In |
1583 | // general, it would be useful to pass location information down the stack, |
1584 | // so that we know the location (or decl) of the "current object" being |
1585 | // initialized. |
1586 | if (!VerifyOnly) |
1587 | SemaRef.Diag(IList->getBeginLoc(), |
1588 | diag::err_init_reference_member_uninitialized) |
1589 | << DeclType << IList->getSourceRange(); |
1590 | hadError = true; |
1591 | ++Index; |
1592 | ++StructuredIndex; |
1593 | return; |
1594 | } |
1595 | |
1596 | Expr *expr = IList->getInit(Index); |
1597 | if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
1598 | if (!VerifyOnly) |
1599 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) |
1600 | << DeclType << IList->getSourceRange(); |
1601 | hadError = true; |
1602 | ++Index; |
1603 | ++StructuredIndex; |
1604 | return; |
1605 | } |
1606 | |
1607 | ExprResult Result; |
1608 | if (VerifyOnly) { |
1609 | if (SemaRef.CanPerformCopyInitialization(Entity,expr)) |
1610 | Result = getDummyInit(); |
1611 | else |
1612 | Result = ExprError(); |
1613 | } else { |
1614 | Result = |
1615 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1616 | /*TopLevelOfInitList=*/true); |
1617 | } |
1618 | |
1619 | if (Result.isInvalid()) |
1620 | hadError = true; |
1621 | |
1622 | expr = Result.getAs<Expr>(); |
1623 | // FIXME: Why are we updating the syntactic init list? |
1624 | if (!VerifyOnly) |
1625 | IList->setInit(Index, expr); |
1626 | |
1627 | if (hadError) |
1628 | ++StructuredIndex; |
1629 | else |
1630 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1631 | ++Index; |
1632 | } |
1633 | |
1634 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
1635 | InitListExpr *IList, QualType DeclType, |
1636 | unsigned &Index, |
1637 | InitListExpr *StructuredList, |
1638 | unsigned &StructuredIndex) { |
1639 | const VectorType *VT = DeclType->castAs<VectorType>(); |
1640 | unsigned maxElements = VT->getNumElements(); |
1641 | unsigned numEltsInit = 0; |
1642 | QualType elementType = VT->getElementType(); |
1643 | |
1644 | if (Index >= IList->getNumInits()) { |
1645 | // Make sure the element type can be value-initialized. |
1646 | CheckEmptyInitializable( |
1647 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
1648 | IList->getEndLoc()); |
1649 | return; |
1650 | } |
1651 | |
1652 | if (!SemaRef.getLangOpts().OpenCL) { |
1653 | // If the initializing element is a vector, try to copy-initialize |
1654 | // instead of breaking it apart (which is doomed to failure anyway). |
1655 | Expr *Init = IList->getInit(Index); |
1656 | if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { |
1657 | ExprResult Result; |
1658 | if (VerifyOnly) { |
1659 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
1660 | Result = getDummyInit(); |
1661 | else |
1662 | Result = ExprError(); |
1663 | } else { |
1664 | Result = |
1665 | SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, |
1666 | /*TopLevelOfInitList=*/true); |
1667 | } |
1668 | |
1669 | Expr *ResultExpr = nullptr; |
1670 | if (Result.isInvalid()) |
1671 | hadError = true; // types weren't compatible. |
1672 | else { |
1673 | ResultExpr = Result.getAs<Expr>(); |
1674 | |
1675 | if (ResultExpr != Init && !VerifyOnly) { |
1676 | // The type was promoted, update initializer list. |
1677 | // FIXME: Why are we updating the syntactic init list? |
1678 | IList->setInit(Index, ResultExpr); |
1679 | } |
1680 | } |
1681 | if (hadError) |
1682 | ++StructuredIndex; |
1683 | else |
1684 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1685 | ResultExpr); |
1686 | ++Index; |
1687 | return; |
1688 | } |
1689 | |
1690 | InitializedEntity ElementEntity = |
1691 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1692 | |
1693 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
1694 | // Don't attempt to go past the end of the init list |
1695 | if (Index >= IList->getNumInits()) { |
1696 | CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); |
1697 | break; |
1698 | } |
1699 | |
1700 | ElementEntity.setElementIndex(Index); |
1701 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1702 | StructuredList, StructuredIndex); |
1703 | } |
1704 | |
1705 | if (VerifyOnly) |
1706 | return; |
1707 | |
1708 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
1709 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
1710 | if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || |
1711 | T->getVectorKind() == VectorType::NeonPolyVector)) { |
1712 | // The ability to use vector initializer lists is a GNU vector extension |
1713 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
1714 | // endian machines it works fine, however on big endian machines it |
1715 | // exhibits surprising behaviour: |
1716 | // |
1717 | // uint32x2_t x = {42, 64}; |
1718 | // return vget_lane_u32(x, 0); // Will return 64. |
1719 | // |
1720 | // Because of this, explicitly call out that it is non-portable. |
1721 | // |
1722 | SemaRef.Diag(IList->getBeginLoc(), |
1723 | diag::warn_neon_vector_initializer_non_portable); |
1724 | |
1725 | const char *typeCode; |
1726 | unsigned typeSize = SemaRef.Context.getTypeSize(elementType); |
1727 | |
1728 | if (elementType->isFloatingType()) |
1729 | typeCode = "f"; |
1730 | else if (elementType->isSignedIntegerType()) |
1731 | typeCode = "s"; |
1732 | else if (elementType->isUnsignedIntegerType()) |
1733 | typeCode = "u"; |
1734 | else |
1735 | llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 1735); |
1736 | |
1737 | SemaRef.Diag(IList->getBeginLoc(), |
1738 | SemaRef.Context.getTypeSize(VT) > 64 |
1739 | ? diag::note_neon_vector_initializer_non_portable_q |
1740 | : diag::note_neon_vector_initializer_non_portable) |
1741 | << typeCode << typeSize; |
1742 | } |
1743 | |
1744 | return; |
1745 | } |
1746 | |
1747 | InitializedEntity ElementEntity = |
1748 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1749 | |
1750 | // OpenCL initializers allows vectors to be constructed from vectors. |
1751 | for (unsigned i = 0; i < maxElements; ++i) { |
1752 | // Don't attempt to go past the end of the init list |
1753 | if (Index >= IList->getNumInits()) |
1754 | break; |
1755 | |
1756 | ElementEntity.setElementIndex(Index); |
1757 | |
1758 | QualType IType = IList->getInit(Index)->getType(); |
1759 | if (!IType->isVectorType()) { |
1760 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1761 | StructuredList, StructuredIndex); |
1762 | ++numEltsInit; |
1763 | } else { |
1764 | QualType VecType; |
1765 | const VectorType *IVT = IType->castAs<VectorType>(); |
1766 | unsigned numIElts = IVT->getNumElements(); |
1767 | |
1768 | if (IType->isExtVectorType()) |
1769 | VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); |
1770 | else |
1771 | VecType = SemaRef.Context.getVectorType(elementType, numIElts, |
1772 | IVT->getVectorKind()); |
1773 | CheckSubElementType(ElementEntity, IList, VecType, Index, |
1774 | StructuredList, StructuredIndex); |
1775 | numEltsInit += numIElts; |
1776 | } |
1777 | } |
1778 | |
1779 | // OpenCL requires all elements to be initialized. |
1780 | if (numEltsInit != maxElements) { |
1781 | if (!VerifyOnly) |
1782 | SemaRef.Diag(IList->getBeginLoc(), |
1783 | diag::err_vector_incorrect_num_initializers) |
1784 | << (numEltsInit < maxElements) << maxElements << numEltsInit; |
1785 | hadError = true; |
1786 | } |
1787 | } |
1788 | |
1789 | /// Check if the type of a class element has an accessible destructor, and marks |
1790 | /// it referenced. Returns true if we shouldn't form a reference to the |
1791 | /// destructor. |
1792 | /// |
1793 | /// Aggregate initialization requires a class element's destructor be |
1794 | /// accessible per 11.6.1 [dcl.init.aggr]: |
1795 | /// |
1796 | /// The destructor for each element of class type is potentially invoked |
1797 | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
1798 | /// occurs. |
1799 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
1800 | Sema &SemaRef) { |
1801 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
1802 | if (!CXXRD) |
1803 | return false; |
1804 | |
1805 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); |
1806 | SemaRef.CheckDestructorAccess(Loc, Destructor, |
1807 | SemaRef.PDiag(diag::err_access_dtor_temp) |
1808 | << ElementType); |
1809 | SemaRef.MarkFunctionReferenced(Loc, Destructor); |
1810 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); |
1811 | } |
1812 | |
1813 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
1814 | InitListExpr *IList, QualType &DeclType, |
1815 | llvm::APSInt elementIndex, |
1816 | bool SubobjectIsDesignatorContext, |
1817 | unsigned &Index, |
1818 | InitListExpr *StructuredList, |
1819 | unsigned &StructuredIndex) { |
1820 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); |
1821 | |
1822 | if (!VerifyOnly) { |
1823 | if (checkDestructorReference(arrayType->getElementType(), |
1824 | IList->getEndLoc(), SemaRef)) { |
1825 | hadError = true; |
1826 | return; |
1827 | } |
1828 | } |
1829 | |
1830 | // Check for the special-case of initializing an array with a string. |
1831 | if (Index < IList->getNumInits()) { |
1832 | if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == |
1833 | SIF_None) { |
1834 | // We place the string literal directly into the resulting |
1835 | // initializer list. This is the only place where the structure |
1836 | // of the structured initializer list doesn't match exactly, |
1837 | // because doing so would involve allocating one character |
1838 | // constant for each string. |
1839 | // FIXME: Should we do these checks in verify-only mode too? |
1840 | if (!VerifyOnly) |
1841 | CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); |
1842 | if (StructuredList) { |
1843 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1844 | IList->getInit(Index)); |
1845 | StructuredList->resizeInits(SemaRef.Context, StructuredIndex); |
1846 | } |
1847 | ++Index; |
1848 | return; |
1849 | } |
1850 | } |
1851 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { |
1852 | // Check for VLAs; in standard C it would be possible to check this |
1853 | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
1854 | // them in all sorts of strange places). |
1855 | if (!VerifyOnly) |
1856 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), |
1857 | diag::err_variable_object_no_init) |
1858 | << VAT->getSizeExpr()->getSourceRange(); |
1859 | hadError = true; |
1860 | ++Index; |
1861 | ++StructuredIndex; |
1862 | return; |
1863 | } |
1864 | |
1865 | // We might know the maximum number of elements in advance. |
1866 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
1867 | elementIndex.isUnsigned()); |
1868 | bool maxElementsKnown = false; |
1869 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { |
1870 | maxElements = CAT->getSize(); |
1871 | elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); |
1872 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
1873 | maxElementsKnown = true; |
1874 | } |
1875 | |
1876 | QualType elementType = arrayType->getElementType(); |
1877 | while (Index < IList->getNumInits()) { |
1878 | Expr *Init = IList->getInit(Index); |
1879 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
1880 | // If we're not the subobject that matches up with the '{' for |
1881 | // the designator, we shouldn't be handling the |
1882 | // designator. Return immediately. |
1883 | if (!SubobjectIsDesignatorContext) |
1884 | return; |
1885 | |
1886 | // Handle this designated initializer. elementIndex will be |
1887 | // updated to be the next array element we'll initialize. |
1888 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
1889 | DeclType, nullptr, &elementIndex, Index, |
1890 | StructuredList, StructuredIndex, true, |
1891 | false)) { |
1892 | hadError = true; |
1893 | continue; |
1894 | } |
1895 | |
1896 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
1897 | maxElements = maxElements.extend(elementIndex.getBitWidth()); |
1898 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
1899 | elementIndex = elementIndex.extend(maxElements.getBitWidth()); |
1900 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
1901 | |
1902 | // If the array is of incomplete type, keep track of the number of |
1903 | // elements in the initializer. |
1904 | if (!maxElementsKnown && elementIndex > maxElements) |
1905 | maxElements = elementIndex; |
1906 | |
1907 | continue; |
1908 | } |
1909 | |
1910 | // If we know the maximum number of elements, and we've already |
1911 | // hit it, stop consuming elements in the initializer list. |
1912 | if (maxElementsKnown && elementIndex == maxElements) |
1913 | break; |
1914 | |
1915 | InitializedEntity ElementEntity = |
1916 | InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, |
1917 | Entity); |
1918 | // Check this element. |
1919 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1920 | StructuredList, StructuredIndex); |
1921 | ++elementIndex; |
1922 | |
1923 | // If the array is of incomplete type, keep track of the number of |
1924 | // elements in the initializer. |
1925 | if (!maxElementsKnown && elementIndex > maxElements) |
1926 | maxElements = elementIndex; |
1927 | } |
1928 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
1929 | // If this is an incomplete array type, the actual type needs to |
1930 | // be calculated here. |
1931 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
1932 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
1933 | // Sizing an array implicitly to zero is not allowed by ISO C, |
1934 | // but is supported by GNU. |
1935 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); |
1936 | } |
1937 | |
1938 | DeclType = SemaRef.Context.getConstantArrayType( |
1939 | elementType, maxElements, nullptr, ArrayType::Normal, 0); |
1940 | } |
1941 | if (!hadError) { |
1942 | // If there are any members of the array that get value-initialized, check |
1943 | // that is possible. That happens if we know the bound and don't have |
1944 | // enough elements, or if we're performing an array new with an unknown |
1945 | // bound. |
1946 | if ((maxElementsKnown && elementIndex < maxElements) || |
1947 | Entity.isVariableLengthArrayNew()) |
1948 | CheckEmptyInitializable( |
1949 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
1950 | IList->getEndLoc()); |
1951 | } |
1952 | } |
1953 | |
1954 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
1955 | Expr *InitExpr, |
1956 | FieldDecl *Field, |
1957 | bool TopLevelObject) { |
1958 | // Handle GNU flexible array initializers. |
1959 | unsigned FlexArrayDiag; |
1960 | if (isa<InitListExpr>(InitExpr) && |
1961 | cast<InitListExpr>(InitExpr)->getNumInits() == 0) { |
1962 | // Empty flexible array init always allowed as an extension |
1963 | FlexArrayDiag = diag::ext_flexible_array_init; |
1964 | } else if (SemaRef.getLangOpts().CPlusPlus) { |
1965 | // Disallow flexible array init in C++; it is not required for gcc |
1966 | // compatibility, and it needs work to IRGen correctly in general. |
1967 | FlexArrayDiag = diag::err_flexible_array_init; |
1968 | } else if (!TopLevelObject) { |
1969 | // Disallow flexible array init on non-top-level object |
1970 | FlexArrayDiag = diag::err_flexible_array_init; |
1971 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
1972 | // Disallow flexible array init on anything which is not a variable. |
1973 | FlexArrayDiag = diag::err_flexible_array_init; |
1974 | } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { |
1975 | // Disallow flexible array init on local variables. |
1976 | FlexArrayDiag = diag::err_flexible_array_init; |
1977 | } else { |
1978 | // Allow other cases. |
1979 | FlexArrayDiag = diag::ext_flexible_array_init; |
1980 | } |
1981 | |
1982 | if (!VerifyOnly) { |
1983 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) |
1984 | << InitExpr->getBeginLoc(); |
1985 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
1986 | << Field; |
1987 | } |
1988 | |
1989 | return FlexArrayDiag != diag::ext_flexible_array_init; |
1990 | } |
1991 | |
1992 | void InitListChecker::CheckStructUnionTypes( |
1993 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
1994 | CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, |
1995 | bool SubobjectIsDesignatorContext, unsigned &Index, |
1996 | InitListExpr *StructuredList, unsigned &StructuredIndex, |
1997 | bool TopLevelObject) { |
1998 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
1999 | |
2000 | // If the record is invalid, some of it's members are invalid. To avoid |
2001 | // confusion, we forgo checking the intializer for the entire record. |
2002 | if (structDecl->isInvalidDecl()) { |
2003 | // Assume it was supposed to consume a single initializer. |
2004 | ++Index; |
2005 | hadError = true; |
2006 | return; |
2007 | } |
2008 | |
2009 | if (DeclType->isUnionType() && IList->getNumInits() == 0) { |
2010 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
2011 | |
2012 | if (!VerifyOnly) |
2013 | for (FieldDecl *FD : RD->fields()) { |
2014 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); |
2015 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2016 | hadError = true; |
2017 | return; |
2018 | } |
2019 | } |
2020 | |
2021 | // If there's a default initializer, use it. |
2022 | if (isa<CXXRecordDecl>(RD) && |
2023 | cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { |
2024 | if (!StructuredList) |
2025 | return; |
2026 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2027 | Field != FieldEnd; ++Field) { |
2028 | if (Field->hasInClassInitializer()) { |
2029 | StructuredList->setInitializedFieldInUnion(*Field); |
2030 | // FIXME: Actually build a CXXDefaultInitExpr? |
2031 | return; |
2032 | } |
2033 | } |
2034 | } |
2035 | |
2036 | // Value-initialize the first member of the union that isn't an unnamed |
2037 | // bitfield. |
2038 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2039 | Field != FieldEnd; ++Field) { |
2040 | if (!Field->isUnnamedBitfield()) { |
2041 | CheckEmptyInitializable( |
2042 | InitializedEntity::InitializeMember(*Field, &Entity), |
2043 | IList->getEndLoc()); |
2044 | if (StructuredList) |
2045 | StructuredList->setInitializedFieldInUnion(*Field); |
2046 | break; |
2047 | } |
2048 | } |
2049 | return; |
2050 | } |
2051 | |
2052 | bool InitializedSomething = false; |
2053 | |
2054 | // If we have any base classes, they are initialized prior to the fields. |
2055 | for (auto &Base : Bases) { |
2056 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; |
2057 | |
2058 | // Designated inits always initialize fields, so if we see one, all |
2059 | // remaining base classes have no explicit initializer. |
2060 | if (Init && isa<DesignatedInitExpr>(Init)) |
2061 | Init = nullptr; |
2062 | |
2063 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
2064 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
2065 | SemaRef.Context, &Base, false, &Entity); |
2066 | if (Init) { |
2067 | CheckSubElementType(BaseEntity, IList, Base.getType(), Index, |
2068 | StructuredList, StructuredIndex); |
2069 | InitializedSomething = true; |
2070 | } else { |
2071 | CheckEmptyInitializable(BaseEntity, InitLoc); |
2072 | } |
2073 | |
2074 | if (!VerifyOnly) |
2075 | if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { |
2076 | hadError = true; |
2077 | return; |
2078 | } |
2079 | } |
2080 | |
2081 | // If structDecl is a forward declaration, this loop won't do |
2082 | // anything except look at designated initializers; That's okay, |
2083 | // because an error should get printed out elsewhere. It might be |
2084 | // worthwhile to skip over the rest of the initializer, though. |
2085 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
2086 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2087 | bool CheckForMissingFields = |
2088 | !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); |
2089 | bool HasDesignatedInit = false; |
2090 | |
2091 | while (Index < IList->getNumInits()) { |
2092 | Expr *Init = IList->getInit(Index); |
2093 | SourceLocation InitLoc = Init->getBeginLoc(); |
2094 | |
2095 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
2096 | // If we're not the subobject that matches up with the '{' for |
2097 | // the designator, we shouldn't be handling the |
2098 | // designator. Return immediately. |
2099 | if (!SubobjectIsDesignatorContext) |
2100 | return; |
2101 | |
2102 | HasDesignatedInit = true; |
2103 | |
2104 | // Handle this designated initializer. Field will be updated to |
2105 | // the next field that we'll be initializing. |
2106 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
2107 | DeclType, &Field, nullptr, Index, |
2108 | StructuredList, StructuredIndex, |
2109 | true, TopLevelObject)) |
2110 | hadError = true; |
2111 | else if (!VerifyOnly) { |
2112 | // Find the field named by the designated initializer. |
2113 | RecordDecl::field_iterator F = RD->field_begin(); |
2114 | while (std::next(F) != Field) |
2115 | ++F; |
2116 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); |
2117 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2118 | hadError = true; |
2119 | return; |
2120 | } |
2121 | } |
2122 | |
2123 | InitializedSomething = true; |
2124 | |
2125 | // Disable check for missing fields when designators are used. |
2126 | // This matches gcc behaviour. |
2127 | CheckForMissingFields = false; |
2128 | continue; |
2129 | } |
2130 | |
2131 | if (Field == FieldEnd) { |
2132 | // We've run out of fields. We're done. |
2133 | break; |
2134 | } |
2135 | |
2136 | // We've already initialized a member of a union. We're done. |
2137 | if (InitializedSomething && DeclType->isUnionType()) |
2138 | break; |
2139 | |
2140 | // If we've hit the flexible array member at the end, we're done. |
2141 | if (Field->getType()->isIncompleteArrayType()) |
2142 | break; |
2143 | |
2144 | if (Field->isUnnamedBitfield()) { |
2145 | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
2146 | ++Field; |
2147 | continue; |
2148 | } |
2149 | |
2150 | // Make sure we can use this declaration. |
2151 | bool InvalidUse; |
2152 | if (VerifyOnly) |
2153 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2154 | else |
2155 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
2156 | *Field, IList->getInit(Index)->getBeginLoc()); |
2157 | if (InvalidUse) { |
2158 | ++Index; |
2159 | ++Field; |
2160 | hadError = true; |
2161 | continue; |
2162 | } |
2163 | |
2164 | if (!VerifyOnly) { |
2165 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); |
2166 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2167 | hadError = true; |
2168 | return; |
2169 | } |
2170 | } |
2171 | |
2172 | InitializedEntity MemberEntity = |
2173 | InitializedEntity::InitializeMember(*Field, &Entity); |
2174 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2175 | StructuredList, StructuredIndex); |
2176 | InitializedSomething = true; |
2177 | |
2178 | if (DeclType->isUnionType() && StructuredList) { |
2179 | // Initialize the first field within the union. |
2180 | StructuredList->setInitializedFieldInUnion(*Field); |
2181 | } |
2182 | |
2183 | ++Field; |
2184 | } |
2185 | |
2186 | // Emit warnings for missing struct field initializers. |
2187 | if (!VerifyOnly && InitializedSomething && CheckForMissingFields && |
2188 | Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && |
2189 | !DeclType->isUnionType()) { |
2190 | // It is possible we have one or more unnamed bitfields remaining. |
2191 | // Find first (if any) named field and emit warning. |
2192 | for (RecordDecl::field_iterator it = Field, end = RD->field_end(); |
2193 | it != end; ++it) { |
2194 | if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { |
2195 | SemaRef.Diag(IList->getSourceRange().getEnd(), |
2196 | diag::warn_missing_field_initializers) << *it; |
2197 | break; |
2198 | } |
2199 | } |
2200 | } |
2201 | |
2202 | // Check that any remaining fields can be value-initialized if we're not |
2203 | // building a structured list. (If we are, we'll check this later.) |
2204 | if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && |
2205 | !Field->getType()->isIncompleteArrayType()) { |
2206 | for (; Field != FieldEnd && !hadError; ++Field) { |
2207 | if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) |
2208 | CheckEmptyInitializable( |
2209 | InitializedEntity::InitializeMember(*Field, &Entity), |
2210 | IList->getEndLoc()); |
2211 | } |
2212 | } |
2213 | |
2214 | // Check that the types of the remaining fields have accessible destructors. |
2215 | if (!VerifyOnly) { |
2216 | // If the initializer expression has a designated initializer, check the |
2217 | // elements for which a designated initializer is not provided too. |
2218 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
2219 | : Field; |
2220 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
2221 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); |
2222 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2223 | hadError = true; |
2224 | return; |
2225 | } |
2226 | } |
2227 | } |
2228 | |
2229 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
2230 | Index >= IList->getNumInits()) |
2231 | return; |
2232 | |
2233 | if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, |
2234 | TopLevelObject)) { |
2235 | hadError = true; |
2236 | ++Index; |
2237 | return; |
2238 | } |
2239 | |
2240 | InitializedEntity MemberEntity = |
2241 | InitializedEntity::InitializeMember(*Field, &Entity); |
2242 | |
2243 | if (isa<InitListExpr>(IList->getInit(Index))) |
2244 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2245 | StructuredList, StructuredIndex); |
2246 | else |
2247 | CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, |
2248 | StructuredList, StructuredIndex); |
2249 | } |
2250 | |
2251 | /// Expand a field designator that refers to a member of an |
2252 | /// anonymous struct or union into a series of field designators that |
2253 | /// refers to the field within the appropriate subobject. |
2254 | /// |
2255 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
2256 | DesignatedInitExpr *DIE, |
2257 | unsigned DesigIdx, |
2258 | IndirectFieldDecl *IndirectField) { |
2259 | typedef DesignatedInitExpr::Designator Designator; |
2260 | |
2261 | // Build the replacement designators. |
2262 | SmallVector<Designator, 4> Replacements; |
2263 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
2264 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
2265 | if (PI + 1 == PE) |
2266 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
2267 | DIE->getDesignator(DesigIdx)->getDotLoc(), |
2268 | DIE->getDesignator(DesigIdx)->getFieldLoc())); |
2269 | else |
2270 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
2271 | SourceLocation(), SourceLocation())); |
2272 | assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail ("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2272, __PRETTY_FUNCTION__)); |
2273 | Replacements.back().setField(cast<FieldDecl>(*PI)); |
2274 | } |
2275 | |
2276 | // Expand the current designator into the set of replacement |
2277 | // designators, so we have a full subobject path down to where the |
2278 | // member of the anonymous struct/union is actually stored. |
2279 | DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], |
2280 | &Replacements[0] + Replacements.size()); |
2281 | } |
2282 | |
2283 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
2284 | DesignatedInitExpr *DIE) { |
2285 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
2286 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
2287 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
2288 | IndexExprs[I] = DIE->getSubExpr(I + 1); |
2289 | return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), |
2290 | IndexExprs, |
2291 | DIE->getEqualOrColonLoc(), |
2292 | DIE->usesGNUSyntax(), DIE->getInit()); |
2293 | } |
2294 | |
2295 | namespace { |
2296 | |
2297 | // Callback to only accept typo corrections that are for field members of |
2298 | // the given struct or union. |
2299 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
2300 | public: |
2301 | explicit FieldInitializerValidatorCCC(RecordDecl *RD) |
2302 | : Record(RD) {} |
2303 | |
2304 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
2305 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
2306 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
2307 | } |
2308 | |
2309 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
2310 | return std::make_unique<FieldInitializerValidatorCCC>(*this); |
2311 | } |
2312 | |
2313 | private: |
2314 | RecordDecl *Record; |
2315 | }; |
2316 | |
2317 | } // end anonymous namespace |
2318 | |
2319 | /// Check the well-formedness of a C99 designated initializer. |
2320 | /// |
2321 | /// Determines whether the designated initializer @p DIE, which |
2322 | /// resides at the given @p Index within the initializer list @p |
2323 | /// IList, is well-formed for a current object of type @p DeclType |
2324 | /// (C99 6.7.8). The actual subobject that this designator refers to |
2325 | /// within the current subobject is returned in either |
2326 | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
2327 | /// |
2328 | /// @param IList The initializer list in which this designated |
2329 | /// initializer occurs. |
2330 | /// |
2331 | /// @param DIE The designated initializer expression. |
2332 | /// |
2333 | /// @param DesigIdx The index of the current designator. |
2334 | /// |
2335 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
2336 | /// into which the designation in @p DIE should refer. |
2337 | /// |
2338 | /// @param NextField If non-NULL and the first designator in @p DIE is |
2339 | /// a field, this will be set to the field declaration corresponding |
2340 | /// to the field named by the designator. On input, this is expected to be |
2341 | /// the next field that would be initialized in the absence of designation, |
2342 | /// if the complete object being initialized is a struct. |
2343 | /// |
2344 | /// @param NextElementIndex If non-NULL and the first designator in @p |
2345 | /// DIE is an array designator or GNU array-range designator, this |
2346 | /// will be set to the last index initialized by this designator. |
2347 | /// |
2348 | /// @param Index Index into @p IList where the designated initializer |
2349 | /// @p DIE occurs. |
2350 | /// |
2351 | /// @param StructuredList The initializer list expression that |
2352 | /// describes all of the subobject initializers in the order they'll |
2353 | /// actually be initialized. |
2354 | /// |
2355 | /// @returns true if there was an error, false otherwise. |
2356 | bool |
2357 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
2358 | InitListExpr *IList, |
2359 | DesignatedInitExpr *DIE, |
2360 | unsigned DesigIdx, |
2361 | QualType &CurrentObjectType, |
2362 | RecordDecl::field_iterator *NextField, |
2363 | llvm::APSInt *NextElementIndex, |
2364 | unsigned &Index, |
2365 | InitListExpr *StructuredList, |
2366 | unsigned &StructuredIndex, |
2367 | bool FinishSubobjectInit, |
2368 | bool TopLevelObject) { |
2369 | if (DesigIdx == DIE->size()) { |
2370 | // C++20 designated initialization can result in direct-list-initialization |
2371 | // of the designated subobject. This is the only way that we can end up |
2372 | // performing direct initialization as part of aggregate initialization, so |
2373 | // it needs special handling. |
2374 | if (DIE->isDirectInit()) { |
2375 | Expr *Init = DIE->getInit(); |
2376 | assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?" ) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2377, __PRETTY_FUNCTION__)) |
2377 | "designator result in direct non-list initialization?")((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?" ) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2377, __PRETTY_FUNCTION__)); |
2378 | InitializationKind Kind = InitializationKind::CreateDirectList( |
2379 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); |
2380 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
2381 | /*TopLevelOfInitList*/ true); |
2382 | if (StructuredList) { |
2383 | ExprResult Result = VerifyOnly |
2384 | ? getDummyInit() |
2385 | : Seq.Perform(SemaRef, Entity, Kind, Init); |
2386 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2387 | Result.get()); |
2388 | } |
2389 | ++Index; |
2390 | return !Seq; |
2391 | } |
2392 | |
2393 | // Check the actual initialization for the designated object type. |
2394 | bool prevHadError = hadError; |
2395 | |
2396 | // Temporarily remove the designator expression from the |
2397 | // initializer list that the child calls see, so that we don't try |
2398 | // to re-process the designator. |
2399 | unsigned OldIndex = Index; |
2400 | IList->setInit(OldIndex, DIE->getInit()); |
2401 | |
2402 | CheckSubElementType(Entity, IList, CurrentObjectType, Index, |
2403 | StructuredList, StructuredIndex); |
2404 | |
2405 | // Restore the designated initializer expression in the syntactic |
2406 | // form of the initializer list. |
2407 | if (IList->getInit(OldIndex) != DIE->getInit()) |
2408 | DIE->setInit(IList->getInit(OldIndex)); |
2409 | IList->setInit(OldIndex, DIE); |
2410 | |
2411 | return hadError && !prevHadError; |
2412 | } |
2413 | |
2414 | DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); |
2415 | bool IsFirstDesignator = (DesigIdx == 0); |
2416 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
2417 | // Determine the structural initializer list that corresponds to the |
2418 | // current subobject. |
2419 | if (IsFirstDesignator) |
2420 | StructuredList = FullyStructuredList; |
2421 | else { |
2422 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
2423 | StructuredList->getInit(StructuredIndex) : nullptr; |
2424 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
2425 | ExistingInit = StructuredList->getArrayFiller(); |
2426 | |
2427 | if (!ExistingInit) |
2428 | StructuredList = getStructuredSubobjectInit( |
2429 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
2430 | SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2431 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) |
2432 | StructuredList = Result; |
2433 | else { |
2434 | // We are creating an initializer list that initializes the |
2435 | // subobjects of the current object, but there was already an |
2436 | // initialization that completely initialized the current |
2437 | // subobject, e.g., by a compound literal: |
2438 | // |
2439 | // struct X { int a, b; }; |
2440 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
2441 | // |
2442 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
2443 | // designated initializer re-initializes only its current object |
2444 | // subobject [0].b. |
2445 | diagnoseInitOverride(ExistingInit, |
2446 | SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2447 | /*FullyOverwritten=*/false); |
2448 | |
2449 | if (!VerifyOnly) { |
2450 | if (DesignatedInitUpdateExpr *E = |
2451 | dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) |
2452 | StructuredList = E->getUpdater(); |
2453 | else { |
2454 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
2455 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
2456 | ExistingInit, DIE->getEndLoc()); |
2457 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
2458 | StructuredList = DIUE->getUpdater(); |
2459 | } |
2460 | } else { |
2461 | // We don't need to track the structured representation of a |
2462 | // designated init update of an already-fully-initialized object in |
2463 | // verify-only mode. The only reason we would need the structure is |
2464 | // to determine where the uninitialized "holes" are, and in this |
2465 | // case, we know there aren't any and we can't introduce any. |
2466 | StructuredList = nullptr; |
2467 | } |
2468 | } |
2469 | } |
2470 | } |
2471 | |
2472 | if (D->isFieldDesignator()) { |
2473 | // C99 6.7.8p7: |
2474 | // |
2475 | // If a designator has the form |
2476 | // |
2477 | // . identifier |
2478 | // |
2479 | // then the current object (defined below) shall have |
2480 | // structure or union type and the identifier shall be the |
2481 | // name of a member of that type. |
2482 | const RecordType *RT = CurrentObjectType->getAs<RecordType>(); |
2483 | if (!RT) { |
2484 | SourceLocation Loc = D->getDotLoc(); |
2485 | if (Loc.isInvalid()) |
2486 | Loc = D->getFieldLoc(); |
2487 | if (!VerifyOnly) |
2488 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
2489 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
2490 | ++Index; |
2491 | return true; |
2492 | } |
2493 | |
2494 | FieldDecl *KnownField = D->getField(); |
2495 | if (!KnownField) { |
2496 | IdentifierInfo *FieldName = D->getFieldName(); |
2497 | DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); |
2498 | for (NamedDecl *ND : Lookup) { |
2499 | if (auto *FD = dyn_cast<FieldDecl>(ND)) { |
2500 | KnownField = FD; |
2501 | break; |
2502 | } |
2503 | if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { |
2504 | // In verify mode, don't modify the original. |
2505 | if (VerifyOnly) |
2506 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
2507 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); |
2508 | D = DIE->getDesignator(DesigIdx); |
2509 | KnownField = cast<FieldDecl>(*IFD->chain_begin()); |
2510 | break; |
2511 | } |
2512 | } |
2513 | if (!KnownField) { |
2514 | if (VerifyOnly) { |
2515 | ++Index; |
2516 | return true; // No typo correction when just trying this out. |
2517 | } |
2518 | |
2519 | // Name lookup found something, but it wasn't a field. |
2520 | if (!Lookup.empty()) { |
2521 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
2522 | << FieldName; |
2523 | SemaRef.Diag(Lookup.front()->getLocation(), |
2524 | diag::note_field_designator_found); |
2525 | ++Index; |
2526 | return true; |
2527 | } |
2528 | |
2529 | // Name lookup didn't find anything. |
2530 | // Determine whether this was a typo for another field name. |
2531 | FieldInitializerValidatorCCC CCC(RT->getDecl()); |
2532 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
2533 | DeclarationNameInfo(FieldName, D->getFieldLoc()), |
2534 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, |
2535 | Sema::CTK_ErrorRecovery, RT->getDecl())) { |
2536 | SemaRef.diagnoseTypo( |
2537 | Corrected, |
2538 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
2539 | << FieldName << CurrentObjectType); |
2540 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
2541 | hadError = true; |
2542 | } else { |
2543 | // Typo correction didn't find anything. |
2544 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) |
2545 | << FieldName << CurrentObjectType; |
2546 | ++Index; |
2547 | return true; |
2548 | } |
2549 | } |
2550 | } |
2551 | |
2552 | unsigned NumBases = 0; |
2553 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) |
2554 | NumBases = CXXRD->getNumBases(); |
2555 | |
2556 | unsigned FieldIndex = NumBases; |
2557 | |
2558 | for (auto *FI : RT->getDecl()->fields()) { |
2559 | if (FI->isUnnamedBitfield()) |
2560 | continue; |
2561 | if (declaresSameEntity(KnownField, FI)) { |
2562 | KnownField = FI; |
2563 | break; |
2564 | } |
2565 | ++FieldIndex; |
2566 | } |
2567 | |
2568 | RecordDecl::field_iterator Field = |
2569 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
2570 | |
2571 | // All of the fields of a union are located at the same place in |
2572 | // the initializer list. |
2573 | if (RT->getDecl()->isUnion()) { |
2574 | FieldIndex = 0; |
2575 | if (StructuredList) { |
2576 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
2577 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
2578 | assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!" ) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2579, __PRETTY_FUNCTION__)) |
2579 | && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!" ) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2579, __PRETTY_FUNCTION__)); |
2580 | |
2581 | Expr *ExistingInit = StructuredList->getInit(0); |
2582 | if (ExistingInit) { |
2583 | // We're about to throw away an initializer, emit warning. |
2584 | diagnoseInitOverride( |
2585 | ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2586 | } |
2587 | |
2588 | // remove existing initializer |
2589 | StructuredList->resizeInits(SemaRef.Context, 0); |
2590 | StructuredList->setInitializedFieldInUnion(nullptr); |
2591 | } |
2592 | |
2593 | StructuredList->setInitializedFieldInUnion(*Field); |
2594 | } |
2595 | } |
2596 | |
2597 | // Make sure we can use this declaration. |
2598 | bool InvalidUse; |
2599 | if (VerifyOnly) |
2600 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2601 | else |
2602 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
2603 | if (InvalidUse) { |
2604 | ++Index; |
2605 | return true; |
2606 | } |
2607 | |
2608 | // C++20 [dcl.init.list]p3: |
2609 | // The ordered identifiers in the designators of the designated- |
2610 | // initializer-list shall form a subsequence of the ordered identifiers |
2611 | // in the direct non-static data members of T. |
2612 | // |
2613 | // Note that this is not a condition on forming the aggregate |
2614 | // initialization, only on actually performing initialization, |
2615 | // so it is not checked in VerifyOnly mode. |
2616 | // |
2617 | // FIXME: This is the only reordering diagnostic we produce, and it only |
2618 | // catches cases where we have a top-level field designator that jumps |
2619 | // backwards. This is the only such case that is reachable in an |
2620 | // otherwise-valid C++20 program, so is the only case that's required for |
2621 | // conformance, but for consistency, we should diagnose all the other |
2622 | // cases where a designator takes us backwards too. |
2623 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
2624 | NextField && |
2625 | (*NextField == RT->getDecl()->field_end() || |
2626 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
2627 | // Find the field that we just initialized. |
2628 | FieldDecl *PrevField = nullptr; |
2629 | for (auto FI = RT->getDecl()->field_begin(); |
2630 | FI != RT->getDecl()->field_end(); ++FI) { |
2631 | if (FI->isUnnamedBitfield()) |
2632 | continue; |
2633 | if (*NextField != RT->getDecl()->field_end() && |
2634 | declaresSameEntity(*FI, **NextField)) |
2635 | break; |
2636 | PrevField = *FI; |
2637 | } |
2638 | |
2639 | if (PrevField && |
2640 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
2641 | SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) |
2642 | << KnownField << PrevField << DIE->getSourceRange(); |
2643 | |
2644 | unsigned OldIndex = NumBases + PrevField->getFieldIndex(); |
2645 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
2646 | if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { |
2647 | SemaRef.Diag(PrevInit->getBeginLoc(), |
2648 | diag::note_previous_field_init) |
2649 | << PrevField << PrevInit->getSourceRange(); |
2650 | } |
2651 | } |
2652 | } |
2653 | } |
2654 | |
2655 | |
2656 | // Update the designator with the field declaration. |
2657 | if (!VerifyOnly) |
2658 | D->setField(*Field); |
2659 | |
2660 | // Make sure that our non-designated initializer list has space |
2661 | // for a subobject corresponding to this field. |
2662 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
2663 | StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); |
2664 | |
2665 | // This designator names a flexible array member. |
2666 | if (Field->getType()->isIncompleteArrayType()) { |
2667 | bool Invalid = false; |
2668 | if ((DesigIdx + 1) != DIE->size()) { |
2669 | // We can't designate an object within the flexible array |
2670 | // member (because GCC doesn't allow it). |
2671 | if (!VerifyOnly) { |
2672 | DesignatedInitExpr::Designator *NextD |
2673 | = DIE->getDesignator(DesigIdx + 1); |
2674 | SemaRef.Diag(NextD->getBeginLoc(), |
2675 | diag::err_designator_into_flexible_array_member) |
2676 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
2677 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2678 | << *Field; |
2679 | } |
2680 | Invalid = true; |
2681 | } |
2682 | |
2683 | if (!hadError && !isa<InitListExpr>(DIE->getInit()) && |
2684 | !isa<StringLiteral>(DIE->getInit())) { |
2685 | // The initializer is not an initializer list. |
2686 | if (!VerifyOnly) { |
2687 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
2688 | diag::err_flexible_array_init_needs_braces) |
2689 | << DIE->getInit()->getSourceRange(); |
2690 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2691 | << *Field; |
2692 | } |
2693 | Invalid = true; |
2694 | } |
2695 | |
2696 | // Check GNU flexible array initializer. |
2697 | if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, |
2698 | TopLevelObject)) |
2699 | Invalid = true; |
2700 | |
2701 | if (Invalid) { |
2702 | ++Index; |
2703 | return true; |
2704 | } |
2705 | |
2706 | // Initialize the array. |
2707 | bool prevHadError = hadError; |
2708 | unsigned newStructuredIndex = FieldIndex; |
2709 | unsigned OldIndex = Index; |
2710 | IList->setInit(Index, DIE->getInit()); |
2711 | |
2712 | InitializedEntity MemberEntity = |
2713 | InitializedEntity::InitializeMember(*Field, &Entity); |
2714 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2715 | StructuredList, newStructuredIndex); |
2716 | |
2717 | IList->setInit(OldIndex, DIE); |
2718 | if (hadError && !prevHadError) { |
2719 | ++Field; |
2720 | ++FieldIndex; |
2721 | if (NextField) |
2722 | *NextField = Field; |
2723 | StructuredIndex = FieldIndex; |
2724 | return true; |
2725 | } |
2726 | } else { |
2727 | // Recurse to check later designated subobjects. |
2728 | QualType FieldType = Field->getType(); |
2729 | unsigned newStructuredIndex = FieldIndex; |
2730 | |
2731 | InitializedEntity MemberEntity = |
2732 | InitializedEntity::InitializeMember(*Field, &Entity); |
2733 | if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, |
2734 | FieldType, nullptr, nullptr, Index, |
2735 | StructuredList, newStructuredIndex, |
2736 | FinishSubobjectInit, false)) |
2737 | return true; |
2738 | } |
2739 | |
2740 | // Find the position of the next field to be initialized in this |
2741 | // subobject. |
2742 | ++Field; |
2743 | ++FieldIndex; |
2744 | |
2745 | // If this the first designator, our caller will continue checking |
2746 | // the rest of this struct/class/union subobject. |
2747 | if (IsFirstDesignator) { |
2748 | if (NextField) |
2749 | *NextField = Field; |
2750 | StructuredIndex = FieldIndex; |
2751 | return false; |
2752 | } |
2753 | |
2754 | if (!FinishSubobjectInit) |
2755 | return false; |
2756 | |
2757 | // We've already initialized something in the union; we're done. |
2758 | if (RT->getDecl()->isUnion()) |
2759 | return hadError; |
2760 | |
2761 | // Check the remaining fields within this class/struct/union subobject. |
2762 | bool prevHadError = hadError; |
2763 | |
2764 | auto NoBases = |
2765 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
2766 | CXXRecordDecl::base_class_iterator()); |
2767 | CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, |
2768 | false, Index, StructuredList, FieldIndex); |
2769 | return hadError && !prevHadError; |
2770 | } |
2771 | |
2772 | // C99 6.7.8p6: |
2773 | // |
2774 | // If a designator has the form |
2775 | // |
2776 | // [ constant-expression ] |
2777 | // |
2778 | // then the current object (defined below) shall have array |
2779 | // type and the expression shall be an integer constant |
2780 | // expression. If the array is of unknown size, any |
2781 | // nonnegative value is valid. |
2782 | // |
2783 | // Additionally, cope with the GNU extension that permits |
2784 | // designators of the form |
2785 | // |
2786 | // [ constant-expression ... constant-expression ] |
2787 | const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); |
2788 | if (!AT) { |
2789 | if (!VerifyOnly) |
2790 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
2791 | << CurrentObjectType; |
2792 | ++Index; |
2793 | return true; |
2794 | } |
2795 | |
2796 | Expr *IndexExpr = nullptr; |
2797 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
2798 | if (D->isArrayDesignator()) { |
2799 | IndexExpr = DIE->getArrayIndex(*D); |
2800 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); |
2801 | DesignatedEndIndex = DesignatedStartIndex; |
2802 | } else { |
2803 | assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator" ) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 2803, __PRETTY_FUNCTION__)); |
2804 | |
2805 | DesignatedStartIndex = |
2806 | DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); |
2807 | DesignatedEndIndex = |
2808 | DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); |
2809 | IndexExpr = DIE->getArrayRangeEnd(*D); |
2810 | |
2811 | // Codegen can't handle evaluating array range designators that have side |
2812 | // effects, because we replicate the AST value for each initialized element. |
2813 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
2814 | // elements with something that has a side effect, so codegen can emit an |
2815 | // "error unsupported" error instead of miscompiling the app. |
2816 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
2817 | DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) |
2818 | FullyStructuredList->sawArrayRangeDesignator(); |
2819 | } |
2820 | |
2821 | if (isa<ConstantArrayType>(AT)) { |
2822 | llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); |
2823 | DesignatedStartIndex |
2824 | = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); |
2825 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
2826 | DesignatedEndIndex |
2827 | = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); |
2828 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
2829 | if (DesignatedEndIndex >= MaxElements) { |
2830 | if (!VerifyOnly) |
2831 | SemaRef.Diag(IndexExpr->getBeginLoc(), |
2832 | diag::err_array_designator_too_large) |
2833 | << DesignatedEndIndex.toString(10) << MaxElements.toString(10) |
2834 | << IndexExpr->getSourceRange(); |
2835 | ++Index; |
2836 | return true; |
2837 | } |
2838 | } else { |
2839 | unsigned DesignatedIndexBitWidth = |
2840 | ConstantArrayType::getMaxSizeBits(SemaRef.Context); |
2841 | DesignatedStartIndex = |
2842 | DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); |
2843 | DesignatedEndIndex = |
2844 | DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); |
2845 | DesignatedStartIndex.setIsUnsigned(true); |
2846 | DesignatedEndIndex.setIsUnsigned(true); |
2847 | } |
2848 | |
2849 | bool IsStringLiteralInitUpdate = |
2850 | StructuredList && StructuredList->isStringLiteralInit(); |
2851 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
2852 | // We're just verifying an update to a string literal init. We don't need |
2853 | // to split the string up into individual characters to do that. |
2854 | StructuredList = nullptr; |
2855 | } else if (IsStringLiteralInitUpdate) { |
2856 | // We're modifying a string literal init; we have to decompose the string |
2857 | // so we can modify the individual characters. |
2858 | ASTContext &Context = SemaRef.Context; |
2859 | Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); |
2860 | |
2861 | // Compute the character type |
2862 | QualType CharTy = AT->getElementType(); |
2863 | |
2864 | // Compute the type of the integer literals. |
2865 | QualType PromotedCharTy = CharTy; |
2866 | if (CharTy->isPromotableIntegerType()) |
2867 | PromotedCharTy = Context.getPromotedIntegerType(CharTy); |
2868 | unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); |
2869 | |
2870 | if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { |
2871 | // Get the length of the string. |
2872 | uint64_t StrLen = SL->getLength(); |
2873 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
2874 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
2875 | StructuredList->resizeInits(Context, StrLen); |
2876 | |
2877 | // Build a literal for each character in the string, and put them into |
2878 | // the init list. |
2879 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
2880 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
2881 | Expr *Init = new (Context) IntegerLiteral( |
2882 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
2883 | if (CharTy != PromotedCharTy) |
2884 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
2885 | Init, nullptr, VK_RValue); |
2886 | StructuredList->updateInit(Context, i, Init); |
2887 | } |
2888 | } else { |
2889 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); |
2890 | std::string Str; |
2891 | Context.getObjCEncodingForType(E->getEncodedType(), Str); |
2892 | |
2893 | // Get the length of the string. |
2894 | uint64_t StrLen = Str.size(); |
2895 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
2896 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
2897 | StructuredList->resizeInits(Context, StrLen); |
2898 | |
2899 | // Build a literal for each character in the string, and put them into |
2900 | // the init list. |
2901 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
2902 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
2903 | Expr *Init = new (Context) IntegerLiteral( |
2904 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
2905 | if (CharTy != PromotedCharTy) |
2906 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
2907 | Init, nullptr, VK_RValue); |
2908 | StructuredList->updateInit(Context, i, Init); |
2909 | } |
2910 | } |
2911 | } |
2912 | |
2913 | // Make sure that our non-designated initializer list has space |
2914 | // for a subobject corresponding to this array element. |
2915 | if (StructuredList && |
2916 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
2917 | StructuredList->resizeInits(SemaRef.Context, |
2918 | DesignatedEndIndex.getZExtValue() + 1); |
2919 | |
2920 | // Repeatedly perform subobject initializations in the range |
2921 | // [DesignatedStartIndex, DesignatedEndIndex]. |
2922 | |
2923 | // Move to the next designator |
2924 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
2925 | unsigned OldIndex = Index; |
2926 | |
2927 | InitializedEntity ElementEntity = |
2928 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
2929 | |
2930 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
2931 | // Recurse to check later designated subobjects. |
2932 | QualType ElementType = AT->getElementType(); |
2933 | Index = OldIndex; |
2934 | |
2935 | ElementEntity.setElementIndex(ElementIndex); |
2936 | if (CheckDesignatedInitializer( |
2937 | ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, |
2938 | nullptr, Index, StructuredList, ElementIndex, |
2939 | FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
2940 | false)) |
2941 | return true; |
2942 | |
2943 | // Move to the next index in the array that we'll be initializing. |
2944 | ++DesignatedStartIndex; |
2945 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
2946 | } |
2947 | |
2948 | // If this the first designator, our caller will continue checking |
2949 | // the rest of this array subobject. |
2950 | if (IsFirstDesignator) { |
2951 | if (NextElementIndex) |
2952 | *NextElementIndex = DesignatedStartIndex; |
2953 | StructuredIndex = ElementIndex; |
2954 | return false; |
2955 | } |
2956 | |
2957 | if (!FinishSubobjectInit) |
2958 | return false; |
2959 | |
2960 | // Check the remaining elements within this array subobject. |
2961 | bool prevHadError = hadError; |
2962 | CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, |
2963 | /*SubobjectIsDesignatorContext=*/false, Index, |
2964 | StructuredList, ElementIndex); |
2965 | return hadError && !prevHadError; |
2966 | } |
2967 | |
2968 | // Get the structured initializer list for a subobject of type |
2969 | // @p CurrentObjectType. |
2970 | InitListExpr * |
2971 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
2972 | QualType CurrentObjectType, |
2973 | InitListExpr *StructuredList, |
2974 | unsigned StructuredIndex, |
2975 | SourceRange InitRange, |
2976 | bool IsFullyOverwritten) { |
2977 | if (!StructuredList) |
2978 | return nullptr; |
2979 | |
2980 | Expr *ExistingInit = nullptr; |
2981 | if (StructuredIndex < StructuredList->getNumInits()) |
2982 | ExistingInit = StructuredList->getInit(StructuredIndex); |
2983 | |
2984 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) |
2985 | // There might have already been initializers for subobjects of the current |
2986 | // object, but a subsequent initializer list will overwrite the entirety |
2987 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
2988 | // |
2989 | // struct P { char x[6]; }; |
2990 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
2991 | // |
2992 | // The first designated initializer is ignored, and l.x is just "f". |
2993 | if (!IsFullyOverwritten) |
2994 | return Result; |
2995 | |
2996 | if (ExistingInit) { |
2997 | // We are creating an initializer list that initializes the |
2998 | // subobjects of the current object, but there was already an |
2999 | // initialization that completely initialized the current |
3000 | // subobject: |
3001 | // |
3002 | // struct X { int a, b; }; |
3003 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
3004 | // |
3005 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
3006 | // designated initializer overwrites the [0].b initializer |
3007 | // from the prior initialization. |
3008 | // |
3009 | // When the existing initializer is an expression rather than an |
3010 | // initializer list, we cannot decompose and update it in this way. |
3011 | // For example: |
3012 | // |
3013 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
3014 | // |
3015 | // This case is handled by CheckDesignatedInitializer. |
3016 | diagnoseInitOverride(ExistingInit, InitRange); |
3017 | } |
3018 | |
3019 | unsigned ExpectedNumInits = 0; |
3020 | if (Index < IList->getNumInits()) { |
3021 | if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) |
3022 | ExpectedNumInits = Init->getNumInits(); |
3023 | else |
3024 | ExpectedNumInits = IList->getNumInits() - Index; |
3025 | } |
3026 | |
3027 | InitListExpr *Result = |
3028 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
3029 | |
3030 | // Link this new initializer list into the structured initializer |
3031 | // lists. |
3032 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
3033 | return Result; |
3034 | } |
3035 | |
3036 | InitListExpr * |
3037 | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
3038 | SourceRange InitRange, |
3039 | unsigned ExpectedNumInits) { |
3040 | InitListExpr *Result |
3041 | = new (SemaRef.Context) InitListExpr(SemaRef.Context, |
3042 | InitRange.getBegin(), None, |
3043 | InitRange.getEnd()); |
3044 | |
3045 | QualType ResultType = CurrentObjectType; |
3046 | if (!ResultType->isArrayType()) |
3047 | ResultType = ResultType.getNonLValueExprType(SemaRef.Context); |
3048 | Result->setType(ResultType); |
3049 | |
3050 | // Pre-allocate storage for the structured initializer list. |
3051 | unsigned NumElements = 0; |
3052 | |
3053 | if (const ArrayType *AType |
3054 | = SemaRef.Context.getAsArrayType(CurrentObjectType)) { |
3055 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { |
3056 | NumElements = CAType->getSize().getZExtValue(); |
3057 | // Simple heuristic so that we don't allocate a very large |
3058 | // initializer with many empty entries at the end. |
3059 | if (NumElements > ExpectedNumInits) |
3060 | NumElements = 0; |
3061 | } |
3062 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
3063 | NumElements = VType->getNumElements(); |
3064 | } else if (CurrentObjectType->isRecordType()) { |
3065 | NumElements = numStructUnionElements(CurrentObjectType); |
3066 | } |
3067 | |
3068 | Result->reserveInits(SemaRef.Context, NumElements); |
3069 | |
3070 | return Result; |
3071 | } |
3072 | |
3073 | /// Update the initializer at index @p StructuredIndex within the |
3074 | /// structured initializer list to the value @p expr. |
3075 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
3076 | unsigned &StructuredIndex, |
3077 | Expr *expr) { |
3078 | // No structured initializer list to update |
3079 | if (!StructuredList) |
3080 | return; |
3081 | |
3082 | if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, |
3083 | StructuredIndex, expr)) { |
3084 | // This initializer overwrites a previous initializer. Warn. |
3085 | diagnoseInitOverride(PrevInit, expr->getSourceRange()); |
3086 | } |
3087 | |
3088 | ++StructuredIndex; |
3089 | } |
3090 | |
3091 | /// Determine whether we can perform aggregate initialization for the purposes |
3092 | /// of overload resolution. |
3093 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
3094 | const InitializedEntity &Entity, InitListExpr *From) { |
3095 | QualType Type = Entity.getType(); |
3096 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
3097 | /*TreatUnavailableAsInvalid=*/false, |
3098 | /*InOverloadResolution=*/true); |
3099 | return !Check.HadError(); |
3100 | } |
3101 | |
3102 | /// Check that the given Index expression is a valid array designator |
3103 | /// value. This is essentially just a wrapper around |
3104 | /// VerifyIntegerConstantExpression that also checks for negative values |
3105 | /// and produces a reasonable diagnostic if there is a |
3106 | /// failure. Returns the index expression, possibly with an implicit cast |
3107 | /// added, on success. If everything went okay, Value will receive the |
3108 | /// value of the constant expression. |
3109 | static ExprResult |
3110 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
3111 | SourceLocation Loc = Index->getBeginLoc(); |
3112 | |
3113 | // Make sure this is an integer constant expression. |
3114 | ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); |
3115 | if (Result.isInvalid()) |
3116 | return Result; |
3117 | |
3118 | if (Value.isSigned() && Value.isNegative()) |
3119 | return S.Diag(Loc, diag::err_array_designator_negative) |
3120 | << Value.toString(10) << Index->getSourceRange(); |
3121 | |
3122 | Value.setIsUnsigned(true); |
3123 | return Result; |
3124 | } |
3125 | |
3126 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
3127 | SourceLocation EqualOrColonLoc, |
3128 | bool GNUSyntax, |
3129 | ExprResult Init) { |
3130 | typedef DesignatedInitExpr::Designator ASTDesignator; |
3131 | |
3132 | bool Invalid = false; |
3133 | SmallVector<ASTDesignator, 32> Designators; |
3134 | SmallVector<Expr *, 32> InitExpressions; |
3135 | |
3136 | // Build designators and check array designator expressions. |
3137 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
3138 | const Designator &D = Desig.getDesignator(Idx); |
3139 | switch (D.getKind()) { |
3140 | case Designator::FieldDesignator: |
3141 | Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), |
3142 | D.getFieldLoc())); |
3143 | break; |
3144 | |
3145 | case Designator::ArrayDesignator: { |
3146 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
3147 | llvm::APSInt IndexValue; |
3148 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
3149 | Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); |
3150 | if (!Index) |
3151 | Invalid = true; |
3152 | else { |
3153 | Designators.push_back(ASTDesignator(InitExpressions.size(), |
3154 | D.getLBracketLoc(), |
3155 | D.getRBracketLoc())); |
3156 | InitExpressions.push_back(Index); |
3157 | } |
3158 | break; |
3159 | } |
3160 | |
3161 | case Designator::ArrayRangeDesignator: { |
3162 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
3163 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
3164 | llvm::APSInt StartValue; |
3165 | llvm::APSInt EndValue; |
3166 | bool StartDependent = StartIndex->isTypeDependent() || |
3167 | StartIndex->isValueDependent(); |
3168 | bool EndDependent = EndIndex->isTypeDependent() || |
3169 | EndIndex->isValueDependent(); |
3170 | if (!StartDependent) |
3171 | StartIndex = |
3172 | CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); |
3173 | if (!EndDependent) |
3174 | EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); |
3175 | |
3176 | if (!StartIndex || !EndIndex) |
3177 | Invalid = true; |
3178 | else { |
3179 | // Make sure we're comparing values with the same bit width. |
3180 | if (StartDependent || EndDependent) { |
3181 | // Nothing to compute. |
3182 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
3183 | EndValue = EndValue.extend(StartValue.getBitWidth()); |
3184 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
3185 | StartValue = StartValue.extend(EndValue.getBitWidth()); |
3186 | |
3187 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
3188 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
3189 | << StartValue.toString(10) << EndValue.toString(10) |
3190 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
3191 | Invalid = true; |
3192 | } else { |
3193 | Designators.push_back(ASTDesignator(InitExpressions.size(), |
3194 | D.getLBracketLoc(), |
3195 | D.getEllipsisLoc(), |
3196 | D.getRBracketLoc())); |
3197 | InitExpressions.push_back(StartIndex); |
3198 | InitExpressions.push_back(EndIndex); |
3199 | } |
3200 | } |
3201 | break; |
3202 | } |
3203 | } |
3204 | } |
3205 | |
3206 | if (Invalid || Init.isInvalid()) |
3207 | return ExprError(); |
3208 | |
3209 | // Clear out the expressions within the designation. |
3210 | Desig.ClearExprs(*this); |
3211 | |
3212 | return DesignatedInitExpr::Create(Context, Designators, InitExpressions, |
3213 | EqualOrColonLoc, GNUSyntax, |
3214 | Init.getAs<Expr>()); |
3215 | } |
3216 | |
3217 | //===----------------------------------------------------------------------===// |
3218 | // Initialization entity |
3219 | //===----------------------------------------------------------------------===// |
3220 | |
3221 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
3222 | const InitializedEntity &Parent) |
3223 | : Parent(&Parent), Index(Index) |
3224 | { |
3225 | if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { |
3226 | Kind = EK_ArrayElement; |
3227 | Type = AT->getElementType(); |
3228 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
3229 | Kind = EK_VectorElement; |
3230 | Type = VT->getElementType(); |
3231 | } else { |
3232 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
3233 | assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> ( 0) : __assert_fail ("CT && \"Unexpected type\"", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3233, __PRETTY_FUNCTION__)); |
3234 | Kind = EK_ComplexElement; |
3235 | Type = CT->getElementType(); |
3236 | } |
3237 | } |
3238 | |
3239 | InitializedEntity |
3240 | InitializedEntity::InitializeBase(ASTContext &Context, |
3241 | const CXXBaseSpecifier *Base, |
3242 | bool IsInheritedVirtualBase, |
3243 | const InitializedEntity *Parent) { |
3244 | InitializedEntity Result; |
3245 | Result.Kind = EK_Base; |
3246 | Result.Parent = Parent; |
3247 | Result.Base = reinterpret_cast<uintptr_t>(Base); |
3248 | if (IsInheritedVirtualBase) |
3249 | Result.Base |= 0x01; |
3250 | |
3251 | Result.Type = Base->getType(); |
3252 | return Result; |
3253 | } |
3254 | |
3255 | DeclarationName InitializedEntity::getName() const { |
3256 | switch (getKind()) { |
3257 | case EK_Parameter: |
3258 | case EK_Parameter_CF_Audited: { |
3259 | ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
3260 | return (D ? D->getDeclName() : DeclarationName()); |
3261 | } |
3262 | |
3263 | case EK_Variable: |
3264 | case EK_Member: |
3265 | case EK_Binding: |
3266 | return Variable.VariableOrMember->getDeclName(); |
3267 | |
3268 | case EK_LambdaCapture: |
3269 | return DeclarationName(Capture.VarID); |
3270 | |
3271 | case EK_Result: |
3272 | case EK_StmtExprResult: |
3273 | case EK_Exception: |
3274 | case EK_New: |
3275 | case EK_Temporary: |
3276 | case EK_Base: |
3277 | case EK_Delegating: |
3278 | case EK_ArrayElement: |
3279 | case EK_VectorElement: |
3280 | case EK_ComplexElement: |
3281 | case EK_BlockElement: |
3282 | case EK_LambdaToBlockConversionBlockElement: |
3283 | case EK_CompoundLiteralInit: |
3284 | case EK_RelatedResult: |
3285 | return DeclarationName(); |
3286 | } |
3287 | |
3288 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3288); |
3289 | } |
3290 | |
3291 | ValueDecl *InitializedEntity::getDecl() const { |
3292 | switch (getKind()) { |
3293 | case EK_Variable: |
3294 | case EK_Member: |
3295 | case EK_Binding: |
3296 | return Variable.VariableOrMember; |
3297 | |
3298 | case EK_Parameter: |
3299 | case EK_Parameter_CF_Audited: |
3300 | return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
3301 | |
3302 | case EK_Result: |
3303 | case EK_StmtExprResult: |
3304 | case EK_Exception: |
3305 | case EK_New: |
3306 | case EK_Temporary: |
3307 | case EK_Base: |
3308 | case EK_Delegating: |
3309 | case EK_ArrayElement: |
3310 | case EK_VectorElement: |
3311 | case EK_ComplexElement: |
3312 | case EK_BlockElement: |
3313 | case EK_LambdaToBlockConversionBlockElement: |
3314 | case EK_LambdaCapture: |
3315 | case EK_CompoundLiteralInit: |
3316 | case EK_RelatedResult: |
3317 | return nullptr; |
3318 | } |
3319 | |
3320 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3320); |
3321 | } |
3322 | |
3323 | bool InitializedEntity::allowsNRVO() const { |
3324 | switch (getKind()) { |
3325 | case EK_Result: |
3326 | case EK_Exception: |
3327 | return LocAndNRVO.NRVO; |
3328 | |
3329 | case EK_StmtExprResult: |
3330 | case EK_Variable: |
3331 | case EK_Parameter: |
3332 | case EK_Parameter_CF_Audited: |
3333 | case EK_Member: |
3334 | case EK_Binding: |
3335 | case EK_New: |
3336 | case EK_Temporary: |
3337 | case EK_CompoundLiteralInit: |
3338 | case EK_Base: |
3339 | case EK_Delegating: |
3340 | case EK_ArrayElement: |
3341 | case EK_VectorElement: |
3342 | case EK_ComplexElement: |
3343 | case EK_BlockElement: |
3344 | case EK_LambdaToBlockConversionBlockElement: |
3345 | case EK_LambdaCapture: |
3346 | case EK_RelatedResult: |
3347 | break; |
3348 | } |
3349 | |
3350 | return false; |
3351 | } |
3352 | |
3353 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
3354 | assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail ("getParent() != this", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3354, __PRETTY_FUNCTION__)); |
3355 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
3356 | for (unsigned I = 0; I != Depth; ++I) |
3357 | OS << "`-"; |
3358 | |
3359 | switch (getKind()) { |
3360 | case EK_Variable: OS << "Variable"; break; |
3361 | case EK_Parameter: OS << "Parameter"; break; |
3362 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; |
3363 | break; |
3364 | case EK_Result: OS << "Result"; break; |
3365 | case EK_StmtExprResult: OS << "StmtExprResult"; break; |
3366 | case EK_Exception: OS << "Exception"; break; |
3367 | case EK_Member: OS << "Member"; break; |
3368 | case EK_Binding: OS << "Binding"; break; |
3369 | case EK_New: OS << "New"; break; |
3370 | case EK_Temporary: OS << "Temporary"; break; |
3371 | case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
3372 | case EK_RelatedResult: OS << "RelatedResult"; break; |
3373 | case EK_Base: OS << "Base"; break; |
3374 | case EK_Delegating: OS << "Delegating"; break; |
3375 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
3376 | case EK_VectorElement: OS << "VectorElement " << Index; break; |
3377 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
3378 | case EK_BlockElement: OS << "Block"; break; |
3379 | case EK_LambdaToBlockConversionBlockElement: |
3380 | OS << "Block (lambda)"; |
3381 | break; |
3382 | case EK_LambdaCapture: |
3383 | OS << "LambdaCapture "; |
3384 | OS << DeclarationName(Capture.VarID); |
3385 | break; |
3386 | } |
3387 | |
3388 | if (auto *D = getDecl()) { |
3389 | OS << " "; |
3390 | D->printQualifiedName(OS); |
3391 | } |
3392 | |
3393 | OS << " '" << getType().getAsString() << "'\n"; |
3394 | |
3395 | return Depth + 1; |
3396 | } |
3397 | |
3398 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const { |
3399 | dumpImpl(llvm::errs()); |
3400 | } |
3401 | |
3402 | //===----------------------------------------------------------------------===// |
3403 | // Initialization sequence |
3404 | //===----------------------------------------------------------------------===// |
3405 | |
3406 | void InitializationSequence::Step::Destroy() { |
3407 | switch (Kind) { |
3408 | case SK_ResolveAddressOfOverloadedFunction: |
3409 | case SK_CastDerivedToBaseRValue: |
3410 | case SK_CastDerivedToBaseXValue: |
3411 | case SK_CastDerivedToBaseLValue: |
3412 | case SK_BindReference: |
3413 | case SK_BindReferenceToTemporary: |
3414 | case SK_FinalCopy: |
3415 | case SK_ExtraneousCopyToTemporary: |
3416 | case SK_UserConversion: |
3417 | case SK_QualificationConversionRValue: |
3418 | case SK_QualificationConversionXValue: |
3419 | case SK_QualificationConversionLValue: |
3420 | case SK_AtomicConversion: |
3421 | case SK_ListInitialization: |
3422 | case SK_UnwrapInitList: |
3423 | case SK_RewrapInitList: |
3424 | case SK_ConstructorInitialization: |
3425 | case SK_ConstructorInitializationFromList: |
3426 | case SK_ZeroInitialization: |
3427 | case SK_CAssignment: |
3428 | case SK_StringInit: |
3429 | case SK_ObjCObjectConversion: |
3430 | case SK_ArrayLoopIndex: |
3431 | case SK_ArrayLoopInit: |
3432 | case SK_ArrayInit: |
3433 | case SK_GNUArrayInit: |
3434 | case SK_ParenthesizedArrayInit: |
3435 | case SK_PassByIndirectCopyRestore: |
3436 | case SK_PassByIndirectRestore: |
3437 | case SK_ProduceObjCObject: |
3438 | case SK_StdInitializerList: |
3439 | case SK_StdInitializerListConstructorCall: |
3440 | case SK_OCLSamplerInit: |
3441 | case SK_OCLZeroOpaqueType: |
3442 | break; |
3443 | |
3444 | case SK_ConversionSequence: |
3445 | case SK_ConversionSequenceNoNarrowing: |
3446 | delete ICS; |
3447 | } |
3448 | } |
3449 | |
3450 | bool InitializationSequence::isDirectReferenceBinding() const { |
3451 | // There can be some lvalue adjustments after the SK_BindReference step. |
3452 | for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { |
3453 | if (I->Kind == SK_BindReference) |
3454 | return true; |
3455 | if (I->Kind == SK_BindReferenceToTemporary) |
3456 | return false; |
3457 | } |
3458 | return false; |
3459 | } |
3460 | |
3461 | bool InitializationSequence::isAmbiguous() const { |
3462 | if (!Failed()) |
3463 | return false; |
3464 | |
3465 | switch (getFailureKind()) { |
3466 | case FK_TooManyInitsForReference: |
3467 | case FK_ParenthesizedListInitForReference: |
3468 | case FK_ArrayNeedsInitList: |
3469 | case FK_ArrayNeedsInitListOrStringLiteral: |
3470 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
3471 | case FK_NarrowStringIntoWideCharArray: |
3472 | case FK_WideStringIntoCharArray: |
3473 | case FK_IncompatWideStringIntoWideChar: |
3474 | case FK_PlainStringIntoUTF8Char: |
3475 | case FK_UTF8StringIntoPlainChar: |
3476 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
3477 | case FK_NonConstLValueReferenceBindingToTemporary: |
3478 | case FK_NonConstLValueReferenceBindingToBitfield: |
3479 | case FK_NonConstLValueReferenceBindingToVectorElement: |
3480 | case FK_NonConstLValueReferenceBindingToUnrelated: |
3481 | case FK_RValueReferenceBindingToLValue: |
3482 | case FK_ReferenceAddrspaceMismatchTemporary: |
3483 | case FK_ReferenceInitDropsQualifiers: |
3484 | case FK_ReferenceInitFailed: |
3485 | case FK_ConversionFailed: |
3486 | case FK_ConversionFromPropertyFailed: |
3487 | case FK_TooManyInitsForScalar: |
3488 | case FK_ParenthesizedListInitForScalar: |
3489 | case FK_ReferenceBindingToInitList: |
3490 | case FK_InitListBadDestinationType: |
3491 | case FK_DefaultInitOfConst: |
3492 | case FK_Incomplete: |
3493 | case FK_ArrayTypeMismatch: |
3494 | case FK_NonConstantArrayInit: |
3495 | case FK_ListInitializationFailed: |
3496 | case FK_VariableLengthArrayHasInitializer: |
3497 | case FK_PlaceholderType: |
3498 | case FK_ExplicitConstructor: |
3499 | case FK_AddressOfUnaddressableFunction: |
3500 | return false; |
3501 | |
3502 | case FK_ReferenceInitOverloadFailed: |
3503 | case FK_UserConversionOverloadFailed: |
3504 | case FK_ConstructorOverloadFailed: |
3505 | case FK_ListConstructorOverloadFailed: |
3506 | return FailedOverloadResult == OR_Ambiguous; |
3507 | } |
3508 | |
3509 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3509); |
3510 | } |
3511 | |
3512 | bool InitializationSequence::isConstructorInitialization() const { |
3513 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
3514 | } |
3515 | |
3516 | void |
3517 | InitializationSequence |
3518 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
3519 | DeclAccessPair Found, |
3520 | bool HadMultipleCandidates) { |
3521 | Step S; |
3522 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
3523 | S.Type = Function->getType(); |
3524 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3525 | S.Function.Function = Function; |
3526 | S.Function.FoundDecl = Found; |
3527 | Steps.push_back(S); |
3528 | } |
3529 | |
3530 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
3531 | ExprValueKind VK) { |
3532 | Step S; |
3533 | switch (VK) { |
3534 | case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; |
3535 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
3536 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
3537 | } |
3538 | S.Type = BaseType; |
3539 | Steps.push_back(S); |
3540 | } |
3541 | |
3542 | void InitializationSequence::AddReferenceBindingStep(QualType T, |
3543 | bool BindingTemporary) { |
3544 | Step S; |
3545 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
3546 | S.Type = T; |
3547 | Steps.push_back(S); |
3548 | } |
3549 | |
3550 | void InitializationSequence::AddFinalCopy(QualType T) { |
3551 | Step S; |
3552 | S.Kind = SK_FinalCopy; |
3553 | S.Type = T; |
3554 | Steps.push_back(S); |
3555 | } |
3556 | |
3557 | void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
3558 | Step S; |
3559 | S.Kind = SK_ExtraneousCopyToTemporary; |
3560 | S.Type = T; |
3561 | Steps.push_back(S); |
3562 | } |
3563 | |
3564 | void |
3565 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
3566 | DeclAccessPair FoundDecl, |
3567 | QualType T, |
3568 | bool HadMultipleCandidates) { |
3569 | Step S; |
3570 | S.Kind = SK_UserConversion; |
3571 | S.Type = T; |
3572 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3573 | S.Function.Function = Function; |
3574 | S.Function.FoundDecl = FoundDecl; |
3575 | Steps.push_back(S); |
3576 | } |
3577 | |
3578 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
3579 | ExprValueKind VK) { |
3580 | Step S; |
3581 | S.Kind = SK_QualificationConversionRValue; // work around a gcc warning |
3582 | switch (VK) { |
3583 | case VK_RValue: |
3584 | S.Kind = SK_QualificationConversionRValue; |
3585 | break; |
3586 | case VK_XValue: |
3587 | S.Kind = SK_QualificationConversionXValue; |
3588 | break; |
3589 | case VK_LValue: |
3590 | S.Kind = SK_QualificationConversionLValue; |
3591 | break; |
3592 | } |
3593 | S.Type = Ty; |
3594 | Steps.push_back(S); |
3595 | } |
3596 | |
3597 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
3598 | Step S; |
3599 | S.Kind = SK_AtomicConversion; |
3600 | S.Type = Ty; |
3601 | Steps.push_back(S); |
3602 | } |
3603 | |
3604 | void InitializationSequence::AddConversionSequenceStep( |
3605 | const ImplicitConversionSequence &ICS, QualType T, |
3606 | bool TopLevelOfInitList) { |
3607 | Step S; |
3608 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
3609 | : SK_ConversionSequence; |
3610 | S.Type = T; |
3611 | S.ICS = new ImplicitConversionSequence(ICS); |
3612 | Steps.push_back(S); |
3613 | } |
3614 | |
3615 | void InitializationSequence::AddListInitializationStep(QualType T) { |
3616 | Step S; |
3617 | S.Kind = SK_ListInitialization; |
3618 | S.Type = T; |
3619 | Steps.push_back(S); |
3620 | } |
3621 | |
3622 | void InitializationSequence::AddConstructorInitializationStep( |
3623 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
3624 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
3625 | Step S; |
3626 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
3627 | : SK_ConstructorInitializationFromList |
3628 | : SK_ConstructorInitialization; |
3629 | S.Type = T; |
3630 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3631 | S.Function.Function = Constructor; |
3632 | S.Function.FoundDecl = FoundDecl; |
3633 | Steps.push_back(S); |
3634 | } |
3635 | |
3636 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
3637 | Step S; |
3638 | S.Kind = SK_ZeroInitialization; |
3639 | S.Type = T; |
3640 | Steps.push_back(S); |
3641 | } |
3642 | |
3643 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
3644 | Step S; |
3645 | S.Kind = SK_CAssignment; |
3646 | S.Type = T; |
3647 | Steps.push_back(S); |
3648 | } |
3649 | |
3650 | void InitializationSequence::AddStringInitStep(QualType T) { |
3651 | Step S; |
3652 | S.Kind = SK_StringInit; |
3653 | S.Type = T; |
3654 | Steps.push_back(S); |
3655 | } |
3656 | |
3657 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
3658 | Step S; |
3659 | S.Kind = SK_ObjCObjectConversion; |
3660 | S.Type = T; |
3661 | Steps.push_back(S); |
3662 | } |
3663 | |
3664 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
3665 | Step S; |
3666 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
3667 | S.Type = T; |
3668 | Steps.push_back(S); |
3669 | } |
3670 | |
3671 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
3672 | Step S; |
3673 | S.Kind = SK_ArrayLoopIndex; |
3674 | S.Type = EltT; |
3675 | Steps.insert(Steps.begin(), S); |
3676 | |
3677 | S.Kind = SK_ArrayLoopInit; |
3678 | S.Type = T; |
3679 | Steps.push_back(S); |
3680 | } |
3681 | |
3682 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
3683 | Step S; |
3684 | S.Kind = SK_ParenthesizedArrayInit; |
3685 | S.Type = T; |
3686 | Steps.push_back(S); |
3687 | } |
3688 | |
3689 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
3690 | bool shouldCopy) { |
3691 | Step s; |
3692 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
3693 | : SK_PassByIndirectRestore); |
3694 | s.Type = type; |
3695 | Steps.push_back(s); |
3696 | } |
3697 | |
3698 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
3699 | Step S; |
3700 | S.Kind = SK_ProduceObjCObject; |
3701 | S.Type = T; |
3702 | Steps.push_back(S); |
3703 | } |
3704 | |
3705 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
3706 | Step S; |
3707 | S.Kind = SK_StdInitializerList; |
3708 | S.Type = T; |
3709 | Steps.push_back(S); |
3710 | } |
3711 | |
3712 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
3713 | Step S; |
3714 | S.Kind = SK_OCLSamplerInit; |
3715 | S.Type = T; |
3716 | Steps.push_back(S); |
3717 | } |
3718 | |
3719 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
3720 | Step S; |
3721 | S.Kind = SK_OCLZeroOpaqueType; |
3722 | S.Type = T; |
3723 | Steps.push_back(S); |
3724 | } |
3725 | |
3726 | void InitializationSequence::RewrapReferenceInitList(QualType T, |
3727 | InitListExpr *Syntactic) { |
3728 | assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists." ) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3729, __PRETTY_FUNCTION__)) |
3729 | "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists." ) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3729, __PRETTY_FUNCTION__)); |
3730 | Step S; |
3731 | S.Kind = SK_UnwrapInitList; |
3732 | S.Type = Syntactic->getInit(0)->getType(); |
3733 | Steps.insert(Steps.begin(), S); |
3734 | |
3735 | S.Kind = SK_RewrapInitList; |
3736 | S.Type = T; |
3737 | S.WrappingSyntacticList = Syntactic; |
3738 | Steps.push_back(S); |
3739 | } |
3740 | |
3741 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
3742 | OverloadingResult Result) { |
3743 | setSequenceKind(FailedSequence); |
3744 | this->Failure = Failure; |
3745 | this->FailedOverloadResult = Result; |
3746 | } |
3747 | |
3748 | //===----------------------------------------------------------------------===// |
3749 | // Attempt initialization |
3750 | //===----------------------------------------------------------------------===// |
3751 | |
3752 | /// Tries to add a zero initializer. Returns true if that worked. |
3753 | static bool |
3754 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
3755 | const InitializedEntity &Entity) { |
3756 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
3757 | return false; |
3758 | |
3759 | VarDecl *VD = cast<VarDecl>(Entity.getDecl()); |
3760 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
3761 | return false; |
3762 | |
3763 | QualType VariableTy = VD->getType().getCanonicalType(); |
3764 | SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); |
3765 | std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); |
3766 | if (!Init.empty()) { |
3767 | Sequence.AddZeroInitializationStep(Entity.getType()); |
3768 | Sequence.SetZeroInitializationFixit(Init, Loc); |
3769 | return true; |
3770 | } |
3771 | return false; |
3772 | } |
3773 | |
3774 | static void MaybeProduceObjCObject(Sema &S, |
3775 | InitializationSequence &Sequence, |
3776 | const InitializedEntity &Entity) { |
3777 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
3778 | |
3779 | /// When initializing a parameter, produce the value if it's marked |
3780 | /// __attribute__((ns_consumed)). |
3781 | if (Entity.isParameterKind()) { |
3782 | if (!Entity.isParameterConsumed()) |
3783 | return; |
3784 | |
3785 | assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?" ) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3786, __PRETTY_FUNCTION__)) |
3786 | "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?" ) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3786, __PRETTY_FUNCTION__)); |
3787 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
3788 | |
3789 | /// When initializing a return value, if the return type is a |
3790 | /// retainable type, then returns need to immediately retain the |
3791 | /// object. If an autorelease is required, it will be done at the |
3792 | /// last instant. |
3793 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
3794 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
3795 | if (!Entity.getType()->isObjCRetainableType()) |
3796 | return; |
3797 | |
3798 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
3799 | } |
3800 | } |
3801 | |
3802 | static void TryListInitialization(Sema &S, |
3803 | const InitializedEntity &Entity, |
3804 | const InitializationKind &Kind, |
3805 | InitListExpr *InitList, |
3806 | InitializationSequence &Sequence, |
3807 | bool TreatUnavailableAsInvalid); |
3808 | |
3809 | /// When initializing from init list via constructor, handle |
3810 | /// initialization of an object of type std::initializer_list<T>. |
3811 | /// |
3812 | /// \return true if we have handled initialization of an object of type |
3813 | /// std::initializer_list<T>, false otherwise. |
3814 | static bool TryInitializerListConstruction(Sema &S, |
3815 | InitListExpr *List, |
3816 | QualType DestType, |
3817 | InitializationSequence &Sequence, |
3818 | bool TreatUnavailableAsInvalid) { |
3819 | QualType E; |
3820 | if (!S.isStdInitializerList(DestType, &E)) |
3821 | return false; |
3822 | |
3823 | if (!S.isCompleteType(List->getExprLoc(), E)) { |
3824 | Sequence.setIncompleteTypeFailure(E); |
3825 | return true; |
3826 | } |
3827 | |
3828 | // Try initializing a temporary array from the init list. |
3829 | QualType ArrayType = S.Context.getConstantArrayType( |
3830 | E.withConst(), |
3831 | llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
3832 | List->getNumInits()), |
3833 | nullptr, clang::ArrayType::Normal, 0); |
3834 | InitializedEntity HiddenArray = |
3835 | InitializedEntity::InitializeTemporary(ArrayType); |
3836 | InitializationKind Kind = InitializationKind::CreateDirectList( |
3837 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); |
3838 | TryListInitialization(S, HiddenArray, Kind, List, Sequence, |
3839 | TreatUnavailableAsInvalid); |
3840 | if (Sequence) |
3841 | Sequence.AddStdInitializerListConstructionStep(DestType); |
3842 | return true; |
3843 | } |
3844 | |
3845 | /// Determine if the constructor has the signature of a copy or move |
3846 | /// constructor for the type T of the class in which it was found. That is, |
3847 | /// determine if its first parameter is of type T or reference to (possibly |
3848 | /// cv-qualified) T. |
3849 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
3850 | const ConstructorInfo &Info) { |
3851 | if (Info.Constructor->getNumParams() == 0) |
3852 | return false; |
3853 | |
3854 | QualType ParmT = |
3855 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
3856 | QualType ClassT = |
3857 | Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
3858 | |
3859 | return Ctx.hasSameUnqualifiedType(ParmT, ClassT); |
3860 | } |
3861 | |
3862 | static OverloadingResult |
3863 | ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, |
3864 | MultiExprArg Args, |
3865 | OverloadCandidateSet &CandidateSet, |
3866 | QualType DestType, |
3867 | DeclContext::lookup_result Ctors, |
3868 | OverloadCandidateSet::iterator &Best, |
3869 | bool CopyInitializing, bool AllowExplicit, |
3870 | bool OnlyListConstructors, bool IsListInit, |
3871 | bool SecondStepOfCopyInit = false) { |
3872 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); |
3873 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
3874 | |
3875 | for (NamedDecl *D : Ctors) { |
3876 | auto Info = getConstructorInfo(D); |
3877 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
3878 | continue; |
3879 | |
3880 | if (!AllowExplicit && Info.Constructor->isExplicit()) |
3881 | continue; |
3882 | |
3883 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
3884 | continue; |
3885 | |
3886 | // C++11 [over.best.ics]p4: |
3887 | // ... and the constructor or user-defined conversion function is a |
3888 | // candidate by |
3889 | // - 13.3.1.3, when the argument is the temporary in the second step |
3890 | // of a class copy-initialization, or |
3891 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
3892 | // - the second phase of 13.3.1.7 when the initializer list has exactly |
3893 | // one element that is itself an initializer list, and the target is |
3894 | // the first parameter of a constructor of class X, and the conversion |
3895 | // is to X or reference to (possibly cv-qualified X), |
3896 | // user-defined conversion sequences are not considered. |
3897 | bool SuppressUserConversions = |
3898 | SecondStepOfCopyInit || |
3899 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
3900 | hasCopyOrMoveCtorParam(S.Context, Info)); |
3901 | |
3902 | if (Info.ConstructorTmpl) |
3903 | S.AddTemplateOverloadCandidate( |
3904 | Info.ConstructorTmpl, Info.FoundDecl, |
3905 | /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, |
3906 | /*PartialOverloading=*/false, AllowExplicit); |
3907 | else { |
3908 | // C++ [over.match.copy]p1: |
3909 | // - When initializing a temporary to be bound to the first parameter |
3910 | // of a constructor [for type T] that takes a reference to possibly |
3911 | // cv-qualified T as its first argument, called with a single |
3912 | // argument in the context of direct-initialization, explicit |
3913 | // conversion functions are also considered. |
3914 | // FIXME: What if a constructor template instantiates to such a signature? |
3915 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
3916 | Args.size() == 1 && |
3917 | hasCopyOrMoveCtorParam(S.Context, Info); |
3918 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
3919 | CandidateSet, SuppressUserConversions, |
3920 | /*PartialOverloading=*/false, AllowExplicit, |
3921 | AllowExplicitConv); |
3922 | } |
3923 | } |
3924 | |
3925 | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
3926 | // |
3927 | // When initializing an object of class type T by constructor |
3928 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
3929 | // from a single expression of class type U, conversion functions of |
3930 | // U that convert to the non-reference type cv T are candidates. |
3931 | // Explicit conversion functions are only candidates during |
3932 | // direct-initialization. |
3933 | // |
3934 | // Note: SecondStepOfCopyInit is only ever true in this case when |
3935 | // evaluating whether to produce a C++98 compatibility warning. |
3936 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
3937 | !SecondStepOfCopyInit) { |
3938 | Expr *Initializer = Args[0]; |
3939 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
3940 | if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { |
3941 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
3942 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
3943 | NamedDecl *D = *I; |
3944 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
3945 | D = D->getUnderlyingDecl(); |
3946 | |
3947 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
3948 | CXXConversionDecl *Conv; |
3949 | if (ConvTemplate) |
3950 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
3951 | else |
3952 | Conv = cast<CXXConversionDecl>(D); |
3953 | |
3954 | if (AllowExplicit || !Conv->isExplicit()) { |
3955 | if (ConvTemplate) |
3956 | S.AddTemplateConversionCandidate( |
3957 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
3958 | CandidateSet, AllowExplicit, AllowExplicit, |
3959 | /*AllowResultConversion*/ false); |
3960 | else |
3961 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
3962 | DestType, CandidateSet, AllowExplicit, |
3963 | AllowExplicit, |
3964 | /*AllowResultConversion*/ false); |
3965 | } |
3966 | } |
3967 | } |
3968 | } |
3969 | |
3970 | // Perform overload resolution and return the result. |
3971 | return CandidateSet.BestViableFunction(S, DeclLoc, Best); |
3972 | } |
3973 | |
3974 | /// Attempt initialization by constructor (C++ [dcl.init]), which |
3975 | /// enumerates the constructors of the initialized entity and performs overload |
3976 | /// resolution to select the best. |
3977 | /// \param DestType The destination class type. |
3978 | /// \param DestArrayType The destination type, which is either DestType or |
3979 | /// a (possibly multidimensional) array of DestType. |
3980 | /// \param IsListInit Is this list-initialization? |
3981 | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
3982 | /// list-initialization from {x} where x is the same |
3983 | /// type as the entity? |
3984 | static void TryConstructorInitialization(Sema &S, |
3985 | const InitializedEntity &Entity, |
3986 | const InitializationKind &Kind, |
3987 | MultiExprArg Args, QualType DestType, |
3988 | QualType DestArrayType, |
3989 | InitializationSequence &Sequence, |
3990 | bool IsListInit = false, |
3991 | bool IsInitListCopy = false) { |
3992 | assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3995, __PRETTY_FUNCTION__)) |
3993 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3995, __PRETTY_FUNCTION__)) |
3994 | "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3995, __PRETTY_FUNCTION__)) |
3995 | "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 3995, __PRETTY_FUNCTION__)); |
3996 | InitListExpr *ILE = |
3997 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; |
3998 | MultiExprArg UnwrappedArgs = |
3999 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
4000 | |
4001 | // The type we're constructing needs to be complete. |
4002 | if (!S.isCompleteType(Kind.getLocation(), DestType)) { |
4003 | Sequence.setIncompleteTypeFailure(DestType); |
4004 | return; |
4005 | } |
4006 | |
4007 | // C++17 [dcl.init]p17: |
4008 | // - If the initializer expression is a prvalue and the cv-unqualified |
4009 | // version of the source type is the same class as the class of the |
4010 | // destination, the initializer expression is used to initialize the |
4011 | // destination object. |
4012 | // Per DR (no number yet), this does not apply when initializing a base |
4013 | // class or delegating to another constructor from a mem-initializer. |
4014 | // ObjC++: Lambda captured by the block in the lambda to block conversion |
4015 | // should avoid copy elision. |
4016 | if (S.getLangOpts().CPlusPlus17 && |
4017 | Entity.getKind() != InitializedEntity::EK_Base && |
4018 | Entity.getKind() != InitializedEntity::EK_Delegating && |
4019 | Entity.getKind() != |
4020 | InitializedEntity::EK_LambdaToBlockConversionBlockElement && |
4021 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && |
4022 | S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { |
4023 | // Convert qualifications if necessary. |
4024 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
4025 | if (ILE) |
4026 | Sequence.RewrapReferenceInitList(DestType, ILE); |
4027 | return; |
4028 | } |
4029 | |
4030 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
4031 | assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type" ) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4031, __PRETTY_FUNCTION__)); |
4032 | CXXRecordDecl *DestRecordDecl |
4033 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
4034 | |
4035 | // Build the candidate set directly in the initialization sequence |
4036 | // structure, so that it will persist if we fail. |
4037 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4038 | |
4039 | // Determine whether we are allowed to call explicit constructors or |
4040 | // explicit conversion operators. |
4041 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
4042 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
4043 | |
4044 | // - Otherwise, if T is a class type, constructors are considered. The |
4045 | // applicable constructors are enumerated, and the best one is chosen |
4046 | // through overload resolution. |
4047 | DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); |
4048 | |
4049 | OverloadingResult Result = OR_No_Viable_Function; |
4050 | OverloadCandidateSet::iterator Best; |
4051 | bool AsInitializerList = false; |
4052 | |
4053 | // C++11 [over.match.list]p1, per DR1467: |
4054 | // When objects of non-aggregate type T are list-initialized, such that |
4055 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
4056 | // according to the rules in this section, overload resolution selects |
4057 | // the constructor in two phases: |
4058 | // |
4059 | // - Initially, the candidate functions are the initializer-list |
4060 | // constructors of the class T and the argument list consists of the |
4061 | // initializer list as a single argument. |
4062 | if (IsListInit) { |
4063 | AsInitializerList = true; |
4064 | |
4065 | // If the initializer list has no elements and T has a default constructor, |
4066 | // the first phase is omitted. |
4067 | if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) |
4068 | Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, |
4069 | CandidateSet, DestType, Ctors, Best, |
4070 | CopyInitialization, AllowExplicit, |
4071 | /*OnlyListConstructors=*/true, |
4072 | IsListInit); |
4073 | } |
4074 | |
4075 | // C++11 [over.match.list]p1: |
4076 | // - If no viable initializer-list constructor is found, overload resolution |
4077 | // is performed again, where the candidate functions are all the |
4078 | // constructors of the class T and the argument list consists of the |
4079 | // elements of the initializer list. |
4080 | if (Result == OR_No_Viable_Function) { |
4081 | AsInitializerList = false; |
4082 | Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, |
4083 | CandidateSet, DestType, Ctors, Best, |
4084 | CopyInitialization, AllowExplicit, |
4085 | /*OnlyListConstructors=*/false, |
4086 | IsListInit); |
4087 | } |
4088 | if (Result) { |
4089 | Sequence.SetOverloadFailure(IsListInit ? |
4090 | InitializationSequence::FK_ListConstructorOverloadFailed : |
4091 | InitializationSequence::FK_ConstructorOverloadFailed, |
4092 | Result); |
4093 | return; |
4094 | } |
4095 | |
4096 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4097 | |
4098 | // In C++17, ResolveConstructorOverload can select a conversion function |
4099 | // instead of a constructor. |
4100 | if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { |
4101 | // Add the user-defined conversion step that calls the conversion function. |
4102 | QualType ConvType = CD->getConversionType(); |
4103 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((S.Context.hasSameUnqualifiedType(ConvType, DestType) && "should not have selected this conversion function") ? static_cast <void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4104, __PRETTY_FUNCTION__)) |
4104 | "should not have selected this conversion function")((S.Context.hasSameUnqualifiedType(ConvType, DestType) && "should not have selected this conversion function") ? static_cast <void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4104, __PRETTY_FUNCTION__)); |
4105 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
4106 | HadMultipleCandidates); |
4107 | if (!S.Context.hasSameType(ConvType, DestType)) |
4108 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
4109 | if (IsListInit) |
4110 | Sequence.RewrapReferenceInitList(Entity.getType(), ILE); |
4111 | return; |
4112 | } |
4113 | |
4114 | // C++11 [dcl.init]p6: |
4115 | // If a program calls for the default initialization of an object |
4116 | // of a const-qualified type T, T shall be a class type with a |
4117 | // user-provided default constructor. |
4118 | // C++ core issue 253 proposal: |
4119 | // If the implicit default constructor initializes all subobjects, no |
4120 | // initializer should be required. |
4121 | // The 253 proposal is for example needed to process libstdc++ headers in 5.x. |
4122 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
4123 | if (Kind.getKind() == InitializationKind::IK_Default && |
4124 | Entity.getType().isConstQualified()) { |
4125 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
4126 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
4127 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
4128 | return; |
4129 | } |
4130 | } |
4131 | |
4132 | // C++11 [over.match.list]p1: |
4133 | // In copy-list-initialization, if an explicit constructor is chosen, the |
4134 | // initializer is ill-formed. |
4135 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
4136 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
4137 | return; |
4138 | } |
4139 | |
4140 | // Add the constructor initialization step. Any cv-qualification conversion is |
4141 | // subsumed by the initialization. |
4142 | Sequence.AddConstructorInitializationStep( |
4143 | Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, |
4144 | IsListInit | IsInitListCopy, AsInitializerList); |
4145 | } |
4146 | |
4147 | static bool |
4148 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
4149 | Expr *Initializer, |
4150 | QualType &SourceType, |
4151 | QualType &UnqualifiedSourceType, |
4152 | QualType UnqualifiedTargetType, |
4153 | InitializationSequence &Sequence) { |
4154 | if (S.Context.getCanonicalType(UnqualifiedSourceType) == |
4155 | S.Context.OverloadTy) { |
4156 | DeclAccessPair Found; |
4157 | bool HadMultipleCandidates = false; |
4158 | if (FunctionDecl *Fn |
4159 | = S.ResolveAddressOfOverloadedFunction(Initializer, |
4160 | UnqualifiedTargetType, |
4161 | false, Found, |
4162 | &HadMultipleCandidates)) { |
4163 | Sequence.AddAddressOverloadResolutionStep(Fn, Found, |
4164 | HadMultipleCandidates); |
4165 | SourceType = Fn->getType(); |
4166 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
4167 | } else if (!UnqualifiedTargetType->isRecordType()) { |
4168 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4169 | return true; |
4170 | } |
4171 | } |
4172 | return false; |
4173 | } |
4174 | |
4175 | static void TryReferenceInitializationCore(Sema &S, |
4176 | const InitializedEntity &Entity, |
4177 | const InitializationKind &Kind, |
4178 | Expr *Initializer, |
4179 | QualType cv1T1, QualType T1, |
4180 | Qualifiers T1Quals, |
4181 | QualType cv2T2, QualType T2, |
4182 | Qualifiers T2Quals, |
4183 | InitializationSequence &Sequence); |
4184 | |
4185 | static void TryValueInitialization(Sema &S, |
4186 | const InitializedEntity &Entity, |
4187 | const InitializationKind &Kind, |
4188 | InitializationSequence &Sequence, |
4189 | InitListExpr *InitList = nullptr); |
4190 | |
4191 | /// Attempt list initialization of a reference. |
4192 | static void TryReferenceListInitialization(Sema &S, |
4193 | const InitializedEntity &Entity, |
4194 | const InitializationKind &Kind, |
4195 | InitListExpr *InitList, |
4196 | InitializationSequence &Sequence, |
4197 | bool TreatUnavailableAsInvalid) { |
4198 | // First, catch C++03 where this isn't possible. |
4199 | if (!S.getLangOpts().CPlusPlus11) { |
4200 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4201 | return; |
4202 | } |
4203 | // Can't reference initialize a compound literal. |
4204 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
4205 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4206 | return; |
4207 | } |
4208 | |
4209 | QualType DestType = Entity.getType(); |
4210 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4211 | Qualifiers T1Quals; |
4212 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4213 | |
4214 | // Reference initialization via an initializer list works thus: |
4215 | // If the initializer list consists of a single element that is |
4216 | // reference-related to the referenced type, bind directly to that element |
4217 | // (possibly creating temporaries). |
4218 | // Otherwise, initialize a temporary with the initializer list and |
4219 | // bind to that. |
4220 | if (InitList->getNumInits() == 1) { |
4221 | Expr *Initializer = InitList->getInit(0); |
4222 | QualType cv2T2 = Initializer->getType(); |
4223 | Qualifiers T2Quals; |
4224 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4225 | |
4226 | // If this fails, creating a temporary wouldn't work either. |
4227 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4228 | T1, Sequence)) |
4229 | return; |
4230 | |
4231 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4232 | bool dummy1, dummy2, dummy3, dummy4; |
4233 | Sema::ReferenceCompareResult RefRelationship |
4234 | = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, |
4235 | dummy2, dummy3, dummy4); |
4236 | if (RefRelationship >= Sema::Ref_Related) { |
4237 | // Try to bind the reference here. |
4238 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4239 | T1Quals, cv2T2, T2, T2Quals, Sequence); |
4240 | if (Sequence) |
4241 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4242 | return; |
4243 | } |
4244 | |
4245 | // Update the initializer if we've resolved an overloaded function. |
4246 | if (Sequence.step_begin() != Sequence.step_end()) |
4247 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4248 | } |
4249 | |
4250 | // Not reference-related. Create a temporary and bind to that. |
4251 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
4252 | |
4253 | TryListInitialization(S, TempEntity, Kind, InitList, Sequence, |
4254 | TreatUnavailableAsInvalid); |
4255 | if (Sequence) { |
4256 | if (DestType->isRValueReferenceType() || |
4257 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) |
4258 | Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); |
4259 | else |
4260 | Sequence.SetFailed( |
4261 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
4262 | } |
4263 | } |
4264 | |
4265 | /// Attempt list initialization (C++0x [dcl.init.list]) |
4266 | static void TryListInitialization(Sema &S, |
4267 | const InitializedEntity &Entity, |
4268 | const InitializationKind &Kind, |
4269 | InitListExpr *InitList, |
4270 | InitializationSequence &Sequence, |
4271 | bool TreatUnavailableAsInvalid) { |
4272 | QualType DestType = Entity.getType(); |
4273 | |
4274 | // C++ doesn't allow scalar initialization with more than one argument. |
4275 | // But C99 complex numbers are scalars and it makes sense there. |
4276 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
4277 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
4278 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
4279 | return; |
4280 | } |
4281 | if (DestType->isReferenceType()) { |
4282 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
4283 | TreatUnavailableAsInvalid); |
4284 | return; |
4285 | } |
4286 | |
4287 | if (DestType->isRecordType() && |
4288 | !S.isCompleteType(InitList->getBeginLoc(), DestType)) { |
4289 | Sequence.setIncompleteTypeFailure(DestType); |
4290 | return; |
4291 | } |
4292 | |
4293 | // C++11 [dcl.init.list]p3, per DR1467: |
4294 | // - If T is a class type and the initializer list has a single element of |
4295 | // type cv U, where U is T or a class derived from T, the object is |
4296 | // initialized from that element (by copy-initialization for |
4297 | // copy-list-initialization, or by direct-initialization for |
4298 | // direct-list-initialization). |
4299 | // - Otherwise, if T is a character array and the initializer list has a |
4300 | // single element that is an appropriately-typed string literal |
4301 | // (8.5.2 [dcl.init.string]), initialization is performed as described |
4302 | // in that section. |
4303 | // - Otherwise, if T is an aggregate, [...] (continue below). |
4304 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { |
4305 | if (DestType->isRecordType()) { |
4306 | QualType InitType = InitList->getInit(0)->getType(); |
4307 | if (S.Context.hasSameUnqualifiedType(InitType, DestType) || |
4308 | S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { |
4309 | Expr *InitListAsExpr = InitList; |
4310 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4311 | DestType, Sequence, |
4312 | /*InitListSyntax*/false, |
4313 | /*IsInitListCopy*/true); |
4314 | return; |
4315 | } |
4316 | } |
4317 | if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { |
4318 | Expr *SubInit[1] = {InitList->getInit(0)}; |
4319 | if (!isa<VariableArrayType>(DestAT) && |
4320 | IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { |
4321 | InitializationKind SubKind = |
4322 | Kind.getKind() == InitializationKind::IK_DirectList |
4323 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4324 | InitList->getLBraceLoc(), |
4325 | InitList->getRBraceLoc()) |
4326 | : Kind; |
4327 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4328 | /*TopLevelOfInitList*/ true, |
4329 | TreatUnavailableAsInvalid); |
4330 | |
4331 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
4332 | // the element is not an appropriately-typed string literal, in which |
4333 | // case we should proceed as in C++11 (below). |
4334 | if (Sequence) { |
4335 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4336 | return; |
4337 | } |
4338 | } |
4339 | } |
4340 | } |
4341 | |
4342 | // C++11 [dcl.init.list]p3: |
4343 | // - If T is an aggregate, aggregate initialization is performed. |
4344 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
4345 | (S.getLangOpts().CPlusPlus11 && |
4346 | S.isStdInitializerList(DestType, nullptr))) { |
4347 | if (S.getLangOpts().CPlusPlus11) { |
4348 | // - Otherwise, if the initializer list has no elements and T is a |
4349 | // class type with a default constructor, the object is |
4350 | // value-initialized. |
4351 | if (InitList->getNumInits() == 0) { |
4352 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
4353 | if (RD->hasDefaultConstructor()) { |
4354 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
4355 | return; |
4356 | } |
4357 | } |
4358 | |
4359 | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
4360 | // an initializer_list object constructed [...] |
4361 | if (TryInitializerListConstruction(S, InitList, DestType, Sequence, |
4362 | TreatUnavailableAsInvalid)) |
4363 | return; |
4364 | |
4365 | // - Otherwise, if T is a class type, constructors are considered. |
4366 | Expr *InitListAsExpr = InitList; |
4367 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4368 | DestType, Sequence, /*InitListSyntax*/true); |
4369 | } else |
4370 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
4371 | return; |
4372 | } |
4373 | |
4374 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
4375 | InitList->getNumInits() == 1) { |
4376 | Expr *E = InitList->getInit(0); |
4377 | |
4378 | // - Otherwise, if T is an enumeration with a fixed underlying type, |
4379 | // the initializer-list has a single element v, and the initialization |
4380 | // is direct-list-initialization, the object is initialized with the |
4381 | // value T(v); if a narrowing conversion is required to convert v to |
4382 | // the underlying type of T, the program is ill-formed. |
4383 | auto *ET = DestType->getAs<EnumType>(); |
4384 | if (S.getLangOpts().CPlusPlus17 && |
4385 | Kind.getKind() == InitializationKind::IK_DirectList && |
4386 | ET && ET->getDecl()->isFixed() && |
4387 | !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && |
4388 | (E->getType()->isIntegralOrEnumerationType() || |
4389 | E->getType()->isFloatingType())) { |
4390 | // There are two ways that T(v) can work when T is an enumeration type. |
4391 | // If there is either an implicit conversion sequence from v to T or |
4392 | // a conversion function that can convert from v to T, then we use that. |
4393 | // Otherwise, if v is of integral, enumeration, or floating-point type, |
4394 | // it is converted to the enumeration type via its underlying type. |
4395 | // There is no overlap possible between these two cases (except when the |
4396 | // source value is already of the destination type), and the first |
4397 | // case is handled by the general case for single-element lists below. |
4398 | ImplicitConversionSequence ICS; |
4399 | ICS.setStandard(); |
4400 | ICS.Standard.setAsIdentityConversion(); |
4401 | if (!E->isRValue()) |
4402 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
4403 | // If E is of a floating-point type, then the conversion is ill-formed |
4404 | // due to narrowing, but go through the motions in order to produce the |
4405 | // right diagnostic. |
4406 | ICS.Standard.Second = E->getType()->isFloatingType() |
4407 | ? ICK_Floating_Integral |
4408 | : ICK_Integral_Conversion; |
4409 | ICS.Standard.setFromType(E->getType()); |
4410 | ICS.Standard.setToType(0, E->getType()); |
4411 | ICS.Standard.setToType(1, DestType); |
4412 | ICS.Standard.setToType(2, DestType); |
4413 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), |
4414 | /*TopLevelOfInitList*/true); |
4415 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4416 | return; |
4417 | } |
4418 | |
4419 | // - Otherwise, if the initializer list has a single element of type E |
4420 | // [...references are handled above...], the object or reference is |
4421 | // initialized from that element (by copy-initialization for |
4422 | // copy-list-initialization, or by direct-initialization for |
4423 | // direct-list-initialization); if a narrowing conversion is required |
4424 | // to convert the element to T, the program is ill-formed. |
4425 | // |
4426 | // Per core-24034, this is direct-initialization if we were performing |
4427 | // direct-list-initialization and copy-initialization otherwise. |
4428 | // We can't use InitListChecker for this, because it always performs |
4429 | // copy-initialization. This only matters if we might use an 'explicit' |
4430 | // conversion operator, so we only need to handle the cases where the source |
4431 | // is of record type. |
4432 | if (InitList->getInit(0)->getType()->isRecordType()) { |
4433 | InitializationKind SubKind = |
4434 | Kind.getKind() == InitializationKind::IK_DirectList |
4435 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4436 | InitList->getLBraceLoc(), |
4437 | InitList->getRBraceLoc()) |
4438 | : Kind; |
4439 | Expr *SubInit[1] = { InitList->getInit(0) }; |
4440 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4441 | /*TopLevelOfInitList*/true, |
4442 | TreatUnavailableAsInvalid); |
4443 | if (Sequence) |
4444 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4445 | return; |
4446 | } |
4447 | } |
4448 | |
4449 | InitListChecker CheckInitList(S, Entity, InitList, |
4450 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
4451 | if (CheckInitList.HadError()) { |
4452 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
4453 | return; |
4454 | } |
4455 | |
4456 | // Add the list initialization step with the built init list. |
4457 | Sequence.AddListInitializationStep(DestType); |
4458 | } |
4459 | |
4460 | /// Try a reference initialization that involves calling a conversion |
4461 | /// function. |
4462 | static OverloadingResult TryRefInitWithConversionFunction( |
4463 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4464 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
4465 | InitializationSequence &Sequence) { |
4466 | QualType DestType = Entity.getType(); |
4467 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4468 | QualType T1 = cv1T1.getUnqualifiedType(); |
4469 | QualType cv2T2 = Initializer->getType(); |
4470 | QualType T2 = cv2T2.getUnqualifiedType(); |
4471 | |
4472 | bool DerivedToBase; |
4473 | bool ObjCConversion; |
4474 | bool ObjCLifetimeConversion; |
4475 | bool FunctionConversion; |
4476 | assert(!S.CompareReferenceRelationship(((!S.CompareReferenceRelationship( Initializer->getBeginLoc (), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion , FunctionConversion) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship( Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, FunctionConversion) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4479, __PRETTY_FUNCTION__)) |
4477 | Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion,((!S.CompareReferenceRelationship( Initializer->getBeginLoc (), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion , FunctionConversion) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship( Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, FunctionConversion) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4479, __PRETTY_FUNCTION__)) |
4478 | ObjCLifetimeConversion, FunctionConversion) &&((!S.CompareReferenceRelationship( Initializer->getBeginLoc (), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion , FunctionConversion) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship( Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, FunctionConversion) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4479, __PRETTY_FUNCTION__)) |
4479 | "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship( Initializer->getBeginLoc (), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion , FunctionConversion) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship( Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, FunctionConversion) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4479, __PRETTY_FUNCTION__)); |
4480 | (void)DerivedToBase; |
4481 | (void)ObjCConversion; |
4482 | (void)ObjCLifetimeConversion; |
4483 | (void)FunctionConversion; |
4484 | |
4485 | // Build the candidate set directly in the initialization sequence |
4486 | // structure, so that it will persist if we fail. |
4487 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4488 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4489 | |
4490 | // Determine whether we are allowed to call explicit conversion operators. |
4491 | // Note that none of [over.match.copy], [over.match.conv], nor |
4492 | // [over.match.ref] permit an explicit constructor to be chosen when |
4493 | // initializing a reference, not even for direct-initialization. |
4494 | bool AllowExplicitCtors = false; |
4495 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
4496 | |
4497 | const RecordType *T1RecordType = nullptr; |
4498 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
4499 | S.isCompleteType(Kind.getLocation(), T1)) { |
4500 | // The type we're converting to is a class type. Enumerate its constructors |
4501 | // to see if there is a suitable conversion. |
4502 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); |
4503 | |
4504 | for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { |
4505 | auto Info = getConstructorInfo(D); |
4506 | if (!Info.Constructor) |
4507 | continue; |
4508 | |
4509 | if (!Info.Constructor->isInvalidDecl() && |
4510 | Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { |
4511 | if (Info.ConstructorTmpl) |
4512 | S.AddTemplateOverloadCandidate( |
4513 | Info.ConstructorTmpl, Info.FoundDecl, |
4514 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
4515 | /*SuppressUserConversions=*/true, |
4516 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4517 | else |
4518 | S.AddOverloadCandidate( |
4519 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, |
4520 | /*SuppressUserConversions=*/true, |
4521 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4522 | } |
4523 | } |
4524 | } |
4525 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
4526 | return OR_No_Viable_Function; |
4527 | |
4528 | const RecordType *T2RecordType = nullptr; |
4529 | if ((T2RecordType = T2->getAs<RecordType>()) && |
4530 | S.isCompleteType(Kind.getLocation(), T2)) { |
4531 | // The type we're converting from is a class type, enumerate its conversion |
4532 | // functions. |
4533 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); |
4534 | |
4535 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4536 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4537 | NamedDecl *D = *I; |
4538 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4539 | if (isa<UsingShadowDecl>(D)) |
4540 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
4541 | |
4542 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
4543 | CXXConversionDecl *Conv; |
4544 | if (ConvTemplate) |
4545 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4546 | else |
4547 | Conv = cast<CXXConversionDecl>(D); |
4548 | |
4549 | // If the conversion function doesn't return a reference type, |
4550 | // it can't be considered for this conversion unless we're allowed to |
4551 | // consider rvalues. |
4552 | // FIXME: Do we need to make sure that we only consider conversion |
4553 | // candidates with reference-compatible results? That might be needed to |
4554 | // break recursion. |
4555 | if ((AllowExplicitConvs || !Conv->isExplicit()) && |
4556 | (AllowRValues || |
4557 | Conv->getConversionType()->isLValueReferenceType())) { |
4558 | if (ConvTemplate) |
4559 | S.AddTemplateConversionCandidate( |
4560 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
4561 | CandidateSet, |
4562 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4563 | else |
4564 | S.AddConversionCandidate( |
4565 | Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, |
4566 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4567 | } |
4568 | } |
4569 | } |
4570 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
4571 | return OR_No_Viable_Function; |
4572 | |
4573 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4574 | |
4575 | // Perform overload resolution. If it fails, return the failed result. |
4576 | OverloadCandidateSet::iterator Best; |
4577 | if (OverloadingResult Result |
4578 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) |
4579 | return Result; |
4580 | |
4581 | FunctionDecl *Function = Best->Function; |
4582 | // This is the overload that will be used for this initialization step if we |
4583 | // use this initialization. Mark it as referenced. |
4584 | Function->setReferenced(); |
4585 | |
4586 | // Compute the returned type and value kind of the conversion. |
4587 | QualType cv3T3; |
4588 | if (isa<CXXConversionDecl>(Function)) |
4589 | cv3T3 = Function->getReturnType(); |
4590 | else |
4591 | cv3T3 = T1; |
4592 | |
4593 | ExprValueKind VK = VK_RValue; |
4594 | if (cv3T3->isLValueReferenceType()) |
4595 | VK = VK_LValue; |
4596 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
4597 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
4598 | cv3T3 = cv3T3.getNonLValueExprType(S.Context); |
4599 | |
4600 | // Add the user-defined conversion step. |
4601 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4602 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, |
4603 | HadMultipleCandidates); |
4604 | |
4605 | // Determine whether we'll need to perform derived-to-base adjustments or |
4606 | // other conversions. |
4607 | bool NewDerivedToBase = false; |
4608 | bool NewObjCConversion = false; |
4609 | bool NewObjCLifetimeConversion = false; |
4610 | bool NewFunctionConversion = false; |
4611 | Sema::ReferenceCompareResult NewRefRelationship = |
4612 | S.CompareReferenceRelationship( |
4613 | DeclLoc, T1, cv3T3, NewDerivedToBase, NewObjCConversion, |
4614 | NewObjCLifetimeConversion, NewFunctionConversion); |
4615 | |
4616 | // Add the final conversion sequence, if necessary. |
4617 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
4618 | assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor" ) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4619, __PRETTY_FUNCTION__)) |
4619 | "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor" ) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4619, __PRETTY_FUNCTION__)); |
4620 | |
4621 | ImplicitConversionSequence ICS; |
4622 | ICS.setStandard(); |
4623 | ICS.Standard = Best->FinalConversion; |
4624 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); |
4625 | |
4626 | // Every implicit conversion results in a prvalue, except for a glvalue |
4627 | // derived-to-base conversion, which we handle below. |
4628 | cv3T3 = ICS.Standard.getToType(2); |
4629 | VK = VK_RValue; |
4630 | } |
4631 | |
4632 | // If the converted initializer is a prvalue, its type T4 is adjusted to |
4633 | // type "cv1 T4" and the temporary materialization conversion is applied. |
4634 | // |
4635 | // We adjust the cv-qualifications to match the reference regardless of |
4636 | // whether we have a prvalue so that the AST records the change. In this |
4637 | // case, T4 is "cv3 T3". |
4638 | QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); |
4639 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
4640 | Sequence.AddQualificationConversionStep(cv1T4, VK); |
4641 | Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); |
4642 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
4643 | |
4644 | if (NewDerivedToBase) |
4645 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK); |
4646 | else if (NewObjCConversion) |
4647 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4648 | else if (NewFunctionConversion) |
4649 | Sequence.AddQualificationConversionStep(cv1T1, VK); |
4650 | |
4651 | return OR_Success; |
4652 | } |
4653 | |
4654 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
4655 | const InitializedEntity &Entity, |
4656 | Expr *CurInitExpr); |
4657 | |
4658 | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
4659 | static void TryReferenceInitialization(Sema &S, |
4660 | const InitializedEntity &Entity, |
4661 | const InitializationKind &Kind, |
4662 | Expr *Initializer, |
4663 | InitializationSequence &Sequence) { |
4664 | QualType DestType = Entity.getType(); |
4665 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4666 | Qualifiers T1Quals; |
4667 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4668 | QualType cv2T2 = Initializer->getType(); |
4669 | Qualifiers T2Quals; |
4670 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4671 | |
4672 | // If the initializer is the address of an overloaded function, try |
4673 | // to resolve the overloaded function. If all goes well, T2 is the |
4674 | // type of the resulting function. |
4675 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4676 | T1, Sequence)) |
4677 | return; |
4678 | |
4679 | // Delegate everything else to a subfunction. |
4680 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4681 | T1Quals, cv2T2, T2, T2Quals, Sequence); |
4682 | } |
4683 | |
4684 | /// Determine whether an expression is a non-referenceable glvalue (one to |
4685 | /// which a reference can never bind). Attempting to bind a reference to |
4686 | /// such a glvalue will always create a temporary. |
4687 | static bool isNonReferenceableGLValue(Expr *E) { |
4688 | return E->refersToBitField() || E->refersToVectorElement(); |
4689 | } |
4690 | |
4691 | /// Reference initialization without resolving overloaded functions. |
4692 | static void TryReferenceInitializationCore(Sema &S, |
4693 | const InitializedEntity &Entity, |
4694 | const InitializationKind &Kind, |
4695 | Expr *Initializer, |
4696 | QualType cv1T1, QualType T1, |
4697 | Qualifiers T1Quals, |
4698 | QualType cv2T2, QualType T2, |
4699 | Qualifiers T2Quals, |
4700 | InitializationSequence &Sequence) { |
4701 | QualType DestType = Entity.getType(); |
4702 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4703 | // Compute some basic properties of the types and the initializer. |
4704 | bool isLValueRef = DestType->isLValueReferenceType(); |
4705 | bool isRValueRef = !isLValueRef; |
4706 | bool DerivedToBase = false; |
4707 | bool ObjCConversion = false; |
4708 | bool ObjCLifetimeConversion = false; |
4709 | bool FunctionConversion = false; |
4710 | Expr::Classification InitCategory = Initializer->Classify(S.Context); |
4711 | Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship( |
4712 | DeclLoc, cv1T1, cv2T2, DerivedToBase, ObjCConversion, |
4713 | ObjCLifetimeConversion, FunctionConversion); |
4714 | |
4715 | // C++0x [dcl.init.ref]p5: |
4716 | // A reference to type "cv1 T1" is initialized by an expression of type |
4717 | // "cv2 T2" as follows: |
4718 | // |
4719 | // - If the reference is an lvalue reference and the initializer |
4720 | // expression |
4721 | // Note the analogous bullet points for rvalue refs to functions. Because |
4722 | // there are no function rvalues in C++, rvalue refs to functions are treated |
4723 | // like lvalue refs. |
4724 | OverloadingResult ConvOvlResult = OR_Success; |
4725 | bool T1Function = T1->isFunctionType(); |
4726 | if (isLValueRef || T1Function) { |
4727 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && |
4728 | (RefRelationship == Sema::Ref_Compatible || |
4729 | (Kind.isCStyleOrFunctionalCast() && |
4730 | RefRelationship == Sema::Ref_Related))) { |
4731 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
4732 | // reference-compatible with "cv2 T2," or |
4733 | if (T1Quals != T2Quals) |
4734 | // Convert to cv1 T2. This should only add qualifiers unless this is a |
4735 | // c-style cast. The removal of qualifiers in that case notionally |
4736 | // happens after the reference binding, but that doesn't matter. |
4737 | Sequence.AddQualificationConversionStep( |
4738 | S.Context.getQualifiedType(T2, T1Quals), |
4739 | Initializer->getValueKind()); |
4740 | if (DerivedToBase) |
4741 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); |
4742 | else if (ObjCConversion) |
4743 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4744 | else if (FunctionConversion) |
4745 | Sequence.AddQualificationConversionStep(cv1T1, VK_LValue); |
4746 | |
4747 | // We only create a temporary here when binding a reference to a |
4748 | // bit-field or vector element. Those cases are't supposed to be |
4749 | // handled by this bullet, but the outcome is the same either way. |
4750 | Sequence.AddReferenceBindingStep(cv1T1, false); |
4751 | return; |
4752 | } |
4753 | |
4754 | // - has a class type (i.e., T2 is a class type), where T1 is not |
4755 | // reference-related to T2, and can be implicitly converted to an |
4756 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
4757 | // with "cv3 T3" (this conversion is selected by enumerating the |
4758 | // applicable conversion functions (13.3.1.6) and choosing the best |
4759 | // one through overload resolution (13.3)), |
4760 | // If we have an rvalue ref to function type here, the rhs must be |
4761 | // an rvalue. DR1287 removed the "implicitly" here. |
4762 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
4763 | (isLValueRef || InitCategory.isRValue())) { |
4764 | ConvOvlResult = TryRefInitWithConversionFunction( |
4765 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
4766 | /*IsLValueRef*/ isLValueRef, Sequence); |
4767 | if (ConvOvlResult == OR_Success) |
4768 | return; |
4769 | if (ConvOvlResult != OR_No_Viable_Function) |
4770 | Sequence.SetOverloadFailure( |
4771 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4772 | ConvOvlResult); |
4773 | } |
4774 | } |
4775 | |
4776 | // - Otherwise, the reference shall be an lvalue reference to a |
4777 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
4778 | // shall be an rvalue reference. |
4779 | // For address spaces, we interpret this to mean that an addr space |
4780 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
4781 | if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
4782 | T1Quals.isAddressSpaceSupersetOf(T2Quals))) { |
4783 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
4784 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4785 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
4786 | Sequence.SetOverloadFailure( |
4787 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4788 | ConvOvlResult); |
4789 | else if (!InitCategory.isLValue()) |
4790 | Sequence.SetFailed( |
4791 | T1Quals.isAddressSpaceSupersetOf(T2Quals) |
4792 | ? InitializationSequence:: |
4793 | FK_NonConstLValueReferenceBindingToTemporary |
4794 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4795 | else { |
4796 | InitializationSequence::FailureKind FK; |
4797 | switch (RefRelationship) { |
4798 | case Sema::Ref_Compatible: |
4799 | if (Initializer->refersToBitField()) |
4800 | FK = InitializationSequence:: |
4801 | FK_NonConstLValueReferenceBindingToBitfield; |
4802 | else if (Initializer->refersToVectorElement()) |
4803 | FK = InitializationSequence:: |
4804 | FK_NonConstLValueReferenceBindingToVectorElement; |
4805 | else |
4806 | llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 4806); |
4807 | break; |
4808 | case Sema::Ref_Related: |
4809 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
4810 | break; |
4811 | case Sema::Ref_Incompatible: |
4812 | FK = InitializationSequence:: |
4813 | FK_NonConstLValueReferenceBindingToUnrelated; |
4814 | break; |
4815 | } |
4816 | Sequence.SetFailed(FK); |
4817 | } |
4818 | return; |
4819 | } |
4820 | |
4821 | // - If the initializer expression |
4822 | // - is an |
4823 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
4824 | // [1z] rvalue (but not a bit-field) or |
4825 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
4826 | // |
4827 | // Note: functions are handled above and below rather than here... |
4828 | if (!T1Function && |
4829 | (RefRelationship == Sema::Ref_Compatible || |
4830 | (Kind.isCStyleOrFunctionalCast() && |
4831 | RefRelationship == Sema::Ref_Related)) && |
4832 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || |
4833 | (InitCategory.isPRValue() && |
4834 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
4835 | T2->isArrayType())))) { |
4836 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; |
4837 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
4838 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
4839 | // compiler the freedom to perform a copy here or bind to the |
4840 | // object, while C++0x requires that we bind directly to the |
4841 | // object. Hence, we always bind to the object without making an |
4842 | // extra copy. However, in C++03 requires that we check for the |
4843 | // presence of a suitable copy constructor: |
4844 | // |
4845 | // The constructor that would be used to make the copy shall |
4846 | // be callable whether or not the copy is actually done. |
4847 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
4848 | Sequence.AddExtraneousCopyToTemporary(cv2T2); |
4849 | else if (S.getLangOpts().CPlusPlus11) |
4850 | CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); |
4851 | } |
4852 | |
4853 | // C++1z [dcl.init.ref]/5.2.1.2: |
4854 | // If the converted initializer is a prvalue, its type T4 is adjusted |
4855 | // to type "cv1 T4" and the temporary materialization conversion is |
4856 | // applied. |
4857 | // Postpone address space conversions to after the temporary materialization |
4858 | // conversion to allow creating temporaries in the alloca address space. |
4859 | auto T1QualsIgnoreAS = T1Quals; |
4860 | auto T2QualsIgnoreAS = T2Quals; |
4861 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
4862 | T1QualsIgnoreAS.removeAddressSpace(); |
4863 | T2QualsIgnoreAS.removeAddressSpace(); |
4864 | } |
4865 | QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); |
4866 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
4867 | Sequence.AddQualificationConversionStep(cv1T4, ValueKind); |
4868 | Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); |
4869 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
4870 | // Add addr space conversion if required. |
4871 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
4872 | auto T4Quals = cv1T4.getQualifiers(); |
4873 | T4Quals.addAddressSpace(T1Quals.getAddressSpace()); |
4874 | QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); |
4875 | Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); |
4876 | } |
4877 | |
4878 | // In any case, the reference is bound to the resulting glvalue (or to |
4879 | // an appropriate base class subobject). |
4880 | if (DerivedToBase) |
4881 | Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); |
4882 | else if (ObjCConversion) |
4883 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4884 | return; |
4885 | } |
4886 | |
4887 | // - has a class type (i.e., T2 is a class type), where T1 is not |
4888 | // reference-related to T2, and can be implicitly converted to an |
4889 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
4890 | // where "cv1 T1" is reference-compatible with "cv3 T3", |
4891 | // |
4892 | // DR1287 removes the "implicitly" here. |
4893 | if (T2->isRecordType()) { |
4894 | if (RefRelationship == Sema::Ref_Incompatible) { |
4895 | ConvOvlResult = TryRefInitWithConversionFunction( |
4896 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
4897 | /*IsLValueRef*/ isLValueRef, Sequence); |
4898 | if (ConvOvlResult) |
4899 | Sequence.SetOverloadFailure( |
4900 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4901 | ConvOvlResult); |
4902 | |
4903 | return; |
4904 | } |
4905 | |
4906 | if (RefRelationship == Sema::Ref_Compatible && |
4907 | isRValueRef && InitCategory.isLValue()) { |
4908 | Sequence.SetFailed( |
4909 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
4910 | return; |
4911 | } |
4912 | |
4913 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4914 | return; |
4915 | } |
4916 | |
4917 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
4918 | // from the initializer expression using the rules for a non-reference |
4919 | // copy-initialization (8.5). The reference is then bound to the |
4920 | // temporary. [...] |
4921 | |
4922 | // Ignore address space of reference type at this point and perform address |
4923 | // space conversion after the reference binding step. |
4924 | QualType cv1T1IgnoreAS = |
4925 | T1Quals.hasAddressSpace() |
4926 | ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) |
4927 | : cv1T1; |
4928 | |
4929 | InitializedEntity TempEntity = |
4930 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); |
4931 | |
4932 | // FIXME: Why do we use an implicit conversion here rather than trying |
4933 | // copy-initialization? |
4934 | ImplicitConversionSequence ICS |
4935 | = S.TryImplicitConversion(Initializer, TempEntity.getType(), |
4936 | /*SuppressUserConversions=*/false, |
4937 | /*AllowExplicit=*/false, |
4938 | /*FIXME:InOverloadResolution=*/false, |
4939 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
4940 | /*AllowObjCWritebackConversion=*/false); |
4941 | |
4942 | if (ICS.isBad()) { |
4943 | // FIXME: Use the conversion function set stored in ICS to turn |
4944 | // this into an overloading ambiguity diagnostic. However, we need |
4945 | // to keep that set as an OverloadCandidateSet rather than as some |
4946 | // other kind of set. |
4947 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
4948 | Sequence.SetOverloadFailure( |
4949 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4950 | ConvOvlResult); |
4951 | else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
4952 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4953 | else |
4954 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
4955 | return; |
4956 | } else { |
4957 | Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); |
4958 | } |
4959 | |
4960 | // [...] If T1 is reference-related to T2, cv1 must be the |
4961 | // same cv-qualification as, or greater cv-qualification |
4962 | // than, cv2; otherwise, the program is ill-formed. |
4963 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
4964 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
4965 | if ((RefRelationship == Sema::Ref_Related && |
4966 | (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || |
4967 | !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { |
4968 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4969 | return; |
4970 | } |
4971 | |
4972 | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
4973 | // reference, the initializer expression shall not be an lvalue. |
4974 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
4975 | InitCategory.isLValue()) { |
4976 | Sequence.SetFailed( |
4977 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
4978 | return; |
4979 | } |
4980 | |
4981 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); |
4982 | |
4983 | if (T1Quals.hasAddressSpace()) { |
4984 | if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), |
4985 | LangAS::Default)) { |
4986 | Sequence.SetFailed( |
4987 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
4988 | return; |
4989 | } |
4990 | Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue |
4991 | : VK_XValue); |
4992 | } |
4993 | } |
4994 | |
4995 | /// Attempt character array initialization from a string literal |
4996 | /// (C++ [dcl.init.string], C99 6.7.8). |
4997 | static void TryStringLiteralInitialization(Sema &S, |
4998 | const InitializedEntity &Entity, |
4999 | const InitializationKind &Kind, |
5000 | Expr *Initializer, |
5001 | InitializationSequence &Sequence) { |
5002 | Sequence.AddStringInitStep(Entity.getType()); |
5003 | } |
5004 | |
5005 | /// Attempt value initialization (C++ [dcl.init]p7). |
5006 | static void TryValueInitialization(Sema &S, |
5007 | const InitializedEntity &Entity, |
5008 | const InitializationKind &Kind, |
5009 | InitializationSequence &Sequence, |
5010 | InitListExpr *InitList) { |
5011 | assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists" ) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5012, __PRETTY_FUNCTION__)) |
5012 | "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists" ) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5012, __PRETTY_FUNCTION__)); |
5013 | |
5014 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
5015 | // |
5016 | // To value-initialize an object of type T means: |
5017 | QualType T = Entity.getType(); |
5018 | |
5019 | // -- if T is an array type, then each element is value-initialized; |
5020 | T = S.Context.getBaseElementType(T); |
5021 | |
5022 | if (const RecordType *RT = T->getAs<RecordType>()) { |
5023 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
5024 | bool NeedZeroInitialization = true; |
5025 | // C++98: |
5026 | // -- if T is a class type (clause 9) with a user-declared constructor |
5027 | // (12.1), then the default constructor for T is called (and the |
5028 | // initialization is ill-formed if T has no accessible default |
5029 | // constructor); |
5030 | // C++11: |
5031 | // -- if T is a class type (clause 9) with either no default constructor |
5032 | // (12.1 [class.ctor]) or a default constructor that is user-provided |
5033 | // or deleted, then the object is default-initialized; |
5034 | // |
5035 | // Note that the C++11 rule is the same as the C++98 rule if there are no |
5036 | // defaulted or deleted constructors, so we just use it unconditionally. |
5037 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); |
5038 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
5039 | NeedZeroInitialization = false; |
5040 | |
5041 | // -- if T is a (possibly cv-qualified) non-union class type without a |
5042 | // user-provided or deleted default constructor, then the object is |
5043 | // zero-initialized and, if T has a non-trivial default constructor, |
5044 | // default-initialized; |
5045 | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
5046 | // constructor' part was removed by DR1507. |
5047 | if (NeedZeroInitialization) |
5048 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5049 | |
5050 | // C++03: |
5051 | // -- if T is a non-union class type without a user-declared constructor, |
5052 | // then every non-static data member and base class component of T is |
5053 | // value-initialized; |
5054 | // [...] A program that calls for [...] value-initialization of an |
5055 | // entity of reference type is ill-formed. |
5056 | // |
5057 | // C++11 doesn't need this handling, because value-initialization does not |
5058 | // occur recursively there, and the implicit default constructor is |
5059 | // defined as deleted in the problematic cases. |
5060 | if (!S.getLangOpts().CPlusPlus11 && |
5061 | ClassDecl->hasUninitializedReferenceMember()) { |
5062 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
5063 | return; |
5064 | } |
5065 | |
5066 | // If this is list-value-initialization, pass the empty init list on when |
5067 | // building the constructor call. This affects the semantics of a few |
5068 | // things (such as whether an explicit default constructor can be called). |
5069 | Expr *InitListAsExpr = InitList; |
5070 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
5071 | bool InitListSyntax = InitList; |
5072 | |
5073 | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
5074 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
5075 | return TryConstructorInitialization( |
5076 | S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); |
5077 | } |
5078 | } |
5079 | |
5080 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5081 | } |
5082 | |
5083 | /// Attempt default initialization (C++ [dcl.init]p6). |
5084 | static void TryDefaultInitialization(Sema &S, |
5085 | const InitializedEntity &Entity, |
5086 | const InitializationKind &Kind, |
5087 | InitializationSequence &Sequence) { |
5088 | assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast <void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5088, __PRETTY_FUNCTION__)); |
5089 | |
5090 | // C++ [dcl.init]p6: |
5091 | // To default-initialize an object of type T means: |
5092 | // - if T is an array type, each element is default-initialized; |
5093 | QualType DestType = S.Context.getBaseElementType(Entity.getType()); |
5094 | |
5095 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
5096 | // constructor for T is called (and the initialization is ill-formed if |
5097 | // T has no accessible default constructor); |
5098 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
5099 | TryConstructorInitialization(S, Entity, Kind, None, DestType, |
5100 | Entity.getType(), Sequence); |
5101 | return; |
5102 | } |
5103 | |
5104 | // - otherwise, no initialization is performed. |
5105 | |
5106 | // If a program calls for the default initialization of an object of |
5107 | // a const-qualified type T, T shall be a class type with a user-provided |
5108 | // default constructor. |
5109 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
5110 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
5111 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
5112 | return; |
5113 | } |
5114 | |
5115 | // If the destination type has a lifetime property, zero-initialize it. |
5116 | if (DestType.getQualifiers().hasObjCLifetime()) { |
5117 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5118 | return; |
5119 | } |
5120 | } |
5121 | |
5122 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
5123 | /// which enumerates all conversion functions and performs overload resolution |
5124 | /// to select the best. |
5125 | static void TryUserDefinedConversion(Sema &S, |
5126 | QualType DestType, |
5127 | const InitializationKind &Kind, |
5128 | Expr *Initializer, |
5129 | InitializationSequence &Sequence, |
5130 | bool TopLevelOfInitList) { |
5131 | assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere" ) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5131, __PRETTY_FUNCTION__)); |
5132 | QualType SourceType = Initializer->getType(); |
5133 | assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType ()) && "Must have a class type to perform a user-defined conversion" ) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5134, __PRETTY_FUNCTION__)) |
5134 | "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType ()) && "Must have a class type to perform a user-defined conversion" ) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5134, __PRETTY_FUNCTION__)); |
5135 | |
5136 | // Build the candidate set directly in the initialization sequence |
5137 | // structure, so that it will persist if we fail. |
5138 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
5139 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
5140 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
5141 | |
5142 | // Determine whether we are allowed to call explicit constructors or |
5143 | // explicit conversion operators. |
5144 | bool AllowExplicit = Kind.AllowExplicit(); |
5145 | |
5146 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
5147 | // The type we're converting to is a class type. Enumerate its constructors |
5148 | // to see if there is a suitable conversion. |
5149 | CXXRecordDecl *DestRecordDecl |
5150 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
5151 | |
5152 | // Try to complete the type we're converting to. |
5153 | if (S.isCompleteType(Kind.getLocation(), DestType)) { |
5154 | for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { |
5155 | auto Info = getConstructorInfo(D); |
5156 | if (!Info.Constructor) |
5157 | continue; |
5158 | |
5159 | if (!Info.Constructor->isInvalidDecl() && |
5160 | Info.Constructor->isConvertingConstructor(AllowExplicit)) { |
5161 | if (Info.ConstructorTmpl) |
5162 | S.AddTemplateOverloadCandidate( |
5163 | Info.ConstructorTmpl, Info.FoundDecl, |
5164 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
5165 | /*SuppressUserConversions=*/true, |
5166 | /*PartialOverloading*/ false, AllowExplicit); |
5167 | else |
5168 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
5169 | Initializer, CandidateSet, |
5170 | /*SuppressUserConversions=*/true, |
5171 | /*PartialOverloading*/ false, AllowExplicit); |
5172 | } |
5173 | } |
5174 | } |
5175 | } |
5176 | |
5177 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5178 | |
5179 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
5180 | // The type we're converting from is a class type, enumerate its conversion |
5181 | // functions. |
5182 | |
5183 | // We can only enumerate the conversion functions for a complete type; if |
5184 | // the type isn't complete, simply skip this step. |
5185 | if (S.isCompleteType(DeclLoc, SourceType)) { |
5186 | CXXRecordDecl *SourceRecordDecl |
5187 | = cast<CXXRecordDecl>(SourceRecordType->getDecl()); |
5188 | |
5189 | const auto &Conversions = |
5190 | SourceRecordDecl->getVisibleConversionFunctions(); |
5191 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5192 | NamedDecl *D = *I; |
5193 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
5194 | if (isa<UsingShadowDecl>(D)) |
5195 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
5196 | |
5197 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
5198 | CXXConversionDecl *Conv; |
5199 | if (ConvTemplate) |
5200 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
5201 | else |
5202 | Conv = cast<CXXConversionDecl>(D); |
5203 | |
5204 | if (AllowExplicit || !Conv->isExplicit()) { |
5205 | if (ConvTemplate) |
5206 | S.AddTemplateConversionCandidate( |
5207 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
5208 | CandidateSet, AllowExplicit, AllowExplicit); |
5209 | else |
5210 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
5211 | DestType, CandidateSet, AllowExplicit, |
5212 | AllowExplicit); |
5213 | } |
5214 | } |
5215 | } |
5216 | } |
5217 | |
5218 | // Perform overload resolution. If it fails, return the failed result. |
5219 | OverloadCandidateSet::iterator Best; |
5220 | if (OverloadingResult Result |
5221 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
5222 | Sequence.SetOverloadFailure( |
5223 | InitializationSequence::FK_UserConversionOverloadFailed, |
5224 | Result); |
5225 | return; |
5226 | } |
5227 | |
5228 | FunctionDecl *Function = Best->Function; |
5229 | Function->setReferenced(); |
5230 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5231 | |
5232 | if (isa<CXXConstructorDecl>(Function)) { |
5233 | // Add the user-defined conversion step. Any cv-qualification conversion is |
5234 | // subsumed by the initialization. Per DR5, the created temporary is of the |
5235 | // cv-unqualified type of the destination. |
5236 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
5237 | DestType.getUnqualifiedType(), |
5238 | HadMultipleCandidates); |
5239 | |
5240 | // C++14 and before: |
5241 | // - if the function is a constructor, the call initializes a temporary |
5242 | // of the cv-unqualified version of the destination type. The [...] |
5243 | // temporary [...] is then used to direct-initialize, according to the |
5244 | // rules above, the object that is the destination of the |
5245 | // copy-initialization. |
5246 | // Note that this just performs a simple object copy from the temporary. |
5247 | // |
5248 | // C++17: |
5249 | // - if the function is a constructor, the call is a prvalue of the |
5250 | // cv-unqualified version of the destination type whose return object |
5251 | // is initialized by the constructor. The call is used to |
5252 | // direct-initialize, according to the rules above, the object that |
5253 | // is the destination of the copy-initialization. |
5254 | // Therefore we need to do nothing further. |
5255 | // |
5256 | // FIXME: Mark this copy as extraneous. |
5257 | if (!S.getLangOpts().CPlusPlus17) |
5258 | Sequence.AddFinalCopy(DestType); |
5259 | else if (DestType.hasQualifiers()) |
5260 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
5261 | return; |
5262 | } |
5263 | |
5264 | // Add the user-defined conversion step that calls the conversion function. |
5265 | QualType ConvType = Function->getCallResultType(); |
5266 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, |
5267 | HadMultipleCandidates); |
5268 | |
5269 | if (ConvType->getAs<RecordType>()) { |
5270 | // The call is used to direct-initialize [...] the object that is the |
5271 | // destination of the copy-initialization. |
5272 | // |
5273 | // In C++17, this does not call a constructor if we enter /17.6.1: |
5274 | // - If the initializer expression is a prvalue and the cv-unqualified |
5275 | // version of the source type is the same as the class of the |
5276 | // destination [... do not make an extra copy] |
5277 | // |
5278 | // FIXME: Mark this copy as extraneous. |
5279 | if (!S.getLangOpts().CPlusPlus17 || |
5280 | Function->getReturnType()->isReferenceType() || |
5281 | !S.Context.hasSameUnqualifiedType(ConvType, DestType)) |
5282 | Sequence.AddFinalCopy(DestType); |
5283 | else if (!S.Context.hasSameType(ConvType, DestType)) |
5284 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
5285 | return; |
5286 | } |
5287 | |
5288 | // If the conversion following the call to the conversion function |
5289 | // is interesting, add it as a separate step. |
5290 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
5291 | Best->FinalConversion.Third) { |
5292 | ImplicitConversionSequence ICS; |
5293 | ICS.setStandard(); |
5294 | ICS.Standard = Best->FinalConversion; |
5295 | Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
5296 | } |
5297 | } |
5298 | |
5299 | /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
5300 | /// a function with a pointer return type contains a 'return false;' statement. |
5301 | /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
5302 | /// code using that header. |
5303 | /// |
5304 | /// Work around this by treating 'return false;' as zero-initializing the result |
5305 | /// if it's used in a pointer-returning function in a system header. |
5306 | static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
5307 | const InitializedEntity &Entity, |
5308 | const Expr *Init) { |
5309 | return S.getLangOpts().CPlusPlus11 && |
5310 | Entity.getKind() == InitializedEntity::EK_Result && |
5311 | Entity.getType()->isPointerType() && |
5312 | isa<CXXBoolLiteralExpr>(Init) && |
5313 | !cast<CXXBoolLiteralExpr>(Init)->getValue() && |
5314 | S.getSourceManager().isInSystemHeader(Init->getExprLoc()); |
5315 | } |
5316 | |
5317 | /// The non-zero enum values here are indexes into diagnostic alternatives. |
5318 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
5319 | |
5320 | /// Determines whether this expression is an acceptable ICR source. |
5321 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
5322 | bool isAddressOf, bool &isWeakAccess) { |
5323 | // Skip parens. |
5324 | e = e->IgnoreParens(); |
5325 | |
5326 | // Skip address-of nodes. |
5327 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
5328 | if (op->getOpcode() == UO_AddrOf) |
5329 | return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, |
5330 | isWeakAccess); |
5331 | |
5332 | // Skip certain casts. |
5333 | } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { |
5334 | switch (ce->getCastKind()) { |
5335 | case CK_Dependent: |
5336 | case CK_BitCast: |
5337 | case CK_LValueBitCast: |
5338 | case CK_NoOp: |
5339 | return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); |
5340 | |
5341 | case CK_ArrayToPointerDecay: |
5342 | return IIK_nonscalar; |
5343 | |
5344 | case CK_NullToPointer: |
5345 | return IIK_okay; |
5346 | |
5347 | default: |
5348 | break; |
5349 | } |
5350 | |
5351 | // If we have a declaration reference, it had better be a local variable. |
5352 | } else if (isa<DeclRefExpr>(e)) { |
5353 | // set isWeakAccess to true, to mean that there will be an implicit |
5354 | // load which requires a cleanup. |
5355 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
5356 | isWeakAccess = true; |
5357 | |
5358 | if (!isAddressOf) return IIK_nonlocal; |
5359 | |
5360 | VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); |
5361 | if (!var) return IIK_nonlocal; |
5362 | |
5363 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
5364 | |
5365 | // If we have a conditional operator, check both sides. |
5366 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { |
5367 | if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, |
5368 | isWeakAccess)) |
5369 | return iik; |
5370 | |
5371 | return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); |
5372 | |
5373 | // These are never scalar. |
5374 | } else if (isa<ArraySubscriptExpr>(e)) { |
5375 | return IIK_nonscalar; |
5376 | |
5377 | // Otherwise, it needs to be a null pointer constant. |
5378 | } else { |
5379 | return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) |
5380 | ? IIK_okay : IIK_nonlocal); |
5381 | } |
5382 | |
5383 | return IIK_nonlocal; |
5384 | } |
5385 | |
5386 | /// Check whether the given expression is a valid operand for an |
5387 | /// indirect copy/restore. |
5388 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
5389 | assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail ("src->isRValue()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5389, __PRETTY_FUNCTION__)); |
5390 | bool isWeakAccess = false; |
5391 | InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); |
5392 | // If isWeakAccess to true, there will be an implicit |
5393 | // load which requires a cleanup. |
5394 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
5395 | S.Cleanup.setExprNeedsCleanups(true); |
5396 | |
5397 | if (iik == IIK_okay) return; |
5398 | |
5399 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
5400 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
5401 | << src->getSourceRange(); |
5402 | } |
5403 | |
5404 | /// Determine whether we have compatible array types for the |
5405 | /// purposes of GNU by-copy array initialization. |
5406 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
5407 | const ArrayType *Source) { |
5408 | // If the source and destination array types are equivalent, we're |
5409 | // done. |
5410 | if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) |
5411 | return true; |
5412 | |
5413 | // Make sure that the element types are the same. |
5414 | if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) |
5415 | return false; |
5416 | |
5417 | // The only mismatch we allow is when the destination is an |
5418 | // incomplete array type and the source is a constant array type. |
5419 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
5420 | } |
5421 | |
5422 | static bool tryObjCWritebackConversion(Sema &S, |
5423 | InitializationSequence &Sequence, |
5424 | const InitializedEntity &Entity, |
5425 | Expr *Initializer) { |
5426 | bool ArrayDecay = false; |
5427 | QualType ArgType = Initializer->getType(); |
5428 | QualType ArgPointee; |
5429 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { |
5430 | ArrayDecay = true; |
5431 | ArgPointee = ArgArrayType->getElementType(); |
5432 | ArgType = S.Context.getPointerType(ArgPointee); |
5433 | } |
5434 | |
5435 | // Handle write-back conversion. |
5436 | QualType ConvertedArgType; |
5437 | if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), |
5438 | ConvertedArgType)) |
5439 | return false; |
5440 | |
5441 | // We should copy unless we're passing to an argument explicitly |
5442 | // marked 'out'. |
5443 | bool ShouldCopy = true; |
5444 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
5445 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
5446 | |
5447 | // Do we need an lvalue conversion? |
5448 | if (ArrayDecay || Initializer->isGLValue()) { |
5449 | ImplicitConversionSequence ICS; |
5450 | ICS.setStandard(); |
5451 | ICS.Standard.setAsIdentityConversion(); |
5452 | |
5453 | QualType ResultType; |
5454 | if (ArrayDecay) { |
5455 | ICS.Standard.First = ICK_Array_To_Pointer; |
5456 | ResultType = S.Context.getPointerType(ArgPointee); |
5457 | } else { |
5458 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
5459 | ResultType = Initializer->getType().getNonLValueExprType(S.Context); |
5460 | } |
5461 | |
5462 | Sequence.AddConversionSequenceStep(ICS, ResultType); |
5463 | } |
5464 | |
5465 | Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
5466 | return true; |
5467 | } |
5468 | |
5469 | static bool TryOCLSamplerInitialization(Sema &S, |
5470 | InitializationSequence &Sequence, |
5471 | QualType DestType, |
5472 | Expr *Initializer) { |
5473 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
5474 | (!Initializer->isIntegerConstantExpr(S.Context) && |
5475 | !Initializer->getType()->isSamplerT())) |
5476 | return false; |
5477 | |
5478 | Sequence.AddOCLSamplerInitStep(DestType); |
5479 | return true; |
5480 | } |
5481 | |
5482 | static bool IsZeroInitializer(Expr *Initializer, Sema &S) { |
5483 | return Initializer->isIntegerConstantExpr(S.getASTContext()) && |
5484 | (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); |
5485 | } |
5486 | |
5487 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
5488 | InitializationSequence &Sequence, |
5489 | QualType DestType, |
5490 | Expr *Initializer) { |
5491 | if (!S.getLangOpts().OpenCL) |
5492 | return false; |
5493 | |
5494 | // |
5495 | // OpenCL 1.2 spec, s6.12.10 |
5496 | // |
5497 | // The event argument can also be used to associate the |
5498 | // async_work_group_copy with a previous async copy allowing |
5499 | // an event to be shared by multiple async copies; otherwise |
5500 | // event should be zero. |
5501 | // |
5502 | if (DestType->isEventT() || DestType->isQueueT()) { |
5503 | if (!IsZeroInitializer(Initializer, S)) |
5504 | return false; |
5505 | |
5506 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
5507 | return true; |
5508 | } |
5509 | |
5510 | // We should allow zero initialization for all types defined in the |
5511 | // cl_intel_device_side_avc_motion_estimation extension, except |
5512 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
5513 | if (S.getOpenCLOptions().isEnabled( |
5514 | "cl_intel_device_side_avc_motion_estimation") && |
5515 | DestType->isOCLIntelSubgroupAVCType()) { |
5516 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
5517 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
5518 | return false; |
5519 | if (!IsZeroInitializer(Initializer, S)) |
5520 | return false; |
5521 | |
5522 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
5523 | return true; |
5524 | } |
5525 | |
5526 | return false; |
5527 | } |
5528 | |
5529 | InitializationSequence::InitializationSequence(Sema &S, |
5530 | const InitializedEntity &Entity, |
5531 | const InitializationKind &Kind, |
5532 | MultiExprArg Args, |
5533 | bool TopLevelOfInitList, |
5534 | bool TreatUnavailableAsInvalid) |
5535 | : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
5536 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
5537 | TreatUnavailableAsInvalid); |
5538 | } |
5539 | |
5540 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
5541 | /// address of that function, this returns true. Otherwise, it returns false. |
5542 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
5543 | auto *DRE = dyn_cast<DeclRefExpr>(E); |
5544 | if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) |
5545 | return false; |
5546 | |
5547 | return !S.checkAddressOfFunctionIsAvailable( |
5548 | cast<FunctionDecl>(DRE->getDecl())); |
5549 | } |
5550 | |
5551 | /// Determine whether we can perform an elementwise array copy for this kind |
5552 | /// of entity. |
5553 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
5554 | switch (Entity.getKind()) { |
5555 | case InitializedEntity::EK_LambdaCapture: |
5556 | // C++ [expr.prim.lambda]p24: |
5557 | // For array members, the array elements are direct-initialized in |
5558 | // increasing subscript order. |
5559 | return true; |
5560 | |
5561 | case InitializedEntity::EK_Variable: |
5562 | // C++ [dcl.decomp]p1: |
5563 | // [...] each element is copy-initialized or direct-initialized from the |
5564 | // corresponding element of the assignment-expression [...] |
5565 | return isa<DecompositionDecl>(Entity.getDecl()); |
5566 | |
5567 | case InitializedEntity::EK_Member: |
5568 | // C++ [class.copy.ctor]p14: |
5569 | // - if the member is an array, each element is direct-initialized with |
5570 | // the corresponding subobject of x |
5571 | return Entity.isImplicitMemberInitializer(); |
5572 | |
5573 | case InitializedEntity::EK_ArrayElement: |
5574 | // All the above cases are intended to apply recursively, even though none |
5575 | // of them actually say that. |
5576 | if (auto *E = Entity.getParent()) |
5577 | return canPerformArrayCopy(*E); |
5578 | break; |
5579 | |
5580 | default: |
5581 | break; |
5582 | } |
5583 | |
5584 | return false; |
5585 | } |
5586 | |
5587 | void InitializationSequence::InitializeFrom(Sema &S, |
5588 | const InitializedEntity &Entity, |
5589 | const InitializationKind &Kind, |
5590 | MultiExprArg Args, |
5591 | bool TopLevelOfInitList, |
5592 | bool TreatUnavailableAsInvalid) { |
5593 | ASTContext &Context = S.Context; |
5594 | |
5595 | // Eliminate non-overload placeholder types in the arguments. We |
5596 | // need to do this before checking whether types are dependent |
5597 | // because lowering a pseudo-object expression might well give us |
5598 | // something of dependent type. |
5599 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
5600 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
5601 | // FIXME: should we be doing this here? |
5602 | ExprResult result = S.CheckPlaceholderExpr(Args[I]); |
5603 | if (result.isInvalid()) { |
5604 | SetFailed(FK_PlaceholderType); |
5605 | return; |
5606 | } |
5607 | Args[I] = result.get(); |
5608 | } |
5609 | |
5610 | // C++0x [dcl.init]p16: |
5611 | // The semantics of initializers are as follows. The destination type is |
5612 | // the type of the object or reference being initialized and the source |
5613 | // type is the type of the initializer expression. The source type is not |
5614 | // defined when the initializer is a braced-init-list or when it is a |
5615 | // parenthesized list of expressions. |
5616 | QualType DestType = Entity.getType(); |
5617 | |
5618 | if (DestType->isDependentType() || |
5619 | Expr::hasAnyTypeDependentArguments(Args)) { |
5620 | SequenceKind = DependentSequence; |
5621 | return; |
5622 | } |
5623 | |
5624 | // Almost everything is a normal sequence. |
5625 | setSequenceKind(NormalSequence); |
5626 | |
5627 | QualType SourceType; |
5628 | Expr *Initializer = nullptr; |
5629 | if (Args.size() == 1) { |
5630 | Initializer = Args[0]; |
5631 | if (S.getLangOpts().ObjC) { |
5632 | if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), |
5633 | DestType, Initializer->getType(), |
5634 | Initializer) || |
5635 | S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) |
5636 | Args[0] = Initializer; |
5637 | } |
5638 | if (!isa<InitListExpr>(Initializer)) |
5639 | SourceType = Initializer->getType(); |
5640 | } |
5641 | |
5642 | // - If the initializer is a (non-parenthesized) braced-init-list, the |
5643 | // object is list-initialized (8.5.4). |
5644 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
5645 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { |
5646 | TryListInitialization(S, Entity, Kind, InitList, *this, |
5647 | TreatUnavailableAsInvalid); |
5648 | return; |
5649 | } |
5650 | } |
5651 | |
5652 | // - If the destination type is a reference type, see 8.5.3. |
5653 | if (DestType->isReferenceType()) { |
5654 | // C++0x [dcl.init.ref]p1: |
5655 | // A variable declared to be a T& or T&&, that is, "reference to type T" |
5656 | // (8.3.2), shall be initialized by an object, or function, of type T or |
5657 | // by an object that can be converted into a T. |
5658 | // (Therefore, multiple arguments are not permitted.) |
5659 | if (Args.size() != 1) |
5660 | SetFailed(FK_TooManyInitsForReference); |
5661 | // C++17 [dcl.init.ref]p5: |
5662 | // A reference [...] is initialized by an expression [...] as follows: |
5663 | // If the initializer is not an expression, presumably we should reject, |
5664 | // but the standard fails to actually say so. |
5665 | else if (isa<InitListExpr>(Args[0])) |
5666 | SetFailed(FK_ParenthesizedListInitForReference); |
5667 | else |
5668 | TryReferenceInitialization(S, Entity, Kind, Args[0], *this); |
5669 | return; |
5670 | } |
5671 | |
5672 | // - If the initializer is (), the object is value-initialized. |
5673 | if (Kind.getKind() == InitializationKind::IK_Value || |
5674 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
5675 | TryValueInitialization(S, Entity, Kind, *this); |
5676 | return; |
5677 | } |
5678 | |
5679 | // Handle default initialization. |
5680 | if (Kind.getKind() == InitializationKind::IK_Default) { |
5681 | TryDefaultInitialization(S, Entity, Kind, *this); |
5682 | return; |
5683 | } |
5684 | |
5685 | // - If the destination type is an array of characters, an array of |
5686 | // char16_t, an array of char32_t, or an array of wchar_t, and the |
5687 | // initializer is a string literal, see 8.5.2. |
5688 | // - Otherwise, if the destination type is an array, the program is |
5689 | // ill-formed. |
5690 | if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { |
5691 | if (Initializer && isa<VariableArrayType>(DestAT)) { |
5692 | SetFailed(FK_VariableLengthArrayHasInitializer); |
5693 | return; |
5694 | } |
5695 | |
5696 | if (Initializer) { |
5697 | switch (IsStringInit(Initializer, DestAT, Context)) { |
5698 | case SIF_None: |
5699 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); |
5700 | return; |
5701 | case SIF_NarrowStringIntoWideChar: |
5702 | SetFailed(FK_NarrowStringIntoWideCharArray); |
5703 | return; |
5704 | case SIF_WideStringIntoChar: |
5705 | SetFailed(FK_WideStringIntoCharArray); |
5706 | return; |
5707 | case SIF_IncompatWideStringIntoWideChar: |
5708 | SetFailed(FK_IncompatWideStringIntoWideChar); |
5709 | return; |
5710 | case SIF_PlainStringIntoUTF8Char: |
5711 | SetFailed(FK_PlainStringIntoUTF8Char); |
5712 | return; |
5713 | case SIF_UTF8StringIntoPlainChar: |
5714 | SetFailed(FK_UTF8StringIntoPlainChar); |
5715 | return; |
5716 | case SIF_Other: |
5717 | break; |
5718 | } |
5719 | } |
5720 | |
5721 | // Some kinds of initialization permit an array to be initialized from |
5722 | // another array of the same type, and perform elementwise initialization. |
5723 | if (Initializer && isa<ConstantArrayType>(DestAT) && |
5724 | S.Context.hasSameUnqualifiedType(Initializer->getType(), |
5725 | Entity.getType()) && |
5726 | canPerformArrayCopy(Entity)) { |
5727 | // If source is a prvalue, use it directly. |
5728 | if (Initializer->getValueKind() == VK_RValue) { |
5729 | AddArrayInitStep(DestType, /*IsGNUExtension*/false); |
5730 | return; |
5731 | } |
5732 | |
5733 | // Emit element-at-a-time copy loop. |
5734 | InitializedEntity Element = |
5735 | InitializedEntity::InitializeElement(S.Context, 0, Entity); |
5736 | QualType InitEltT = |
5737 | Context.getAsArrayType(Initializer->getType())->getElementType(); |
5738 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
5739 | Initializer->getValueKind(), |
5740 | Initializer->getObjectKind()); |
5741 | Expr *OVEAsExpr = &OVE; |
5742 | InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, |
5743 | TreatUnavailableAsInvalid); |
5744 | if (!Failed()) |
5745 | AddArrayInitLoopStep(Entity.getType(), InitEltT); |
5746 | return; |
5747 | } |
5748 | |
5749 | // Note: as an GNU C extension, we allow initialization of an |
5750 | // array from a compound literal that creates an array of the same |
5751 | // type, so long as the initializer has no side effects. |
5752 | if (!S.getLangOpts().CPlusPlus && Initializer && |
5753 | isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && |
5754 | Initializer->getType()->isArrayType()) { |
5755 | const ArrayType *SourceAT |
5756 | = Context.getAsArrayType(Initializer->getType()); |
5757 | if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) |
5758 | SetFailed(FK_ArrayTypeMismatch); |
5759 | else if (Initializer->HasSideEffects(S.Context)) |
5760 | SetFailed(FK_NonConstantArrayInit); |
5761 | else { |
5762 | AddArrayInitStep(DestType, /*IsGNUExtension*/true); |
5763 | } |
5764 | } |
5765 | // Note: as a GNU C++ extension, we allow list-initialization of a |
5766 | // class member of array type from a parenthesized initializer list. |
5767 | else if (S.getLangOpts().CPlusPlus && |
5768 | Entity.getKind() == InitializedEntity::EK_Member && |
5769 | Initializer && isa<InitListExpr>(Initializer)) { |
5770 | TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), |
5771 | *this, TreatUnavailableAsInvalid); |
5772 | AddParenthesizedArrayInitStep(DestType); |
5773 | } else if (DestAT->getElementType()->isCharType()) |
5774 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
5775 | else if (IsWideCharCompatible(DestAT->getElementType(), Context)) |
5776 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
5777 | else |
5778 | SetFailed(FK_ArrayNeedsInitList); |
5779 | |
5780 | return; |
5781 | } |
5782 | |
5783 | // Determine whether we should consider writeback conversions for |
5784 | // Objective-C ARC. |
5785 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
5786 | Entity.isParameterKind(); |
5787 | |
5788 | if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) |
5789 | return; |
5790 | |
5791 | // We're at the end of the line for C: it's either a write-back conversion |
5792 | // or it's a C assignment. There's no need to check anything else. |
5793 | if (!S.getLangOpts().CPlusPlus) { |
5794 | // If allowed, check whether this is an Objective-C writeback conversion. |
5795 | if (allowObjCWritebackConversion && |
5796 | tryObjCWritebackConversion(S, *this, Entity, Initializer)) { |
5797 | return; |
5798 | } |
5799 | |
5800 | if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) |
5801 | return; |
5802 | |
5803 | // Handle initialization in C |
5804 | AddCAssignmentStep(DestType); |
5805 | MaybeProduceObjCObject(S, *this, Entity); |
5806 | return; |
5807 | } |
5808 | |
5809 | assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5809, __PRETTY_FUNCTION__)); |
5810 | |
5811 | // - If the destination type is a (possibly cv-qualified) class type: |
5812 | if (DestType->isRecordType()) { |
5813 | // - If the initialization is direct-initialization, or if it is |
5814 | // copy-initialization where the cv-unqualified version of the |
5815 | // source type is the same class as, or a derived class of, the |
5816 | // class of the destination, constructors are considered. [...] |
5817 | if (Kind.getKind() == InitializationKind::IK_Direct || |
5818 | (Kind.getKind() == InitializationKind::IK_Copy && |
5819 | (Context.hasSameUnqualifiedType(SourceType, DestType) || |
5820 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) |
5821 | TryConstructorInitialization(S, Entity, Kind, Args, |
5822 | DestType, DestType, *this); |
5823 | // - Otherwise (i.e., for the remaining copy-initialization cases), |
5824 | // user-defined conversion sequences that can convert from the source |
5825 | // type to the destination type or (when a conversion function is |
5826 | // used) to a derived class thereof are enumerated as described in |
5827 | // 13.3.1.4, and the best one is chosen through overload resolution |
5828 | // (13.3). |
5829 | else |
5830 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
5831 | TopLevelOfInitList); |
5832 | return; |
5833 | } |
5834 | |
5835 | assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above" ) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5835, __PRETTY_FUNCTION__)); |
5836 | |
5837 | // The remaining cases all need a source type. |
5838 | if (Args.size() > 1) { |
5839 | SetFailed(FK_TooManyInitsForScalar); |
5840 | return; |
5841 | } else if (isa<InitListExpr>(Args[0])) { |
5842 | SetFailed(FK_ParenthesizedListInitForScalar); |
5843 | return; |
5844 | } |
5845 | |
5846 | // - Otherwise, if the source type is a (possibly cv-qualified) class |
5847 | // type, conversion functions are considered. |
5848 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
5849 | // For a conversion to _Atomic(T) from either T or a class type derived |
5850 | // from T, initialize the T object then convert to _Atomic type. |
5851 | bool NeedAtomicConversion = false; |
5852 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
5853 | if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || |
5854 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, |
5855 | Atomic->getValueType())) { |
5856 | DestType = Atomic->getValueType(); |
5857 | NeedAtomicConversion = true; |
5858 | } |
5859 | } |
5860 | |
5861 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
5862 | TopLevelOfInitList); |
5863 | MaybeProduceObjCObject(S, *this, Entity); |
5864 | if (!Failed() && NeedAtomicConversion) |
5865 | AddAtomicConversionStep(Entity.getType()); |
5866 | return; |
5867 | } |
5868 | |
5869 | // - Otherwise, the initial value of the object being initialized is the |
5870 | // (possibly converted) value of the initializer expression. Standard |
5871 | // conversions (Clause 4) will be used, if necessary, to convert the |
5872 | // initializer expression to the cv-unqualified version of the |
5873 | // destination type; no user-defined conversions are considered. |
5874 | |
5875 | ImplicitConversionSequence ICS |
5876 | = S.TryImplicitConversion(Initializer, DestType, |
5877 | /*SuppressUserConversions*/true, |
5878 | /*AllowExplicitConversions*/ false, |
5879 | /*InOverloadResolution*/ false, |
5880 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
5881 | allowObjCWritebackConversion); |
5882 | |
5883 | if (ICS.isStandard() && |
5884 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
5885 | // Objective-C ARC writeback conversion. |
5886 | |
5887 | // We should copy unless we're passing to an argument explicitly |
5888 | // marked 'out'. |
5889 | bool ShouldCopy = true; |
5890 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
5891 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
5892 | |
5893 | // If there was an lvalue adjustment, add it as a separate conversion. |
5894 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
5895 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
5896 | ImplicitConversionSequence LvalueICS; |
5897 | LvalueICS.setStandard(); |
5898 | LvalueICS.Standard.setAsIdentityConversion(); |
5899 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); |
5900 | LvalueICS.Standard.First = ICS.Standard.First; |
5901 | AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); |
5902 | } |
5903 | |
5904 | AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); |
5905 | } else if (ICS.isBad()) { |
5906 | DeclAccessPair dap; |
5907 | if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { |
5908 | AddZeroInitializationStep(Entity.getType()); |
5909 | } else if (Initializer->getType() == Context.OverloadTy && |
5910 | !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, |
5911 | false, dap)) |
5912 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5913 | else if (Initializer->getType()->isFunctionType() && |
5914 | isExprAnUnaddressableFunction(S, Initializer)) |
5915 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
5916 | else |
5917 | SetFailed(InitializationSequence::FK_ConversionFailed); |
5918 | } else { |
5919 | AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
5920 | |
5921 | MaybeProduceObjCObject(S, *this, Entity); |
5922 | } |
5923 | } |
5924 | |
5925 | InitializationSequence::~InitializationSequence() { |
5926 | for (auto &S : Steps) |
5927 | S.Destroy(); |
5928 | } |
5929 | |
5930 | //===----------------------------------------------------------------------===// |
5931 | // Perform initialization |
5932 | //===----------------------------------------------------------------------===// |
5933 | static Sema::AssignmentAction |
5934 | getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { |
5935 | switch(Entity.getKind()) { |
5936 | case InitializedEntity::EK_Variable: |
5937 | case InitializedEntity::EK_New: |
5938 | case InitializedEntity::EK_Exception: |
5939 | case InitializedEntity::EK_Base: |
5940 | case InitializedEntity::EK_Delegating: |
5941 | return Sema::AA_Initializing; |
5942 | |
5943 | case InitializedEntity::EK_Parameter: |
5944 | if (Entity.getDecl() && |
5945 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
5946 | return Sema::AA_Sending; |
5947 | |
5948 | return Sema::AA_Passing; |
5949 | |
5950 | case InitializedEntity::EK_Parameter_CF_Audited: |
5951 | if (Entity.getDecl() && |
5952 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
5953 | return Sema::AA_Sending; |
5954 | |
5955 | return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; |
5956 | |
5957 | case InitializedEntity::EK_Result: |
5958 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
5959 | return Sema::AA_Returning; |
5960 | |
5961 | case InitializedEntity::EK_Temporary: |
5962 | case InitializedEntity::EK_RelatedResult: |
5963 | // FIXME: Can we tell apart casting vs. converting? |
5964 | return Sema::AA_Casting; |
5965 | |
5966 | case InitializedEntity::EK_Member: |
5967 | case InitializedEntity::EK_Binding: |
5968 | case InitializedEntity::EK_ArrayElement: |
5969 | case InitializedEntity::EK_VectorElement: |
5970 | case InitializedEntity::EK_ComplexElement: |
5971 | case InitializedEntity::EK_BlockElement: |
5972 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
5973 | case InitializedEntity::EK_LambdaCapture: |
5974 | case InitializedEntity::EK_CompoundLiteralInit: |
5975 | return Sema::AA_Initializing; |
5976 | } |
5977 | |
5978 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaInit.cpp" , 5978); |
5979 | } |
5980 | |
5981 | /// Whether we should bind a created object as a temporary when |
5982 | /// initializing the given entity. |
5983 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
5984 | switch (Entity.getKind()) { |
5985 | case InitializedEntity::EK_ArrayElement: |
5986 | case InitializedEntity::EK_Member: |
5987 | case InitializedEntity::EK_Result: |
5988 | case InitializedEntity::EK_StmtExprResult: |
5989 | case InitializedEntity::EK_New: |
5990 | case InitializedEntity::EK_Variable: |
5991 | case InitializedEntity::EK_Base: |
5992 | case InitializedEntity::EK_Delegating: |
5993 | case InitializedEntity::EK_VectorElement: |
5994 | case InitializedEntity::EK_ComplexElement: |
5995 | case InitializedEntity::EK_Exception: |
5996 | case InitializedEntity::EK_BlockElement: |
5997 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
5998 | case InitializedEntity::EK_LambdaCapture: |
5999 | case InitializedEntity::EK_CompoundLiteralInit: |
6000 | return false; |
6001 | |
6002 | case InitializedEntity::EK_Parameter: |
6003 | case InitializedEntity::EK_Parameter_CF_Audited: |
6004 | case InitializedEntity::EK_Temporary: |
6005 | case InitializedEntity::EK_RelatedResult: |
6006 | case InitializedEntity::EK_Binding: |
6007 | return true; |
6008 | } |