Bug Summary

File:clang/lib/Sema/SemaInit.cpp
Warning:line 8912, column 44
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/CharInfo.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Sema/Designator.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/SemaInternal.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// Sema Initialization Checking
35//===----------------------------------------------------------------------===//
36
37/// Check whether T is compatible with a wide character type (wchar_t,
38/// char16_t or char32_t).
39static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
40 if (Context.typesAreCompatible(Context.getWideCharType(), T))
41 return true;
42 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
43 return Context.typesAreCompatible(Context.Char16Ty, T) ||
44 Context.typesAreCompatible(Context.Char32Ty, T);
45 }
46 return false;
47}
48
49enum StringInitFailureKind {
50 SIF_None,
51 SIF_NarrowStringIntoWideChar,
52 SIF_WideStringIntoChar,
53 SIF_IncompatWideStringIntoWideChar,
54 SIF_UTF8StringIntoPlainChar,
55 SIF_PlainStringIntoUTF8Char,
56 SIF_Other
57};
58
59/// Check whether the array of type AT can be initialized by the Init
60/// expression by means of string initialization. Returns SIF_None if so,
61/// otherwise returns a StringInitFailureKind that describes why the
62/// initialization would not work.
63static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
64 ASTContext &Context) {
65 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
66 return SIF_Other;
67
68 // See if this is a string literal or @encode.
69 Init = Init->IgnoreParens();
70
71 // Handle @encode, which is a narrow string.
72 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
73 return SIF_None;
74
75 // Otherwise we can only handle string literals.
76 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
77 if (!SL)
78 return SIF_Other;
79
80 const QualType ElemTy =
81 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
82
83 switch (SL->getKind()) {
84 case StringLiteral::UTF8:
85 // char8_t array can be initialized with a UTF-8 string.
86 if (ElemTy->isChar8Type())
87 return SIF_None;
88 LLVM_FALLTHROUGH[[gnu::fallthrough]];
89 case StringLiteral::Ascii:
90 // char array can be initialized with a narrow string.
91 // Only allow char x[] = "foo"; not char x[] = L"foo";
92 if (ElemTy->isCharType())
93 return (SL->getKind() == StringLiteral::UTF8 &&
94 Context.getLangOpts().Char8)
95 ? SIF_UTF8StringIntoPlainChar
96 : SIF_None;
97 if (ElemTy->isChar8Type())
98 return SIF_PlainStringIntoUTF8Char;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_NarrowStringIntoWideChar;
101 return SIF_Other;
102 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
103 // "An array with element type compatible with a qualified or unqualified
104 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
105 // string literal with the corresponding encoding prefix (L, u, or U,
106 // respectively), optionally enclosed in braces.
107 case StringLiteral::UTF16:
108 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
109 return SIF_None;
110 if (ElemTy->isCharType() || ElemTy->isChar8Type())
111 return SIF_WideStringIntoChar;
112 if (IsWideCharCompatible(ElemTy, Context))
113 return SIF_IncompatWideStringIntoWideChar;
114 return SIF_Other;
115 case StringLiteral::UTF32:
116 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
117 return SIF_None;
118 if (ElemTy->isCharType() || ElemTy->isChar8Type())
119 return SIF_WideStringIntoChar;
120 if (IsWideCharCompatible(ElemTy, Context))
121 return SIF_IncompatWideStringIntoWideChar;
122 return SIF_Other;
123 case StringLiteral::Wide:
124 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
125 return SIF_None;
126 if (ElemTy->isCharType() || ElemTy->isChar8Type())
127 return SIF_WideStringIntoChar;
128 if (IsWideCharCompatible(ElemTy, Context))
129 return SIF_IncompatWideStringIntoWideChar;
130 return SIF_Other;
131 }
132
133 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 133)
;
134}
135
136static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
137 ASTContext &Context) {
138 const ArrayType *arrayType = Context.getAsArrayType(declType);
139 if (!arrayType)
140 return SIF_Other;
141 return IsStringInit(init, arrayType, Context);
142}
143
144/// Update the type of a string literal, including any surrounding parentheses,
145/// to match the type of the object which it is initializing.
146static void updateStringLiteralType(Expr *E, QualType Ty) {
147 while (true) {
148 E->setType(Ty);
149 E->setValueKind(VK_RValue);
150 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
151 break;
152 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
153 E = PE->getSubExpr();
154 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
155 assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 155, __PRETTY_FUNCTION__))
;
156 E = UO->getSubExpr();
157 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
158 E = GSE->getResultExpr();
159 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
160 E = CE->getChosenSubExpr();
161 } else {
162 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 162)
;
163 }
164 }
165}
166
167/// Fix a compound literal initializing an array so it's correctly marked
168/// as an rvalue.
169static void updateGNUCompoundLiteralRValue(Expr *E) {
170 while (true) {
171 E->setValueKind(VK_RValue);
172 if (isa<CompoundLiteralExpr>(E)) {
173 break;
174 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
175 E = PE->getSubExpr();
176 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
177 assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void>
(0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 177, __PRETTY_FUNCTION__))
;
178 E = UO->getSubExpr();
179 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
180 E = GSE->getResultExpr();
181 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
182 E = CE->getChosenSubExpr();
183 } else {
184 llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 184)
;
185 }
186 }
187}
188
189static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
190 Sema &S) {
191 // Get the length of the string as parsed.
192 auto *ConstantArrayTy =
193 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
194 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
195
196 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
197 // C99 6.7.8p14. We have an array of character type with unknown size
198 // being initialized to a string literal.
199 llvm::APInt ConstVal(32, StrLength);
200 // Return a new array type (C99 6.7.8p22).
201 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
202 ConstVal, nullptr,
203 ArrayType::Normal, 0);
204 updateStringLiteralType(Str, DeclT);
205 return;
206 }
207
208 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
209
210 // We have an array of character type with known size. However,
211 // the size may be smaller or larger than the string we are initializing.
212 // FIXME: Avoid truncation for 64-bit length strings.
213 if (S.getLangOpts().CPlusPlus) {
214 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
215 // For Pascal strings it's OK to strip off the terminating null character,
216 // so the example below is valid:
217 //
218 // unsigned char a[2] = "\pa";
219 if (SL->isPascal())
220 StrLength--;
221 }
222
223 // [dcl.init.string]p2
224 if (StrLength > CAT->getSize().getZExtValue())
225 S.Diag(Str->getBeginLoc(),
226 diag::err_initializer_string_for_char_array_too_long)
227 << Str->getSourceRange();
228 } else {
229 // C99 6.7.8p14.
230 if (StrLength-1 > CAT->getSize().getZExtValue())
231 S.Diag(Str->getBeginLoc(),
232 diag::ext_initializer_string_for_char_array_too_long)
233 << Str->getSourceRange();
234 }
235
236 // Set the type to the actual size that we are initializing. If we have
237 // something like:
238 // char x[1] = "foo";
239 // then this will set the string literal's type to char[1].
240 updateStringLiteralType(Str, DeclT);
241}
242
243//===----------------------------------------------------------------------===//
244// Semantic checking for initializer lists.
245//===----------------------------------------------------------------------===//
246
247namespace {
248
249/// Semantic checking for initializer lists.
250///
251/// The InitListChecker class contains a set of routines that each
252/// handle the initialization of a certain kind of entity, e.g.,
253/// arrays, vectors, struct/union types, scalars, etc. The
254/// InitListChecker itself performs a recursive walk of the subobject
255/// structure of the type to be initialized, while stepping through
256/// the initializer list one element at a time. The IList and Index
257/// parameters to each of the Check* routines contain the active
258/// (syntactic) initializer list and the index into that initializer
259/// list that represents the current initializer. Each routine is
260/// responsible for moving that Index forward as it consumes elements.
261///
262/// Each Check* routine also has a StructuredList/StructuredIndex
263/// arguments, which contains the current "structured" (semantic)
264/// initializer list and the index into that initializer list where we
265/// are copying initializers as we map them over to the semantic
266/// list. Once we have completed our recursive walk of the subobject
267/// structure, we will have constructed a full semantic initializer
268/// list.
269///
270/// C99 designators cause changes in the initializer list traversal,
271/// because they make the initialization "jump" into a specific
272/// subobject and then continue the initialization from that
273/// point. CheckDesignatedInitializer() recursively steps into the
274/// designated subobject and manages backing out the recursion to
275/// initialize the subobjects after the one designated.
276///
277/// If an initializer list contains any designators, we build a placeholder
278/// structured list even in 'verify only' mode, so that we can track which
279/// elements need 'empty' initializtion.
280class InitListChecker {
281 Sema &SemaRef;
282 bool hadError = false;
283 bool VerifyOnly; // No diagnostics.
284 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
285 bool InOverloadResolution;
286 InitListExpr *FullyStructuredList = nullptr;
287 NoInitExpr *DummyExpr = nullptr;
288
289 NoInitExpr *getDummyInit() {
290 if (!DummyExpr)
291 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
292 return DummyExpr;
293 }
294
295 void CheckImplicitInitList(const InitializedEntity &Entity,
296 InitListExpr *ParentIList, QualType T,
297 unsigned &Index, InitListExpr *StructuredList,
298 unsigned &StructuredIndex);
299 void CheckExplicitInitList(const InitializedEntity &Entity,
300 InitListExpr *IList, QualType &T,
301 InitListExpr *StructuredList,
302 bool TopLevelObject = false);
303 void CheckListElementTypes(const InitializedEntity &Entity,
304 InitListExpr *IList, QualType &DeclType,
305 bool SubobjectIsDesignatorContext,
306 unsigned &Index,
307 InitListExpr *StructuredList,
308 unsigned &StructuredIndex,
309 bool TopLevelObject = false);
310 void CheckSubElementType(const InitializedEntity &Entity,
311 InitListExpr *IList, QualType ElemType,
312 unsigned &Index,
313 InitListExpr *StructuredList,
314 unsigned &StructuredIndex);
315 void CheckComplexType(const InitializedEntity &Entity,
316 InitListExpr *IList, QualType DeclType,
317 unsigned &Index,
318 InitListExpr *StructuredList,
319 unsigned &StructuredIndex);
320 void CheckScalarType(const InitializedEntity &Entity,
321 InitListExpr *IList, QualType DeclType,
322 unsigned &Index,
323 InitListExpr *StructuredList,
324 unsigned &StructuredIndex);
325 void CheckReferenceType(const InitializedEntity &Entity,
326 InitListExpr *IList, QualType DeclType,
327 unsigned &Index,
328 InitListExpr *StructuredList,
329 unsigned &StructuredIndex);
330 void CheckVectorType(const InitializedEntity &Entity,
331 InitListExpr *IList, QualType DeclType, unsigned &Index,
332 InitListExpr *StructuredList,
333 unsigned &StructuredIndex);
334 void CheckStructUnionTypes(const InitializedEntity &Entity,
335 InitListExpr *IList, QualType DeclType,
336 CXXRecordDecl::base_class_range Bases,
337 RecordDecl::field_iterator Field,
338 bool SubobjectIsDesignatorContext, unsigned &Index,
339 InitListExpr *StructuredList,
340 unsigned &StructuredIndex,
341 bool TopLevelObject = false);
342 void CheckArrayType(const InitializedEntity &Entity,
343 InitListExpr *IList, QualType &DeclType,
344 llvm::APSInt elementIndex,
345 bool SubobjectIsDesignatorContext, unsigned &Index,
346 InitListExpr *StructuredList,
347 unsigned &StructuredIndex);
348 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
349 InitListExpr *IList, DesignatedInitExpr *DIE,
350 unsigned DesigIdx,
351 QualType &CurrentObjectType,
352 RecordDecl::field_iterator *NextField,
353 llvm::APSInt *NextElementIndex,
354 unsigned &Index,
355 InitListExpr *StructuredList,
356 unsigned &StructuredIndex,
357 bool FinishSubobjectInit,
358 bool TopLevelObject);
359 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
360 QualType CurrentObjectType,
361 InitListExpr *StructuredList,
362 unsigned StructuredIndex,
363 SourceRange InitRange,
364 bool IsFullyOverwritten = false);
365 void UpdateStructuredListElement(InitListExpr *StructuredList,
366 unsigned &StructuredIndex,
367 Expr *expr);
368 InitListExpr *createInitListExpr(QualType CurrentObjectType,
369 SourceRange InitRange,
370 unsigned ExpectedNumInits);
371 int numArrayElements(QualType DeclType);
372 int numStructUnionElements(QualType DeclType);
373
374 ExprResult PerformEmptyInit(SourceLocation Loc,
375 const InitializedEntity &Entity);
376
377 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
378 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
379 bool FullyOverwritten = true) {
380 // Overriding an initializer via a designator is valid with C99 designated
381 // initializers, but ill-formed with C++20 designated initializers.
382 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
383 ? diag::ext_initializer_overrides
384 : diag::warn_initializer_overrides;
385
386 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
387 // In overload resolution, we have to strictly enforce the rules, and so
388 // don't allow any overriding of prior initializers. This matters for a
389 // case such as:
390 //
391 // union U { int a, b; };
392 // struct S { int a, b; };
393 // void f(U), f(S);
394 //
395 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
396 // consistency, we disallow all overriding of prior initializers in
397 // overload resolution, not only overriding of union members.
398 hadError = true;
399 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
400 // If we'll be keeping around the old initializer but overwriting part of
401 // the object it initialized, and that object is not trivially
402 // destructible, this can leak. Don't allow that, not even as an
403 // extension.
404 //
405 // FIXME: It might be reasonable to allow this in cases where the part of
406 // the initializer that we're overriding has trivial destruction.
407 DiagID = diag::err_initializer_overrides_destructed;
408 } else if (!OldInit->getSourceRange().isValid()) {
409 // We need to check on source range validity because the previous
410 // initializer does not have to be an explicit initializer. e.g.,
411 //
412 // struct P { int a, b; };
413 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
414 //
415 // There is an overwrite taking place because the first braced initializer
416 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
417 //
418 // Such overwrites are harmless, so we don't diagnose them. (Note that in
419 // C++, this cannot be reached unless we've already seen and diagnosed a
420 // different conformance issue, such as a mixture of designated and
421 // non-designated initializers or a multi-level designator.)
422 return;
423 }
424
425 if (!VerifyOnly) {
426 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
427 << NewInitRange << FullyOverwritten << OldInit->getType();
428 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
429 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
430 << OldInit->getSourceRange();
431 }
432 }
433
434 // Explanation on the "FillWithNoInit" mode:
435 //
436 // Assume we have the following definitions (Case#1):
437 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
438 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
439 //
440 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
441 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
442 //
443 // But if we have (Case#2):
444 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
445 //
446 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
447 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
448 //
449 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
450 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
451 // initializers but with special "NoInitExpr" place holders, which tells the
452 // CodeGen not to generate any initializers for these parts.
453 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
454 const InitializedEntity &ParentEntity,
455 InitListExpr *ILE, bool &RequiresSecondPass,
456 bool FillWithNoInit);
457 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
458 const InitializedEntity &ParentEntity,
459 InitListExpr *ILE, bool &RequiresSecondPass,
460 bool FillWithNoInit = false);
461 void FillInEmptyInitializations(const InitializedEntity &Entity,
462 InitListExpr *ILE, bool &RequiresSecondPass,
463 InitListExpr *OuterILE, unsigned OuterIndex,
464 bool FillWithNoInit = false);
465 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
466 Expr *InitExpr, FieldDecl *Field,
467 bool TopLevelObject);
468 void CheckEmptyInitializable(const InitializedEntity &Entity,
469 SourceLocation Loc);
470
471public:
472 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
473 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
474 bool InOverloadResolution = false);
475 bool HadError() { return hadError; }
476
477 // Retrieves the fully-structured initializer list used for
478 // semantic analysis and code generation.
479 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
480};
481
482} // end anonymous namespace
483
484ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
485 const InitializedEntity &Entity) {
486 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
487 true);
488 MultiExprArg SubInit;
489 Expr *InitExpr;
490 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
491
492 // C++ [dcl.init.aggr]p7:
493 // If there are fewer initializer-clauses in the list than there are
494 // members in the aggregate, then each member not explicitly initialized
495 // ...
496 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
497 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
498 if (EmptyInitList) {
499 // C++1y / DR1070:
500 // shall be initialized [...] from an empty initializer list.
501 //
502 // We apply the resolution of this DR to C++11 but not C++98, since C++98
503 // does not have useful semantics for initialization from an init list.
504 // We treat this as copy-initialization, because aggregate initialization
505 // always performs copy-initialization on its elements.
506 //
507 // Only do this if we're initializing a class type, to avoid filling in
508 // the initializer list where possible.
509 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
510 InitListExpr(SemaRef.Context, Loc, None, Loc);
511 InitExpr->setType(SemaRef.Context.VoidTy);
512 SubInit = InitExpr;
513 Kind = InitializationKind::CreateCopy(Loc, Loc);
514 } else {
515 // C++03:
516 // shall be value-initialized.
517 }
518
519 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
520 // libstdc++4.6 marks the vector default constructor as explicit in
521 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
522 // stlport does so too. Look for std::__debug for libstdc++, and for
523 // std:: for stlport. This is effectively a compiler-side implementation of
524 // LWG2193.
525 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
526 InitializationSequence::FK_ExplicitConstructor) {
527 OverloadCandidateSet::iterator Best;
528 OverloadingResult O =
529 InitSeq.getFailedCandidateSet()
530 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
531 (void)O;
532 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 532, __PRETTY_FUNCTION__))
;
533 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
534 CXXRecordDecl *R = CtorDecl->getParent();
535
536 if (CtorDecl->getMinRequiredArguments() == 0 &&
537 CtorDecl->isExplicit() && R->getDeclName() &&
538 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
539 bool IsInStd = false;
540 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
541 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
542 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
543 IsInStd = true;
544 }
545
546 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
547 .Cases("basic_string", "deque", "forward_list", true)
548 .Cases("list", "map", "multimap", "multiset", true)
549 .Cases("priority_queue", "queue", "set", "stack", true)
550 .Cases("unordered_map", "unordered_set", "vector", true)
551 .Default(false)) {
552 InitSeq.InitializeFrom(
553 SemaRef, Entity,
554 InitializationKind::CreateValue(Loc, Loc, Loc, true),
555 MultiExprArg(), /*TopLevelOfInitList=*/false,
556 TreatUnavailableAsInvalid);
557 // Emit a warning for this. System header warnings aren't shown
558 // by default, but people working on system headers should see it.
559 if (!VerifyOnly) {
560 SemaRef.Diag(CtorDecl->getLocation(),
561 diag::warn_invalid_initializer_from_system_header);
562 if (Entity.getKind() == InitializedEntity::EK_Member)
563 SemaRef.Diag(Entity.getDecl()->getLocation(),
564 diag::note_used_in_initialization_here);
565 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
566 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
567 }
568 }
569 }
570 }
571 if (!InitSeq) {
572 if (!VerifyOnly) {
573 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
574 if (Entity.getKind() == InitializedEntity::EK_Member)
575 SemaRef.Diag(Entity.getDecl()->getLocation(),
576 diag::note_in_omitted_aggregate_initializer)
577 << /*field*/1 << Entity.getDecl();
578 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
579 bool IsTrailingArrayNewMember =
580 Entity.getParent() &&
581 Entity.getParent()->isVariableLengthArrayNew();
582 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
583 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
584 << Entity.getElementIndex();
585 }
586 }
587 hadError = true;
588 return ExprError();
589 }
590
591 return VerifyOnly ? ExprResult()
592 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
593}
594
595void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
596 SourceLocation Loc) {
597 // If we're building a fully-structured list, we'll check this at the end
598 // once we know which elements are actually initialized. Otherwise, we know
599 // that there are no designators so we can just check now.
600 if (FullyStructuredList)
601 return;
602 PerformEmptyInit(Loc, Entity);
603}
604
605void InitListChecker::FillInEmptyInitForBase(
606 unsigned Init, const CXXBaseSpecifier &Base,
607 const InitializedEntity &ParentEntity, InitListExpr *ILE,
608 bool &RequiresSecondPass, bool FillWithNoInit) {
609 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
610 SemaRef.Context, &Base, false, &ParentEntity);
611
612 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
613 ExprResult BaseInit = FillWithNoInit
614 ? new (SemaRef.Context) NoInitExpr(Base.getType())
615 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
616 if (BaseInit.isInvalid()) {
617 hadError = true;
618 return;
619 }
620
621 if (!VerifyOnly) {
622 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 622, __PRETTY_FUNCTION__))
;
623 ILE->setInit(Init, BaseInit.getAs<Expr>());
624 }
625 } else if (InitListExpr *InnerILE =
626 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
627 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
628 ILE, Init, FillWithNoInit);
629 } else if (DesignatedInitUpdateExpr *InnerDIUE =
630 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
631 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
632 RequiresSecondPass, ILE, Init,
633 /*FillWithNoInit =*/true);
634 }
635}
636
637void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
638 const InitializedEntity &ParentEntity,
639 InitListExpr *ILE,
640 bool &RequiresSecondPass,
641 bool FillWithNoInit) {
642 SourceLocation Loc = ILE->getEndLoc();
643 unsigned NumInits = ILE->getNumInits();
644 InitializedEntity MemberEntity
645 = InitializedEntity::InitializeMember(Field, &ParentEntity);
646
647 if (Init >= NumInits || !ILE->getInit(Init)) {
648 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
649 if (!RType->getDecl()->isUnion())
650 assert((Init < NumInits || VerifyOnly) &&(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 651, __PRETTY_FUNCTION__))
651 "This ILE should have been expanded")(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 651, __PRETTY_FUNCTION__))
;
652
653 if (FillWithNoInit) {
654 assert(!VerifyOnly && "should not fill with no-init in verify-only mode")((!VerifyOnly && "should not fill with no-init in verify-only mode"
) ? static_cast<void> (0) : __assert_fail ("!VerifyOnly && \"should not fill with no-init in verify-only mode\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 654, __PRETTY_FUNCTION__))
;
655 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
656 if (Init < NumInits)
657 ILE->setInit(Init, Filler);
658 else
659 ILE->updateInit(SemaRef.Context, Init, Filler);
660 return;
661 }
662 // C++1y [dcl.init.aggr]p7:
663 // If there are fewer initializer-clauses in the list than there are
664 // members in the aggregate, then each member not explicitly initialized
665 // shall be initialized from its brace-or-equal-initializer [...]
666 if (Field->hasInClassInitializer()) {
667 if (VerifyOnly)
668 return;
669
670 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
671 if (DIE.isInvalid()) {
672 hadError = true;
673 return;
674 }
675 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
676 if (Init < NumInits)
677 ILE->setInit(Init, DIE.get());
678 else {
679 ILE->updateInit(SemaRef.Context, Init, DIE.get());
680 RequiresSecondPass = true;
681 }
682 return;
683 }
684
685 if (Field->getType()->isReferenceType()) {
686 if (!VerifyOnly) {
687 // C++ [dcl.init.aggr]p9:
688 // If an incomplete or empty initializer-list leaves a
689 // member of reference type uninitialized, the program is
690 // ill-formed.
691 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
692 << Field->getType()
693 << ILE->getSyntacticForm()->getSourceRange();
694 SemaRef.Diag(Field->getLocation(),
695 diag::note_uninit_reference_member);
696 }
697 hadError = true;
698 return;
699 }
700
701 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
702 if (MemberInit.isInvalid()) {
703 hadError = true;
704 return;
705 }
706
707 if (hadError || VerifyOnly) {
708 // Do nothing
709 } else if (Init < NumInits) {
710 ILE->setInit(Init, MemberInit.getAs<Expr>());
711 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
712 // Empty initialization requires a constructor call, so
713 // extend the initializer list to include the constructor
714 // call and make a note that we'll need to take another pass
715 // through the initializer list.
716 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
717 RequiresSecondPass = true;
718 }
719 } else if (InitListExpr *InnerILE
720 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
721 FillInEmptyInitializations(MemberEntity, InnerILE,
722 RequiresSecondPass, ILE, Init, FillWithNoInit);
723 } else if (DesignatedInitUpdateExpr *InnerDIUE =
724 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
725 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
726 RequiresSecondPass, ILE, Init,
727 /*FillWithNoInit =*/true);
728 }
729}
730
731/// Recursively replaces NULL values within the given initializer list
732/// with expressions that perform value-initialization of the
733/// appropriate type, and finish off the InitListExpr formation.
734void
735InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
736 InitListExpr *ILE,
737 bool &RequiresSecondPass,
738 InitListExpr *OuterILE,
739 unsigned OuterIndex,
740 bool FillWithNoInit) {
741 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 742, __PRETTY_FUNCTION__))
742 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 742, __PRETTY_FUNCTION__))
;
743
744 // We don't need to do any checks when just filling NoInitExprs; that can't
745 // fail.
746 if (FillWithNoInit && VerifyOnly)
747 return;
748
749 // If this is a nested initializer list, we might have changed its contents
750 // (and therefore some of its properties, such as instantiation-dependence)
751 // while filling it in. Inform the outer initializer list so that its state
752 // can be updated to match.
753 // FIXME: We should fully build the inner initializers before constructing
754 // the outer InitListExpr instead of mutating AST nodes after they have
755 // been used as subexpressions of other nodes.
756 struct UpdateOuterILEWithUpdatedInit {
757 InitListExpr *Outer;
758 unsigned OuterIndex;
759 ~UpdateOuterILEWithUpdatedInit() {
760 if (Outer)
761 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
762 }
763 } UpdateOuterRAII = {OuterILE, OuterIndex};
764
765 // A transparent ILE is not performing aggregate initialization and should
766 // not be filled in.
767 if (ILE->isTransparent())
768 return;
769
770 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
771 const RecordDecl *RDecl = RType->getDecl();
772 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
773 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
774 Entity, ILE, RequiresSecondPass, FillWithNoInit);
775 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
776 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
777 for (auto *Field : RDecl->fields()) {
778 if (Field->hasInClassInitializer()) {
779 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
780 FillWithNoInit);
781 break;
782 }
783 }
784 } else {
785 // The fields beyond ILE->getNumInits() are default initialized, so in
786 // order to leave them uninitialized, the ILE is expanded and the extra
787 // fields are then filled with NoInitExpr.
788 unsigned NumElems = numStructUnionElements(ILE->getType());
789 if (RDecl->hasFlexibleArrayMember())
790 ++NumElems;
791 if (!VerifyOnly && ILE->getNumInits() < NumElems)
792 ILE->resizeInits(SemaRef.Context, NumElems);
793
794 unsigned Init = 0;
795
796 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
797 for (auto &Base : CXXRD->bases()) {
798 if (hadError)
799 return;
800
801 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
802 FillWithNoInit);
803 ++Init;
804 }
805 }
806
807 for (auto *Field : RDecl->fields()) {
808 if (Field->isUnnamedBitfield())
809 continue;
810
811 if (hadError)
812 return;
813
814 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
815 FillWithNoInit);
816 if (hadError)
817 return;
818
819 ++Init;
820
821 // Only look at the first initialization of a union.
822 if (RDecl->isUnion())
823 break;
824 }
825 }
826
827 return;
828 }
829
830 QualType ElementType;
831
832 InitializedEntity ElementEntity = Entity;
833 unsigned NumInits = ILE->getNumInits();
834 unsigned NumElements = NumInits;
835 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
836 ElementType = AType->getElementType();
837 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
838 NumElements = CAType->getSize().getZExtValue();
839 // For an array new with an unknown bound, ask for one additional element
840 // in order to populate the array filler.
841 if (Entity.isVariableLengthArrayNew())
842 ++NumElements;
843 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
844 0, Entity);
845 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
846 ElementType = VType->getElementType();
847 NumElements = VType->getNumElements();
848 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
849 0, Entity);
850 } else
851 ElementType = ILE->getType();
852
853 bool SkipEmptyInitChecks = false;
854 for (unsigned Init = 0; Init != NumElements; ++Init) {
855 if (hadError)
856 return;
857
858 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
859 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
860 ElementEntity.setElementIndex(Init);
861
862 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
863 return;
864
865 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
866 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
867 ILE->setInit(Init, ILE->getArrayFiller());
868 else if (!InitExpr && !ILE->hasArrayFiller()) {
869 // In VerifyOnly mode, there's no point performing empty initialization
870 // more than once.
871 if (SkipEmptyInitChecks)
872 continue;
873
874 Expr *Filler = nullptr;
875
876 if (FillWithNoInit)
877 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
878 else {
879 ExprResult ElementInit =
880 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
881 if (ElementInit.isInvalid()) {
882 hadError = true;
883 return;
884 }
885
886 Filler = ElementInit.getAs<Expr>();
887 }
888
889 if (hadError) {
890 // Do nothing
891 } else if (VerifyOnly) {
892 SkipEmptyInitChecks = true;
893 } else if (Init < NumInits) {
894 // For arrays, just set the expression used for value-initialization
895 // of the "holes" in the array.
896 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
897 ILE->setArrayFiller(Filler);
898 else
899 ILE->setInit(Init, Filler);
900 } else {
901 // For arrays, just set the expression used for value-initialization
902 // of the rest of elements and exit.
903 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
904 ILE->setArrayFiller(Filler);
905 return;
906 }
907
908 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
909 // Empty initialization requires a constructor call, so
910 // extend the initializer list to include the constructor
911 // call and make a note that we'll need to take another pass
912 // through the initializer list.
913 ILE->updateInit(SemaRef.Context, Init, Filler);
914 RequiresSecondPass = true;
915 }
916 }
917 } else if (InitListExpr *InnerILE
918 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
919 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
920 ILE, Init, FillWithNoInit);
921 } else if (DesignatedInitUpdateExpr *InnerDIUE =
922 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
923 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
924 RequiresSecondPass, ILE, Init,
925 /*FillWithNoInit =*/true);
926 }
927 }
928}
929
930static bool hasAnyDesignatedInits(const InitListExpr *IL) {
931 for (const Stmt *Init : *IL)
932 if (Init && isa<DesignatedInitExpr>(Init))
933 return true;
934 return false;
935}
936
937InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
938 InitListExpr *IL, QualType &T, bool VerifyOnly,
939 bool TreatUnavailableAsInvalid,
940 bool InOverloadResolution)
941 : SemaRef(S), VerifyOnly(VerifyOnly),
942 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
943 InOverloadResolution(InOverloadResolution) {
944 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
945 FullyStructuredList =
946 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
947
948 // FIXME: Check that IL isn't already the semantic form of some other
949 // InitListExpr. If it is, we'd create a broken AST.
950 if (!VerifyOnly)
951 FullyStructuredList->setSyntacticForm(IL);
952 }
953
954 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
955 /*TopLevelObject=*/true);
956
957 if (!hadError && FullyStructuredList) {
958 bool RequiresSecondPass = false;
959 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
960 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
961 if (RequiresSecondPass && !hadError)
962 FillInEmptyInitializations(Entity, FullyStructuredList,
963 RequiresSecondPass, nullptr, 0);
964 }
965}
966
967int InitListChecker::numArrayElements(QualType DeclType) {
968 // FIXME: use a proper constant
969 int maxElements = 0x7FFFFFFF;
970 if (const ConstantArrayType *CAT =
971 SemaRef.Context.getAsConstantArrayType(DeclType)) {
972 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
973 }
974 return maxElements;
975}
976
977int InitListChecker::numStructUnionElements(QualType DeclType) {
978 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
979 int InitializableMembers = 0;
980 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
981 InitializableMembers += CXXRD->getNumBases();
982 for (const auto *Field : structDecl->fields())
983 if (!Field->isUnnamedBitfield())
984 ++InitializableMembers;
985
986 if (structDecl->isUnion())
987 return std::min(InitializableMembers, 1);
988 return InitializableMembers - structDecl->hasFlexibleArrayMember();
989}
990
991/// Determine whether Entity is an entity for which it is idiomatic to elide
992/// the braces in aggregate initialization.
993static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
994 // Recursive initialization of the one and only field within an aggregate
995 // class is considered idiomatic. This case arises in particular for
996 // initialization of std::array, where the C++ standard suggests the idiom of
997 //
998 // std::array<T, N> arr = {1, 2, 3};
999 //
1000 // (where std::array is an aggregate struct containing a single array field.
1001
1002 // FIXME: Should aggregate initialization of a struct with a single
1003 // base class and no members also suppress the warning?
1004 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1005 return false;
1006
1007 auto *ParentRD =
1008 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1009 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1010 if (CXXRD->getNumBases())
1011 return false;
1012
1013 auto FieldIt = ParentRD->field_begin();
1014 assert(FieldIt != ParentRD->field_end() &&((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1015, __PRETTY_FUNCTION__))
1015 "no fields but have initializer for member?")((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1015, __PRETTY_FUNCTION__))
;
1016 return ++FieldIt == ParentRD->field_end();
1017}
1018
1019/// Check whether the range of the initializer \p ParentIList from element
1020/// \p Index onwards can be used to initialize an object of type \p T. Update
1021/// \p Index to indicate how many elements of the list were consumed.
1022///
1023/// This also fills in \p StructuredList, from element \p StructuredIndex
1024/// onwards, with the fully-braced, desugared form of the initialization.
1025void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1026 InitListExpr *ParentIList,
1027 QualType T, unsigned &Index,
1028 InitListExpr *StructuredList,
1029 unsigned &StructuredIndex) {
1030 int maxElements = 0;
1031
1032 if (T->isArrayType())
1033 maxElements = numArrayElements(T);
1034 else if (T->isRecordType())
1035 maxElements = numStructUnionElements(T);
1036 else if (T->isVectorType())
1037 maxElements = T->castAs<VectorType>()->getNumElements();
1038 else
1039 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1039)
;
1040
1041 if (maxElements == 0) {
1042 if (!VerifyOnly)
1043 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1044 diag::err_implicit_empty_initializer);
1045 ++Index;
1046 hadError = true;
1047 return;
1048 }
1049
1050 // Build a structured initializer list corresponding to this subobject.
1051 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1052 ParentIList, Index, T, StructuredList, StructuredIndex,
1053 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1054 ParentIList->getSourceRange().getEnd()));
1055 unsigned StructuredSubobjectInitIndex = 0;
1056
1057 // Check the element types and build the structural subobject.
1058 unsigned StartIndex = Index;
1059 CheckListElementTypes(Entity, ParentIList, T,
1060 /*SubobjectIsDesignatorContext=*/false, Index,
1061 StructuredSubobjectInitList,
1062 StructuredSubobjectInitIndex);
1063
1064 if (StructuredSubobjectInitList) {
1065 StructuredSubobjectInitList->setType(T);
1066
1067 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1068 // Update the structured sub-object initializer so that it's ending
1069 // range corresponds with the end of the last initializer it used.
1070 if (EndIndex < ParentIList->getNumInits() &&
1071 ParentIList->getInit(EndIndex)) {
1072 SourceLocation EndLoc
1073 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1074 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1075 }
1076
1077 // Complain about missing braces.
1078 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1079 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1080 !isIdiomaticBraceElisionEntity(Entity)) {
1081 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1082 diag::warn_missing_braces)
1083 << StructuredSubobjectInitList->getSourceRange()
1084 << FixItHint::CreateInsertion(
1085 StructuredSubobjectInitList->getBeginLoc(), "{")
1086 << FixItHint::CreateInsertion(
1087 SemaRef.getLocForEndOfToken(
1088 StructuredSubobjectInitList->getEndLoc()),
1089 "}");
1090 }
1091
1092 // Warn if this type won't be an aggregate in future versions of C++.
1093 auto *CXXRD = T->getAsCXXRecordDecl();
1094 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1095 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1096 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1097 << StructuredSubobjectInitList->getSourceRange() << T;
1098 }
1099 }
1100}
1101
1102/// Warn that \p Entity was of scalar type and was initialized by a
1103/// single-element braced initializer list.
1104static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1105 SourceRange Braces) {
1106 // Don't warn during template instantiation. If the initialization was
1107 // non-dependent, we warned during the initial parse; otherwise, the
1108 // type might not be scalar in some uses of the template.
1109 if (S.inTemplateInstantiation())
1110 return;
1111
1112 unsigned DiagID = 0;
1113
1114 switch (Entity.getKind()) {
1115 case InitializedEntity::EK_VectorElement:
1116 case InitializedEntity::EK_ComplexElement:
1117 case InitializedEntity::EK_ArrayElement:
1118 case InitializedEntity::EK_Parameter:
1119 case InitializedEntity::EK_Parameter_CF_Audited:
1120 case InitializedEntity::EK_Result:
1121 // Extra braces here are suspicious.
1122 DiagID = diag::warn_braces_around_scalar_init;
1123 break;
1124
1125 case InitializedEntity::EK_Member:
1126 // Warn on aggregate initialization but not on ctor init list or
1127 // default member initializer.
1128 if (Entity.getParent())
1129 DiagID = diag::warn_braces_around_scalar_init;
1130 break;
1131
1132 case InitializedEntity::EK_Variable:
1133 case InitializedEntity::EK_LambdaCapture:
1134 // No warning, might be direct-list-initialization.
1135 // FIXME: Should we warn for copy-list-initialization in these cases?
1136 break;
1137
1138 case InitializedEntity::EK_New:
1139 case InitializedEntity::EK_Temporary:
1140 case InitializedEntity::EK_CompoundLiteralInit:
1141 // No warning, braces are part of the syntax of the underlying construct.
1142 break;
1143
1144 case InitializedEntity::EK_RelatedResult:
1145 // No warning, we already warned when initializing the result.
1146 break;
1147
1148 case InitializedEntity::EK_Exception:
1149 case InitializedEntity::EK_Base:
1150 case InitializedEntity::EK_Delegating:
1151 case InitializedEntity::EK_BlockElement:
1152 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1153 case InitializedEntity::EK_Binding:
1154 case InitializedEntity::EK_StmtExprResult:
1155 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1155)
;
1156 }
1157
1158 if (DiagID) {
1159 S.Diag(Braces.getBegin(), DiagID)
1160 << Braces
1161 << FixItHint::CreateRemoval(Braces.getBegin())
1162 << FixItHint::CreateRemoval(Braces.getEnd());
1163 }
1164}
1165
1166/// Check whether the initializer \p IList (that was written with explicit
1167/// braces) can be used to initialize an object of type \p T.
1168///
1169/// This also fills in \p StructuredList with the fully-braced, desugared
1170/// form of the initialization.
1171void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1172 InitListExpr *IList, QualType &T,
1173 InitListExpr *StructuredList,
1174 bool TopLevelObject) {
1175 unsigned Index = 0, StructuredIndex = 0;
1176 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1177 Index, StructuredList, StructuredIndex, TopLevelObject);
1178 if (StructuredList) {
1179 QualType ExprTy = T;
1180 if (!ExprTy->isArrayType())
1181 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1182 if (!VerifyOnly)
1183 IList->setType(ExprTy);
1184 StructuredList->setType(ExprTy);
1185 }
1186 if (hadError)
1187 return;
1188
1189 // Don't complain for incomplete types, since we'll get an error elsewhere.
1190 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1191 // We have leftover initializers
1192 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1193 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1194 hadError = ExtraInitsIsError;
1195 if (VerifyOnly) {
1196 return;
1197 } else if (StructuredIndex == 1 &&
1198 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1199 SIF_None) {
1200 unsigned DK =
1201 ExtraInitsIsError
1202 ? diag::err_excess_initializers_in_char_array_initializer
1203 : diag::ext_excess_initializers_in_char_array_initializer;
1204 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1205 << IList->getInit(Index)->getSourceRange();
1206 } else {
1207 int initKind = T->isArrayType() ? 0 :
1208 T->isVectorType() ? 1 :
1209 T->isScalarType() ? 2 :
1210 T->isUnionType() ? 3 :
1211 4;
1212
1213 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1214 : diag::ext_excess_initializers;
1215 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1216 << initKind << IList->getInit(Index)->getSourceRange();
1217 }
1218 }
1219
1220 if (!VerifyOnly) {
1221 if (T->isScalarType() && IList->getNumInits() == 1 &&
1222 !isa<InitListExpr>(IList->getInit(0)))
1223 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1224
1225 // Warn if this is a class type that won't be an aggregate in future
1226 // versions of C++.
1227 auto *CXXRD = T->getAsCXXRecordDecl();
1228 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1229 // Don't warn if there's an equivalent default constructor that would be
1230 // used instead.
1231 bool HasEquivCtor = false;
1232 if (IList->getNumInits() == 0) {
1233 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1234 HasEquivCtor = CD && !CD->isDeleted();
1235 }
1236
1237 if (!HasEquivCtor) {
1238 SemaRef.Diag(IList->getBeginLoc(),
1239 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1240 << IList->getSourceRange() << T;
1241 }
1242 }
1243 }
1244}
1245
1246void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1247 InitListExpr *IList,
1248 QualType &DeclType,
1249 bool SubobjectIsDesignatorContext,
1250 unsigned &Index,
1251 InitListExpr *StructuredList,
1252 unsigned &StructuredIndex,
1253 bool TopLevelObject) {
1254 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1255 // Explicitly braced initializer for complex type can be real+imaginary
1256 // parts.
1257 CheckComplexType(Entity, IList, DeclType, Index,
1258 StructuredList, StructuredIndex);
1259 } else if (DeclType->isScalarType()) {
1260 CheckScalarType(Entity, IList, DeclType, Index,
1261 StructuredList, StructuredIndex);
1262 } else if (DeclType->isVectorType()) {
1263 CheckVectorType(Entity, IList, DeclType, Index,
1264 StructuredList, StructuredIndex);
1265 } else if (DeclType->isRecordType()) {
1266 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1267, __PRETTY_FUNCTION__))
1267 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1267, __PRETTY_FUNCTION__))
;
1268 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1269 auto Bases =
1270 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1271 CXXRecordDecl::base_class_iterator());
1272 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1273 Bases = CXXRD->bases();
1274 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1275 SubobjectIsDesignatorContext, Index, StructuredList,
1276 StructuredIndex, TopLevelObject);
1277 } else if (DeclType->isArrayType()) {
1278 llvm::APSInt Zero(
1279 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1280 false);
1281 CheckArrayType(Entity, IList, DeclType, Zero,
1282 SubobjectIsDesignatorContext, Index,
1283 StructuredList, StructuredIndex);
1284 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1285 // This type is invalid, issue a diagnostic.
1286 ++Index;
1287 if (!VerifyOnly)
1288 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1289 << DeclType;
1290 hadError = true;
1291 } else if (DeclType->isReferenceType()) {
1292 CheckReferenceType(Entity, IList, DeclType, Index,
1293 StructuredList, StructuredIndex);
1294 } else if (DeclType->isObjCObjectType()) {
1295 if (!VerifyOnly)
1296 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1297 hadError = true;
1298 } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1299 // Checks for scalar type are sufficient for these types too.
1300 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1301 StructuredIndex);
1302 } else {
1303 if (!VerifyOnly)
1304 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1305 << DeclType;
1306 hadError = true;
1307 }
1308}
1309
1310void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1311 InitListExpr *IList,
1312 QualType ElemType,
1313 unsigned &Index,
1314 InitListExpr *StructuredList,
1315 unsigned &StructuredIndex) {
1316 Expr *expr = IList->getInit(Index);
1317
1318 if (ElemType->isReferenceType())
1319 return CheckReferenceType(Entity, IList, ElemType, Index,
1320 StructuredList, StructuredIndex);
1321
1322 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1323 if (SubInitList->getNumInits() == 1 &&
1324 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1325 SIF_None) {
1326 // FIXME: It would be more faithful and no less correct to include an
1327 // InitListExpr in the semantic form of the initializer list in this case.
1328 expr = SubInitList->getInit(0);
1329 }
1330 // Nested aggregate initialization and C++ initialization are handled later.
1331 } else if (isa<ImplicitValueInitExpr>(expr)) {
1332 // This happens during template instantiation when we see an InitListExpr
1333 // that we've already checked once.
1334 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1335, __PRETTY_FUNCTION__))
1335 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1335, __PRETTY_FUNCTION__))
;
1336 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1337 ++Index;
1338 return;
1339 }
1340
1341 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1342 // C++ [dcl.init.aggr]p2:
1343 // Each member is copy-initialized from the corresponding
1344 // initializer-clause.
1345
1346 // FIXME: Better EqualLoc?
1347 InitializationKind Kind =
1348 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1349
1350 // Vector elements can be initialized from other vectors in which case
1351 // we need initialization entity with a type of a vector (and not a vector
1352 // element!) initializing multiple vector elements.
1353 auto TmpEntity =
1354 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1355 ? InitializedEntity::InitializeTemporary(ElemType)
1356 : Entity;
1357
1358 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1359 /*TopLevelOfInitList*/ true);
1360
1361 // C++14 [dcl.init.aggr]p13:
1362 // If the assignment-expression can initialize a member, the member is
1363 // initialized. Otherwise [...] brace elision is assumed
1364 //
1365 // Brace elision is never performed if the element is not an
1366 // assignment-expression.
1367 if (Seq || isa<InitListExpr>(expr)) {
1368 if (!VerifyOnly) {
1369 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1370 if (Result.isInvalid())
1371 hadError = true;
1372
1373 UpdateStructuredListElement(StructuredList, StructuredIndex,
1374 Result.getAs<Expr>());
1375 } else if (!Seq) {
1376 hadError = true;
1377 } else if (StructuredList) {
1378 UpdateStructuredListElement(StructuredList, StructuredIndex,
1379 getDummyInit());
1380 }
1381 ++Index;
1382 return;
1383 }
1384
1385 // Fall through for subaggregate initialization
1386 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1387 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1388 return CheckScalarType(Entity, IList, ElemType, Index,
1389 StructuredList, StructuredIndex);
1390 } else if (const ArrayType *arrayType =
1391 SemaRef.Context.getAsArrayType(ElemType)) {
1392 // arrayType can be incomplete if we're initializing a flexible
1393 // array member. There's nothing we can do with the completed
1394 // type here, though.
1395
1396 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1397 // FIXME: Should we do this checking in verify-only mode?
1398 if (!VerifyOnly)
1399 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1400 if (StructuredList)
1401 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1402 ++Index;
1403 return;
1404 }
1405
1406 // Fall through for subaggregate initialization.
1407
1408 } else {
1409 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1410, __PRETTY_FUNCTION__))
1410 ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411
1412 // C99 6.7.8p13:
1413 //
1414 // The initializer for a structure or union object that has
1415 // automatic storage duration shall be either an initializer
1416 // list as described below, or a single expression that has
1417 // compatible structure or union type. In the latter case, the
1418 // initial value of the object, including unnamed members, is
1419 // that of the expression.
1420 ExprResult ExprRes = expr;
1421 if (SemaRef.CheckSingleAssignmentConstraints(
1422 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1423 if (ExprRes.isInvalid())
1424 hadError = true;
1425 else {
1426 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1427 if (ExprRes.isInvalid())
1428 hadError = true;
1429 }
1430 UpdateStructuredListElement(StructuredList, StructuredIndex,
1431 ExprRes.getAs<Expr>());
1432 ++Index;
1433 return;
1434 }
1435 ExprRes.get();
1436 // Fall through for subaggregate initialization
1437 }
1438
1439 // C++ [dcl.init.aggr]p12:
1440 //
1441 // [...] Otherwise, if the member is itself a non-empty
1442 // subaggregate, brace elision is assumed and the initializer is
1443 // considered for the initialization of the first member of
1444 // the subaggregate.
1445 // OpenCL vector initializer is handled elsewhere.
1446 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1447 ElemType->isAggregateType()) {
1448 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1449 StructuredIndex);
1450 ++StructuredIndex;
1451 } else {
1452 if (!VerifyOnly) {
1453 // We cannot initialize this element, so let PerformCopyInitialization
1454 // produce the appropriate diagnostic. We already checked that this
1455 // initialization will fail.
1456 ExprResult Copy =
1457 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1458 /*TopLevelOfInitList=*/true);
1459 (void)Copy;
1460 assert(Copy.isInvalid() &&((Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1461, __PRETTY_FUNCTION__))
1461 "expected non-aggregate initialization to fail")((Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1461, __PRETTY_FUNCTION__))
;
1462 }
1463 hadError = true;
1464 ++Index;
1465 ++StructuredIndex;
1466 }
1467}
1468
1469void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1470 InitListExpr *IList, QualType DeclType,
1471 unsigned &Index,
1472 InitListExpr *StructuredList,
1473 unsigned &StructuredIndex) {
1474 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1474, __PRETTY_FUNCTION__))
;
1475
1476 // As an extension, clang supports complex initializers, which initialize
1477 // a complex number component-wise. When an explicit initializer list for
1478 // a complex number contains two two initializers, this extension kicks in:
1479 // it exepcts the initializer list to contain two elements convertible to
1480 // the element type of the complex type. The first element initializes
1481 // the real part, and the second element intitializes the imaginary part.
1482
1483 if (IList->getNumInits() != 2)
1484 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1485 StructuredIndex);
1486
1487 // This is an extension in C. (The builtin _Complex type does not exist
1488 // in the C++ standard.)
1489 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1490 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1491 << IList->getSourceRange();
1492
1493 // Initialize the complex number.
1494 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1495 InitializedEntity ElementEntity =
1496 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1497
1498 for (unsigned i = 0; i < 2; ++i) {
1499 ElementEntity.setElementIndex(Index);
1500 CheckSubElementType(ElementEntity, IList, elementType, Index,
1501 StructuredList, StructuredIndex);
1502 }
1503}
1504
1505void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1506 InitListExpr *IList, QualType DeclType,
1507 unsigned &Index,
1508 InitListExpr *StructuredList,
1509 unsigned &StructuredIndex) {
1510 if (Index >= IList->getNumInits()) {
1511 if (!VerifyOnly)
1512 SemaRef.Diag(IList->getBeginLoc(),
1513 SemaRef.getLangOpts().CPlusPlus11
1514 ? diag::warn_cxx98_compat_empty_scalar_initializer
1515 : diag::err_empty_scalar_initializer)
1516 << IList->getSourceRange();
1517 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1518 ++Index;
1519 ++StructuredIndex;
1520 return;
1521 }
1522
1523 Expr *expr = IList->getInit(Index);
1524 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1525 // FIXME: This is invalid, and accepting it causes overload resolution
1526 // to pick the wrong overload in some corner cases.
1527 if (!VerifyOnly)
1528 SemaRef.Diag(SubIList->getBeginLoc(),
1529 diag::ext_many_braces_around_scalar_init)
1530 << SubIList->getSourceRange();
1531
1532 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1533 StructuredIndex);
1534 return;
1535 } else if (isa<DesignatedInitExpr>(expr)) {
1536 if (!VerifyOnly)
1537 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1538 << DeclType << expr->getSourceRange();
1539 hadError = true;
1540 ++Index;
1541 ++StructuredIndex;
1542 return;
1543 }
1544
1545 ExprResult Result;
1546 if (VerifyOnly) {
1547 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1548 Result = getDummyInit();
1549 else
1550 Result = ExprError();
1551 } else {
1552 Result =
1553 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1554 /*TopLevelOfInitList=*/true);
1555 }
1556
1557 Expr *ResultExpr = nullptr;
1558
1559 if (Result.isInvalid())
1560 hadError = true; // types weren't compatible.
1561 else {
1562 ResultExpr = Result.getAs<Expr>();
1563
1564 if (ResultExpr != expr && !VerifyOnly) {
1565 // The type was promoted, update initializer list.
1566 // FIXME: Why are we updating the syntactic init list?
1567 IList->setInit(Index, ResultExpr);
1568 }
1569 }
1570 if (hadError)
1571 ++StructuredIndex;
1572 else
1573 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1574 ++Index;
1575}
1576
1577void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1578 InitListExpr *IList, QualType DeclType,
1579 unsigned &Index,
1580 InitListExpr *StructuredList,
1581 unsigned &StructuredIndex) {
1582 if (Index >= IList->getNumInits()) {
1583 // FIXME: It would be wonderful if we could point at the actual member. In
1584 // general, it would be useful to pass location information down the stack,
1585 // so that we know the location (or decl) of the "current object" being
1586 // initialized.
1587 if (!VerifyOnly)
1588 SemaRef.Diag(IList->getBeginLoc(),
1589 diag::err_init_reference_member_uninitialized)
1590 << DeclType << IList->getSourceRange();
1591 hadError = true;
1592 ++Index;
1593 ++StructuredIndex;
1594 return;
1595 }
1596
1597 Expr *expr = IList->getInit(Index);
1598 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1599 if (!VerifyOnly)
1600 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1601 << DeclType << IList->getSourceRange();
1602 hadError = true;
1603 ++Index;
1604 ++StructuredIndex;
1605 return;
1606 }
1607
1608 ExprResult Result;
1609 if (VerifyOnly) {
1610 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1611 Result = getDummyInit();
1612 else
1613 Result = ExprError();
1614 } else {
1615 Result =
1616 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1617 /*TopLevelOfInitList=*/true);
1618 }
1619
1620 if (Result.isInvalid())
1621 hadError = true;
1622
1623 expr = Result.getAs<Expr>();
1624 // FIXME: Why are we updating the syntactic init list?
1625 if (!VerifyOnly)
1626 IList->setInit(Index, expr);
1627
1628 if (hadError)
1629 ++StructuredIndex;
1630 else
1631 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1632 ++Index;
1633}
1634
1635void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1636 InitListExpr *IList, QualType DeclType,
1637 unsigned &Index,
1638 InitListExpr *StructuredList,
1639 unsigned &StructuredIndex) {
1640 const VectorType *VT = DeclType->castAs<VectorType>();
1641 unsigned maxElements = VT->getNumElements();
1642 unsigned numEltsInit = 0;
1643 QualType elementType = VT->getElementType();
1644
1645 if (Index >= IList->getNumInits()) {
1646 // Make sure the element type can be value-initialized.
1647 CheckEmptyInitializable(
1648 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1649 IList->getEndLoc());
1650 return;
1651 }
1652
1653 if (!SemaRef.getLangOpts().OpenCL) {
1654 // If the initializing element is a vector, try to copy-initialize
1655 // instead of breaking it apart (which is doomed to failure anyway).
1656 Expr *Init = IList->getInit(Index);
1657 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1658 ExprResult Result;
1659 if (VerifyOnly) {
1660 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1661 Result = getDummyInit();
1662 else
1663 Result = ExprError();
1664 } else {
1665 Result =
1666 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1667 /*TopLevelOfInitList=*/true);
1668 }
1669
1670 Expr *ResultExpr = nullptr;
1671 if (Result.isInvalid())
1672 hadError = true; // types weren't compatible.
1673 else {
1674 ResultExpr = Result.getAs<Expr>();
1675
1676 if (ResultExpr != Init && !VerifyOnly) {
1677 // The type was promoted, update initializer list.
1678 // FIXME: Why are we updating the syntactic init list?
1679 IList->setInit(Index, ResultExpr);
1680 }
1681 }
1682 if (hadError)
1683 ++StructuredIndex;
1684 else
1685 UpdateStructuredListElement(StructuredList, StructuredIndex,
1686 ResultExpr);
1687 ++Index;
1688 return;
1689 }
1690
1691 InitializedEntity ElementEntity =
1692 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1693
1694 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1695 // Don't attempt to go past the end of the init list
1696 if (Index >= IList->getNumInits()) {
1697 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1698 break;
1699 }
1700
1701 ElementEntity.setElementIndex(Index);
1702 CheckSubElementType(ElementEntity, IList, elementType, Index,
1703 StructuredList, StructuredIndex);
1704 }
1705
1706 if (VerifyOnly)
1707 return;
1708
1709 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1710 const VectorType *T = Entity.getType()->castAs<VectorType>();
1711 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1712 T->getVectorKind() == VectorType::NeonPolyVector)) {
1713 // The ability to use vector initializer lists is a GNU vector extension
1714 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1715 // endian machines it works fine, however on big endian machines it
1716 // exhibits surprising behaviour:
1717 //
1718 // uint32x2_t x = {42, 64};
1719 // return vget_lane_u32(x, 0); // Will return 64.
1720 //
1721 // Because of this, explicitly call out that it is non-portable.
1722 //
1723 SemaRef.Diag(IList->getBeginLoc(),
1724 diag::warn_neon_vector_initializer_non_portable);
1725
1726 const char *typeCode;
1727 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1728
1729 if (elementType->isFloatingType())
1730 typeCode = "f";
1731 else if (elementType->isSignedIntegerType())
1732 typeCode = "s";
1733 else if (elementType->isUnsignedIntegerType())
1734 typeCode = "u";
1735 else
1736 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 1736)
;
1737
1738 SemaRef.Diag(IList->getBeginLoc(),
1739 SemaRef.Context.getTypeSize(VT) > 64
1740 ? diag::note_neon_vector_initializer_non_portable_q
1741 : diag::note_neon_vector_initializer_non_portable)
1742 << typeCode << typeSize;
1743 }
1744
1745 return;
1746 }
1747
1748 InitializedEntity ElementEntity =
1749 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1750
1751 // OpenCL initializers allows vectors to be constructed from vectors.
1752 for (unsigned i = 0; i < maxElements; ++i) {
1753 // Don't attempt to go past the end of the init list
1754 if (Index >= IList->getNumInits())
1755 break;
1756
1757 ElementEntity.setElementIndex(Index);
1758
1759 QualType IType = IList->getInit(Index)->getType();
1760 if (!IType->isVectorType()) {
1761 CheckSubElementType(ElementEntity, IList, elementType, Index,
1762 StructuredList, StructuredIndex);
1763 ++numEltsInit;
1764 } else {
1765 QualType VecType;
1766 const VectorType *IVT = IType->castAs<VectorType>();
1767 unsigned numIElts = IVT->getNumElements();
1768
1769 if (IType->isExtVectorType())
1770 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1771 else
1772 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1773 IVT->getVectorKind());
1774 CheckSubElementType(ElementEntity, IList, VecType, Index,
1775 StructuredList, StructuredIndex);
1776 numEltsInit += numIElts;
1777 }
1778 }
1779
1780 // OpenCL requires all elements to be initialized.
1781 if (numEltsInit != maxElements) {
1782 if (!VerifyOnly)
1783 SemaRef.Diag(IList->getBeginLoc(),
1784 diag::err_vector_incorrect_num_initializers)
1785 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1786 hadError = true;
1787 }
1788}
1789
1790/// Check if the type of a class element has an accessible destructor, and marks
1791/// it referenced. Returns true if we shouldn't form a reference to the
1792/// destructor.
1793///
1794/// Aggregate initialization requires a class element's destructor be
1795/// accessible per 11.6.1 [dcl.init.aggr]:
1796///
1797/// The destructor for each element of class type is potentially invoked
1798/// (15.4 [class.dtor]) from the context where the aggregate initialization
1799/// occurs.
1800static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1801 Sema &SemaRef) {
1802 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1803 if (!CXXRD)
1804 return false;
1805
1806 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1807 SemaRef.CheckDestructorAccess(Loc, Destructor,
1808 SemaRef.PDiag(diag::err_access_dtor_temp)
1809 << ElementType);
1810 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1811 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1812}
1813
1814void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1815 InitListExpr *IList, QualType &DeclType,
1816 llvm::APSInt elementIndex,
1817 bool SubobjectIsDesignatorContext,
1818 unsigned &Index,
1819 InitListExpr *StructuredList,
1820 unsigned &StructuredIndex) {
1821 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1822
1823 if (!VerifyOnly) {
1824 if (checkDestructorReference(arrayType->getElementType(),
1825 IList->getEndLoc(), SemaRef)) {
1826 hadError = true;
1827 return;
1828 }
1829 }
1830
1831 // Check for the special-case of initializing an array with a string.
1832 if (Index < IList->getNumInits()) {
1833 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1834 SIF_None) {
1835 // We place the string literal directly into the resulting
1836 // initializer list. This is the only place where the structure
1837 // of the structured initializer list doesn't match exactly,
1838 // because doing so would involve allocating one character
1839 // constant for each string.
1840 // FIXME: Should we do these checks in verify-only mode too?
1841 if (!VerifyOnly)
1842 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1843 if (StructuredList) {
1844 UpdateStructuredListElement(StructuredList, StructuredIndex,
1845 IList->getInit(Index));
1846 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1847 }
1848 ++Index;
1849 return;
1850 }
1851 }
1852 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1853 // Check for VLAs; in standard C it would be possible to check this
1854 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1855 // them in all sorts of strange places).
1856 if (!VerifyOnly)
1857 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1858 diag::err_variable_object_no_init)
1859 << VAT->getSizeExpr()->getSourceRange();
1860 hadError = true;
1861 ++Index;
1862 ++StructuredIndex;
1863 return;
1864 }
1865
1866 // We might know the maximum number of elements in advance.
1867 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1868 elementIndex.isUnsigned());
1869 bool maxElementsKnown = false;
1870 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1871 maxElements = CAT->getSize();
1872 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1873 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1874 maxElementsKnown = true;
1875 }
1876
1877 QualType elementType = arrayType->getElementType();
1878 while (Index < IList->getNumInits()) {
1879 Expr *Init = IList->getInit(Index);
1880 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1881 // If we're not the subobject that matches up with the '{' for
1882 // the designator, we shouldn't be handling the
1883 // designator. Return immediately.
1884 if (!SubobjectIsDesignatorContext)
1885 return;
1886
1887 // Handle this designated initializer. elementIndex will be
1888 // updated to be the next array element we'll initialize.
1889 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1890 DeclType, nullptr, &elementIndex, Index,
1891 StructuredList, StructuredIndex, true,
1892 false)) {
1893 hadError = true;
1894 continue;
1895 }
1896
1897 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1898 maxElements = maxElements.extend(elementIndex.getBitWidth());
1899 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1900 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1901 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1902
1903 // If the array is of incomplete type, keep track of the number of
1904 // elements in the initializer.
1905 if (!maxElementsKnown && elementIndex > maxElements)
1906 maxElements = elementIndex;
1907
1908 continue;
1909 }
1910
1911 // If we know the maximum number of elements, and we've already
1912 // hit it, stop consuming elements in the initializer list.
1913 if (maxElementsKnown && elementIndex == maxElements)
1914 break;
1915
1916 InitializedEntity ElementEntity =
1917 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1918 Entity);
1919 // Check this element.
1920 CheckSubElementType(ElementEntity, IList, elementType, Index,
1921 StructuredList, StructuredIndex);
1922 ++elementIndex;
1923
1924 // If the array is of incomplete type, keep track of the number of
1925 // elements in the initializer.
1926 if (!maxElementsKnown && elementIndex > maxElements)
1927 maxElements = elementIndex;
1928 }
1929 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1930 // If this is an incomplete array type, the actual type needs to
1931 // be calculated here.
1932 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1933 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1934 // Sizing an array implicitly to zero is not allowed by ISO C,
1935 // but is supported by GNU.
1936 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1937 }
1938
1939 DeclType = SemaRef.Context.getConstantArrayType(
1940 elementType, maxElements, nullptr, ArrayType::Normal, 0);
1941 }
1942 if (!hadError) {
1943 // If there are any members of the array that get value-initialized, check
1944 // that is possible. That happens if we know the bound and don't have
1945 // enough elements, or if we're performing an array new with an unknown
1946 // bound.
1947 if ((maxElementsKnown && elementIndex < maxElements) ||
1948 Entity.isVariableLengthArrayNew())
1949 CheckEmptyInitializable(
1950 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1951 IList->getEndLoc());
1952 }
1953}
1954
1955bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1956 Expr *InitExpr,
1957 FieldDecl *Field,
1958 bool TopLevelObject) {
1959 // Handle GNU flexible array initializers.
1960 unsigned FlexArrayDiag;
1961 if (isa<InitListExpr>(InitExpr) &&
1962 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1963 // Empty flexible array init always allowed as an extension
1964 FlexArrayDiag = diag::ext_flexible_array_init;
1965 } else if (SemaRef.getLangOpts().CPlusPlus) {
1966 // Disallow flexible array init in C++; it is not required for gcc
1967 // compatibility, and it needs work to IRGen correctly in general.
1968 FlexArrayDiag = diag::err_flexible_array_init;
1969 } else if (!TopLevelObject) {
1970 // Disallow flexible array init on non-top-level object
1971 FlexArrayDiag = diag::err_flexible_array_init;
1972 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1973 // Disallow flexible array init on anything which is not a variable.
1974 FlexArrayDiag = diag::err_flexible_array_init;
1975 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1976 // Disallow flexible array init on local variables.
1977 FlexArrayDiag = diag::err_flexible_array_init;
1978 } else {
1979 // Allow other cases.
1980 FlexArrayDiag = diag::ext_flexible_array_init;
1981 }
1982
1983 if (!VerifyOnly) {
1984 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1985 << InitExpr->getBeginLoc();
1986 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1987 << Field;
1988 }
1989
1990 return FlexArrayDiag != diag::ext_flexible_array_init;
1991}
1992
1993void InitListChecker::CheckStructUnionTypes(
1994 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1995 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1996 bool SubobjectIsDesignatorContext, unsigned &Index,
1997 InitListExpr *StructuredList, unsigned &StructuredIndex,
1998 bool TopLevelObject) {
1999 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2000
2001 // If the record is invalid, some of it's members are invalid. To avoid
2002 // confusion, we forgo checking the intializer for the entire record.
2003 if (structDecl->isInvalidDecl()) {
2004 // Assume it was supposed to consume a single initializer.
2005 ++Index;
2006 hadError = true;
2007 return;
2008 }
2009
2010 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2011 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2012
2013 if (!VerifyOnly)
2014 for (FieldDecl *FD : RD->fields()) {
2015 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2016 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2017 hadError = true;
2018 return;
2019 }
2020 }
2021
2022 // If there's a default initializer, use it.
2023 if (isa<CXXRecordDecl>(RD) &&
2024 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2025 if (!StructuredList)
2026 return;
2027 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2028 Field != FieldEnd; ++Field) {
2029 if (Field->hasInClassInitializer()) {
2030 StructuredList->setInitializedFieldInUnion(*Field);
2031 // FIXME: Actually build a CXXDefaultInitExpr?
2032 return;
2033 }
2034 }
2035 }
2036
2037 // Value-initialize the first member of the union that isn't an unnamed
2038 // bitfield.
2039 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2040 Field != FieldEnd; ++Field) {
2041 if (!Field->isUnnamedBitfield()) {
2042 CheckEmptyInitializable(
2043 InitializedEntity::InitializeMember(*Field, &Entity),
2044 IList->getEndLoc());
2045 if (StructuredList)
2046 StructuredList->setInitializedFieldInUnion(*Field);
2047 break;
2048 }
2049 }
2050 return;
2051 }
2052
2053 bool InitializedSomething = false;
2054
2055 // If we have any base classes, they are initialized prior to the fields.
2056 for (auto &Base : Bases) {
2057 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2058
2059 // Designated inits always initialize fields, so if we see one, all
2060 // remaining base classes have no explicit initializer.
2061 if (Init && isa<DesignatedInitExpr>(Init))
2062 Init = nullptr;
2063
2064 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2065 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2066 SemaRef.Context, &Base, false, &Entity);
2067 if (Init) {
2068 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2069 StructuredList, StructuredIndex);
2070 InitializedSomething = true;
2071 } else {
2072 CheckEmptyInitializable(BaseEntity, InitLoc);
2073 }
2074
2075 if (!VerifyOnly)
2076 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2077 hadError = true;
2078 return;
2079 }
2080 }
2081
2082 // If structDecl is a forward declaration, this loop won't do
2083 // anything except look at designated initializers; That's okay,
2084 // because an error should get printed out elsewhere. It might be
2085 // worthwhile to skip over the rest of the initializer, though.
2086 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2087 RecordDecl::field_iterator FieldEnd = RD->field_end();
2088 bool CheckForMissingFields =
2089 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2090 bool HasDesignatedInit = false;
2091
2092 while (Index < IList->getNumInits()) {
2093 Expr *Init = IList->getInit(Index);
2094 SourceLocation InitLoc = Init->getBeginLoc();
2095
2096 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2097 // If we're not the subobject that matches up with the '{' for
2098 // the designator, we shouldn't be handling the
2099 // designator. Return immediately.
2100 if (!SubobjectIsDesignatorContext)
2101 return;
2102
2103 HasDesignatedInit = true;
2104
2105 // Handle this designated initializer. Field will be updated to
2106 // the next field that we'll be initializing.
2107 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2108 DeclType, &Field, nullptr, Index,
2109 StructuredList, StructuredIndex,
2110 true, TopLevelObject))
2111 hadError = true;
2112 else if (!VerifyOnly) {
2113 // Find the field named by the designated initializer.
2114 RecordDecl::field_iterator F = RD->field_begin();
2115 while (std::next(F) != Field)
2116 ++F;
2117 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2118 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2119 hadError = true;
2120 return;
2121 }
2122 }
2123
2124 InitializedSomething = true;
2125
2126 // Disable check for missing fields when designators are used.
2127 // This matches gcc behaviour.
2128 CheckForMissingFields = false;
2129 continue;
2130 }
2131
2132 if (Field == FieldEnd) {
2133 // We've run out of fields. We're done.
2134 break;
2135 }
2136
2137 // We've already initialized a member of a union. We're done.
2138 if (InitializedSomething && DeclType->isUnionType())
2139 break;
2140
2141 // If we've hit the flexible array member at the end, we're done.
2142 if (Field->getType()->isIncompleteArrayType())
2143 break;
2144
2145 if (Field->isUnnamedBitfield()) {
2146 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2147 ++Field;
2148 continue;
2149 }
2150
2151 // Make sure we can use this declaration.
2152 bool InvalidUse;
2153 if (VerifyOnly)
2154 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2155 else
2156 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2157 *Field, IList->getInit(Index)->getBeginLoc());
2158 if (InvalidUse) {
2159 ++Index;
2160 ++Field;
2161 hadError = true;
2162 continue;
2163 }
2164
2165 if (!VerifyOnly) {
2166 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2167 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2168 hadError = true;
2169 return;
2170 }
2171 }
2172
2173 InitializedEntity MemberEntity =
2174 InitializedEntity::InitializeMember(*Field, &Entity);
2175 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2176 StructuredList, StructuredIndex);
2177 InitializedSomething = true;
2178
2179 if (DeclType->isUnionType() && StructuredList) {
2180 // Initialize the first field within the union.
2181 StructuredList->setInitializedFieldInUnion(*Field);
2182 }
2183
2184 ++Field;
2185 }
2186
2187 // Emit warnings for missing struct field initializers.
2188 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2189 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2190 !DeclType->isUnionType()) {
2191 // It is possible we have one or more unnamed bitfields remaining.
2192 // Find first (if any) named field and emit warning.
2193 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2194 it != end; ++it) {
2195 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2196 SemaRef.Diag(IList->getSourceRange().getEnd(),
2197 diag::warn_missing_field_initializers) << *it;
2198 break;
2199 }
2200 }
2201 }
2202
2203 // Check that any remaining fields can be value-initialized if we're not
2204 // building a structured list. (If we are, we'll check this later.)
2205 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2206 !Field->getType()->isIncompleteArrayType()) {
2207 for (; Field != FieldEnd && !hadError; ++Field) {
2208 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2209 CheckEmptyInitializable(
2210 InitializedEntity::InitializeMember(*Field, &Entity),
2211 IList->getEndLoc());
2212 }
2213 }
2214
2215 // Check that the types of the remaining fields have accessible destructors.
2216 if (!VerifyOnly) {
2217 // If the initializer expression has a designated initializer, check the
2218 // elements for which a designated initializer is not provided too.
2219 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2220 : Field;
2221 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2222 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2223 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2224 hadError = true;
2225 return;
2226 }
2227 }
2228 }
2229
2230 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2231 Index >= IList->getNumInits())
2232 return;
2233
2234 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2235 TopLevelObject)) {
2236 hadError = true;
2237 ++Index;
2238 return;
2239 }
2240
2241 InitializedEntity MemberEntity =
2242 InitializedEntity::InitializeMember(*Field, &Entity);
2243
2244 if (isa<InitListExpr>(IList->getInit(Index)))
2245 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2246 StructuredList, StructuredIndex);
2247 else
2248 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2249 StructuredList, StructuredIndex);
2250}
2251
2252/// Expand a field designator that refers to a member of an
2253/// anonymous struct or union into a series of field designators that
2254/// refers to the field within the appropriate subobject.
2255///
2256static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2257 DesignatedInitExpr *DIE,
2258 unsigned DesigIdx,
2259 IndirectFieldDecl *IndirectField) {
2260 typedef DesignatedInitExpr::Designator Designator;
2261
2262 // Build the replacement designators.
2263 SmallVector<Designator, 4> Replacements;
2264 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2265 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2266 if (PI + 1 == PE)
2267 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2268 DIE->getDesignator(DesigIdx)->getDotLoc(),
2269 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2270 else
2271 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2272 SourceLocation(), SourceLocation()));
2273 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2273, __PRETTY_FUNCTION__))
;
2274 Replacements.back().setField(cast<FieldDecl>(*PI));
2275 }
2276
2277 // Expand the current designator into the set of replacement
2278 // designators, so we have a full subobject path down to where the
2279 // member of the anonymous struct/union is actually stored.
2280 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2281 &Replacements[0] + Replacements.size());
2282}
2283
2284static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2285 DesignatedInitExpr *DIE) {
2286 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2287 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2288 for (unsigned I = 0; I < NumIndexExprs; ++I)
2289 IndexExprs[I] = DIE->getSubExpr(I + 1);
2290 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2291 IndexExprs,
2292 DIE->getEqualOrColonLoc(),
2293 DIE->usesGNUSyntax(), DIE->getInit());
2294}
2295
2296namespace {
2297
2298// Callback to only accept typo corrections that are for field members of
2299// the given struct or union.
2300class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2301 public:
2302 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2303 : Record(RD) {}
2304
2305 bool ValidateCandidate(const TypoCorrection &candidate) override {
2306 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2307 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2308 }
2309
2310 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2311 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2312 }
2313
2314 private:
2315 RecordDecl *Record;
2316};
2317
2318} // end anonymous namespace
2319
2320/// Check the well-formedness of a C99 designated initializer.
2321///
2322/// Determines whether the designated initializer @p DIE, which
2323/// resides at the given @p Index within the initializer list @p
2324/// IList, is well-formed for a current object of type @p DeclType
2325/// (C99 6.7.8). The actual subobject that this designator refers to
2326/// within the current subobject is returned in either
2327/// @p NextField or @p NextElementIndex (whichever is appropriate).
2328///
2329/// @param IList The initializer list in which this designated
2330/// initializer occurs.
2331///
2332/// @param DIE The designated initializer expression.
2333///
2334/// @param DesigIdx The index of the current designator.
2335///
2336/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2337/// into which the designation in @p DIE should refer.
2338///
2339/// @param NextField If non-NULL and the first designator in @p DIE is
2340/// a field, this will be set to the field declaration corresponding
2341/// to the field named by the designator. On input, this is expected to be
2342/// the next field that would be initialized in the absence of designation,
2343/// if the complete object being initialized is a struct.
2344///
2345/// @param NextElementIndex If non-NULL and the first designator in @p
2346/// DIE is an array designator or GNU array-range designator, this
2347/// will be set to the last index initialized by this designator.
2348///
2349/// @param Index Index into @p IList where the designated initializer
2350/// @p DIE occurs.
2351///
2352/// @param StructuredList The initializer list expression that
2353/// describes all of the subobject initializers in the order they'll
2354/// actually be initialized.
2355///
2356/// @returns true if there was an error, false otherwise.
2357bool
2358InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2359 InitListExpr *IList,
2360 DesignatedInitExpr *DIE,
2361 unsigned DesigIdx,
2362 QualType &CurrentObjectType,
2363 RecordDecl::field_iterator *NextField,
2364 llvm::APSInt *NextElementIndex,
2365 unsigned &Index,
2366 InitListExpr *StructuredList,
2367 unsigned &StructuredIndex,
2368 bool FinishSubobjectInit,
2369 bool TopLevelObject) {
2370 if (DesigIdx == DIE->size()) {
2371 // C++20 designated initialization can result in direct-list-initialization
2372 // of the designated subobject. This is the only way that we can end up
2373 // performing direct initialization as part of aggregate initialization, so
2374 // it needs special handling.
2375 if (DIE->isDirectInit()) {
2376 Expr *Init = DIE->getInit();
2377 assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?"
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2378, __PRETTY_FUNCTION__))
2378 "designator result in direct non-list initialization?")((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?"
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2378, __PRETTY_FUNCTION__))
;
2379 InitializationKind Kind = InitializationKind::CreateDirectList(
2380 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2381 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2382 /*TopLevelOfInitList*/ true);
2383 if (StructuredList) {
2384 ExprResult Result = VerifyOnly
2385 ? getDummyInit()
2386 : Seq.Perform(SemaRef, Entity, Kind, Init);
2387 UpdateStructuredListElement(StructuredList, StructuredIndex,
2388 Result.get());
2389 }
2390 ++Index;
2391 return !Seq;
2392 }
2393
2394 // Check the actual initialization for the designated object type.
2395 bool prevHadError = hadError;
2396
2397 // Temporarily remove the designator expression from the
2398 // initializer list that the child calls see, so that we don't try
2399 // to re-process the designator.
2400 unsigned OldIndex = Index;
2401 IList->setInit(OldIndex, DIE->getInit());
2402
2403 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2404 StructuredList, StructuredIndex);
2405
2406 // Restore the designated initializer expression in the syntactic
2407 // form of the initializer list.
2408 if (IList->getInit(OldIndex) != DIE->getInit())
2409 DIE->setInit(IList->getInit(OldIndex));
2410 IList->setInit(OldIndex, DIE);
2411
2412 return hadError && !prevHadError;
2413 }
2414
2415 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2416 bool IsFirstDesignator = (DesigIdx == 0);
2417 if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2418 // Determine the structural initializer list that corresponds to the
2419 // current subobject.
2420 if (IsFirstDesignator)
2421 StructuredList = FullyStructuredList;
2422 else {
2423 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2424 StructuredList->getInit(StructuredIndex) : nullptr;
2425 if (!ExistingInit && StructuredList->hasArrayFiller())
2426 ExistingInit = StructuredList->getArrayFiller();
2427
2428 if (!ExistingInit)
2429 StructuredList = getStructuredSubobjectInit(
2430 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2431 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2432 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2433 StructuredList = Result;
2434 else {
2435 // We are creating an initializer list that initializes the
2436 // subobjects of the current object, but there was already an
2437 // initialization that completely initialized the current
2438 // subobject, e.g., by a compound literal:
2439 //
2440 // struct X { int a, b; };
2441 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2442 //
2443 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2444 // designated initializer re-initializes only its current object
2445 // subobject [0].b.
2446 diagnoseInitOverride(ExistingInit,
2447 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2448 /*FullyOverwritten=*/false);
2449
2450 if (!VerifyOnly) {
2451 if (DesignatedInitUpdateExpr *E =
2452 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2453 StructuredList = E->getUpdater();
2454 else {
2455 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2456 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2457 ExistingInit, DIE->getEndLoc());
2458 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2459 StructuredList = DIUE->getUpdater();
2460 }
2461 } else {
2462 // We don't need to track the structured representation of a
2463 // designated init update of an already-fully-initialized object in
2464 // verify-only mode. The only reason we would need the structure is
2465 // to determine where the uninitialized "holes" are, and in this
2466 // case, we know there aren't any and we can't introduce any.
2467 StructuredList = nullptr;
2468 }
2469 }
2470 }
2471 }
2472
2473 if (D->isFieldDesignator()) {
2474 // C99 6.7.8p7:
2475 //
2476 // If a designator has the form
2477 //
2478 // . identifier
2479 //
2480 // then the current object (defined below) shall have
2481 // structure or union type and the identifier shall be the
2482 // name of a member of that type.
2483 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2484 if (!RT) {
2485 SourceLocation Loc = D->getDotLoc();
2486 if (Loc.isInvalid())
2487 Loc = D->getFieldLoc();
2488 if (!VerifyOnly)
2489 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2490 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2491 ++Index;
2492 return true;
2493 }
2494
2495 FieldDecl *KnownField = D->getField();
2496 if (!KnownField) {
2497 IdentifierInfo *FieldName = D->getFieldName();
2498 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2499 for (NamedDecl *ND : Lookup) {
2500 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2501 KnownField = FD;
2502 break;
2503 }
2504 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2505 // In verify mode, don't modify the original.
2506 if (VerifyOnly)
2507 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2508 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2509 D = DIE->getDesignator(DesigIdx);
2510 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2511 break;
2512 }
2513 }
2514 if (!KnownField) {
2515 if (VerifyOnly) {
2516 ++Index;
2517 return true; // No typo correction when just trying this out.
2518 }
2519
2520 // Name lookup found something, but it wasn't a field.
2521 if (!Lookup.empty()) {
2522 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2523 << FieldName;
2524 SemaRef.Diag(Lookup.front()->getLocation(),
2525 diag::note_field_designator_found);
2526 ++Index;
2527 return true;
2528 }
2529
2530 // Name lookup didn't find anything.
2531 // Determine whether this was a typo for another field name.
2532 FieldInitializerValidatorCCC CCC(RT->getDecl());
2533 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2534 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2535 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2536 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2537 SemaRef.diagnoseTypo(
2538 Corrected,
2539 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2540 << FieldName << CurrentObjectType);
2541 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2542 hadError = true;
2543 } else {
2544 // Typo correction didn't find anything.
2545 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2546 << FieldName << CurrentObjectType;
2547 ++Index;
2548 return true;
2549 }
2550 }
2551 }
2552
2553 unsigned NumBases = 0;
2554 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2555 NumBases = CXXRD->getNumBases();
2556
2557 unsigned FieldIndex = NumBases;
2558
2559 for (auto *FI : RT->getDecl()->fields()) {
2560 if (FI->isUnnamedBitfield())
2561 continue;
2562 if (declaresSameEntity(KnownField, FI)) {
2563 KnownField = FI;
2564 break;
2565 }
2566 ++FieldIndex;
2567 }
2568
2569 RecordDecl::field_iterator Field =
2570 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2571
2572 // All of the fields of a union are located at the same place in
2573 // the initializer list.
2574 if (RT->getDecl()->isUnion()) {
2575 FieldIndex = 0;
2576 if (StructuredList) {
2577 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2578 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2579 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2580, __PRETTY_FUNCTION__))
2580 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2580, __PRETTY_FUNCTION__))
;
2581
2582 Expr *ExistingInit = StructuredList->getInit(0);
2583 if (ExistingInit) {
2584 // We're about to throw away an initializer, emit warning.
2585 diagnoseInitOverride(
2586 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2587 }
2588
2589 // remove existing initializer
2590 StructuredList->resizeInits(SemaRef.Context, 0);
2591 StructuredList->setInitializedFieldInUnion(nullptr);
2592 }
2593
2594 StructuredList->setInitializedFieldInUnion(*Field);
2595 }
2596 }
2597
2598 // Make sure we can use this declaration.
2599 bool InvalidUse;
2600 if (VerifyOnly)
2601 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2602 else
2603 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2604 if (InvalidUse) {
2605 ++Index;
2606 return true;
2607 }
2608
2609 // C++20 [dcl.init.list]p3:
2610 // The ordered identifiers in the designators of the designated-
2611 // initializer-list shall form a subsequence of the ordered identifiers
2612 // in the direct non-static data members of T.
2613 //
2614 // Note that this is not a condition on forming the aggregate
2615 // initialization, only on actually performing initialization,
2616 // so it is not checked in VerifyOnly mode.
2617 //
2618 // FIXME: This is the only reordering diagnostic we produce, and it only
2619 // catches cases where we have a top-level field designator that jumps
2620 // backwards. This is the only such case that is reachable in an
2621 // otherwise-valid C++20 program, so is the only case that's required for
2622 // conformance, but for consistency, we should diagnose all the other
2623 // cases where a designator takes us backwards too.
2624 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2625 NextField &&
2626 (*NextField == RT->getDecl()->field_end() ||
2627 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2628 // Find the field that we just initialized.
2629 FieldDecl *PrevField = nullptr;
2630 for (auto FI = RT->getDecl()->field_begin();
2631 FI != RT->getDecl()->field_end(); ++FI) {
2632 if (FI->isUnnamedBitfield())
2633 continue;
2634 if (*NextField != RT->getDecl()->field_end() &&
2635 declaresSameEntity(*FI, **NextField))
2636 break;
2637 PrevField = *FI;
2638 }
2639
2640 if (PrevField &&
2641 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2642 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2643 << KnownField << PrevField << DIE->getSourceRange();
2644
2645 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2646 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2647 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2648 SemaRef.Diag(PrevInit->getBeginLoc(),
2649 diag::note_previous_field_init)
2650 << PrevField << PrevInit->getSourceRange();
2651 }
2652 }
2653 }
2654 }
2655
2656
2657 // Update the designator with the field declaration.
2658 if (!VerifyOnly)
2659 D->setField(*Field);
2660
2661 // Make sure that our non-designated initializer list has space
2662 // for a subobject corresponding to this field.
2663 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2664 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2665
2666 // This designator names a flexible array member.
2667 if (Field->getType()->isIncompleteArrayType()) {
2668 bool Invalid = false;
2669 if ((DesigIdx + 1) != DIE->size()) {
2670 // We can't designate an object within the flexible array
2671 // member (because GCC doesn't allow it).
2672 if (!VerifyOnly) {
2673 DesignatedInitExpr::Designator *NextD
2674 = DIE->getDesignator(DesigIdx + 1);
2675 SemaRef.Diag(NextD->getBeginLoc(),
2676 diag::err_designator_into_flexible_array_member)
2677 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2678 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2679 << *Field;
2680 }
2681 Invalid = true;
2682 }
2683
2684 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2685 !isa<StringLiteral>(DIE->getInit())) {
2686 // The initializer is not an initializer list.
2687 if (!VerifyOnly) {
2688 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2689 diag::err_flexible_array_init_needs_braces)
2690 << DIE->getInit()->getSourceRange();
2691 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2692 << *Field;
2693 }
2694 Invalid = true;
2695 }
2696
2697 // Check GNU flexible array initializer.
2698 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2699 TopLevelObject))
2700 Invalid = true;
2701
2702 if (Invalid) {
2703 ++Index;
2704 return true;
2705 }
2706
2707 // Initialize the array.
2708 bool prevHadError = hadError;
2709 unsigned newStructuredIndex = FieldIndex;
2710 unsigned OldIndex = Index;
2711 IList->setInit(Index, DIE->getInit());
2712
2713 InitializedEntity MemberEntity =
2714 InitializedEntity::InitializeMember(*Field, &Entity);
2715 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2716 StructuredList, newStructuredIndex);
2717
2718 IList->setInit(OldIndex, DIE);
2719 if (hadError && !prevHadError) {
2720 ++Field;
2721 ++FieldIndex;
2722 if (NextField)
2723 *NextField = Field;
2724 StructuredIndex = FieldIndex;
2725 return true;
2726 }
2727 } else {
2728 // Recurse to check later designated subobjects.
2729 QualType FieldType = Field->getType();
2730 unsigned newStructuredIndex = FieldIndex;
2731
2732 InitializedEntity MemberEntity =
2733 InitializedEntity::InitializeMember(*Field, &Entity);
2734 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2735 FieldType, nullptr, nullptr, Index,
2736 StructuredList, newStructuredIndex,
2737 FinishSubobjectInit, false))
2738 return true;
2739 }
2740
2741 // Find the position of the next field to be initialized in this
2742 // subobject.
2743 ++Field;
2744 ++FieldIndex;
2745
2746 // If this the first designator, our caller will continue checking
2747 // the rest of this struct/class/union subobject.
2748 if (IsFirstDesignator) {
2749 if (NextField)
2750 *NextField = Field;
2751 StructuredIndex = FieldIndex;
2752 return false;
2753 }
2754
2755 if (!FinishSubobjectInit)
2756 return false;
2757
2758 // We've already initialized something in the union; we're done.
2759 if (RT->getDecl()->isUnion())
2760 return hadError;
2761
2762 // Check the remaining fields within this class/struct/union subobject.
2763 bool prevHadError = hadError;
2764
2765 auto NoBases =
2766 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2767 CXXRecordDecl::base_class_iterator());
2768 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2769 false, Index, StructuredList, FieldIndex);
2770 return hadError && !prevHadError;
2771 }
2772
2773 // C99 6.7.8p6:
2774 //
2775 // If a designator has the form
2776 //
2777 // [ constant-expression ]
2778 //
2779 // then the current object (defined below) shall have array
2780 // type and the expression shall be an integer constant
2781 // expression. If the array is of unknown size, any
2782 // nonnegative value is valid.
2783 //
2784 // Additionally, cope with the GNU extension that permits
2785 // designators of the form
2786 //
2787 // [ constant-expression ... constant-expression ]
2788 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2789 if (!AT) {
2790 if (!VerifyOnly)
2791 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2792 << CurrentObjectType;
2793 ++Index;
2794 return true;
2795 }
2796
2797 Expr *IndexExpr = nullptr;
2798 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2799 if (D->isArrayDesignator()) {
2800 IndexExpr = DIE->getArrayIndex(*D);
2801 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2802 DesignatedEndIndex = DesignatedStartIndex;
2803 } else {
2804 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 2804, __PRETTY_FUNCTION__))
;
2805
2806 DesignatedStartIndex =
2807 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2808 DesignatedEndIndex =
2809 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2810 IndexExpr = DIE->getArrayRangeEnd(*D);
2811
2812 // Codegen can't handle evaluating array range designators that have side
2813 // effects, because we replicate the AST value for each initialized element.
2814 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2815 // elements with something that has a side effect, so codegen can emit an
2816 // "error unsupported" error instead of miscompiling the app.
2817 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2818 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2819 FullyStructuredList->sawArrayRangeDesignator();
2820 }
2821
2822 if (isa<ConstantArrayType>(AT)) {
2823 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2824 DesignatedStartIndex
2825 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2826 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2827 DesignatedEndIndex
2828 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2829 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2830 if (DesignatedEndIndex >= MaxElements) {
2831 if (!VerifyOnly)
2832 SemaRef.Diag(IndexExpr->getBeginLoc(),
2833 diag::err_array_designator_too_large)
2834 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2835 << IndexExpr->getSourceRange();
2836 ++Index;
2837 return true;
2838 }
2839 } else {
2840 unsigned DesignatedIndexBitWidth =
2841 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2842 DesignatedStartIndex =
2843 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2844 DesignatedEndIndex =
2845 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2846 DesignatedStartIndex.setIsUnsigned(true);
2847 DesignatedEndIndex.setIsUnsigned(true);
2848 }
2849
2850 bool IsStringLiteralInitUpdate =
2851 StructuredList && StructuredList->isStringLiteralInit();
2852 if (IsStringLiteralInitUpdate && VerifyOnly) {
2853 // We're just verifying an update to a string literal init. We don't need
2854 // to split the string up into individual characters to do that.
2855 StructuredList = nullptr;
2856 } else if (IsStringLiteralInitUpdate) {
2857 // We're modifying a string literal init; we have to decompose the string
2858 // so we can modify the individual characters.
2859 ASTContext &Context = SemaRef.Context;
2860 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2861
2862 // Compute the character type
2863 QualType CharTy = AT->getElementType();
2864
2865 // Compute the type of the integer literals.
2866 QualType PromotedCharTy = CharTy;
2867 if (CharTy->isPromotableIntegerType())
2868 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2869 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2870
2871 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2872 // Get the length of the string.
2873 uint64_t StrLen = SL->getLength();
2874 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2875 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2876 StructuredList->resizeInits(Context, StrLen);
2877
2878 // Build a literal for each character in the string, and put them into
2879 // the init list.
2880 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2881 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2882 Expr *Init = new (Context) IntegerLiteral(
2883 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2884 if (CharTy != PromotedCharTy)
2885 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2886 Init, nullptr, VK_RValue);
2887 StructuredList->updateInit(Context, i, Init);
2888 }
2889 } else {
2890 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2891 std::string Str;
2892 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2893
2894 // Get the length of the string.
2895 uint64_t StrLen = Str.size();
2896 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2897 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2898 StructuredList->resizeInits(Context, StrLen);
2899
2900 // Build a literal for each character in the string, and put them into
2901 // the init list.
2902 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2903 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2904 Expr *Init = new (Context) IntegerLiteral(
2905 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2906 if (CharTy != PromotedCharTy)
2907 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2908 Init, nullptr, VK_RValue);
2909 StructuredList->updateInit(Context, i, Init);
2910 }
2911 }
2912 }
2913
2914 // Make sure that our non-designated initializer list has space
2915 // for a subobject corresponding to this array element.
2916 if (StructuredList &&
2917 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2918 StructuredList->resizeInits(SemaRef.Context,
2919 DesignatedEndIndex.getZExtValue() + 1);
2920
2921 // Repeatedly perform subobject initializations in the range
2922 // [DesignatedStartIndex, DesignatedEndIndex].
2923
2924 // Move to the next designator
2925 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2926 unsigned OldIndex = Index;
2927
2928 InitializedEntity ElementEntity =
2929 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2930
2931 while (DesignatedStartIndex <= DesignatedEndIndex) {
2932 // Recurse to check later designated subobjects.
2933 QualType ElementType = AT->getElementType();
2934 Index = OldIndex;
2935
2936 ElementEntity.setElementIndex(ElementIndex);
2937 if (CheckDesignatedInitializer(
2938 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2939 nullptr, Index, StructuredList, ElementIndex,
2940 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2941 false))
2942 return true;
2943
2944 // Move to the next index in the array that we'll be initializing.
2945 ++DesignatedStartIndex;
2946 ElementIndex = DesignatedStartIndex.getZExtValue();
2947 }
2948
2949 // If this the first designator, our caller will continue checking
2950 // the rest of this array subobject.
2951 if (IsFirstDesignator) {
2952 if (NextElementIndex)
2953 *NextElementIndex = DesignatedStartIndex;
2954 StructuredIndex = ElementIndex;
2955 return false;
2956 }
2957
2958 if (!FinishSubobjectInit)
2959 return false;
2960
2961 // Check the remaining elements within this array subobject.
2962 bool prevHadError = hadError;
2963 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2964 /*SubobjectIsDesignatorContext=*/false, Index,
2965 StructuredList, ElementIndex);
2966 return hadError && !prevHadError;
2967}
2968
2969// Get the structured initializer list for a subobject of type
2970// @p CurrentObjectType.
2971InitListExpr *
2972InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2973 QualType CurrentObjectType,
2974 InitListExpr *StructuredList,
2975 unsigned StructuredIndex,
2976 SourceRange InitRange,
2977 bool IsFullyOverwritten) {
2978 if (!StructuredList)
2979 return nullptr;
2980
2981 Expr *ExistingInit = nullptr;
2982 if (StructuredIndex < StructuredList->getNumInits())
2983 ExistingInit = StructuredList->getInit(StructuredIndex);
2984
2985 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2986 // There might have already been initializers for subobjects of the current
2987 // object, but a subsequent initializer list will overwrite the entirety
2988 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2989 //
2990 // struct P { char x[6]; };
2991 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2992 //
2993 // The first designated initializer is ignored, and l.x is just "f".
2994 if (!IsFullyOverwritten)
2995 return Result;
2996
2997 if (ExistingInit) {
2998 // We are creating an initializer list that initializes the
2999 // subobjects of the current object, but there was already an
3000 // initialization that completely initialized the current
3001 // subobject:
3002 //
3003 // struct X { int a, b; };
3004 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3005 //
3006 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3007 // designated initializer overwrites the [0].b initializer
3008 // from the prior initialization.
3009 //
3010 // When the existing initializer is an expression rather than an
3011 // initializer list, we cannot decompose and update it in this way.
3012 // For example:
3013 //
3014 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3015 //
3016 // This case is handled by CheckDesignatedInitializer.
3017 diagnoseInitOverride(ExistingInit, InitRange);
3018 }
3019
3020 unsigned ExpectedNumInits = 0;
3021 if (Index < IList->getNumInits()) {
3022 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3023 ExpectedNumInits = Init->getNumInits();
3024 else
3025 ExpectedNumInits = IList->getNumInits() - Index;
3026 }
3027
3028 InitListExpr *Result =
3029 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3030
3031 // Link this new initializer list into the structured initializer
3032 // lists.
3033 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3034 return Result;
3035}
3036
3037InitListExpr *
3038InitListChecker::createInitListExpr(QualType CurrentObjectType,
3039 SourceRange InitRange,
3040 unsigned ExpectedNumInits) {
3041 InitListExpr *Result
3042 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3043 InitRange.getBegin(), None,
3044 InitRange.getEnd());
3045
3046 QualType ResultType = CurrentObjectType;
3047 if (!ResultType->isArrayType())
3048 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3049 Result->setType(ResultType);
3050
3051 // Pre-allocate storage for the structured initializer list.
3052 unsigned NumElements = 0;
3053
3054 if (const ArrayType *AType
3055 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3056 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3057 NumElements = CAType->getSize().getZExtValue();
3058 // Simple heuristic so that we don't allocate a very large
3059 // initializer with many empty entries at the end.
3060 if (NumElements > ExpectedNumInits)
3061 NumElements = 0;
3062 }
3063 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3064 NumElements = VType->getNumElements();
3065 } else if (CurrentObjectType->isRecordType()) {
3066 NumElements = numStructUnionElements(CurrentObjectType);
3067 }
3068
3069 Result->reserveInits(SemaRef.Context, NumElements);
3070
3071 return Result;
3072}
3073
3074/// Update the initializer at index @p StructuredIndex within the
3075/// structured initializer list to the value @p expr.
3076void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3077 unsigned &StructuredIndex,
3078 Expr *expr) {
3079 // No structured initializer list to update
3080 if (!StructuredList)
3081 return;
3082
3083 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3084 StructuredIndex, expr)) {
3085 // This initializer overwrites a previous initializer. Warn.
3086 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3087 }
3088
3089 ++StructuredIndex;
3090}
3091
3092/// Determine whether we can perform aggregate initialization for the purposes
3093/// of overload resolution.
3094bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3095 const InitializedEntity &Entity, InitListExpr *From) {
3096 QualType Type = Entity.getType();
3097 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3098 /*TreatUnavailableAsInvalid=*/false,
3099 /*InOverloadResolution=*/true);
3100 return !Check.HadError();
3101}
3102
3103/// Check that the given Index expression is a valid array designator
3104/// value. This is essentially just a wrapper around
3105/// VerifyIntegerConstantExpression that also checks for negative values
3106/// and produces a reasonable diagnostic if there is a
3107/// failure. Returns the index expression, possibly with an implicit cast
3108/// added, on success. If everything went okay, Value will receive the
3109/// value of the constant expression.
3110static ExprResult
3111CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3112 SourceLocation Loc = Index->getBeginLoc();
3113
3114 // Make sure this is an integer constant expression.
3115 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
3116 if (Result.isInvalid())
3117 return Result;
3118
3119 if (Value.isSigned() && Value.isNegative())
3120 return S.Diag(Loc, diag::err_array_designator_negative)
3121 << Value.toString(10) << Index->getSourceRange();
3122
3123 Value.setIsUnsigned(true);
3124 return Result;
3125}
3126
3127ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3128 SourceLocation EqualOrColonLoc,
3129 bool GNUSyntax,
3130 ExprResult Init) {
3131 typedef DesignatedInitExpr::Designator ASTDesignator;
3132
3133 bool Invalid = false;
3134 SmallVector<ASTDesignator, 32> Designators;
3135 SmallVector<Expr *, 32> InitExpressions;
3136
3137 // Build designators and check array designator expressions.
3138 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3139 const Designator &D = Desig.getDesignator(Idx);
3140 switch (D.getKind()) {
3141 case Designator::FieldDesignator:
3142 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3143 D.getFieldLoc()));
3144 break;
3145
3146 case Designator::ArrayDesignator: {
3147 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3148 llvm::APSInt IndexValue;
3149 if (!Index->isTypeDependent() && !Index->isValueDependent())
3150 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3151 if (!Index)
3152 Invalid = true;
3153 else {
3154 Designators.push_back(ASTDesignator(InitExpressions.size(),
3155 D.getLBracketLoc(),
3156 D.getRBracketLoc()));
3157 InitExpressions.push_back(Index);
3158 }
3159 break;
3160 }
3161
3162 case Designator::ArrayRangeDesignator: {
3163 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3164 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3165 llvm::APSInt StartValue;
3166 llvm::APSInt EndValue;
3167 bool StartDependent = StartIndex->isTypeDependent() ||
3168 StartIndex->isValueDependent();
3169 bool EndDependent = EndIndex->isTypeDependent() ||
3170 EndIndex->isValueDependent();
3171 if (!StartDependent)
3172 StartIndex =
3173 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3174 if (!EndDependent)
3175 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3176
3177 if (!StartIndex || !EndIndex)
3178 Invalid = true;
3179 else {
3180 // Make sure we're comparing values with the same bit width.
3181 if (StartDependent || EndDependent) {
3182 // Nothing to compute.
3183 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3184 EndValue = EndValue.extend(StartValue.getBitWidth());
3185 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3186 StartValue = StartValue.extend(EndValue.getBitWidth());
3187
3188 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3189 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3190 << StartValue.toString(10) << EndValue.toString(10)
3191 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3192 Invalid = true;
3193 } else {
3194 Designators.push_back(ASTDesignator(InitExpressions.size(),
3195 D.getLBracketLoc(),
3196 D.getEllipsisLoc(),
3197 D.getRBracketLoc()));
3198 InitExpressions.push_back(StartIndex);
3199 InitExpressions.push_back(EndIndex);
3200 }
3201 }
3202 break;
3203 }
3204 }
3205 }
3206
3207 if (Invalid || Init.isInvalid())
3208 return ExprError();
3209
3210 // Clear out the expressions within the designation.
3211 Desig.ClearExprs(*this);
3212
3213 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3214 EqualOrColonLoc, GNUSyntax,
3215 Init.getAs<Expr>());
3216}
3217
3218//===----------------------------------------------------------------------===//
3219// Initialization entity
3220//===----------------------------------------------------------------------===//
3221
3222InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3223 const InitializedEntity &Parent)
3224 : Parent(&Parent), Index(Index)
3225{
3226 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3227 Kind = EK_ArrayElement;
3228 Type = AT->getElementType();
3229 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3230 Kind = EK_VectorElement;
3231 Type = VT->getElementType();
3232 } else {
3233 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3234 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3234, __PRETTY_FUNCTION__))
;
3235 Kind = EK_ComplexElement;
3236 Type = CT->getElementType();
3237 }
3238}
3239
3240InitializedEntity
3241InitializedEntity::InitializeBase(ASTContext &Context,
3242 const CXXBaseSpecifier *Base,
3243 bool IsInheritedVirtualBase,
3244 const InitializedEntity *Parent) {
3245 InitializedEntity Result;
3246 Result.Kind = EK_Base;
3247 Result.Parent = Parent;
3248 Result.Base = reinterpret_cast<uintptr_t>(Base);
3249 if (IsInheritedVirtualBase)
3250 Result.Base |= 0x01;
3251
3252 Result.Type = Base->getType();
3253 return Result;
3254}
3255
3256DeclarationName InitializedEntity::getName() const {
3257 switch (getKind()) {
3258 case EK_Parameter:
3259 case EK_Parameter_CF_Audited: {
3260 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3261 return (D ? D->getDeclName() : DeclarationName());
3262 }
3263
3264 case EK_Variable:
3265 case EK_Member:
3266 case EK_Binding:
3267 return Variable.VariableOrMember->getDeclName();
3268
3269 case EK_LambdaCapture:
3270 return DeclarationName(Capture.VarID);
3271
3272 case EK_Result:
3273 case EK_StmtExprResult:
3274 case EK_Exception:
3275 case EK_New:
3276 case EK_Temporary:
3277 case EK_Base:
3278 case EK_Delegating:
3279 case EK_ArrayElement:
3280 case EK_VectorElement:
3281 case EK_ComplexElement:
3282 case EK_BlockElement:
3283 case EK_LambdaToBlockConversionBlockElement:
3284 case EK_CompoundLiteralInit:
3285 case EK_RelatedResult:
3286 return DeclarationName();
3287 }
3288
3289 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3289)
;
3290}
3291
3292ValueDecl *InitializedEntity::getDecl() const {
3293 switch (getKind()) {
3294 case EK_Variable:
3295 case EK_Member:
3296 case EK_Binding:
3297 return Variable.VariableOrMember;
3298
3299 case EK_Parameter:
3300 case EK_Parameter_CF_Audited:
3301 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3302
3303 case EK_Result:
3304 case EK_StmtExprResult:
3305 case EK_Exception:
3306 case EK_New:
3307 case EK_Temporary:
3308 case EK_Base:
3309 case EK_Delegating:
3310 case EK_ArrayElement:
3311 case EK_VectorElement:
3312 case EK_ComplexElement:
3313 case EK_BlockElement:
3314 case EK_LambdaToBlockConversionBlockElement:
3315 case EK_LambdaCapture:
3316 case EK_CompoundLiteralInit:
3317 case EK_RelatedResult:
3318 return nullptr;
3319 }
3320
3321 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3321)
;
3322}
3323
3324bool InitializedEntity::allowsNRVO() const {
3325 switch (getKind()) {
3326 case EK_Result:
3327 case EK_Exception:
3328 return LocAndNRVO.NRVO;
3329
3330 case EK_StmtExprResult:
3331 case EK_Variable:
3332 case EK_Parameter:
3333 case EK_Parameter_CF_Audited:
3334 case EK_Member:
3335 case EK_Binding:
3336 case EK_New:
3337 case EK_Temporary:
3338 case EK_CompoundLiteralInit:
3339 case EK_Base:
3340 case EK_Delegating:
3341 case EK_ArrayElement:
3342 case EK_VectorElement:
3343 case EK_ComplexElement:
3344 case EK_BlockElement:
3345 case EK_LambdaToBlockConversionBlockElement:
3346 case EK_LambdaCapture:
3347 case EK_RelatedResult:
3348 break;
3349 }
3350
3351 return false;
3352}
3353
3354unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3355 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3355, __PRETTY_FUNCTION__))
;
3356 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3357 for (unsigned I = 0; I != Depth; ++I)
3358 OS << "`-";
3359
3360 switch (getKind()) {
3361 case EK_Variable: OS << "Variable"; break;
3362 case EK_Parameter: OS << "Parameter"; break;
3363 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3364 break;
3365 case EK_Result: OS << "Result"; break;
3366 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3367 case EK_Exception: OS << "Exception"; break;
3368 case EK_Member: OS << "Member"; break;
3369 case EK_Binding: OS << "Binding"; break;
3370 case EK_New: OS << "New"; break;
3371 case EK_Temporary: OS << "Temporary"; break;
3372 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3373 case EK_RelatedResult: OS << "RelatedResult"; break;
3374 case EK_Base: OS << "Base"; break;
3375 case EK_Delegating: OS << "Delegating"; break;
3376 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3377 case EK_VectorElement: OS << "VectorElement " << Index; break;
3378 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3379 case EK_BlockElement: OS << "Block"; break;
3380 case EK_LambdaToBlockConversionBlockElement:
3381 OS << "Block (lambda)";
3382 break;
3383 case EK_LambdaCapture:
3384 OS << "LambdaCapture ";
3385 OS << DeclarationName(Capture.VarID);
3386 break;
3387 }
3388
3389 if (auto *D = getDecl()) {
3390 OS << " ";
3391 D->printQualifiedName(OS);
3392 }
3393
3394 OS << " '" << getType().getAsString() << "'\n";
3395
3396 return Depth + 1;
3397}
3398
3399LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3400 dumpImpl(llvm::errs());
3401}
3402
3403//===----------------------------------------------------------------------===//
3404// Initialization sequence
3405//===----------------------------------------------------------------------===//
3406
3407void InitializationSequence::Step::Destroy() {
3408 switch (Kind) {
3409 case SK_ResolveAddressOfOverloadedFunction:
3410 case SK_CastDerivedToBaseRValue:
3411 case SK_CastDerivedToBaseXValue:
3412 case SK_CastDerivedToBaseLValue:
3413 case SK_BindReference:
3414 case SK_BindReferenceToTemporary:
3415 case SK_FinalCopy:
3416 case SK_ExtraneousCopyToTemporary:
3417 case SK_UserConversion:
3418 case SK_QualificationConversionRValue:
3419 case SK_QualificationConversionXValue:
3420 case SK_QualificationConversionLValue:
3421 case SK_AtomicConversion:
3422 case SK_ListInitialization:
3423 case SK_UnwrapInitList:
3424 case SK_RewrapInitList:
3425 case SK_ConstructorInitialization:
3426 case SK_ConstructorInitializationFromList:
3427 case SK_ZeroInitialization:
3428 case SK_CAssignment:
3429 case SK_StringInit:
3430 case SK_ObjCObjectConversion:
3431 case SK_ArrayLoopIndex:
3432 case SK_ArrayLoopInit:
3433 case SK_ArrayInit:
3434 case SK_GNUArrayInit:
3435 case SK_ParenthesizedArrayInit:
3436 case SK_PassByIndirectCopyRestore:
3437 case SK_PassByIndirectRestore:
3438 case SK_ProduceObjCObject:
3439 case SK_StdInitializerList:
3440 case SK_StdInitializerListConstructorCall:
3441 case SK_OCLSamplerInit:
3442 case SK_OCLZeroOpaqueType:
3443 break;
3444
3445 case SK_ConversionSequence:
3446 case SK_ConversionSequenceNoNarrowing:
3447 delete ICS;
3448 }
3449}
3450
3451bool InitializationSequence::isDirectReferenceBinding() const {
3452 // There can be some lvalue adjustments after the SK_BindReference step.
3453 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3454 if (I->Kind == SK_BindReference)
3455 return true;
3456 if (I->Kind == SK_BindReferenceToTemporary)
3457 return false;
3458 }
3459 return false;
3460}
3461
3462bool InitializationSequence::isAmbiguous() const {
3463 if (!Failed())
3464 return false;
3465
3466 switch (getFailureKind()) {
3467 case FK_TooManyInitsForReference:
3468 case FK_ParenthesizedListInitForReference:
3469 case FK_ArrayNeedsInitList:
3470 case FK_ArrayNeedsInitListOrStringLiteral:
3471 case FK_ArrayNeedsInitListOrWideStringLiteral:
3472 case FK_NarrowStringIntoWideCharArray:
3473 case FK_WideStringIntoCharArray:
3474 case FK_IncompatWideStringIntoWideChar:
3475 case FK_PlainStringIntoUTF8Char:
3476 case FK_UTF8StringIntoPlainChar:
3477 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3478 case FK_NonConstLValueReferenceBindingToTemporary:
3479 case FK_NonConstLValueReferenceBindingToBitfield:
3480 case FK_NonConstLValueReferenceBindingToVectorElement:
3481 case FK_NonConstLValueReferenceBindingToUnrelated:
3482 case FK_RValueReferenceBindingToLValue:
3483 case FK_ReferenceAddrspaceMismatchTemporary:
3484 case FK_ReferenceInitDropsQualifiers:
3485 case FK_ReferenceInitFailed:
3486 case FK_ConversionFailed:
3487 case FK_ConversionFromPropertyFailed:
3488 case FK_TooManyInitsForScalar:
3489 case FK_ParenthesizedListInitForScalar:
3490 case FK_ReferenceBindingToInitList:
3491 case FK_InitListBadDestinationType:
3492 case FK_DefaultInitOfConst:
3493 case FK_Incomplete:
3494 case FK_ArrayTypeMismatch:
3495 case FK_NonConstantArrayInit:
3496 case FK_ListInitializationFailed:
3497 case FK_VariableLengthArrayHasInitializer:
3498 case FK_PlaceholderType:
3499 case FK_ExplicitConstructor:
3500 case FK_AddressOfUnaddressableFunction:
3501 return false;
3502
3503 case FK_ReferenceInitOverloadFailed:
3504 case FK_UserConversionOverloadFailed:
3505 case FK_ConstructorOverloadFailed:
3506 case FK_ListConstructorOverloadFailed:
3507 return FailedOverloadResult == OR_Ambiguous;
3508 }
3509
3510 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3510)
;
3511}
3512
3513bool InitializationSequence::isConstructorInitialization() const {
3514 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3515}
3516
3517void
3518InitializationSequence
3519::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3520 DeclAccessPair Found,
3521 bool HadMultipleCandidates) {
3522 Step S;
3523 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3524 S.Type = Function->getType();
3525 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3526 S.Function.Function = Function;
3527 S.Function.FoundDecl = Found;
3528 Steps.push_back(S);
3529}
3530
3531void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3532 ExprValueKind VK) {
3533 Step S;
3534 switch (VK) {
3535 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3536 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3537 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3538 }
3539 S.Type = BaseType;
3540 Steps.push_back(S);
3541}
3542
3543void InitializationSequence::AddReferenceBindingStep(QualType T,
3544 bool BindingTemporary) {
3545 Step S;
3546 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3547 S.Type = T;
3548 Steps.push_back(S);
3549}
3550
3551void InitializationSequence::AddFinalCopy(QualType T) {
3552 Step S;
3553 S.Kind = SK_FinalCopy;
3554 S.Type = T;
3555 Steps.push_back(S);
3556}
3557
3558void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3559 Step S;
3560 S.Kind = SK_ExtraneousCopyToTemporary;
3561 S.Type = T;
3562 Steps.push_back(S);
3563}
3564
3565void
3566InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3567 DeclAccessPair FoundDecl,
3568 QualType T,
3569 bool HadMultipleCandidates) {
3570 Step S;
3571 S.Kind = SK_UserConversion;
3572 S.Type = T;
3573 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3574 S.Function.Function = Function;
3575 S.Function.FoundDecl = FoundDecl;
3576 Steps.push_back(S);
3577}
3578
3579void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3580 ExprValueKind VK) {
3581 Step S;
3582 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3583 switch (VK) {
3584 case VK_RValue:
3585 S.Kind = SK_QualificationConversionRValue;
3586 break;
3587 case VK_XValue:
3588 S.Kind = SK_QualificationConversionXValue;
3589 break;
3590 case VK_LValue:
3591 S.Kind = SK_QualificationConversionLValue;
3592 break;
3593 }
3594 S.Type = Ty;
3595 Steps.push_back(S);
3596}
3597
3598void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3599 Step S;
3600 S.Kind = SK_AtomicConversion;
3601 S.Type = Ty;
3602 Steps.push_back(S);
3603}
3604
3605void InitializationSequence::AddConversionSequenceStep(
3606 const ImplicitConversionSequence &ICS, QualType T,
3607 bool TopLevelOfInitList) {
3608 Step S;
3609 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3610 : SK_ConversionSequence;
3611 S.Type = T;
3612 S.ICS = new ImplicitConversionSequence(ICS);
3613 Steps.push_back(S);
3614}
3615
3616void InitializationSequence::AddListInitializationStep(QualType T) {
3617 Step S;
3618 S.Kind = SK_ListInitialization;
3619 S.Type = T;
3620 Steps.push_back(S);
3621}
3622
3623void InitializationSequence::AddConstructorInitializationStep(
3624 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3625 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3626 Step S;
3627 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3628 : SK_ConstructorInitializationFromList
3629 : SK_ConstructorInitialization;
3630 S.Type = T;
3631 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3632 S.Function.Function = Constructor;
3633 S.Function.FoundDecl = FoundDecl;
3634 Steps.push_back(S);
3635}
3636
3637void InitializationSequence::AddZeroInitializationStep(QualType T) {
3638 Step S;
3639 S.Kind = SK_ZeroInitialization;
3640 S.Type = T;
3641 Steps.push_back(S);
3642}
3643
3644void InitializationSequence::AddCAssignmentStep(QualType T) {
3645 Step S;
3646 S.Kind = SK_CAssignment;
3647 S.Type = T;
3648 Steps.push_back(S);
3649}
3650
3651void InitializationSequence::AddStringInitStep(QualType T) {
3652 Step S;
3653 S.Kind = SK_StringInit;
3654 S.Type = T;
3655 Steps.push_back(S);
3656}
3657
3658void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3659 Step S;
3660 S.Kind = SK_ObjCObjectConversion;
3661 S.Type = T;
3662 Steps.push_back(S);
3663}
3664
3665void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3666 Step S;
3667 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3668 S.Type = T;
3669 Steps.push_back(S);
3670}
3671
3672void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3673 Step S;
3674 S.Kind = SK_ArrayLoopIndex;
3675 S.Type = EltT;
3676 Steps.insert(Steps.begin(), S);
3677
3678 S.Kind = SK_ArrayLoopInit;
3679 S.Type = T;
3680 Steps.push_back(S);
3681}
3682
3683void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3684 Step S;
3685 S.Kind = SK_ParenthesizedArrayInit;
3686 S.Type = T;
3687 Steps.push_back(S);
3688}
3689
3690void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3691 bool shouldCopy) {
3692 Step s;
3693 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3694 : SK_PassByIndirectRestore);
3695 s.Type = type;
3696 Steps.push_back(s);
3697}
3698
3699void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3700 Step S;
3701 S.Kind = SK_ProduceObjCObject;
3702 S.Type = T;
3703 Steps.push_back(S);
3704}
3705
3706void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3707 Step S;
3708 S.Kind = SK_StdInitializerList;
3709 S.Type = T;
3710 Steps.push_back(S);
3711}
3712
3713void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3714 Step S;
3715 S.Kind = SK_OCLSamplerInit;
3716 S.Type = T;
3717 Steps.push_back(S);
3718}
3719
3720void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3721 Step S;
3722 S.Kind = SK_OCLZeroOpaqueType;
3723 S.Type = T;
3724 Steps.push_back(S);
3725}
3726
3727void InitializationSequence::RewrapReferenceInitList(QualType T,
3728 InitListExpr *Syntactic) {
3729 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3730, __PRETTY_FUNCTION__))
3730 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3730, __PRETTY_FUNCTION__))
;
3731 Step S;
3732 S.Kind = SK_UnwrapInitList;
3733 S.Type = Syntactic->getInit(0)->getType();
3734 Steps.insert(Steps.begin(), S);
3735
3736 S.Kind = SK_RewrapInitList;
3737 S.Type = T;
3738 S.WrappingSyntacticList = Syntactic;
3739 Steps.push_back(S);
3740}
3741
3742void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3743 OverloadingResult Result) {
3744 setSequenceKind(FailedSequence);
3745 this->Failure = Failure;
3746 this->FailedOverloadResult = Result;
3747}
3748
3749//===----------------------------------------------------------------------===//
3750// Attempt initialization
3751//===----------------------------------------------------------------------===//
3752
3753/// Tries to add a zero initializer. Returns true if that worked.
3754static bool
3755maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3756 const InitializedEntity &Entity) {
3757 if (Entity.getKind() != InitializedEntity::EK_Variable)
3758 return false;
3759
3760 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3761 if (VD->getInit() || VD->getEndLoc().isMacroID())
3762 return false;
3763
3764 QualType VariableTy = VD->getType().getCanonicalType();
3765 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3766 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3767 if (!Init.empty()) {
3768 Sequence.AddZeroInitializationStep(Entity.getType());
3769 Sequence.SetZeroInitializationFixit(Init, Loc);
3770 return true;
3771 }
3772 return false;
3773}
3774
3775static void MaybeProduceObjCObject(Sema &S,
3776 InitializationSequence &Sequence,
3777 const InitializedEntity &Entity) {
3778 if (!S.getLangOpts().ObjCAutoRefCount) return;
3779
3780 /// When initializing a parameter, produce the value if it's marked
3781 /// __attribute__((ns_consumed)).
3782 if (Entity.isParameterKind()) {
3783 if (!Entity.isParameterConsumed())
3784 return;
3785
3786 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3787, __PRETTY_FUNCTION__))
3787 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3787, __PRETTY_FUNCTION__))
;
3788 Sequence.AddProduceObjCObjectStep(Entity.getType());
3789
3790 /// When initializing a return value, if the return type is a
3791 /// retainable type, then returns need to immediately retain the
3792 /// object. If an autorelease is required, it will be done at the
3793 /// last instant.
3794 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3795 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3796 if (!Entity.getType()->isObjCRetainableType())
3797 return;
3798
3799 Sequence.AddProduceObjCObjectStep(Entity.getType());
3800 }
3801}
3802
3803static void TryListInitialization(Sema &S,
3804 const InitializedEntity &Entity,
3805 const InitializationKind &Kind,
3806 InitListExpr *InitList,
3807 InitializationSequence &Sequence,
3808 bool TreatUnavailableAsInvalid);
3809
3810/// When initializing from init list via constructor, handle
3811/// initialization of an object of type std::initializer_list<T>.
3812///
3813/// \return true if we have handled initialization of an object of type
3814/// std::initializer_list<T>, false otherwise.
3815static bool TryInitializerListConstruction(Sema &S,
3816 InitListExpr *List,
3817 QualType DestType,
3818 InitializationSequence &Sequence,
3819 bool TreatUnavailableAsInvalid) {
3820 QualType E;
3821 if (!S.isStdInitializerList(DestType, &E))
3822 return false;
3823
3824 if (!S.isCompleteType(List->getExprLoc(), E)) {
3825 Sequence.setIncompleteTypeFailure(E);
3826 return true;
3827 }
3828
3829 // Try initializing a temporary array from the init list.
3830 QualType ArrayType = S.Context.getConstantArrayType(
3831 E.withConst(),
3832 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3833 List->getNumInits()),
3834 nullptr, clang::ArrayType::Normal, 0);
3835 InitializedEntity HiddenArray =
3836 InitializedEntity::InitializeTemporary(ArrayType);
3837 InitializationKind Kind = InitializationKind::CreateDirectList(
3838 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3839 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3840 TreatUnavailableAsInvalid);
3841 if (Sequence)
3842 Sequence.AddStdInitializerListConstructionStep(DestType);
3843 return true;
3844}
3845
3846/// Determine if the constructor has the signature of a copy or move
3847/// constructor for the type T of the class in which it was found. That is,
3848/// determine if its first parameter is of type T or reference to (possibly
3849/// cv-qualified) T.
3850static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3851 const ConstructorInfo &Info) {
3852 if (Info.Constructor->getNumParams() == 0)
3853 return false;
3854
3855 QualType ParmT =
3856 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3857 QualType ClassT =
3858 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3859
3860 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3861}
3862
3863static OverloadingResult
3864ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3865 MultiExprArg Args,
3866 OverloadCandidateSet &CandidateSet,
3867 QualType DestType,
3868 DeclContext::lookup_result Ctors,
3869 OverloadCandidateSet::iterator &Best,
3870 bool CopyInitializing, bool AllowExplicit,
3871 bool OnlyListConstructors, bool IsListInit,
3872 bool SecondStepOfCopyInit = false) {
3873 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3874 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3875
3876 for (NamedDecl *D : Ctors) {
3877 auto Info = getConstructorInfo(D);
3878 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3879 continue;
3880
3881 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3882 continue;
3883
3884 // C++11 [over.best.ics]p4:
3885 // ... and the constructor or user-defined conversion function is a
3886 // candidate by
3887 // - 13.3.1.3, when the argument is the temporary in the second step
3888 // of a class copy-initialization, or
3889 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3890 // - the second phase of 13.3.1.7 when the initializer list has exactly
3891 // one element that is itself an initializer list, and the target is
3892 // the first parameter of a constructor of class X, and the conversion
3893 // is to X or reference to (possibly cv-qualified X),
3894 // user-defined conversion sequences are not considered.
3895 bool SuppressUserConversions =
3896 SecondStepOfCopyInit ||
3897 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3898 hasCopyOrMoveCtorParam(S.Context, Info));
3899
3900 if (Info.ConstructorTmpl)
3901 S.AddTemplateOverloadCandidate(
3902 Info.ConstructorTmpl, Info.FoundDecl,
3903 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3904 /*PartialOverloading=*/false, AllowExplicit);
3905 else {
3906 // C++ [over.match.copy]p1:
3907 // - When initializing a temporary to be bound to the first parameter
3908 // of a constructor [for type T] that takes a reference to possibly
3909 // cv-qualified T as its first argument, called with a single
3910 // argument in the context of direct-initialization, explicit
3911 // conversion functions are also considered.
3912 // FIXME: What if a constructor template instantiates to such a signature?
3913 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3914 Args.size() == 1 &&
3915 hasCopyOrMoveCtorParam(S.Context, Info);
3916 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3917 CandidateSet, SuppressUserConversions,
3918 /*PartialOverloading=*/false, AllowExplicit,
3919 AllowExplicitConv);
3920 }
3921 }
3922
3923 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3924 //
3925 // When initializing an object of class type T by constructor
3926 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3927 // from a single expression of class type U, conversion functions of
3928 // U that convert to the non-reference type cv T are candidates.
3929 // Explicit conversion functions are only candidates during
3930 // direct-initialization.
3931 //
3932 // Note: SecondStepOfCopyInit is only ever true in this case when
3933 // evaluating whether to produce a C++98 compatibility warning.
3934 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3935 !SecondStepOfCopyInit) {
3936 Expr *Initializer = Args[0];
3937 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3938 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3939 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3940 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3941 NamedDecl *D = *I;
3942 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3943 D = D->getUnderlyingDecl();
3944
3945 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3946 CXXConversionDecl *Conv;
3947 if (ConvTemplate)
3948 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3949 else
3950 Conv = cast<CXXConversionDecl>(D);
3951
3952 if (ConvTemplate)
3953 S.AddTemplateConversionCandidate(
3954 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3955 CandidateSet, AllowExplicit, AllowExplicit,
3956 /*AllowResultConversion*/ false);
3957 else
3958 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3959 DestType, CandidateSet, AllowExplicit,
3960 AllowExplicit,
3961 /*AllowResultConversion*/ false);
3962 }
3963 }
3964 }
3965
3966 // Perform overload resolution and return the result.
3967 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3968}
3969
3970/// Attempt initialization by constructor (C++ [dcl.init]), which
3971/// enumerates the constructors of the initialized entity and performs overload
3972/// resolution to select the best.
3973/// \param DestType The destination class type.
3974/// \param DestArrayType The destination type, which is either DestType or
3975/// a (possibly multidimensional) array of DestType.
3976/// \param IsListInit Is this list-initialization?
3977/// \param IsInitListCopy Is this non-list-initialization resulting from a
3978/// list-initialization from {x} where x is the same
3979/// type as the entity?
3980static void TryConstructorInitialization(Sema &S,
3981 const InitializedEntity &Entity,
3982 const InitializationKind &Kind,
3983 MultiExprArg Args, QualType DestType,
3984 QualType DestArrayType,
3985 InitializationSequence &Sequence,
3986 bool IsListInit = false,
3987 bool IsInitListCopy = false) {
3988 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3991, __PRETTY_FUNCTION__))
3989 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3991, __PRETTY_FUNCTION__))
3990 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3991, __PRETTY_FUNCTION__))
3991 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 3991, __PRETTY_FUNCTION__))
;
3992 InitListExpr *ILE =
3993 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3994 MultiExprArg UnwrappedArgs =
3995 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3996
3997 // The type we're constructing needs to be complete.
3998 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3999 Sequence.setIncompleteTypeFailure(DestType);
4000 return;
4001 }
4002
4003 // C++17 [dcl.init]p17:
4004 // - If the initializer expression is a prvalue and the cv-unqualified
4005 // version of the source type is the same class as the class of the
4006 // destination, the initializer expression is used to initialize the
4007 // destination object.
4008 // Per DR (no number yet), this does not apply when initializing a base
4009 // class or delegating to another constructor from a mem-initializer.
4010 // ObjC++: Lambda captured by the block in the lambda to block conversion
4011 // should avoid copy elision.
4012 if (S.getLangOpts().CPlusPlus17 &&
4013 Entity.getKind() != InitializedEntity::EK_Base &&
4014 Entity.getKind() != InitializedEntity::EK_Delegating &&
4015 Entity.getKind() !=
4016 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4017 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4018 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4019 // Convert qualifications if necessary.
4020 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4021 if (ILE)
4022 Sequence.RewrapReferenceInitList(DestType, ILE);
4023 return;
4024 }
4025
4026 const RecordType *DestRecordType = DestType->getAs<RecordType>();
4027 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4027, __PRETTY_FUNCTION__))
;
4028 CXXRecordDecl *DestRecordDecl
4029 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4030
4031 // Build the candidate set directly in the initialization sequence
4032 // structure, so that it will persist if we fail.
4033 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4034
4035 // Determine whether we are allowed to call explicit constructors or
4036 // explicit conversion operators.
4037 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4038 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4039
4040 // - Otherwise, if T is a class type, constructors are considered. The
4041 // applicable constructors are enumerated, and the best one is chosen
4042 // through overload resolution.
4043 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4044
4045 OverloadingResult Result = OR_No_Viable_Function;
4046 OverloadCandidateSet::iterator Best;
4047 bool AsInitializerList = false;
4048
4049 // C++11 [over.match.list]p1, per DR1467:
4050 // When objects of non-aggregate type T are list-initialized, such that
4051 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4052 // according to the rules in this section, overload resolution selects
4053 // the constructor in two phases:
4054 //
4055 // - Initially, the candidate functions are the initializer-list
4056 // constructors of the class T and the argument list consists of the
4057 // initializer list as a single argument.
4058 if (IsListInit) {
4059 AsInitializerList = true;
4060
4061 // If the initializer list has no elements and T has a default constructor,
4062 // the first phase is omitted.
4063 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4064 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4065 CandidateSet, DestType, Ctors, Best,
4066 CopyInitialization, AllowExplicit,
4067 /*OnlyListConstructors=*/true,
4068 IsListInit);
4069 }
4070
4071 // C++11 [over.match.list]p1:
4072 // - If no viable initializer-list constructor is found, overload resolution
4073 // is performed again, where the candidate functions are all the
4074 // constructors of the class T and the argument list consists of the
4075 // elements of the initializer list.
4076 if (Result == OR_No_Viable_Function) {
4077 AsInitializerList = false;
4078 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4079 CandidateSet, DestType, Ctors, Best,
4080 CopyInitialization, AllowExplicit,
4081 /*OnlyListConstructors=*/false,
4082 IsListInit);
4083 }
4084 if (Result) {
4085 Sequence.SetOverloadFailure(IsListInit ?
4086 InitializationSequence::FK_ListConstructorOverloadFailed :
4087 InitializationSequence::FK_ConstructorOverloadFailed,
4088 Result);
4089 return;
4090 }
4091
4092 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4093
4094 // In C++17, ResolveConstructorOverload can select a conversion function
4095 // instead of a constructor.
4096 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4097 // Add the user-defined conversion step that calls the conversion function.
4098 QualType ConvType = CD->getConversionType();
4099 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4100, __PRETTY_FUNCTION__))
4100 "should not have selected this conversion function")((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4100, __PRETTY_FUNCTION__))
;
4101 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4102 HadMultipleCandidates);
4103 if (!S.Context.hasSameType(ConvType, DestType))
4104 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4105 if (IsListInit)
4106 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4107 return;
4108 }
4109
4110 // C++11 [dcl.init]p6:
4111 // If a program calls for the default initialization of an object
4112 // of a const-qualified type T, T shall be a class type with a
4113 // user-provided default constructor.
4114 // C++ core issue 253 proposal:
4115 // If the implicit default constructor initializes all subobjects, no
4116 // initializer should be required.
4117 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4118 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4119 if (Kind.getKind() == InitializationKind::IK_Default &&
4120 Entity.getType().isConstQualified()) {
4121 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4122 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4123 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4124 return;
4125 }
4126 }
4127
4128 // C++11 [over.match.list]p1:
4129 // In copy-list-initialization, if an explicit constructor is chosen, the
4130 // initializer is ill-formed.
4131 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4132 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4133 return;
4134 }
4135
4136 // Add the constructor initialization step. Any cv-qualification conversion is
4137 // subsumed by the initialization.
4138 Sequence.AddConstructorInitializationStep(
4139 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4140 IsListInit | IsInitListCopy, AsInitializerList);
4141}
4142
4143static bool
4144ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4145 Expr *Initializer,
4146 QualType &SourceType,
4147 QualType &UnqualifiedSourceType,
4148 QualType UnqualifiedTargetType,
4149 InitializationSequence &Sequence) {
4150 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4151 S.Context.OverloadTy) {
4152 DeclAccessPair Found;
4153 bool HadMultipleCandidates = false;
4154 if (FunctionDecl *Fn
4155 = S.ResolveAddressOfOverloadedFunction(Initializer,
4156 UnqualifiedTargetType,
4157 false, Found,
4158 &HadMultipleCandidates)) {
4159 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4160 HadMultipleCandidates);
4161 SourceType = Fn->getType();
4162 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4163 } else if (!UnqualifiedTargetType->isRecordType()) {
4164 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4165 return true;
4166 }
4167 }
4168 return false;
4169}
4170
4171static void TryReferenceInitializationCore(Sema &S,
4172 const InitializedEntity &Entity,
4173 const InitializationKind &Kind,
4174 Expr *Initializer,
4175 QualType cv1T1, QualType T1,
4176 Qualifiers T1Quals,
4177 QualType cv2T2, QualType T2,
4178 Qualifiers T2Quals,
4179 InitializationSequence &Sequence);
4180
4181static void TryValueInitialization(Sema &S,
4182 const InitializedEntity &Entity,
4183 const InitializationKind &Kind,
4184 InitializationSequence &Sequence,
4185 InitListExpr *InitList = nullptr);
4186
4187/// Attempt list initialization of a reference.
4188static void TryReferenceListInitialization(Sema &S,
4189 const InitializedEntity &Entity,
4190 const InitializationKind &Kind,
4191 InitListExpr *InitList,
4192 InitializationSequence &Sequence,
4193 bool TreatUnavailableAsInvalid) {
4194 // First, catch C++03 where this isn't possible.
4195 if (!S.getLangOpts().CPlusPlus11) {
4196 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4197 return;
4198 }
4199 // Can't reference initialize a compound literal.
4200 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4201 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4202 return;
4203 }
4204
4205 QualType DestType = Entity.getType();
4206 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4207 Qualifiers T1Quals;
4208 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4209
4210 // Reference initialization via an initializer list works thus:
4211 // If the initializer list consists of a single element that is
4212 // reference-related to the referenced type, bind directly to that element
4213 // (possibly creating temporaries).
4214 // Otherwise, initialize a temporary with the initializer list and
4215 // bind to that.
4216 if (InitList->getNumInits() == 1) {
4217 Expr *Initializer = InitList->getInit(0);
4218 QualType cv2T2 = Initializer->getType();
4219 Qualifiers T2Quals;
4220 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4221
4222 // If this fails, creating a temporary wouldn't work either.
4223 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4224 T1, Sequence))
4225 return;
4226
4227 SourceLocation DeclLoc = Initializer->getBeginLoc();
4228 Sema::ReferenceCompareResult RefRelationship
4229 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4230 if (RefRelationship >= Sema::Ref_Related) {
4231 // Try to bind the reference here.
4232 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4233 T1Quals, cv2T2, T2, T2Quals, Sequence);
4234 if (Sequence)
4235 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4236 return;
4237 }
4238
4239 // Update the initializer if we've resolved an overloaded function.
4240 if (Sequence.step_begin() != Sequence.step_end())
4241 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4242 }
4243
4244 // Not reference-related. Create a temporary and bind to that.
4245 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4246
4247 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4248 TreatUnavailableAsInvalid);
4249 if (Sequence) {
4250 if (DestType->isRValueReferenceType() ||
4251 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4252 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4253 else
4254 Sequence.SetFailed(
4255 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4256 }
4257}
4258
4259/// Attempt list initialization (C++0x [dcl.init.list])
4260static void TryListInitialization(Sema &S,
4261 const InitializedEntity &Entity,
4262 const InitializationKind &Kind,
4263 InitListExpr *InitList,
4264 InitializationSequence &Sequence,
4265 bool TreatUnavailableAsInvalid) {
4266 QualType DestType = Entity.getType();
4267
4268 // C++ doesn't allow scalar initialization with more than one argument.
4269 // But C99 complex numbers are scalars and it makes sense there.
4270 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4271 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4272 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4273 return;
4274 }
4275 if (DestType->isReferenceType()) {
4276 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4277 TreatUnavailableAsInvalid);
4278 return;
4279 }
4280
4281 if (DestType->isRecordType() &&
4282 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4283 Sequence.setIncompleteTypeFailure(DestType);
4284 return;
4285 }
4286
4287 // C++11 [dcl.init.list]p3, per DR1467:
4288 // - If T is a class type and the initializer list has a single element of
4289 // type cv U, where U is T or a class derived from T, the object is
4290 // initialized from that element (by copy-initialization for
4291 // copy-list-initialization, or by direct-initialization for
4292 // direct-list-initialization).
4293 // - Otherwise, if T is a character array and the initializer list has a
4294 // single element that is an appropriately-typed string literal
4295 // (8.5.2 [dcl.init.string]), initialization is performed as described
4296 // in that section.
4297 // - Otherwise, if T is an aggregate, [...] (continue below).
4298 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4299 if (DestType->isRecordType()) {
4300 QualType InitType = InitList->getInit(0)->getType();
4301 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4302 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4303 Expr *InitListAsExpr = InitList;
4304 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4305 DestType, Sequence,
4306 /*InitListSyntax*/false,
4307 /*IsInitListCopy*/true);
4308 return;
4309 }
4310 }
4311 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4312 Expr *SubInit[1] = {InitList->getInit(0)};
4313 if (!isa<VariableArrayType>(DestAT) &&
4314 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4315 InitializationKind SubKind =
4316 Kind.getKind() == InitializationKind::IK_DirectList
4317 ? InitializationKind::CreateDirect(Kind.getLocation(),
4318 InitList->getLBraceLoc(),
4319 InitList->getRBraceLoc())
4320 : Kind;
4321 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4322 /*TopLevelOfInitList*/ true,
4323 TreatUnavailableAsInvalid);
4324
4325 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4326 // the element is not an appropriately-typed string literal, in which
4327 // case we should proceed as in C++11 (below).
4328 if (Sequence) {
4329 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4330 return;
4331 }
4332 }
4333 }
4334 }
4335
4336 // C++11 [dcl.init.list]p3:
4337 // - If T is an aggregate, aggregate initialization is performed.
4338 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4339 (S.getLangOpts().CPlusPlus11 &&
4340 S.isStdInitializerList(DestType, nullptr))) {
4341 if (S.getLangOpts().CPlusPlus11) {
4342 // - Otherwise, if the initializer list has no elements and T is a
4343 // class type with a default constructor, the object is
4344 // value-initialized.
4345 if (InitList->getNumInits() == 0) {
4346 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4347 if (S.LookupDefaultConstructor(RD)) {
4348 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4349 return;
4350 }
4351 }
4352
4353 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4354 // an initializer_list object constructed [...]
4355 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4356 TreatUnavailableAsInvalid))
4357 return;
4358
4359 // - Otherwise, if T is a class type, constructors are considered.
4360 Expr *InitListAsExpr = InitList;
4361 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4362 DestType, Sequence, /*InitListSyntax*/true);
4363 } else
4364 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4365 return;
4366 }
4367
4368 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4369 InitList->getNumInits() == 1) {
4370 Expr *E = InitList->getInit(0);
4371
4372 // - Otherwise, if T is an enumeration with a fixed underlying type,
4373 // the initializer-list has a single element v, and the initialization
4374 // is direct-list-initialization, the object is initialized with the
4375 // value T(v); if a narrowing conversion is required to convert v to
4376 // the underlying type of T, the program is ill-formed.
4377 auto *ET = DestType->getAs<EnumType>();
4378 if (S.getLangOpts().CPlusPlus17 &&
4379 Kind.getKind() == InitializationKind::IK_DirectList &&
4380 ET && ET->getDecl()->isFixed() &&
4381 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4382 (E->getType()->isIntegralOrEnumerationType() ||
4383 E->getType()->isFloatingType())) {
4384 // There are two ways that T(v) can work when T is an enumeration type.
4385 // If there is either an implicit conversion sequence from v to T or
4386 // a conversion function that can convert from v to T, then we use that.
4387 // Otherwise, if v is of integral, enumeration, or floating-point type,
4388 // it is converted to the enumeration type via its underlying type.
4389 // There is no overlap possible between these two cases (except when the
4390 // source value is already of the destination type), and the first
4391 // case is handled by the general case for single-element lists below.
4392 ImplicitConversionSequence ICS;
4393 ICS.setStandard();
4394 ICS.Standard.setAsIdentityConversion();
4395 if (!E->isRValue())
4396 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4397 // If E is of a floating-point type, then the conversion is ill-formed
4398 // due to narrowing, but go through the motions in order to produce the
4399 // right diagnostic.
4400 ICS.Standard.Second = E->getType()->isFloatingType()
4401 ? ICK_Floating_Integral
4402 : ICK_Integral_Conversion;
4403 ICS.Standard.setFromType(E->getType());
4404 ICS.Standard.setToType(0, E->getType());
4405 ICS.Standard.setToType(1, DestType);
4406 ICS.Standard.setToType(2, DestType);
4407 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4408 /*TopLevelOfInitList*/true);
4409 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4410 return;
4411 }
4412
4413 // - Otherwise, if the initializer list has a single element of type E
4414 // [...references are handled above...], the object or reference is
4415 // initialized from that element (by copy-initialization for
4416 // copy-list-initialization, or by direct-initialization for
4417 // direct-list-initialization); if a narrowing conversion is required
4418 // to convert the element to T, the program is ill-formed.
4419 //
4420 // Per core-24034, this is direct-initialization if we were performing
4421 // direct-list-initialization and copy-initialization otherwise.
4422 // We can't use InitListChecker for this, because it always performs
4423 // copy-initialization. This only matters if we might use an 'explicit'
4424 // conversion operator, or for the special case conversion of nullptr_t to
4425 // bool, so we only need to handle those cases.
4426 //
4427 // FIXME: Why not do this in all cases?
4428 Expr *Init = InitList->getInit(0);
4429 if (Init->getType()->isRecordType() ||
4430 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4431 InitializationKind SubKind =
4432 Kind.getKind() == InitializationKind::IK_DirectList
4433 ? InitializationKind::CreateDirect(Kind.getLocation(),
4434 InitList->getLBraceLoc(),
4435 InitList->getRBraceLoc())
4436 : Kind;
4437 Expr *SubInit[1] = { Init };
4438 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4439 /*TopLevelOfInitList*/true,
4440 TreatUnavailableAsInvalid);
4441 if (Sequence)
4442 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4443 return;
4444 }
4445 }
4446
4447 InitListChecker CheckInitList(S, Entity, InitList,
4448 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4449 if (CheckInitList.HadError()) {
4450 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4451 return;
4452 }
4453
4454 // Add the list initialization step with the built init list.
4455 Sequence.AddListInitializationStep(DestType);
4456}
4457
4458/// Try a reference initialization that involves calling a conversion
4459/// function.
4460static OverloadingResult TryRefInitWithConversionFunction(
4461 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4462 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4463 InitializationSequence &Sequence) {
4464 QualType DestType = Entity.getType();
4465 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4466 QualType T1 = cv1T1.getUnqualifiedType();
4467 QualType cv2T2 = Initializer->getType();
4468 QualType T2 = cv2T2.getUnqualifiedType();
4469
4470 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4471, __PRETTY_FUNCTION__))
4471 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4471, __PRETTY_FUNCTION__))
;
4472
4473 // Build the candidate set directly in the initialization sequence
4474 // structure, so that it will persist if we fail.
4475 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4476 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4477
4478 // Determine whether we are allowed to call explicit conversion operators.
4479 // Note that none of [over.match.copy], [over.match.conv], nor
4480 // [over.match.ref] permit an explicit constructor to be chosen when
4481 // initializing a reference, not even for direct-initialization.
4482 bool AllowExplicitCtors = false;
4483 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4484
4485 const RecordType *T1RecordType = nullptr;
4486 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4487 S.isCompleteType(Kind.getLocation(), T1)) {
4488 // The type we're converting to is a class type. Enumerate its constructors
4489 // to see if there is a suitable conversion.
4490 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4491
4492 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4493 auto Info = getConstructorInfo(D);
4494 if (!Info.Constructor)
4495 continue;
4496
4497 if (!Info.Constructor->isInvalidDecl() &&
4498 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4499 if (Info.ConstructorTmpl)
4500 S.AddTemplateOverloadCandidate(
4501 Info.ConstructorTmpl, Info.FoundDecl,
4502 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4503 /*SuppressUserConversions=*/true,
4504 /*PartialOverloading*/ false, AllowExplicitCtors);
4505 else
4506 S.AddOverloadCandidate(
4507 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4508 /*SuppressUserConversions=*/true,
4509 /*PartialOverloading*/ false, AllowExplicitCtors);
4510 }
4511 }
4512 }
4513 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4514 return OR_No_Viable_Function;
4515
4516 const RecordType *T2RecordType = nullptr;
4517 if ((T2RecordType = T2->getAs<RecordType>()) &&
4518 S.isCompleteType(Kind.getLocation(), T2)) {
4519 // The type we're converting from is a class type, enumerate its conversion
4520 // functions.
4521 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4522
4523 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4524 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4525 NamedDecl *D = *I;
4526 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4527 if (isa<UsingShadowDecl>(D))
4528 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4529
4530 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4531 CXXConversionDecl *Conv;
4532 if (ConvTemplate)
4533 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4534 else
4535 Conv = cast<CXXConversionDecl>(D);
4536
4537 // If the conversion function doesn't return a reference type,
4538 // it can't be considered for this conversion unless we're allowed to
4539 // consider rvalues.
4540 // FIXME: Do we need to make sure that we only consider conversion
4541 // candidates with reference-compatible results? That might be needed to
4542 // break recursion.
4543 if ((AllowRValues ||
4544 Conv->getConversionType()->isLValueReferenceType())) {
4545 if (ConvTemplate)
4546 S.AddTemplateConversionCandidate(
4547 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4548 CandidateSet,
4549 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4550 else
4551 S.AddConversionCandidate(
4552 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4553 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4554 }
4555 }
4556 }
4557 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4558 return OR_No_Viable_Function;
4559
4560 SourceLocation DeclLoc = Initializer->getBeginLoc();
4561
4562 // Perform overload resolution. If it fails, return the failed result.
4563 OverloadCandidateSet::iterator Best;
4564 if (OverloadingResult Result
4565 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4566 return Result;
4567
4568 FunctionDecl *Function = Best->Function;
4569 // This is the overload that will be used for this initialization step if we
4570 // use this initialization. Mark it as referenced.
4571 Function->setReferenced();
4572
4573 // Compute the returned type and value kind of the conversion.
4574 QualType cv3T3;
4575 if (isa<CXXConversionDecl>(Function))
4576 cv3T3 = Function->getReturnType();
4577 else
4578 cv3T3 = T1;
4579
4580 ExprValueKind VK = VK_RValue;
4581 if (cv3T3->isLValueReferenceType())
4582 VK = VK_LValue;
4583 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4584 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4585 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4586
4587 // Add the user-defined conversion step.
4588 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4589 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4590 HadMultipleCandidates);
4591
4592 // Determine whether we'll need to perform derived-to-base adjustments or
4593 // other conversions.
4594 Sema::ReferenceConversions RefConv;
4595 Sema::ReferenceCompareResult NewRefRelationship =
4596 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4597
4598 // Add the final conversion sequence, if necessary.
4599 if (NewRefRelationship == Sema::Ref_Incompatible) {
4600 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4601, __PRETTY_FUNCTION__))
4601 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4601, __PRETTY_FUNCTION__))
;
4602
4603 ImplicitConversionSequence ICS;
4604 ICS.setStandard();
4605 ICS.Standard = Best->FinalConversion;
4606 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4607
4608 // Every implicit conversion results in a prvalue, except for a glvalue
4609 // derived-to-base conversion, which we handle below.
4610 cv3T3 = ICS.Standard.getToType(2);
4611 VK = VK_RValue;
4612 }
4613
4614 // If the converted initializer is a prvalue, its type T4 is adjusted to
4615 // type "cv1 T4" and the temporary materialization conversion is applied.
4616 //
4617 // We adjust the cv-qualifications to match the reference regardless of
4618 // whether we have a prvalue so that the AST records the change. In this
4619 // case, T4 is "cv3 T3".
4620 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4621 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4622 Sequence.AddQualificationConversionStep(cv1T4, VK);
4623 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4624 VK = IsLValueRef ? VK_LValue : VK_XValue;
4625
4626 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4627 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4628 else if (RefConv & Sema::ReferenceConversions::ObjC)
4629 Sequence.AddObjCObjectConversionStep(cv1T1);
4630 else if (RefConv & Sema::ReferenceConversions::Function)
4631 Sequence.AddQualificationConversionStep(cv1T1, VK);
4632 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4633 if (!S.Context.hasSameType(cv1T4, cv1T1))
4634 Sequence.AddQualificationConversionStep(cv1T1, VK);
4635 }
4636
4637 return OR_Success;
4638}
4639
4640static void CheckCXX98CompatAccessibleCopy(Sema &S,
4641 const InitializedEntity &Entity,
4642 Expr *CurInitExpr);
4643
4644/// Attempt reference initialization (C++0x [dcl.init.ref])
4645static void TryReferenceInitialization(Sema &S,
4646 const InitializedEntity &Entity,
4647 const InitializationKind &Kind,
4648 Expr *Initializer,
4649 InitializationSequence &Sequence) {
4650 QualType DestType = Entity.getType();
4651 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4652 Qualifiers T1Quals;
4653 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4654 QualType cv2T2 = Initializer->getType();
4655 Qualifiers T2Quals;
4656 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4657
4658 // If the initializer is the address of an overloaded function, try
4659 // to resolve the overloaded function. If all goes well, T2 is the
4660 // type of the resulting function.
4661 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4662 T1, Sequence))
4663 return;
4664
4665 // Delegate everything else to a subfunction.
4666 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4667 T1Quals, cv2T2, T2, T2Quals, Sequence);
4668}
4669
4670/// Determine whether an expression is a non-referenceable glvalue (one to
4671/// which a reference can never bind). Attempting to bind a reference to
4672/// such a glvalue will always create a temporary.
4673static bool isNonReferenceableGLValue(Expr *E) {
4674 return E->refersToBitField() || E->refersToVectorElement();
4675}
4676
4677/// Reference initialization without resolving overloaded functions.
4678static void TryReferenceInitializationCore(Sema &S,
4679 const InitializedEntity &Entity,
4680 const InitializationKind &Kind,
4681 Expr *Initializer,
4682 QualType cv1T1, QualType T1,
4683 Qualifiers T1Quals,
4684 QualType cv2T2, QualType T2,
4685 Qualifiers T2Quals,
4686 InitializationSequence &Sequence) {
4687 QualType DestType = Entity.getType();
4688 SourceLocation DeclLoc = Initializer->getBeginLoc();
4689
4690 // Compute some basic properties of the types and the initializer.
4691 bool isLValueRef = DestType->isLValueReferenceType();
4692 bool isRValueRef = !isLValueRef;
4693 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4694
4695 Sema::ReferenceConversions RefConv;
4696 Sema::ReferenceCompareResult RefRelationship =
4697 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4698
4699 // C++0x [dcl.init.ref]p5:
4700 // A reference to type "cv1 T1" is initialized by an expression of type
4701 // "cv2 T2" as follows:
4702 //
4703 // - If the reference is an lvalue reference and the initializer
4704 // expression
4705 // Note the analogous bullet points for rvalue refs to functions. Because
4706 // there are no function rvalues in C++, rvalue refs to functions are treated
4707 // like lvalue refs.
4708 OverloadingResult ConvOvlResult = OR_Success;
4709 bool T1Function = T1->isFunctionType();
4710 if (isLValueRef || T1Function) {
4711 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4712 (RefRelationship == Sema::Ref_Compatible ||
4713 (Kind.isCStyleOrFunctionalCast() &&
4714 RefRelationship == Sema::Ref_Related))) {
4715 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4716 // reference-compatible with "cv2 T2," or
4717 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4718 Sema::ReferenceConversions::ObjC)) {
4719 // If we're converting the pointee, add any qualifiers first;
4720 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4721 if (RefConv & (Sema::ReferenceConversions::Qualification))
4722 Sequence.AddQualificationConversionStep(
4723 S.Context.getQualifiedType(T2, T1Quals),
4724 Initializer->getValueKind());
4725 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4726 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4727 else
4728 Sequence.AddObjCObjectConversionStep(cv1T1);
4729 } else if (RefConv & (Sema::ReferenceConversions::Qualification |
4730 Sema::ReferenceConversions::Function)) {
4731 // Perform a (possibly multi-level) qualification conversion.
4732 // FIXME: Should we use a different step kind for function conversions?
4733 Sequence.AddQualificationConversionStep(cv1T1,
4734 Initializer->getValueKind());
4735 }
4736
4737 // We only create a temporary here when binding a reference to a
4738 // bit-field or vector element. Those cases are't supposed to be
4739 // handled by this bullet, but the outcome is the same either way.
4740 Sequence.AddReferenceBindingStep(cv1T1, false);
4741 return;
4742 }
4743
4744 // - has a class type (i.e., T2 is a class type), where T1 is not
4745 // reference-related to T2, and can be implicitly converted to an
4746 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4747 // with "cv3 T3" (this conversion is selected by enumerating the
4748 // applicable conversion functions (13.3.1.6) and choosing the best
4749 // one through overload resolution (13.3)),
4750 // If we have an rvalue ref to function type here, the rhs must be
4751 // an rvalue. DR1287 removed the "implicitly" here.
4752 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4753 (isLValueRef || InitCategory.isRValue())) {
4754 ConvOvlResult = TryRefInitWithConversionFunction(
4755 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4756 /*IsLValueRef*/ isLValueRef, Sequence);
4757 if (ConvOvlResult == OR_Success)
4758 return;
4759 if (ConvOvlResult != OR_No_Viable_Function)
4760 Sequence.SetOverloadFailure(
4761 InitializationSequence::FK_ReferenceInitOverloadFailed,
4762 ConvOvlResult);
4763 }
4764 }
4765
4766 // - Otherwise, the reference shall be an lvalue reference to a
4767 // non-volatile const type (i.e., cv1 shall be const), or the reference
4768 // shall be an rvalue reference.
4769 // For address spaces, we interpret this to mean that an addr space
4770 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4771 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4772 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4773 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4774 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4775 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4776 Sequence.SetOverloadFailure(
4777 InitializationSequence::FK_ReferenceInitOverloadFailed,
4778 ConvOvlResult);
4779 else if (!InitCategory.isLValue())
4780 Sequence.SetFailed(
4781 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4782 ? InitializationSequence::
4783 FK_NonConstLValueReferenceBindingToTemporary
4784 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4785 else {
4786 InitializationSequence::FailureKind FK;
4787 switch (RefRelationship) {
4788 case Sema::Ref_Compatible:
4789 if (Initializer->refersToBitField())
4790 FK = InitializationSequence::
4791 FK_NonConstLValueReferenceBindingToBitfield;
4792 else if (Initializer->refersToVectorElement())
4793 FK = InitializationSequence::
4794 FK_NonConstLValueReferenceBindingToVectorElement;
4795 else
4796 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 4796)
;
4797 break;
4798 case Sema::Ref_Related:
4799 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4800 break;
4801 case Sema::Ref_Incompatible:
4802 FK = InitializationSequence::
4803 FK_NonConstLValueReferenceBindingToUnrelated;
4804 break;
4805 }
4806 Sequence.SetFailed(FK);
4807 }
4808 return;
4809 }
4810
4811 // - If the initializer expression
4812 // - is an
4813 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4814 // [1z] rvalue (but not a bit-field) or
4815 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4816 //
4817 // Note: functions are handled above and below rather than here...
4818 if (!T1Function &&
4819 (RefRelationship == Sema::Ref_Compatible ||
4820 (Kind.isCStyleOrFunctionalCast() &&
4821 RefRelationship == Sema::Ref_Related)) &&
4822 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4823 (InitCategory.isPRValue() &&
4824 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4825 T2->isArrayType())))) {
4826 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4827 if (InitCategory.isPRValue() && T2->isRecordType()) {
4828 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4829 // compiler the freedom to perform a copy here or bind to the
4830 // object, while C++0x requires that we bind directly to the
4831 // object. Hence, we always bind to the object without making an
4832 // extra copy. However, in C++03 requires that we check for the
4833 // presence of a suitable copy constructor:
4834 //
4835 // The constructor that would be used to make the copy shall
4836 // be callable whether or not the copy is actually done.
4837 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4838 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4839 else if (S.getLangOpts().CPlusPlus11)
4840 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4841 }
4842
4843 // C++1z [dcl.init.ref]/5.2.1.2:
4844 // If the converted initializer is a prvalue, its type T4 is adjusted
4845 // to type "cv1 T4" and the temporary materialization conversion is
4846 // applied.
4847 // Postpone address space conversions to after the temporary materialization
4848 // conversion to allow creating temporaries in the alloca address space.
4849 auto T1QualsIgnoreAS = T1Quals;
4850 auto T2QualsIgnoreAS = T2Quals;
4851 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4852 T1QualsIgnoreAS.removeAddressSpace();
4853 T2QualsIgnoreAS.removeAddressSpace();
4854 }
4855 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4856 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4857 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4858 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4859 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4860 // Add addr space conversion if required.
4861 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4862 auto T4Quals = cv1T4.getQualifiers();
4863 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4864 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4865 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4866 cv1T4 = cv1T4WithAS;
4867 }
4868
4869 // In any case, the reference is bound to the resulting glvalue (or to
4870 // an appropriate base class subobject).
4871 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4872 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4873 else if (RefConv & Sema::ReferenceConversions::ObjC)
4874 Sequence.AddObjCObjectConversionStep(cv1T1);
4875 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4876 if (!S.Context.hasSameType(cv1T4, cv1T1))
4877 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4878 }
4879 return;
4880 }
4881
4882 // - has a class type (i.e., T2 is a class type), where T1 is not
4883 // reference-related to T2, and can be implicitly converted to an
4884 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4885 // where "cv1 T1" is reference-compatible with "cv3 T3",
4886 //
4887 // DR1287 removes the "implicitly" here.
4888 if (T2->isRecordType()) {
4889 if (RefRelationship == Sema::Ref_Incompatible) {
4890 ConvOvlResult = TryRefInitWithConversionFunction(
4891 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4892 /*IsLValueRef*/ isLValueRef, Sequence);
4893 if (ConvOvlResult)
4894 Sequence.SetOverloadFailure(
4895 InitializationSequence::FK_ReferenceInitOverloadFailed,
4896 ConvOvlResult);
4897
4898 return;
4899 }
4900
4901 if (RefRelationship == Sema::Ref_Compatible &&
4902 isRValueRef && InitCategory.isLValue()) {
4903 Sequence.SetFailed(
4904 InitializationSequence::FK_RValueReferenceBindingToLValue);
4905 return;
4906 }
4907
4908 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4909 return;
4910 }
4911
4912 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4913 // from the initializer expression using the rules for a non-reference
4914 // copy-initialization (8.5). The reference is then bound to the
4915 // temporary. [...]
4916
4917 // Ignore address space of reference type at this point and perform address
4918 // space conversion after the reference binding step.
4919 QualType cv1T1IgnoreAS =
4920 T1Quals.hasAddressSpace()
4921 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4922 : cv1T1;
4923
4924 InitializedEntity TempEntity =
4925 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4926
4927 // FIXME: Why do we use an implicit conversion here rather than trying
4928 // copy-initialization?
4929 ImplicitConversionSequence ICS
4930 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4931 /*SuppressUserConversions=*/false,
4932 Sema::AllowedExplicit::None,
4933 /*FIXME:InOverloadResolution=*/false,
4934 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4935 /*AllowObjCWritebackConversion=*/false);
4936
4937 if (ICS.isBad()) {
4938 // FIXME: Use the conversion function set stored in ICS to turn
4939 // this into an overloading ambiguity diagnostic. However, we need
4940 // to keep that set as an OverloadCandidateSet rather than as some
4941 // other kind of set.
4942 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4943 Sequence.SetOverloadFailure(
4944 InitializationSequence::FK_ReferenceInitOverloadFailed,
4945 ConvOvlResult);
4946 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4947 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4948 else
4949 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4950 return;
4951 } else {
4952 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4953 }
4954
4955 // [...] If T1 is reference-related to T2, cv1 must be the
4956 // same cv-qualification as, or greater cv-qualification
4957 // than, cv2; otherwise, the program is ill-formed.
4958 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4959 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4960 if ((RefRelationship == Sema::Ref_Related &&
4961 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4962 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4963 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4964 return;
4965 }
4966
4967 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4968 // reference, the initializer expression shall not be an lvalue.
4969 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4970 InitCategory.isLValue()) {
4971 Sequence.SetFailed(
4972 InitializationSequence::FK_RValueReferenceBindingToLValue);
4973 return;
4974 }
4975
4976 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
4977
4978 if (T1Quals.hasAddressSpace()) {
4979 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
4980 LangAS::Default)) {
4981 Sequence.SetFailed(
4982 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
4983 return;
4984 }
4985 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4986 : VK_XValue);
4987 }
4988}
4989
4990/// Attempt character array initialization from a string literal
4991/// (C++ [dcl.init.string], C99 6.7.8).
4992static void TryStringLiteralInitialization(Sema &S,
4993 const InitializedEntity &Entity,
4994 const InitializationKind &Kind,
4995 Expr *Initializer,
4996 InitializationSequence &Sequence) {
4997 Sequence.AddStringInitStep(Entity.getType());
4998}
4999
5000/// Attempt value initialization (C++ [dcl.init]p7).
5001static void TryValueInitialization(Sema &S,
5002 const InitializedEntity &Entity,
5003 const InitializationKind &Kind,
5004 InitializationSequence &Sequence,
5005 InitListExpr *InitList) {
5006 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5007, __PRETTY_FUNCTION__))
5007 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5007, __PRETTY_FUNCTION__))
;
5008
5009 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5010 //
5011 // To value-initialize an object of type T means:
5012 QualType T = Entity.getType();
5013
5014 // -- if T is an array type, then each element is value-initialized;
5015 T = S.Context.getBaseElementType(T);
5016
5017 if (const RecordType *RT = T->getAs<RecordType>()) {
5018 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5019 bool NeedZeroInitialization = true;
5020 // C++98:
5021 // -- if T is a class type (clause 9) with a user-declared constructor
5022 // (12.1), then the default constructor for T is called (and the
5023 // initialization is ill-formed if T has no accessible default
5024 // constructor);
5025 // C++11:
5026 // -- if T is a class type (clause 9) with either no default constructor
5027 // (12.1 [class.ctor]) or a default constructor that is user-provided
5028 // or deleted, then the object is default-initialized;
5029 //
5030 // Note that the C++11 rule is the same as the C++98 rule if there are no
5031 // defaulted or deleted constructors, so we just use it unconditionally.
5032 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5033 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5034 NeedZeroInitialization = false;
5035
5036 // -- if T is a (possibly cv-qualified) non-union class type without a
5037 // user-provided or deleted default constructor, then the object is
5038 // zero-initialized and, if T has a non-trivial default constructor,
5039 // default-initialized;
5040 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5041 // constructor' part was removed by DR1507.
5042 if (NeedZeroInitialization)
5043 Sequence.AddZeroInitializationStep(Entity.getType());
5044
5045 // C++03:
5046 // -- if T is a non-union class type without a user-declared constructor,
5047 // then every non-static data member and base class component of T is
5048 // value-initialized;
5049 // [...] A program that calls for [...] value-initialization of an
5050 // entity of reference type is ill-formed.
5051 //
5052 // C++11 doesn't need this handling, because value-initialization does not
5053 // occur recursively there, and the implicit default constructor is
5054 // defined as deleted in the problematic cases.
5055 if (!S.getLangOpts().CPlusPlus11 &&
5056 ClassDecl->hasUninitializedReferenceMember()) {
5057 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5058 return;
5059 }
5060
5061 // If this is list-value-initialization, pass the empty init list on when
5062 // building the constructor call. This affects the semantics of a few
5063 // things (such as whether an explicit default constructor can be called).
5064 Expr *InitListAsExpr = InitList;
5065 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5066 bool InitListSyntax = InitList;
5067
5068 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5069 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5070 return TryConstructorInitialization(
5071 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5072 }
5073 }
5074
5075 Sequence.AddZeroInitializationStep(Entity.getType());
5076}
5077
5078/// Attempt default initialization (C++ [dcl.init]p6).
5079static void TryDefaultInitialization(Sema &S,
5080 const InitializedEntity &Entity,
5081 const InitializationKind &Kind,
5082 InitializationSequence &Sequence) {
5083 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5083, __PRETTY_FUNCTION__))
;
5084
5085 // C++ [dcl.init]p6:
5086 // To default-initialize an object of type T means:
5087 // - if T is an array type, each element is default-initialized;
5088 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5089
5090 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5091 // constructor for T is called (and the initialization is ill-formed if
5092 // T has no accessible default constructor);
5093 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5094 TryConstructorInitialization(S, Entity, Kind, None, DestType,
5095 Entity.getType(), Sequence);
5096 return;
5097 }
5098
5099 // - otherwise, no initialization is performed.
5100
5101 // If a program calls for the default initialization of an object of
5102 // a const-qualified type T, T shall be a class type with a user-provided
5103 // default constructor.
5104 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5105 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5106 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5107 return;
5108 }
5109
5110 // If the destination type has a lifetime property, zero-initialize it.
5111 if (DestType.getQualifiers().hasObjCLifetime()) {
5112 Sequence.AddZeroInitializationStep(Entity.getType());
5113 return;
5114 }
5115}
5116
5117/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5118/// which enumerates all conversion functions and performs overload resolution
5119/// to select the best.
5120static void TryUserDefinedConversion(Sema &S,
5121 QualType DestType,
5122 const InitializationKind &Kind,
5123 Expr *Initializer,
5124 InitializationSequence &Sequence,
5125 bool TopLevelOfInitList) {
5126 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5126, __PRETTY_FUNCTION__))
;
5127 QualType SourceType = Initializer->getType();
5128 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5129, __PRETTY_FUNCTION__))
5129 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5129, __PRETTY_FUNCTION__))
;
5130
5131 // Build the candidate set directly in the initialization sequence
5132 // structure, so that it will persist if we fail.
5133 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5134 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5135 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5136
5137 // Determine whether we are allowed to call explicit constructors or
5138 // explicit conversion operators.
5139 bool AllowExplicit = Kind.AllowExplicit();
5140
5141 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5142 // The type we're converting to is a class type. Enumerate its constructors
5143 // to see if there is a suitable conversion.
5144 CXXRecordDecl *DestRecordDecl
5145 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5146
5147 // Try to complete the type we're converting to.
5148 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5149 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5150 auto Info = getConstructorInfo(D);
5151 if (!Info.Constructor)
5152 continue;
5153
5154 if (!Info.Constructor->isInvalidDecl() &&
5155 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5156 if (Info.ConstructorTmpl)
5157 S.AddTemplateOverloadCandidate(
5158 Info.ConstructorTmpl, Info.FoundDecl,
5159 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5160 /*SuppressUserConversions=*/true,
5161 /*PartialOverloading*/ false, AllowExplicit);
5162 else
5163 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5164 Initializer, CandidateSet,
5165 /*SuppressUserConversions=*/true,
5166 /*PartialOverloading*/ false, AllowExplicit);
5167 }
5168 }
5169 }
5170 }
5171
5172 SourceLocation DeclLoc = Initializer->getBeginLoc();
5173
5174 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5175 // The type we're converting from is a class type, enumerate its conversion
5176 // functions.
5177
5178 // We can only enumerate the conversion functions for a complete type; if
5179 // the type isn't complete, simply skip this step.
5180 if (S.isCompleteType(DeclLoc, SourceType)) {
5181 CXXRecordDecl *SourceRecordDecl
5182 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5183
5184 const auto &Conversions =
5185 SourceRecordDecl->getVisibleConversionFunctions();
5186 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5187 NamedDecl *D = *I;
5188 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5189 if (isa<UsingShadowDecl>(D))
5190 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5191
5192 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5193 CXXConversionDecl *Conv;
5194 if (ConvTemplate)
5195 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5196 else
5197 Conv = cast<CXXConversionDecl>(D);
5198
5199 if (ConvTemplate)
5200 S.AddTemplateConversionCandidate(
5201 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5202 CandidateSet, AllowExplicit, AllowExplicit);
5203 else
5204 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5205 DestType, CandidateSet, AllowExplicit,
5206 AllowExplicit);
5207 }
5208 }
5209 }
5210
5211 // Perform overload resolution. If it fails, return the failed result.
5212 OverloadCandidateSet::iterator Best;
5213 if (OverloadingResult Result
5214 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5215 Sequence.SetOverloadFailure(
5216 InitializationSequence::FK_UserConversionOverloadFailed,
5217 Result);
5218 return;
5219 }
5220
5221 FunctionDecl *Function = Best->Function;
5222 Function->setReferenced();
5223 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5224
5225 if (isa<CXXConstructorDecl>(Function)) {
5226 // Add the user-defined conversion step. Any cv-qualification conversion is
5227 // subsumed by the initialization. Per DR5, the created temporary is of the
5228 // cv-unqualified type of the destination.
5229 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5230 DestType.getUnqualifiedType(),
5231 HadMultipleCandidates);
5232
5233 // C++14 and before:
5234 // - if the function is a constructor, the call initializes a temporary
5235 // of the cv-unqualified version of the destination type. The [...]
5236 // temporary [...] is then used to direct-initialize, according to the
5237 // rules above, the object that is the destination of the
5238 // copy-initialization.
5239 // Note that this just performs a simple object copy from the temporary.
5240 //
5241 // C++17:
5242 // - if the function is a constructor, the call is a prvalue of the
5243 // cv-unqualified version of the destination type whose return object
5244 // is initialized by the constructor. The call is used to
5245 // direct-initialize, according to the rules above, the object that
5246 // is the destination of the copy-initialization.
5247 // Therefore we need to do nothing further.
5248 //
5249 // FIXME: Mark this copy as extraneous.
5250 if (!S.getLangOpts().CPlusPlus17)
5251 Sequence.AddFinalCopy(DestType);
5252 else if (DestType.hasQualifiers())
5253 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5254 return;
5255 }
5256
5257 // Add the user-defined conversion step that calls the conversion function.
5258 QualType ConvType = Function->getCallResultType();
5259 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5260 HadMultipleCandidates);
5261
5262 if (ConvType->getAs<RecordType>()) {
5263 // The call is used to direct-initialize [...] the object that is the
5264 // destination of the copy-initialization.
5265 //
5266 // In C++17, this does not call a constructor if we enter /17.6.1:
5267 // - If the initializer expression is a prvalue and the cv-unqualified
5268 // version of the source type is the same as the class of the
5269 // destination [... do not make an extra copy]
5270 //
5271 // FIXME: Mark this copy as extraneous.
5272 if (!S.getLangOpts().CPlusPlus17 ||
5273 Function->getReturnType()->isReferenceType() ||
5274 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5275 Sequence.AddFinalCopy(DestType);
5276 else if (!S.Context.hasSameType(ConvType, DestType))
5277 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5278 return;
5279 }
5280
5281 // If the conversion following the call to the conversion function
5282 // is interesting, add it as a separate step.
5283 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5284 Best->FinalConversion.Third) {
5285 ImplicitConversionSequence ICS;
5286 ICS.setStandard();
5287 ICS.Standard = Best->FinalConversion;
5288 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5289 }
5290}
5291
5292/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5293/// a function with a pointer return type contains a 'return false;' statement.
5294/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5295/// code using that header.
5296///
5297/// Work around this by treating 'return false;' as zero-initializing the result
5298/// if it's used in a pointer-returning function in a system header.
5299static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5300 const InitializedEntity &Entity,
5301 const Expr *Init) {
5302 return S.getLangOpts().CPlusPlus11 &&
5303 Entity.getKind() == InitializedEntity::EK_Result &&
5304 Entity.getType()->isPointerType() &&
5305 isa<CXXBoolLiteralExpr>(Init) &&
5306 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5307 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5308}
5309
5310/// The non-zero enum values here are indexes into diagnostic alternatives.
5311enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5312
5313/// Determines whether this expression is an acceptable ICR source.
5314static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5315 bool isAddressOf, bool &isWeakAccess) {
5316 // Skip parens.
5317 e = e->IgnoreParens();
5318
5319 // Skip address-of nodes.
5320 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5321 if (op->getOpcode() == UO_AddrOf)
5322 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5323 isWeakAccess);
5324
5325 // Skip certain casts.
5326 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5327 switch (ce->getCastKind()) {
5328 case CK_Dependent:
5329 case CK_BitCast:
5330 case CK_LValueBitCast:
5331 case CK_NoOp:
5332 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5333
5334 case CK_ArrayToPointerDecay:
5335 return IIK_nonscalar;
5336
5337 case CK_NullToPointer:
5338 return IIK_okay;
5339
5340 default:
5341 break;
5342 }
5343
5344 // If we have a declaration reference, it had better be a local variable.
5345 } else if (isa<DeclRefExpr>(e)) {
5346 // set isWeakAccess to true, to mean that there will be an implicit
5347 // load which requires a cleanup.
5348 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5349 isWeakAccess = true;
5350
5351 if (!isAddressOf) return IIK_nonlocal;
5352
5353 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5354 if (!var) return IIK_nonlocal;
5355
5356 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5357
5358 // If we have a conditional operator, check both sides.
5359 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5360 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5361 isWeakAccess))
5362 return iik;
5363
5364 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5365
5366 // These are never scalar.
5367 } else if (isa<ArraySubscriptExpr>(e)) {
5368 return IIK_nonscalar;
5369
5370 // Otherwise, it needs to be a null pointer constant.
5371 } else {
5372 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5373 ? IIK_okay : IIK_nonlocal);
5374 }
5375
5376 return IIK_nonlocal;
5377}
5378
5379/// Check whether the given expression is a valid operand for an
5380/// indirect copy/restore.
5381static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5382 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5382, __PRETTY_FUNCTION__))
;
5383 bool isWeakAccess = false;
5384 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5385 // If isWeakAccess to true, there will be an implicit
5386 // load which requires a cleanup.
5387 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5388 S.Cleanup.setExprNeedsCleanups(true);
5389
5390 if (iik == IIK_okay) return;
5391
5392 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5393 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5394 << src->getSourceRange();
5395}
5396
5397/// Determine whether we have compatible array types for the
5398/// purposes of GNU by-copy array initialization.
5399static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5400 const ArrayType *Source) {
5401 // If the source and destination array types are equivalent, we're
5402 // done.
5403 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5404 return true;
5405
5406 // Make sure that the element types are the same.
5407 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5408 return false;
5409
5410 // The only mismatch we allow is when the destination is an
5411 // incomplete array type and the source is a constant array type.
5412 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5413}
5414
5415static bool tryObjCWritebackConversion(Sema &S,
5416 InitializationSequence &Sequence,
5417 const InitializedEntity &Entity,
5418 Expr *Initializer) {
5419 bool ArrayDecay = false;
5420 QualType ArgType = Initializer->getType();
5421 QualType ArgPointee;
5422 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5423 ArrayDecay = true;
5424 ArgPointee = ArgArrayType->getElementType();
5425 ArgType = S.Context.getPointerType(ArgPointee);
5426 }
5427
5428 // Handle write-back conversion.
5429 QualType ConvertedArgType;
5430 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5431 ConvertedArgType))
5432 return false;
5433
5434 // We should copy unless we're passing to an argument explicitly
5435 // marked 'out'.
5436 bool ShouldCopy = true;
5437 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5438 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5439
5440 // Do we need an lvalue conversion?
5441 if (ArrayDecay || Initializer->isGLValue()) {
5442 ImplicitConversionSequence ICS;
5443 ICS.setStandard();
5444 ICS.Standard.setAsIdentityConversion();
5445
5446 QualType ResultType;
5447 if (ArrayDecay) {
5448 ICS.Standard.First = ICK_Array_To_Pointer;
5449 ResultType = S.Context.getPointerType(ArgPointee);
5450 } else {
5451 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5452 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5453 }
5454
5455 Sequence.AddConversionSequenceStep(ICS, ResultType);
5456 }
5457
5458 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5459 return true;
5460}
5461
5462static bool TryOCLSamplerInitialization(Sema &S,
5463 InitializationSequence &Sequence,
5464 QualType DestType,
5465 Expr *Initializer) {
5466 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5467 (!Initializer->isIntegerConstantExpr(S.Context) &&
5468 !Initializer->getType()->isSamplerT()))
5469 return false;
5470
5471 Sequence.AddOCLSamplerInitStep(DestType);
5472 return true;
5473}
5474
5475static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5476 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5477 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5478}
5479
5480static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5481 InitializationSequence &Sequence,
5482 QualType DestType,
5483 Expr *Initializer) {
5484 if (!S.getLangOpts().OpenCL)
5485 return false;
5486
5487 //
5488 // OpenCL 1.2 spec, s6.12.10
5489 //
5490 // The event argument can also be used to associate the
5491 // async_work_group_copy with a previous async copy allowing
5492 // an event to be shared by multiple async copies; otherwise
5493 // event should be zero.
5494 //
5495 if (DestType->isEventT() || DestType->isQueueT()) {
5496 if (!IsZeroInitializer(Initializer, S))
5497 return false;
5498
5499 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5500 return true;
5501 }
5502
5503 // We should allow zero initialization for all types defined in the
5504 // cl_intel_device_side_avc_motion_estimation extension, except
5505 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5506 if (S.getOpenCLOptions().isEnabled(
5507 "cl_intel_device_side_avc_motion_estimation") &&
5508 DestType->isOCLIntelSubgroupAVCType()) {
5509 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5510 DestType->isOCLIntelSubgroupAVCMceResultType())
5511 return false;
5512 if (!IsZeroInitializer(Initializer, S))
5513 return false;
5514
5515 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5516 return true;
5517 }
5518
5519 return false;
5520}
5521
5522InitializationSequence::InitializationSequence(Sema &S,
5523 const InitializedEntity &Entity,
5524 const InitializationKind &Kind,
5525 MultiExprArg Args,
5526 bool TopLevelOfInitList,
5527 bool TreatUnavailableAsInvalid)
5528 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5529 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5530 TreatUnavailableAsInvalid);
5531}
5532
5533/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5534/// address of that function, this returns true. Otherwise, it returns false.
5535static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5536 auto *DRE = dyn_cast<DeclRefExpr>(E);
5537 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5538 return false;
5539
5540 return !S.checkAddressOfFunctionIsAvailable(
5541 cast<FunctionDecl>(DRE->getDecl()));
5542}
5543
5544/// Determine whether we can perform an elementwise array copy for this kind
5545/// of entity.
5546static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5547 switch (Entity.getKind()) {
5548 case InitializedEntity::EK_LambdaCapture:
5549 // C++ [expr.prim.lambda]p24:
5550 // For array members, the array elements are direct-initialized in
5551 // increasing subscript order.
5552 return true;
5553
5554 case InitializedEntity::EK_Variable:
5555 // C++ [dcl.decomp]p1:
5556 // [...] each element is copy-initialized or direct-initialized from the
5557 // corresponding element of the assignment-expression [...]
5558 return isa<DecompositionDecl>(Entity.getDecl());
5559
5560 case InitializedEntity::EK_Member:
5561 // C++ [class.copy.ctor]p14:
5562 // - if the member is an array, each element is direct-initialized with
5563 // the corresponding subobject of x
5564 return Entity.isImplicitMemberInitializer();
5565
5566 case InitializedEntity::EK_ArrayElement:
5567 // All the above cases are intended to apply recursively, even though none
5568 // of them actually say that.
5569 if (auto *E = Entity.getParent())
5570 return canPerformArrayCopy(*E);
5571 break;
5572
5573 default:
5574 break;
5575 }
5576
5577 return false;
5578}
5579
5580void InitializationSequence::InitializeFrom(Sema &S,
5581 const InitializedEntity &Entity,
5582 const InitializationKind &Kind,
5583 MultiExprArg Args,
5584 bool TopLevelOfInitList,
5585 bool TreatUnavailableAsInvalid) {
5586 ASTContext &Context = S.Context;
5587
5588 // Eliminate non-overload placeholder types in the arguments. We
5589 // need to do this before checking whether types are dependent
5590 // because lowering a pseudo-object expression might well give us
5591 // something of dependent type.
5592 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5593 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5594 // FIXME: should we be doing this here?
5595 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5596 if (result.isInvalid()) {
5597 SetFailed(FK_PlaceholderType);
5598 return;
5599 }
5600 Args[I] = result.get();
5601 }
5602
5603 // C++0x [dcl.init]p16:
5604 // The semantics of initializers are as follows. The destination type is
5605 // the type of the object or reference being initialized and the source
5606 // type is the type of the initializer expression. The source type is not
5607 // defined when the initializer is a braced-init-list or when it is a
5608 // parenthesized list of expressions.
5609 QualType DestType = Entity.getType();
5610
5611 if (DestType->isDependentType() ||
5612 Expr::hasAnyTypeDependentArguments(Args)) {
5613 SequenceKind = DependentSequence;
5614 return;
5615 }
5616
5617 // Almost everything is a normal sequence.
5618 setSequenceKind(NormalSequence);
5619
5620 QualType SourceType;
5621 Expr *Initializer = nullptr;
5622 if (Args.size() == 1) {
5623 Initializer = Args[0];
5624 if (S.getLangOpts().ObjC) {
5625 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5626 DestType, Initializer->getType(),
5627 Initializer) ||
5628 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5629 Args[0] = Initializer;
5630 }
5631 if (!isa<InitListExpr>(Initializer))
5632 SourceType = Initializer->getType();
5633 }
5634
5635 // - If the initializer is a (non-parenthesized) braced-init-list, the
5636 // object is list-initialized (8.5.4).
5637 if (Kind.getKind() != InitializationKind::IK_Direct) {
5638 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5639 TryListInitialization(S, Entity, Kind, InitList, *this,
5640 TreatUnavailableAsInvalid);
5641 return;
5642 }
5643 }
5644
5645 // - If the destination type is a reference type, see 8.5.3.
5646 if (DestType->isReferenceType()) {
5647 // C++0x [dcl.init.ref]p1:
5648 // A variable declared to be a T& or T&&, that is, "reference to type T"
5649 // (8.3.2), shall be initialized by an object, or function, of type T or
5650 // by an object that can be converted into a T.
5651 // (Therefore, multiple arguments are not permitted.)
5652 if (Args.size() != 1)
5653 SetFailed(FK_TooManyInitsForReference);
5654 // C++17 [dcl.init.ref]p5:
5655 // A reference [...] is initialized by an expression [...] as follows:
5656 // If the initializer is not an expression, presumably we should reject,
5657 // but the standard fails to actually say so.
5658 else if (isa<InitListExpr>(Args[0]))
5659 SetFailed(FK_ParenthesizedListInitForReference);
5660 else
5661 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5662 return;
5663 }
5664
5665 // - If the initializer is (), the object is value-initialized.
5666 if (Kind.getKind() == InitializationKind::IK_Value ||
5667 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5668 TryValueInitialization(S, Entity, Kind, *this);
5669 return;
5670 }
5671
5672 // Handle default initialization.
5673 if (Kind.getKind() == InitializationKind::IK_Default) {
5674 TryDefaultInitialization(S, Entity, Kind, *this);
5675 return;
5676 }
5677
5678 // - If the destination type is an array of characters, an array of
5679 // char16_t, an array of char32_t, or an array of wchar_t, and the
5680 // initializer is a string literal, see 8.5.2.
5681 // - Otherwise, if the destination type is an array, the program is
5682 // ill-formed.
5683 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5684 if (Initializer && isa<VariableArrayType>(DestAT)) {
5685 SetFailed(FK_VariableLengthArrayHasInitializer);
5686 return;
5687 }
5688
5689 if (Initializer) {
5690 switch (IsStringInit(Initializer, DestAT, Context)) {
5691 case SIF_None:
5692 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5693 return;
5694 case SIF_NarrowStringIntoWideChar:
5695 SetFailed(FK_NarrowStringIntoWideCharArray);
5696 return;
5697 case SIF_WideStringIntoChar:
5698 SetFailed(FK_WideStringIntoCharArray);
5699 return;
5700 case SIF_IncompatWideStringIntoWideChar:
5701 SetFailed(FK_IncompatWideStringIntoWideChar);
5702 return;
5703 case SIF_PlainStringIntoUTF8Char:
5704 SetFailed(FK_PlainStringIntoUTF8Char);
5705 return;
5706 case SIF_UTF8StringIntoPlainChar:
5707 SetFailed(FK_UTF8StringIntoPlainChar);
5708 return;
5709 case SIF_Other:
5710 break;
5711 }
5712 }
5713
5714 // Some kinds of initialization permit an array to be initialized from
5715 // another array of the same type, and perform elementwise initialization.
5716 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5717 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5718 Entity.getType()) &&
5719 canPerformArrayCopy(Entity)) {
5720 // If source is a prvalue, use it directly.
5721 if (Initializer->getValueKind() == VK_RValue) {
5722 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5723 return;
5724 }
5725
5726 // Emit element-at-a-time copy loop.
5727 InitializedEntity Element =
5728 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5729 QualType InitEltT =
5730 Context.getAsArrayType(Initializer->getType())->getElementType();
5731 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5732 Initializer->getValueKind(),
5733 Initializer->getObjectKind());
5734 Expr *OVEAsExpr = &OVE;
5735 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5736 TreatUnavailableAsInvalid);
5737 if (!Failed())
5738 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5739 return;
5740 }
5741
5742 // Note: as an GNU C extension, we allow initialization of an
5743 // array from a compound literal that creates an array of the same
5744 // type, so long as the initializer has no side effects.
5745 if (!S.getLangOpts().CPlusPlus && Initializer &&
5746 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5747 Initializer->getType()->isArrayType()) {
5748 const ArrayType *SourceAT
5749 = Context.getAsArrayType(Initializer->getType());
5750 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5751 SetFailed(FK_ArrayTypeMismatch);
5752 else if (Initializer->HasSideEffects(S.Context))
5753 SetFailed(FK_NonConstantArrayInit);
5754 else {
5755 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5756 }
5757 }
5758 // Note: as a GNU C++ extension, we allow list-initialization of a
5759 // class member of array type from a parenthesized initializer list.
5760 else if (S.getLangOpts().CPlusPlus &&
5761 Entity.getKind() == InitializedEntity::EK_Member &&
5762 Initializer && isa<InitListExpr>(Initializer)) {
5763 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5764 *this, TreatUnavailableAsInvalid);
5765 AddParenthesizedArrayInitStep(DestType);
5766 } else if (DestAT->getElementType()->isCharType())
5767 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5768 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5769 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5770 else
5771 SetFailed(FK_ArrayNeedsInitList);
5772
5773 return;
5774 }
5775
5776 // Determine whether we should consider writeback conversions for
5777 // Objective-C ARC.
5778 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5779 Entity.isParameterKind();
5780
5781 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5782 return;
5783
5784 // We're at the end of the line for C: it's either a write-back conversion
5785 // or it's a C assignment. There's no need to check anything else.
5786 if (!S.getLangOpts().CPlusPlus) {
5787 // If allowed, check whether this is an Objective-C writeback conversion.
5788 if (allowObjCWritebackConversion &&
5789 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5790 return;
5791 }
5792
5793 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5794 return;
5795
5796 // Handle initialization in C
5797 AddCAssignmentStep(DestType);
5798 MaybeProduceObjCObject(S, *this, Entity);
5799 return;
5800 }
5801
5802 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5802, __PRETTY_FUNCTION__))
;
5803
5804 // - If the destination type is a (possibly cv-qualified) class type:
5805 if (DestType->isRecordType()) {
5806 // - If the initialization is direct-initialization, or if it is
5807 // copy-initialization where the cv-unqualified version of the
5808 // source type is the same class as, or a derived class of, the
5809 // class of the destination, constructors are considered. [...]
5810 if (Kind.getKind() == InitializationKind::IK_Direct ||
5811 (Kind.getKind() == InitializationKind::IK_Copy &&
5812 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5813 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5814 TryConstructorInitialization(S, Entity, Kind, Args,
5815 DestType, DestType, *this);
5816 // - Otherwise (i.e., for the remaining copy-initialization cases),
5817 // user-defined conversion sequences that can convert from the source
5818 // type to the destination type or (when a conversion function is
5819 // used) to a derived class thereof are enumerated as described in
5820 // 13.3.1.4, and the best one is chosen through overload resolution
5821 // (13.3).
5822 else
5823 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5824 TopLevelOfInitList);
5825 return;
5826 }
5827
5828 assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5828, __PRETTY_FUNCTION__))
;
5829
5830 // The remaining cases all need a source type.
5831 if (Args.size() > 1) {
5832 SetFailed(FK_TooManyInitsForScalar);
5833 return;
5834 } else if (isa<InitListExpr>(Args[0])) {
5835 SetFailed(FK_ParenthesizedListInitForScalar);
5836 return;
5837 }
5838
5839 // - Otherwise, if the source type is a (possibly cv-qualified) class
5840 // type, conversion functions are considered.
5841 if (!SourceType.isNull() && SourceType->isRecordType()) {
5842 // For a conversion to _Atomic(T) from either T or a class type derived
5843 // from T, initialize the T object then convert to _Atomic type.
5844 bool NeedAtomicConversion = false;
5845 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5846 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5847 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5848 Atomic->getValueType())) {
5849 DestType = Atomic->getValueType();
5850 NeedAtomicConversion = true;
5851 }
5852 }
5853
5854 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5855 TopLevelOfInitList);
5856 MaybeProduceObjCObject(S, *this, Entity);
5857 if (!Failed() && NeedAtomicConversion)
5858 AddAtomicConversionStep(Entity.getType());
5859 return;
5860 }
5861
5862 // - Otherwise, if the initialization is direct-initialization, the source
5863 // type is std::nullptr_t, and the destination type is bool, the initial
5864 // value of the object being initialized is false.
5865 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5866 DestType->isBooleanType() &&
5867 Kind.getKind() == InitializationKind::IK_Direct) {
5868 AddConversionSequenceStep(
5869 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5870 Initializer->isGLValue()),
5871 DestType);
5872 return;
5873 }
5874
5875 // - Otherwise, the initial value of the object being initialized is the
5876 // (possibly converted) value of the initializer expression. Standard
5877 // conversions (Clause 4) will be used, if necessary, to convert the
5878 // initializer expression to the cv-unqualified version of the
5879 // destination type; no user-defined conversions are considered.
5880
5881 ImplicitConversionSequence ICS
5882 = S.TryImplicitConversion(Initializer, DestType,
5883 /*SuppressUserConversions*/true,
5884 Sema::AllowedExplicit::None,
5885 /*InOverloadResolution*/ false,
5886 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5887 allowObjCWritebackConversion);
5888
5889 if (ICS.isStandard() &&
5890 ICS.Standard.Second == ICK_Writeback_Conversion) {
5891 // Objective-C ARC writeback conversion.
5892
5893 // We should copy unless we're passing to an argument explicitly
5894 // marked 'out'.
5895 bool ShouldCopy = true;
5896 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5897 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5898
5899 // If there was an lvalue adjustment, add it as a separate conversion.
5900 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5901 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5902 ImplicitConversionSequence LvalueICS;
5903 LvalueICS.setStandard();
5904 LvalueICS.Standard.setAsIdentityConversion();
5905 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5906 LvalueICS.Standard.First = ICS.Standard.First;
5907 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5908 }
5909
5910 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5911 } else if (ICS.isBad()) {
5912 DeclAccessPair dap;
5913 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5914 AddZeroInitializationStep(Entity.getType());
5915 } else if (Initializer->getType() == Context.OverloadTy &&
5916 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5917 false, dap))
5918 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5919 else if (Initializer->getType()->isFunctionType() &&
5920 isExprAnUnaddressableFunction(S, Initializer))
5921 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5922 else
5923 SetFailed(InitializationSequence::FK_ConversionFailed);
5924 } else {
5925 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5926
5927 MaybeProduceObjCObject(S, *this, Entity);
5928 }
5929}
5930
5931InitializationSequence::~InitializationSequence() {
5932 for (auto &S : Steps)
5933 S.Destroy();
5934}
5935
5936//===----------------------------------------------------------------------===//
5937// Perform initialization
5938//===----------------------------------------------------------------------===//
5939static Sema::AssignmentAction
5940getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5941 switch(Entity.getKind()) {
5942 case InitializedEntity::EK_Variable:
5943 case InitializedEntity::EK_New:
5944 case InitializedEntity::EK_Exception:
5945 case InitializedEntity::EK_Base:
5946 case InitializedEntity::EK_Delegating:
5947 return Sema::AA_Initializing;
5948
5949 case InitializedEntity::EK_Parameter:
5950 if (Entity.getDecl() &&
5951 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5952 return Sema::AA_Sending;
5953
5954 return Sema::AA_Passing;
5955
5956 case InitializedEntity::EK_Parameter_CF_Audited:
5957 if (Entity.getDecl() &&
5958 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5959 return Sema::AA_Sending;
5960
5961 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5962
5963 case InitializedEntity::EK_Result:
5964 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5965 return Sema::AA_Returning;
5966
5967 case InitializedEntity::EK_Temporary:
5968 case InitializedEntity::EK_RelatedResult:
5969 // FIXME: Can we tell apart casting vs. converting?
5970 return Sema::AA_Casting;
5971
5972 case InitializedEntity::EK_Member:
5973 case InitializedEntity::EK_Binding:
5974 case InitializedEntity::EK_ArrayElement:
5975 case InitializedEntity::EK_VectorElement:
5976 case InitializedEntity::EK_ComplexElement:
5977 case InitializedEntity::EK_BlockElement:
5978 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5979 case InitializedEntity::EK_LambdaCapture:
5980 case InitializedEntity::EK_CompoundLiteralInit:
5981 return Sema::AA_Initializing;
5982 }
5983
5984 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 5984)
;
5985}
5986
5987/// Whether we should bind a created object as a temporary when
5988/// initializing the given entity.
5989static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5990 switch (Entity.getKind()) {
5991 case InitializedEntity::EK_ArrayElement:
5992 case InitializedEntity::EK_Member:
5993 case InitializedEntity::EK_Result:
5994 case InitializedEntity::EK_StmtExprResult:
5995 case InitializedEntity::EK_New:
5996 case InitializedEntity::EK_Variable:
5997 case InitializedEntity::EK_Base:
5998 case InitializedEntity::EK_Delegating:
5999 case InitializedEntity::EK_VectorElement:
6000 case InitializedEntity::EK_ComplexElement:
6001 case InitializedEntity::EK_Exception:
6002 case InitializedEntity::EK_BlockElement:
6003 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6004 case InitializedEntity::EK_LambdaCapture:
6005 case InitializedEntity::EK_CompoundLiteralInit:
6006 return false;
6007
6008 case InitializedEntity::EK_Parameter:
6009 case InitializedEntity::EK_Parameter_CF_Audited:
6010 case InitializedEntity::EK_Temporary:
6011 case InitializedEntity::EK_RelatedResult:
6012 case InitializedEntity::EK_Binding:
6013 return true;
6014 }
6015
6016 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6016)
;
6017}
6018
6019/// Whether the given entity, when initialized with an object
6020/// created for that initialization, requires destruction.
6021static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6022 switch (Entity.getKind()) {
6023 case InitializedEntity::EK_Result:
6024 case InitializedEntity::EK_StmtExprResult:
6025 case InitializedEntity::EK_New:
6026 case InitializedEntity::EK_Base:
6027 case InitializedEntity::EK_Delegating:
6028 case InitializedEntity::EK_VectorElement:
6029 case InitializedEntity::EK_ComplexElement:
6030 case InitializedEntity::EK_BlockElement:
6031 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6032 case InitializedEntity::EK_LambdaCapture:
6033 return false;
6034
6035 case InitializedEntity::EK_Member:
6036 case InitializedEntity::EK_Binding:
6037 case InitializedEntity::EK_Variable:
6038 case InitializedEntity::EK_Parameter:
6039 case InitializedEntity::EK_Parameter_CF_Audited:
6040 case InitializedEntity::EK_Temporary:
6041 case InitializedEntity::EK_ArrayElement:
6042 case InitializedEntity::EK_Exception:
6043 case InitializedEntity::EK_CompoundLiteralInit:
6044 case InitializedEntity::EK_RelatedResult:
6045 return true;
6046 }
6047
6048 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6048)
;
6049}
6050
6051/// Get the location at which initialization diagnostics should appear.
6052static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6053 Expr *Initializer) {
6054 switch (Entity.getKind()) {
6055 case InitializedEntity::EK_Result:
6056 case InitializedEntity::EK_StmtExprResult:
6057 return Entity.getReturnLoc();
6058
6059 case InitializedEntity::EK_Exception:
6060 return Entity.getThrowLoc();
6061
6062 case InitializedEntity::EK_Variable:
6063 case InitializedEntity::EK_Binding:
6064 return Entity.getDecl()->getLocation();
6065
6066 case InitializedEntity::EK_LambdaCapture:
6067 return Entity.getCaptureLoc();
6068
6069 case InitializedEntity::EK_ArrayElement:
6070 case InitializedEntity::EK_Member:
6071 case InitializedEntity::EK_Parameter:
6072 case InitializedEntity::EK_Parameter_CF_Audited:
6073 case InitializedEntity::EK_Temporary:
6074 case InitializedEntity::EK_New:
6075 case InitializedEntity::EK_Base:
6076 case InitializedEntity::EK_Delegating:
6077 case InitializedEntity::EK_VectorElement:
6078 case InitializedEntity::EK_ComplexElement:
6079 case InitializedEntity::EK_BlockElement:
6080 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6081 case InitializedEntity::EK_CompoundLiteralInit:
6082 case InitializedEntity::EK_RelatedResult:
6083 return Initializer->getBeginLoc();
6084 }
6085 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6085)
;
6086}
6087
6088/// Make a (potentially elidable) temporary copy of the object
6089/// provided by the given initializer by calling the appropriate copy
6090/// constructor.
6091///
6092/// \param S The Sema object used for type-checking.
6093///
6094/// \param T The type of the temporary object, which must either be
6095/// the type of the initializer expression or a superclass thereof.
6096///
6097/// \param Entity The entity being initialized.
6098///
6099/// \param CurInit The initializer expression.
6100///
6101/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6102/// is permitted in C++03 (but not C++0x) when binding a reference to
6103/// an rvalue.
6104///
6105/// \returns An expression that copies the initializer expression into
6106/// a temporary object, or an error expression if a copy could not be
6107/// created.
6108static ExprResult CopyObject(Sema &S,
6109 QualType T,
6110 const InitializedEntity &Entity,
6111 ExprResult CurInit,
6112 bool IsExtraneousCopy) {
6113 if (CurInit.isInvalid())
6114 return CurInit;
6115 // Determine which class type we're copying to.
6116 Expr *CurInitExpr = (Expr *)CurInit.get();
6117 CXXRecordDecl *Class = nullptr;
6118 if (const RecordType *Record = T->getAs<RecordType>())
6119 Class = cast<CXXRecordDecl>(Record->getDecl());
6120 if (!Class)
6121 return CurInit;
6122
6123 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6124
6125 // Make sure that the type we are copying is complete.
6126 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6127 return CurInit;
6128
6129 // Perform overload resolution using the class's constructors. Per
6130 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6131 // is direct-initialization.
6132 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6133 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6134
6135 OverloadCandidateSet::iterator Best;
6136 switch (ResolveConstructorOverload(
6137 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6138 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6139 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6140 /*SecondStepOfCopyInit=*/true)) {
6141 case OR_Success:
6142 break;
6143
6144 case OR_No_Viable_Function:
6145 CandidateSet.NoteCandidates(
6146 PartialDiagnosticAt(
6147 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6148 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6149 : diag::err_temp_copy_no_viable)
6150 << (int)Entity.getKind() << CurInitExpr->getType()
6151 << CurInitExpr->getSourceRange()),
6152 S, OCD_AllCandidates, CurInitExpr);
6153 if (!IsExtraneousCopy || S.isSFINAEContext())
6154 return ExprError();
6155 return CurInit;
6156
6157 case OR_Ambiguous:
6158 CandidateSet.NoteCandidates(
6159 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6160 << (int)Entity.getKind()
6161 << CurInitExpr->getType()
6162 << CurInitExpr->getSourceRange()),
6163 S, OCD_AmbiguousCandidates, CurInitExpr);
6164 return ExprError();
6165
6166 case OR_Deleted:
6167 S.Diag(Loc, diag::err_temp_copy_deleted)
6168 << (int)Entity.getKind() << CurInitExpr->getType()
6169 << CurInitExpr->getSourceRange();
6170 S.NoteDeletedFunction(Best->Function);
6171 return ExprError();
6172 }
6173
6174 bool HadMultipleCandidates = CandidateSet.size() > 1;
6175
6176 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6177 SmallVector<Expr*, 8> ConstructorArgs;
6178 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6179
6180 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6181 IsExtraneousCopy);
6182
6183 if (IsExtraneousCopy) {
6184 // If this is a totally extraneous copy for C++03 reference
6185 // binding purposes, just return the original initialization
6186 // expression. We don't generate an (elided) copy operation here
6187 // because doing so would require us to pass down a flag to avoid
6188 // infinite recursion, where each step adds another extraneous,
6189 // elidable copy.
6190
6191 // Instantiate the default arguments of any extra parameters in
6192 // the selected copy constructor, as if we were going to create a
6193 // proper call to the copy constructor.
6194 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6195 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6196 if (S.RequireCompleteType(Loc, Parm->getType(),
6197 diag::err_call_incomplete_argument))
6198 break;
6199
6200 // Build the default argument expression; we don't actually care
6201 // if this succeeds or not, because this routine will complain
6202 // if there was a problem.
6203 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6204 }
6205
6206 return CurInitExpr;
6207 }
6208
6209 // Determine the arguments required to actually perform the
6210 // constructor call (we might have derived-to-base conversions, or
6211 // the copy constructor may have default arguments).
6212 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6213 return ExprError();
6214
6215 // C++0x [class.copy]p32:
6216 // When certain criteria are met, an implementation is allowed to
6217 // omit the copy/move construction of a class object, even if the
6218 // copy/move constructor and/or destructor for the object have
6219 // side effects. [...]
6220 // - when a temporary class object that has not been bound to a
6221 // reference (12.2) would be copied/moved to a class object
6222 // with the same cv-unqualified type, the copy/move operation
6223 // can be omitted by constructing the temporary object
6224 // directly into the target of the omitted copy/move
6225 //
6226 // Note that the other three bullets are handled elsewhere. Copy
6227 // elision for return statements and throw expressions are handled as part
6228 // of constructor initialization, while copy elision for exception handlers
6229 // is handled by the run-time.
6230 //
6231 // FIXME: If the function parameter is not the same type as the temporary, we
6232 // should still be able to elide the copy, but we don't have a way to
6233 // represent in the AST how much should be elided in this case.
6234 bool Elidable =
6235 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6236 S.Context.hasSameUnqualifiedType(
6237 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6238 CurInitExpr->getType());
6239
6240 // Actually perform the constructor call.
6241 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6242 Elidable,
6243 ConstructorArgs,
6244 HadMultipleCandidates,
6245 /*ListInit*/ false,
6246 /*StdInitListInit*/ false,
6247 /*ZeroInit*/ false,
6248 CXXConstructExpr::CK_Complete,
6249 SourceRange());
6250
6251 // If we're supposed to bind temporaries, do so.
6252 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6253 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6254 return CurInit;
6255}
6256
6257/// Check whether elidable copy construction for binding a reference to
6258/// a temporary would have succeeded if we were building in C++98 mode, for
6259/// -Wc++98-compat.
6260static void CheckCXX98CompatAccessibleCopy(Sema &S,
6261 const InitializedEntity &Entity,
6262 Expr *CurInitExpr) {
6263 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6263, __PRETTY_FUNCTION__))
;
6264
6265 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6266 if (!Record)
6267 return;
6268
6269 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6270 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6271 return;
6272
6273 // Find constructors which would have been considered.
6274 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6275 DeclContext::lookup_result Ctors =
6276 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6277
6278 // Perform overload resolution.
6279 OverloadCandidateSet::iterator Best;
6280 OverloadingResult OR = ResolveConstructorOverload(
6281 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6282 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6283 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6284 /*SecondStepOfCopyInit=*/true);
6285
6286 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6287 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6288 << CurInitExpr->getSourceRange();
6289
6290 switch (OR) {
6291 case OR_Success:
6292 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6293 Best->FoundDecl, Entity, Diag);
6294 // FIXME: Check default arguments as far as that's possible.
6295 break;
6296
6297 case OR_No_Viable_Function:
6298 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6299 OCD_AllCandidates, CurInitExpr);
6300 break;
6301
6302 case OR_Ambiguous:
6303 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6304 OCD_AmbiguousCandidates, CurInitExpr);
6305 break;
6306
6307 case OR_Deleted:
6308 S.Diag(Loc, Diag);
6309 S.NoteDeletedFunction(Best->Function);
6310 break;
6311 }
6312}
6313
6314void InitializationSequence::PrintInitLocationNote(Sema &S,
6315 const InitializedEntity &Entity) {
6316 if (Entity.isParameterKind() && Entity.getDecl()) {
6317 if (Entity.getDecl()->getLocation().isInvalid())
6318 return;
6319
6320 if (Entity.getDecl()->getDeclName())
6321 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6322 << Entity.getDecl()->getDeclName();
6323 else
6324 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6325 }
6326 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6327 Entity.getMethodDecl())
6328 S.Diag(Entity.getMethodDecl()->getLocation(),
6329 diag::note_method_return_type_change)
6330 << Entity.getMethodDecl()->getDeclName();
6331}
6332
6333/// Returns true if the parameters describe a constructor initialization of
6334/// an explicit temporary object, e.g. "Point(x, y)".
6335static bool isExplicitTemporary(const InitializedEntity &Entity,
6336 const InitializationKind &Kind,
6337 unsigned NumArgs) {
6338 switch (Entity.getKind()) {
6339 case InitializedEntity::EK_Temporary:
6340 case InitializedEntity::EK_CompoundLiteralInit:
6341 case InitializedEntity::EK_RelatedResult:
6342 break;
6343 default:
6344 return false;
6345 }
6346
6347 switch (Kind.getKind()) {
6348 case InitializationKind::IK_DirectList:
6349 return true;
6350 // FIXME: Hack to work around cast weirdness.
6351 case InitializationKind::IK_Direct:
6352 case InitializationKind::IK_Value:
6353 return NumArgs != 1;
6354 default:
6355 return false;
6356 }
6357}
6358
6359static ExprResult
6360PerformConstructorInitialization(Sema &S,
6361 const InitializedEntity &Entity,
6362 const InitializationKind &Kind,
6363 MultiExprArg Args,
6364 const InitializationSequence::Step& Step,
6365 bool &ConstructorInitRequiresZeroInit,
6366 bool IsListInitialization,
6367 bool IsStdInitListInitialization,
6368 SourceLocation LBraceLoc,
6369 SourceLocation RBraceLoc) {
6370 unsigned NumArgs = Args.size();
6371 CXXConstructorDecl *Constructor
6372 = cast<CXXConstructorDecl>(Step.Function.Function);
6373 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6374
6375 // Build a call to the selected constructor.
6376 SmallVector<Expr*, 8> ConstructorArgs;
6377 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6378 ? Kind.getEqualLoc()
6379 : Kind.getLocation();
6380
6381 if (Kind.getKind() == InitializationKind::IK_Default) {
6382 // Force even a trivial, implicit default constructor to be
6383 // semantically checked. We do this explicitly because we don't build
6384 // the definition for completely trivial constructors.
6385 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6385, __PRETTY_FUNCTION__))
;
6386 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6387 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6388 S.runWithSufficientStackSpace(Loc, [&] {
6389 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6390 });
6391 }
6392 }
6393
6394 ExprResult CurInit((Expr *)nullptr);
6395
6396 // C++ [over.match.copy]p1:
6397 // - When initializing a temporary to be bound to the first parameter
6398 // of a constructor that takes a reference to possibly cv-qualified
6399 // T as its first argument, called with a single argument in the
6400 // context of direct-initialization, explicit conversion functions
6401 // are also considered.
6402 bool AllowExplicitConv =
6403 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6404 hasCopyOrMoveCtorParam(S.Context,
6405 getConstructorInfo(Step.Function.FoundDecl));
6406
6407 // Determine the arguments required to actually perform the constructor
6408 // call.
6409 if (S.CompleteConstructorCall(Constructor, Args,
6410 Loc, ConstructorArgs,
6411 AllowExplicitConv,
6412 IsListInitialization))
6413 return ExprError();
6414
6415
6416 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6417 // An explicitly-constructed temporary, e.g., X(1, 2).
6418 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6419 return ExprError();
6420
6421 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6422 if (!TSInfo)
6423 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6424 SourceRange ParenOrBraceRange =
6425 (Kind.getKind() == InitializationKind::IK_DirectList)
6426 ? SourceRange(LBraceLoc, RBraceLoc)
6427 : Kind.getParenOrBraceRange();
6428
6429 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6430 Step.Function.FoundDecl.getDecl())) {
6431 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6432 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6433 return ExprError();
6434 }
6435 S.MarkFunctionReferenced(Loc, Constructor);
6436
6437 CurInit = CXXTemporaryObjectExpr::Create(
6438 S.Context, Constructor,
6439 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6440 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6441 IsListInitialization, IsStdInitListInitialization,
6442 ConstructorInitRequiresZeroInit);
6443 } else {
6444 CXXConstructExpr::ConstructionKind ConstructKind =
6445 CXXConstructExpr::CK_Complete;
6446
6447 if (Entity.getKind() == InitializedEntity::EK_Base) {
6448 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6449 CXXConstructExpr::CK_VirtualBase :
6450 CXXConstructExpr::CK_NonVirtualBase;
6451 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6452 ConstructKind = CXXConstructExpr::CK_Delegating;
6453 }
6454
6455 // Only get the parenthesis or brace range if it is a list initialization or
6456 // direct construction.
6457 SourceRange ParenOrBraceRange;
6458 if (IsListInitialization)
6459 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6460 else if (Kind.getKind() == InitializationKind::IK_Direct)
6461 ParenOrBraceRange = Kind.getParenOrBraceRange();
6462
6463 // If the entity allows NRVO, mark the construction as elidable
6464 // unconditionally.
6465 if (Entity.allowsNRVO())
6466 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6467 Step.Function.FoundDecl,
6468 Constructor, /*Elidable=*/true,
6469 ConstructorArgs,
6470 HadMultipleCandidates,
6471 IsListInitialization,
6472 IsStdInitListInitialization,
6473 ConstructorInitRequiresZeroInit,
6474 ConstructKind,
6475 ParenOrBraceRange);
6476 else
6477 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6478 Step.Function.FoundDecl,
6479 Constructor,
6480 ConstructorArgs,
6481 HadMultipleCandidates,
6482 IsListInitialization,
6483 IsStdInitListInitialization,
6484 ConstructorInitRequiresZeroInit,
6485 ConstructKind,
6486 ParenOrBraceRange);
6487 }
6488 if (CurInit.isInvalid())
6489 return ExprError();
6490
6491 // Only check access if all of that succeeded.
6492 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6493 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6494 return ExprError();
6495
6496 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6497 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6498 return ExprError();
6499
6500 if (shouldBindAsTemporary(Entity))
6501 CurInit = S.MaybeBindToTemporary(CurInit.get());
6502
6503 return CurInit;
6504}
6505
6506namespace {
6507enum LifetimeKind {
6508 /// The lifetime of a temporary bound to this entity ends at the end of the
6509 /// full-expression, and that's (probably) fine.
6510 LK_FullExpression,
6511
6512 /// The lifetime of a temporary bound to this entity is extended to the
6513 /// lifeitme of the entity itself.
6514 LK_Extended,
6515
6516 /// The lifetime of a temporary bound to this entity probably ends too soon,
6517 /// because the entity is allocated in a new-expression.
6518 LK_New,
6519
6520 /// The lifetime of a temporary bound to this entity ends too soon, because
6521 /// the entity is a return object.
6522 LK_Return,
6523
6524 /// The lifetime of a temporary bound to this entity ends too soon, because
6525 /// the entity is the result of a statement expression.
6526 LK_StmtExprResult,
6527
6528 /// This is a mem-initializer: if it would extend a temporary (other than via
6529 /// a default member initializer), the program is ill-formed.
6530 LK_MemInitializer,
6531};
6532using LifetimeResult =
6533 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6534}
6535
6536/// Determine the declaration which an initialized entity ultimately refers to,
6537/// for the purpose of lifetime-extending a temporary bound to a reference in
6538/// the initialization of \p Entity.
6539static LifetimeResult getEntityLifetime(
6540 const InitializedEntity *Entity,
6541 const InitializedEntity *InitField = nullptr) {
6542 // C++11 [class.temporary]p5:
6543 switch (Entity->getKind()) {
6544 case InitializedEntity::EK_Variable:
6545 // The temporary [...] persists for the lifetime of the reference
6546 return {Entity, LK_Extended};
6547
6548 case InitializedEntity::EK_Member:
6549 // For subobjects, we look at the complete object.
6550 if (Entity->getParent())
6551 return getEntityLifetime(Entity->getParent(), Entity);
6552
6553 // except:
6554 // C++17 [class.base.init]p8:
6555 // A temporary expression bound to a reference member in a
6556 // mem-initializer is ill-formed.
6557 // C++17 [class.base.init]p11:
6558 // A temporary expression bound to a reference member from a
6559 // default member initializer is ill-formed.
6560 //
6561 // The context of p11 and its example suggest that it's only the use of a
6562 // default member initializer from a constructor that makes the program
6563 // ill-formed, not its mere existence, and that it can even be used by
6564 // aggregate initialization.
6565 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6566 : LK_MemInitializer};
6567
6568 case InitializedEntity::EK_Binding:
6569 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6570 // type.
6571 return {Entity, LK_Extended};
6572
6573 case InitializedEntity::EK_Parameter:
6574 case InitializedEntity::EK_Parameter_CF_Audited:
6575 // -- A temporary bound to a reference parameter in a function call
6576 // persists until the completion of the full-expression containing
6577 // the call.
6578 return {nullptr, LK_FullExpression};
6579
6580 case InitializedEntity::EK_Result:
6581 // -- The lifetime of a temporary bound to the returned value in a
6582 // function return statement is not extended; the temporary is
6583 // destroyed at the end of the full-expression in the return statement.
6584 return {nullptr, LK_Return};
6585
6586 case InitializedEntity::EK_StmtExprResult:
6587 // FIXME: Should we lifetime-extend through the result of a statement
6588 // expression?
6589 return {nullptr, LK_StmtExprResult};
6590
6591 case InitializedEntity::EK_New:
6592 // -- A temporary bound to a reference in a new-initializer persists
6593 // until the completion of the full-expression containing the
6594 // new-initializer.
6595 return {nullptr, LK_New};
6596
6597 case InitializedEntity::EK_Temporary:
6598 case InitializedEntity::EK_CompoundLiteralInit:
6599 case InitializedEntity::EK_RelatedResult:
6600 // We don't yet know the storage duration of the surrounding temporary.
6601 // Assume it's got full-expression duration for now, it will patch up our
6602 // storage duration if that's not correct.
6603 return {nullptr, LK_FullExpression};
6604
6605 case InitializedEntity::EK_ArrayElement:
6606 // For subobjects, we look at the complete object.
6607 return getEntityLifetime(Entity->getParent(), InitField);
6608
6609 case InitializedEntity::EK_Base:
6610 // For subobjects, we look at the complete object.
6611 if (Entity->getParent())
6612 return getEntityLifetime(Entity->getParent(), InitField);
6613 return {InitField, LK_MemInitializer};
6614
6615 case InitializedEntity::EK_Delegating:
6616 // We can reach this case for aggregate initialization in a constructor:
6617 // struct A { int &&r; };
6618 // struct B : A { B() : A{0} {} };
6619 // In this case, use the outermost field decl as the context.
6620 return {InitField, LK_MemInitializer};
6621
6622 case InitializedEntity::EK_BlockElement:
6623 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6624 case InitializedEntity::EK_LambdaCapture:
6625 case InitializedEntity::EK_VectorElement:
6626 case InitializedEntity::EK_ComplexElement:
6627 return {nullptr, LK_FullExpression};
6628
6629 case InitializedEntity::EK_Exception:
6630 // FIXME: Can we diagnose lifetime problems with exceptions?
6631 return {nullptr, LK_FullExpression};
6632 }
6633 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 6633)
;
6634}
6635
6636namespace {
6637enum ReferenceKind {
6638 /// Lifetime would be extended by a reference binding to a temporary.
6639 RK_ReferenceBinding,
6640 /// Lifetime would be extended by a std::initializer_list object binding to
6641 /// its backing array.
6642 RK_StdInitializerList,
6643};
6644
6645/// A temporary or local variable. This will be one of:
6646/// * A MaterializeTemporaryExpr.
6647/// * A DeclRefExpr whose declaration is a local.
6648/// * An AddrLabelExpr.
6649/// * A BlockExpr for a block with captures.
6650using Local = Expr*;
6651
6652/// Expressions we stepped over when looking for the local state. Any steps
6653/// that would inhibit lifetime extension or take us out of subexpressions of
6654/// the initializer are included.
6655struct IndirectLocalPathEntry {
6656 enum EntryKind {
6657 DefaultInit,
6658 AddressOf,
6659 VarInit,
6660 LValToRVal,
6661 LifetimeBoundCall,
6662 GslReferenceInit,
6663 GslPointerInit
6664 } Kind;
6665 Expr *E;
6666 const Decl *D = nullptr;
6667 IndirectLocalPathEntry() {}
6668 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6669 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6670 : Kind(K), E(E), D(D) {}
6671};
6672
6673using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6674
6675struct RevertToOldSizeRAII {
6676 IndirectLocalPath &Path;
6677 unsigned OldSize = Path.size();
6678 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6679 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6680};
6681
6682using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6683 ReferenceKind RK)>;
6684}
6685
6686static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6687 for (auto E : Path)
6688 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6689 return true;
6690 return false;
6691}
6692
6693static bool pathContainsInit(IndirectLocalPath &Path) {
6694 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6695 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6696 E.Kind == IndirectLocalPathEntry::VarInit;
6697 });
6698}
6699
6700static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6701 Expr *Init, LocalVisitor Visit,
6702 bool RevisitSubinits,
6703 bool EnableLifetimeWarnings);
6704
6705static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6706 Expr *Init, ReferenceKind RK,
6707 LocalVisitor Visit,
6708 bool EnableLifetimeWarnings);
6709
6710template <typename T> static bool isRecordWithAttr(QualType Type) {
6711 if (auto *RD = Type->getAsCXXRecordDecl())
6712 return RD->hasAttr<T>();
6713 return false;
6714}
6715
6716// Decl::isInStdNamespace will return false for iterators in some STL
6717// implementations due to them being defined in a namespace outside of the std
6718// namespace.
6719static bool isInStlNamespace(const Decl *D) {
6720 const DeclContext *DC = D->getDeclContext();
6721 if (!DC)
6722 return false;
6723 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6724 if (const IdentifierInfo *II = ND->getIdentifier()) {
6725 StringRef Name = II->getName();
6726 if (Name.size() >= 2 && Name.front() == '_' &&
6727 (Name[1] == '_' || isUppercase(Name[1])))
6728 return true;
6729 }
6730
6731 return DC->isStdNamespace();
6732}
6733
6734static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6735 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6736 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6737 return true;
6738 if (!isInStlNamespace(Callee->getParent()))
6739 return false;
6740 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6741 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6742 return false;
6743 if (Callee->getReturnType()->isPointerType() ||
6744 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6745 if (!Callee->getIdentifier())
6746 return false;
6747 return llvm::StringSwitch<bool>(Callee->getName())
6748 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6749 .Cases("end", "rend", "cend", "crend", true)
6750 .Cases("c_str", "data", "get", true)
6751 // Map and set types.
6752 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6753 .Default(false);
6754 } else if (Callee->getReturnType()->isReferenceType()) {
6755 if (!Callee->getIdentifier()) {
6756 auto OO = Callee->getOverloadedOperator();
6757 return OO == OverloadedOperatorKind::OO_Subscript ||
6758 OO == OverloadedOperatorKind::OO_Star;
6759 }
6760 return llvm::StringSwitch<bool>(Callee->getName())
6761 .Cases("front", "back", "at", "top", "value", true)
6762 .Default(false);
6763 }
6764 return false;
6765}
6766
6767static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6768 if (!FD->getIdentifier() || FD->getNumParams() != 1)
6769 return false;
6770 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6771 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6772 return false;
6773 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6774 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6775 return false;
6776 if (FD->getReturnType()->isPointerType() ||
6777 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6778 return llvm::StringSwitch<bool>(FD->getName())
6779 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6780 .Cases("end", "rend", "cend", "crend", true)
6781 .Case("data", true)
6782 .Default(false);
6783 } else if (FD->getReturnType()->isReferenceType()) {
6784 return llvm::StringSwitch<bool>(FD->getName())
6785 .Cases("get", "any_cast", true)
6786 .Default(false);
6787 }
6788 return false;
6789}
6790
6791static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6792 LocalVisitor Visit) {
6793 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6794 // We are not interested in the temporary base objects of gsl Pointers:
6795 // Temp().ptr; // Here ptr might not dangle.
6796 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6797 return;
6798 // Once we initialized a value with a reference, it can no longer dangle.
6799 if (!Value) {
6800 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6801 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6802 continue;
6803 if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6804 return;
6805 break;
6806 }
6807 }
6808 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6809 : IndirectLocalPathEntry::GslReferenceInit,
6810 Arg, D});
6811 if (Arg->isGLValue())
6812 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6813 Visit,
6814 /*EnableLifetimeWarnings=*/true);
6815 else
6816 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6817 /*EnableLifetimeWarnings=*/true);
6818 Path.pop_back();
6819 };
6820
6821 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6822 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6823 if (MD && shouldTrackImplicitObjectArg(MD))
6824 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6825 !MD->getReturnType()->isReferenceType());
6826 return;
6827 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6828 FunctionDecl *Callee = OCE->getDirectCallee();
6829 if (Callee && Callee->isCXXInstanceMember() &&
6830 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6831 VisitPointerArg(Callee, OCE->getArg(0),
6832 !Callee->getReturnType()->isReferenceType());
6833 return;
6834 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6835 FunctionDecl *Callee = CE->getDirectCallee();
6836 if (Callee && shouldTrackFirstArgument(Callee))
6837 VisitPointerArg(Callee, CE->getArg(0),
6838 !Callee->getReturnType()->isReferenceType());
6839 return;
6840 }
6841
6842 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6843 const auto *Ctor = CCE->getConstructor();
6844 const CXXRecordDecl *RD = Ctor->getParent();
6845 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6846 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6847 }
6848}
6849
6850static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6851 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6852 if (!TSI)
6853 return false;
6854 // Don't declare this variable in the second operand of the for-statement;
6855 // GCC miscompiles that by ending its lifetime before evaluating the
6856 // third operand. See gcc.gnu.org/PR86769.
6857 AttributedTypeLoc ATL;
6858 for (TypeLoc TL = TSI->getTypeLoc();
6859 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6860 TL = ATL.getModifiedLoc()) {
6861 if (ATL.getAttrAs<LifetimeBoundAttr>())
6862 return true;
6863 }
6864 return false;
6865}
6866
6867static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6868 LocalVisitor Visit) {
6869 const FunctionDecl *Callee;
6870 ArrayRef<Expr*> Args;
6871
6872 if (auto *CE = dyn_cast<CallExpr>(Call)) {
6873 Callee = CE->getDirectCallee();
6874 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6875 } else {
6876 auto *CCE = cast<CXXConstructExpr>(Call);
6877 Callee = CCE->getConstructor();
6878 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6879 }
6880 if (!Callee)
6881 return;
6882
6883 Expr *ObjectArg = nullptr;
6884 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6885 ObjectArg = Args[0];
6886 Args = Args.slice(1);
6887 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6888 ObjectArg = MCE->getImplicitObjectArgument();
6889 }
6890
6891 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6892 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6893 if (Arg->isGLValue())
6894 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6895 Visit,
6896 /*EnableLifetimeWarnings=*/false);
6897 else
6898 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6899 /*EnableLifetimeWarnings=*/false);
6900 Path.pop_back();
6901 };
6902
6903 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6904 VisitLifetimeBoundArg(Callee, ObjectArg);
6905
6906 for (unsigned I = 0,
6907 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6908 I != N; ++I) {
6909 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6910 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6911 }
6912}
6913
6914/// Visit the locals that would be reachable through a reference bound to the
6915/// glvalue expression \c Init.
6916static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6917 Expr *Init, ReferenceKind RK,
6918 LocalVisitor Visit,
6919 bool EnableLifetimeWarnings) {
6920 RevertToOldSizeRAII RAII(Path);
6921
6922 // Walk past any constructs which we can lifetime-extend across.
6923 Expr *Old;
6924 do {
6925 Old = Init;
6926
6927 if (auto *FE = dyn_cast<FullExpr>(Init))
6928 Init = FE->getSubExpr();
6929
6930 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6931 // If this is just redundant braces around an initializer, step over it.
6932 if (ILE->isTransparent())
6933 Init = ILE->getInit(0);
6934 }
6935
6936 // Step over any subobject adjustments; we may have a materialized
6937 // temporary inside them.
6938 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6939
6940 // Per current approach for DR1376, look through casts to reference type
6941 // when performing lifetime extension.
6942 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6943 if (CE->getSubExpr()->isGLValue())
6944 Init = CE->getSubExpr();
6945
6946 // Per the current approach for DR1299, look through array element access
6947 // on array glvalues when performing lifetime extension.
6948 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6949 Init = ASE->getBase();
6950 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6951 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6952 Init = ICE->getSubExpr();
6953 else
6954 // We can't lifetime extend through this but we might still find some
6955 // retained temporaries.
6956 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
6957 EnableLifetimeWarnings);
6958 }
6959
6960 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6961 // constructor inherits one as an implicit mem-initializer.
6962 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6963 Path.push_back(
6964 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6965 Init = DIE->getExpr();
6966 }
6967 } while (Init != Old);
6968
6969 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6970 if (Visit(Path, Local(MTE), RK))
6971 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
6972 EnableLifetimeWarnings);
6973 }
6974
6975 if (isa<CallExpr>(Init)) {
6976 if (EnableLifetimeWarnings)
6977 handleGslAnnotatedTypes(Path, Init, Visit);
6978 return visitLifetimeBoundArguments(Path, Init, Visit);
6979 }
6980
6981 switch (Init->getStmtClass()) {
6982 case Stmt::DeclRefExprClass: {
6983 // If we find the name of a local non-reference parameter, we could have a
6984 // lifetime problem.
6985 auto *DRE = cast<DeclRefExpr>(Init);
6986 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6987 if (VD && VD->hasLocalStorage() &&
6988 !DRE->refersToEnclosingVariableOrCapture()) {
6989 if (!VD->getType()->isReferenceType()) {
6990 Visit(Path, Local(DRE), RK);
6991 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6992 // The lifetime of a reference parameter is unknown; assume it's OK
6993 // for now.
6994 break;
6995 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6996 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6997 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6998 RK_ReferenceBinding, Visit,
6999 EnableLifetimeWarnings);
7000 }
7001 }
7002 break;
7003 }
7004
7005 case Stmt::UnaryOperatorClass: {
7006 // The only unary operator that make sense to handle here
7007 // is Deref. All others don't resolve to a "name." This includes
7008 // handling all sorts of rvalues passed to a unary operator.
7009 const UnaryOperator *U = cast<UnaryOperator>(Init);
7010 if (U->getOpcode() == UO_Deref)
7011 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7012 EnableLifetimeWarnings);
7013 break;
7014 }
7015
7016 case Stmt::OMPArraySectionExprClass: {
7017 visitLocalsRetainedByInitializer(Path,
7018 cast<OMPArraySectionExpr>(Init)->getBase(),
7019 Visit, true, EnableLifetimeWarnings);
7020 break;
7021 }
7022
7023 case Stmt::ConditionalOperatorClass:
7024 case Stmt::BinaryConditionalOperatorClass: {
7025 auto *C = cast<AbstractConditionalOperator>(Init);
7026 if (!C->getTrueExpr()->getType()->isVoidType())
7027 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7028 EnableLifetimeWarnings);
7029 if (!C->getFalseExpr()->getType()->isVoidType())
7030 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7031 EnableLifetimeWarnings);
7032 break;
7033 }
7034
7035 // FIXME: Visit the left-hand side of an -> or ->*.
7036
7037 default:
7038 break;
7039 }
7040}
7041
7042/// Visit the locals that would be reachable through an object initialized by
7043/// the prvalue expression \c Init.
7044static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7045 Expr *Init, LocalVisitor Visit,
7046 bool RevisitSubinits,
7047 bool EnableLifetimeWarnings) {
7048 RevertToOldSizeRAII RAII(Path);
7049
7050 Expr *Old;
7051 do {
7052 Old = Init;
7053
7054 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7055 // constructor inherits one as an implicit mem-initializer.
7056 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7057 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7058 Init = DIE->getExpr();
7059 }
7060
7061 if (auto *FE = dyn_cast<FullExpr>(Init))
7062 Init = FE->getSubExpr();
7063
7064 // Dig out the expression which constructs the extended temporary.
7065 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7066
7067 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7068 Init = BTE->getSubExpr();
7069
7070 Init = Init->IgnoreParens();
7071
7072 // Step over value-preserving rvalue casts.
7073 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7074 switch (CE->getCastKind()) {
7075 case CK_LValueToRValue:
7076 // If we can match the lvalue to a const object, we can look at its
7077 // initializer.
7078 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7079 return visitLocalsRetainedByReferenceBinding(
7080 Path, Init, RK_ReferenceBinding,
7081 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7082 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7083 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7084 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7085 !isVarOnPath(Path, VD)) {
7086 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7087 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7088 EnableLifetimeWarnings);
7089 }
7090 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7091 if (MTE->getType().isConstQualified())
7092 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7093 true, EnableLifetimeWarnings);
7094 }
7095 return false;
7096 }, EnableLifetimeWarnings);
7097
7098 // We assume that objects can be retained by pointers cast to integers,
7099 // but not if the integer is cast to floating-point type or to _Complex.
7100 // We assume that casts to 'bool' do not preserve enough information to
7101 // retain a local object.
7102 case CK_NoOp:
7103 case CK_BitCast:
7104 case CK_BaseToDerived:
7105 case CK_DerivedToBase:
7106 case CK_UncheckedDerivedToBase:
7107 case CK_Dynamic:
7108 case CK_ToUnion:
7109 case CK_UserDefinedConversion:
7110 case CK_ConstructorConversion:
7111 case CK_IntegralToPointer:
7112 case CK_PointerToIntegral:
7113 case CK_VectorSplat:
7114 case CK_IntegralCast:
7115 case CK_CPointerToObjCPointerCast:
7116 case CK_BlockPointerToObjCPointerCast:
7117 case CK_AnyPointerToBlockPointerCast:
7118 case CK_AddressSpaceConversion:
7119 break;
7120
7121 case CK_ArrayToPointerDecay:
7122 // Model array-to-pointer decay as taking the address of the array
7123 // lvalue.
7124 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7125 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7126 RK_ReferenceBinding, Visit,
7127 EnableLifetimeWarnings);
7128
7129 default:
7130 return;
7131 }
7132
7133 Init = CE->getSubExpr();
7134 }
7135 } while (Old != Init);
7136
7137 // C++17 [dcl.init.list]p6:
7138 // initializing an initializer_list object from the array extends the
7139 // lifetime of the array exactly like binding a reference to a temporary.
7140 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7141 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7142 RK_StdInitializerList, Visit,
7143 EnableLifetimeWarnings);
7144
7145 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7146 // We already visited the elements of this initializer list while
7147 // performing the initialization. Don't visit them again unless we've
7148 // changed the lifetime of the initialized entity.
7149 if (!RevisitSubinits)
7150 return;
7151
7152 if (ILE->isTransparent())
7153 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7154 RevisitSubinits,
7155 EnableLifetimeWarnings);
7156
7157 if (ILE->getType()->isArrayType()) {
7158 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7159 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7160 RevisitSubinits,
7161 EnableLifetimeWarnings);
7162 return;
7163 }
7164
7165 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7166 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7166, __PRETTY_FUNCTION__))
;
7167
7168 // If we lifetime-extend a braced initializer which is initializing an
7169 // aggregate, and that aggregate contains reference members which are
7170 // bound to temporaries, those temporaries are also lifetime-extended.
7171 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7172 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7173 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7174 RK_ReferenceBinding, Visit,
7175 EnableLifetimeWarnings);
7176 else {
7177 unsigned Index = 0;
7178 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7179 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7180 RevisitSubinits,
7181 EnableLifetimeWarnings);
7182 for (const auto *I : RD->fields()) {
7183 if (Index >= ILE->getNumInits())
7184 break;
7185 if (I->isUnnamedBitfield())
7186 continue;
7187 Expr *SubInit = ILE->getInit(Index);
7188 if (I->getType()->isReferenceType())
7189 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7190 RK_ReferenceBinding, Visit,
7191 EnableLifetimeWarnings);
7192 else
7193 // This might be either aggregate-initialization of a member or
7194 // initialization of a std::initializer_list object. Regardless,
7195 // we should recursively lifetime-extend that initializer.
7196 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7197 RevisitSubinits,
7198 EnableLifetimeWarnings);
7199 ++Index;
7200 }
7201 }
7202 }
7203 return;
7204 }
7205
7206 // The lifetime of an init-capture is that of the closure object constructed
7207 // by a lambda-expression.
7208 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7209 for (Expr *E : LE->capture_inits()) {
7210 if (!E)
7211 continue;
7212 if (E->isGLValue())
7213 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7214 Visit, EnableLifetimeWarnings);
7215 else
7216 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7217 EnableLifetimeWarnings);
7218 }
7219 }
7220
7221 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7222 if (EnableLifetimeWarnings)
7223 handleGslAnnotatedTypes(Path, Init, Visit);
7224 return visitLifetimeBoundArguments(Path, Init, Visit);
7225 }
7226
7227 switch (Init->getStmtClass()) {
7228 case Stmt::UnaryOperatorClass: {
7229 auto *UO = cast<UnaryOperator>(Init);
7230 // If the initializer is the address of a local, we could have a lifetime
7231 // problem.
7232 if (UO->getOpcode() == UO_AddrOf) {
7233 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7234 // it. Don't produce a redundant warning about the lifetime of the
7235 // temporary.
7236 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7237 return;
7238
7239 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7240 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7241 RK_ReferenceBinding, Visit,
7242 EnableLifetimeWarnings);
7243 }
7244 break;
7245 }
7246
7247 case Stmt::BinaryOperatorClass: {
7248 // Handle pointer arithmetic.
7249 auto *BO = cast<BinaryOperator>(Init);
7250 BinaryOperatorKind BOK = BO->getOpcode();
7251 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7252 break;
7253
7254 if (BO->getLHS()->getType()->isPointerType())
7255 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7256 EnableLifetimeWarnings);
7257 else if (BO->getRHS()->getType()->isPointerType())
7258 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7259 EnableLifetimeWarnings);
7260 break;
7261 }
7262
7263 case Stmt::ConditionalOperatorClass:
7264 case Stmt::BinaryConditionalOperatorClass: {
7265 auto *C = cast<AbstractConditionalOperator>(Init);
7266 // In C++, we can have a throw-expression operand, which has 'void' type
7267 // and isn't interesting from a lifetime perspective.
7268 if (!C->getTrueExpr()->getType()->isVoidType())
7269 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7270 EnableLifetimeWarnings);
7271 if (!C->getFalseExpr()->getType()->isVoidType())
7272 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7273 EnableLifetimeWarnings);
7274 break;
7275 }
7276
7277 case Stmt::BlockExprClass:
7278 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7279 // This is a local block, whose lifetime is that of the function.
7280 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7281 }
7282 break;
7283
7284 case Stmt::AddrLabelExprClass:
7285 // We want to warn if the address of a label would escape the function.
7286 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7287 break;
7288
7289 default:
7290 break;
7291 }
7292}
7293
7294/// Determine whether this is an indirect path to a temporary that we are
7295/// supposed to lifetime-extend along (but don't).
7296static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7297 for (auto Elem : Path) {
7298 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
7299 return false;
7300 }
7301 return true;
7302}
7303
7304/// Find the range for the first interesting entry in the path at or after I.
7305static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7306 Expr *E) {
7307 for (unsigned N = Path.size(); I != N; ++I) {
7308 switch (Path[I].Kind) {
7309 case IndirectLocalPathEntry::AddressOf:
7310 case IndirectLocalPathEntry::LValToRVal:
7311 case IndirectLocalPathEntry::LifetimeBoundCall:
7312 case IndirectLocalPathEntry::GslReferenceInit:
7313 case IndirectLocalPathEntry::GslPointerInit:
7314 // These exist primarily to mark the path as not permitting or
7315 // supporting lifetime extension.
7316 break;
7317
7318 case IndirectLocalPathEntry::VarInit:
7319 if (cast<VarDecl>(Path[I].D)->isImplicit())
7320 return SourceRange();
7321 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7322 case IndirectLocalPathEntry::DefaultInit:
7323 return Path[I].E->getSourceRange();
7324 }
7325 }
7326 return E->getSourceRange();
7327}
7328
7329static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7330 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7331 if (It->Kind == IndirectLocalPathEntry::VarInit)
7332 continue;
7333 if (It->Kind == IndirectLocalPathEntry::AddressOf)
7334 continue;
7335 return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7336 It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7337 }
7338 return false;
7339}
7340
7341void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7342 Expr *Init) {
7343 LifetimeResult LR = getEntityLifetime(&Entity);
7344 LifetimeKind LK = LR.getInt();
7345 const InitializedEntity *ExtendingEntity = LR.getPointer();
7346
7347 // If this entity doesn't have an interesting lifetime, don't bother looking
7348 // for temporaries within its initializer.
7349 if (LK == LK_FullExpression)
7350 return;
7351
7352 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7353 ReferenceKind RK) -> bool {
7354 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7355 SourceLocation DiagLoc = DiagRange.getBegin();
7356
7357 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7358
7359 bool IsGslPtrInitWithGslTempOwner = false;
7360 bool IsLocalGslOwner = false;
7361 if (pathOnlyInitializesGslPointer(Path)) {
7362 if (isa<DeclRefExpr>(L)) {
7363 // We do not want to follow the references when returning a pointer originating
7364 // from a local owner to avoid the following false positive:
7365 // int &p = *localUniquePtr;
7366 // someContainer.add(std::move(localUniquePtr));
7367 // return p;
7368 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7369 if (pathContainsInit(Path) || !IsLocalGslOwner)
7370 return false;
7371 } else {
7372 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7373 isRecordWithAttr<OwnerAttr>(MTE->getType());
7374 // Skipping a chain of initializing gsl::Pointer annotated objects.
7375 // We are looking only for the final source to find out if it was
7376 // a local or temporary owner or the address of a local variable/param.
7377 if (!IsGslPtrInitWithGslTempOwner)
7378 return true;
7379 }
7380 }
7381
7382 switch (LK) {
7383 case LK_FullExpression:
7384 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7384)
;
7385
7386 case LK_Extended: {
7387 if (!MTE) {
7388 // The initialized entity has lifetime beyond the full-expression,
7389 // and the local entity does too, so don't warn.
7390 //
7391 // FIXME: We should consider warning if a static / thread storage
7392 // duration variable retains an automatic storage duration local.
7393 return false;
7394 }
7395
7396 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7397 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7398 return false;
7399 }
7400
7401 // Lifetime-extend the temporary.
7402 if (Path.empty()) {
7403 // Update the storage duration of the materialized temporary.
7404 // FIXME: Rebuild the expression instead of mutating it.
7405 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7406 ExtendingEntity->allocateManglingNumber());
7407 // Also visit the temporaries lifetime-extended by this initializer.
7408 return true;
7409 }
7410
7411 if (shouldLifetimeExtendThroughPath(Path)) {
7412 // We're supposed to lifetime-extend the temporary along this path (per
7413 // the resolution of DR1815), but we don't support that yet.
7414 //
7415 // FIXME: Properly handle this situation. Perhaps the easiest approach
7416 // would be to clone the initializer expression on each use that would
7417 // lifetime extend its temporaries.
7418 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7419 << RK << DiagRange;
7420 } else {
7421 // If the path goes through the initialization of a variable or field,
7422 // it can't possibly reach a temporary created in this full-expression.
7423 // We will have already diagnosed any problems with the initializer.
7424 if (pathContainsInit(Path))
7425 return false;
7426
7427 Diag(DiagLoc, diag::warn_dangling_variable)
7428 << RK << !Entity.getParent()
7429 << ExtendingEntity->getDecl()->isImplicit()
7430 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7431 }
7432 break;
7433 }
7434
7435 case LK_MemInitializer: {
7436 if (isa<MaterializeTemporaryExpr>(L)) {
7437 // Under C++ DR1696, if a mem-initializer (or a default member
7438 // initializer used by the absence of one) would lifetime-extend a
7439 // temporary, the program is ill-formed.
7440 if (auto *ExtendingDecl =
7441 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7442 if (IsGslPtrInitWithGslTempOwner) {
7443 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7444 << ExtendingDecl << DiagRange;
7445 Diag(ExtendingDecl->getLocation(),
7446 diag::note_ref_or_ptr_member_declared_here)
7447 << true;
7448 return false;
7449 }
7450 bool IsSubobjectMember = ExtendingEntity != &Entity;
7451 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7452 ? diag::err_dangling_member
7453 : diag::warn_dangling_member)
7454 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7455 // Don't bother adding a note pointing to the field if we're inside
7456 // its default member initializer; our primary diagnostic points to
7457 // the same place in that case.
7458 if (Path.empty() ||
7459 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7460 Diag(ExtendingDecl->getLocation(),
7461 diag::note_lifetime_extending_member_declared_here)
7462 << RK << IsSubobjectMember;
7463 }
7464 } else {
7465 // We have a mem-initializer but no particular field within it; this
7466 // is either a base class or a delegating initializer directly
7467 // initializing the base-class from something that doesn't live long
7468 // enough.
7469 //
7470 // FIXME: Warn on this.
7471 return false;
7472 }
7473 } else {
7474 // Paths via a default initializer can only occur during error recovery
7475 // (there's no other way that a default initializer can refer to a
7476 // local). Don't produce a bogus warning on those cases.
7477 if (pathContainsInit(Path))
7478 return false;
7479
7480 // Suppress false positives for code like the one below:
7481 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7482 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7483 return false;
7484
7485 auto *DRE = dyn_cast<DeclRefExpr>(L);
7486 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7487 if (!VD) {
7488 // A member was initialized to a local block.
7489 // FIXME: Warn on this.
7490 return false;
7491 }
7492
7493 if (auto *Member =
7494 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7495 bool IsPointer = !Member->getType()->isReferenceType();
7496 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7497 : diag::warn_bind_ref_member_to_parameter)
7498 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7499 Diag(Member->getLocation(),
7500 diag::note_ref_or_ptr_member_declared_here)
7501 << (unsigned)IsPointer;
7502 }
7503 }
7504 break;
7505 }
7506
7507 case LK_New:
7508 if (isa<MaterializeTemporaryExpr>(L)) {
7509 if (IsGslPtrInitWithGslTempOwner)
7510 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7511 else
7512 Diag(DiagLoc, RK == RK_ReferenceBinding
7513 ? diag::warn_new_dangling_reference
7514 : diag::warn_new_dangling_initializer_list)
7515 << !Entity.getParent() << DiagRange;
7516 } else {
7517 // We can't determine if the allocation outlives the local declaration.
7518 return false;
7519 }
7520 break;
7521
7522 case LK_Return:
7523 case LK_StmtExprResult:
7524 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7525 // We can't determine if the local variable outlives the statement
7526 // expression.
7527 if (LK == LK_StmtExprResult)
7528 return false;
7529 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7530 << Entity.getType()->isReferenceType() << DRE->getDecl()
7531 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7532 } else if (isa<BlockExpr>(L)) {
7533 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7534 } else if (isa<AddrLabelExpr>(L)) {
7535 // Don't warn when returning a label from a statement expression.
7536 // Leaving the scope doesn't end its lifetime.
7537 if (LK == LK_StmtExprResult)
7538 return false;
7539 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7540 } else {
7541 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7542 << Entity.getType()->isReferenceType() << DiagRange;
7543 }
7544 break;
7545 }
7546
7547 for (unsigned I = 0; I != Path.size(); ++I) {
7548 auto Elem = Path[I];
7549
7550 switch (Elem.Kind) {
7551 case IndirectLocalPathEntry::AddressOf:
7552 case IndirectLocalPathEntry::LValToRVal:
7553 // These exist primarily to mark the path as not permitting or
7554 // supporting lifetime extension.
7555 break;
7556
7557 case IndirectLocalPathEntry::LifetimeBoundCall:
7558 case IndirectLocalPathEntry::GslPointerInit:
7559 case IndirectLocalPathEntry::GslReferenceInit:
7560 // FIXME: Consider adding a note for these.
7561 break;
7562
7563 case IndirectLocalPathEntry::DefaultInit: {
7564 auto *FD = cast<FieldDecl>(Elem.D);
7565 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7566 << FD << nextPathEntryRange(Path, I + 1, L);
7567 break;
7568 }
7569
7570 case IndirectLocalPathEntry::VarInit:
7571 const VarDecl *VD = cast<VarDecl>(Elem.D);
7572 Diag(VD->getLocation(), diag::note_local_var_initializer)
7573 << VD->getType()->isReferenceType()
7574 << VD->isImplicit() << VD->getDeclName()
7575 << nextPathEntryRange(Path, I + 1, L);
7576 break;
7577 }
7578 }
7579
7580 // We didn't lifetime-extend, so don't go any further; we don't need more
7581 // warnings or errors on inner temporaries within this one's initializer.
7582 return false;
7583 };
7584
7585 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7586 diag::warn_dangling_lifetime_pointer, SourceLocation());
7587 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7588 if (Init->isGLValue())
7589 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7590 TemporaryVisitor,
7591 EnableLifetimeWarnings);
7592 else
7593 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7594 EnableLifetimeWarnings);
7595}
7596
7597static void DiagnoseNarrowingInInitList(Sema &S,
7598 const ImplicitConversionSequence &ICS,
7599 QualType PreNarrowingType,
7600 QualType EntityType,
7601 const Expr *PostInit);
7602
7603/// Provide warnings when std::move is used on construction.
7604static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7605 bool IsReturnStmt) {
7606 if (!InitExpr)
7607 return;
7608
7609 if (S.inTemplateInstantiation())
7610 return;
7611
7612 QualType DestType = InitExpr->getType();
7613 if (!DestType->isRecordType())
7614 return;
7615
7616 unsigned DiagID = 0;
7617 if (IsReturnStmt) {
7618 const CXXConstructExpr *CCE =
7619 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7620 if (!CCE || CCE->getNumArgs() != 1)
7621 return;
7622
7623 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7624 return;
7625
7626 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7627 }
7628
7629 // Find the std::move call and get the argument.
7630 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7631 if (!CE || !CE->isCallToStdMove())
7632 return;
7633
7634 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7635
7636 if (IsReturnStmt) {
7637 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7638 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7639 return;
7640
7641 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7642 if (!VD || !VD->hasLocalStorage())
7643 return;
7644
7645 // __block variables are not moved implicitly.
7646 if (VD->hasAttr<BlocksAttr>())
7647 return;
7648
7649 QualType SourceType = VD->getType();
7650 if (!SourceType->isRecordType())
7651 return;
7652
7653 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7654 return;
7655 }
7656
7657 // If we're returning a function parameter, copy elision
7658 // is not possible.
7659 if (isa<ParmVarDecl>(VD))
7660 DiagID = diag::warn_redundant_move_on_return;
7661 else
7662 DiagID = diag::warn_pessimizing_move_on_return;
7663 } else {
7664 DiagID = diag::warn_pessimizing_move_on_initialization;
7665 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7666 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7667 return;
7668 }
7669
7670 S.Diag(CE->getBeginLoc(), DiagID);
7671
7672 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7673 // is within a macro.
7674 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7675 if (CallBegin.isMacroID())
7676 return;
7677 SourceLocation RParen = CE->getRParenLoc();
7678 if (RParen.isMacroID())
7679 return;
7680 SourceLocation LParen;
7681 SourceLocation ArgLoc = Arg->getBeginLoc();
7682
7683 // Special testing for the argument location. Since the fix-it needs the
7684 // location right before the argument, the argument location can be in a
7685 // macro only if it is at the beginning of the macro.
7686 while (ArgLoc.isMacroID() &&
7687 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7688 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7689 }
7690
7691 if (LParen.isMacroID())
7692 return;
7693
7694 LParen = ArgLoc.getLocWithOffset(-1);
7695
7696 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7697 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7698 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7699}
7700
7701static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7702 // Check to see if we are dereferencing a null pointer. If so, this is
7703 // undefined behavior, so warn about it. This only handles the pattern
7704 // "*null", which is a very syntactic check.
7705 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7706 if (UO->getOpcode() == UO_Deref &&
7707 UO->getSubExpr()->IgnoreParenCasts()->
7708 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7709 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7710 S.PDiag(diag::warn_binding_null_to_reference)
7711 << UO->getSubExpr()->getSourceRange());
7712 }
7713}
7714
7715MaterializeTemporaryExpr *
7716Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7717 bool BoundToLvalueReference) {
7718 auto MTE = new (Context)
7719 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7720
7721 // Order an ExprWithCleanups for lifetime marks.
7722 //
7723 // TODO: It'll be good to have a single place to check the access of the
7724 // destructor and generate ExprWithCleanups for various uses. Currently these
7725 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7726 // but there may be a chance to merge them.
7727 Cleanup.setExprNeedsCleanups(false);
7728 return MTE;
7729}
7730
7731ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7732 // In C++98, we don't want to implicitly create an xvalue.
7733 // FIXME: This means that AST consumers need to deal with "prvalues" that
7734 // denote materialized temporaries. Maybe we should add another ValueKind
7735 // for "xvalue pretending to be a prvalue" for C++98 support.
7736 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7737 return E;
7738
7739 // C++1z [conv.rval]/1: T shall be a complete type.
7740 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7741 // If so, we should check for a non-abstract class type here too.
7742 QualType T = E->getType();
7743 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7744 return ExprError();
7745
7746 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7747}
7748
7749ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7750 ExprValueKind VK,
7751 CheckedConversionKind CCK) {
7752
7753 CastKind CK = CK_NoOp;
7754
7755 if (VK == VK_RValue) {
7756 auto PointeeTy = Ty->getPointeeType();
7757 auto ExprPointeeTy = E->getType()->getPointeeType();
7758 if (!PointeeTy.isNull() &&
7759 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7760 CK = CK_AddressSpaceConversion;
7761 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7762 CK = CK_AddressSpaceConversion;
7763 }
7764
7765 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7766}
7767
7768ExprResult InitializationSequence::Perform(Sema &S,
7769 const InitializedEntity &Entity,
7770 const InitializationKind &Kind,
7771 MultiExprArg Args,
7772 QualType *ResultType) {
7773 if (Failed()) {
7774 Diagnose(S, Entity, Kind, Args);
7775 return ExprError();
7776 }
7777 if (!ZeroInitializationFixit.empty()) {
7778 unsigned DiagID = diag::err_default_init_const;
7779 if (Decl *D = Entity.getDecl())
7780 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7781 DiagID = diag::ext_default_init_const;
7782
7783 // The initialization would have succeeded with this fixit. Since the fixit
7784 // is on the error, we need to build a valid AST in this case, so this isn't
7785 // handled in the Failed() branch above.
7786 QualType DestType = Entity.getType();
7787 S.Diag(Kind.getLocation(), DiagID)
7788 << DestType << (bool)DestType->getAs<RecordType>()
7789 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7790 ZeroInitializationFixit);
7791 }
7792
7793 if (getKind() == DependentSequence) {
7794 // If the declaration is a non-dependent, incomplete array type
7795 // that has an initializer, then its type will be completed once
7796 // the initializer is instantiated.
7797 if (ResultType && !Entity.getType()->isDependentType() &&
7798 Args.size() == 1) {
7799 QualType DeclType = Entity.getType();
7800 if (const IncompleteArrayType *ArrayT
7801 = S.Context.getAsIncompleteArrayType(DeclType)) {
7802 // FIXME: We don't currently have the ability to accurately
7803 // compute the length of an initializer list without
7804 // performing full type-checking of the initializer list
7805 // (since we have to determine where braces are implicitly
7806 // introduced and such). So, we fall back to making the array
7807 // type a dependently-sized array type with no specified
7808 // bound.
7809 if (isa<InitListExpr>((Expr *)Args[0])) {
7810 SourceRange Brackets;
7811
7812 // Scavange the location of the brackets from the entity, if we can.
7813 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7814 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7815 TypeLoc TL = TInfo->getTypeLoc();
7816 if (IncompleteArrayTypeLoc ArrayLoc =
7817 TL.getAs<IncompleteArrayTypeLoc>())
7818 Brackets = ArrayLoc.getBracketsRange();
7819 }
7820 }
7821
7822 *ResultType
7823 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7824 /*NumElts=*/nullptr,
7825 ArrayT->getSizeModifier(),
7826 ArrayT->getIndexTypeCVRQualifiers(),
7827 Brackets);
7828 }
7829
7830 }
7831 }
7832 if (Kind.getKind() == InitializationKind::IK_Direct &&
7833 !Kind.isExplicitCast()) {
7834 // Rebuild the ParenListExpr.
7835 SourceRange ParenRange = Kind.getParenOrBraceRange();
7836 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7837 Args);
7838 }
7839 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7841, __PRETTY_FUNCTION__))
7840 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7841, __PRETTY_FUNCTION__))
7841 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7841, __PRETTY_FUNCTION__))
;
7842 return ExprResult(Args[0]);
7843 }
7844
7845 // No steps means no initialization.
7846 if (Steps.empty())
7847 return ExprResult((Expr *)nullptr);
7848
7849 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7850 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7851 !Entity.isParameterKind()) {
7852 // Produce a C++98 compatibility warning if we are initializing a reference
7853 // from an initializer list. For parameters, we produce a better warning
7854 // elsewhere.
7855 Expr *Init = Args[0];
7856 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7857 << Init->getSourceRange();
7858 }
7859
7860 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7861 QualType ETy = Entity.getType();
7862 bool HasGlobalAS = ETy.hasAddressSpace() &&
7863 ETy.getAddressSpace() == LangAS::opencl_global;
7864
7865 if (S.getLangOpts().OpenCLVersion >= 200 &&
7866 ETy->isAtomicType() && !HasGlobalAS &&
7867 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7868 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7869 << 1
7870 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7871 return ExprError();
7872 }
7873
7874 QualType DestType = Entity.getType().getNonReferenceType();
7875 // FIXME: Ugly hack around the fact that Entity.getType() is not
7876 // the same as Entity.getDecl()->getType() in cases involving type merging,
7877 // and we want latter when it makes sense.
7878 if (ResultType)
7879 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7880 Entity.getType();
7881
7882 ExprResult CurInit((Expr *)nullptr);
7883 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7884
7885 // For initialization steps that start with a single initializer,
7886 // grab the only argument out the Args and place it into the "current"
7887 // initializer.
7888 switch (Steps.front().Kind) {
7889 case SK_ResolveAddressOfOverloadedFunction:
7890 case SK_CastDerivedToBaseRValue:
7891 case SK_CastDerivedToBaseXValue:
7892 case SK_CastDerivedToBaseLValue:
7893 case SK_BindReference:
7894 case SK_BindReferenceToTemporary:
7895 case SK_FinalCopy:
7896 case SK_ExtraneousCopyToTemporary:
7897 case SK_UserConversion:
7898 case SK_QualificationConversionLValue:
7899 case SK_QualificationConversionXValue:
7900 case SK_QualificationConversionRValue:
7901 case SK_AtomicConversion:
7902 case SK_ConversionSequence:
7903 case SK_ConversionSequenceNoNarrowing:
7904 case SK_ListInitialization:
7905 case SK_UnwrapInitList:
7906 case SK_RewrapInitList:
7907 case SK_CAssignment:
7908 case SK_StringInit:
7909 case SK_ObjCObjectConversion:
7910 case SK_ArrayLoopIndex:
7911 case SK_ArrayLoopInit:
7912 case SK_ArrayInit:
7913 case SK_GNUArrayInit:
7914 case SK_ParenthesizedArrayInit:
7915 case SK_PassByIndirectCopyRestore:
7916 case SK_PassByIndirectRestore:
7917 case SK_ProduceObjCObject:
7918 case SK_StdInitializerList:
7919 case SK_OCLSamplerInit:
7920 case SK_OCLZeroOpaqueType: {
7921 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 7921, __PRETTY_FUNCTION__))
;
7922 CurInit = Args[0];
7923 if (!CurInit.get()) return ExprError();
7924 break;
7925 }
7926
7927 case SK_ConstructorInitialization:
7928 case SK_ConstructorInitializationFromList:
7929 case SK_StdInitializerListConstructorCall:
7930 case SK_ZeroInitialization:
7931 break;
7932 }
7933
7934 // Promote from an unevaluated context to an unevaluated list context in
7935 // C++11 list-initialization; we need to instantiate entities usable in
7936 // constant expressions here in order to perform narrowing checks =(
7937 EnterExpressionEvaluationContext Evaluated(
7938 S, EnterExpressionEvaluationContext::InitList,
7939 CurInit.get() && isa<InitListExpr>(CurInit.get()));
7940
7941 // C++ [class.abstract]p2:
7942 // no objects of an abstract class can be created except as subobjects
7943 // of a class derived from it
7944 auto checkAbstractType = [&](QualType T) -> bool {
7945 if (Entity.getKind() == InitializedEntity::EK_Base ||
7946 Entity.getKind() == InitializedEntity::EK_Delegating)
7947 return false;
7948 return S.RequireNonAbstractType(Kind.getLocation(), T,
7949 diag::err_allocation_of_abstract_type);
7950 };
7951
7952 // Walk through the computed steps for the initialization sequence,
7953 // performing the specified conversions along the way.
7954 bool ConstructorInitRequiresZeroInit = false;
7955 for (step_iterator Step = step_begin(), StepEnd = step_end();
7956 Step != StepEnd; ++Step) {
7957 if (CurInit.isInvalid())
7958 return ExprError();
7959
7960 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7961
7962 switch (Step->Kind) {
7963 case SK_ResolveAddressOfOverloadedFunction:
7964 // Overload resolution determined which function invoke; update the
7965 // initializer to reflect that choice.
7966 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7967 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7968 return ExprError();
7969 CurInit = S.FixOverloadedFunctionReference(CurInit,
7970 Step->Function.FoundDecl,
7971 Step->Function.Function);
7972 break;
7973
7974 case SK_CastDerivedToBaseRValue:
7975 case SK_CastDerivedToBaseXValue:
7976 case SK_CastDerivedToBaseLValue: {
7977 // We have a derived-to-base cast that produces either an rvalue or an
7978 // lvalue. Perform that cast.
7979
7980 CXXCastPath BasePath;
7981
7982 // Casts to inaccessible base classes are allowed with C-style casts.
7983 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7984 if (S.CheckDerivedToBaseConversion(
7985 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7986 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7987 return ExprError();
7988
7989 ExprValueKind VK =
7990 Step->Kind == SK_CastDerivedToBaseLValue ?
7991 VK_LValue :
7992 (Step->Kind == SK_CastDerivedToBaseXValue ?
7993 VK_XValue :
7994 VK_RValue);
7995 CurInit =
7996 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7997 CurInit.get(), &BasePath, VK);
7998 break;
7999 }
8000
8001 case SK_BindReference:
8002 // Reference binding does not have any corresponding ASTs.
8003
8004 // Check exception specifications
8005 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8006 return ExprError();
8007
8008 // We don't check for e.g. function pointers here, since address
8009 // availability checks should only occur when the function first decays
8010 // into a pointer or reference.
8011 if (CurInit.get()->getType()->isFunctionProtoType()) {
8012 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8013 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8014 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8015 DRE->getBeginLoc()))
8016 return ExprError();
8017 }
8018 }
8019 }
8020
8021 CheckForNullPointerDereference(S, CurInit.get());
8022 break;
8023
8024 case SK_BindReferenceToTemporary: {
8025 // Make sure the "temporary" is actually an rvalue.
8026 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8026, __PRETTY_FUNCTION__))
;
8027
8028 // Check exception specifications
8029 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8030 return ExprError();
8031
8032 // Materialize the temporary into memory.
8033 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8034 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8035 CurInit = MTE;
8036
8037 // If we're extending this temporary to automatic storage duration -- we
8038 // need to register its cleanup during the full-expression's cleanups.
8039 if (MTE->getStorageDuration() == SD_Automatic &&
8040 MTE->getType().isDestructedType())
8041 S.Cleanup.setExprNeedsCleanups(true);
8042 break;
8043 }
8044
8045 case SK_FinalCopy:
8046 if (checkAbstractType(Step->Type))
8047 return ExprError();
8048
8049 // If the overall initialization is initializing a temporary, we already
8050 // bound our argument if it was necessary to do so. If not (if we're
8051 // ultimately initializing a non-temporary), our argument needs to be
8052 // bound since it's initializing a function parameter.
8053 // FIXME: This is a mess. Rationalize temporary destruction.
8054 if (!shouldBindAsTemporary(Entity))
8055 CurInit = S.MaybeBindToTemporary(CurInit.get());
8056 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8057 /*IsExtraneousCopy=*/false);
8058 break;
8059
8060 case SK_ExtraneousCopyToTemporary:
8061 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8062 /*IsExtraneousCopy=*/true);
8063 break;
8064
8065 case SK_UserConversion: {
8066 // We have a user-defined conversion that invokes either a constructor
8067 // or a conversion function.
8068 CastKind CastKind;
8069 FunctionDecl *Fn = Step->Function.Function;
8070 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8071 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8072 bool CreatedObject = false;
8073 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8074 // Build a call to the selected constructor.
8075 SmallVector<Expr*, 8> ConstructorArgs;
8076 SourceLocation Loc = CurInit.get()->getBeginLoc();
8077
8078 // Determine the arguments required to actually perform the constructor
8079 // call.
8080 Expr *Arg = CurInit.get();
8081 if (S.CompleteConstructorCall(Constructor,
8082 MultiExprArg(&Arg, 1),
8083 Loc, ConstructorArgs))
8084 return ExprError();
8085
8086 // Build an expression that constructs a temporary.
8087 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8088 FoundFn, Constructor,
8089 ConstructorArgs,
8090 HadMultipleCandidates,
8091 /*ListInit*/ false,
8092 /*StdInitListInit*/ false,
8093 /*ZeroInit*/ false,
8094 CXXConstructExpr::CK_Complete,
8095 SourceRange());
8096 if (CurInit.isInvalid())
8097 return ExprError();
8098
8099 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8100 Entity);
8101 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8102 return ExprError();
8103
8104 CastKind = CK_ConstructorConversion;
8105 CreatedObject = true;
8106 } else {
8107 // Build a call to the conversion function.
8108 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8109 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8110 FoundFn);
8111 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8112 return ExprError();
8113
8114 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8115 HadMultipleCandidates);
8116 if (CurInit.isInvalid())
8117 return ExprError();
8118
8119 CastKind = CK_UserDefinedConversion;
8120 CreatedObject = Conversion->getReturnType()->isRecordType();
8121 }
8122
8123 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8124 return ExprError();
8125
8126 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
8127 CastKind, CurInit.get(), nullptr,
8128 CurInit.get()->getValueKind());
8129
8130 if (shouldBindAsTemporary(Entity))
8131 // The overall entity is temporary, so this expression should be
8132 // destroyed at the end of its full-expression.
8133 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8134 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8135 // The object outlasts the full-expression, but we need to prepare for
8136 // a destructor being run on it.
8137 // FIXME: It makes no sense to do this here. This should happen
8138 // regardless of how we initialized the entity.
8139 QualType T = CurInit.get()->getType();
8140 if (const RecordType *Record = T->getAs<RecordType>()) {
8141 CXXDestructorDecl *Destructor
8142 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8143 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8144 S.PDiag(diag::err_access_dtor_temp) << T);
8145 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8146 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8147 return ExprError();
8148 }
8149 }
8150 break;
8151 }
8152
8153 case SK_QualificationConversionLValue:
8154 case SK_QualificationConversionXValue:
8155 case SK_QualificationConversionRValue: {
8156 // Perform a qualification conversion; these can never go wrong.
8157 ExprValueKind VK =
8158 Step->Kind == SK_QualificationConversionLValue
8159 ? VK_LValue
8160 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8161 : VK_RValue);
8162 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8163 break;
8164 }
8165
8166 case SK_AtomicConversion: {
8167 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8167, __PRETTY_FUNCTION__))
;
8168 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8169 CK_NonAtomicToAtomic, VK_RValue);
8170 break;
8171 }
8172
8173 case SK_ConversionSequence:
8174 case SK_ConversionSequenceNoNarrowing: {
8175 if (const auto *FromPtrType =
8176 CurInit.get()->getType()->getAs<PointerType>()) {
8177 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8178 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8179 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8180 S.Diag(CurInit.get()->getExprLoc(),
8181 diag::warn_noderef_to_dereferenceable_pointer)
8182 << CurInit.get()->getSourceRange();
8183 }
8184 }
8185 }
8186
8187 Sema::CheckedConversionKind CCK
8188 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8189 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8190 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8191 : Sema::CCK_ImplicitConversion;
8192 ExprResult CurInitExprRes =
8193 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8194 getAssignmentAction(Entity), CCK);
8195 if (CurInitExprRes.isInvalid())
8196 return ExprError();
8197
8198 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8199
8200 CurInit = CurInitExprRes;
8201
8202 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8203 S.getLangOpts().CPlusPlus)
8204 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8205 CurInit.get());
8206
8207 break;
8208 }
8209
8210 case SK_ListInitialization: {
8211 if (checkAbstractType(Step->Type))
8212 return ExprError();
8213
8214 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8215 // If we're not initializing the top-level entity, we need to create an
8216 // InitializeTemporary entity for our target type.
8217 QualType Ty = Step->Type;
8218 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8219 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8220 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8221 InitListChecker PerformInitList(S, InitEntity,
8222 InitList, Ty, /*VerifyOnly=*/false,
8223 /*TreatUnavailableAsInvalid=*/false);
8224 if (PerformInitList.HadError())
8225 return ExprError();
8226
8227 // Hack: We must update *ResultType if available in order to set the
8228 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8229 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8230 if (ResultType &&
8231 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8232 if ((*ResultType)->isRValueReferenceType())
8233 Ty = S.Context.getRValueReferenceType(Ty);
8234 else if ((*ResultType)->isLValueReferenceType())
8235 Ty = S.Context.getLValueReferenceType(Ty,
8236 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8237 *ResultType = Ty;
8238 }
8239
8240 InitListExpr *StructuredInitList =
8241 PerformInitList.getFullyStructuredList();
8242 CurInit.get();
8243 CurInit = shouldBindAsTemporary(InitEntity)
8244 ? S.MaybeBindToTemporary(StructuredInitList)
8245 : StructuredInitList;
8246 break;
8247 }
8248
8249 case SK_ConstructorInitializationFromList: {
8250 if (checkAbstractType(Step->Type))
8251 return ExprError();
8252
8253 // When an initializer list is passed for a parameter of type "reference
8254 // to object", we don't get an EK_Temporary entity, but instead an
8255 // EK_Parameter entity with reference type.
8256 // FIXME: This is a hack. What we really should do is create a user
8257 // conversion step for this case, but this makes it considerably more
8258 // complicated. For now, this will do.
8259 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8260 Entity.getType().getNonReferenceType());
8261 bool UseTemporary = Entity.getType()->isReferenceType();
8262 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8262, __PRETTY_FUNCTION__))
;
8263 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8264 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8265 << InitList->getSourceRange();
8266 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8267 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8268 Entity,
8269 Kind, Arg, *Step,
8270 ConstructorInitRequiresZeroInit,
8271 /*IsListInitialization*/true,
8272 /*IsStdInitListInit*/false,
8273 InitList->getLBraceLoc(),
8274 InitList->getRBraceLoc());
8275 break;
8276 }
8277
8278 case SK_UnwrapInitList:
8279 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8280 break;
8281
8282 case SK_RewrapInitList: {
8283 Expr *E = CurInit.get();
8284 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8285 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8286 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8287 ILE->setSyntacticForm(Syntactic);
8288 ILE->setType(E->getType());
8289 ILE->setValueKind(E->getValueKind());
8290 CurInit = ILE;
8291 break;
8292 }
8293
8294 case SK_ConstructorInitialization:
8295 case SK_StdInitializerListConstructorCall: {
8296 if (checkAbstractType(Step->Type))
8297 return ExprError();
8298
8299 // When an initializer list is passed for a parameter of type "reference
8300 // to object", we don't get an EK_Temporary entity, but instead an
8301 // EK_Parameter entity with reference type.
8302 // FIXME: This is a hack. What we really should do is create a user
8303 // conversion step for this case, but this makes it considerably more
8304 // complicated. For now, this will do.
8305 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8306 Entity.getType().getNonReferenceType());
8307 bool UseTemporary = Entity.getType()->isReferenceType();
8308 bool IsStdInitListInit =
8309 Step->Kind == SK_StdInitializerListConstructorCall;
8310 Expr *Source = CurInit.get();
8311 SourceRange Range = Kind.hasParenOrBraceRange()
8312 ? Kind.getParenOrBraceRange()
8313 : SourceRange();
8314 CurInit = PerformConstructorInitialization(
8315 S, UseTemporary ? TempEntity : Entity, Kind,
8316 Source ? MultiExprArg(Source) : Args, *Step,
8317 ConstructorInitRequiresZeroInit,
8318 /*IsListInitialization*/ IsStdInitListInit,
8319 /*IsStdInitListInitialization*/ IsStdInitListInit,
8320 /*LBraceLoc*/ Range.getBegin(),
8321 /*RBraceLoc*/ Range.getEnd());
8322 break;
8323 }
8324
8325 case SK_ZeroInitialization: {
8326 step_iterator NextStep = Step;
8327 ++NextStep;
8328 if (NextStep != StepEnd &&
8329 (NextStep->Kind == SK_ConstructorInitialization ||
8330 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8331 // The need for zero-initialization is recorded directly into
8332 // the call to the object's constructor within the next step.
8333 ConstructorInitRequiresZeroInit = true;
8334 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8335 S.getLangOpts().CPlusPlus &&
8336 !Kind.isImplicitValueInit()) {
8337 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8338 if (!TSInfo)
8339 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8340 Kind.getRange().getBegin());
8341
8342 CurInit = new (S.Context) CXXScalarValueInitExpr(
8343 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8344 Kind.getRange().getEnd());
8345 } else {
8346 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8347 }
8348 break;
8349 }
8350
8351 case SK_CAssignment: {
8352 QualType SourceType = CurInit.get()->getType();
8353
8354 // Save off the initial CurInit in case we need to emit a diagnostic
8355 ExprResult InitialCurInit = CurInit;
8356 ExprResult Result = CurInit;
8357 Sema::AssignConvertType ConvTy =
8358 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8359 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8360 if (Result.isInvalid())
8361 return ExprError();
8362 CurInit = Result;
8363
8364 // If this is a call, allow conversion to a transparent union.
8365 ExprResult CurInitExprRes = CurInit;
8366 if (ConvTy != Sema::Compatible &&
8367 Entity.isParameterKind() &&
8368 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8369 == Sema::Compatible)
8370 ConvTy = Sema::Compatible;
8371 if (CurInitExprRes.isInvalid())
8372 return ExprError();
8373 CurInit = CurInitExprRes;
8374
8375 bool Complained;
8376 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8377 Step->Type, SourceType,
8378 InitialCurInit.get(),
8379 getAssignmentAction(Entity, true),
8380 &Complained)) {
8381 PrintInitLocationNote(S, Entity);
8382 return ExprError();
8383 } else if (Complained)
8384 PrintInitLocationNote(S, Entity);
8385 break;
8386 }
8387
8388 case SK_StringInit: {
8389 QualType Ty = Step->Type;
8390 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
8391 S.Context.getAsArrayType(Ty), S);
8392 break;
8393 }
8394
8395 case SK_ObjCObjectConversion:
8396 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8397 CK_ObjCObjectLValueCast,
8398 CurInit.get()->getValueKind());
8399 break;
8400
8401 case SK_ArrayLoopIndex: {
8402 Expr *Cur = CurInit.get();
8403 Expr *BaseExpr = new (S.Context)
8404 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8405 Cur->getValueKind(), Cur->getObjectKind(), Cur);
8406 Expr *IndexExpr =
8407 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8408 CurInit = S.CreateBuiltinArraySubscriptExpr(
8409 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8410 ArrayLoopCommonExprs.push_back(BaseExpr);
8411 break;
8412 }
8413
8414 case SK_ArrayLoopInit: {
8415 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8416, __PRETTY_FUNCTION__))
8416 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8416, __PRETTY_FUNCTION__))
;
8417 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8418 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8419 CurInit.get());
8420 break;
8421 }
8422
8423 case SK_GNUArrayInit:
8424 // Okay: we checked everything before creating this step. Note that
8425 // this is a GNU extension.
8426 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8427 << Step->Type << CurInit.get()->getType()
8428 << CurInit.get()->getSourceRange();
8429 updateGNUCompoundLiteralRValue(CurInit.get());
8430 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8431 case SK_ArrayInit:
8432 // If the destination type is an incomplete array type, update the
8433 // type accordingly.
8434 if (ResultType) {
8435 if (const IncompleteArrayType *IncompleteDest
8436 = S.Context.getAsIncompleteArrayType(Step->Type)) {
8437 if (const ConstantArrayType *ConstantSource
8438 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8439 *ResultType = S.Context.getConstantArrayType(
8440 IncompleteDest->getElementType(),
8441 ConstantSource->getSize(),
8442 ConstantSource->getSizeExpr(),
8443 ArrayType::Normal, 0);
8444 }
8445 }
8446 }
8447 break;
8448
8449 case SK_ParenthesizedArrayInit:
8450 // Okay: we checked everything before creating this step. Note that
8451 // this is a GNU extension.
8452 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8453 << CurInit.get()->getSourceRange();
8454 break;
8455
8456 case SK_PassByIndirectCopyRestore:
8457 case SK_PassByIndirectRestore:
8458 checkIndirectCopyRestoreSource(S, CurInit.get());
8459 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8460 CurInit.get(), Step->Type,
8461 Step->Kind == SK_PassByIndirectCopyRestore);
8462 break;
8463
8464 case SK_ProduceObjCObject:
8465 CurInit =
8466 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8467 CurInit.get(), nullptr, VK_RValue);
8468 break;
8469
8470 case SK_StdInitializerList: {
8471 S.Diag(CurInit.get()->getExprLoc(),
8472 diag::warn_cxx98_compat_initializer_list_init)
8473 << CurInit.get()->getSourceRange();
8474
8475 // Materialize the temporary into memory.
8476 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8477 CurInit.get()->getType(), CurInit.get(),
8478 /*BoundToLvalueReference=*/false);
8479
8480 // Wrap it in a construction of a std::initializer_list<T>.
8481 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8482
8483 // Bind the result, in case the library has given initializer_list a
8484 // non-trivial destructor.
8485 if (shouldBindAsTemporary(Entity))
8486 CurInit = S.MaybeBindToTemporary(CurInit.get());
8487 break;
8488 }
8489
8490 case SK_OCLSamplerInit: {
8491 // Sampler initialization have 5 cases:
8492 // 1. function argument passing
8493 // 1a. argument is a file-scope variable
8494 // 1b. argument is a function-scope variable
8495 // 1c. argument is one of caller function's parameters
8496 // 2. variable initialization
8497 // 2a. initializing a file-scope variable
8498 // 2b. initializing a function-scope variable
8499 //
8500 // For file-scope variables, since they cannot be initialized by function
8501 // call of __translate_sampler_initializer in LLVM IR, their references
8502 // need to be replaced by a cast from their literal initializers to
8503 // sampler type. Since sampler variables can only be used in function
8504 // calls as arguments, we only need to replace them when handling the
8505 // argument passing.
8506 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8507, __PRETTY_FUNCTION__))
8507 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8507, __PRETTY_FUNCTION__))
;
8508 Expr *Init = CurInit.get()->IgnoreParens();
8509 QualType SourceType = Init->getType();
8510 // Case 1
8511 if (Entity.isParameterKind()) {
8512 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8513 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8514 << SourceType;
8515 break;
8516 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8517 auto Var = cast<VarDecl>(DRE->getDecl());
8518 // Case 1b and 1c
8519 // No cast from integer to sampler is needed.
8520 if (!Var->hasGlobalStorage()) {
8521 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8522 CK_LValueToRValue, Init,
8523 /*BasePath=*/nullptr, VK_RValue);
8524 break;
8525 }
8526 // Case 1a
8527 // For function call with a file-scope sampler variable as argument,
8528 // get the integer literal.
8529 // Do not diagnose if the file-scope variable does not have initializer
8530 // since this has already been diagnosed when parsing the variable
8531 // declaration.
8532 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8533 break;
8534 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8535 Var->getInit()))->getSubExpr();
8536 SourceType = Init->getType();
8537 }
8538 } else {
8539 // Case 2
8540 // Check initializer is 32 bit integer constant.
8541 // If the initializer is taken from global variable, do not diagnose since
8542 // this has already been done when parsing the variable declaration.
8543 if (!Init->isConstantInitializer(S.Context, false))
8544 break;
8545
8546 if (!SourceType->isIntegerType() ||
8547 32 != S.Context.getIntWidth(SourceType)) {
8548 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8549 << SourceType;
8550 break;
8551 }
8552
8553 Expr::EvalResult EVResult;
8554 Init->EvaluateAsInt(EVResult, S.Context);
8555 llvm::APSInt Result = EVResult.Val.getInt();
8556 const uint64_t SamplerValue = Result.getLimitedValue();
8557 // 32-bit value of sampler's initializer is interpreted as
8558 // bit-field with the following structure:
8559 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8560 // |31 6|5 4|3 1| 0|
8561 // This structure corresponds to enum values of sampler properties
8562 // defined in SPIR spec v1.2 and also opencl-c.h
8563 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8564 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8565 if (FilterMode != 1 && FilterMode != 2 &&
8566 !S.getOpenCLOptions().isEnabled(
8567 "cl_intel_device_side_avc_motion_estimation"))
8568 S.Diag(Kind.getLocation(),
8569 diag::warn_sampler_initializer_invalid_bits)
8570 << "Filter Mode";
8571 if (AddressingMode > 4)
8572 S.Diag(Kind.getLocation(),
8573 diag::warn_sampler_initializer_invalid_bits)
8574 << "Addressing Mode";
8575 }
8576
8577 // Cases 1a, 2a and 2b
8578 // Insert cast from integer to sampler.
8579 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8580 CK_IntToOCLSampler);
8581 break;
8582 }
8583 case SK_OCLZeroOpaqueType: {
8584 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8586, __PRETTY_FUNCTION__))
8585 Step->Type->isOCLIntelSubgroupAVCType()) &&(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8586, __PRETTY_FUNCTION__))
8586 "Wrong type for initialization of OpenCL opaque type.")(((Step->Type->isEventT() || Step->Type->isQueueT
() || Step->Type->isOCLIntelSubgroupAVCType()) &&
"Wrong type for initialization of OpenCL opaque type.") ? static_cast
<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8586, __PRETTY_FUNCTION__))
;
8587
8588 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8589 CK_ZeroToOCLOpaqueType,
8590 CurInit.get()->getValueKind());
8591 break;
8592 }
8593 }
8594 }
8595
8596 // Check whether the initializer has a shorter lifetime than the initialized
8597 // entity, and if not, either lifetime-extend or warn as appropriate.
8598 if (auto *Init = CurInit.get())
8599 S.checkInitializerLifetime(Entity, Init);
8600
8601 // Diagnose non-fatal problems with the completed initialization.
8602 if (Entity.getKind() == InitializedEntity::EK_Member &&
8603 cast<FieldDecl>(Entity.getDecl())->isBitField())
8604 S.CheckBitFieldInitialization(Kind.getLocation(),
8605 cast<FieldDecl>(Entity.getDecl()),
8606 CurInit.get());
8607
8608 // Check for std::move on construction.
8609 if (const Expr *E = CurInit.get()) {
8610 CheckMoveOnConstruction(S, E,
8611 Entity.getKind() == InitializedEntity::EK_Result);
8612 }
8613
8614 return CurInit;
8615}
8616
8617/// Somewhere within T there is an uninitialized reference subobject.
8618/// Dig it out and diagnose it.
8619static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8620 QualType T) {
8621 if (T->isReferenceType()) {
8622 S.Diag(Loc, diag::err_reference_without_init)
8623 << T.getNonReferenceType();
8624 return true;
8625 }
8626
8627 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8628 if (!RD || !RD->hasUninitializedReferenceMember())
8629 return false;
8630
8631 for (const auto *FI : RD->fields()) {
8632 if (FI->isUnnamedBitfield())
8633 continue;
8634
8635 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8636 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8637 return true;
8638 }
8639 }
8640
8641 for (const auto &BI : RD->bases()) {
8642 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8643 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8644 return true;
8645 }
8646 }
8647
8648 return false;
8649}
8650
8651
8652//===----------------------------------------------------------------------===//
8653// Diagnose initialization failures
8654//===----------------------------------------------------------------------===//
8655
8656/// Emit notes associated with an initialization that failed due to a
8657/// "simple" conversion failure.
8658static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8659 Expr *op) {
8660 QualType destType = entity.getType();
8661 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8662 op->getType()->isObjCObjectPointerType()) {
8663
8664 // Emit a possible note about the conversion failing because the
8665 // operand is a message send with a related result type.
8666 S.EmitRelatedResultTypeNote(op);
8667
8668 // Emit a possible note about a return failing because we're
8669 // expecting a related result type.
8670 if (entity.getKind() == InitializedEntity::EK_Result)
8671 S.EmitRelatedResultTypeNoteForReturn(destType);
8672 }
8673}
8674
8675static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8676 InitListExpr *InitList) {
8677 QualType DestType = Entity.getType();
8678
8679 QualType E;
8680 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8681 QualType ArrayType = S.Context.getConstantArrayType(
8682 E.withConst(),
8683 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8684 InitList->getNumInits()),
8685 nullptr, clang::ArrayType::Normal, 0);
8686 InitializedEntity HiddenArray =
8687 InitializedEntity::InitializeTemporary(ArrayType);
8688 return diagnoseListInit(S, HiddenArray, InitList);
8689 }
8690
8691 if (DestType->isReferenceType()) {
8692 // A list-initialization failure for a reference means that we tried to
8693 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8694 // inner initialization failed.
8695 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8696 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8697 SourceLocation Loc = InitList->getBeginLoc();
8698 if (auto *D = Entity.getDecl())
8699 Loc = D->getLocation();
8700 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8701 return;
8702 }
8703
8704 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8705 /*VerifyOnly=*/false,
8706 /*TreatUnavailableAsInvalid=*/false);
8707 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8708, __PRETTY_FUNCTION__))
8708 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8708, __PRETTY_FUNCTION__))
;
8709}
8710
8711bool InitializationSequence::Diagnose(Sema &S,
8712 const InitializedEntity &Entity,
8713 const InitializationKind &Kind,
8714 ArrayRef<Expr *> Args) {
8715 if (!Failed())
1
Calling 'InitializationSequence::Failed'
4
Returning from 'InitializationSequence::Failed'
5
Taking false branch
8716 return false;
8717
8718 // When we want to diagnose only one element of a braced-init-list,
8719 // we need to factor it out.
8720 Expr *OnlyArg;
8721 if (Args.size() == 1) {
6
Assuming the condition is false
7
Taking false branch
8722 auto *List = dyn_cast<InitListExpr>(Args[0]);
8723 if (List && List->getNumInits() == 1)
8724 OnlyArg = List->getInit(0);
8725 else
8726 OnlyArg = Args[0];
8727 }
8728 else
8729 OnlyArg = nullptr;
8
Null pointer value stored to 'OnlyArg'
8730
8731 QualType DestType = Entity.getType();
8732 switch (Failure) {
9
Control jumps to 'case FK_RValueReferenceBindingToLValue:' at line 8910
8733 case FK_TooManyInitsForReference:
8734 // FIXME: Customize for the initialized entity?
8735 if (Args.empty()) {
8736 // Dig out the reference subobject which is uninitialized and diagnose it.
8737 // If this is value-initialization, this could be nested some way within
8738 // the target type.
8739 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8740, __PRETTY_FUNCTION__))
8740 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8740, __PRETTY_FUNCTION__))
;
8741 bool Diagnosed =
8742 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8743 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8743, __PRETTY_FUNCTION__))
;
8744 (void)Diagnosed;
8745 } else // FIXME: diagnostic below could be better!
8746 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8747 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8748 break;
8749 case FK_ParenthesizedListInitForReference:
8750 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8751 << 1 << Entity.getType() << Args[0]->getSourceRange();
8752 break;
8753
8754 case FK_ArrayNeedsInitList:
8755 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8756 break;
8757 case FK_ArrayNeedsInitListOrStringLiteral:
8758 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8759 break;
8760 case FK_ArrayNeedsInitListOrWideStringLiteral:
8761 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8762 break;
8763 case FK_NarrowStringIntoWideCharArray:
8764 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8765 break;
8766 case FK_WideStringIntoCharArray:
8767 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8768 break;
8769 case FK_IncompatWideStringIntoWideChar:
8770 S.Diag(Kind.getLocation(),
8771 diag::err_array_init_incompat_wide_string_into_wchar);
8772 break;
8773 case FK_PlainStringIntoUTF8Char:
8774 S.Diag(Kind.getLocation(),
8775 diag::err_array_init_plain_string_into_char8_t);
8776 S.Diag(Args.front()->getBeginLoc(),
8777 diag::note_array_init_plain_string_into_char8_t)
8778 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8779 break;
8780 case FK_UTF8StringIntoPlainChar:
8781 S.Diag(Kind.getLocation(),
8782 diag::err_array_init_utf8_string_into_char)
8783 << S.getLangOpts().CPlusPlus2a;
8784 break;
8785 case FK_ArrayTypeMismatch:
8786 case FK_NonConstantArrayInit:
8787 S.Diag(Kind.getLocation(),
8788 (Failure == FK_ArrayTypeMismatch
8789 ? diag::err_array_init_different_type
8790 : diag::err_array_init_non_constant_array))
8791 << DestType.getNonReferenceType()
8792 << OnlyArg->getType()
8793 << Args[0]->getSourceRange();
8794 break;
8795
8796 case FK_VariableLengthArrayHasInitializer:
8797 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8798 << Args[0]->getSourceRange();
8799 break;
8800
8801 case FK_AddressOfOverloadFailed: {
8802 DeclAccessPair Found;
8803 S.ResolveAddressOfOverloadedFunction(OnlyArg,
8804 DestType.getNonReferenceType(),
8805 true,
8806 Found);
8807 break;
8808 }
8809
8810 case FK_AddressOfUnaddressableFunction: {
8811 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8812 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8813 OnlyArg->getBeginLoc());
8814 break;
8815 }
8816
8817 case FK_ReferenceInitOverloadFailed:
8818 case FK_UserConversionOverloadFailed:
8819 switch (FailedOverloadResult) {
8820 case OR_Ambiguous:
8821
8822 FailedCandidateSet.NoteCandidates(
8823 PartialDiagnosticAt(
8824 Kind.getLocation(),
8825 Failure == FK_UserConversionOverloadFailed
8826 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8827 << OnlyArg->getType() << DestType
8828 << Args[0]->getSourceRange())
8829 : (S.PDiag(diag::err_ref_init_ambiguous)
8830 << DestType << OnlyArg->getType()
8831 << Args[0]->getSourceRange())),
8832 S, OCD_AmbiguousCandidates, Args);
8833 break;
8834
8835 case OR_No_Viable_Function: {
8836 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8837 if (!S.RequireCompleteType(Kind.getLocation(),
8838 DestType.getNonReferenceType(),
8839 diag::err_typecheck_nonviable_condition_incomplete,
8840 OnlyArg->getType(), Args[0]->getSourceRange()))
8841 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8842 << (Entity.getKind() == InitializedEntity::EK_Result)
8843 << OnlyArg->getType() << Args[0]->getSourceRange()
8844 << DestType.getNonReferenceType();
8845
8846 FailedCandidateSet.NoteCandidates(S, Args, Cands);
8847 break;
8848 }
8849 case OR_Deleted: {
8850 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8851 << OnlyArg->getType() << DestType.getNonReferenceType()
8852 << Args[0]->getSourceRange();
8853 OverloadCandidateSet::iterator Best;
8854 OverloadingResult Ovl
8855 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8856 if (Ovl == OR_Deleted) {
8857 S.NoteDeletedFunction(Best->Function);
8858 } else {
8859 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8859)
;
8860 }
8861 break;
8862 }
8863
8864 case OR_Success:
8865 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8865)
;
8866 }
8867 break;
8868
8869 case FK_NonConstLValueReferenceBindingToTemporary:
8870 if (isa<InitListExpr>(Args[0])) {
8871 S.Diag(Kind.getLocation(),
8872 diag::err_lvalue_reference_bind_to_initlist)
8873 << DestType.getNonReferenceType().isVolatileQualified()
8874 << DestType.getNonReferenceType()
8875 << Args[0]->getSourceRange();
8876 break;
8877 }
8878 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8879
8880 case FK_NonConstLValueReferenceBindingToUnrelated:
8881 S.Diag(Kind.getLocation(),
8882 Failure == FK_NonConstLValueReferenceBindingToTemporary
8883 ? diag::err_lvalue_reference_bind_to_temporary
8884 : diag::err_lvalue_reference_bind_to_unrelated)
8885 << DestType.getNonReferenceType().isVolatileQualified()
8886 << DestType.getNonReferenceType()
8887 << OnlyArg->getType()
8888 << Args[0]->getSourceRange();
8889 break;
8890
8891 case FK_NonConstLValueReferenceBindingToBitfield: {
8892 // We don't necessarily have an unambiguous source bit-field.
8893 FieldDecl *BitField = Args[0]->getSourceBitField();
8894 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8895 << DestType.isVolatileQualified()
8896 << (BitField ? BitField->getDeclName() : DeclarationName())
8897 << (BitField != nullptr)
8898 << Args[0]->getSourceRange();
8899 if (BitField)
8900 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8901 break;
8902 }
8903
8904 case FK_NonConstLValueReferenceBindingToVectorElement:
8905 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8906 << DestType.isVolatileQualified()
8907 << Args[0]->getSourceRange();
8908 break;
8909
8910 case FK_RValueReferenceBindingToLValue:
8911 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8912 << DestType.getNonReferenceType() << OnlyArg->getType()
10
Called C++ object pointer is null
8913 << Args[0]->getSourceRange();
8914 break;
8915
8916 case FK_ReferenceAddrspaceMismatchTemporary:
8917 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8918 << DestType << Args[0]->getSourceRange();
8919 break;
8920
8921 case FK_ReferenceInitDropsQualifiers: {
8922 QualType SourceType = OnlyArg->getType();
8923 QualType NonRefType = DestType.getNonReferenceType();
8924 Qualifiers DroppedQualifiers =
8925 SourceType.getQualifiers() - NonRefType.getQualifiers();
8926
8927 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8928 SourceType.getQualifiers()))
8929 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8930 << NonRefType << SourceType << 1 /*addr space*/
8931 << Args[0]->getSourceRange();
8932 else if (DroppedQualifiers.hasQualifiers())
8933 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8934 << NonRefType << SourceType << 0 /*cv quals*/
8935 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8936 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8937 else
8938 // FIXME: Consider decomposing the type and explaining which qualifiers
8939 // were dropped where, or on which level a 'const' is missing, etc.
8940 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8941 << NonRefType << SourceType << 2 /*incompatible quals*/
8942 << Args[0]->getSourceRange();
8943 break;
8944 }
8945
8946 case FK_ReferenceInitFailed:
8947 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8948 << DestType.getNonReferenceType()
8949 << DestType.getNonReferenceType()->isIncompleteType()
8950 << OnlyArg->isLValue()
8951 << OnlyArg->getType()
8952 << Args[0]->getSourceRange();
8953 emitBadConversionNotes(S, Entity, Args[0]);
8954 break;
8955
8956 case FK_ConversionFailed: {
8957 QualType FromType = OnlyArg->getType();
8958 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8959 << (int)Entity.getKind()
8960 << DestType
8961 << OnlyArg->isLValue()
8962 << FromType
8963 << Args[0]->getSourceRange();
8964 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8965 S.Diag(Kind.getLocation(), PDiag);
8966 emitBadConversionNotes(S, Entity, Args[0]);
8967 break;
8968 }
8969
8970 case FK_ConversionFromPropertyFailed:
8971 // No-op. This error has already been reported.
8972 break;
8973
8974 case FK_TooManyInitsForScalar: {
8975 SourceRange R;
8976
8977 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8978 if (InitList && InitList->getNumInits() >= 1) {
8979 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8980 } else {
8981 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 8981, __PRETTY_FUNCTION__))
;
8982 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8983 }
8984
8985 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8986 if (Kind.isCStyleOrFunctionalCast())
8987 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8988 << R;
8989 else
8990 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8991 << /*scalar=*/2 << R;
8992 break;
8993 }
8994
8995 case FK_ParenthesizedListInitForScalar:
8996 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8997 << 0 << Entity.getType() << Args[0]->getSourceRange();
8998 break;
8999
9000 case FK_ReferenceBindingToInitList:
9001 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9002 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9003 break;
9004
9005 case FK_InitListBadDestinationType:
9006 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9007 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9008 break;
9009
9010 case FK_ListConstructorOverloadFailed:
9011 case FK_ConstructorOverloadFailed: {
9012 SourceRange ArgsRange;
9013 if (Args.size())
9014 ArgsRange =
9015 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9016
9017 if (Failure == FK_ListConstructorOverloadFailed) {
9018 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9019, __PRETTY_FUNCTION__))
9019 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9019, __PRETTY_FUNCTION__))
;
9020 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9021 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9022 }
9023
9024 // FIXME: Using "DestType" for the entity we're printing is probably
9025 // bad.
9026 switch (FailedOverloadResult) {
9027 case OR_Ambiguous:
9028 FailedCandidateSet.NoteCandidates(
9029 PartialDiagnosticAt(Kind.getLocation(),
9030 S.PDiag(diag::err_ovl_ambiguous_init)
9031 << DestType << ArgsRange),
9032 S, OCD_AmbiguousCandidates, Args);
9033 break;
9034
9035 case OR_No_Viable_Function:
9036 if (Kind.getKind() == InitializationKind::IK_Default &&
9037 (Entity.getKind() == InitializedEntity::EK_Base ||
9038 Entity.getKind() == InitializedEntity::EK_Member) &&
9039 isa<CXXConstructorDecl>(S.CurContext)) {
9040 // This is implicit default initialization of a member or
9041 // base within a constructor. If no viable function was
9042 // found, notify the user that they need to explicitly
9043 // initialize this base/member.
9044 CXXConstructorDecl *Constructor
9045 = cast<CXXConstructorDecl>(S.CurContext);
9046 const CXXRecordDecl *InheritedFrom = nullptr;
9047 if (auto Inherited = Constructor->getInheritedConstructor())
9048 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9049 if (Entity.getKind() == InitializedEntity::EK_Base) {
9050 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9051 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9052 << S.Context.getTypeDeclType(Constructor->getParent())
9053 << /*base=*/0
9054 << Entity.getType()
9055 << InheritedFrom;
9056
9057 RecordDecl *BaseDecl
9058 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9059 ->getDecl();
9060 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9061 << S.Context.getTagDeclType(BaseDecl);
9062 } else {
9063 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9064 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9065 << S.Context.getTypeDeclType(Constructor->getParent())
9066 << /*member=*/1
9067 << Entity.getName()
9068 << InheritedFrom;
9069 S.Diag(Entity.getDecl()->getLocation(),
9070 diag::note_member_declared_at);
9071
9072 if (const RecordType *Record
9073 = Entity.getType()->getAs<RecordType>())
9074 S.Diag(Record->getDecl()->getLocation(),
9075 diag::note_previous_decl)
9076 << S.Context.getTagDeclType(Record->getDecl());
9077 }
9078 break;
9079 }
9080
9081 FailedCandidateSet.NoteCandidates(
9082 PartialDiagnosticAt(
9083 Kind.getLocation(),
9084 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9085 << DestType << ArgsRange),
9086 S, OCD_AllCandidates, Args);
9087 break;
9088
9089 case OR_Deleted: {
9090 OverloadCandidateSet::iterator Best;
9091 OverloadingResult Ovl
9092 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9093 if (Ovl != OR_Deleted) {
9094 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9095 << DestType << ArgsRange;
9096 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9096)
;
9097 break;
9098 }
9099
9100 // If this is a defaulted or implicitly-declared function, then
9101 // it was implicitly deleted. Make it clear that the deletion was
9102 // implicit.
9103 if (S.isImplicitlyDeleted(Best->Function))
9104 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9105 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9106 << DestType << ArgsRange;
9107 else
9108 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9109 << DestType << ArgsRange;
9110
9111 S.NoteDeletedFunction(Best->Function);
9112 break;
9113 }
9114
9115 case OR_Success:
9116 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9116)
;
9117 }
9118 }
9119 break;
9120
9121 case FK_DefaultInitOfConst:
9122 if (Entity.getKind() == InitializedEntity::EK_Member &&
9123 isa<CXXConstructorDecl>(S.CurContext)) {
9124 // This is implicit default-initialization of a const member in
9125 // a constructor. Complain that it needs to be explicitly
9126 // initialized.
9127 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9128 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9129 << (Constructor->getInheritedConstructor() ? 2 :
9130 Constructor->isImplicit() ? 1 : 0)
9131 << S.Context.getTypeDeclType(Constructor->getParent())
9132 << /*const=*/1
9133 << Entity.getName();
9134 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9135 << Entity.getName();
9136 } else {
9137 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9138 << DestType << (bool)DestType->getAs<RecordType>();
9139 }
9140 break;
9141
9142 case FK_Incomplete:
9143 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9144 diag::err_init_incomplete_type);
9145 break;
9146
9147 case FK_ListInitializationFailed: {
9148 // Run the init list checker again to emit diagnostics.
9149 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9150 diagnoseListInit(S, Entity, InitList);
9151 break;
9152 }
9153
9154 case FK_PlaceholderType: {
9155 // FIXME: Already diagnosed!
9156 break;
9157 }
9158
9159 case FK_ExplicitConstructor: {
9160 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9161 << Args[0]->getSourceRange();
9162 OverloadCandidateSet::iterator Best;
9163 OverloadingResult Ovl
9164 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9165 (void)Ovl;
9166 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9166, __PRETTY_FUNCTION__))
;
9167 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9168 S.Diag(CtorDecl->getLocation(),
9169 diag::note_explicit_ctor_deduction_guide_here) << false;
9170 break;
9171 }
9172 }
9173
9174 PrintInitLocationNote(S, Entity);
9175 return true;
9176}
9177
9178void InitializationSequence::dump(raw_ostream &OS) const {
9179 switch (SequenceKind) {
9180 case FailedSequence: {
9181 OS << "Failed sequence: ";
9182 switch (Failure) {
9183 case FK_TooManyInitsForReference:
9184 OS << "too many initializers for reference";
9185 break;
9186
9187 case FK_ParenthesizedListInitForReference:
9188 OS << "parenthesized list init for reference";
9189 break;
9190
9191 case FK_ArrayNeedsInitList:
9192 OS << "array requires initializer list";
9193 break;
9194
9195 case FK_AddressOfUnaddressableFunction:
9196 OS << "address of unaddressable function was taken";
9197 break;
9198
9199 case FK_ArrayNeedsInitListOrStringLiteral:
9200 OS << "array requires initializer list or string literal";
9201 break;
9202
9203 case FK_ArrayNeedsInitListOrWideStringLiteral:
9204 OS << "array requires initializer list or wide string literal";
9205 break;
9206
9207 case FK_NarrowStringIntoWideCharArray:
9208 OS << "narrow string into wide char array";
9209 break;
9210
9211 case FK_WideStringIntoCharArray:
9212 OS << "wide string into char array";
9213 break;
9214
9215 case FK_IncompatWideStringIntoWideChar:
9216 OS << "incompatible wide string into wide char array";
9217 break;
9218
9219 case FK_PlainStringIntoUTF8Char:
9220 OS << "plain string literal into char8_t array";
9221 break;
9222
9223 case FK_UTF8StringIntoPlainChar:
9224 OS << "u8 string literal into char array";
9225 break;
9226
9227 case FK_ArrayTypeMismatch:
9228 OS << "array type mismatch";
9229 break;
9230
9231 case FK_NonConstantArrayInit:
9232 OS << "non-constant array initializer";
9233 break;
9234
9235 case FK_AddressOfOverloadFailed:
9236 OS << "address of overloaded function failed";
9237 break;
9238
9239 case FK_ReferenceInitOverloadFailed:
9240 OS << "overload resolution for reference initialization failed";
9241 break;
9242
9243 case FK_NonConstLValueReferenceBindingToTemporary:
9244 OS << "non-const lvalue reference bound to temporary";
9245 break;
9246
9247 case FK_NonConstLValueReferenceBindingToBitfield:
9248 OS << "non-const lvalue reference bound to bit-field";
9249 break;
9250
9251 case FK_NonConstLValueReferenceBindingToVectorElement:
9252 OS << "non-const lvalue reference bound to vector element";
9253 break;
9254
9255 case FK_NonConstLValueReferenceBindingToUnrelated:
9256 OS << "non-const lvalue reference bound to unrelated type";
9257 break;
9258
9259 case FK_RValueReferenceBindingToLValue:
9260 OS << "rvalue reference bound to an lvalue";
9261 break;
9262
9263 case FK_ReferenceInitDropsQualifiers:
9264 OS << "reference initialization drops qualifiers";
9265 break;
9266
9267 case FK_ReferenceAddrspaceMismatchTemporary:
9268 OS << "reference with mismatching address space bound to temporary";
9269 break;
9270
9271 case FK_ReferenceInitFailed:
9272 OS << "reference initialization failed";
9273 break;
9274
9275 case FK_ConversionFailed:
9276 OS << "conversion failed";
9277 break;
9278
9279 case FK_ConversionFromPropertyFailed:
9280 OS << "conversion from property failed";
9281 break;
9282
9283 case FK_TooManyInitsForScalar:
9284 OS << "too many initializers for scalar";
9285 break;
9286
9287 case FK_ParenthesizedListInitForScalar:
9288 OS << "parenthesized list init for reference";
9289 break;
9290
9291 case FK_ReferenceBindingToInitList:
9292 OS << "referencing binding to initializer list";
9293 break;
9294
9295 case FK_InitListBadDestinationType:
9296 OS << "initializer list for non-aggregate, non-scalar type";
9297 break;
9298
9299 case FK_UserConversionOverloadFailed:
9300 OS << "overloading failed for user-defined conversion";
9301 break;
9302
9303 case FK_ConstructorOverloadFailed:
9304 OS << "constructor overloading failed";
9305 break;
9306
9307 case FK_DefaultInitOfConst:
9308 OS << "default initialization of a const variable";
9309 break;
9310
9311 case FK_Incomplete:
9312 OS << "initialization of incomplete type";
9313 break;
9314
9315 case FK_ListInitializationFailed:
9316 OS << "list initialization checker failure";
9317 break;
9318
9319 case FK_VariableLengthArrayHasInitializer:
9320 OS << "variable length array has an initializer";
9321 break;
9322
9323 case FK_PlaceholderType:
9324 OS << "initializer expression isn't contextually valid";
9325 break;
9326
9327 case FK_ListConstructorOverloadFailed:
9328 OS << "list constructor overloading failed";
9329 break;
9330
9331 case FK_ExplicitConstructor:
9332 OS << "list copy initialization chose explicit constructor";
9333 break;
9334 }
9335 OS << '\n';
9336 return;
9337 }
9338
9339 case DependentSequence:
9340 OS << "Dependent sequence\n";
9341 return;
9342
9343 case NormalSequence:
9344 OS << "Normal sequence: ";
9345 break;
9346 }
9347
9348 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9349 if (S != step_begin()) {
9350 OS << " -> ";
9351 }
9352
9353 switch (S->Kind) {
9354 case SK_ResolveAddressOfOverloadedFunction:
9355 OS << "resolve address of overloaded function";
9356 break;
9357
9358 case SK_CastDerivedToBaseRValue:
9359 OS << "derived-to-base (rvalue)";
9360 break;
9361
9362 case SK_CastDerivedToBaseXValue:
9363 OS << "derived-to-base (xvalue)";
9364 break;
9365
9366 case SK_CastDerivedToBaseLValue:
9367 OS << "derived-to-base (lvalue)";
9368 break;
9369
9370 case SK_BindReference:
9371 OS << "bind reference to lvalue";
9372 break;
9373
9374 case SK_BindReferenceToTemporary:
9375 OS << "bind reference to a temporary";
9376 break;
9377
9378 case SK_FinalCopy:
9379 OS << "final copy in class direct-initialization";
9380 break;
9381
9382 case SK_ExtraneousCopyToTemporary:
9383 OS << "extraneous C++03 copy to temporary";
9384 break;
9385
9386 case SK_UserConversion:
9387 OS << "user-defined conversion via " << *S->Function.Function;
9388 break;
9389
9390 case SK_QualificationConversionRValue:
9391 OS << "qualification conversion (rvalue)";
9392 break;
9393
9394 case SK_QualificationConversionXValue:
9395 OS << "qualification conversion (xvalue)";
9396 break;
9397
9398 case SK_QualificationConversionLValue:
9399 OS << "qualification conversion (lvalue)";
9400 break;
9401
9402 case SK_AtomicConversion:
9403 OS << "non-atomic-to-atomic conversion";
9404 break;
9405
9406 case SK_ConversionSequence:
9407 OS << "implicit conversion sequence (";
9408 S->ICS->dump(); // FIXME: use OS
9409 OS << ")";
9410 break;
9411
9412 case SK_ConversionSequenceNoNarrowing:
9413 OS << "implicit conversion sequence with narrowing prohibited (";
9414 S->ICS->dump(); // FIXME: use OS
9415 OS << ")";
9416 break;
9417
9418 case SK_ListInitialization:
9419 OS << "list aggregate initialization";
9420 break;
9421
9422 case SK_UnwrapInitList:
9423 OS << "unwrap reference initializer list";
9424 break;
9425
9426 case SK_RewrapInitList:
9427 OS << "rewrap reference initializer list";
9428 break;
9429
9430 case SK_ConstructorInitialization:
9431 OS << "constructor initialization";
9432 break;
9433
9434 case SK_ConstructorInitializationFromList:
9435 OS << "list initialization via constructor";
9436 break;
9437
9438 case SK_ZeroInitialization:
9439 OS << "zero initialization";
9440 break;
9441
9442 case SK_CAssignment:
9443 OS << "C assignment";
9444 break;
9445
9446 case SK_StringInit:
9447 OS << "string initialization";
9448 break;
9449
9450 case SK_ObjCObjectConversion:
9451 OS << "Objective-C object conversion";
9452 break;
9453
9454 case SK_ArrayLoopIndex:
9455 OS << "indexing for array initialization loop";
9456 break;
9457
9458 case SK_ArrayLoopInit:
9459 OS << "array initialization loop";
9460 break;
9461
9462 case SK_ArrayInit:
9463 OS << "array initialization";
9464 break;
9465
9466 case SK_GNUArrayInit:
9467 OS << "array initialization (GNU extension)";
9468 break;
9469
9470 case SK_ParenthesizedArrayInit:
9471 OS << "parenthesized array initialization";
9472 break;
9473
9474 case SK_PassByIndirectCopyRestore:
9475 OS << "pass by indirect copy and restore";
9476 break;
9477
9478 case SK_PassByIndirectRestore:
9479 OS << "pass by indirect restore";
9480 break;
9481
9482 case SK_ProduceObjCObject:
9483 OS << "Objective-C object retension";
9484 break;
9485
9486 case SK_StdInitializerList:
9487 OS << "std::initializer_list from initializer list";
9488 break;
9489
9490 case SK_StdInitializerListConstructorCall:
9491 OS << "list initialization from std::initializer_list";
9492 break;
9493
9494 case SK_OCLSamplerInit:
9495 OS << "OpenCL sampler_t from integer constant";
9496 break;
9497
9498 case SK_OCLZeroOpaqueType:
9499 OS << "OpenCL opaque type from zero";
9500 break;
9501 }
9502
9503 OS << " [" << S->Type.getAsString() << ']';
9504 }
9505
9506 OS << '\n';
9507}
9508
9509void InitializationSequence::dump() const {
9510 dump(llvm::errs());
9511}
9512
9513static bool NarrowingErrs(const LangOptions &L) {
9514 return L.CPlusPlus11 &&
9515 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9516}
9517
9518static void DiagnoseNarrowingInInitList(Sema &S,
9519 const ImplicitConversionSequence &ICS,
9520 QualType PreNarrowingType,
9521 QualType EntityType,
9522 const Expr *PostInit) {
9523 const StandardConversionSequence *SCS = nullptr;
9524 switch (ICS.getKind()) {
9525 case ImplicitConversionSequence::StandardConversion:
9526 SCS = &ICS.Standard;
9527 break;
9528 case ImplicitConversionSequence::UserDefinedConversion:
9529 SCS = &ICS.UserDefined.After;
9530 break;
9531 case ImplicitConversionSequence::AmbiguousConversion:
9532 case ImplicitConversionSequence::EllipsisConversion:
9533 case ImplicitConversionSequence::BadConversion:
9534 return;
9535 }
9536
9537 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9538 APValue ConstantValue;
9539 QualType ConstantType;
9540 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9541 ConstantType)) {
9542 case NK_Not_Narrowing:
9543 case NK_Dependent_Narrowing:
9544 // No narrowing occurred.
9545 return;
9546
9547 case NK_Type_Narrowing:
9548 // This was a floating-to-integer conversion, which is always considered a
9549 // narrowing conversion even if the value is a constant and can be
9550 // represented exactly as an integer.
9551 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9552 ? diag::ext_init_list_type_narrowing
9553 : diag::warn_init_list_type_narrowing)
9554 << PostInit->getSourceRange()
9555 << PreNarrowingType.getLocalUnqualifiedType()
9556 << EntityType.getLocalUnqualifiedType();
9557 break;
9558
9559 case NK_Constant_Narrowing:
9560 // A constant value was narrowed.
9561 S.Diag(PostInit->getBeginLoc(),
9562 NarrowingErrs(S.getLangOpts())
9563 ? diag::ext_init_list_constant_narrowing
9564 : diag::warn_init_list_constant_narrowing)
9565 << PostInit->getSourceRange()
9566 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9567 << EntityType.getLocalUnqualifiedType();
9568 break;
9569
9570 case NK_Variable_Narrowing:
9571 // A variable's value may have been narrowed.
9572 S.Diag(PostInit->getBeginLoc(),
9573 NarrowingErrs(S.getLangOpts())
9574 ? diag::ext_init_list_variable_narrowing
9575 : diag::warn_init_list_variable_narrowing)
9576 << PostInit->getSourceRange()
9577 << PreNarrowingType.getLocalUnqualifiedType()
9578 << EntityType.getLocalUnqualifiedType();
9579 break;
9580 }
9581
9582 SmallString<128> StaticCast;
9583 llvm::raw_svector_ostream OS(StaticCast);
9584 OS << "static_cast<";
9585 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9586 // It's important to use the typedef's name if there is one so that the
9587 // fixit doesn't break code using types like int64_t.
9588 //
9589 // FIXME: This will break if the typedef requires qualification. But
9590 // getQualifiedNameAsString() includes non-machine-parsable components.
9591 OS << *TT->getDecl();
9592 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9593 OS << BT->getName(S.getLangOpts());
9594 else {
9595 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9596 // with a broken cast.
9597 return;
9598 }
9599 OS << ">(";
9600 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9601 << PostInit->getSourceRange()
9602 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9603 << FixItHint::CreateInsertion(
9604 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9605}
9606
9607//===----------------------------------------------------------------------===//
9608// Initialization helper functions
9609//===----------------------------------------------------------------------===//
9610bool
9611Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9612 ExprResult Init) {
9613 if (Init.isInvalid())
9614 return false;
9615
9616 Expr *InitE = Init.get();
9617 assert(InitE && "No initialization expression")((InitE && "No initialization expression") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9617, __PRETTY_FUNCTION__))
;
9618
9619 InitializationKind Kind =
9620 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9621 InitializationSequence Seq(*this, Entity, Kind, InitE);
9622 return !Seq.Failed();
9623}
9624
9625ExprResult
9626Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9627 SourceLocation EqualLoc,
9628 ExprResult Init,
9629 bool TopLevelOfInitList,
9630 bool AllowExplicit) {
9631 if (Init.isInvalid())
9632 return ExprError();
9633
9634 Expr *InitE = Init.get();
9635 assert(InitE && "No initialization expression?")((InitE && "No initialization expression?") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9635, __PRETTY_FUNCTION__))
;
9636
9637 if (EqualLoc.isInvalid())
9638 EqualLoc = InitE->getBeginLoc();
9639
9640 InitializationKind Kind = InitializationKind::CreateCopy(
9641 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9642 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9643
9644 // Prevent infinite recursion when performing parameter copy-initialization.
9645 const bool ShouldTrackCopy =
9646 Entity.isParameterKind() && Seq.isConstructorInitialization();
9647 if (ShouldTrackCopy) {
9648 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9649 CurrentParameterCopyTypes.end()) {
9650 Seq.SetOverloadFailure(
9651 InitializationSequence::FK_ConstructorOverloadFailed,
9652 OR_No_Viable_Function);
9653
9654 // Try to give a meaningful diagnostic note for the problematic
9655 // constructor.
9656 const auto LastStep = Seq.step_end() - 1;
9657 assert(LastStep->Kind ==((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9658, __PRETTY_FUNCTION__))
9658 InitializationSequence::SK_ConstructorInitialization)((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9658, __PRETTY_FUNCTION__))
;
9659 const FunctionDecl *Function = LastStep->Function.Function;
9660 auto Candidate =
9661 llvm::find_if(Seq.getFailedCandidateSet(),
9662 [Function](const OverloadCandidate &Candidate) -> bool {
9663 return Candidate.Viable &&
9664 Candidate.Function == Function &&
9665 Candidate.Conversions.size() > 0;
9666 });
9667 if (Candidate != Seq.getFailedCandidateSet().end() &&
9668 Function->getNumParams() > 0) {
9669 Candidate->Viable = false;
9670 Candidate->FailureKind = ovl_fail_bad_conversion;
9671 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9672 InitE,
9673 Function->getParamDecl(0)->getType());
9674 }
9675 }
9676 CurrentParameterCopyTypes.push_back(Entity.getType());
9677 }
9678
9679 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9680
9681 if (ShouldTrackCopy)
9682 CurrentParameterCopyTypes.pop_back();
9683
9684 return Result;
9685}
9686
9687/// Determine whether RD is, or is derived from, a specialization of CTD.
9688static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9689 ClassTemplateDecl *CTD) {
9690 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9691 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9692 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9693 };
9694 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9695}
9696
9697QualType Sema::DeduceTemplateSpecializationFromInitializer(
9698 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9699 const InitializationKind &Kind, MultiExprArg Inits) {
9700 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9701 TSInfo->getType()->getContainedDeducedType());
9702 assert(DeducedTST && "not a deduced template specialization type")((DeducedTST && "not a deduced template specialization type"
) ? static_cast<void> (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaInit.cpp"
, 9702, __PRETTY_FUNCTION__))
;
9703
9704 auto TemplateName = DeducedTST->getTemplateName();
9705 if (TemplateName.isDependent())
9706 return Context.DependentTy;
9707
9708 // We can only perform deduction for class templates.
9709 auto *Template =
9710 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9711 if (!Template) {
9712 Diag(Kind.getLocation(),
9713 diag::err_deduced_non_class_template_specialization_type)
9714 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9715 if (auto *TD = TemplateName.getAsTemplateDecl())
9716 Diag(TD->getLocation(), diag::note_template_decl_here);
9717 return QualType();
9718 }
9719
9720 // Can't deduce from dependent arguments.
9721 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9722 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9723 diag::warn_cxx14_compat_class_template_argument_deduction)
9724 << TSInfo->getTypeLoc().getSourceRange() << 0;
9725 return Context.DependentTy;
9726 }
9727
9728 // FIXME: Perform "exact type" matching first, per CWG discussion?
9729 // Or implement this via an implied 'T(T) -> T' deduction guide?
9730
9731 // FIXME: Do we need/want a std::initializer_list<T> special case?
9732
9733 // Look up deduction guides, including those synthesized from constructors.
9734 //
9735 // C++1z [over.match.class.deduct]p1:
9736 // A set of functions and function templates is formed comprising:
9737 // - For each constructor of the class template designated by the
9738 // template-name, a function template [...]
9739 // - For each deduction-guide, a function or function template [...]
9740 DeclarationNameInfo NameInfo(
9741 Context.DeclarationNames.getCXXDeductionGuideName(Template),
9742 TSInfo->getTypeLoc().getEndLoc());
9743 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9744 LookupQualifiedName(Guides, Template->getDeclContext());
9745
9746 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9747 // clear on this, but they're not found by name so access does not apply.
9748 Guides.suppressDiagnostics();
9749
9750 // Figure out if this is list-initialization.
9751 InitListExpr *ListInit =
9752 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9753 ? dyn_cast<InitListExpr>(Inits[0])
9754 : nullptr;
9755
9756 // C++1z [over.match.class.deduct]p1:
9757 // Initialization and overload resolution are performed as described in
9758 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9759 // (as appropriate for the type of initialization performed) for an object
9760 // of a hypothetical class type, where the selected functions and function
9761 // templates are considered to be the constructors of that class type
9762 //
9763 // Since we know we're initializing a class type of a type unrelated to that
9764 // of the initializer, this reduces to something fairly reasonable.
9765 OverloadCandidateSet Candidates(Kind.getLocation(),
9766 OverloadCandidateSet::CSK_Normal);
9767 OverloadCandidateSet::iterator Best;
9768
9769 bool HasAnyDeductionGuide = false;
9770 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9771
9772 auto tryToResolveOverload =
9773 [&](bool OnlyListConstructors) -> OverloadingResult {
9774 Candidates.clear(OverloadCandidateSet::CSK_Normal);
9775 HasAnyDeductionGuide = false;
9776
9777 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9778 NamedDecl *D = (*I)->getUnderlyingDecl();
9779 if (D->isInvalidDecl())
9780 continue;
9781
9782 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9783 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9784 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9785 if (!GD)
9786 continue;
9787
9788 if (!GD->isImplicit())
9789 HasAnyDeductionGuide = true;
9790
9791 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9792 // For copy-initialization, the candidate functions are all the
9793 // converting constructors (12.3.1) of that class.
9794 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9795 // The converting constructors of T are candidate functions.
9796 if (!AllowExplicit) {
9797 // Overload resolution checks whether the deduction guide is declared
9798 // explicit for us.
9799
9800 // When looking for a converting constructor, deduction guides that
9801 // could never be called with one argument are not interesting to
9802 // check or note.
9803 if (GD->getMinRequiredArguments() > 1 ||
9804 (GD->getNumParams() == 0 && !GD->isVariadic()))
9805 continue;
9806 }
9807
9808 // C++ [over.match.list]p1.1: (first phase list initialization)
9809 // Initially, the candidate functions are the initializer-list
9810 // constructors of the class T
9811 if (OnlyListConstructors && !isInitListConstructor(GD))
9812 continue;
9813
9814 // C++ [over.match.list]p1.2: (second phase list initialization)
9815 // the candidate functions are all the constructors of the class T
9816 // C++ [over.match.ctor]p1: (all other cases)
9817 // the candidate functions are all the constructors of the class of
9818 // the object being initialized
9819
9820 // C++ [over.best.ics]p4:
9821 // When [...] the constructor [...] is a candidate by
9822 // - [over.match.copy] (in all cases)
9823 // FIXME: The "second phase of [over.match.list] case can also
9824 // theoretically happen here, but it's not clear whether we can
9825 // ever have a parameter of the right type.
9826 bool SuppressUserConversions = Kind.isCopyInit();
9827
9828 if (TD)
9829 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9830 Inits, Candidates, SuppressUserConversions,
9831 /*PartialOverloading*/ false,
9832 AllowExplicit);
9833 else
9834 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9835 SuppressUserConversions,
9836 /*PartialOverloading*/ false, AllowExplicit);
9837 }
9838 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9839 };
9840
9841 OverloadingResult Result = OR_No_Viable_Function;
9842
9843 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9844 // try initializer-list constructors.
9845 if (ListInit) {
9846 bool TryListConstructors = true;
9847
9848 // Try list constructors unless the list is empty and the class has one or
9849 // more default constructors, in which case those constructors win.
9850 if (!ListInit->getNumInits()) {
9851 for (NamedDecl *D : Guides) {
9852 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9853 if (FD && FD->getMinRequiredArguments() == 0) {
9854 TryListConstructors = false;
9855 break;
9856 }
9857 }
9858 } else if (ListInit->getNumInits() == 1) {
9859 // C++ [over.match.class.deduct]:
9860 // As an exception, the first phase in [over.match.list] (considering
9861 // initializer-list constructors) is omitted if the initializer list
9862 // consists of a single expression of type cv U, where U is a
9863 // specialization of C or a class derived from a specialization of C.
9864 Expr *E = ListInit->getInit(0);
9865 auto *RD = E->getType()->getAsCXXRecordDecl();
9866 if (!isa<InitListExpr>(E) && RD &&
9867 isCompleteType(Kind.getLocation(), E->getType()) &&
9868 isOrIsDerivedFromSpecializationOf(RD, Template))
9869 TryListConstructors = false;
9870 }
9871
9872 if (TryListConstructors)
9873 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9874 // Then unwrap the initializer list and try again considering all
9875 // constructors.
9876 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9877 }
9878
9879 // If list-initialization fails, or if we're doing any other kind of
9880 // initialization, we (eventually) consider constructors.
9881 if (Result == OR_No_Viable_Function)
9882 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9883
9884 switch (Result) {
9885 case OR_Ambiguous:
9886 // FIXME: For list-initialization candidates, it'd usually be better to
9887 // list why they were not viable when given the initializer list itself as
9888 // an argument.
9889 Candidates.NoteCandidates(
9890 PartialDiagnosticAt(
9891 Kind.getLocation(),
9892 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9893 << TemplateName),
9894 *this, OCD_AmbiguousCandidates, Inits);
9895 return QualType();
9896
9897 case OR_No_Viable_Function: {
9898 CXXRecordDecl *Primary =
9899 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9900 bool Complete =
9901 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9902 Candidates.NoteCandidates(
9903 PartialDiagnosticAt(
9904 Kind.getLocation(),
9905 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9906 : diag::err_deduced_class_template_incomplete)
9907 << TemplateName << !Guides.empty()),
9908 *this, OCD_AllCandidates, Inits);
9909 return QualType();
9910 }
9911
9912 case OR_Deleted: {
9913 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9914 << TemplateName;
9915 NoteDeletedFunction(Best->Function);
9916 return QualType();
9917 }
9918
9919 case OR_Success:
9920 // C++ [over.match.list]p1:
9921 // In copy-list-initialization, if an explicit constructor is chosen, the
9922 // initialization is ill-formed.
9923 if (Kind.isCopyInit() && ListInit &&
9924 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9925 bool IsDeductionGuide = !Best->Function->isImplicit();
9926 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9927 << TemplateName << IsDeductionGuide;
9928 Diag(Best->Function->getLocation(),
9929 diag::note_explicit_ctor_deduction_guide_here)
9930 << IsDeductionGuide;
9931 return QualType();
9932 }
9933
9934 // Make sure we didn't select an unusable deduction guide, and mark it
9935 // as referenced.
9936 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9937 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9938 break;
9939 }
9940
9941 // C++ [dcl.type.class.deduct]p1:
9942 // The placeholder is replaced by the return type of the function selected
9943 // by overload resolution for class template deduction.
9944 QualType DeducedType =
9945 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9946 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9947 diag::warn_cxx14_compat_class_template_argument_deduction)
9948 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9949
9950 // Warn if CTAD was used on a type that does not have any user-defined
9951 // deduction guides.
9952 if (!HasAnyDeductionGuide) {
9953 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9954 diag::warn_ctad_maybe_unsupported)
9955 << TemplateName;
9956 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9957 }
9958
9959 return DeducedType;
9960}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h

1//===- Initialization.h - Semantic Analysis for Initializers ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides supporting data types for initialization of objects.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_SEMA_INITIALIZATION_H
14#define LLVM_CLANG_SEMA_INITIALIZATION_H
15
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclAccessPair.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/Type.h"
23#include "clang/Basic/IdentifierTable.h"
24#include "clang/Basic/LLVM.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/SourceLocation.h"
27#include "clang/Basic/Specifiers.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/Ownership.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/ADT/iterator_range.h"
34#include "llvm/Support/Casting.h"
35#include <cassert>
36#include <cstdint>
37#include <string>
38
39namespace clang {
40
41class APValue;
42class CXXBaseSpecifier;
43class CXXConstructorDecl;
44class ObjCMethodDecl;
45class Sema;
46
47/// Describes an entity that is being initialized.
48class alignas(8) InitializedEntity {
49public:
50 /// Specifies the kind of entity being initialized.
51 enum EntityKind {
52 /// The entity being initialized is a variable.
53 EK_Variable,
54
55 /// The entity being initialized is a function parameter.
56 EK_Parameter,
57
58 /// The entity being initialized is the result of a function call.
59 EK_Result,
60
61 /// The entity being initialized is the result of a statement expression.
62 EK_StmtExprResult,
63
64 /// The entity being initialized is an exception object that
65 /// is being thrown.
66 EK_Exception,
67
68 /// The entity being initialized is a non-static data member
69 /// subobject.
70 EK_Member,
71
72 /// The entity being initialized is an element of an array.
73 EK_ArrayElement,
74
75 /// The entity being initialized is an object (or array of
76 /// objects) allocated via new.
77 EK_New,
78
79 /// The entity being initialized is a temporary object.
80 EK_Temporary,
81
82 /// The entity being initialized is a base member subobject.
83 EK_Base,
84
85 /// The initialization is being done by a delegating constructor.
86 EK_Delegating,
87
88 /// The entity being initialized is an element of a vector.
89 /// or vector.
90 EK_VectorElement,
91
92 /// The entity being initialized is a field of block descriptor for
93 /// the copied-in c++ object.
94 EK_BlockElement,
95
96 /// The entity being initialized is a field of block descriptor for the
97 /// copied-in lambda object that's used in the lambda to block conversion.
98 EK_LambdaToBlockConversionBlockElement,
99
100 /// The entity being initialized is the real or imaginary part of a
101 /// complex number.
102 EK_ComplexElement,
103
104 /// The entity being initialized is the field that captures a
105 /// variable in a lambda.
106 EK_LambdaCapture,
107
108 /// The entity being initialized is the initializer for a compound
109 /// literal.
110 EK_CompoundLiteralInit,
111
112 /// The entity being implicitly initialized back to the formal
113 /// result type.
114 EK_RelatedResult,
115
116 /// The entity being initialized is a function parameter; function
117 /// is member of group of audited CF APIs.
118 EK_Parameter_CF_Audited,
119
120 /// The entity being initialized is a structured binding of a
121 /// decomposition declaration.
122 EK_Binding,
123
124 // Note: err_init_conversion_failed in DiagnosticSemaKinds.td uses this
125 // enum as an index for its first %select. When modifying this list,
126 // that diagnostic text needs to be updated as well.
127 };
128
129private:
130 /// The kind of entity being initialized.
131 EntityKind Kind;
132
133 /// If non-NULL, the parent entity in which this
134 /// initialization occurs.
135 const InitializedEntity *Parent = nullptr;
136
137 /// The type of the object or reference being initialized.
138 QualType Type;
139
140 /// The mangling number for the next reference temporary to be created.
141 mutable unsigned ManglingNumber = 0;
142
143 struct LN {
144 /// When Kind == EK_Result, EK_Exception, EK_New, the
145 /// location of the 'return', 'throw', or 'new' keyword,
146 /// respectively. When Kind == EK_Temporary, the location where
147 /// the temporary is being created.
148 unsigned Location;
149
150 /// Whether the entity being initialized may end up using the
151 /// named return value optimization (NRVO).
152 bool NRVO;
153 };
154
155 struct VD {
156 /// The VarDecl, FieldDecl, or BindingDecl being initialized.
157 ValueDecl *VariableOrMember;
158
159 /// When Kind == EK_Member, whether this is an implicit member
160 /// initialization in a copy or move constructor. These can perform array
161 /// copies.
162 bool IsImplicitFieldInit;
163
164 /// When Kind == EK_Member, whether this is the initial initialization
165 /// check for a default member initializer.
166 bool IsDefaultMemberInit;
167 };
168
169 struct C {
170 /// The name of the variable being captured by an EK_LambdaCapture.
171 IdentifierInfo *VarID;
172
173 /// The source location at which the capture occurs.
174 unsigned Location;
175 };
176
177 union {
178 /// When Kind == EK_Variable, EK_Member or EK_Binding, the variable.
179 VD Variable;
180
181 /// When Kind == EK_RelatedResult, the ObjectiveC method where
182 /// result type was implicitly changed to accommodate ARC semantics.
183 ObjCMethodDecl *MethodDecl;
184
185 /// When Kind == EK_Parameter, the ParmVarDecl, with the
186 /// low bit indicating whether the parameter is "consumed".
187 uintptr_t Parameter;
188
189 /// When Kind == EK_Temporary or EK_CompoundLiteralInit, the type
190 /// source information for the temporary.
191 TypeSourceInfo *TypeInfo;
192
193 struct LN LocAndNRVO;
194
195 /// When Kind == EK_Base, the base specifier that provides the
196 /// base class. The lower bit specifies whether the base is an inherited
197 /// virtual base.
198 uintptr_t Base;
199
200 /// When Kind == EK_ArrayElement, EK_VectorElement, or
201 /// EK_ComplexElement, the index of the array or vector element being
202 /// initialized.
203 unsigned Index;
204
205 struct C Capture;
206 };
207
208 InitializedEntity() = default;
209
210 /// Create the initialization entity for a variable.
211 InitializedEntity(VarDecl *Var, EntityKind EK = EK_Variable)
212 : Kind(EK), Type(Var->getType()), Variable{Var, false, false} {}
213
214 /// Create the initialization entity for the result of a
215 /// function, throwing an object, performing an explicit cast, or
216 /// initializing a parameter for which there is no declaration.
217 InitializedEntity(EntityKind Kind, SourceLocation Loc, QualType Type,
218 bool NRVO = false)
219 : Kind(Kind), Type(Type) {
220 LocAndNRVO.Location = Loc.getRawEncoding();
221 LocAndNRVO.NRVO = NRVO;
222 }
223
224 /// Create the initialization entity for a member subobject.
225 InitializedEntity(FieldDecl *Member, const InitializedEntity *Parent,
226 bool Implicit, bool DefaultMemberInit)
227 : Kind(EK_Member), Parent(Parent), Type(Member->getType()),
228 Variable{Member, Implicit, DefaultMemberInit} {}
229
230 /// Create the initialization entity for an array element.
231 InitializedEntity(ASTContext &Context, unsigned Index,
232 const InitializedEntity &Parent);
233
234 /// Create the initialization entity for a lambda capture.
235 InitializedEntity(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
236 : Kind(EK_LambdaCapture), Type(FieldType) {
237 Capture.VarID = VarID;
238 Capture.Location = Loc.getRawEncoding();
239 }
240
241public:
242 /// Create the initialization entity for a variable.
243 static InitializedEntity InitializeVariable(VarDecl *Var) {
244 return InitializedEntity(Var);
245 }
246
247 /// Create the initialization entity for a parameter.
248 static InitializedEntity InitializeParameter(ASTContext &Context,
249 const ParmVarDecl *Parm) {
250 return InitializeParameter(Context, Parm, Parm->getType());
251 }
252
253 /// Create the initialization entity for a parameter, but use
254 /// another type.
255 static InitializedEntity InitializeParameter(ASTContext &Context,
256 const ParmVarDecl *Parm,
257 QualType Type) {
258 bool Consumed = (Context.getLangOpts().ObjCAutoRefCount &&
259 Parm->hasAttr<NSConsumedAttr>());
260
261 InitializedEntity Entity;
262 Entity.Kind = EK_Parameter;
263 Entity.Type =
264 Context.getVariableArrayDecayedType(Type.getUnqualifiedType());
265 Entity.Parent = nullptr;
266 Entity.Parameter
267 = (static_cast<uintptr_t>(Consumed) | reinterpret_cast<uintptr_t>(Parm));
268 return Entity;
269 }
270
271 /// Create the initialization entity for a parameter that is
272 /// only known by its type.
273 static InitializedEntity InitializeParameter(ASTContext &Context,
274 QualType Type,
275 bool Consumed) {
276 InitializedEntity Entity;
277 Entity.Kind = EK_Parameter;
278 Entity.Type = Context.getVariableArrayDecayedType(Type);
279 Entity.Parent = nullptr;
280 Entity.Parameter = (Consumed);
281 return Entity;
282 }
283
284 /// Create the initialization entity for the result of a function.
285 static InitializedEntity InitializeResult(SourceLocation ReturnLoc,
286 QualType Type, bool NRVO) {
287 return InitializedEntity(EK_Result, ReturnLoc, Type, NRVO);
288 }
289
290 static InitializedEntity InitializeStmtExprResult(SourceLocation ReturnLoc,
291 QualType Type) {
292 return InitializedEntity(EK_StmtExprResult, ReturnLoc, Type);
293 }
294
295 static InitializedEntity InitializeBlock(SourceLocation BlockVarLoc,
296 QualType Type, bool NRVO) {
297 return InitializedEntity(EK_BlockElement, BlockVarLoc, Type, NRVO);
298 }
299
300 static InitializedEntity InitializeLambdaToBlock(SourceLocation BlockVarLoc,
301 QualType Type, bool NRVO) {
302 return InitializedEntity(EK_LambdaToBlockConversionBlockElement,
303 BlockVarLoc, Type, NRVO);
304 }
305
306 /// Create the initialization entity for an exception object.
307 static InitializedEntity InitializeException(SourceLocation ThrowLoc,
308 QualType Type, bool NRVO) {
309 return InitializedEntity(EK_Exception, ThrowLoc, Type, NRVO);
310 }
311
312 /// Create the initialization entity for an object allocated via new.
313 static InitializedEntity InitializeNew(SourceLocation NewLoc, QualType Type) {
314 return InitializedEntity(EK_New, NewLoc, Type);
315 }
316
317 /// Create the initialization entity for a temporary.
318 static InitializedEntity InitializeTemporary(QualType Type) {
319 return InitializeTemporary(nullptr, Type);
320 }
321
322 /// Create the initialization entity for a temporary.
323 static InitializedEntity InitializeTemporary(TypeSourceInfo *TypeInfo) {
324 return InitializeTemporary(TypeInfo, TypeInfo->getType());
325 }
326
327 /// Create the initialization entity for a temporary.
328 static InitializedEntity InitializeTemporary(TypeSourceInfo *TypeInfo,
329 QualType Type) {
330 InitializedEntity Result(EK_Temporary, SourceLocation(), Type);
331 Result.TypeInfo = TypeInfo;
332 return Result;
333 }
334
335 /// Create the initialization entity for a related result.
336 static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD,
337 QualType Type) {
338 InitializedEntity Result(EK_RelatedResult, SourceLocation(), Type);
339 Result.MethodDecl = MD;
340 return Result;
341 }
342
343 /// Create the initialization entity for a base class subobject.
344 static InitializedEntity
345 InitializeBase(ASTContext &Context, const CXXBaseSpecifier *Base,
346 bool IsInheritedVirtualBase,
347 const InitializedEntity *Parent = nullptr);
348
349 /// Create the initialization entity for a delegated constructor.
350 static InitializedEntity InitializeDelegation(QualType Type) {
351 return InitializedEntity(EK_Delegating, SourceLocation(), Type);
352 }
353
354 /// Create the initialization entity for a member subobject.
355 static InitializedEntity
356 InitializeMember(FieldDecl *Member,
357 const InitializedEntity *Parent = nullptr,
358 bool Implicit = false) {
359 return InitializedEntity(Member, Parent, Implicit, false);
360 }
361
362 /// Create the initialization entity for a member subobject.
363 static InitializedEntity
364 InitializeMember(IndirectFieldDecl *Member,
365 const InitializedEntity *Parent = nullptr,
366 bool Implicit = false) {
367 return InitializedEntity(Member->getAnonField(), Parent, Implicit, false);
368 }
369
370 /// Create the initialization entity for a default member initializer.
371 static InitializedEntity
372 InitializeMemberFromDefaultMemberInitializer(FieldDecl *Member) {
373 return InitializedEntity(Member, nullptr, false, true);
374 }
375
376 /// Create the initialization entity for an array element.
377 static InitializedEntity InitializeElement(ASTContext &Context,
378 unsigned Index,
379 const InitializedEntity &Parent) {
380 return InitializedEntity(Context, Index, Parent);
381 }
382
383 /// Create the initialization entity for a structured binding.
384 static InitializedEntity InitializeBinding(VarDecl *Binding) {
385 return InitializedEntity(Binding, EK_Binding);
386 }
387
388 /// Create the initialization entity for a lambda capture.
389 ///
390 /// \p VarID The name of the entity being captured, or nullptr for 'this'.
391 static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID,
392 QualType FieldType,
393 SourceLocation Loc) {
394 return InitializedEntity(VarID, FieldType, Loc);
395 }
396
397 /// Create the entity for a compound literal initializer.
398 static InitializedEntity InitializeCompoundLiteralInit(TypeSourceInfo *TSI) {
399 InitializedEntity Result(EK_CompoundLiteralInit, SourceLocation(),
400 TSI->getType());
401 Result.TypeInfo = TSI;
402 return Result;
403 }
404
405 /// Determine the kind of initialization.
406 EntityKind getKind() const { return Kind; }
407
408 /// Retrieve the parent of the entity being initialized, when
409 /// the initialization itself is occurring within the context of a
410 /// larger initialization.
411 const InitializedEntity *getParent() const { return Parent; }
412
413 /// Retrieve type being initialized.
414 QualType getType() const { return Type; }
415
416 /// Retrieve complete type-source information for the object being
417 /// constructed, if known.
418 TypeSourceInfo *getTypeSourceInfo() const {
419 if (Kind == EK_Temporary || Kind == EK_CompoundLiteralInit)
420 return TypeInfo;
421
422 return nullptr;
423 }
424
425 /// Retrieve the name of the entity being initialized.
426 DeclarationName getName() const;
427
428 /// Retrieve the variable, parameter, or field being
429 /// initialized.
430 ValueDecl *getDecl() const;
431
432 /// Retrieve the ObjectiveC method being initialized.
433 ObjCMethodDecl *getMethodDecl() const { return MethodDecl; }
434
435 /// Determine whether this initialization allows the named return
436 /// value optimization, which also applies to thrown objects.
437 bool allowsNRVO() const;
438
439 bool isParameterKind() const {
440 return (getKind() == EK_Parameter ||
441 getKind() == EK_Parameter_CF_Audited);
442 }
443
444 /// Determine whether this initialization consumes the
445 /// parameter.
446 bool isParameterConsumed() const {
447 assert(isParameterKind() && "Not a parameter")((isParameterKind() && "Not a parameter") ? static_cast
<void> (0) : __assert_fail ("isParameterKind() && \"Not a parameter\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 447, __PRETTY_FUNCTION__))
;
448 return (Parameter & 1);
449 }
450
451 /// Retrieve the base specifier.
452 const CXXBaseSpecifier *getBaseSpecifier() const {
453 assert(getKind() == EK_Base && "Not a base specifier")((getKind() == EK_Base && "Not a base specifier") ? static_cast
<void> (0) : __assert_fail ("getKind() == EK_Base && \"Not a base specifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 453, __PRETTY_FUNCTION__))
;
454 return reinterpret_cast<const CXXBaseSpecifier *>(Base & ~0x1);
455 }
456
457 /// Return whether the base is an inherited virtual base.
458 bool isInheritedVirtualBase() const {
459 assert(getKind() == EK_Base && "Not a base specifier")((getKind() == EK_Base && "Not a base specifier") ? static_cast
<void> (0) : __assert_fail ("getKind() == EK_Base && \"Not a base specifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 459, __PRETTY_FUNCTION__))
;
460 return Base & 0x1;
461 }
462
463 /// Determine whether this is an array new with an unknown bound.
464 bool isVariableLengthArrayNew() const {
465 return getKind() == EK_New && dyn_cast_or_null<IncompleteArrayType>(
466 getType()->getAsArrayTypeUnsafe());
467 }
468
469 /// Is this the implicit initialization of a member of a class from
470 /// a defaulted constructor?
471 bool isImplicitMemberInitializer() const {
472 return getKind() == EK_Member && Variable.IsImplicitFieldInit;
473 }
474
475 /// Is this the default member initializer of a member (specified inside
476 /// the class definition)?
477 bool isDefaultMemberInitializer() const {
478 return getKind() == EK_Member && Variable.IsDefaultMemberInit;
479 }
480
481 /// Determine the location of the 'return' keyword when initializing
482 /// the result of a function call.
483 SourceLocation getReturnLoc() const {
484 assert(getKind() == EK_Result && "No 'return' location!")((getKind() == EK_Result && "No 'return' location!") ?
static_cast<void> (0) : __assert_fail ("getKind() == EK_Result && \"No 'return' location!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 484, __PRETTY_FUNCTION__))
;
485 return SourceLocation::getFromRawEncoding(LocAndNRVO.Location);
486 }
487
488 /// Determine the location of the 'throw' keyword when initializing
489 /// an exception object.
490 SourceLocation getThrowLoc() const {
491 assert(getKind() == EK_Exception && "No 'throw' location!")((getKind() == EK_Exception && "No 'throw' location!"
) ? static_cast<void> (0) : __assert_fail ("getKind() == EK_Exception && \"No 'throw' location!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 491, __PRETTY_FUNCTION__))
;
492 return SourceLocation::getFromRawEncoding(LocAndNRVO.Location);
493 }
494
495 /// If this is an array, vector, or complex number element, get the
496 /// element's index.
497 unsigned getElementIndex() const {
498 assert(getKind() == EK_ArrayElement || getKind() == EK_VectorElement ||((getKind() == EK_ArrayElement || getKind() == EK_VectorElement
|| getKind() == EK_ComplexElement) ? static_cast<void>
(0) : __assert_fail ("getKind() == EK_ArrayElement || getKind() == EK_VectorElement || getKind() == EK_ComplexElement"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 499, __PRETTY_FUNCTION__))
499 getKind() == EK_ComplexElement)((getKind() == EK_ArrayElement || getKind() == EK_VectorElement
|| getKind() == EK_ComplexElement) ? static_cast<void>
(0) : __assert_fail ("getKind() == EK_ArrayElement || getKind() == EK_VectorElement || getKind() == EK_ComplexElement"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 499, __PRETTY_FUNCTION__))
;
500 return Index;
501 }
502
503 /// If this is already the initializer for an array or vector
504 /// element, sets the element index.
505 void setElementIndex(unsigned Index) {
506 assert(getKind() == EK_ArrayElement || getKind() == EK_VectorElement ||((getKind() == EK_ArrayElement || getKind() == EK_VectorElement
|| getKind() == EK_ComplexElement) ? static_cast<void>
(0) : __assert_fail ("getKind() == EK_ArrayElement || getKind() == EK_VectorElement || getKind() == EK_ComplexElement"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 507, __PRETTY_FUNCTION__))
507 getKind() == EK_ComplexElement)((getKind() == EK_ArrayElement || getKind() == EK_VectorElement
|| getKind() == EK_ComplexElement) ? static_cast<void>
(0) : __assert_fail ("getKind() == EK_ArrayElement || getKind() == EK_VectorElement || getKind() == EK_ComplexElement"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 507, __PRETTY_FUNCTION__))
;
508 this->Index = Index;
509 }
510
511 /// For a lambda capture, return the capture's name.
512 StringRef getCapturedVarName() const {
513 assert(getKind() == EK_LambdaCapture && "Not a lambda capture!")((getKind() == EK_LambdaCapture && "Not a lambda capture!"
) ? static_cast<void> (0) : __assert_fail ("getKind() == EK_LambdaCapture && \"Not a lambda capture!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 513, __PRETTY_FUNCTION__))
;
514 return Capture.VarID ? Capture.VarID->getName() : "this";
515 }
516
517 /// Determine the location of the capture when initializing
518 /// field from a captured variable in a lambda.
519 SourceLocation getCaptureLoc() const {
520 assert(getKind() == EK_LambdaCapture && "Not a lambda capture!")((getKind() == EK_LambdaCapture && "Not a lambda capture!"
) ? static_cast<void> (0) : __assert_fail ("getKind() == EK_LambdaCapture && \"Not a lambda capture!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 520, __PRETTY_FUNCTION__))
;
521 return SourceLocation::getFromRawEncoding(Capture.Location);
522 }
523
524 void setParameterCFAudited() {
525 Kind = EK_Parameter_CF_Audited;
526 }
527
528 unsigned allocateManglingNumber() const { return ++ManglingNumber; }
529
530 /// Dump a representation of the initialized entity to standard error,
531 /// for debugging purposes.
532 void dump() const;
533
534private:
535 unsigned dumpImpl(raw_ostream &OS) const;
536};
537
538/// Describes the kind of initialization being performed, along with
539/// location information for tokens related to the initialization (equal sign,
540/// parentheses).
541class InitializationKind {
542public:
543 /// The kind of initialization being performed.
544 enum InitKind {
545 /// Direct initialization
546 IK_Direct,
547
548 /// Direct list-initialization
549 IK_DirectList,
550
551 /// Copy initialization
552 IK_Copy,
553
554 /// Default initialization
555 IK_Default,
556
557 /// Value initialization
558 IK_Value
559 };
560
561private:
562 /// The context of the initialization.
563 enum InitContext {
564 /// Normal context
565 IC_Normal,
566
567 /// Normal context, but allows explicit conversion functionss
568 IC_ExplicitConvs,
569
570 /// Implicit context (value initialization)
571 IC_Implicit,
572
573 /// Static cast context
574 IC_StaticCast,
575
576 /// C-style cast context
577 IC_CStyleCast,
578
579 /// Functional cast context
580 IC_FunctionalCast
581 };
582
583 /// The kind of initialization being performed.
584 InitKind Kind : 8;
585
586 /// The context of the initialization.
587 InitContext Context : 8;
588
589 /// The source locations involved in the initialization.
590 SourceLocation Locations[3];
591
592 InitializationKind(InitKind Kind, InitContext Context, SourceLocation Loc1,
593 SourceLocation Loc2, SourceLocation Loc3)
594 : Kind(Kind), Context(Context) {
595 Locations[0] = Loc1;
596 Locations[1] = Loc2;
597 Locations[2] = Loc3;
598 }
599
600public:
601 /// Create a direct initialization.
602 static InitializationKind CreateDirect(SourceLocation InitLoc,
603 SourceLocation LParenLoc,
604 SourceLocation RParenLoc) {
605 return InitializationKind(IK_Direct, IC_Normal,
606 InitLoc, LParenLoc, RParenLoc);
607 }
608
609 static InitializationKind CreateDirectList(SourceLocation InitLoc) {
610 return InitializationKind(IK_DirectList, IC_Normal, InitLoc, InitLoc,
611 InitLoc);
612 }
613
614 static InitializationKind CreateDirectList(SourceLocation InitLoc,
615 SourceLocation LBraceLoc,
616 SourceLocation RBraceLoc) {
617 return InitializationKind(IK_DirectList, IC_Normal, InitLoc, LBraceLoc,
618 RBraceLoc);
619 }
620
621 /// Create a direct initialization due to a cast that isn't a C-style
622 /// or functional cast.
623 static InitializationKind CreateCast(SourceRange TypeRange) {
624 return InitializationKind(IK_Direct, IC_StaticCast, TypeRange.getBegin(),
625 TypeRange.getBegin(), TypeRange.getEnd());
626 }
627
628 /// Create a direct initialization for a C-style cast.
629 static InitializationKind CreateCStyleCast(SourceLocation StartLoc,
630 SourceRange TypeRange,
631 bool InitList) {
632 // C++ cast syntax doesn't permit init lists, but C compound literals are
633 // exactly that.
634 return InitializationKind(InitList ? IK_DirectList : IK_Direct,
635 IC_CStyleCast, StartLoc, TypeRange.getBegin(),
636 TypeRange.getEnd());
637 }
638
639 /// Create a direct initialization for a functional cast.
640 static InitializationKind CreateFunctionalCast(SourceRange TypeRange,
641 bool InitList) {
642 return InitializationKind(InitList ? IK_DirectList : IK_Direct,
643 IC_FunctionalCast, TypeRange.getBegin(),
644 TypeRange.getBegin(), TypeRange.getEnd());
645 }
646
647 /// Create a copy initialization.
648 static InitializationKind CreateCopy(SourceLocation InitLoc,
649 SourceLocation EqualLoc,
650 bool AllowExplicitConvs = false) {
651 return InitializationKind(IK_Copy,
652 AllowExplicitConvs? IC_ExplicitConvs : IC_Normal,
653 InitLoc, EqualLoc, EqualLoc);
654 }
655
656 /// Create a default initialization.
657 static InitializationKind CreateDefault(SourceLocation InitLoc) {
658 return InitializationKind(IK_Default, IC_Normal, InitLoc, InitLoc, InitLoc);
659 }
660
661 /// Create a value initialization.
662 static InitializationKind CreateValue(SourceLocation InitLoc,
663 SourceLocation LParenLoc,
664 SourceLocation RParenLoc,
665 bool isImplicit = false) {
666 return InitializationKind(IK_Value, isImplicit ? IC_Implicit : IC_Normal,
667 InitLoc, LParenLoc, RParenLoc);
668 }
669
670 /// Create an initialization from an initializer (which, for direct
671 /// initialization from a parenthesized list, will be a ParenListExpr).
672 static InitializationKind CreateForInit(SourceLocation Loc, bool DirectInit,
673 Expr *Init) {
674 if (!Init) return CreateDefault(Loc);
675 if (!DirectInit)
676 return CreateCopy(Loc, Init->getBeginLoc());
677 if (isa<InitListExpr>(Init))
678 return CreateDirectList(Loc, Init->getBeginLoc(), Init->getEndLoc());
679 return CreateDirect(Loc, Init->getBeginLoc(), Init->getEndLoc());
680 }
681
682 /// Determine the initialization kind.
683 InitKind getKind() const {
684 return Kind;
685 }
686
687 /// Determine whether this initialization is an explicit cast.
688 bool isExplicitCast() const {
689 return Context >= IC_StaticCast;
690 }
691
692 /// Determine whether this initialization is a C-style cast.
693 bool isCStyleOrFunctionalCast() const {
694 return Context >= IC_CStyleCast;
695 }
696
697 /// Determine whether this is a C-style cast.
698 bool isCStyleCast() const {
699 return Context == IC_CStyleCast;
700 }
701
702 /// Determine whether this is a functional-style cast.
703 bool isFunctionalCast() const {
704 return Context == IC_FunctionalCast;
705 }
706
707 /// Determine whether this initialization is an implicit
708 /// value-initialization, e.g., as occurs during aggregate
709 /// initialization.
710 bool isImplicitValueInit() const { return Context == IC_Implicit; }
711
712 /// Retrieve the location at which initialization is occurring.
713 SourceLocation getLocation() const { return Locations[0]; }
714
715 /// Retrieve the source range that covers the initialization.
716 SourceRange getRange() const {
717 return SourceRange(Locations[0], Locations[2]);
718 }
719
720 /// Retrieve the location of the equal sign for copy initialization
721 /// (if present).
722 SourceLocation getEqualLoc() const {
723 assert(Kind == IK_Copy && "Only copy initialization has an '='")((Kind == IK_Copy && "Only copy initialization has an '='"
) ? static_cast<void> (0) : __assert_fail ("Kind == IK_Copy && \"Only copy initialization has an '='\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 723, __PRETTY_FUNCTION__))
;
724 return Locations[1];
725 }
726
727 bool isCopyInit() const { return Kind == IK_Copy; }
728
729 /// Retrieve whether this initialization allows the use of explicit
730 /// constructors.
731 bool AllowExplicit() const { return !isCopyInit(); }
732
733 /// Retrieve whether this initialization allows the use of explicit
734 /// conversion functions when binding a reference. If the reference is the
735 /// first parameter in a copy or move constructor, such conversions are
736 /// permitted even though we are performing copy-initialization.
737 bool allowExplicitConversionFunctionsInRefBinding() const {
738 return !isCopyInit() || Context == IC_ExplicitConvs;
739 }
740
741 /// Determine whether this initialization has a source range containing the
742 /// locations of open and closing parentheses or braces.
743 bool hasParenOrBraceRange() const {
744 return Kind == IK_Direct || Kind == IK_Value || Kind == IK_DirectList;
745 }
746
747 /// Retrieve the source range containing the locations of the open
748 /// and closing parentheses or braces for value, direct, and direct list
749 /// initializations.
750 SourceRange getParenOrBraceRange() const {
751 assert(hasParenOrBraceRange() && "Only direct, value, and direct-list "((hasParenOrBraceRange() && "Only direct, value, and direct-list "
"initialization have parentheses or " "braces") ? static_cast
<void> (0) : __assert_fail ("hasParenOrBraceRange() && \"Only direct, value, and direct-list \" \"initialization have parentheses or \" \"braces\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 753, __PRETTY_FUNCTION__))
752 "initialization have parentheses or "((hasParenOrBraceRange() && "Only direct, value, and direct-list "
"initialization have parentheses or " "braces") ? static_cast
<void> (0) : __assert_fail ("hasParenOrBraceRange() && \"Only direct, value, and direct-list \" \"initialization have parentheses or \" \"braces\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 753, __PRETTY_FUNCTION__))
753 "braces")((hasParenOrBraceRange() && "Only direct, value, and direct-list "
"initialization have parentheses or " "braces") ? static_cast
<void> (0) : __assert_fail ("hasParenOrBraceRange() && \"Only direct, value, and direct-list \" \"initialization have parentheses or \" \"braces\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 753, __PRETTY_FUNCTION__))
;
754 return SourceRange(Locations[1], Locations[2]);
755 }
756};
757
758/// Describes the sequence of initializations required to initialize
759/// a given object or reference with a set of arguments.
760class InitializationSequence {
761public:
762 /// Describes the kind of initialization sequence computed.
763 enum SequenceKind {
764 /// A failed initialization sequence. The failure kind tells what
765 /// happened.
766 FailedSequence = 0,
767
768 /// A dependent initialization, which could not be
769 /// type-checked due to the presence of dependent types or
770 /// dependently-typed expressions.
771 DependentSequence,
772
773 /// A normal sequence.
774 NormalSequence
775 };
776
777 /// Describes the kind of a particular step in an initialization
778 /// sequence.
779 enum StepKind {
780 /// Resolve the address of an overloaded function to a specific
781 /// function declaration.
782 SK_ResolveAddressOfOverloadedFunction,
783
784 /// Perform a derived-to-base cast, producing an rvalue.
785 SK_CastDerivedToBaseRValue,
786
787 /// Perform a derived-to-base cast, producing an xvalue.
788 SK_CastDerivedToBaseXValue,
789
790 /// Perform a derived-to-base cast, producing an lvalue.
791 SK_CastDerivedToBaseLValue,
792
793 /// Reference binding to an lvalue.
794 SK_BindReference,
795
796 /// Reference binding to a temporary.
797 SK_BindReferenceToTemporary,
798
799 /// An optional copy of a temporary object to another
800 /// temporary object, which is permitted (but not required) by
801 /// C++98/03 but not C++0x.
802 SK_ExtraneousCopyToTemporary,
803
804 /// Direct-initialization from a reference-related object in the
805 /// final stage of class copy-initialization.
806 SK_FinalCopy,
807
808 /// Perform a user-defined conversion, either via a conversion
809 /// function or via a constructor.
810 SK_UserConversion,
811
812 /// Perform a qualification conversion, producing an rvalue.
813 SK_QualificationConversionRValue,
814
815 /// Perform a qualification conversion, producing an xvalue.
816 SK_QualificationConversionXValue,
817
818 /// Perform a qualification conversion, producing an lvalue.
819 SK_QualificationConversionLValue,
820
821 /// Perform a conversion adding _Atomic to a type.
822 SK_AtomicConversion,
823
824 /// Perform an implicit conversion sequence.
825 SK_ConversionSequence,
826
827 /// Perform an implicit conversion sequence without narrowing.
828 SK_ConversionSequenceNoNarrowing,
829
830 /// Perform list-initialization without a constructor.
831 SK_ListInitialization,
832
833 /// Unwrap the single-element initializer list for a reference.
834 SK_UnwrapInitList,
835
836 /// Rewrap the single-element initializer list for a reference.
837 SK_RewrapInitList,
838
839 /// Perform initialization via a constructor.
840 SK_ConstructorInitialization,
841
842 /// Perform initialization via a constructor, taking arguments from
843 /// a single InitListExpr.
844 SK_ConstructorInitializationFromList,
845
846 /// Zero-initialize the object
847 SK_ZeroInitialization,
848
849 /// C assignment
850 SK_CAssignment,
851
852 /// Initialization by string
853 SK_StringInit,
854
855 /// An initialization that "converts" an Objective-C object
856 /// (not a point to an object) to another Objective-C object type.
857 SK_ObjCObjectConversion,
858
859 /// Array indexing for initialization by elementwise copy.
860 SK_ArrayLoopIndex,
861
862 /// Array initialization by elementwise copy.
863 SK_ArrayLoopInit,
864
865 /// Array initialization (from an array rvalue).
866 SK_ArrayInit,
867
868 /// Array initialization (from an array rvalue) as a GNU extension.
869 SK_GNUArrayInit,
870
871 /// Array initialization from a parenthesized initializer list.
872 /// This is a GNU C++ extension.
873 SK_ParenthesizedArrayInit,
874
875 /// Pass an object by indirect copy-and-restore.
876 SK_PassByIndirectCopyRestore,
877
878 /// Pass an object by indirect restore.
879 SK_PassByIndirectRestore,
880
881 /// Produce an Objective-C object pointer.
882 SK_ProduceObjCObject,
883
884 /// Construct a std::initializer_list from an initializer list.
885 SK_StdInitializerList,
886
887 /// Perform initialization via a constructor taking a single
888 /// std::initializer_list argument.
889 SK_StdInitializerListConstructorCall,
890
891 /// Initialize an OpenCL sampler from an integer.
892 SK_OCLSamplerInit,
893
894 /// Initialize an opaque OpenCL type (event_t, queue_t, etc.) with zero
895 SK_OCLZeroOpaqueType
896 };
897
898 /// A single step in the initialization sequence.
899 class Step {
900 public:
901 /// The kind of conversion or initialization step we are taking.
902 StepKind Kind;
903
904 // The type that results from this initialization.
905 QualType Type;
906
907 struct F {
908 bool HadMultipleCandidates;
909 FunctionDecl *Function;
910 DeclAccessPair FoundDecl;
911 };
912
913 union {
914 /// When Kind == SK_ResolvedOverloadedFunction or Kind ==
915 /// SK_UserConversion, the function that the expression should be
916 /// resolved to or the conversion function to call, respectively.
917 /// When Kind == SK_ConstructorInitialization or SK_ListConstruction,
918 /// the constructor to be called.
919 ///
920 /// Always a FunctionDecl, plus a Boolean flag telling if it was
921 /// selected from an overloaded set having size greater than 1.
922 /// For conversion decls, the naming class is the source type.
923 /// For construct decls, the naming class is the target type.
924 struct F Function;
925
926 /// When Kind = SK_ConversionSequence, the implicit conversion
927 /// sequence.
928 ImplicitConversionSequence *ICS;
929
930 /// When Kind = SK_RewrapInitList, the syntactic form of the
931 /// wrapping list.
932 InitListExpr *WrappingSyntacticList;
933 };
934
935 void Destroy();
936 };
937
938private:
939 /// The kind of initialization sequence computed.
940 enum SequenceKind SequenceKind;
941
942 /// Steps taken by this initialization.
943 SmallVector<Step, 4> Steps;
944
945public:
946 /// Describes why initialization failed.
947 enum FailureKind {
948 /// Too many initializers provided for a reference.
949 FK_TooManyInitsForReference,
950
951 /// Reference initialized from a parenthesized initializer list.
952 FK_ParenthesizedListInitForReference,
953
954 /// Array must be initialized with an initializer list.
955 FK_ArrayNeedsInitList,
956
957 /// Array must be initialized with an initializer list or a
958 /// string literal.
959 FK_ArrayNeedsInitListOrStringLiteral,
960
961 /// Array must be initialized with an initializer list or a
962 /// wide string literal.
963 FK_ArrayNeedsInitListOrWideStringLiteral,
964
965 /// Initializing a wide char array with narrow string literal.
966 FK_NarrowStringIntoWideCharArray,
967
968 /// Initializing char array with wide string literal.
969 FK_WideStringIntoCharArray,
970
971 /// Initializing wide char array with incompatible wide string
972 /// literal.
973 FK_IncompatWideStringIntoWideChar,
974
975 /// Initializing char8_t array with plain string literal.
976 FK_PlainStringIntoUTF8Char,
977
978 /// Initializing char array with UTF-8 string literal.
979 FK_UTF8StringIntoPlainChar,
980
981 /// Array type mismatch.
982 FK_ArrayTypeMismatch,
983
984 /// Non-constant array initializer
985 FK_NonConstantArrayInit,
986
987 /// Cannot resolve the address of an overloaded function.
988 FK_AddressOfOverloadFailed,
989
990 /// Overloading due to reference initialization failed.
991 FK_ReferenceInitOverloadFailed,
992
993 /// Non-const lvalue reference binding to a temporary.
994 FK_NonConstLValueReferenceBindingToTemporary,
995
996 /// Non-const lvalue reference binding to a bit-field.
997 FK_NonConstLValueReferenceBindingToBitfield,
998
999 /// Non-const lvalue reference binding to a vector element.
1000 FK_NonConstLValueReferenceBindingToVectorElement,
1001
1002 /// Non-const lvalue reference binding to an lvalue of unrelated
1003 /// type.
1004 FK_NonConstLValueReferenceBindingToUnrelated,
1005
1006 /// Rvalue reference binding to an lvalue.
1007 FK_RValueReferenceBindingToLValue,
1008
1009 /// Reference binding drops qualifiers.
1010 FK_ReferenceInitDropsQualifiers,
1011
1012 /// Reference with mismatching address space binding to temporary.
1013 FK_ReferenceAddrspaceMismatchTemporary,
1014
1015 /// Reference binding failed.
1016 FK_ReferenceInitFailed,
1017
1018 /// Implicit conversion failed.
1019 FK_ConversionFailed,
1020
1021 /// Implicit conversion failed.
1022 FK_ConversionFromPropertyFailed,
1023
1024 /// Too many initializers for scalar
1025 FK_TooManyInitsForScalar,
1026
1027 /// Scalar initialized from a parenthesized initializer list.
1028 FK_ParenthesizedListInitForScalar,
1029
1030 /// Reference initialization from an initializer list
1031 FK_ReferenceBindingToInitList,
1032
1033 /// Initialization of some unused destination type with an
1034 /// initializer list.
1035 FK_InitListBadDestinationType,
1036
1037 /// Overloading for a user-defined conversion failed.
1038 FK_UserConversionOverloadFailed,
1039
1040 /// Overloading for initialization by constructor failed.
1041 FK_ConstructorOverloadFailed,
1042
1043 /// Overloading for list-initialization by constructor failed.
1044 FK_ListConstructorOverloadFailed,
1045
1046 /// Default-initialization of a 'const' object.
1047 FK_DefaultInitOfConst,
1048
1049 /// Initialization of an incomplete type.
1050 FK_Incomplete,
1051
1052 /// Variable-length array must not have an initializer.
1053 FK_VariableLengthArrayHasInitializer,
1054
1055 /// List initialization failed at some point.
1056 FK_ListInitializationFailed,
1057
1058 /// Initializer has a placeholder type which cannot be
1059 /// resolved by initialization.
1060 FK_PlaceholderType,
1061
1062 /// Trying to take the address of a function that doesn't support
1063 /// having its address taken.
1064 FK_AddressOfUnaddressableFunction,
1065
1066 /// List-copy-initialization chose an explicit constructor.
1067 FK_ExplicitConstructor,
1068 };
1069
1070private:
1071 /// The reason why initialization failed.
1072 FailureKind Failure;
1073
1074 /// The failed result of overload resolution.
1075 OverloadingResult FailedOverloadResult;
1076
1077 /// The candidate set created when initialization failed.
1078 OverloadCandidateSet FailedCandidateSet;
1079
1080 /// The incomplete type that caused a failure.
1081 QualType FailedIncompleteType;
1082
1083 /// The fixit that needs to be applied to make this initialization
1084 /// succeed.
1085 std::string ZeroInitializationFixit;
1086 SourceLocation ZeroInitializationFixitLoc;
1087
1088public:
1089 /// Call for initializations are invalid but that would be valid
1090 /// zero initialzations if Fixit was applied.
1091 void SetZeroInitializationFixit(const std::string& Fixit, SourceLocation L) {
1092 ZeroInitializationFixit = Fixit;
1093 ZeroInitializationFixitLoc = L;
1094 }
1095
1096private:
1097 /// Prints a follow-up note that highlights the location of
1098 /// the initialized entity, if it's remote.
1099 void PrintInitLocationNote(Sema &S, const InitializedEntity &Entity);
1100
1101public:
1102 /// Try to perform initialization of the given entity, creating a
1103 /// record of the steps required to perform the initialization.
1104 ///
1105 /// The generated initialization sequence will either contain enough
1106 /// information to diagnose
1107 ///
1108 /// \param S the semantic analysis object.
1109 ///
1110 /// \param Entity the entity being initialized.
1111 ///
1112 /// \param Kind the kind of initialization being performed.
1113 ///
1114 /// \param Args the argument(s) provided for initialization.
1115 ///
1116 /// \param TopLevelOfInitList true if we are initializing from an expression
1117 /// at the top level inside an initializer list. This disallows
1118 /// narrowing conversions in C++11 onwards.
1119 /// \param TreatUnavailableAsInvalid true if we want to treat unavailable
1120 /// as invalid.
1121 InitializationSequence(Sema &S,
1122 const InitializedEntity &Entity,
1123 const InitializationKind &Kind,
1124 MultiExprArg Args,
1125 bool TopLevelOfInitList = false,
1126 bool TreatUnavailableAsInvalid = true);
1127 void InitializeFrom(Sema &S, const InitializedEntity &Entity,
1128 const InitializationKind &Kind, MultiExprArg Args,
1129 bool TopLevelOfInitList, bool TreatUnavailableAsInvalid);
1130
1131 ~InitializationSequence();
1132
1133 /// Perform the actual initialization of the given entity based on
1134 /// the computed initialization sequence.
1135 ///
1136 /// \param S the semantic analysis object.
1137 ///
1138 /// \param Entity the entity being initialized.
1139 ///
1140 /// \param Kind the kind of initialization being performed.
1141 ///
1142 /// \param Args the argument(s) provided for initialization, ownership of
1143 /// which is transferred into the routine.
1144 ///
1145 /// \param ResultType if non-NULL, will be set to the type of the
1146 /// initialized object, which is the type of the declaration in most
1147 /// cases. However, when the initialized object is a variable of
1148 /// incomplete array type and the initializer is an initializer
1149 /// list, this type will be set to the completed array type.
1150 ///
1151 /// \returns an expression that performs the actual object initialization, if
1152 /// the initialization is well-formed. Otherwise, emits diagnostics
1153 /// and returns an invalid expression.
1154 ExprResult Perform(Sema &S,
1155 const InitializedEntity &Entity,
1156 const InitializationKind &Kind,
1157 MultiExprArg Args,
1158 QualType *ResultType = nullptr);
1159
1160 /// Diagnose an potentially-invalid initialization sequence.
1161 ///
1162 /// \returns true if the initialization sequence was ill-formed,
1163 /// false otherwise.
1164 bool Diagnose(Sema &S,
1165 const InitializedEntity &Entity,
1166 const InitializationKind &Kind,
1167 ArrayRef<Expr *> Args);
1168
1169 /// Determine the kind of initialization sequence computed.
1170 enum SequenceKind getKind() const { return SequenceKind; }
1171
1172 /// Set the kind of sequence computed.
1173 void setSequenceKind(enum SequenceKind SK) { SequenceKind = SK; }
1174
1175 /// Determine whether the initialization sequence is valid.
1176 explicit operator bool() const { return !Failed(); }
1177
1178 /// Determine whether the initialization sequence is invalid.
1179 bool Failed() const { return SequenceKind == FailedSequence; }
2
Assuming field 'SequenceKind' is equal to FailedSequence
3
Returning the value 1, which participates in a condition later
1180
1181 using step_iterator = SmallVectorImpl<Step>::const_iterator;
1182
1183 step_iterator step_begin() const { return Steps.begin(); }
1184 step_iterator step_end() const { return Steps.end(); }
1185
1186 using step_range = llvm::iterator_range<step_iterator>;
1187
1188 step_range steps() const { return {step_begin(), step_end()}; }
1189
1190 /// Determine whether this initialization is a direct reference
1191 /// binding (C++ [dcl.init.ref]).
1192 bool isDirectReferenceBinding() const;
1193
1194 /// Determine whether this initialization failed due to an ambiguity.
1195 bool isAmbiguous() const;
1196
1197 /// Determine whether this initialization is direct call to a
1198 /// constructor.
1199 bool isConstructorInitialization() const;
1200
1201 /// Returns whether the last step in this initialization sequence is a
1202 /// narrowing conversion, defined by C++0x [dcl.init.list]p7.
1203 ///
1204 /// If this function returns true, *isInitializerConstant will be set to
1205 /// describe whether *Initializer was a constant expression. If
1206 /// *isInitializerConstant is set to true, *ConstantValue will be set to the
1207 /// evaluated value of *Initializer.
1208 bool endsWithNarrowing(ASTContext &Ctx, const Expr *Initializer,
1209 bool *isInitializerConstant,
1210 APValue *ConstantValue) const;
1211
1212 /// Add a new step in the initialization that resolves the address
1213 /// of an overloaded function to a specific function declaration.
1214 ///
1215 /// \param Function the function to which the overloaded function reference
1216 /// resolves.
1217 void AddAddressOverloadResolutionStep(FunctionDecl *Function,
1218 DeclAccessPair Found,
1219 bool HadMultipleCandidates);
1220
1221 /// Add a new step in the initialization that performs a derived-to-
1222 /// base cast.
1223 ///
1224 /// \param BaseType the base type to which we will be casting.
1225 ///
1226 /// \param Category Indicates whether the result will be treated as an
1227 /// rvalue, an xvalue, or an lvalue.
1228 void AddDerivedToBaseCastStep(QualType BaseType,
1229 ExprValueKind Category);
1230
1231 /// Add a new step binding a reference to an object.
1232 ///
1233 /// \param BindingTemporary True if we are binding a reference to a temporary
1234 /// object (thereby extending its lifetime); false if we are binding to an
1235 /// lvalue or an lvalue treated as an rvalue.
1236 void AddReferenceBindingStep(QualType T, bool BindingTemporary);
1237
1238 /// Add a new step that makes an extraneous copy of the input
1239 /// to a temporary of the same class type.
1240 ///
1241 /// This extraneous copy only occurs during reference binding in
1242 /// C++98/03, where we are permitted (but not required) to introduce
1243 /// an extra copy. At a bare minimum, we must check that we could
1244 /// call the copy constructor, and produce a diagnostic if the copy
1245 /// constructor is inaccessible or no copy constructor matches.
1246 //
1247 /// \param T The type of the temporary being created.
1248 void AddExtraneousCopyToTemporary(QualType T);
1249
1250 /// Add a new step that makes a copy of the input to an object of
1251 /// the given type, as the final step in class copy-initialization.
1252 void AddFinalCopy(QualType T);
1253
1254 /// Add a new step invoking a conversion function, which is either
1255 /// a constructor or a conversion function.
1256 void AddUserConversionStep(FunctionDecl *Function,
1257 DeclAccessPair FoundDecl,
1258 QualType T,
1259 bool HadMultipleCandidates);
1260
1261 /// Add a new step that performs a qualification conversion to the
1262 /// given type.
1263 void AddQualificationConversionStep(QualType Ty,
1264 ExprValueKind Category);
1265
1266 /// Add a new step that performs conversion from non-atomic to atomic
1267 /// type.
1268 void AddAtomicConversionStep(QualType Ty);
1269
1270 /// Add a new step that applies an implicit conversion sequence.
1271 void AddConversionSequenceStep(const ImplicitConversionSequence &ICS,
1272 QualType T, bool TopLevelOfInitList = false);
1273
1274 /// Add a list-initialization step.
1275 void AddListInitializationStep(QualType T);
1276
1277 /// Add a constructor-initialization step.
1278 ///
1279 /// \param FromInitList The constructor call is syntactically an initializer
1280 /// list.
1281 /// \param AsInitList The constructor is called as an init list constructor.
1282 void AddConstructorInitializationStep(DeclAccessPair FoundDecl,
1283 CXXConstructorDecl *Constructor,
1284 QualType T,
1285 bool HadMultipleCandidates,
1286 bool FromInitList, bool AsInitList);
1287
1288 /// Add a zero-initialization step.
1289 void AddZeroInitializationStep(QualType T);
1290
1291 /// Add a C assignment step.
1292 //
1293 // FIXME: It isn't clear whether this should ever be needed;
1294 // ideally, we would handle everything needed in C in the common
1295 // path. However, that isn't the case yet.
1296 void AddCAssignmentStep(QualType T);
1297
1298 /// Add a string init step.
1299 void AddStringInitStep(QualType T);
1300
1301 /// Add an Objective-C object conversion step, which is
1302 /// always a no-op.
1303 void AddObjCObjectConversionStep(QualType T);
1304
1305 /// Add an array initialization loop step.
1306 void AddArrayInitLoopStep(QualType T, QualType EltTy);
1307
1308 /// Add an array initialization step.
1309 void AddArrayInitStep(QualType T, bool IsGNUExtension);
1310
1311 /// Add a parenthesized array initialization step.
1312 void AddParenthesizedArrayInitStep(QualType T);
1313
1314 /// Add a step to pass an object by indirect copy-restore.
1315 void AddPassByIndirectCopyRestoreStep(QualType T, bool shouldCopy);
1316
1317 /// Add a step to "produce" an Objective-C object (by
1318 /// retaining it).
1319 void AddProduceObjCObjectStep(QualType T);
1320
1321 /// Add a step to construct a std::initializer_list object from an
1322 /// initializer list.
1323 void AddStdInitializerListConstructionStep(QualType T);
1324
1325 /// Add a step to initialize an OpenCL sampler from an integer
1326 /// constant.
1327 void AddOCLSamplerInitStep(QualType T);
1328
1329 /// Add a step to initialzie an OpenCL opaque type (event_t, queue_t, etc.)
1330 /// from a zero constant.
1331 void AddOCLZeroOpaqueTypeStep(QualType T);
1332
1333 /// Add a step to initialize by zero types defined in the
1334 /// cl_intel_device_side_avc_motion_estimation OpenCL extension
1335 void AddOCLIntelSubgroupAVCZeroInitStep(QualType T);
1336
1337 /// Add steps to unwrap a initializer list for a reference around a
1338 /// single element and rewrap it at the end.
1339 void RewrapReferenceInitList(QualType T, InitListExpr *Syntactic);
1340
1341 /// Note that this initialization sequence failed.
1342 void SetFailed(FailureKind Failure) {
1343 SequenceKind = FailedSequence;
1344 this->Failure = Failure;
1345 assert((Failure != FK_Incomplete || !FailedIncompleteType.isNull()) &&(((Failure != FK_Incomplete || !FailedIncompleteType.isNull()
) && "Incomplete type failure requires a type!") ? static_cast
<void> (0) : __assert_fail ("(Failure != FK_Incomplete || !FailedIncompleteType.isNull()) && \"Incomplete type failure requires a type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 1346, __PRETTY_FUNCTION__))
1346 "Incomplete type failure requires a type!")(((Failure != FK_Incomplete || !FailedIncompleteType.isNull()
) && "Incomplete type failure requires a type!") ? static_cast
<void> (0) : __assert_fail ("(Failure != FK_Incomplete || !FailedIncompleteType.isNull()) && \"Incomplete type failure requires a type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 }
1348
1349 /// Note that this initialization sequence failed due to failed
1350 /// overload resolution.
1351 void SetOverloadFailure(FailureKind Failure, OverloadingResult Result);
1352
1353 /// Retrieve a reference to the candidate set when overload
1354 /// resolution fails.
1355 OverloadCandidateSet &getFailedCandidateSet() {
1356 return FailedCandidateSet;
1357 }
1358
1359 /// Get the overloading result, for when the initialization
1360 /// sequence failed due to a bad overload.
1361 OverloadingResult getFailedOverloadResult() const {
1362 return FailedOverloadResult;
1363 }
1364
1365 /// Note that this initialization sequence failed due to an
1366 /// incomplete type.
1367 void setIncompleteTypeFailure(QualType IncompleteType) {
1368 FailedIncompleteType = IncompleteType;
1369 SetFailed(FK_Incomplete);
1370 }
1371
1372 /// Determine why initialization failed.
1373 FailureKind getFailureKind() const {
1374 assert(Failed() && "Not an initialization failure!")((Failed() && "Not an initialization failure!") ? static_cast
<void> (0) : __assert_fail ("Failed() && \"Not an initialization failure!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/Sema/Initialization.h"
, 1374, __PRETTY_FUNCTION__))
;
1375 return Failure;
1376 }
1377
1378 /// Dump a representation of this initialization sequence to
1379 /// the given stream, for debugging purposes.
1380 void dump(raw_ostream &OS) const;
1381
1382 /// Dump a representation of this initialization sequence to
1383 /// standard error, for debugging purposes.
1384 void dump() const;
1385};
1386
1387} // namespace clang
1388
1389#endif // LLVM_CLANG_SEMA_INITIALIZATION_H