File: | clang/lib/Sema/SemaInit.cpp |
Warning: | line 9160, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for initializers. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/DeclObjC.h" |
15 | #include "clang/AST/ExprCXX.h" |
16 | #include "clang/AST/ExprObjC.h" |
17 | #include "clang/AST/ExprOpenMP.h" |
18 | #include "clang/AST/TypeLoc.h" |
19 | #include "clang/Basic/CharInfo.h" |
20 | #include "clang/Basic/SourceManager.h" |
21 | #include "clang/Basic/TargetInfo.h" |
22 | #include "clang/Sema/Designator.h" |
23 | #include "clang/Sema/Initialization.h" |
24 | #include "clang/Sema/Lookup.h" |
25 | #include "clang/Sema/SemaInternal.h" |
26 | #include "llvm/ADT/APInt.h" |
27 | #include "llvm/ADT/SmallString.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include "llvm/Support/raw_ostream.h" |
30 | |
31 | using namespace clang; |
32 | |
33 | //===----------------------------------------------------------------------===// |
34 | // Sema Initialization Checking |
35 | //===----------------------------------------------------------------------===// |
36 | |
37 | /// Check whether T is compatible with a wide character type (wchar_t, |
38 | /// char16_t or char32_t). |
39 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
40 | if (Context.typesAreCompatible(Context.getWideCharType(), T)) |
41 | return true; |
42 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
43 | return Context.typesAreCompatible(Context.Char16Ty, T) || |
44 | Context.typesAreCompatible(Context.Char32Ty, T); |
45 | } |
46 | return false; |
47 | } |
48 | |
49 | enum StringInitFailureKind { |
50 | SIF_None, |
51 | SIF_NarrowStringIntoWideChar, |
52 | SIF_WideStringIntoChar, |
53 | SIF_IncompatWideStringIntoWideChar, |
54 | SIF_UTF8StringIntoPlainChar, |
55 | SIF_PlainStringIntoUTF8Char, |
56 | SIF_Other |
57 | }; |
58 | |
59 | /// Check whether the array of type AT can be initialized by the Init |
60 | /// expression by means of string initialization. Returns SIF_None if so, |
61 | /// otherwise returns a StringInitFailureKind that describes why the |
62 | /// initialization would not work. |
63 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
64 | ASTContext &Context) { |
65 | if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) |
66 | return SIF_Other; |
67 | |
68 | // See if this is a string literal or @encode. |
69 | Init = Init->IgnoreParens(); |
70 | |
71 | // Handle @encode, which is a narrow string. |
72 | if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) |
73 | return SIF_None; |
74 | |
75 | // Otherwise we can only handle string literals. |
76 | StringLiteral *SL = dyn_cast<StringLiteral>(Init); |
77 | if (!SL) |
78 | return SIF_Other; |
79 | |
80 | const QualType ElemTy = |
81 | Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); |
82 | |
83 | switch (SL->getKind()) { |
84 | case StringLiteral::UTF8: |
85 | // char8_t array can be initialized with a UTF-8 string. |
86 | if (ElemTy->isChar8Type()) |
87 | return SIF_None; |
88 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
89 | case StringLiteral::Ascii: |
90 | // char array can be initialized with a narrow string. |
91 | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
92 | if (ElemTy->isCharType()) |
93 | return (SL->getKind() == StringLiteral::UTF8 && |
94 | Context.getLangOpts().Char8) |
95 | ? SIF_UTF8StringIntoPlainChar |
96 | : SIF_None; |
97 | if (ElemTy->isChar8Type()) |
98 | return SIF_PlainStringIntoUTF8Char; |
99 | if (IsWideCharCompatible(ElemTy, Context)) |
100 | return SIF_NarrowStringIntoWideChar; |
101 | return SIF_Other; |
102 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
103 | // "An array with element type compatible with a qualified or unqualified |
104 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
105 | // string literal with the corresponding encoding prefix (L, u, or U, |
106 | // respectively), optionally enclosed in braces. |
107 | case StringLiteral::UTF16: |
108 | if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) |
109 | return SIF_None; |
110 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
111 | return SIF_WideStringIntoChar; |
112 | if (IsWideCharCompatible(ElemTy, Context)) |
113 | return SIF_IncompatWideStringIntoWideChar; |
114 | return SIF_Other; |
115 | case StringLiteral::UTF32: |
116 | if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) |
117 | return SIF_None; |
118 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
119 | return SIF_WideStringIntoChar; |
120 | if (IsWideCharCompatible(ElemTy, Context)) |
121 | return SIF_IncompatWideStringIntoWideChar; |
122 | return SIF_Other; |
123 | case StringLiteral::Wide: |
124 | if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) |
125 | return SIF_None; |
126 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
127 | return SIF_WideStringIntoChar; |
128 | if (IsWideCharCompatible(ElemTy, Context)) |
129 | return SIF_IncompatWideStringIntoWideChar; |
130 | return SIF_Other; |
131 | } |
132 | |
133 | llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 133); |
134 | } |
135 | |
136 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
137 | ASTContext &Context) { |
138 | const ArrayType *arrayType = Context.getAsArrayType(declType); |
139 | if (!arrayType) |
140 | return SIF_Other; |
141 | return IsStringInit(init, arrayType, Context); |
142 | } |
143 | |
144 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { |
145 | return ::IsStringInit(Init, AT, Context) == SIF_None; |
146 | } |
147 | |
148 | /// Update the type of a string literal, including any surrounding parentheses, |
149 | /// to match the type of the object which it is initializing. |
150 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
151 | while (true) { |
152 | E->setType(Ty); |
153 | E->setValueKind(VK_RValue); |
154 | if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { |
155 | break; |
156 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
157 | E = PE->getSubExpr(); |
158 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
159 | assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void> (0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 159, __PRETTY_FUNCTION__)); |
160 | E = UO->getSubExpr(); |
161 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { |
162 | E = GSE->getResultExpr(); |
163 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { |
164 | E = CE->getChosenSubExpr(); |
165 | } else { |
166 | llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 166); |
167 | } |
168 | } |
169 | } |
170 | |
171 | /// Fix a compound literal initializing an array so it's correctly marked |
172 | /// as an rvalue. |
173 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
174 | while (true) { |
175 | E->setValueKind(VK_RValue); |
176 | if (isa<CompoundLiteralExpr>(E)) { |
177 | break; |
178 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
179 | E = PE->getSubExpr(); |
180 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
181 | assert(UO->getOpcode() == UO_Extension)((UO->getOpcode() == UO_Extension) ? static_cast<void> (0) : __assert_fail ("UO->getOpcode() == UO_Extension", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 181, __PRETTY_FUNCTION__)); |
182 | E = UO->getSubExpr(); |
183 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { |
184 | E = GSE->getResultExpr(); |
185 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { |
186 | E = CE->getChosenSubExpr(); |
187 | } else { |
188 | llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 188); |
189 | } |
190 | } |
191 | } |
192 | |
193 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
194 | Sema &S) { |
195 | // Get the length of the string as parsed. |
196 | auto *ConstantArrayTy = |
197 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
198 | uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); |
199 | |
200 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
201 | // C99 6.7.8p14. We have an array of character type with unknown size |
202 | // being initialized to a string literal. |
203 | llvm::APInt ConstVal(32, StrLength); |
204 | // Return a new array type (C99 6.7.8p22). |
205 | DeclT = S.Context.getConstantArrayType(IAT->getElementType(), |
206 | ConstVal, nullptr, |
207 | ArrayType::Normal, 0); |
208 | updateStringLiteralType(Str, DeclT); |
209 | return; |
210 | } |
211 | |
212 | const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
213 | |
214 | // We have an array of character type with known size. However, |
215 | // the size may be smaller or larger than the string we are initializing. |
216 | // FIXME: Avoid truncation for 64-bit length strings. |
217 | if (S.getLangOpts().CPlusPlus) { |
218 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { |
219 | // For Pascal strings it's OK to strip off the terminating null character, |
220 | // so the example below is valid: |
221 | // |
222 | // unsigned char a[2] = "\pa"; |
223 | if (SL->isPascal()) |
224 | StrLength--; |
225 | } |
226 | |
227 | // [dcl.init.string]p2 |
228 | if (StrLength > CAT->getSize().getZExtValue()) |
229 | S.Diag(Str->getBeginLoc(), |
230 | diag::err_initializer_string_for_char_array_too_long) |
231 | << Str->getSourceRange(); |
232 | } else { |
233 | // C99 6.7.8p14. |
234 | if (StrLength-1 > CAT->getSize().getZExtValue()) |
235 | S.Diag(Str->getBeginLoc(), |
236 | diag::ext_initializer_string_for_char_array_too_long) |
237 | << Str->getSourceRange(); |
238 | } |
239 | |
240 | // Set the type to the actual size that we are initializing. If we have |
241 | // something like: |
242 | // char x[1] = "foo"; |
243 | // then this will set the string literal's type to char[1]. |
244 | updateStringLiteralType(Str, DeclT); |
245 | } |
246 | |
247 | //===----------------------------------------------------------------------===// |
248 | // Semantic checking for initializer lists. |
249 | //===----------------------------------------------------------------------===// |
250 | |
251 | namespace { |
252 | |
253 | /// Semantic checking for initializer lists. |
254 | /// |
255 | /// The InitListChecker class contains a set of routines that each |
256 | /// handle the initialization of a certain kind of entity, e.g., |
257 | /// arrays, vectors, struct/union types, scalars, etc. The |
258 | /// InitListChecker itself performs a recursive walk of the subobject |
259 | /// structure of the type to be initialized, while stepping through |
260 | /// the initializer list one element at a time. The IList and Index |
261 | /// parameters to each of the Check* routines contain the active |
262 | /// (syntactic) initializer list and the index into that initializer |
263 | /// list that represents the current initializer. Each routine is |
264 | /// responsible for moving that Index forward as it consumes elements. |
265 | /// |
266 | /// Each Check* routine also has a StructuredList/StructuredIndex |
267 | /// arguments, which contains the current "structured" (semantic) |
268 | /// initializer list and the index into that initializer list where we |
269 | /// are copying initializers as we map them over to the semantic |
270 | /// list. Once we have completed our recursive walk of the subobject |
271 | /// structure, we will have constructed a full semantic initializer |
272 | /// list. |
273 | /// |
274 | /// C99 designators cause changes in the initializer list traversal, |
275 | /// because they make the initialization "jump" into a specific |
276 | /// subobject and then continue the initialization from that |
277 | /// point. CheckDesignatedInitializer() recursively steps into the |
278 | /// designated subobject and manages backing out the recursion to |
279 | /// initialize the subobjects after the one designated. |
280 | /// |
281 | /// If an initializer list contains any designators, we build a placeholder |
282 | /// structured list even in 'verify only' mode, so that we can track which |
283 | /// elements need 'empty' initializtion. |
284 | class InitListChecker { |
285 | Sema &SemaRef; |
286 | bool hadError = false; |
287 | bool VerifyOnly; // No diagnostics. |
288 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
289 | bool InOverloadResolution; |
290 | InitListExpr *FullyStructuredList = nullptr; |
291 | NoInitExpr *DummyExpr = nullptr; |
292 | |
293 | NoInitExpr *getDummyInit() { |
294 | if (!DummyExpr) |
295 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
296 | return DummyExpr; |
297 | } |
298 | |
299 | void CheckImplicitInitList(const InitializedEntity &Entity, |
300 | InitListExpr *ParentIList, QualType T, |
301 | unsigned &Index, InitListExpr *StructuredList, |
302 | unsigned &StructuredIndex); |
303 | void CheckExplicitInitList(const InitializedEntity &Entity, |
304 | InitListExpr *IList, QualType &T, |
305 | InitListExpr *StructuredList, |
306 | bool TopLevelObject = false); |
307 | void CheckListElementTypes(const InitializedEntity &Entity, |
308 | InitListExpr *IList, QualType &DeclType, |
309 | bool SubobjectIsDesignatorContext, |
310 | unsigned &Index, |
311 | InitListExpr *StructuredList, |
312 | unsigned &StructuredIndex, |
313 | bool TopLevelObject = false); |
314 | void CheckSubElementType(const InitializedEntity &Entity, |
315 | InitListExpr *IList, QualType ElemType, |
316 | unsigned &Index, |
317 | InitListExpr *StructuredList, |
318 | unsigned &StructuredIndex); |
319 | void CheckComplexType(const InitializedEntity &Entity, |
320 | InitListExpr *IList, QualType DeclType, |
321 | unsigned &Index, |
322 | InitListExpr *StructuredList, |
323 | unsigned &StructuredIndex); |
324 | void CheckScalarType(const InitializedEntity &Entity, |
325 | InitListExpr *IList, QualType DeclType, |
326 | unsigned &Index, |
327 | InitListExpr *StructuredList, |
328 | unsigned &StructuredIndex); |
329 | void CheckReferenceType(const InitializedEntity &Entity, |
330 | InitListExpr *IList, QualType DeclType, |
331 | unsigned &Index, |
332 | InitListExpr *StructuredList, |
333 | unsigned &StructuredIndex); |
334 | void CheckVectorType(const InitializedEntity &Entity, |
335 | InitListExpr *IList, QualType DeclType, unsigned &Index, |
336 | InitListExpr *StructuredList, |
337 | unsigned &StructuredIndex); |
338 | void CheckStructUnionTypes(const InitializedEntity &Entity, |
339 | InitListExpr *IList, QualType DeclType, |
340 | CXXRecordDecl::base_class_range Bases, |
341 | RecordDecl::field_iterator Field, |
342 | bool SubobjectIsDesignatorContext, unsigned &Index, |
343 | InitListExpr *StructuredList, |
344 | unsigned &StructuredIndex, |
345 | bool TopLevelObject = false); |
346 | void CheckArrayType(const InitializedEntity &Entity, |
347 | InitListExpr *IList, QualType &DeclType, |
348 | llvm::APSInt elementIndex, |
349 | bool SubobjectIsDesignatorContext, unsigned &Index, |
350 | InitListExpr *StructuredList, |
351 | unsigned &StructuredIndex); |
352 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
353 | InitListExpr *IList, DesignatedInitExpr *DIE, |
354 | unsigned DesigIdx, |
355 | QualType &CurrentObjectType, |
356 | RecordDecl::field_iterator *NextField, |
357 | llvm::APSInt *NextElementIndex, |
358 | unsigned &Index, |
359 | InitListExpr *StructuredList, |
360 | unsigned &StructuredIndex, |
361 | bool FinishSubobjectInit, |
362 | bool TopLevelObject); |
363 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
364 | QualType CurrentObjectType, |
365 | InitListExpr *StructuredList, |
366 | unsigned StructuredIndex, |
367 | SourceRange InitRange, |
368 | bool IsFullyOverwritten = false); |
369 | void UpdateStructuredListElement(InitListExpr *StructuredList, |
370 | unsigned &StructuredIndex, |
371 | Expr *expr); |
372 | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
373 | SourceRange InitRange, |
374 | unsigned ExpectedNumInits); |
375 | int numArrayElements(QualType DeclType); |
376 | int numStructUnionElements(QualType DeclType); |
377 | |
378 | ExprResult PerformEmptyInit(SourceLocation Loc, |
379 | const InitializedEntity &Entity); |
380 | |
381 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
382 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
383 | bool FullyOverwritten = true) { |
384 | // Overriding an initializer via a designator is valid with C99 designated |
385 | // initializers, but ill-formed with C++20 designated initializers. |
386 | unsigned DiagID = SemaRef.getLangOpts().CPlusPlus |
387 | ? diag::ext_initializer_overrides |
388 | : diag::warn_initializer_overrides; |
389 | |
390 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
391 | // In overload resolution, we have to strictly enforce the rules, and so |
392 | // don't allow any overriding of prior initializers. This matters for a |
393 | // case such as: |
394 | // |
395 | // union U { int a, b; }; |
396 | // struct S { int a, b; }; |
397 | // void f(U), f(S); |
398 | // |
399 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
400 | // consistency, we disallow all overriding of prior initializers in |
401 | // overload resolution, not only overriding of union members. |
402 | hadError = true; |
403 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
404 | // If we'll be keeping around the old initializer but overwriting part of |
405 | // the object it initialized, and that object is not trivially |
406 | // destructible, this can leak. Don't allow that, not even as an |
407 | // extension. |
408 | // |
409 | // FIXME: It might be reasonable to allow this in cases where the part of |
410 | // the initializer that we're overriding has trivial destruction. |
411 | DiagID = diag::err_initializer_overrides_destructed; |
412 | } else if (!OldInit->getSourceRange().isValid()) { |
413 | // We need to check on source range validity because the previous |
414 | // initializer does not have to be an explicit initializer. e.g., |
415 | // |
416 | // struct P { int a, b; }; |
417 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
418 | // |
419 | // There is an overwrite taking place because the first braced initializer |
420 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
421 | // |
422 | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
423 | // C++, this cannot be reached unless we've already seen and diagnosed a |
424 | // different conformance issue, such as a mixture of designated and |
425 | // non-designated initializers or a multi-level designator.) |
426 | return; |
427 | } |
428 | |
429 | if (!VerifyOnly) { |
430 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) |
431 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
432 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) |
433 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) |
434 | << OldInit->getSourceRange(); |
435 | } |
436 | } |
437 | |
438 | // Explanation on the "FillWithNoInit" mode: |
439 | // |
440 | // Assume we have the following definitions (Case#1): |
441 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
442 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
443 | // |
444 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
445 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
446 | // |
447 | // But if we have (Case#2): |
448 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
449 | // |
450 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
451 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
452 | // |
453 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
454 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
455 | // initializers but with special "NoInitExpr" place holders, which tells the |
456 | // CodeGen not to generate any initializers for these parts. |
457 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
458 | const InitializedEntity &ParentEntity, |
459 | InitListExpr *ILE, bool &RequiresSecondPass, |
460 | bool FillWithNoInit); |
461 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
462 | const InitializedEntity &ParentEntity, |
463 | InitListExpr *ILE, bool &RequiresSecondPass, |
464 | bool FillWithNoInit = false); |
465 | void FillInEmptyInitializations(const InitializedEntity &Entity, |
466 | InitListExpr *ILE, bool &RequiresSecondPass, |
467 | InitListExpr *OuterILE, unsigned OuterIndex, |
468 | bool FillWithNoInit = false); |
469 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
470 | Expr *InitExpr, FieldDecl *Field, |
471 | bool TopLevelObject); |
472 | void CheckEmptyInitializable(const InitializedEntity &Entity, |
473 | SourceLocation Loc); |
474 | |
475 | public: |
476 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
477 | QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, |
478 | bool InOverloadResolution = false); |
479 | bool HadError() { return hadError; } |
480 | |
481 | // Retrieves the fully-structured initializer list used for |
482 | // semantic analysis and code generation. |
483 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
484 | }; |
485 | |
486 | } // end anonymous namespace |
487 | |
488 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
489 | const InitializedEntity &Entity) { |
490 | InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
491 | true); |
492 | MultiExprArg SubInit; |
493 | Expr *InitExpr; |
494 | InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); |
495 | |
496 | // C++ [dcl.init.aggr]p7: |
497 | // If there are fewer initializer-clauses in the list than there are |
498 | // members in the aggregate, then each member not explicitly initialized |
499 | // ... |
500 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
501 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
502 | if (EmptyInitList) { |
503 | // C++1y / DR1070: |
504 | // shall be initialized [...] from an empty initializer list. |
505 | // |
506 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
507 | // does not have useful semantics for initialization from an init list. |
508 | // We treat this as copy-initialization, because aggregate initialization |
509 | // always performs copy-initialization on its elements. |
510 | // |
511 | // Only do this if we're initializing a class type, to avoid filling in |
512 | // the initializer list where possible. |
513 | InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) |
514 | InitListExpr(SemaRef.Context, Loc, None, Loc); |
515 | InitExpr->setType(SemaRef.Context.VoidTy); |
516 | SubInit = InitExpr; |
517 | Kind = InitializationKind::CreateCopy(Loc, Loc); |
518 | } else { |
519 | // C++03: |
520 | // shall be value-initialized. |
521 | } |
522 | |
523 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
524 | // libstdc++4.6 marks the vector default constructor as explicit in |
525 | // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. |
526 | // stlport does so too. Look for std::__debug for libstdc++, and for |
527 | // std:: for stlport. This is effectively a compiler-side implementation of |
528 | // LWG2193. |
529 | if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == |
530 | InitializationSequence::FK_ExplicitConstructor) { |
531 | OverloadCandidateSet::iterator Best; |
532 | OverloadingResult O = |
533 | InitSeq.getFailedCandidateSet() |
534 | .BestViableFunction(SemaRef, Kind.getLocation(), Best); |
535 | (void)O; |
536 | assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution" ) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 536, __PRETTY_FUNCTION__)); |
537 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
538 | CXXRecordDecl *R = CtorDecl->getParent(); |
539 | |
540 | if (CtorDecl->getMinRequiredArguments() == 0 && |
541 | CtorDecl->isExplicit() && R->getDeclName() && |
542 | SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { |
543 | bool IsInStd = false; |
544 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
545 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
546 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
547 | IsInStd = true; |
548 | } |
549 | |
550 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
551 | .Cases("basic_string", "deque", "forward_list", true) |
552 | .Cases("list", "map", "multimap", "multiset", true) |
553 | .Cases("priority_queue", "queue", "set", "stack", true) |
554 | .Cases("unordered_map", "unordered_set", "vector", true) |
555 | .Default(false)) { |
556 | InitSeq.InitializeFrom( |
557 | SemaRef, Entity, |
558 | InitializationKind::CreateValue(Loc, Loc, Loc, true), |
559 | MultiExprArg(), /*TopLevelOfInitList=*/false, |
560 | TreatUnavailableAsInvalid); |
561 | // Emit a warning for this. System header warnings aren't shown |
562 | // by default, but people working on system headers should see it. |
563 | if (!VerifyOnly) { |
564 | SemaRef.Diag(CtorDecl->getLocation(), |
565 | diag::warn_invalid_initializer_from_system_header); |
566 | if (Entity.getKind() == InitializedEntity::EK_Member) |
567 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
568 | diag::note_used_in_initialization_here); |
569 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
570 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
571 | } |
572 | } |
573 | } |
574 | } |
575 | if (!InitSeq) { |
576 | if (!VerifyOnly) { |
577 | InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); |
578 | if (Entity.getKind() == InitializedEntity::EK_Member) |
579 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
580 | diag::note_in_omitted_aggregate_initializer) |
581 | << /*field*/1 << Entity.getDecl(); |
582 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
583 | bool IsTrailingArrayNewMember = |
584 | Entity.getParent() && |
585 | Entity.getParent()->isVariableLengthArrayNew(); |
586 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
587 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
588 | << Entity.getElementIndex(); |
589 | } |
590 | } |
591 | hadError = true; |
592 | return ExprError(); |
593 | } |
594 | |
595 | return VerifyOnly ? ExprResult() |
596 | : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); |
597 | } |
598 | |
599 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
600 | SourceLocation Loc) { |
601 | // If we're building a fully-structured list, we'll check this at the end |
602 | // once we know which elements are actually initialized. Otherwise, we know |
603 | // that there are no designators so we can just check now. |
604 | if (FullyStructuredList) |
605 | return; |
606 | PerformEmptyInit(Loc, Entity); |
607 | } |
608 | |
609 | void InitListChecker::FillInEmptyInitForBase( |
610 | unsigned Init, const CXXBaseSpecifier &Base, |
611 | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
612 | bool &RequiresSecondPass, bool FillWithNoInit) { |
613 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
614 | SemaRef.Context, &Base, false, &ParentEntity); |
615 | |
616 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
617 | ExprResult BaseInit = FillWithNoInit |
618 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
619 | : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); |
620 | if (BaseInit.isInvalid()) { |
621 | hadError = true; |
622 | return; |
623 | } |
624 | |
625 | if (!VerifyOnly) { |
626 | assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 626, __PRETTY_FUNCTION__)); |
627 | ILE->setInit(Init, BaseInit.getAs<Expr>()); |
628 | } |
629 | } else if (InitListExpr *InnerILE = |
630 | dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
631 | FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, |
632 | ILE, Init, FillWithNoInit); |
633 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
634 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
635 | FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), |
636 | RequiresSecondPass, ILE, Init, |
637 | /*FillWithNoInit =*/true); |
638 | } |
639 | } |
640 | |
641 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
642 | const InitializedEntity &ParentEntity, |
643 | InitListExpr *ILE, |
644 | bool &RequiresSecondPass, |
645 | bool FillWithNoInit) { |
646 | SourceLocation Loc = ILE->getEndLoc(); |
647 | unsigned NumInits = ILE->getNumInits(); |
648 | InitializedEntity MemberEntity |
649 | = InitializedEntity::InitializeMember(Field, &ParentEntity); |
650 | |
651 | if (Init >= NumInits || !ILE->getInit(Init)) { |
652 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
653 | if (!RType->getDecl()->isUnion()) |
654 | assert((Init < NumInits || VerifyOnly) &&(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 655, __PRETTY_FUNCTION__)) |
655 | "This ILE should have been expanded")(((Init < NumInits || VerifyOnly) && "This ILE should have been expanded" ) ? static_cast<void> (0) : __assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 655, __PRETTY_FUNCTION__)); |
656 | |
657 | if (FillWithNoInit) { |
658 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode")((!VerifyOnly && "should not fill with no-init in verify-only mode" ) ? static_cast<void> (0) : __assert_fail ("!VerifyOnly && \"should not fill with no-init in verify-only mode\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 658, __PRETTY_FUNCTION__)); |
659 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
660 | if (Init < NumInits) |
661 | ILE->setInit(Init, Filler); |
662 | else |
663 | ILE->updateInit(SemaRef.Context, Init, Filler); |
664 | return; |
665 | } |
666 | // C++1y [dcl.init.aggr]p7: |
667 | // If there are fewer initializer-clauses in the list than there are |
668 | // members in the aggregate, then each member not explicitly initialized |
669 | // shall be initialized from its brace-or-equal-initializer [...] |
670 | if (Field->hasInClassInitializer()) { |
671 | if (VerifyOnly) |
672 | return; |
673 | |
674 | ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
675 | if (DIE.isInvalid()) { |
676 | hadError = true; |
677 | return; |
678 | } |
679 | SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); |
680 | if (Init < NumInits) |
681 | ILE->setInit(Init, DIE.get()); |
682 | else { |
683 | ILE->updateInit(SemaRef.Context, Init, DIE.get()); |
684 | RequiresSecondPass = true; |
685 | } |
686 | return; |
687 | } |
688 | |
689 | if (Field->getType()->isReferenceType()) { |
690 | if (!VerifyOnly) { |
691 | // C++ [dcl.init.aggr]p9: |
692 | // If an incomplete or empty initializer-list leaves a |
693 | // member of reference type uninitialized, the program is |
694 | // ill-formed. |
695 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
696 | << Field->getType() |
697 | << ILE->getSyntacticForm()->getSourceRange(); |
698 | SemaRef.Diag(Field->getLocation(), |
699 | diag::note_uninit_reference_member); |
700 | } |
701 | hadError = true; |
702 | return; |
703 | } |
704 | |
705 | ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); |
706 | if (MemberInit.isInvalid()) { |
707 | hadError = true; |
708 | return; |
709 | } |
710 | |
711 | if (hadError || VerifyOnly) { |
712 | // Do nothing |
713 | } else if (Init < NumInits) { |
714 | ILE->setInit(Init, MemberInit.getAs<Expr>()); |
715 | } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { |
716 | // Empty initialization requires a constructor call, so |
717 | // extend the initializer list to include the constructor |
718 | // call and make a note that we'll need to take another pass |
719 | // through the initializer list. |
720 | ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); |
721 | RequiresSecondPass = true; |
722 | } |
723 | } else if (InitListExpr *InnerILE |
724 | = dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
725 | FillInEmptyInitializations(MemberEntity, InnerILE, |
726 | RequiresSecondPass, ILE, Init, FillWithNoInit); |
727 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
728 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
729 | FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), |
730 | RequiresSecondPass, ILE, Init, |
731 | /*FillWithNoInit =*/true); |
732 | } |
733 | } |
734 | |
735 | /// Recursively replaces NULL values within the given initializer list |
736 | /// with expressions that perform value-initialization of the |
737 | /// appropriate type, and finish off the InitListExpr formation. |
738 | void |
739 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
740 | InitListExpr *ILE, |
741 | bool &RequiresSecondPass, |
742 | InitListExpr *OuterILE, |
743 | unsigned OuterIndex, |
744 | bool FillWithNoInit) { |
745 | assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type" ) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 746, __PRETTY_FUNCTION__)) |
746 | "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type" ) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 746, __PRETTY_FUNCTION__)); |
747 | |
748 | // We don't need to do any checks when just filling NoInitExprs; that can't |
749 | // fail. |
750 | if (FillWithNoInit && VerifyOnly) |
751 | return; |
752 | |
753 | // If this is a nested initializer list, we might have changed its contents |
754 | // (and therefore some of its properties, such as instantiation-dependence) |
755 | // while filling it in. Inform the outer initializer list so that its state |
756 | // can be updated to match. |
757 | // FIXME: We should fully build the inner initializers before constructing |
758 | // the outer InitListExpr instead of mutating AST nodes after they have |
759 | // been used as subexpressions of other nodes. |
760 | struct UpdateOuterILEWithUpdatedInit { |
761 | InitListExpr *Outer; |
762 | unsigned OuterIndex; |
763 | ~UpdateOuterILEWithUpdatedInit() { |
764 | if (Outer) |
765 | Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); |
766 | } |
767 | } UpdateOuterRAII = {OuterILE, OuterIndex}; |
768 | |
769 | // A transparent ILE is not performing aggregate initialization and should |
770 | // not be filled in. |
771 | if (ILE->isTransparent()) |
772 | return; |
773 | |
774 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
775 | const RecordDecl *RDecl = RType->getDecl(); |
776 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) |
777 | FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), |
778 | Entity, ILE, RequiresSecondPass, FillWithNoInit); |
779 | else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && |
780 | cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { |
781 | for (auto *Field : RDecl->fields()) { |
782 | if (Field->hasInClassInitializer()) { |
783 | FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, |
784 | FillWithNoInit); |
785 | break; |
786 | } |
787 | } |
788 | } else { |
789 | // The fields beyond ILE->getNumInits() are default initialized, so in |
790 | // order to leave them uninitialized, the ILE is expanded and the extra |
791 | // fields are then filled with NoInitExpr. |
792 | unsigned NumElems = numStructUnionElements(ILE->getType()); |
793 | if (RDecl->hasFlexibleArrayMember()) |
794 | ++NumElems; |
795 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
796 | ILE->resizeInits(SemaRef.Context, NumElems); |
797 | |
798 | unsigned Init = 0; |
799 | |
800 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
801 | for (auto &Base : CXXRD->bases()) { |
802 | if (hadError) |
803 | return; |
804 | |
805 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
806 | FillWithNoInit); |
807 | ++Init; |
808 | } |
809 | } |
810 | |
811 | for (auto *Field : RDecl->fields()) { |
812 | if (Field->isUnnamedBitfield()) |
813 | continue; |
814 | |
815 | if (hadError) |
816 | return; |
817 | |
818 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
819 | FillWithNoInit); |
820 | if (hadError) |
821 | return; |
822 | |
823 | ++Init; |
824 | |
825 | // Only look at the first initialization of a union. |
826 | if (RDecl->isUnion()) |
827 | break; |
828 | } |
829 | } |
830 | |
831 | return; |
832 | } |
833 | |
834 | QualType ElementType; |
835 | |
836 | InitializedEntity ElementEntity = Entity; |
837 | unsigned NumInits = ILE->getNumInits(); |
838 | unsigned NumElements = NumInits; |
839 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { |
840 | ElementType = AType->getElementType(); |
841 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
842 | NumElements = CAType->getSize().getZExtValue(); |
843 | // For an array new with an unknown bound, ask for one additional element |
844 | // in order to populate the array filler. |
845 | if (Entity.isVariableLengthArrayNew()) |
846 | ++NumElements; |
847 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
848 | 0, Entity); |
849 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
850 | ElementType = VType->getElementType(); |
851 | NumElements = VType->getNumElements(); |
852 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
853 | 0, Entity); |
854 | } else |
855 | ElementType = ILE->getType(); |
856 | |
857 | bool SkipEmptyInitChecks = false; |
858 | for (unsigned Init = 0; Init != NumElements; ++Init) { |
859 | if (hadError) |
860 | return; |
861 | |
862 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
863 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
864 | ElementEntity.setElementIndex(Init); |
865 | |
866 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
867 | return; |
868 | |
869 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
870 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
871 | ILE->setInit(Init, ILE->getArrayFiller()); |
872 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
873 | // In VerifyOnly mode, there's no point performing empty initialization |
874 | // more than once. |
875 | if (SkipEmptyInitChecks) |
876 | continue; |
877 | |
878 | Expr *Filler = nullptr; |
879 | |
880 | if (FillWithNoInit) |
881 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
882 | else { |
883 | ExprResult ElementInit = |
884 | PerformEmptyInit(ILE->getEndLoc(), ElementEntity); |
885 | if (ElementInit.isInvalid()) { |
886 | hadError = true; |
887 | return; |
888 | } |
889 | |
890 | Filler = ElementInit.getAs<Expr>(); |
891 | } |
892 | |
893 | if (hadError) { |
894 | // Do nothing |
895 | } else if (VerifyOnly) { |
896 | SkipEmptyInitChecks = true; |
897 | } else if (Init < NumInits) { |
898 | // For arrays, just set the expression used for value-initialization |
899 | // of the "holes" in the array. |
900 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
901 | ILE->setArrayFiller(Filler); |
902 | else |
903 | ILE->setInit(Init, Filler); |
904 | } else { |
905 | // For arrays, just set the expression used for value-initialization |
906 | // of the rest of elements and exit. |
907 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
908 | ILE->setArrayFiller(Filler); |
909 | return; |
910 | } |
911 | |
912 | if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { |
913 | // Empty initialization requires a constructor call, so |
914 | // extend the initializer list to include the constructor |
915 | // call and make a note that we'll need to take another pass |
916 | // through the initializer list. |
917 | ILE->updateInit(SemaRef.Context, Init, Filler); |
918 | RequiresSecondPass = true; |
919 | } |
920 | } |
921 | } else if (InitListExpr *InnerILE |
922 | = dyn_cast_or_null<InitListExpr>(InitExpr)) { |
923 | FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, |
924 | ILE, Init, FillWithNoInit); |
925 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
926 | dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { |
927 | FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), |
928 | RequiresSecondPass, ILE, Init, |
929 | /*FillWithNoInit =*/true); |
930 | } |
931 | } |
932 | } |
933 | |
934 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
935 | for (const Stmt *Init : *IL) |
936 | if (Init && isa<DesignatedInitExpr>(Init)) |
937 | return true; |
938 | return false; |
939 | } |
940 | |
941 | InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, |
942 | InitListExpr *IL, QualType &T, bool VerifyOnly, |
943 | bool TreatUnavailableAsInvalid, |
944 | bool InOverloadResolution) |
945 | : SemaRef(S), VerifyOnly(VerifyOnly), |
946 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
947 | InOverloadResolution(InOverloadResolution) { |
948 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
949 | FullyStructuredList = |
950 | createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); |
951 | |
952 | // FIXME: Check that IL isn't already the semantic form of some other |
953 | // InitListExpr. If it is, we'd create a broken AST. |
954 | if (!VerifyOnly) |
955 | FullyStructuredList->setSyntacticForm(IL); |
956 | } |
957 | |
958 | CheckExplicitInitList(Entity, IL, T, FullyStructuredList, |
959 | /*TopLevelObject=*/true); |
960 | |
961 | if (!hadError && FullyStructuredList) { |
962 | bool RequiresSecondPass = false; |
963 | FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, |
964 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
965 | if (RequiresSecondPass && !hadError) |
966 | FillInEmptyInitializations(Entity, FullyStructuredList, |
967 | RequiresSecondPass, nullptr, 0); |
968 | } |
969 | if (hadError && FullyStructuredList) |
970 | FullyStructuredList->markError(); |
971 | } |
972 | |
973 | int InitListChecker::numArrayElements(QualType DeclType) { |
974 | // FIXME: use a proper constant |
975 | int maxElements = 0x7FFFFFFF; |
976 | if (const ConstantArrayType *CAT = |
977 | SemaRef.Context.getAsConstantArrayType(DeclType)) { |
978 | maxElements = static_cast<int>(CAT->getSize().getZExtValue()); |
979 | } |
980 | return maxElements; |
981 | } |
982 | |
983 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
984 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
985 | int InitializableMembers = 0; |
986 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) |
987 | InitializableMembers += CXXRD->getNumBases(); |
988 | for (const auto *Field : structDecl->fields()) |
989 | if (!Field->isUnnamedBitfield()) |
990 | ++InitializableMembers; |
991 | |
992 | if (structDecl->isUnion()) |
993 | return std::min(InitializableMembers, 1); |
994 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
995 | } |
996 | |
997 | /// Determine whether Entity is an entity for which it is idiomatic to elide |
998 | /// the braces in aggregate initialization. |
999 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
1000 | // Recursive initialization of the one and only field within an aggregate |
1001 | // class is considered idiomatic. This case arises in particular for |
1002 | // initialization of std::array, where the C++ standard suggests the idiom of |
1003 | // |
1004 | // std::array<T, N> arr = {1, 2, 3}; |
1005 | // |
1006 | // (where std::array is an aggregate struct containing a single array field. |
1007 | |
1008 | // FIXME: Should aggregate initialization of a struct with a single |
1009 | // base class and no members also suppress the warning? |
1010 | if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) |
1011 | return false; |
1012 | |
1013 | auto *ParentRD = |
1014 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1015 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) |
1016 | if (CXXRD->getNumBases()) |
1017 | return false; |
1018 | |
1019 | auto FieldIt = ParentRD->field_begin(); |
1020 | assert(FieldIt != ParentRD->field_end() &&((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?" ) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1021, __PRETTY_FUNCTION__)) |
1021 | "no fields but have initializer for member?")((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?" ) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1021, __PRETTY_FUNCTION__)); |
1022 | return ++FieldIt == ParentRD->field_end(); |
1023 | } |
1024 | |
1025 | /// Check whether the range of the initializer \p ParentIList from element |
1026 | /// \p Index onwards can be used to initialize an object of type \p T. Update |
1027 | /// \p Index to indicate how many elements of the list were consumed. |
1028 | /// |
1029 | /// This also fills in \p StructuredList, from element \p StructuredIndex |
1030 | /// onwards, with the fully-braced, desugared form of the initialization. |
1031 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
1032 | InitListExpr *ParentIList, |
1033 | QualType T, unsigned &Index, |
1034 | InitListExpr *StructuredList, |
1035 | unsigned &StructuredIndex) { |
1036 | int maxElements = 0; |
1037 | |
1038 | if (T->isArrayType()) |
1039 | maxElements = numArrayElements(T); |
1040 | else if (T->isRecordType()) |
1041 | maxElements = numStructUnionElements(T); |
1042 | else if (T->isVectorType()) |
1043 | maxElements = T->castAs<VectorType>()->getNumElements(); |
1044 | else |
1045 | llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1045); |
1046 | |
1047 | if (maxElements == 0) { |
1048 | if (!VerifyOnly) |
1049 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), |
1050 | diag::err_implicit_empty_initializer); |
1051 | ++Index; |
1052 | hadError = true; |
1053 | return; |
1054 | } |
1055 | |
1056 | // Build a structured initializer list corresponding to this subobject. |
1057 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
1058 | ParentIList, Index, T, StructuredList, StructuredIndex, |
1059 | SourceRange(ParentIList->getInit(Index)->getBeginLoc(), |
1060 | ParentIList->getSourceRange().getEnd())); |
1061 | unsigned StructuredSubobjectInitIndex = 0; |
1062 | |
1063 | // Check the element types and build the structural subobject. |
1064 | unsigned StartIndex = Index; |
1065 | CheckListElementTypes(Entity, ParentIList, T, |
1066 | /*SubobjectIsDesignatorContext=*/false, Index, |
1067 | StructuredSubobjectInitList, |
1068 | StructuredSubobjectInitIndex); |
1069 | |
1070 | if (StructuredSubobjectInitList) { |
1071 | StructuredSubobjectInitList->setType(T); |
1072 | |
1073 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
1074 | // Update the structured sub-object initializer so that it's ending |
1075 | // range corresponds with the end of the last initializer it used. |
1076 | if (EndIndex < ParentIList->getNumInits() && |
1077 | ParentIList->getInit(EndIndex)) { |
1078 | SourceLocation EndLoc |
1079 | = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); |
1080 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
1081 | } |
1082 | |
1083 | // Complain about missing braces. |
1084 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
1085 | !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && |
1086 | !isIdiomaticBraceElisionEntity(Entity)) { |
1087 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1088 | diag::warn_missing_braces) |
1089 | << StructuredSubobjectInitList->getSourceRange() |
1090 | << FixItHint::CreateInsertion( |
1091 | StructuredSubobjectInitList->getBeginLoc(), "{") |
1092 | << FixItHint::CreateInsertion( |
1093 | SemaRef.getLocForEndOfToken( |
1094 | StructuredSubobjectInitList->getEndLoc()), |
1095 | "}"); |
1096 | } |
1097 | |
1098 | // Warn if this type won't be an aggregate in future versions of C++. |
1099 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1100 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1101 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1102 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1103 | << StructuredSubobjectInitList->getSourceRange() << T; |
1104 | } |
1105 | } |
1106 | } |
1107 | |
1108 | /// Warn that \p Entity was of scalar type and was initialized by a |
1109 | /// single-element braced initializer list. |
1110 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
1111 | SourceRange Braces) { |
1112 | // Don't warn during template instantiation. If the initialization was |
1113 | // non-dependent, we warned during the initial parse; otherwise, the |
1114 | // type might not be scalar in some uses of the template. |
1115 | if (S.inTemplateInstantiation()) |
1116 | return; |
1117 | |
1118 | unsigned DiagID = 0; |
1119 | |
1120 | switch (Entity.getKind()) { |
1121 | case InitializedEntity::EK_VectorElement: |
1122 | case InitializedEntity::EK_ComplexElement: |
1123 | case InitializedEntity::EK_ArrayElement: |
1124 | case InitializedEntity::EK_Parameter: |
1125 | case InitializedEntity::EK_Parameter_CF_Audited: |
1126 | case InitializedEntity::EK_TemplateParameter: |
1127 | case InitializedEntity::EK_Result: |
1128 | // Extra braces here are suspicious. |
1129 | DiagID = diag::warn_braces_around_init; |
1130 | break; |
1131 | |
1132 | case InitializedEntity::EK_Member: |
1133 | // Warn on aggregate initialization but not on ctor init list or |
1134 | // default member initializer. |
1135 | if (Entity.getParent()) |
1136 | DiagID = diag::warn_braces_around_init; |
1137 | break; |
1138 | |
1139 | case InitializedEntity::EK_Variable: |
1140 | case InitializedEntity::EK_LambdaCapture: |
1141 | // No warning, might be direct-list-initialization. |
1142 | // FIXME: Should we warn for copy-list-initialization in these cases? |
1143 | break; |
1144 | |
1145 | case InitializedEntity::EK_New: |
1146 | case InitializedEntity::EK_Temporary: |
1147 | case InitializedEntity::EK_CompoundLiteralInit: |
1148 | // No warning, braces are part of the syntax of the underlying construct. |
1149 | break; |
1150 | |
1151 | case InitializedEntity::EK_RelatedResult: |
1152 | // No warning, we already warned when initializing the result. |
1153 | break; |
1154 | |
1155 | case InitializedEntity::EK_Exception: |
1156 | case InitializedEntity::EK_Base: |
1157 | case InitializedEntity::EK_Delegating: |
1158 | case InitializedEntity::EK_BlockElement: |
1159 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
1160 | case InitializedEntity::EK_Binding: |
1161 | case InitializedEntity::EK_StmtExprResult: |
1162 | llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1162); |
1163 | } |
1164 | |
1165 | if (DiagID) { |
1166 | S.Diag(Braces.getBegin(), DiagID) |
1167 | << Entity.getType()->isSizelessBuiltinType() << Braces |
1168 | << FixItHint::CreateRemoval(Braces.getBegin()) |
1169 | << FixItHint::CreateRemoval(Braces.getEnd()); |
1170 | } |
1171 | } |
1172 | |
1173 | /// Check whether the initializer \p IList (that was written with explicit |
1174 | /// braces) can be used to initialize an object of type \p T. |
1175 | /// |
1176 | /// This also fills in \p StructuredList with the fully-braced, desugared |
1177 | /// form of the initialization. |
1178 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
1179 | InitListExpr *IList, QualType &T, |
1180 | InitListExpr *StructuredList, |
1181 | bool TopLevelObject) { |
1182 | unsigned Index = 0, StructuredIndex = 0; |
1183 | CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, |
1184 | Index, StructuredList, StructuredIndex, TopLevelObject); |
1185 | if (StructuredList) { |
1186 | QualType ExprTy = T; |
1187 | if (!ExprTy->isArrayType()) |
1188 | ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); |
1189 | if (!VerifyOnly) |
1190 | IList->setType(ExprTy); |
1191 | StructuredList->setType(ExprTy); |
1192 | } |
1193 | if (hadError) |
1194 | return; |
1195 | |
1196 | // Don't complain for incomplete types, since we'll get an error elsewhere. |
1197 | if (Index < IList->getNumInits() && !T->isIncompleteType()) { |
1198 | // We have leftover initializers |
1199 | bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || |
1200 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
1201 | hadError = ExtraInitsIsError; |
1202 | if (VerifyOnly) { |
1203 | return; |
1204 | } else if (StructuredIndex == 1 && |
1205 | IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == |
1206 | SIF_None) { |
1207 | unsigned DK = |
1208 | ExtraInitsIsError |
1209 | ? diag::err_excess_initializers_in_char_array_initializer |
1210 | : diag::ext_excess_initializers_in_char_array_initializer; |
1211 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1212 | << IList->getInit(Index)->getSourceRange(); |
1213 | } else if (T->isSizelessBuiltinType()) { |
1214 | unsigned DK = ExtraInitsIsError |
1215 | ? diag::err_excess_initializers_for_sizeless_type |
1216 | : diag::ext_excess_initializers_for_sizeless_type; |
1217 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1218 | << T << IList->getInit(Index)->getSourceRange(); |
1219 | } else { |
1220 | int initKind = T->isArrayType() ? 0 : |
1221 | T->isVectorType() ? 1 : |
1222 | T->isScalarType() ? 2 : |
1223 | T->isUnionType() ? 3 : |
1224 | 4; |
1225 | |
1226 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
1227 | : diag::ext_excess_initializers; |
1228 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1229 | << initKind << IList->getInit(Index)->getSourceRange(); |
1230 | } |
1231 | } |
1232 | |
1233 | if (!VerifyOnly) { |
1234 | if (T->isScalarType() && IList->getNumInits() == 1 && |
1235 | !isa<InitListExpr>(IList->getInit(0))) |
1236 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
1237 | |
1238 | // Warn if this is a class type that won't be an aggregate in future |
1239 | // versions of C++. |
1240 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1241 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1242 | // Don't warn if there's an equivalent default constructor that would be |
1243 | // used instead. |
1244 | bool HasEquivCtor = false; |
1245 | if (IList->getNumInits() == 0) { |
1246 | auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); |
1247 | HasEquivCtor = CD && !CD->isDeleted(); |
1248 | } |
1249 | |
1250 | if (!HasEquivCtor) { |
1251 | SemaRef.Diag(IList->getBeginLoc(), |
1252 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1253 | << IList->getSourceRange() << T; |
1254 | } |
1255 | } |
1256 | } |
1257 | } |
1258 | |
1259 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
1260 | InitListExpr *IList, |
1261 | QualType &DeclType, |
1262 | bool SubobjectIsDesignatorContext, |
1263 | unsigned &Index, |
1264 | InitListExpr *StructuredList, |
1265 | unsigned &StructuredIndex, |
1266 | bool TopLevelObject) { |
1267 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
1268 | // Explicitly braced initializer for complex type can be real+imaginary |
1269 | // parts. |
1270 | CheckComplexType(Entity, IList, DeclType, Index, |
1271 | StructuredList, StructuredIndex); |
1272 | } else if (DeclType->isScalarType()) { |
1273 | CheckScalarType(Entity, IList, DeclType, Index, |
1274 | StructuredList, StructuredIndex); |
1275 | } else if (DeclType->isVectorType()) { |
1276 | CheckVectorType(Entity, IList, DeclType, Index, |
1277 | StructuredList, StructuredIndex); |
1278 | } else if (DeclType->isRecordType()) { |
1279 | assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1280, __PRETTY_FUNCTION__)) |
1280 | "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1280, __PRETTY_FUNCTION__)); |
1281 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
1282 | auto Bases = |
1283 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
1284 | CXXRecordDecl::base_class_iterator()); |
1285 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
1286 | Bases = CXXRD->bases(); |
1287 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), |
1288 | SubobjectIsDesignatorContext, Index, StructuredList, |
1289 | StructuredIndex, TopLevelObject); |
1290 | } else if (DeclType->isArrayType()) { |
1291 | llvm::APSInt Zero( |
1292 | SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), |
1293 | false); |
1294 | CheckArrayType(Entity, IList, DeclType, Zero, |
1295 | SubobjectIsDesignatorContext, Index, |
1296 | StructuredList, StructuredIndex); |
1297 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
1298 | // This type is invalid, issue a diagnostic. |
1299 | ++Index; |
1300 | if (!VerifyOnly) |
1301 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1302 | << DeclType; |
1303 | hadError = true; |
1304 | } else if (DeclType->isReferenceType()) { |
1305 | CheckReferenceType(Entity, IList, DeclType, Index, |
1306 | StructuredList, StructuredIndex); |
1307 | } else if (DeclType->isObjCObjectType()) { |
1308 | if (!VerifyOnly) |
1309 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; |
1310 | hadError = true; |
1311 | } else if (DeclType->isOCLIntelSubgroupAVCType() || |
1312 | DeclType->isSizelessBuiltinType()) { |
1313 | // Checks for scalar type are sufficient for these types too. |
1314 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1315 | StructuredIndex); |
1316 | } else { |
1317 | if (!VerifyOnly) |
1318 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1319 | << DeclType; |
1320 | hadError = true; |
1321 | } |
1322 | } |
1323 | |
1324 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
1325 | InitListExpr *IList, |
1326 | QualType ElemType, |
1327 | unsigned &Index, |
1328 | InitListExpr *StructuredList, |
1329 | unsigned &StructuredIndex) { |
1330 | Expr *expr = IList->getInit(Index); |
1331 | |
1332 | if (ElemType->isReferenceType()) |
1333 | return CheckReferenceType(Entity, IList, ElemType, Index, |
1334 | StructuredList, StructuredIndex); |
1335 | |
1336 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { |
1337 | if (SubInitList->getNumInits() == 1 && |
1338 | IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == |
1339 | SIF_None) { |
1340 | // FIXME: It would be more faithful and no less correct to include an |
1341 | // InitListExpr in the semantic form of the initializer list in this case. |
1342 | expr = SubInitList->getInit(0); |
1343 | } |
1344 | // Nested aggregate initialization and C++ initialization are handled later. |
1345 | } else if (isa<ImplicitValueInitExpr>(expr)) { |
1346 | // This happens during template instantiation when we see an InitListExpr |
1347 | // that we've already checked once. |
1348 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) && "found implicit initialization for the wrong type") ? static_cast <void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1349, __PRETTY_FUNCTION__)) |
1349 | "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) && "found implicit initialization for the wrong type") ? static_cast <void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1349, __PRETTY_FUNCTION__)); |
1350 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1351 | ++Index; |
1352 | return; |
1353 | } |
1354 | |
1355 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { |
1356 | // C++ [dcl.init.aggr]p2: |
1357 | // Each member is copy-initialized from the corresponding |
1358 | // initializer-clause. |
1359 | |
1360 | // FIXME: Better EqualLoc? |
1361 | InitializationKind Kind = |
1362 | InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); |
1363 | |
1364 | // Vector elements can be initialized from other vectors in which case |
1365 | // we need initialization entity with a type of a vector (and not a vector |
1366 | // element!) initializing multiple vector elements. |
1367 | auto TmpEntity = |
1368 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
1369 | ? InitializedEntity::InitializeTemporary(ElemType) |
1370 | : Entity; |
1371 | |
1372 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
1373 | /*TopLevelOfInitList*/ true); |
1374 | |
1375 | // C++14 [dcl.init.aggr]p13: |
1376 | // If the assignment-expression can initialize a member, the member is |
1377 | // initialized. Otherwise [...] brace elision is assumed |
1378 | // |
1379 | // Brace elision is never performed if the element is not an |
1380 | // assignment-expression. |
1381 | if (Seq || isa<InitListExpr>(expr)) { |
1382 | if (!VerifyOnly) { |
1383 | ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); |
1384 | if (Result.isInvalid()) |
1385 | hadError = true; |
1386 | |
1387 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1388 | Result.getAs<Expr>()); |
1389 | } else if (!Seq) { |
1390 | hadError = true; |
1391 | } else if (StructuredList) { |
1392 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1393 | getDummyInit()); |
1394 | } |
1395 | ++Index; |
1396 | return; |
1397 | } |
1398 | |
1399 | // Fall through for subaggregate initialization |
1400 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
1401 | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
1402 | return CheckScalarType(Entity, IList, ElemType, Index, |
1403 | StructuredList, StructuredIndex); |
1404 | } else if (const ArrayType *arrayType = |
1405 | SemaRef.Context.getAsArrayType(ElemType)) { |
1406 | // arrayType can be incomplete if we're initializing a flexible |
1407 | // array member. There's nothing we can do with the completed |
1408 | // type here, though. |
1409 | |
1410 | if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { |
1411 | // FIXME: Should we do this checking in verify-only mode? |
1412 | if (!VerifyOnly) |
1413 | CheckStringInit(expr, ElemType, arrayType, SemaRef); |
1414 | if (StructuredList) |
1415 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1416 | ++Index; |
1417 | return; |
1418 | } |
1419 | |
1420 | // Fall through for subaggregate initialization. |
1421 | |
1422 | } else { |
1423 | assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && "Unexpected type" ) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1424, __PRETTY_FUNCTION__)) |
1424 | ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && "Unexpected type" ) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1424, __PRETTY_FUNCTION__)); |
1425 | |
1426 | // C99 6.7.8p13: |
1427 | // |
1428 | // The initializer for a structure or union object that has |
1429 | // automatic storage duration shall be either an initializer |
1430 | // list as described below, or a single expression that has |
1431 | // compatible structure or union type. In the latter case, the |
1432 | // initial value of the object, including unnamed members, is |
1433 | // that of the expression. |
1434 | ExprResult ExprRes = expr; |
1435 | if (SemaRef.CheckSingleAssignmentConstraints( |
1436 | ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { |
1437 | if (ExprRes.isInvalid()) |
1438 | hadError = true; |
1439 | else { |
1440 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); |
1441 | if (ExprRes.isInvalid()) |
1442 | hadError = true; |
1443 | } |
1444 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1445 | ExprRes.getAs<Expr>()); |
1446 | ++Index; |
1447 | return; |
1448 | } |
1449 | ExprRes.get(); |
1450 | // Fall through for subaggregate initialization |
1451 | } |
1452 | |
1453 | // C++ [dcl.init.aggr]p12: |
1454 | // |
1455 | // [...] Otherwise, if the member is itself a non-empty |
1456 | // subaggregate, brace elision is assumed and the initializer is |
1457 | // considered for the initialization of the first member of |
1458 | // the subaggregate. |
1459 | // OpenCL vector initializer is handled elsewhere. |
1460 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
1461 | ElemType->isAggregateType()) { |
1462 | CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, |
1463 | StructuredIndex); |
1464 | ++StructuredIndex; |
1465 | } else { |
1466 | if (!VerifyOnly) { |
1467 | // We cannot initialize this element, so let PerformCopyInitialization |
1468 | // produce the appropriate diagnostic. We already checked that this |
1469 | // initialization will fail. |
1470 | ExprResult Copy = |
1471 | SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, |
1472 | /*TopLevelOfInitList=*/true); |
1473 | (void)Copy; |
1474 | assert(Copy.isInvalid() &&((Copy.isInvalid() && "expected non-aggregate initialization to fail" ) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1475, __PRETTY_FUNCTION__)) |
1475 | "expected non-aggregate initialization to fail")((Copy.isInvalid() && "expected non-aggregate initialization to fail" ) ? static_cast<void> (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1475, __PRETTY_FUNCTION__)); |
1476 | } |
1477 | hadError = true; |
1478 | ++Index; |
1479 | ++StructuredIndex; |
1480 | } |
1481 | } |
1482 | |
1483 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
1484 | InitListExpr *IList, QualType DeclType, |
1485 | unsigned &Index, |
1486 | InitListExpr *StructuredList, |
1487 | unsigned &StructuredIndex) { |
1488 | assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero" ) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1488, __PRETTY_FUNCTION__)); |
1489 | |
1490 | // As an extension, clang supports complex initializers, which initialize |
1491 | // a complex number component-wise. When an explicit initializer list for |
1492 | // a complex number contains two two initializers, this extension kicks in: |
1493 | // it exepcts the initializer list to contain two elements convertible to |
1494 | // the element type of the complex type. The first element initializes |
1495 | // the real part, and the second element intitializes the imaginary part. |
1496 | |
1497 | if (IList->getNumInits() != 2) |
1498 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1499 | StructuredIndex); |
1500 | |
1501 | // This is an extension in C. (The builtin _Complex type does not exist |
1502 | // in the C++ standard.) |
1503 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
1504 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) |
1505 | << IList->getSourceRange(); |
1506 | |
1507 | // Initialize the complex number. |
1508 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
1509 | InitializedEntity ElementEntity = |
1510 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1511 | |
1512 | for (unsigned i = 0; i < 2; ++i) { |
1513 | ElementEntity.setElementIndex(Index); |
1514 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1515 | StructuredList, StructuredIndex); |
1516 | } |
1517 | } |
1518 | |
1519 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
1520 | InitListExpr *IList, QualType DeclType, |
1521 | unsigned &Index, |
1522 | InitListExpr *StructuredList, |
1523 | unsigned &StructuredIndex) { |
1524 | if (Index >= IList->getNumInits()) { |
1525 | if (!VerifyOnly) { |
1526 | if (DeclType->isSizelessBuiltinType()) |
1527 | SemaRef.Diag(IList->getBeginLoc(), |
1528 | SemaRef.getLangOpts().CPlusPlus11 |
1529 | ? diag::warn_cxx98_compat_empty_sizeless_initializer |
1530 | : diag::err_empty_sizeless_initializer) |
1531 | << DeclType << IList->getSourceRange(); |
1532 | else |
1533 | SemaRef.Diag(IList->getBeginLoc(), |
1534 | SemaRef.getLangOpts().CPlusPlus11 |
1535 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
1536 | : diag::err_empty_scalar_initializer) |
1537 | << IList->getSourceRange(); |
1538 | } |
1539 | hadError = !SemaRef.getLangOpts().CPlusPlus11; |
1540 | ++Index; |
1541 | ++StructuredIndex; |
1542 | return; |
1543 | } |
1544 | |
1545 | Expr *expr = IList->getInit(Index); |
1546 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { |
1547 | // FIXME: This is invalid, and accepting it causes overload resolution |
1548 | // to pick the wrong overload in some corner cases. |
1549 | if (!VerifyOnly) |
1550 | SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) |
1551 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); |
1552 | |
1553 | CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, |
1554 | StructuredIndex); |
1555 | return; |
1556 | } else if (isa<DesignatedInitExpr>(expr)) { |
1557 | if (!VerifyOnly) |
1558 | SemaRef.Diag(expr->getBeginLoc(), |
1559 | diag::err_designator_for_scalar_or_sizeless_init) |
1560 | << DeclType->isSizelessBuiltinType() << DeclType |
1561 | << expr->getSourceRange(); |
1562 | hadError = true; |
1563 | ++Index; |
1564 | ++StructuredIndex; |
1565 | return; |
1566 | } |
1567 | |
1568 | ExprResult Result; |
1569 | if (VerifyOnly) { |
1570 | if (SemaRef.CanPerformCopyInitialization(Entity, expr)) |
1571 | Result = getDummyInit(); |
1572 | else |
1573 | Result = ExprError(); |
1574 | } else { |
1575 | Result = |
1576 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1577 | /*TopLevelOfInitList=*/true); |
1578 | } |
1579 | |
1580 | Expr *ResultExpr = nullptr; |
1581 | |
1582 | if (Result.isInvalid()) |
1583 | hadError = true; // types weren't compatible. |
1584 | else { |
1585 | ResultExpr = Result.getAs<Expr>(); |
1586 | |
1587 | if (ResultExpr != expr && !VerifyOnly) { |
1588 | // The type was promoted, update initializer list. |
1589 | // FIXME: Why are we updating the syntactic init list? |
1590 | IList->setInit(Index, ResultExpr); |
1591 | } |
1592 | } |
1593 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
1594 | ++Index; |
1595 | } |
1596 | |
1597 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
1598 | InitListExpr *IList, QualType DeclType, |
1599 | unsigned &Index, |
1600 | InitListExpr *StructuredList, |
1601 | unsigned &StructuredIndex) { |
1602 | if (Index >= IList->getNumInits()) { |
1603 | // FIXME: It would be wonderful if we could point at the actual member. In |
1604 | // general, it would be useful to pass location information down the stack, |
1605 | // so that we know the location (or decl) of the "current object" being |
1606 | // initialized. |
1607 | if (!VerifyOnly) |
1608 | SemaRef.Diag(IList->getBeginLoc(), |
1609 | diag::err_init_reference_member_uninitialized) |
1610 | << DeclType << IList->getSourceRange(); |
1611 | hadError = true; |
1612 | ++Index; |
1613 | ++StructuredIndex; |
1614 | return; |
1615 | } |
1616 | |
1617 | Expr *expr = IList->getInit(Index); |
1618 | if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
1619 | if (!VerifyOnly) |
1620 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) |
1621 | << DeclType << IList->getSourceRange(); |
1622 | hadError = true; |
1623 | ++Index; |
1624 | ++StructuredIndex; |
1625 | return; |
1626 | } |
1627 | |
1628 | ExprResult Result; |
1629 | if (VerifyOnly) { |
1630 | if (SemaRef.CanPerformCopyInitialization(Entity,expr)) |
1631 | Result = getDummyInit(); |
1632 | else |
1633 | Result = ExprError(); |
1634 | } else { |
1635 | Result = |
1636 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1637 | /*TopLevelOfInitList=*/true); |
1638 | } |
1639 | |
1640 | if (Result.isInvalid()) |
1641 | hadError = true; |
1642 | |
1643 | expr = Result.getAs<Expr>(); |
1644 | // FIXME: Why are we updating the syntactic init list? |
1645 | if (!VerifyOnly && expr) |
1646 | IList->setInit(Index, expr); |
1647 | |
1648 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1649 | ++Index; |
1650 | } |
1651 | |
1652 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
1653 | InitListExpr *IList, QualType DeclType, |
1654 | unsigned &Index, |
1655 | InitListExpr *StructuredList, |
1656 | unsigned &StructuredIndex) { |
1657 | const VectorType *VT = DeclType->castAs<VectorType>(); |
1658 | unsigned maxElements = VT->getNumElements(); |
1659 | unsigned numEltsInit = 0; |
1660 | QualType elementType = VT->getElementType(); |
1661 | |
1662 | if (Index >= IList->getNumInits()) { |
1663 | // Make sure the element type can be value-initialized. |
1664 | CheckEmptyInitializable( |
1665 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
1666 | IList->getEndLoc()); |
1667 | return; |
1668 | } |
1669 | |
1670 | if (!SemaRef.getLangOpts().OpenCL) { |
1671 | // If the initializing element is a vector, try to copy-initialize |
1672 | // instead of breaking it apart (which is doomed to failure anyway). |
1673 | Expr *Init = IList->getInit(Index); |
1674 | if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { |
1675 | ExprResult Result; |
1676 | if (VerifyOnly) { |
1677 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
1678 | Result = getDummyInit(); |
1679 | else |
1680 | Result = ExprError(); |
1681 | } else { |
1682 | Result = |
1683 | SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, |
1684 | /*TopLevelOfInitList=*/true); |
1685 | } |
1686 | |
1687 | Expr *ResultExpr = nullptr; |
1688 | if (Result.isInvalid()) |
1689 | hadError = true; // types weren't compatible. |
1690 | else { |
1691 | ResultExpr = Result.getAs<Expr>(); |
1692 | |
1693 | if (ResultExpr != Init && !VerifyOnly) { |
1694 | // The type was promoted, update initializer list. |
1695 | // FIXME: Why are we updating the syntactic init list? |
1696 | IList->setInit(Index, ResultExpr); |
1697 | } |
1698 | } |
1699 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
1700 | ++Index; |
1701 | return; |
1702 | } |
1703 | |
1704 | InitializedEntity ElementEntity = |
1705 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1706 | |
1707 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
1708 | // Don't attempt to go past the end of the init list |
1709 | if (Index >= IList->getNumInits()) { |
1710 | CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); |
1711 | break; |
1712 | } |
1713 | |
1714 | ElementEntity.setElementIndex(Index); |
1715 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1716 | StructuredList, StructuredIndex); |
1717 | } |
1718 | |
1719 | if (VerifyOnly) |
1720 | return; |
1721 | |
1722 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
1723 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
1724 | if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || |
1725 | T->getVectorKind() == VectorType::NeonPolyVector)) { |
1726 | // The ability to use vector initializer lists is a GNU vector extension |
1727 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
1728 | // endian machines it works fine, however on big endian machines it |
1729 | // exhibits surprising behaviour: |
1730 | // |
1731 | // uint32x2_t x = {42, 64}; |
1732 | // return vget_lane_u32(x, 0); // Will return 64. |
1733 | // |
1734 | // Because of this, explicitly call out that it is non-portable. |
1735 | // |
1736 | SemaRef.Diag(IList->getBeginLoc(), |
1737 | diag::warn_neon_vector_initializer_non_portable); |
1738 | |
1739 | const char *typeCode; |
1740 | unsigned typeSize = SemaRef.Context.getTypeSize(elementType); |
1741 | |
1742 | if (elementType->isFloatingType()) |
1743 | typeCode = "f"; |
1744 | else if (elementType->isSignedIntegerType()) |
1745 | typeCode = "s"; |
1746 | else if (elementType->isUnsignedIntegerType()) |
1747 | typeCode = "u"; |
1748 | else |
1749 | llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 1749); |
1750 | |
1751 | SemaRef.Diag(IList->getBeginLoc(), |
1752 | SemaRef.Context.getTypeSize(VT) > 64 |
1753 | ? diag::note_neon_vector_initializer_non_portable_q |
1754 | : diag::note_neon_vector_initializer_non_portable) |
1755 | << typeCode << typeSize; |
1756 | } |
1757 | |
1758 | return; |
1759 | } |
1760 | |
1761 | InitializedEntity ElementEntity = |
1762 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1763 | |
1764 | // OpenCL initializers allows vectors to be constructed from vectors. |
1765 | for (unsigned i = 0; i < maxElements; ++i) { |
1766 | // Don't attempt to go past the end of the init list |
1767 | if (Index >= IList->getNumInits()) |
1768 | break; |
1769 | |
1770 | ElementEntity.setElementIndex(Index); |
1771 | |
1772 | QualType IType = IList->getInit(Index)->getType(); |
1773 | if (!IType->isVectorType()) { |
1774 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1775 | StructuredList, StructuredIndex); |
1776 | ++numEltsInit; |
1777 | } else { |
1778 | QualType VecType; |
1779 | const VectorType *IVT = IType->castAs<VectorType>(); |
1780 | unsigned numIElts = IVT->getNumElements(); |
1781 | |
1782 | if (IType->isExtVectorType()) |
1783 | VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); |
1784 | else |
1785 | VecType = SemaRef.Context.getVectorType(elementType, numIElts, |
1786 | IVT->getVectorKind()); |
1787 | CheckSubElementType(ElementEntity, IList, VecType, Index, |
1788 | StructuredList, StructuredIndex); |
1789 | numEltsInit += numIElts; |
1790 | } |
1791 | } |
1792 | |
1793 | // OpenCL requires all elements to be initialized. |
1794 | if (numEltsInit != maxElements) { |
1795 | if (!VerifyOnly) |
1796 | SemaRef.Diag(IList->getBeginLoc(), |
1797 | diag::err_vector_incorrect_num_initializers) |
1798 | << (numEltsInit < maxElements) << maxElements << numEltsInit; |
1799 | hadError = true; |
1800 | } |
1801 | } |
1802 | |
1803 | /// Check if the type of a class element has an accessible destructor, and marks |
1804 | /// it referenced. Returns true if we shouldn't form a reference to the |
1805 | /// destructor. |
1806 | /// |
1807 | /// Aggregate initialization requires a class element's destructor be |
1808 | /// accessible per 11.6.1 [dcl.init.aggr]: |
1809 | /// |
1810 | /// The destructor for each element of class type is potentially invoked |
1811 | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
1812 | /// occurs. |
1813 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
1814 | Sema &SemaRef) { |
1815 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
1816 | if (!CXXRD) |
1817 | return false; |
1818 | |
1819 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); |
1820 | SemaRef.CheckDestructorAccess(Loc, Destructor, |
1821 | SemaRef.PDiag(diag::err_access_dtor_temp) |
1822 | << ElementType); |
1823 | SemaRef.MarkFunctionReferenced(Loc, Destructor); |
1824 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); |
1825 | } |
1826 | |
1827 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
1828 | InitListExpr *IList, QualType &DeclType, |
1829 | llvm::APSInt elementIndex, |
1830 | bool SubobjectIsDesignatorContext, |
1831 | unsigned &Index, |
1832 | InitListExpr *StructuredList, |
1833 | unsigned &StructuredIndex) { |
1834 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); |
1835 | |
1836 | if (!VerifyOnly) { |
1837 | if (checkDestructorReference(arrayType->getElementType(), |
1838 | IList->getEndLoc(), SemaRef)) { |
1839 | hadError = true; |
1840 | return; |
1841 | } |
1842 | } |
1843 | |
1844 | // Check for the special-case of initializing an array with a string. |
1845 | if (Index < IList->getNumInits()) { |
1846 | if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == |
1847 | SIF_None) { |
1848 | // We place the string literal directly into the resulting |
1849 | // initializer list. This is the only place where the structure |
1850 | // of the structured initializer list doesn't match exactly, |
1851 | // because doing so would involve allocating one character |
1852 | // constant for each string. |
1853 | // FIXME: Should we do these checks in verify-only mode too? |
1854 | if (!VerifyOnly) |
1855 | CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); |
1856 | if (StructuredList) { |
1857 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1858 | IList->getInit(Index)); |
1859 | StructuredList->resizeInits(SemaRef.Context, StructuredIndex); |
1860 | } |
1861 | ++Index; |
1862 | return; |
1863 | } |
1864 | } |
1865 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { |
1866 | // Check for VLAs; in standard C it would be possible to check this |
1867 | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
1868 | // them in all sorts of strange places). |
1869 | if (!VerifyOnly) |
1870 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), |
1871 | diag::err_variable_object_no_init) |
1872 | << VAT->getSizeExpr()->getSourceRange(); |
1873 | hadError = true; |
1874 | ++Index; |
1875 | ++StructuredIndex; |
1876 | return; |
1877 | } |
1878 | |
1879 | // We might know the maximum number of elements in advance. |
1880 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
1881 | elementIndex.isUnsigned()); |
1882 | bool maxElementsKnown = false; |
1883 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { |
1884 | maxElements = CAT->getSize(); |
1885 | elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); |
1886 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
1887 | maxElementsKnown = true; |
1888 | } |
1889 | |
1890 | QualType elementType = arrayType->getElementType(); |
1891 | while (Index < IList->getNumInits()) { |
1892 | Expr *Init = IList->getInit(Index); |
1893 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
1894 | // If we're not the subobject that matches up with the '{' for |
1895 | // the designator, we shouldn't be handling the |
1896 | // designator. Return immediately. |
1897 | if (!SubobjectIsDesignatorContext) |
1898 | return; |
1899 | |
1900 | // Handle this designated initializer. elementIndex will be |
1901 | // updated to be the next array element we'll initialize. |
1902 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
1903 | DeclType, nullptr, &elementIndex, Index, |
1904 | StructuredList, StructuredIndex, true, |
1905 | false)) { |
1906 | hadError = true; |
1907 | continue; |
1908 | } |
1909 | |
1910 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
1911 | maxElements = maxElements.extend(elementIndex.getBitWidth()); |
1912 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
1913 | elementIndex = elementIndex.extend(maxElements.getBitWidth()); |
1914 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
1915 | |
1916 | // If the array is of incomplete type, keep track of the number of |
1917 | // elements in the initializer. |
1918 | if (!maxElementsKnown && elementIndex > maxElements) |
1919 | maxElements = elementIndex; |
1920 | |
1921 | continue; |
1922 | } |
1923 | |
1924 | // If we know the maximum number of elements, and we've already |
1925 | // hit it, stop consuming elements in the initializer list. |
1926 | if (maxElementsKnown && elementIndex == maxElements) |
1927 | break; |
1928 | |
1929 | InitializedEntity ElementEntity = |
1930 | InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, |
1931 | Entity); |
1932 | // Check this element. |
1933 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1934 | StructuredList, StructuredIndex); |
1935 | ++elementIndex; |
1936 | |
1937 | // If the array is of incomplete type, keep track of the number of |
1938 | // elements in the initializer. |
1939 | if (!maxElementsKnown && elementIndex > maxElements) |
1940 | maxElements = elementIndex; |
1941 | } |
1942 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
1943 | // If this is an incomplete array type, the actual type needs to |
1944 | // be calculated here. |
1945 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
1946 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
1947 | // Sizing an array implicitly to zero is not allowed by ISO C, |
1948 | // but is supported by GNU. |
1949 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); |
1950 | } |
1951 | |
1952 | DeclType = SemaRef.Context.getConstantArrayType( |
1953 | elementType, maxElements, nullptr, ArrayType::Normal, 0); |
1954 | } |
1955 | if (!hadError) { |
1956 | // If there are any members of the array that get value-initialized, check |
1957 | // that is possible. That happens if we know the bound and don't have |
1958 | // enough elements, or if we're performing an array new with an unknown |
1959 | // bound. |
1960 | if ((maxElementsKnown && elementIndex < maxElements) || |
1961 | Entity.isVariableLengthArrayNew()) |
1962 | CheckEmptyInitializable( |
1963 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
1964 | IList->getEndLoc()); |
1965 | } |
1966 | } |
1967 | |
1968 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
1969 | Expr *InitExpr, |
1970 | FieldDecl *Field, |
1971 | bool TopLevelObject) { |
1972 | // Handle GNU flexible array initializers. |
1973 | unsigned FlexArrayDiag; |
1974 | if (isa<InitListExpr>(InitExpr) && |
1975 | cast<InitListExpr>(InitExpr)->getNumInits() == 0) { |
1976 | // Empty flexible array init always allowed as an extension |
1977 | FlexArrayDiag = diag::ext_flexible_array_init; |
1978 | } else if (SemaRef.getLangOpts().CPlusPlus) { |
1979 | // Disallow flexible array init in C++; it is not required for gcc |
1980 | // compatibility, and it needs work to IRGen correctly in general. |
1981 | FlexArrayDiag = diag::err_flexible_array_init; |
1982 | } else if (!TopLevelObject) { |
1983 | // Disallow flexible array init on non-top-level object |
1984 | FlexArrayDiag = diag::err_flexible_array_init; |
1985 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
1986 | // Disallow flexible array init on anything which is not a variable. |
1987 | FlexArrayDiag = diag::err_flexible_array_init; |
1988 | } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { |
1989 | // Disallow flexible array init on local variables. |
1990 | FlexArrayDiag = diag::err_flexible_array_init; |
1991 | } else { |
1992 | // Allow other cases. |
1993 | FlexArrayDiag = diag::ext_flexible_array_init; |
1994 | } |
1995 | |
1996 | if (!VerifyOnly) { |
1997 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) |
1998 | << InitExpr->getBeginLoc(); |
1999 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2000 | << Field; |
2001 | } |
2002 | |
2003 | return FlexArrayDiag != diag::ext_flexible_array_init; |
2004 | } |
2005 | |
2006 | void InitListChecker::CheckStructUnionTypes( |
2007 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
2008 | CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, |
2009 | bool SubobjectIsDesignatorContext, unsigned &Index, |
2010 | InitListExpr *StructuredList, unsigned &StructuredIndex, |
2011 | bool TopLevelObject) { |
2012 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
2013 | |
2014 | // If the record is invalid, some of it's members are invalid. To avoid |
2015 | // confusion, we forgo checking the intializer for the entire record. |
2016 | if (structDecl->isInvalidDecl()) { |
2017 | // Assume it was supposed to consume a single initializer. |
2018 | ++Index; |
2019 | hadError = true; |
2020 | return; |
2021 | } |
2022 | |
2023 | if (DeclType->isUnionType() && IList->getNumInits() == 0) { |
2024 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
2025 | |
2026 | if (!VerifyOnly) |
2027 | for (FieldDecl *FD : RD->fields()) { |
2028 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); |
2029 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2030 | hadError = true; |
2031 | return; |
2032 | } |
2033 | } |
2034 | |
2035 | // If there's a default initializer, use it. |
2036 | if (isa<CXXRecordDecl>(RD) && |
2037 | cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { |
2038 | if (!StructuredList) |
2039 | return; |
2040 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2041 | Field != FieldEnd; ++Field) { |
2042 | if (Field->hasInClassInitializer()) { |
2043 | StructuredList->setInitializedFieldInUnion(*Field); |
2044 | // FIXME: Actually build a CXXDefaultInitExpr? |
2045 | return; |
2046 | } |
2047 | } |
2048 | } |
2049 | |
2050 | // Value-initialize the first member of the union that isn't an unnamed |
2051 | // bitfield. |
2052 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2053 | Field != FieldEnd; ++Field) { |
2054 | if (!Field->isUnnamedBitfield()) { |
2055 | CheckEmptyInitializable( |
2056 | InitializedEntity::InitializeMember(*Field, &Entity), |
2057 | IList->getEndLoc()); |
2058 | if (StructuredList) |
2059 | StructuredList->setInitializedFieldInUnion(*Field); |
2060 | break; |
2061 | } |
2062 | } |
2063 | return; |
2064 | } |
2065 | |
2066 | bool InitializedSomething = false; |
2067 | |
2068 | // If we have any base classes, they are initialized prior to the fields. |
2069 | for (auto &Base : Bases) { |
2070 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; |
2071 | |
2072 | // Designated inits always initialize fields, so if we see one, all |
2073 | // remaining base classes have no explicit initializer. |
2074 | if (Init && isa<DesignatedInitExpr>(Init)) |
2075 | Init = nullptr; |
2076 | |
2077 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
2078 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
2079 | SemaRef.Context, &Base, false, &Entity); |
2080 | if (Init) { |
2081 | CheckSubElementType(BaseEntity, IList, Base.getType(), Index, |
2082 | StructuredList, StructuredIndex); |
2083 | InitializedSomething = true; |
2084 | } else { |
2085 | CheckEmptyInitializable(BaseEntity, InitLoc); |
2086 | } |
2087 | |
2088 | if (!VerifyOnly) |
2089 | if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { |
2090 | hadError = true; |
2091 | return; |
2092 | } |
2093 | } |
2094 | |
2095 | // If structDecl is a forward declaration, this loop won't do |
2096 | // anything except look at designated initializers; That's okay, |
2097 | // because an error should get printed out elsewhere. It might be |
2098 | // worthwhile to skip over the rest of the initializer, though. |
2099 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); |
2100 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2101 | bool CheckForMissingFields = |
2102 | !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); |
2103 | bool HasDesignatedInit = false; |
2104 | |
2105 | while (Index < IList->getNumInits()) { |
2106 | Expr *Init = IList->getInit(Index); |
2107 | SourceLocation InitLoc = Init->getBeginLoc(); |
2108 | |
2109 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
2110 | // If we're not the subobject that matches up with the '{' for |
2111 | // the designator, we shouldn't be handling the |
2112 | // designator. Return immediately. |
2113 | if (!SubobjectIsDesignatorContext) |
2114 | return; |
2115 | |
2116 | HasDesignatedInit = true; |
2117 | |
2118 | // Handle this designated initializer. Field will be updated to |
2119 | // the next field that we'll be initializing. |
2120 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
2121 | DeclType, &Field, nullptr, Index, |
2122 | StructuredList, StructuredIndex, |
2123 | true, TopLevelObject)) |
2124 | hadError = true; |
2125 | else if (!VerifyOnly) { |
2126 | // Find the field named by the designated initializer. |
2127 | RecordDecl::field_iterator F = RD->field_begin(); |
2128 | while (std::next(F) != Field) |
2129 | ++F; |
2130 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); |
2131 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2132 | hadError = true; |
2133 | return; |
2134 | } |
2135 | } |
2136 | |
2137 | InitializedSomething = true; |
2138 | |
2139 | // Disable check for missing fields when designators are used. |
2140 | // This matches gcc behaviour. |
2141 | CheckForMissingFields = false; |
2142 | continue; |
2143 | } |
2144 | |
2145 | if (Field == FieldEnd) { |
2146 | // We've run out of fields. We're done. |
2147 | break; |
2148 | } |
2149 | |
2150 | // We've already initialized a member of a union. We're done. |
2151 | if (InitializedSomething && DeclType->isUnionType()) |
2152 | break; |
2153 | |
2154 | // If we've hit the flexible array member at the end, we're done. |
2155 | if (Field->getType()->isIncompleteArrayType()) |
2156 | break; |
2157 | |
2158 | if (Field->isUnnamedBitfield()) { |
2159 | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
2160 | ++Field; |
2161 | continue; |
2162 | } |
2163 | |
2164 | // Make sure we can use this declaration. |
2165 | bool InvalidUse; |
2166 | if (VerifyOnly) |
2167 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2168 | else |
2169 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
2170 | *Field, IList->getInit(Index)->getBeginLoc()); |
2171 | if (InvalidUse) { |
2172 | ++Index; |
2173 | ++Field; |
2174 | hadError = true; |
2175 | continue; |
2176 | } |
2177 | |
2178 | if (!VerifyOnly) { |
2179 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); |
2180 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2181 | hadError = true; |
2182 | return; |
2183 | } |
2184 | } |
2185 | |
2186 | InitializedEntity MemberEntity = |
2187 | InitializedEntity::InitializeMember(*Field, &Entity); |
2188 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2189 | StructuredList, StructuredIndex); |
2190 | InitializedSomething = true; |
2191 | |
2192 | if (DeclType->isUnionType() && StructuredList) { |
2193 | // Initialize the first field within the union. |
2194 | StructuredList->setInitializedFieldInUnion(*Field); |
2195 | } |
2196 | |
2197 | ++Field; |
2198 | } |
2199 | |
2200 | // Emit warnings for missing struct field initializers. |
2201 | if (!VerifyOnly && InitializedSomething && CheckForMissingFields && |
2202 | Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && |
2203 | !DeclType->isUnionType()) { |
2204 | // It is possible we have one or more unnamed bitfields remaining. |
2205 | // Find first (if any) named field and emit warning. |
2206 | for (RecordDecl::field_iterator it = Field, end = RD->field_end(); |
2207 | it != end; ++it) { |
2208 | if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { |
2209 | SemaRef.Diag(IList->getSourceRange().getEnd(), |
2210 | diag::warn_missing_field_initializers) << *it; |
2211 | break; |
2212 | } |
2213 | } |
2214 | } |
2215 | |
2216 | // Check that any remaining fields can be value-initialized if we're not |
2217 | // building a structured list. (If we are, we'll check this later.) |
2218 | if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && |
2219 | !Field->getType()->isIncompleteArrayType()) { |
2220 | for (; Field != FieldEnd && !hadError; ++Field) { |
2221 | if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) |
2222 | CheckEmptyInitializable( |
2223 | InitializedEntity::InitializeMember(*Field, &Entity), |
2224 | IList->getEndLoc()); |
2225 | } |
2226 | } |
2227 | |
2228 | // Check that the types of the remaining fields have accessible destructors. |
2229 | if (!VerifyOnly) { |
2230 | // If the initializer expression has a designated initializer, check the |
2231 | // elements for which a designated initializer is not provided too. |
2232 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
2233 | : Field; |
2234 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
2235 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); |
2236 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2237 | hadError = true; |
2238 | return; |
2239 | } |
2240 | } |
2241 | } |
2242 | |
2243 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
2244 | Index >= IList->getNumInits()) |
2245 | return; |
2246 | |
2247 | if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, |
2248 | TopLevelObject)) { |
2249 | hadError = true; |
2250 | ++Index; |
2251 | return; |
2252 | } |
2253 | |
2254 | InitializedEntity MemberEntity = |
2255 | InitializedEntity::InitializeMember(*Field, &Entity); |
2256 | |
2257 | if (isa<InitListExpr>(IList->getInit(Index))) |
2258 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2259 | StructuredList, StructuredIndex); |
2260 | else |
2261 | CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, |
2262 | StructuredList, StructuredIndex); |
2263 | } |
2264 | |
2265 | /// Expand a field designator that refers to a member of an |
2266 | /// anonymous struct or union into a series of field designators that |
2267 | /// refers to the field within the appropriate subobject. |
2268 | /// |
2269 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
2270 | DesignatedInitExpr *DIE, |
2271 | unsigned DesigIdx, |
2272 | IndirectFieldDecl *IndirectField) { |
2273 | typedef DesignatedInitExpr::Designator Designator; |
2274 | |
2275 | // Build the replacement designators. |
2276 | SmallVector<Designator, 4> Replacements; |
2277 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
2278 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
2279 | if (PI + 1 == PE) |
2280 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
2281 | DIE->getDesignator(DesigIdx)->getDotLoc(), |
2282 | DIE->getDesignator(DesigIdx)->getFieldLoc())); |
2283 | else |
2284 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
2285 | SourceLocation(), SourceLocation())); |
2286 | assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail ("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2286, __PRETTY_FUNCTION__)); |
2287 | Replacements.back().setField(cast<FieldDecl>(*PI)); |
2288 | } |
2289 | |
2290 | // Expand the current designator into the set of replacement |
2291 | // designators, so we have a full subobject path down to where the |
2292 | // member of the anonymous struct/union is actually stored. |
2293 | DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], |
2294 | &Replacements[0] + Replacements.size()); |
2295 | } |
2296 | |
2297 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
2298 | DesignatedInitExpr *DIE) { |
2299 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
2300 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
2301 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
2302 | IndexExprs[I] = DIE->getSubExpr(I + 1); |
2303 | return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), |
2304 | IndexExprs, |
2305 | DIE->getEqualOrColonLoc(), |
2306 | DIE->usesGNUSyntax(), DIE->getInit()); |
2307 | } |
2308 | |
2309 | namespace { |
2310 | |
2311 | // Callback to only accept typo corrections that are for field members of |
2312 | // the given struct or union. |
2313 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
2314 | public: |
2315 | explicit FieldInitializerValidatorCCC(RecordDecl *RD) |
2316 | : Record(RD) {} |
2317 | |
2318 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
2319 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
2320 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
2321 | } |
2322 | |
2323 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
2324 | return std::make_unique<FieldInitializerValidatorCCC>(*this); |
2325 | } |
2326 | |
2327 | private: |
2328 | RecordDecl *Record; |
2329 | }; |
2330 | |
2331 | } // end anonymous namespace |
2332 | |
2333 | /// Check the well-formedness of a C99 designated initializer. |
2334 | /// |
2335 | /// Determines whether the designated initializer @p DIE, which |
2336 | /// resides at the given @p Index within the initializer list @p |
2337 | /// IList, is well-formed for a current object of type @p DeclType |
2338 | /// (C99 6.7.8). The actual subobject that this designator refers to |
2339 | /// within the current subobject is returned in either |
2340 | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
2341 | /// |
2342 | /// @param IList The initializer list in which this designated |
2343 | /// initializer occurs. |
2344 | /// |
2345 | /// @param DIE The designated initializer expression. |
2346 | /// |
2347 | /// @param DesigIdx The index of the current designator. |
2348 | /// |
2349 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
2350 | /// into which the designation in @p DIE should refer. |
2351 | /// |
2352 | /// @param NextField If non-NULL and the first designator in @p DIE is |
2353 | /// a field, this will be set to the field declaration corresponding |
2354 | /// to the field named by the designator. On input, this is expected to be |
2355 | /// the next field that would be initialized in the absence of designation, |
2356 | /// if the complete object being initialized is a struct. |
2357 | /// |
2358 | /// @param NextElementIndex If non-NULL and the first designator in @p |
2359 | /// DIE is an array designator or GNU array-range designator, this |
2360 | /// will be set to the last index initialized by this designator. |
2361 | /// |
2362 | /// @param Index Index into @p IList where the designated initializer |
2363 | /// @p DIE occurs. |
2364 | /// |
2365 | /// @param StructuredList The initializer list expression that |
2366 | /// describes all of the subobject initializers in the order they'll |
2367 | /// actually be initialized. |
2368 | /// |
2369 | /// @returns true if there was an error, false otherwise. |
2370 | bool |
2371 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
2372 | InitListExpr *IList, |
2373 | DesignatedInitExpr *DIE, |
2374 | unsigned DesigIdx, |
2375 | QualType &CurrentObjectType, |
2376 | RecordDecl::field_iterator *NextField, |
2377 | llvm::APSInt *NextElementIndex, |
2378 | unsigned &Index, |
2379 | InitListExpr *StructuredList, |
2380 | unsigned &StructuredIndex, |
2381 | bool FinishSubobjectInit, |
2382 | bool TopLevelObject) { |
2383 | if (DesigIdx == DIE->size()) { |
2384 | // C++20 designated initialization can result in direct-list-initialization |
2385 | // of the designated subobject. This is the only way that we can end up |
2386 | // performing direct initialization as part of aggregate initialization, so |
2387 | // it needs special handling. |
2388 | if (DIE->isDirectInit()) { |
2389 | Expr *Init = DIE->getInit(); |
2390 | assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?" ) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2391, __PRETTY_FUNCTION__)) |
2391 | "designator result in direct non-list initialization?")((isa<InitListExpr>(Init) && "designator result in direct non-list initialization?" ) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2391, __PRETTY_FUNCTION__)); |
2392 | InitializationKind Kind = InitializationKind::CreateDirectList( |
2393 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); |
2394 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
2395 | /*TopLevelOfInitList*/ true); |
2396 | if (StructuredList) { |
2397 | ExprResult Result = VerifyOnly |
2398 | ? getDummyInit() |
2399 | : Seq.Perform(SemaRef, Entity, Kind, Init); |
2400 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2401 | Result.get()); |
2402 | } |
2403 | ++Index; |
2404 | return !Seq; |
2405 | } |
2406 | |
2407 | // Check the actual initialization for the designated object type. |
2408 | bool prevHadError = hadError; |
2409 | |
2410 | // Temporarily remove the designator expression from the |
2411 | // initializer list that the child calls see, so that we don't try |
2412 | // to re-process the designator. |
2413 | unsigned OldIndex = Index; |
2414 | IList->setInit(OldIndex, DIE->getInit()); |
2415 | |
2416 | CheckSubElementType(Entity, IList, CurrentObjectType, Index, |
2417 | StructuredList, StructuredIndex); |
2418 | |
2419 | // Restore the designated initializer expression in the syntactic |
2420 | // form of the initializer list. |
2421 | if (IList->getInit(OldIndex) != DIE->getInit()) |
2422 | DIE->setInit(IList->getInit(OldIndex)); |
2423 | IList->setInit(OldIndex, DIE); |
2424 | |
2425 | return hadError && !prevHadError; |
2426 | } |
2427 | |
2428 | DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); |
2429 | bool IsFirstDesignator = (DesigIdx == 0); |
2430 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
2431 | // Determine the structural initializer list that corresponds to the |
2432 | // current subobject. |
2433 | if (IsFirstDesignator) |
2434 | StructuredList = FullyStructuredList; |
2435 | else { |
2436 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
2437 | StructuredList->getInit(StructuredIndex) : nullptr; |
2438 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
2439 | ExistingInit = StructuredList->getArrayFiller(); |
2440 | |
2441 | if (!ExistingInit) |
2442 | StructuredList = getStructuredSubobjectInit( |
2443 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
2444 | SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2445 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) |
2446 | StructuredList = Result; |
2447 | else { |
2448 | // We are creating an initializer list that initializes the |
2449 | // subobjects of the current object, but there was already an |
2450 | // initialization that completely initialized the current |
2451 | // subobject, e.g., by a compound literal: |
2452 | // |
2453 | // struct X { int a, b; }; |
2454 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
2455 | // |
2456 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
2457 | // designated initializer re-initializes only its current object |
2458 | // subobject [0].b. |
2459 | diagnoseInitOverride(ExistingInit, |
2460 | SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2461 | /*FullyOverwritten=*/false); |
2462 | |
2463 | if (!VerifyOnly) { |
2464 | if (DesignatedInitUpdateExpr *E = |
2465 | dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) |
2466 | StructuredList = E->getUpdater(); |
2467 | else { |
2468 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
2469 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
2470 | ExistingInit, DIE->getEndLoc()); |
2471 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
2472 | StructuredList = DIUE->getUpdater(); |
2473 | } |
2474 | } else { |
2475 | // We don't need to track the structured representation of a |
2476 | // designated init update of an already-fully-initialized object in |
2477 | // verify-only mode. The only reason we would need the structure is |
2478 | // to determine where the uninitialized "holes" are, and in this |
2479 | // case, we know there aren't any and we can't introduce any. |
2480 | StructuredList = nullptr; |
2481 | } |
2482 | } |
2483 | } |
2484 | } |
2485 | |
2486 | if (D->isFieldDesignator()) { |
2487 | // C99 6.7.8p7: |
2488 | // |
2489 | // If a designator has the form |
2490 | // |
2491 | // . identifier |
2492 | // |
2493 | // then the current object (defined below) shall have |
2494 | // structure or union type and the identifier shall be the |
2495 | // name of a member of that type. |
2496 | const RecordType *RT = CurrentObjectType->getAs<RecordType>(); |
2497 | if (!RT) { |
2498 | SourceLocation Loc = D->getDotLoc(); |
2499 | if (Loc.isInvalid()) |
2500 | Loc = D->getFieldLoc(); |
2501 | if (!VerifyOnly) |
2502 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
2503 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
2504 | ++Index; |
2505 | return true; |
2506 | } |
2507 | |
2508 | FieldDecl *KnownField = D->getField(); |
2509 | if (!KnownField) { |
2510 | IdentifierInfo *FieldName = D->getFieldName(); |
2511 | DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); |
2512 | for (NamedDecl *ND : Lookup) { |
2513 | if (auto *FD = dyn_cast<FieldDecl>(ND)) { |
2514 | KnownField = FD; |
2515 | break; |
2516 | } |
2517 | if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { |
2518 | // In verify mode, don't modify the original. |
2519 | if (VerifyOnly) |
2520 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
2521 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); |
2522 | D = DIE->getDesignator(DesigIdx); |
2523 | KnownField = cast<FieldDecl>(*IFD->chain_begin()); |
2524 | break; |
2525 | } |
2526 | } |
2527 | if (!KnownField) { |
2528 | if (VerifyOnly) { |
2529 | ++Index; |
2530 | return true; // No typo correction when just trying this out. |
2531 | } |
2532 | |
2533 | // Name lookup found something, but it wasn't a field. |
2534 | if (!Lookup.empty()) { |
2535 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
2536 | << FieldName; |
2537 | SemaRef.Diag(Lookup.front()->getLocation(), |
2538 | diag::note_field_designator_found); |
2539 | ++Index; |
2540 | return true; |
2541 | } |
2542 | |
2543 | // Name lookup didn't find anything. |
2544 | // Determine whether this was a typo for another field name. |
2545 | FieldInitializerValidatorCCC CCC(RT->getDecl()); |
2546 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
2547 | DeclarationNameInfo(FieldName, D->getFieldLoc()), |
2548 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, |
2549 | Sema::CTK_ErrorRecovery, RT->getDecl())) { |
2550 | SemaRef.diagnoseTypo( |
2551 | Corrected, |
2552 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
2553 | << FieldName << CurrentObjectType); |
2554 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
2555 | hadError = true; |
2556 | } else { |
2557 | // Typo correction didn't find anything. |
2558 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) |
2559 | << FieldName << CurrentObjectType; |
2560 | ++Index; |
2561 | return true; |
2562 | } |
2563 | } |
2564 | } |
2565 | |
2566 | unsigned NumBases = 0; |
2567 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) |
2568 | NumBases = CXXRD->getNumBases(); |
2569 | |
2570 | unsigned FieldIndex = NumBases; |
2571 | |
2572 | for (auto *FI : RT->getDecl()->fields()) { |
2573 | if (FI->isUnnamedBitfield()) |
2574 | continue; |
2575 | if (declaresSameEntity(KnownField, FI)) { |
2576 | KnownField = FI; |
2577 | break; |
2578 | } |
2579 | ++FieldIndex; |
2580 | } |
2581 | |
2582 | RecordDecl::field_iterator Field = |
2583 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
2584 | |
2585 | // All of the fields of a union are located at the same place in |
2586 | // the initializer list. |
2587 | if (RT->getDecl()->isUnion()) { |
2588 | FieldIndex = 0; |
2589 | if (StructuredList) { |
2590 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
2591 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
2592 | assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!" ) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2593, __PRETTY_FUNCTION__)) |
2593 | && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!" ) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2593, __PRETTY_FUNCTION__)); |
2594 | |
2595 | Expr *ExistingInit = StructuredList->getInit(0); |
2596 | if (ExistingInit) { |
2597 | // We're about to throw away an initializer, emit warning. |
2598 | diagnoseInitOverride( |
2599 | ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2600 | } |
2601 | |
2602 | // remove existing initializer |
2603 | StructuredList->resizeInits(SemaRef.Context, 0); |
2604 | StructuredList->setInitializedFieldInUnion(nullptr); |
2605 | } |
2606 | |
2607 | StructuredList->setInitializedFieldInUnion(*Field); |
2608 | } |
2609 | } |
2610 | |
2611 | // Make sure we can use this declaration. |
2612 | bool InvalidUse; |
2613 | if (VerifyOnly) |
2614 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2615 | else |
2616 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
2617 | if (InvalidUse) { |
2618 | ++Index; |
2619 | return true; |
2620 | } |
2621 | |
2622 | // C++20 [dcl.init.list]p3: |
2623 | // The ordered identifiers in the designators of the designated- |
2624 | // initializer-list shall form a subsequence of the ordered identifiers |
2625 | // in the direct non-static data members of T. |
2626 | // |
2627 | // Note that this is not a condition on forming the aggregate |
2628 | // initialization, only on actually performing initialization, |
2629 | // so it is not checked in VerifyOnly mode. |
2630 | // |
2631 | // FIXME: This is the only reordering diagnostic we produce, and it only |
2632 | // catches cases where we have a top-level field designator that jumps |
2633 | // backwards. This is the only such case that is reachable in an |
2634 | // otherwise-valid C++20 program, so is the only case that's required for |
2635 | // conformance, but for consistency, we should diagnose all the other |
2636 | // cases where a designator takes us backwards too. |
2637 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
2638 | NextField && |
2639 | (*NextField == RT->getDecl()->field_end() || |
2640 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
2641 | // Find the field that we just initialized. |
2642 | FieldDecl *PrevField = nullptr; |
2643 | for (auto FI = RT->getDecl()->field_begin(); |
2644 | FI != RT->getDecl()->field_end(); ++FI) { |
2645 | if (FI->isUnnamedBitfield()) |
2646 | continue; |
2647 | if (*NextField != RT->getDecl()->field_end() && |
2648 | declaresSameEntity(*FI, **NextField)) |
2649 | break; |
2650 | PrevField = *FI; |
2651 | } |
2652 | |
2653 | if (PrevField && |
2654 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
2655 | SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) |
2656 | << KnownField << PrevField << DIE->getSourceRange(); |
2657 | |
2658 | unsigned OldIndex = NumBases + PrevField->getFieldIndex(); |
2659 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
2660 | if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { |
2661 | SemaRef.Diag(PrevInit->getBeginLoc(), |
2662 | diag::note_previous_field_init) |
2663 | << PrevField << PrevInit->getSourceRange(); |
2664 | } |
2665 | } |
2666 | } |
2667 | } |
2668 | |
2669 | |
2670 | // Update the designator with the field declaration. |
2671 | if (!VerifyOnly) |
2672 | D->setField(*Field); |
2673 | |
2674 | // Make sure that our non-designated initializer list has space |
2675 | // for a subobject corresponding to this field. |
2676 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
2677 | StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); |
2678 | |
2679 | // This designator names a flexible array member. |
2680 | if (Field->getType()->isIncompleteArrayType()) { |
2681 | bool Invalid = false; |
2682 | if ((DesigIdx + 1) != DIE->size()) { |
2683 | // We can't designate an object within the flexible array |
2684 | // member (because GCC doesn't allow it). |
2685 | if (!VerifyOnly) { |
2686 | DesignatedInitExpr::Designator *NextD |
2687 | = DIE->getDesignator(DesigIdx + 1); |
2688 | SemaRef.Diag(NextD->getBeginLoc(), |
2689 | diag::err_designator_into_flexible_array_member) |
2690 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
2691 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2692 | << *Field; |
2693 | } |
2694 | Invalid = true; |
2695 | } |
2696 | |
2697 | if (!hadError && !isa<InitListExpr>(DIE->getInit()) && |
2698 | !isa<StringLiteral>(DIE->getInit())) { |
2699 | // The initializer is not an initializer list. |
2700 | if (!VerifyOnly) { |
2701 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
2702 | diag::err_flexible_array_init_needs_braces) |
2703 | << DIE->getInit()->getSourceRange(); |
2704 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2705 | << *Field; |
2706 | } |
2707 | Invalid = true; |
2708 | } |
2709 | |
2710 | // Check GNU flexible array initializer. |
2711 | if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, |
2712 | TopLevelObject)) |
2713 | Invalid = true; |
2714 | |
2715 | if (Invalid) { |
2716 | ++Index; |
2717 | return true; |
2718 | } |
2719 | |
2720 | // Initialize the array. |
2721 | bool prevHadError = hadError; |
2722 | unsigned newStructuredIndex = FieldIndex; |
2723 | unsigned OldIndex = Index; |
2724 | IList->setInit(Index, DIE->getInit()); |
2725 | |
2726 | InitializedEntity MemberEntity = |
2727 | InitializedEntity::InitializeMember(*Field, &Entity); |
2728 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2729 | StructuredList, newStructuredIndex); |
2730 | |
2731 | IList->setInit(OldIndex, DIE); |
2732 | if (hadError && !prevHadError) { |
2733 | ++Field; |
2734 | ++FieldIndex; |
2735 | if (NextField) |
2736 | *NextField = Field; |
2737 | StructuredIndex = FieldIndex; |
2738 | return true; |
2739 | } |
2740 | } else { |
2741 | // Recurse to check later designated subobjects. |
2742 | QualType FieldType = Field->getType(); |
2743 | unsigned newStructuredIndex = FieldIndex; |
2744 | |
2745 | InitializedEntity MemberEntity = |
2746 | InitializedEntity::InitializeMember(*Field, &Entity); |
2747 | if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, |
2748 | FieldType, nullptr, nullptr, Index, |
2749 | StructuredList, newStructuredIndex, |
2750 | FinishSubobjectInit, false)) |
2751 | return true; |
2752 | } |
2753 | |
2754 | // Find the position of the next field to be initialized in this |
2755 | // subobject. |
2756 | ++Field; |
2757 | ++FieldIndex; |
2758 | |
2759 | // If this the first designator, our caller will continue checking |
2760 | // the rest of this struct/class/union subobject. |
2761 | if (IsFirstDesignator) { |
2762 | if (NextField) |
2763 | *NextField = Field; |
2764 | StructuredIndex = FieldIndex; |
2765 | return false; |
2766 | } |
2767 | |
2768 | if (!FinishSubobjectInit) |
2769 | return false; |
2770 | |
2771 | // We've already initialized something in the union; we're done. |
2772 | if (RT->getDecl()->isUnion()) |
2773 | return hadError; |
2774 | |
2775 | // Check the remaining fields within this class/struct/union subobject. |
2776 | bool prevHadError = hadError; |
2777 | |
2778 | auto NoBases = |
2779 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
2780 | CXXRecordDecl::base_class_iterator()); |
2781 | CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, |
2782 | false, Index, StructuredList, FieldIndex); |
2783 | return hadError && !prevHadError; |
2784 | } |
2785 | |
2786 | // C99 6.7.8p6: |
2787 | // |
2788 | // If a designator has the form |
2789 | // |
2790 | // [ constant-expression ] |
2791 | // |
2792 | // then the current object (defined below) shall have array |
2793 | // type and the expression shall be an integer constant |
2794 | // expression. If the array is of unknown size, any |
2795 | // nonnegative value is valid. |
2796 | // |
2797 | // Additionally, cope with the GNU extension that permits |
2798 | // designators of the form |
2799 | // |
2800 | // [ constant-expression ... constant-expression ] |
2801 | const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); |
2802 | if (!AT) { |
2803 | if (!VerifyOnly) |
2804 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
2805 | << CurrentObjectType; |
2806 | ++Index; |
2807 | return true; |
2808 | } |
2809 | |
2810 | Expr *IndexExpr = nullptr; |
2811 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
2812 | if (D->isArrayDesignator()) { |
2813 | IndexExpr = DIE->getArrayIndex(*D); |
2814 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); |
2815 | DesignatedEndIndex = DesignatedStartIndex; |
2816 | } else { |
2817 | assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator" ) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 2817, __PRETTY_FUNCTION__)); |
2818 | |
2819 | DesignatedStartIndex = |
2820 | DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); |
2821 | DesignatedEndIndex = |
2822 | DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); |
2823 | IndexExpr = DIE->getArrayRangeEnd(*D); |
2824 | |
2825 | // Codegen can't handle evaluating array range designators that have side |
2826 | // effects, because we replicate the AST value for each initialized element. |
2827 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
2828 | // elements with something that has a side effect, so codegen can emit an |
2829 | // "error unsupported" error instead of miscompiling the app. |
2830 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
2831 | DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) |
2832 | FullyStructuredList->sawArrayRangeDesignator(); |
2833 | } |
2834 | |
2835 | if (isa<ConstantArrayType>(AT)) { |
2836 | llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); |
2837 | DesignatedStartIndex |
2838 | = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); |
2839 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
2840 | DesignatedEndIndex |
2841 | = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); |
2842 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
2843 | if (DesignatedEndIndex >= MaxElements) { |
2844 | if (!VerifyOnly) |
2845 | SemaRef.Diag(IndexExpr->getBeginLoc(), |
2846 | diag::err_array_designator_too_large) |
2847 | << DesignatedEndIndex.toString(10) << MaxElements.toString(10) |
2848 | << IndexExpr->getSourceRange(); |
2849 | ++Index; |
2850 | return true; |
2851 | } |
2852 | } else { |
2853 | unsigned DesignatedIndexBitWidth = |
2854 | ConstantArrayType::getMaxSizeBits(SemaRef.Context); |
2855 | DesignatedStartIndex = |
2856 | DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); |
2857 | DesignatedEndIndex = |
2858 | DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); |
2859 | DesignatedStartIndex.setIsUnsigned(true); |
2860 | DesignatedEndIndex.setIsUnsigned(true); |
2861 | } |
2862 | |
2863 | bool IsStringLiteralInitUpdate = |
2864 | StructuredList && StructuredList->isStringLiteralInit(); |
2865 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
2866 | // We're just verifying an update to a string literal init. We don't need |
2867 | // to split the string up into individual characters to do that. |
2868 | StructuredList = nullptr; |
2869 | } else if (IsStringLiteralInitUpdate) { |
2870 | // We're modifying a string literal init; we have to decompose the string |
2871 | // so we can modify the individual characters. |
2872 | ASTContext &Context = SemaRef.Context; |
2873 | Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); |
2874 | |
2875 | // Compute the character type |
2876 | QualType CharTy = AT->getElementType(); |
2877 | |
2878 | // Compute the type of the integer literals. |
2879 | QualType PromotedCharTy = CharTy; |
2880 | if (CharTy->isPromotableIntegerType()) |
2881 | PromotedCharTy = Context.getPromotedIntegerType(CharTy); |
2882 | unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); |
2883 | |
2884 | if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { |
2885 | // Get the length of the string. |
2886 | uint64_t StrLen = SL->getLength(); |
2887 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
2888 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
2889 | StructuredList->resizeInits(Context, StrLen); |
2890 | |
2891 | // Build a literal for each character in the string, and put them into |
2892 | // the init list. |
2893 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
2894 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
2895 | Expr *Init = new (Context) IntegerLiteral( |
2896 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
2897 | if (CharTy != PromotedCharTy) |
2898 | Init = |
2899 | ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, |
2900 | nullptr, VK_RValue, FPOptionsOverride()); |
2901 | StructuredList->updateInit(Context, i, Init); |
2902 | } |
2903 | } else { |
2904 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); |
2905 | std::string Str; |
2906 | Context.getObjCEncodingForType(E->getEncodedType(), Str); |
2907 | |
2908 | // Get the length of the string. |
2909 | uint64_t StrLen = Str.size(); |
2910 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
2911 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
2912 | StructuredList->resizeInits(Context, StrLen); |
2913 | |
2914 | // Build a literal for each character in the string, and put them into |
2915 | // the init list. |
2916 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
2917 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
2918 | Expr *Init = new (Context) IntegerLiteral( |
2919 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
2920 | if (CharTy != PromotedCharTy) |
2921 | Init = |
2922 | ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, |
2923 | nullptr, VK_RValue, FPOptionsOverride()); |
2924 | StructuredList->updateInit(Context, i, Init); |
2925 | } |
2926 | } |
2927 | } |
2928 | |
2929 | // Make sure that our non-designated initializer list has space |
2930 | // for a subobject corresponding to this array element. |
2931 | if (StructuredList && |
2932 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
2933 | StructuredList->resizeInits(SemaRef.Context, |
2934 | DesignatedEndIndex.getZExtValue() + 1); |
2935 | |
2936 | // Repeatedly perform subobject initializations in the range |
2937 | // [DesignatedStartIndex, DesignatedEndIndex]. |
2938 | |
2939 | // Move to the next designator |
2940 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
2941 | unsigned OldIndex = Index; |
2942 | |
2943 | InitializedEntity ElementEntity = |
2944 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
2945 | |
2946 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
2947 | // Recurse to check later designated subobjects. |
2948 | QualType ElementType = AT->getElementType(); |
2949 | Index = OldIndex; |
2950 | |
2951 | ElementEntity.setElementIndex(ElementIndex); |
2952 | if (CheckDesignatedInitializer( |
2953 | ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, |
2954 | nullptr, Index, StructuredList, ElementIndex, |
2955 | FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
2956 | false)) |
2957 | return true; |
2958 | |
2959 | // Move to the next index in the array that we'll be initializing. |
2960 | ++DesignatedStartIndex; |
2961 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
2962 | } |
2963 | |
2964 | // If this the first designator, our caller will continue checking |
2965 | // the rest of this array subobject. |
2966 | if (IsFirstDesignator) { |
2967 | if (NextElementIndex) |
2968 | *NextElementIndex = DesignatedStartIndex; |
2969 | StructuredIndex = ElementIndex; |
2970 | return false; |
2971 | } |
2972 | |
2973 | if (!FinishSubobjectInit) |
2974 | return false; |
2975 | |
2976 | // Check the remaining elements within this array subobject. |
2977 | bool prevHadError = hadError; |
2978 | CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, |
2979 | /*SubobjectIsDesignatorContext=*/false, Index, |
2980 | StructuredList, ElementIndex); |
2981 | return hadError && !prevHadError; |
2982 | } |
2983 | |
2984 | // Get the structured initializer list for a subobject of type |
2985 | // @p CurrentObjectType. |
2986 | InitListExpr * |
2987 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
2988 | QualType CurrentObjectType, |
2989 | InitListExpr *StructuredList, |
2990 | unsigned StructuredIndex, |
2991 | SourceRange InitRange, |
2992 | bool IsFullyOverwritten) { |
2993 | if (!StructuredList) |
2994 | return nullptr; |
2995 | |
2996 | Expr *ExistingInit = nullptr; |
2997 | if (StructuredIndex < StructuredList->getNumInits()) |
2998 | ExistingInit = StructuredList->getInit(StructuredIndex); |
2999 | |
3000 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) |
3001 | // There might have already been initializers for subobjects of the current |
3002 | // object, but a subsequent initializer list will overwrite the entirety |
3003 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
3004 | // |
3005 | // struct P { char x[6]; }; |
3006 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
3007 | // |
3008 | // The first designated initializer is ignored, and l.x is just "f". |
3009 | if (!IsFullyOverwritten) |
3010 | return Result; |
3011 | |
3012 | if (ExistingInit) { |
3013 | // We are creating an initializer list that initializes the |
3014 | // subobjects of the current object, but there was already an |
3015 | // initialization that completely initialized the current |
3016 | // subobject: |
3017 | // |
3018 | // struct X { int a, b; }; |
3019 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
3020 | // |
3021 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
3022 | // designated initializer overwrites the [0].b initializer |
3023 | // from the prior initialization. |
3024 | // |
3025 | // When the existing initializer is an expression rather than an |
3026 | // initializer list, we cannot decompose and update it in this way. |
3027 | // For example: |
3028 | // |
3029 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
3030 | // |
3031 | // This case is handled by CheckDesignatedInitializer. |
3032 | diagnoseInitOverride(ExistingInit, InitRange); |
3033 | } |
3034 | |
3035 | unsigned ExpectedNumInits = 0; |
3036 | if (Index < IList->getNumInits()) { |
3037 | if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) |
3038 | ExpectedNumInits = Init->getNumInits(); |
3039 | else |
3040 | ExpectedNumInits = IList->getNumInits() - Index; |
3041 | } |
3042 | |
3043 | InitListExpr *Result = |
3044 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
3045 | |
3046 | // Link this new initializer list into the structured initializer |
3047 | // lists. |
3048 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
3049 | return Result; |
3050 | } |
3051 | |
3052 | InitListExpr * |
3053 | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
3054 | SourceRange InitRange, |
3055 | unsigned ExpectedNumInits) { |
3056 | InitListExpr *Result |
3057 | = new (SemaRef.Context) InitListExpr(SemaRef.Context, |
3058 | InitRange.getBegin(), None, |
3059 | InitRange.getEnd()); |
3060 | |
3061 | QualType ResultType = CurrentObjectType; |
3062 | if (!ResultType->isArrayType()) |
3063 | ResultType = ResultType.getNonLValueExprType(SemaRef.Context); |
3064 | Result->setType(ResultType); |
3065 | |
3066 | // Pre-allocate storage for the structured initializer list. |
3067 | unsigned NumElements = 0; |
3068 | |
3069 | if (const ArrayType *AType |
3070 | = SemaRef.Context.getAsArrayType(CurrentObjectType)) { |
3071 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { |
3072 | NumElements = CAType->getSize().getZExtValue(); |
3073 | // Simple heuristic so that we don't allocate a very large |
3074 | // initializer with many empty entries at the end. |
3075 | if (NumElements > ExpectedNumInits) |
3076 | NumElements = 0; |
3077 | } |
3078 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
3079 | NumElements = VType->getNumElements(); |
3080 | } else if (CurrentObjectType->isRecordType()) { |
3081 | NumElements = numStructUnionElements(CurrentObjectType); |
3082 | } |
3083 | |
3084 | Result->reserveInits(SemaRef.Context, NumElements); |
3085 | |
3086 | return Result; |
3087 | } |
3088 | |
3089 | /// Update the initializer at index @p StructuredIndex within the |
3090 | /// structured initializer list to the value @p expr. |
3091 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
3092 | unsigned &StructuredIndex, |
3093 | Expr *expr) { |
3094 | // No structured initializer list to update |
3095 | if (!StructuredList) |
3096 | return; |
3097 | |
3098 | if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, |
3099 | StructuredIndex, expr)) { |
3100 | // This initializer overwrites a previous initializer. |
3101 | // No need to diagnose when `expr` is nullptr because a more relevant |
3102 | // diagnostic has already been issued and this diagnostic is potentially |
3103 | // noise. |
3104 | if (expr) |
3105 | diagnoseInitOverride(PrevInit, expr->getSourceRange()); |
3106 | } |
3107 | |
3108 | ++StructuredIndex; |
3109 | } |
3110 | |
3111 | /// Determine whether we can perform aggregate initialization for the purposes |
3112 | /// of overload resolution. |
3113 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
3114 | const InitializedEntity &Entity, InitListExpr *From) { |
3115 | QualType Type = Entity.getType(); |
3116 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
3117 | /*TreatUnavailableAsInvalid=*/false, |
3118 | /*InOverloadResolution=*/true); |
3119 | return !Check.HadError(); |
3120 | } |
3121 | |
3122 | /// Check that the given Index expression is a valid array designator |
3123 | /// value. This is essentially just a wrapper around |
3124 | /// VerifyIntegerConstantExpression that also checks for negative values |
3125 | /// and produces a reasonable diagnostic if there is a |
3126 | /// failure. Returns the index expression, possibly with an implicit cast |
3127 | /// added, on success. If everything went okay, Value will receive the |
3128 | /// value of the constant expression. |
3129 | static ExprResult |
3130 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
3131 | SourceLocation Loc = Index->getBeginLoc(); |
3132 | |
3133 | // Make sure this is an integer constant expression. |
3134 | ExprResult Result = |
3135 | S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); |
3136 | if (Result.isInvalid()) |
3137 | return Result; |
3138 | |
3139 | if (Value.isSigned() && Value.isNegative()) |
3140 | return S.Diag(Loc, diag::err_array_designator_negative) |
3141 | << Value.toString(10) << Index->getSourceRange(); |
3142 | |
3143 | Value.setIsUnsigned(true); |
3144 | return Result; |
3145 | } |
3146 | |
3147 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
3148 | SourceLocation EqualOrColonLoc, |
3149 | bool GNUSyntax, |
3150 | ExprResult Init) { |
3151 | typedef DesignatedInitExpr::Designator ASTDesignator; |
3152 | |
3153 | bool Invalid = false; |
3154 | SmallVector<ASTDesignator, 32> Designators; |
3155 | SmallVector<Expr *, 32> InitExpressions; |
3156 | |
3157 | // Build designators and check array designator expressions. |
3158 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
3159 | const Designator &D = Desig.getDesignator(Idx); |
3160 | switch (D.getKind()) { |
3161 | case Designator::FieldDesignator: |
3162 | Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), |
3163 | D.getFieldLoc())); |
3164 | break; |
3165 | |
3166 | case Designator::ArrayDesignator: { |
3167 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
3168 | llvm::APSInt IndexValue; |
3169 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
3170 | Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); |
3171 | if (!Index) |
3172 | Invalid = true; |
3173 | else { |
3174 | Designators.push_back(ASTDesignator(InitExpressions.size(), |
3175 | D.getLBracketLoc(), |
3176 | D.getRBracketLoc())); |
3177 | InitExpressions.push_back(Index); |
3178 | } |
3179 | break; |
3180 | } |
3181 | |
3182 | case Designator::ArrayRangeDesignator: { |
3183 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
3184 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
3185 | llvm::APSInt StartValue; |
3186 | llvm::APSInt EndValue; |
3187 | bool StartDependent = StartIndex->isTypeDependent() || |
3188 | StartIndex->isValueDependent(); |
3189 | bool EndDependent = EndIndex->isTypeDependent() || |
3190 | EndIndex->isValueDependent(); |
3191 | if (!StartDependent) |
3192 | StartIndex = |
3193 | CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); |
3194 | if (!EndDependent) |
3195 | EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); |
3196 | |
3197 | if (!StartIndex || !EndIndex) |
3198 | Invalid = true; |
3199 | else { |
3200 | // Make sure we're comparing values with the same bit width. |
3201 | if (StartDependent || EndDependent) { |
3202 | // Nothing to compute. |
3203 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
3204 | EndValue = EndValue.extend(StartValue.getBitWidth()); |
3205 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
3206 | StartValue = StartValue.extend(EndValue.getBitWidth()); |
3207 | |
3208 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
3209 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
3210 | << StartValue.toString(10) << EndValue.toString(10) |
3211 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
3212 | Invalid = true; |
3213 | } else { |
3214 | Designators.push_back(ASTDesignator(InitExpressions.size(), |
3215 | D.getLBracketLoc(), |
3216 | D.getEllipsisLoc(), |
3217 | D.getRBracketLoc())); |
3218 | InitExpressions.push_back(StartIndex); |
3219 | InitExpressions.push_back(EndIndex); |
3220 | } |
3221 | } |
3222 | break; |
3223 | } |
3224 | } |
3225 | } |
3226 | |
3227 | if (Invalid || Init.isInvalid()) |
3228 | return ExprError(); |
3229 | |
3230 | // Clear out the expressions within the designation. |
3231 | Desig.ClearExprs(*this); |
3232 | |
3233 | return DesignatedInitExpr::Create(Context, Designators, InitExpressions, |
3234 | EqualOrColonLoc, GNUSyntax, |
3235 | Init.getAs<Expr>()); |
3236 | } |
3237 | |
3238 | //===----------------------------------------------------------------------===// |
3239 | // Initialization entity |
3240 | //===----------------------------------------------------------------------===// |
3241 | |
3242 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
3243 | const InitializedEntity &Parent) |
3244 | : Parent(&Parent), Index(Index) |
3245 | { |
3246 | if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { |
3247 | Kind = EK_ArrayElement; |
3248 | Type = AT->getElementType(); |
3249 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
3250 | Kind = EK_VectorElement; |
3251 | Type = VT->getElementType(); |
3252 | } else { |
3253 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
3254 | assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> ( 0) : __assert_fail ("CT && \"Unexpected type\"", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3254, __PRETTY_FUNCTION__)); |
3255 | Kind = EK_ComplexElement; |
3256 | Type = CT->getElementType(); |
3257 | } |
3258 | } |
3259 | |
3260 | InitializedEntity |
3261 | InitializedEntity::InitializeBase(ASTContext &Context, |
3262 | const CXXBaseSpecifier *Base, |
3263 | bool IsInheritedVirtualBase, |
3264 | const InitializedEntity *Parent) { |
3265 | InitializedEntity Result; |
3266 | Result.Kind = EK_Base; |
3267 | Result.Parent = Parent; |
3268 | Result.Base = reinterpret_cast<uintptr_t>(Base); |
3269 | if (IsInheritedVirtualBase) |
3270 | Result.Base |= 0x01; |
3271 | |
3272 | Result.Type = Base->getType(); |
3273 | return Result; |
3274 | } |
3275 | |
3276 | DeclarationName InitializedEntity::getName() const { |
3277 | switch (getKind()) { |
3278 | case EK_Parameter: |
3279 | case EK_Parameter_CF_Audited: { |
3280 | ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
3281 | return (D ? D->getDeclName() : DeclarationName()); |
3282 | } |
3283 | |
3284 | case EK_Variable: |
3285 | case EK_Member: |
3286 | case EK_Binding: |
3287 | case EK_TemplateParameter: |
3288 | return Variable.VariableOrMember->getDeclName(); |
3289 | |
3290 | case EK_LambdaCapture: |
3291 | return DeclarationName(Capture.VarID); |
3292 | |
3293 | case EK_Result: |
3294 | case EK_StmtExprResult: |
3295 | case EK_Exception: |
3296 | case EK_New: |
3297 | case EK_Temporary: |
3298 | case EK_Base: |
3299 | case EK_Delegating: |
3300 | case EK_ArrayElement: |
3301 | case EK_VectorElement: |
3302 | case EK_ComplexElement: |
3303 | case EK_BlockElement: |
3304 | case EK_LambdaToBlockConversionBlockElement: |
3305 | case EK_CompoundLiteralInit: |
3306 | case EK_RelatedResult: |
3307 | return DeclarationName(); |
3308 | } |
3309 | |
3310 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3310); |
3311 | } |
3312 | |
3313 | ValueDecl *InitializedEntity::getDecl() const { |
3314 | switch (getKind()) { |
3315 | case EK_Variable: |
3316 | case EK_Member: |
3317 | case EK_Binding: |
3318 | case EK_TemplateParameter: |
3319 | return Variable.VariableOrMember; |
3320 | |
3321 | case EK_Parameter: |
3322 | case EK_Parameter_CF_Audited: |
3323 | return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
3324 | |
3325 | case EK_Result: |
3326 | case EK_StmtExprResult: |
3327 | case EK_Exception: |
3328 | case EK_New: |
3329 | case EK_Temporary: |
3330 | case EK_Base: |
3331 | case EK_Delegating: |
3332 | case EK_ArrayElement: |
3333 | case EK_VectorElement: |
3334 | case EK_ComplexElement: |
3335 | case EK_BlockElement: |
3336 | case EK_LambdaToBlockConversionBlockElement: |
3337 | case EK_LambdaCapture: |
3338 | case EK_CompoundLiteralInit: |
3339 | case EK_RelatedResult: |
3340 | return nullptr; |
3341 | } |
3342 | |
3343 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3343); |
3344 | } |
3345 | |
3346 | bool InitializedEntity::allowsNRVO() const { |
3347 | switch (getKind()) { |
3348 | case EK_Result: |
3349 | case EK_Exception: |
3350 | return LocAndNRVO.NRVO; |
3351 | |
3352 | case EK_StmtExprResult: |
3353 | case EK_Variable: |
3354 | case EK_Parameter: |
3355 | case EK_Parameter_CF_Audited: |
3356 | case EK_TemplateParameter: |
3357 | case EK_Member: |
3358 | case EK_Binding: |
3359 | case EK_New: |
3360 | case EK_Temporary: |
3361 | case EK_CompoundLiteralInit: |
3362 | case EK_Base: |
3363 | case EK_Delegating: |
3364 | case EK_ArrayElement: |
3365 | case EK_VectorElement: |
3366 | case EK_ComplexElement: |
3367 | case EK_BlockElement: |
3368 | case EK_LambdaToBlockConversionBlockElement: |
3369 | case EK_LambdaCapture: |
3370 | case EK_RelatedResult: |
3371 | break; |
3372 | } |
3373 | |
3374 | return false; |
3375 | } |
3376 | |
3377 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
3378 | assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail ("getParent() != this", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3378, __PRETTY_FUNCTION__)); |
3379 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
3380 | for (unsigned I = 0; I != Depth; ++I) |
3381 | OS << "`-"; |
3382 | |
3383 | switch (getKind()) { |
3384 | case EK_Variable: OS << "Variable"; break; |
3385 | case EK_Parameter: OS << "Parameter"; break; |
3386 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; |
3387 | break; |
3388 | case EK_TemplateParameter: OS << "TemplateParameter"; break; |
3389 | case EK_Result: OS << "Result"; break; |
3390 | case EK_StmtExprResult: OS << "StmtExprResult"; break; |
3391 | case EK_Exception: OS << "Exception"; break; |
3392 | case EK_Member: OS << "Member"; break; |
3393 | case EK_Binding: OS << "Binding"; break; |
3394 | case EK_New: OS << "New"; break; |
3395 | case EK_Temporary: OS << "Temporary"; break; |
3396 | case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
3397 | case EK_RelatedResult: OS << "RelatedResult"; break; |
3398 | case EK_Base: OS << "Base"; break; |
3399 | case EK_Delegating: OS << "Delegating"; break; |
3400 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
3401 | case EK_VectorElement: OS << "VectorElement " << Index; break; |
3402 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
3403 | case EK_BlockElement: OS << "Block"; break; |
3404 | case EK_LambdaToBlockConversionBlockElement: |
3405 | OS << "Block (lambda)"; |
3406 | break; |
3407 | case EK_LambdaCapture: |
3408 | OS << "LambdaCapture "; |
3409 | OS << DeclarationName(Capture.VarID); |
3410 | break; |
3411 | } |
3412 | |
3413 | if (auto *D = getDecl()) { |
3414 | OS << " "; |
3415 | D->printQualifiedName(OS); |
3416 | } |
3417 | |
3418 | OS << " '" << getType().getAsString() << "'\n"; |
3419 | |
3420 | return Depth + 1; |
3421 | } |
3422 | |
3423 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const { |
3424 | dumpImpl(llvm::errs()); |
3425 | } |
3426 | |
3427 | //===----------------------------------------------------------------------===// |
3428 | // Initialization sequence |
3429 | //===----------------------------------------------------------------------===// |
3430 | |
3431 | void InitializationSequence::Step::Destroy() { |
3432 | switch (Kind) { |
3433 | case SK_ResolveAddressOfOverloadedFunction: |
3434 | case SK_CastDerivedToBaseRValue: |
3435 | case SK_CastDerivedToBaseXValue: |
3436 | case SK_CastDerivedToBaseLValue: |
3437 | case SK_BindReference: |
3438 | case SK_BindReferenceToTemporary: |
3439 | case SK_FinalCopy: |
3440 | case SK_ExtraneousCopyToTemporary: |
3441 | case SK_UserConversion: |
3442 | case SK_QualificationConversionRValue: |
3443 | case SK_QualificationConversionXValue: |
3444 | case SK_QualificationConversionLValue: |
3445 | case SK_FunctionReferenceConversion: |
3446 | case SK_AtomicConversion: |
3447 | case SK_ListInitialization: |
3448 | case SK_UnwrapInitList: |
3449 | case SK_RewrapInitList: |
3450 | case SK_ConstructorInitialization: |
3451 | case SK_ConstructorInitializationFromList: |
3452 | case SK_ZeroInitialization: |
3453 | case SK_CAssignment: |
3454 | case SK_StringInit: |
3455 | case SK_ObjCObjectConversion: |
3456 | case SK_ArrayLoopIndex: |
3457 | case SK_ArrayLoopInit: |
3458 | case SK_ArrayInit: |
3459 | case SK_GNUArrayInit: |
3460 | case SK_ParenthesizedArrayInit: |
3461 | case SK_PassByIndirectCopyRestore: |
3462 | case SK_PassByIndirectRestore: |
3463 | case SK_ProduceObjCObject: |
3464 | case SK_StdInitializerList: |
3465 | case SK_StdInitializerListConstructorCall: |
3466 | case SK_OCLSamplerInit: |
3467 | case SK_OCLZeroOpaqueType: |
3468 | break; |
3469 | |
3470 | case SK_ConversionSequence: |
3471 | case SK_ConversionSequenceNoNarrowing: |
3472 | delete ICS; |
3473 | } |
3474 | } |
3475 | |
3476 | bool InitializationSequence::isDirectReferenceBinding() const { |
3477 | // There can be some lvalue adjustments after the SK_BindReference step. |
3478 | for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { |
3479 | if (I->Kind == SK_BindReference) |
3480 | return true; |
3481 | if (I->Kind == SK_BindReferenceToTemporary) |
3482 | return false; |
3483 | } |
3484 | return false; |
3485 | } |
3486 | |
3487 | bool InitializationSequence::isAmbiguous() const { |
3488 | if (!Failed()) |
3489 | return false; |
3490 | |
3491 | switch (getFailureKind()) { |
3492 | case FK_TooManyInitsForReference: |
3493 | case FK_ParenthesizedListInitForReference: |
3494 | case FK_ArrayNeedsInitList: |
3495 | case FK_ArrayNeedsInitListOrStringLiteral: |
3496 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
3497 | case FK_NarrowStringIntoWideCharArray: |
3498 | case FK_WideStringIntoCharArray: |
3499 | case FK_IncompatWideStringIntoWideChar: |
3500 | case FK_PlainStringIntoUTF8Char: |
3501 | case FK_UTF8StringIntoPlainChar: |
3502 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
3503 | case FK_NonConstLValueReferenceBindingToTemporary: |
3504 | case FK_NonConstLValueReferenceBindingToBitfield: |
3505 | case FK_NonConstLValueReferenceBindingToVectorElement: |
3506 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
3507 | case FK_NonConstLValueReferenceBindingToUnrelated: |
3508 | case FK_RValueReferenceBindingToLValue: |
3509 | case FK_ReferenceAddrspaceMismatchTemporary: |
3510 | case FK_ReferenceInitDropsQualifiers: |
3511 | case FK_ReferenceInitFailed: |
3512 | case FK_ConversionFailed: |
3513 | case FK_ConversionFromPropertyFailed: |
3514 | case FK_TooManyInitsForScalar: |
3515 | case FK_ParenthesizedListInitForScalar: |
3516 | case FK_ReferenceBindingToInitList: |
3517 | case FK_InitListBadDestinationType: |
3518 | case FK_DefaultInitOfConst: |
3519 | case FK_Incomplete: |
3520 | case FK_ArrayTypeMismatch: |
3521 | case FK_NonConstantArrayInit: |
3522 | case FK_ListInitializationFailed: |
3523 | case FK_VariableLengthArrayHasInitializer: |
3524 | case FK_PlaceholderType: |
3525 | case FK_ExplicitConstructor: |
3526 | case FK_AddressOfUnaddressableFunction: |
3527 | return false; |
3528 | |
3529 | case FK_ReferenceInitOverloadFailed: |
3530 | case FK_UserConversionOverloadFailed: |
3531 | case FK_ConstructorOverloadFailed: |
3532 | case FK_ListConstructorOverloadFailed: |
3533 | return FailedOverloadResult == OR_Ambiguous; |
3534 | } |
3535 | |
3536 | llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3536); |
3537 | } |
3538 | |
3539 | bool InitializationSequence::isConstructorInitialization() const { |
3540 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
3541 | } |
3542 | |
3543 | void |
3544 | InitializationSequence |
3545 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
3546 | DeclAccessPair Found, |
3547 | bool HadMultipleCandidates) { |
3548 | Step S; |
3549 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
3550 | S.Type = Function->getType(); |
3551 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3552 | S.Function.Function = Function; |
3553 | S.Function.FoundDecl = Found; |
3554 | Steps.push_back(S); |
3555 | } |
3556 | |
3557 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
3558 | ExprValueKind VK) { |
3559 | Step S; |
3560 | switch (VK) { |
3561 | case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; |
3562 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
3563 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
3564 | } |
3565 | S.Type = BaseType; |
3566 | Steps.push_back(S); |
3567 | } |
3568 | |
3569 | void InitializationSequence::AddReferenceBindingStep(QualType T, |
3570 | bool BindingTemporary) { |
3571 | Step S; |
3572 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
3573 | S.Type = T; |
3574 | Steps.push_back(S); |
3575 | } |
3576 | |
3577 | void InitializationSequence::AddFinalCopy(QualType T) { |
3578 | Step S; |
3579 | S.Kind = SK_FinalCopy; |
3580 | S.Type = T; |
3581 | Steps.push_back(S); |
3582 | } |
3583 | |
3584 | void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
3585 | Step S; |
3586 | S.Kind = SK_ExtraneousCopyToTemporary; |
3587 | S.Type = T; |
3588 | Steps.push_back(S); |
3589 | } |
3590 | |
3591 | void |
3592 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
3593 | DeclAccessPair FoundDecl, |
3594 | QualType T, |
3595 | bool HadMultipleCandidates) { |
3596 | Step S; |
3597 | S.Kind = SK_UserConversion; |
3598 | S.Type = T; |
3599 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3600 | S.Function.Function = Function; |
3601 | S.Function.FoundDecl = FoundDecl; |
3602 | Steps.push_back(S); |
3603 | } |
3604 | |
3605 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
3606 | ExprValueKind VK) { |
3607 | Step S; |
3608 | S.Kind = SK_QualificationConversionRValue; // work around a gcc warning |
3609 | switch (VK) { |
3610 | case VK_RValue: |
3611 | S.Kind = SK_QualificationConversionRValue; |
3612 | break; |
3613 | case VK_XValue: |
3614 | S.Kind = SK_QualificationConversionXValue; |
3615 | break; |
3616 | case VK_LValue: |
3617 | S.Kind = SK_QualificationConversionLValue; |
3618 | break; |
3619 | } |
3620 | S.Type = Ty; |
3621 | Steps.push_back(S); |
3622 | } |
3623 | |
3624 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { |
3625 | Step S; |
3626 | S.Kind = SK_FunctionReferenceConversion; |
3627 | S.Type = Ty; |
3628 | Steps.push_back(S); |
3629 | } |
3630 | |
3631 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
3632 | Step S; |
3633 | S.Kind = SK_AtomicConversion; |
3634 | S.Type = Ty; |
3635 | Steps.push_back(S); |
3636 | } |
3637 | |
3638 | void InitializationSequence::AddConversionSequenceStep( |
3639 | const ImplicitConversionSequence &ICS, QualType T, |
3640 | bool TopLevelOfInitList) { |
3641 | Step S; |
3642 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
3643 | : SK_ConversionSequence; |
3644 | S.Type = T; |
3645 | S.ICS = new ImplicitConversionSequence(ICS); |
3646 | Steps.push_back(S); |
3647 | } |
3648 | |
3649 | void InitializationSequence::AddListInitializationStep(QualType T) { |
3650 | Step S; |
3651 | S.Kind = SK_ListInitialization; |
3652 | S.Type = T; |
3653 | Steps.push_back(S); |
3654 | } |
3655 | |
3656 | void InitializationSequence::AddConstructorInitializationStep( |
3657 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
3658 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
3659 | Step S; |
3660 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
3661 | : SK_ConstructorInitializationFromList |
3662 | : SK_ConstructorInitialization; |
3663 | S.Type = T; |
3664 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3665 | S.Function.Function = Constructor; |
3666 | S.Function.FoundDecl = FoundDecl; |
3667 | Steps.push_back(S); |
3668 | } |
3669 | |
3670 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
3671 | Step S; |
3672 | S.Kind = SK_ZeroInitialization; |
3673 | S.Type = T; |
3674 | Steps.push_back(S); |
3675 | } |
3676 | |
3677 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
3678 | Step S; |
3679 | S.Kind = SK_CAssignment; |
3680 | S.Type = T; |
3681 | Steps.push_back(S); |
3682 | } |
3683 | |
3684 | void InitializationSequence::AddStringInitStep(QualType T) { |
3685 | Step S; |
3686 | S.Kind = SK_StringInit; |
3687 | S.Type = T; |
3688 | Steps.push_back(S); |
3689 | } |
3690 | |
3691 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
3692 | Step S; |
3693 | S.Kind = SK_ObjCObjectConversion; |
3694 | S.Type = T; |
3695 | Steps.push_back(S); |
3696 | } |
3697 | |
3698 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
3699 | Step S; |
3700 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
3701 | S.Type = T; |
3702 | Steps.push_back(S); |
3703 | } |
3704 | |
3705 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
3706 | Step S; |
3707 | S.Kind = SK_ArrayLoopIndex; |
3708 | S.Type = EltT; |
3709 | Steps.insert(Steps.begin(), S); |
3710 | |
3711 | S.Kind = SK_ArrayLoopInit; |
3712 | S.Type = T; |
3713 | Steps.push_back(S); |
3714 | } |
3715 | |
3716 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
3717 | Step S; |
3718 | S.Kind = SK_ParenthesizedArrayInit; |
3719 | S.Type = T; |
3720 | Steps.push_back(S); |
3721 | } |
3722 | |
3723 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
3724 | bool shouldCopy) { |
3725 | Step s; |
3726 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
3727 | : SK_PassByIndirectRestore); |
3728 | s.Type = type; |
3729 | Steps.push_back(s); |
3730 | } |
3731 | |
3732 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
3733 | Step S; |
3734 | S.Kind = SK_ProduceObjCObject; |
3735 | S.Type = T; |
3736 | Steps.push_back(S); |
3737 | } |
3738 | |
3739 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
3740 | Step S; |
3741 | S.Kind = SK_StdInitializerList; |
3742 | S.Type = T; |
3743 | Steps.push_back(S); |
3744 | } |
3745 | |
3746 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
3747 | Step S; |
3748 | S.Kind = SK_OCLSamplerInit; |
3749 | S.Type = T; |
3750 | Steps.push_back(S); |
3751 | } |
3752 | |
3753 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
3754 | Step S; |
3755 | S.Kind = SK_OCLZeroOpaqueType; |
3756 | S.Type = T; |
3757 | Steps.push_back(S); |
3758 | } |
3759 | |
3760 | void InitializationSequence::RewrapReferenceInitList(QualType T, |
3761 | InitListExpr *Syntactic) { |
3762 | assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists." ) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3763, __PRETTY_FUNCTION__)) |
3763 | "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists." ) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3763, __PRETTY_FUNCTION__)); |
3764 | Step S; |
3765 | S.Kind = SK_UnwrapInitList; |
3766 | S.Type = Syntactic->getInit(0)->getType(); |
3767 | Steps.insert(Steps.begin(), S); |
3768 | |
3769 | S.Kind = SK_RewrapInitList; |
3770 | S.Type = T; |
3771 | S.WrappingSyntacticList = Syntactic; |
3772 | Steps.push_back(S); |
3773 | } |
3774 | |
3775 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
3776 | OverloadingResult Result) { |
3777 | setSequenceKind(FailedSequence); |
3778 | this->Failure = Failure; |
3779 | this->FailedOverloadResult = Result; |
3780 | } |
3781 | |
3782 | //===----------------------------------------------------------------------===// |
3783 | // Attempt initialization |
3784 | //===----------------------------------------------------------------------===// |
3785 | |
3786 | /// Tries to add a zero initializer. Returns true if that worked. |
3787 | static bool |
3788 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
3789 | const InitializedEntity &Entity) { |
3790 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
3791 | return false; |
3792 | |
3793 | VarDecl *VD = cast<VarDecl>(Entity.getDecl()); |
3794 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
3795 | return false; |
3796 | |
3797 | QualType VariableTy = VD->getType().getCanonicalType(); |
3798 | SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); |
3799 | std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); |
3800 | if (!Init.empty()) { |
3801 | Sequence.AddZeroInitializationStep(Entity.getType()); |
3802 | Sequence.SetZeroInitializationFixit(Init, Loc); |
3803 | return true; |
3804 | } |
3805 | return false; |
3806 | } |
3807 | |
3808 | static void MaybeProduceObjCObject(Sema &S, |
3809 | InitializationSequence &Sequence, |
3810 | const InitializedEntity &Entity) { |
3811 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
3812 | |
3813 | /// When initializing a parameter, produce the value if it's marked |
3814 | /// __attribute__((ns_consumed)). |
3815 | if (Entity.isParameterKind()) { |
3816 | if (!Entity.isParameterConsumed()) |
3817 | return; |
3818 | |
3819 | assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?" ) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3820, __PRETTY_FUNCTION__)) |
3820 | "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?" ) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 3820, __PRETTY_FUNCTION__)); |
3821 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
3822 | |
3823 | /// When initializing a return value, if the return type is a |
3824 | /// retainable type, then returns need to immediately retain the |
3825 | /// object. If an autorelease is required, it will be done at the |
3826 | /// last instant. |
3827 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
3828 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
3829 | if (!Entity.getType()->isObjCRetainableType()) |
3830 | return; |
3831 | |
3832 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
3833 | } |
3834 | } |
3835 | |
3836 | static void TryListInitialization(Sema &S, |
3837 | const InitializedEntity &Entity, |
3838 | const InitializationKind &Kind, |
3839 | InitListExpr *InitList, |
3840 | InitializationSequence &Sequence, |
3841 | bool TreatUnavailableAsInvalid); |
3842 | |
3843 | /// When initializing from init list via constructor, handle |
3844 | /// initialization of an object of type std::initializer_list<T>. |
3845 | /// |
3846 | /// \return true if we have handled initialization of an object of type |
3847 | /// std::initializer_list<T>, false otherwise. |
3848 | static bool TryInitializerListConstruction(Sema &S, |
3849 | InitListExpr *List, |
3850 | QualType DestType, |
3851 | InitializationSequence &Sequence, |
3852 | bool TreatUnavailableAsInvalid) { |
3853 | QualType E; |
3854 | if (!S.isStdInitializerList(DestType, &E)) |
3855 | return false; |
3856 | |
3857 | if (!S.isCompleteType(List->getExprLoc(), E)) { |
3858 | Sequence.setIncompleteTypeFailure(E); |
3859 | return true; |
3860 | } |
3861 | |
3862 | // Try initializing a temporary array from the init list. |
3863 | QualType ArrayType = S.Context.getConstantArrayType( |
3864 | E.withConst(), |
3865 | llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
3866 | List->getNumInits()), |
3867 | nullptr, clang::ArrayType::Normal, 0); |
3868 | InitializedEntity HiddenArray = |
3869 | InitializedEntity::InitializeTemporary(ArrayType); |
3870 | InitializationKind Kind = InitializationKind::CreateDirectList( |
3871 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); |
3872 | TryListInitialization(S, HiddenArray, Kind, List, Sequence, |
3873 | TreatUnavailableAsInvalid); |
3874 | if (Sequence) |
3875 | Sequence.AddStdInitializerListConstructionStep(DestType); |
3876 | return true; |
3877 | } |
3878 | |
3879 | /// Determine if the constructor has the signature of a copy or move |
3880 | /// constructor for the type T of the class in which it was found. That is, |
3881 | /// determine if its first parameter is of type T or reference to (possibly |
3882 | /// cv-qualified) T. |
3883 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
3884 | const ConstructorInfo &Info) { |
3885 | if (Info.Constructor->getNumParams() == 0) |
3886 | return false; |
3887 | |
3888 | QualType ParmT = |
3889 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
3890 | QualType ClassT = |
3891 | Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
3892 | |
3893 | return Ctx.hasSameUnqualifiedType(ParmT, ClassT); |
3894 | } |
3895 | |
3896 | static OverloadingResult |
3897 | ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, |
3898 | MultiExprArg Args, |
3899 | OverloadCandidateSet &CandidateSet, |
3900 | QualType DestType, |
3901 | DeclContext::lookup_result Ctors, |
3902 | OverloadCandidateSet::iterator &Best, |
3903 | bool CopyInitializing, bool AllowExplicit, |
3904 | bool OnlyListConstructors, bool IsListInit, |
3905 | bool SecondStepOfCopyInit = false) { |
3906 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); |
3907 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
3908 | |
3909 | for (NamedDecl *D : Ctors) { |
3910 | auto Info = getConstructorInfo(D); |
3911 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
3912 | continue; |
3913 | |
3914 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
3915 | continue; |
3916 | |
3917 | // C++11 [over.best.ics]p4: |
3918 | // ... and the constructor or user-defined conversion function is a |
3919 | // candidate by |
3920 | // - 13.3.1.3, when the argument is the temporary in the second step |
3921 | // of a class copy-initialization, or |
3922 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
3923 | // - the second phase of 13.3.1.7 when the initializer list has exactly |
3924 | // one element that is itself an initializer list, and the target is |
3925 | // the first parameter of a constructor of class X, and the conversion |
3926 | // is to X or reference to (possibly cv-qualified X), |
3927 | // user-defined conversion sequences are not considered. |
3928 | bool SuppressUserConversions = |
3929 | SecondStepOfCopyInit || |
3930 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
3931 | hasCopyOrMoveCtorParam(S.Context, Info)); |
3932 | |
3933 | if (Info.ConstructorTmpl) |
3934 | S.AddTemplateOverloadCandidate( |
3935 | Info.ConstructorTmpl, Info.FoundDecl, |
3936 | /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, |
3937 | /*PartialOverloading=*/false, AllowExplicit); |
3938 | else { |
3939 | // C++ [over.match.copy]p1: |
3940 | // - When initializing a temporary to be bound to the first parameter |
3941 | // of a constructor [for type T] that takes a reference to possibly |
3942 | // cv-qualified T as its first argument, called with a single |
3943 | // argument in the context of direct-initialization, explicit |
3944 | // conversion functions are also considered. |
3945 | // FIXME: What if a constructor template instantiates to such a signature? |
3946 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
3947 | Args.size() == 1 && |
3948 | hasCopyOrMoveCtorParam(S.Context, Info); |
3949 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
3950 | CandidateSet, SuppressUserConversions, |
3951 | /*PartialOverloading=*/false, AllowExplicit, |
3952 | AllowExplicitConv); |
3953 | } |
3954 | } |
3955 | |
3956 | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
3957 | // |
3958 | // When initializing an object of class type T by constructor |
3959 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
3960 | // from a single expression of class type U, conversion functions of |
3961 | // U that convert to the non-reference type cv T are candidates. |
3962 | // Explicit conversion functions are only candidates during |
3963 | // direct-initialization. |
3964 | // |
3965 | // Note: SecondStepOfCopyInit is only ever true in this case when |
3966 | // evaluating whether to produce a C++98 compatibility warning. |
3967 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
3968 | !SecondStepOfCopyInit) { |
3969 | Expr *Initializer = Args[0]; |
3970 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
3971 | if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { |
3972 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
3973 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
3974 | NamedDecl *D = *I; |
3975 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
3976 | D = D->getUnderlyingDecl(); |
3977 | |
3978 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
3979 | CXXConversionDecl *Conv; |
3980 | if (ConvTemplate) |
3981 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
3982 | else |
3983 | Conv = cast<CXXConversionDecl>(D); |
3984 | |
3985 | if (ConvTemplate) |
3986 | S.AddTemplateConversionCandidate( |
3987 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
3988 | CandidateSet, AllowExplicit, AllowExplicit, |
3989 | /*AllowResultConversion*/ false); |
3990 | else |
3991 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
3992 | DestType, CandidateSet, AllowExplicit, |
3993 | AllowExplicit, |
3994 | /*AllowResultConversion*/ false); |
3995 | } |
3996 | } |
3997 | } |
3998 | |
3999 | // Perform overload resolution and return the result. |
4000 | return CandidateSet.BestViableFunction(S, DeclLoc, Best); |
4001 | } |
4002 | |
4003 | /// Attempt initialization by constructor (C++ [dcl.init]), which |
4004 | /// enumerates the constructors of the initialized entity and performs overload |
4005 | /// resolution to select the best. |
4006 | /// \param DestType The destination class type. |
4007 | /// \param DestArrayType The destination type, which is either DestType or |
4008 | /// a (possibly multidimensional) array of DestType. |
4009 | /// \param IsListInit Is this list-initialization? |
4010 | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
4011 | /// list-initialization from {x} where x is the same |
4012 | /// type as the entity? |
4013 | static void TryConstructorInitialization(Sema &S, |
4014 | const InitializedEntity &Entity, |
4015 | const InitializationKind &Kind, |
4016 | MultiExprArg Args, QualType DestType, |
4017 | QualType DestArrayType, |
4018 | InitializationSequence &Sequence, |
4019 | bool IsListInit = false, |
4020 | bool IsInitListCopy = false) { |
4021 | assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4024, __PRETTY_FUNCTION__)) |
4022 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4024, __PRETTY_FUNCTION__)) |
4023 | "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4024, __PRETTY_FUNCTION__)) |
4024 | "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument.") ? static_cast<void> (0) : __assert_fail ( "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4024, __PRETTY_FUNCTION__)); |
4025 | InitListExpr *ILE = |
4026 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; |
4027 | MultiExprArg UnwrappedArgs = |
4028 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
4029 | |
4030 | // The type we're constructing needs to be complete. |
4031 | if (!S.isCompleteType(Kind.getLocation(), DestType)) { |
4032 | Sequence.setIncompleteTypeFailure(DestType); |
4033 | return; |
4034 | } |
4035 | |
4036 | // C++17 [dcl.init]p17: |
4037 | // - If the initializer expression is a prvalue and the cv-unqualified |
4038 | // version of the source type is the same class as the class of the |
4039 | // destination, the initializer expression is used to initialize the |
4040 | // destination object. |
4041 | // Per DR (no number yet), this does not apply when initializing a base |
4042 | // class or delegating to another constructor from a mem-initializer. |
4043 | // ObjC++: Lambda captured by the block in the lambda to block conversion |
4044 | // should avoid copy elision. |
4045 | if (S.getLangOpts().CPlusPlus17 && |
4046 | Entity.getKind() != InitializedEntity::EK_Base && |
4047 | Entity.getKind() != InitializedEntity::EK_Delegating && |
4048 | Entity.getKind() != |
4049 | InitializedEntity::EK_LambdaToBlockConversionBlockElement && |
4050 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && |
4051 | S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { |
4052 | // Convert qualifications if necessary. |
4053 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
4054 | if (ILE) |
4055 | Sequence.RewrapReferenceInitList(DestType, ILE); |
4056 | return; |
4057 | } |
4058 | |
4059 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
4060 | assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type" ) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4060, __PRETTY_FUNCTION__)); |
4061 | CXXRecordDecl *DestRecordDecl |
4062 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
4063 | |
4064 | // Build the candidate set directly in the initialization sequence |
4065 | // structure, so that it will persist if we fail. |
4066 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4067 | |
4068 | // Determine whether we are allowed to call explicit constructors or |
4069 | // explicit conversion operators. |
4070 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
4071 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
4072 | |
4073 | // - Otherwise, if T is a class type, constructors are considered. The |
4074 | // applicable constructors are enumerated, and the best one is chosen |
4075 | // through overload resolution. |
4076 | DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); |
4077 | |
4078 | OverloadingResult Result = OR_No_Viable_Function; |
4079 | OverloadCandidateSet::iterator Best; |
4080 | bool AsInitializerList = false; |
4081 | |
4082 | // C++11 [over.match.list]p1, per DR1467: |
4083 | // When objects of non-aggregate type T are list-initialized, such that |
4084 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
4085 | // according to the rules in this section, overload resolution selects |
4086 | // the constructor in two phases: |
4087 | // |
4088 | // - Initially, the candidate functions are the initializer-list |
4089 | // constructors of the class T and the argument list consists of the |
4090 | // initializer list as a single argument. |
4091 | if (IsListInit) { |
4092 | AsInitializerList = true; |
4093 | |
4094 | // If the initializer list has no elements and T has a default constructor, |
4095 | // the first phase is omitted. |
4096 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) |
4097 | Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, |
4098 | CandidateSet, DestType, Ctors, Best, |
4099 | CopyInitialization, AllowExplicit, |
4100 | /*OnlyListConstructors=*/true, |
4101 | IsListInit); |
4102 | } |
4103 | |
4104 | // C++11 [over.match.list]p1: |
4105 | // - If no viable initializer-list constructor is found, overload resolution |
4106 | // is performed again, where the candidate functions are all the |
4107 | // constructors of the class T and the argument list consists of the |
4108 | // elements of the initializer list. |
4109 | if (Result == OR_No_Viable_Function) { |
4110 | AsInitializerList = false; |
4111 | Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, |
4112 | CandidateSet, DestType, Ctors, Best, |
4113 | CopyInitialization, AllowExplicit, |
4114 | /*OnlyListConstructors=*/false, |
4115 | IsListInit); |
4116 | } |
4117 | if (Result) { |
4118 | Sequence.SetOverloadFailure( |
4119 | IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed |
4120 | : InitializationSequence::FK_ConstructorOverloadFailed, |
4121 | Result); |
4122 | |
4123 | if (Result != OR_Deleted) |
4124 | return; |
4125 | } |
4126 | |
4127 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4128 | |
4129 | // In C++17, ResolveConstructorOverload can select a conversion function |
4130 | // instead of a constructor. |
4131 | if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { |
4132 | // Add the user-defined conversion step that calls the conversion function. |
4133 | QualType ConvType = CD->getConversionType(); |
4134 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((S.Context.hasSameUnqualifiedType(ConvType, DestType) && "should not have selected this conversion function") ? static_cast <void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4135, __PRETTY_FUNCTION__)) |
4135 | "should not have selected this conversion function")((S.Context.hasSameUnqualifiedType(ConvType, DestType) && "should not have selected this conversion function") ? static_cast <void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4135, __PRETTY_FUNCTION__)); |
4136 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
4137 | HadMultipleCandidates); |
4138 | if (!S.Context.hasSameType(ConvType, DestType)) |
4139 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
4140 | if (IsListInit) |
4141 | Sequence.RewrapReferenceInitList(Entity.getType(), ILE); |
4142 | return; |
4143 | } |
4144 | |
4145 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
4146 | if (Result != OR_Deleted) { |
4147 | // C++11 [dcl.init]p6: |
4148 | // If a program calls for the default initialization of an object |
4149 | // of a const-qualified type T, T shall be a class type with a |
4150 | // user-provided default constructor. |
4151 | // C++ core issue 253 proposal: |
4152 | // If the implicit default constructor initializes all subobjects, no |
4153 | // initializer should be required. |
4154 | // The 253 proposal is for example needed to process libstdc++ headers |
4155 | // in 5.x. |
4156 | if (Kind.getKind() == InitializationKind::IK_Default && |
4157 | Entity.getType().isConstQualified()) { |
4158 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
4159 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
4160 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
4161 | return; |
4162 | } |
4163 | } |
4164 | |
4165 | // C++11 [over.match.list]p1: |
4166 | // In copy-list-initialization, if an explicit constructor is chosen, the |
4167 | // initializer is ill-formed. |
4168 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
4169 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
4170 | return; |
4171 | } |
4172 | } |
4173 | |
4174 | // [class.copy.elision]p3: |
4175 | // In some copy-initialization contexts, a two-stage overload resolution |
4176 | // is performed. |
4177 | // If the first overload resolution selects a deleted function, we also |
4178 | // need the initialization sequence to decide whether to perform the second |
4179 | // overload resolution. |
4180 | // For deleted functions in other contexts, there is no need to get the |
4181 | // initialization sequence. |
4182 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) |
4183 | return; |
4184 | |
4185 | // Add the constructor initialization step. Any cv-qualification conversion is |
4186 | // subsumed by the initialization. |
4187 | Sequence.AddConstructorInitializationStep( |
4188 | Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, |
4189 | IsListInit | IsInitListCopy, AsInitializerList); |
4190 | } |
4191 | |
4192 | static bool |
4193 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
4194 | Expr *Initializer, |
4195 | QualType &SourceType, |
4196 | QualType &UnqualifiedSourceType, |
4197 | QualType UnqualifiedTargetType, |
4198 | InitializationSequence &Sequence) { |
4199 | if (S.Context.getCanonicalType(UnqualifiedSourceType) == |
4200 | S.Context.OverloadTy) { |
4201 | DeclAccessPair Found; |
4202 | bool HadMultipleCandidates = false; |
4203 | if (FunctionDecl *Fn |
4204 | = S.ResolveAddressOfOverloadedFunction(Initializer, |
4205 | UnqualifiedTargetType, |
4206 | false, Found, |
4207 | &HadMultipleCandidates)) { |
4208 | Sequence.AddAddressOverloadResolutionStep(Fn, Found, |
4209 | HadMultipleCandidates); |
4210 | SourceType = Fn->getType(); |
4211 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
4212 | } else if (!UnqualifiedTargetType->isRecordType()) { |
4213 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4214 | return true; |
4215 | } |
4216 | } |
4217 | return false; |
4218 | } |
4219 | |
4220 | static void TryReferenceInitializationCore(Sema &S, |
4221 | const InitializedEntity &Entity, |
4222 | const InitializationKind &Kind, |
4223 | Expr *Initializer, |
4224 | QualType cv1T1, QualType T1, |
4225 | Qualifiers T1Quals, |
4226 | QualType cv2T2, QualType T2, |
4227 | Qualifiers T2Quals, |
4228 | InitializationSequence &Sequence); |
4229 | |
4230 | static void TryValueInitialization(Sema &S, |
4231 | const InitializedEntity &Entity, |
4232 | const InitializationKind &Kind, |
4233 | InitializationSequence &Sequence, |
4234 | InitListExpr *InitList = nullptr); |
4235 | |
4236 | /// Attempt list initialization of a reference. |
4237 | static void TryReferenceListInitialization(Sema &S, |
4238 | const InitializedEntity &Entity, |
4239 | const InitializationKind &Kind, |
4240 | InitListExpr *InitList, |
4241 | InitializationSequence &Sequence, |
4242 | bool TreatUnavailableAsInvalid) { |
4243 | // First, catch C++03 where this isn't possible. |
4244 | if (!S.getLangOpts().CPlusPlus11) { |
4245 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4246 | return; |
4247 | } |
4248 | // Can't reference initialize a compound literal. |
4249 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
4250 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4251 | return; |
4252 | } |
4253 | |
4254 | QualType DestType = Entity.getType(); |
4255 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4256 | Qualifiers T1Quals; |
4257 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4258 | |
4259 | // Reference initialization via an initializer list works thus: |
4260 | // If the initializer list consists of a single element that is |
4261 | // reference-related to the referenced type, bind directly to that element |
4262 | // (possibly creating temporaries). |
4263 | // Otherwise, initialize a temporary with the initializer list and |
4264 | // bind to that. |
4265 | if (InitList->getNumInits() == 1) { |
4266 | Expr *Initializer = InitList->getInit(0); |
4267 | QualType cv2T2 = S.getCompletedType(Initializer); |
4268 | Qualifiers T2Quals; |
4269 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4270 | |
4271 | // If this fails, creating a temporary wouldn't work either. |
4272 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4273 | T1, Sequence)) |
4274 | return; |
4275 | |
4276 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4277 | Sema::ReferenceCompareResult RefRelationship |
4278 | = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); |
4279 | if (RefRelationship >= Sema::Ref_Related) { |
4280 | // Try to bind the reference here. |
4281 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4282 | T1Quals, cv2T2, T2, T2Quals, Sequence); |
4283 | if (Sequence) |
4284 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4285 | return; |
4286 | } |
4287 | |
4288 | // Update the initializer if we've resolved an overloaded function. |
4289 | if (Sequence.step_begin() != Sequence.step_end()) |
4290 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4291 | } |
4292 | |
4293 | // Not reference-related. Create a temporary and bind to that. |
4294 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
4295 | |
4296 | TryListInitialization(S, TempEntity, Kind, InitList, Sequence, |
4297 | TreatUnavailableAsInvalid); |
4298 | if (Sequence) { |
4299 | if (DestType->isRValueReferenceType() || |
4300 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) |
4301 | Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); |
4302 | else |
4303 | Sequence.SetFailed( |
4304 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
4305 | } |
4306 | } |
4307 | |
4308 | /// Attempt list initialization (C++0x [dcl.init.list]) |
4309 | static void TryListInitialization(Sema &S, |
4310 | const InitializedEntity &Entity, |
4311 | const InitializationKind &Kind, |
4312 | InitListExpr *InitList, |
4313 | InitializationSequence &Sequence, |
4314 | bool TreatUnavailableAsInvalid) { |
4315 | QualType DestType = Entity.getType(); |
4316 | |
4317 | // C++ doesn't allow scalar initialization with more than one argument. |
4318 | // But C99 complex numbers are scalars and it makes sense there. |
4319 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
4320 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
4321 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
4322 | return; |
4323 | } |
4324 | if (DestType->isReferenceType()) { |
4325 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
4326 | TreatUnavailableAsInvalid); |
4327 | return; |
4328 | } |
4329 | |
4330 | if (DestType->isRecordType() && |
4331 | !S.isCompleteType(InitList->getBeginLoc(), DestType)) { |
4332 | Sequence.setIncompleteTypeFailure(DestType); |
4333 | return; |
4334 | } |
4335 | |
4336 | // C++11 [dcl.init.list]p3, per DR1467: |
4337 | // - If T is a class type and the initializer list has a single element of |
4338 | // type cv U, where U is T or a class derived from T, the object is |
4339 | // initialized from that element (by copy-initialization for |
4340 | // copy-list-initialization, or by direct-initialization for |
4341 | // direct-list-initialization). |
4342 | // - Otherwise, if T is a character array and the initializer list has a |
4343 | // single element that is an appropriately-typed string literal |
4344 | // (8.5.2 [dcl.init.string]), initialization is performed as described |
4345 | // in that section. |
4346 | // - Otherwise, if T is an aggregate, [...] (continue below). |
4347 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { |
4348 | if (DestType->isRecordType()) { |
4349 | QualType InitType = InitList->getInit(0)->getType(); |
4350 | if (S.Context.hasSameUnqualifiedType(InitType, DestType) || |
4351 | S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { |
4352 | Expr *InitListAsExpr = InitList; |
4353 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4354 | DestType, Sequence, |
4355 | /*InitListSyntax*/false, |
4356 | /*IsInitListCopy*/true); |
4357 | return; |
4358 | } |
4359 | } |
4360 | if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { |
4361 | Expr *SubInit[1] = {InitList->getInit(0)}; |
4362 | if (!isa<VariableArrayType>(DestAT) && |
4363 | IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { |
4364 | InitializationKind SubKind = |
4365 | Kind.getKind() == InitializationKind::IK_DirectList |
4366 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4367 | InitList->getLBraceLoc(), |
4368 | InitList->getRBraceLoc()) |
4369 | : Kind; |
4370 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4371 | /*TopLevelOfInitList*/ true, |
4372 | TreatUnavailableAsInvalid); |
4373 | |
4374 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
4375 | // the element is not an appropriately-typed string literal, in which |
4376 | // case we should proceed as in C++11 (below). |
4377 | if (Sequence) { |
4378 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4379 | return; |
4380 | } |
4381 | } |
4382 | } |
4383 | } |
4384 | |
4385 | // C++11 [dcl.init.list]p3: |
4386 | // - If T is an aggregate, aggregate initialization is performed. |
4387 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
4388 | (S.getLangOpts().CPlusPlus11 && |
4389 | S.isStdInitializerList(DestType, nullptr))) { |
4390 | if (S.getLangOpts().CPlusPlus11) { |
4391 | // - Otherwise, if the initializer list has no elements and T is a |
4392 | // class type with a default constructor, the object is |
4393 | // value-initialized. |
4394 | if (InitList->getNumInits() == 0) { |
4395 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
4396 | if (S.LookupDefaultConstructor(RD)) { |
4397 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
4398 | return; |
4399 | } |
4400 | } |
4401 | |
4402 | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
4403 | // an initializer_list object constructed [...] |
4404 | if (TryInitializerListConstruction(S, InitList, DestType, Sequence, |
4405 | TreatUnavailableAsInvalid)) |
4406 | return; |
4407 | |
4408 | // - Otherwise, if T is a class type, constructors are considered. |
4409 | Expr *InitListAsExpr = InitList; |
4410 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4411 | DestType, Sequence, /*InitListSyntax*/true); |
4412 | } else |
4413 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
4414 | return; |
4415 | } |
4416 | |
4417 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
4418 | InitList->getNumInits() == 1) { |
4419 | Expr *E = InitList->getInit(0); |
4420 | |
4421 | // - Otherwise, if T is an enumeration with a fixed underlying type, |
4422 | // the initializer-list has a single element v, and the initialization |
4423 | // is direct-list-initialization, the object is initialized with the |
4424 | // value T(v); if a narrowing conversion is required to convert v to |
4425 | // the underlying type of T, the program is ill-formed. |
4426 | auto *ET = DestType->getAs<EnumType>(); |
4427 | if (S.getLangOpts().CPlusPlus17 && |
4428 | Kind.getKind() == InitializationKind::IK_DirectList && |
4429 | ET && ET->getDecl()->isFixed() && |
4430 | !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && |
4431 | (E->getType()->isIntegralOrEnumerationType() || |
4432 | E->getType()->isFloatingType())) { |
4433 | // There are two ways that T(v) can work when T is an enumeration type. |
4434 | // If there is either an implicit conversion sequence from v to T or |
4435 | // a conversion function that can convert from v to T, then we use that. |
4436 | // Otherwise, if v is of integral, enumeration, or floating-point type, |
4437 | // it is converted to the enumeration type via its underlying type. |
4438 | // There is no overlap possible between these two cases (except when the |
4439 | // source value is already of the destination type), and the first |
4440 | // case is handled by the general case for single-element lists below. |
4441 | ImplicitConversionSequence ICS; |
4442 | ICS.setStandard(); |
4443 | ICS.Standard.setAsIdentityConversion(); |
4444 | if (!E->isRValue()) |
4445 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
4446 | // If E is of a floating-point type, then the conversion is ill-formed |
4447 | // due to narrowing, but go through the motions in order to produce the |
4448 | // right diagnostic. |
4449 | ICS.Standard.Second = E->getType()->isFloatingType() |
4450 | ? ICK_Floating_Integral |
4451 | : ICK_Integral_Conversion; |
4452 | ICS.Standard.setFromType(E->getType()); |
4453 | ICS.Standard.setToType(0, E->getType()); |
4454 | ICS.Standard.setToType(1, DestType); |
4455 | ICS.Standard.setToType(2, DestType); |
4456 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), |
4457 | /*TopLevelOfInitList*/true); |
4458 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4459 | return; |
4460 | } |
4461 | |
4462 | // - Otherwise, if the initializer list has a single element of type E |
4463 | // [...references are handled above...], the object or reference is |
4464 | // initialized from that element (by copy-initialization for |
4465 | // copy-list-initialization, or by direct-initialization for |
4466 | // direct-list-initialization); if a narrowing conversion is required |
4467 | // to convert the element to T, the program is ill-formed. |
4468 | // |
4469 | // Per core-24034, this is direct-initialization if we were performing |
4470 | // direct-list-initialization and copy-initialization otherwise. |
4471 | // We can't use InitListChecker for this, because it always performs |
4472 | // copy-initialization. This only matters if we might use an 'explicit' |
4473 | // conversion operator, or for the special case conversion of nullptr_t to |
4474 | // bool, so we only need to handle those cases. |
4475 | // |
4476 | // FIXME: Why not do this in all cases? |
4477 | Expr *Init = InitList->getInit(0); |
4478 | if (Init->getType()->isRecordType() || |
4479 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { |
4480 | InitializationKind SubKind = |
4481 | Kind.getKind() == InitializationKind::IK_DirectList |
4482 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4483 | InitList->getLBraceLoc(), |
4484 | InitList->getRBraceLoc()) |
4485 | : Kind; |
4486 | Expr *SubInit[1] = { Init }; |
4487 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4488 | /*TopLevelOfInitList*/true, |
4489 | TreatUnavailableAsInvalid); |
4490 | if (Sequence) |
4491 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4492 | return; |
4493 | } |
4494 | } |
4495 | |
4496 | InitListChecker CheckInitList(S, Entity, InitList, |
4497 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
4498 | if (CheckInitList.HadError()) { |
4499 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
4500 | return; |
4501 | } |
4502 | |
4503 | // Add the list initialization step with the built init list. |
4504 | Sequence.AddListInitializationStep(DestType); |
4505 | } |
4506 | |
4507 | /// Try a reference initialization that involves calling a conversion |
4508 | /// function. |
4509 | static OverloadingResult TryRefInitWithConversionFunction( |
4510 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4511 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
4512 | InitializationSequence &Sequence) { |
4513 | QualType DestType = Entity.getType(); |
4514 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4515 | QualType T1 = cv1T1.getUnqualifiedType(); |
4516 | QualType cv2T2 = Initializer->getType(); |
4517 | QualType T2 = cv2T2.getUnqualifiedType(); |
4518 | |
4519 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&((!S.CompareReferenceRelationship(Initializer->getBeginLoc (), T1, T2) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4520, __PRETTY_FUNCTION__)) |
4520 | "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getBeginLoc (), T1, T2) && "Must have incompatible references when binding via conversion" ) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4520, __PRETTY_FUNCTION__)); |
4521 | |
4522 | // Build the candidate set directly in the initialization sequence |
4523 | // structure, so that it will persist if we fail. |
4524 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4525 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4526 | |
4527 | // Determine whether we are allowed to call explicit conversion operators. |
4528 | // Note that none of [over.match.copy], [over.match.conv], nor |
4529 | // [over.match.ref] permit an explicit constructor to be chosen when |
4530 | // initializing a reference, not even for direct-initialization. |
4531 | bool AllowExplicitCtors = false; |
4532 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
4533 | |
4534 | const RecordType *T1RecordType = nullptr; |
4535 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
4536 | S.isCompleteType(Kind.getLocation(), T1)) { |
4537 | // The type we're converting to is a class type. Enumerate its constructors |
4538 | // to see if there is a suitable conversion. |
4539 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); |
4540 | |
4541 | for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { |
4542 | auto Info = getConstructorInfo(D); |
4543 | if (!Info.Constructor) |
4544 | continue; |
4545 | |
4546 | if (!Info.Constructor->isInvalidDecl() && |
4547 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
4548 | if (Info.ConstructorTmpl) |
4549 | S.AddTemplateOverloadCandidate( |
4550 | Info.ConstructorTmpl, Info.FoundDecl, |
4551 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
4552 | /*SuppressUserConversions=*/true, |
4553 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4554 | else |
4555 | S.AddOverloadCandidate( |
4556 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, |
4557 | /*SuppressUserConversions=*/true, |
4558 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4559 | } |
4560 | } |
4561 | } |
4562 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
4563 | return OR_No_Viable_Function; |
4564 | |
4565 | const RecordType *T2RecordType = nullptr; |
4566 | if ((T2RecordType = T2->getAs<RecordType>()) && |
4567 | S.isCompleteType(Kind.getLocation(), T2)) { |
4568 | // The type we're converting from is a class type, enumerate its conversion |
4569 | // functions. |
4570 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); |
4571 | |
4572 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4573 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4574 | NamedDecl *D = *I; |
4575 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4576 | if (isa<UsingShadowDecl>(D)) |
4577 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
4578 | |
4579 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
4580 | CXXConversionDecl *Conv; |
4581 | if (ConvTemplate) |
4582 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4583 | else |
4584 | Conv = cast<CXXConversionDecl>(D); |
4585 | |
4586 | // If the conversion function doesn't return a reference type, |
4587 | // it can't be considered for this conversion unless we're allowed to |
4588 | // consider rvalues. |
4589 | // FIXME: Do we need to make sure that we only consider conversion |
4590 | // candidates with reference-compatible results? That might be needed to |
4591 | // break recursion. |
4592 | if ((AllowRValues || |
4593 | Conv->getConversionType()->isLValueReferenceType())) { |
4594 | if (ConvTemplate) |
4595 | S.AddTemplateConversionCandidate( |
4596 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
4597 | CandidateSet, |
4598 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4599 | else |
4600 | S.AddConversionCandidate( |
4601 | Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, |
4602 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4603 | } |
4604 | } |
4605 | } |
4606 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
4607 | return OR_No_Viable_Function; |
4608 | |
4609 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4610 | |
4611 | // Perform overload resolution. If it fails, return the failed result. |
4612 | OverloadCandidateSet::iterator Best; |
4613 | if (OverloadingResult Result |
4614 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) |
4615 | return Result; |
4616 | |
4617 | FunctionDecl *Function = Best->Function; |
4618 | // This is the overload that will be used for this initialization step if we |
4619 | // use this initialization. Mark it as referenced. |
4620 | Function->setReferenced(); |
4621 | |
4622 | // Compute the returned type and value kind of the conversion. |
4623 | QualType cv3T3; |
4624 | if (isa<CXXConversionDecl>(Function)) |
4625 | cv3T3 = Function->getReturnType(); |
4626 | else |
4627 | cv3T3 = T1; |
4628 | |
4629 | ExprValueKind VK = VK_RValue; |
4630 | if (cv3T3->isLValueReferenceType()) |
4631 | VK = VK_LValue; |
4632 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
4633 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
4634 | cv3T3 = cv3T3.getNonLValueExprType(S.Context); |
4635 | |
4636 | // Add the user-defined conversion step. |
4637 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4638 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, |
4639 | HadMultipleCandidates); |
4640 | |
4641 | // Determine whether we'll need to perform derived-to-base adjustments or |
4642 | // other conversions. |
4643 | Sema::ReferenceConversions RefConv; |
4644 | Sema::ReferenceCompareResult NewRefRelationship = |
4645 | S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); |
4646 | |
4647 | // Add the final conversion sequence, if necessary. |
4648 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
4649 | assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor" ) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4650, __PRETTY_FUNCTION__)) |
4650 | "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor" ) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4650, __PRETTY_FUNCTION__)); |
4651 | |
4652 | ImplicitConversionSequence ICS; |
4653 | ICS.setStandard(); |
4654 | ICS.Standard = Best->FinalConversion; |
4655 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); |
4656 | |
4657 | // Every implicit conversion results in a prvalue, except for a glvalue |
4658 | // derived-to-base conversion, which we handle below. |
4659 | cv3T3 = ICS.Standard.getToType(2); |
4660 | VK = VK_RValue; |
4661 | } |
4662 | |
4663 | // If the converted initializer is a prvalue, its type T4 is adjusted to |
4664 | // type "cv1 T4" and the temporary materialization conversion is applied. |
4665 | // |
4666 | // We adjust the cv-qualifications to match the reference regardless of |
4667 | // whether we have a prvalue so that the AST records the change. In this |
4668 | // case, T4 is "cv3 T3". |
4669 | QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); |
4670 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
4671 | Sequence.AddQualificationConversionStep(cv1T4, VK); |
4672 | Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); |
4673 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
4674 | |
4675 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
4676 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK); |
4677 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
4678 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4679 | else if (RefConv & Sema::ReferenceConversions::Function) |
4680 | Sequence.AddFunctionReferenceConversionStep(cv1T1); |
4681 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
4682 | if (!S.Context.hasSameType(cv1T4, cv1T1)) |
4683 | Sequence.AddQualificationConversionStep(cv1T1, VK); |
4684 | } |
4685 | |
4686 | return OR_Success; |
4687 | } |
4688 | |
4689 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
4690 | const InitializedEntity &Entity, |
4691 | Expr *CurInitExpr); |
4692 | |
4693 | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
4694 | static void TryReferenceInitialization(Sema &S, |
4695 | const InitializedEntity &Entity, |
4696 | const InitializationKind &Kind, |
4697 | Expr *Initializer, |
4698 | InitializationSequence &Sequence) { |
4699 | QualType DestType = Entity.getType(); |
4700 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4701 | Qualifiers T1Quals; |
4702 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4703 | QualType cv2T2 = S.getCompletedType(Initializer); |
4704 | Qualifiers T2Quals; |
4705 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4706 | |
4707 | // If the initializer is the address of an overloaded function, try |
4708 | // to resolve the overloaded function. If all goes well, T2 is the |
4709 | // type of the resulting function. |
4710 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4711 | T1, Sequence)) |
4712 | return; |
4713 | |
4714 | // Delegate everything else to a subfunction. |
4715 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4716 | T1Quals, cv2T2, T2, T2Quals, Sequence); |
4717 | } |
4718 | |
4719 | /// Determine whether an expression is a non-referenceable glvalue (one to |
4720 | /// which a reference can never bind). Attempting to bind a reference to |
4721 | /// such a glvalue will always create a temporary. |
4722 | static bool isNonReferenceableGLValue(Expr *E) { |
4723 | return E->refersToBitField() || E->refersToVectorElement() || |
4724 | E->refersToMatrixElement(); |
4725 | } |
4726 | |
4727 | /// Reference initialization without resolving overloaded functions. |
4728 | /// |
4729 | /// We also can get here in C if we call a builtin which is declared as |
4730 | /// a function with a parameter of reference type (such as __builtin_va_end()). |
4731 | static void TryReferenceInitializationCore(Sema &S, |
4732 | const InitializedEntity &Entity, |
4733 | const InitializationKind &Kind, |
4734 | Expr *Initializer, |
4735 | QualType cv1T1, QualType T1, |
4736 | Qualifiers T1Quals, |
4737 | QualType cv2T2, QualType T2, |
4738 | Qualifiers T2Quals, |
4739 | InitializationSequence &Sequence) { |
4740 | QualType DestType = Entity.getType(); |
4741 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4742 | |
4743 | // Compute some basic properties of the types and the initializer. |
4744 | bool isLValueRef = DestType->isLValueReferenceType(); |
4745 | bool isRValueRef = !isLValueRef; |
4746 | Expr::Classification InitCategory = Initializer->Classify(S.Context); |
4747 | |
4748 | Sema::ReferenceConversions RefConv; |
4749 | Sema::ReferenceCompareResult RefRelationship = |
4750 | S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); |
4751 | |
4752 | // C++0x [dcl.init.ref]p5: |
4753 | // A reference to type "cv1 T1" is initialized by an expression of type |
4754 | // "cv2 T2" as follows: |
4755 | // |
4756 | // - If the reference is an lvalue reference and the initializer |
4757 | // expression |
4758 | // Note the analogous bullet points for rvalue refs to functions. Because |
4759 | // there are no function rvalues in C++, rvalue refs to functions are treated |
4760 | // like lvalue refs. |
4761 | OverloadingResult ConvOvlResult = OR_Success; |
4762 | bool T1Function = T1->isFunctionType(); |
4763 | if (isLValueRef || T1Function) { |
4764 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && |
4765 | (RefRelationship == Sema::Ref_Compatible || |
4766 | (Kind.isCStyleOrFunctionalCast() && |
4767 | RefRelationship == Sema::Ref_Related))) { |
4768 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
4769 | // reference-compatible with "cv2 T2," or |
4770 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | |
4771 | Sema::ReferenceConversions::ObjC)) { |
4772 | // If we're converting the pointee, add any qualifiers first; |
4773 | // these qualifiers must all be top-level, so just convert to "cv1 T2". |
4774 | if (RefConv & (Sema::ReferenceConversions::Qualification)) |
4775 | Sequence.AddQualificationConversionStep( |
4776 | S.Context.getQualifiedType(T2, T1Quals), |
4777 | Initializer->getValueKind()); |
4778 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
4779 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); |
4780 | else |
4781 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4782 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { |
4783 | // Perform a (possibly multi-level) qualification conversion. |
4784 | Sequence.AddQualificationConversionStep(cv1T1, |
4785 | Initializer->getValueKind()); |
4786 | } else if (RefConv & Sema::ReferenceConversions::Function) { |
4787 | Sequence.AddFunctionReferenceConversionStep(cv1T1); |
4788 | } |
4789 | |
4790 | // We only create a temporary here when binding a reference to a |
4791 | // bit-field or vector element. Those cases are't supposed to be |
4792 | // handled by this bullet, but the outcome is the same either way. |
4793 | Sequence.AddReferenceBindingStep(cv1T1, false); |
4794 | return; |
4795 | } |
4796 | |
4797 | // - has a class type (i.e., T2 is a class type), where T1 is not |
4798 | // reference-related to T2, and can be implicitly converted to an |
4799 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
4800 | // with "cv3 T3" (this conversion is selected by enumerating the |
4801 | // applicable conversion functions (13.3.1.6) and choosing the best |
4802 | // one through overload resolution (13.3)), |
4803 | // If we have an rvalue ref to function type here, the rhs must be |
4804 | // an rvalue. DR1287 removed the "implicitly" here. |
4805 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
4806 | (isLValueRef || InitCategory.isRValue())) { |
4807 | if (S.getLangOpts().CPlusPlus) { |
4808 | // Try conversion functions only for C++. |
4809 | ConvOvlResult = TryRefInitWithConversionFunction( |
4810 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
4811 | /*IsLValueRef*/ isLValueRef, Sequence); |
4812 | if (ConvOvlResult == OR_Success) |
4813 | return; |
4814 | if (ConvOvlResult != OR_No_Viable_Function) |
4815 | Sequence.SetOverloadFailure( |
4816 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4817 | ConvOvlResult); |
4818 | } else { |
4819 | ConvOvlResult = OR_No_Viable_Function; |
4820 | } |
4821 | } |
4822 | } |
4823 | |
4824 | // - Otherwise, the reference shall be an lvalue reference to a |
4825 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
4826 | // shall be an rvalue reference. |
4827 | // For address spaces, we interpret this to mean that an addr space |
4828 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
4829 | if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
4830 | T1Quals.isAddressSpaceSupersetOf(T2Quals))) { |
4831 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
4832 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4833 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
4834 | Sequence.SetOverloadFailure( |
4835 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4836 | ConvOvlResult); |
4837 | else if (!InitCategory.isLValue()) |
4838 | Sequence.SetFailed( |
4839 | T1Quals.isAddressSpaceSupersetOf(T2Quals) |
4840 | ? InitializationSequence:: |
4841 | FK_NonConstLValueReferenceBindingToTemporary |
4842 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4843 | else { |
4844 | InitializationSequence::FailureKind FK; |
4845 | switch (RefRelationship) { |
4846 | case Sema::Ref_Compatible: |
4847 | if (Initializer->refersToBitField()) |
4848 | FK = InitializationSequence:: |
4849 | FK_NonConstLValueReferenceBindingToBitfield; |
4850 | else if (Initializer->refersToVectorElement()) |
4851 | FK = InitializationSequence:: |
4852 | FK_NonConstLValueReferenceBindingToVectorElement; |
4853 | else if (Initializer->refersToMatrixElement()) |
4854 | FK = InitializationSequence:: |
4855 | FK_NonConstLValueReferenceBindingToMatrixElement; |
4856 | else |
4857 | llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 4857); |
4858 | break; |
4859 | case Sema::Ref_Related: |
4860 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
4861 | break; |
4862 | case Sema::Ref_Incompatible: |
4863 | FK = InitializationSequence:: |
4864 | FK_NonConstLValueReferenceBindingToUnrelated; |
4865 | break; |
4866 | } |
4867 | Sequence.SetFailed(FK); |
4868 | } |
4869 | return; |
4870 | } |
4871 | |
4872 | // - If the initializer expression |
4873 | // - is an |
4874 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
4875 | // [1z] rvalue (but not a bit-field) or |
4876 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
4877 | // |
4878 | // Note: functions are handled above and below rather than here... |
4879 | if (!T1Function && |
4880 | (RefRelationship == Sema::Ref_Compatible || |
4881 | (Kind.isCStyleOrFunctionalCast() && |
4882 | RefRelationship == Sema::Ref_Related)) && |
4883 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || |
4884 | (InitCategory.isPRValue() && |
4885 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
4886 | T2->isArrayType())))) { |
4887 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; |
4888 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
4889 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
4890 | // compiler the freedom to perform a copy here or bind to the |
4891 | // object, while C++0x requires that we bind directly to the |
4892 | // object. Hence, we always bind to the object without making an |
4893 | // extra copy. However, in C++03 requires that we check for the |
4894 | // presence of a suitable copy constructor: |
4895 | // |
4896 | // The constructor that would be used to make the copy shall |
4897 | // be callable whether or not the copy is actually done. |
4898 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
4899 | Sequence.AddExtraneousCopyToTemporary(cv2T2); |
4900 | else if (S.getLangOpts().CPlusPlus11) |
4901 | CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); |
4902 | } |
4903 | |
4904 | // C++1z [dcl.init.ref]/5.2.1.2: |
4905 | // If the converted initializer is a prvalue, its type T4 is adjusted |
4906 | // to type "cv1 T4" and the temporary materialization conversion is |
4907 | // applied. |
4908 | // Postpone address space conversions to after the temporary materialization |
4909 | // conversion to allow creating temporaries in the alloca address space. |
4910 | auto T1QualsIgnoreAS = T1Quals; |
4911 | auto T2QualsIgnoreAS = T2Quals; |
4912 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
4913 | T1QualsIgnoreAS.removeAddressSpace(); |
4914 | T2QualsIgnoreAS.removeAddressSpace(); |
4915 | } |
4916 | QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); |
4917 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
4918 | Sequence.AddQualificationConversionStep(cv1T4, ValueKind); |
4919 | Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); |
4920 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
4921 | // Add addr space conversion if required. |
4922 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
4923 | auto T4Quals = cv1T4.getQualifiers(); |
4924 | T4Quals.addAddressSpace(T1Quals.getAddressSpace()); |
4925 | QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); |
4926 | Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); |
4927 | cv1T4 = cv1T4WithAS; |
4928 | } |
4929 | |
4930 | // In any case, the reference is bound to the resulting glvalue (or to |
4931 | // an appropriate base class subobject). |
4932 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
4933 | Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); |
4934 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
4935 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4936 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
4937 | if (!S.Context.hasSameType(cv1T4, cv1T1)) |
4938 | Sequence.AddQualificationConversionStep(cv1T1, ValueKind); |
4939 | } |
4940 | return; |
4941 | } |
4942 | |
4943 | // - has a class type (i.e., T2 is a class type), where T1 is not |
4944 | // reference-related to T2, and can be implicitly converted to an |
4945 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
4946 | // where "cv1 T1" is reference-compatible with "cv3 T3", |
4947 | // |
4948 | // DR1287 removes the "implicitly" here. |
4949 | if (T2->isRecordType()) { |
4950 | if (RefRelationship == Sema::Ref_Incompatible) { |
4951 | ConvOvlResult = TryRefInitWithConversionFunction( |
4952 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
4953 | /*IsLValueRef*/ isLValueRef, Sequence); |
4954 | if (ConvOvlResult) |
4955 | Sequence.SetOverloadFailure( |
4956 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
4957 | ConvOvlResult); |
4958 | |
4959 | return; |
4960 | } |
4961 | |
4962 | if (RefRelationship == Sema::Ref_Compatible && |
4963 | isRValueRef && InitCategory.isLValue()) { |
4964 | Sequence.SetFailed( |
4965 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
4966 | return; |
4967 | } |
4968 | |
4969 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4970 | return; |
4971 | } |
4972 | |
4973 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
4974 | // from the initializer expression using the rules for a non-reference |
4975 | // copy-initialization (8.5). The reference is then bound to the |
4976 | // temporary. [...] |
4977 | |
4978 | // Ignore address space of reference type at this point and perform address |
4979 | // space conversion after the reference binding step. |
4980 | QualType cv1T1IgnoreAS = |
4981 | T1Quals.hasAddressSpace() |
4982 | ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) |
4983 | : cv1T1; |
4984 | |
4985 | InitializedEntity TempEntity = |
4986 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); |
4987 | |
4988 | // FIXME: Why do we use an implicit conversion here rather than trying |
4989 | // copy-initialization? |
4990 | ImplicitConversionSequence ICS |
4991 | = S.TryImplicitConversion(Initializer, TempEntity.getType(), |
4992 | /*SuppressUserConversions=*/false, |
4993 | Sema::AllowedExplicit::None, |
4994 | /*FIXME:InOverloadResolution=*/false, |
4995 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
4996 | /*AllowObjCWritebackConversion=*/false); |
4997 | |
4998 | if (ICS.isBad()) { |
4999 | // FIXME: Use the conversion function set stored in ICS to turn |
5000 | // this into an overloading ambiguity diagnostic. However, we need |
5001 | // to keep that set as an OverloadCandidateSet rather than as some |
5002 | // other kind of set. |
5003 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5004 | Sequence.SetOverloadFailure( |
5005 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
5006 | ConvOvlResult); |
5007 | else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
5008 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5009 | else |
5010 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
5011 | return; |
5012 | } else { |
5013 | Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); |
5014 | } |
5015 | |
5016 | // [...] If T1 is reference-related to T2, cv1 must be the |
5017 | // same cv-qualification as, or greater cv-qualification |
5018 | // than, cv2; otherwise, the program is ill-formed. |
5019 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
5020 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
5021 | if ((RefRelationship == Sema::Ref_Related && |
5022 | (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || |
5023 | !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { |
5024 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5025 | return; |
5026 | } |
5027 | |
5028 | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
5029 | // reference, the initializer expression shall not be an lvalue. |
5030 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
5031 | InitCategory.isLValue()) { |
5032 | Sequence.SetFailed( |
5033 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5034 | return; |
5035 | } |
5036 | |
5037 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); |
5038 | |
5039 | if (T1Quals.hasAddressSpace()) { |
5040 | if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), |
5041 | LangAS::Default)) { |
5042 | Sequence.SetFailed( |
5043 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
5044 | return; |
5045 | } |
5046 | Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue |
5047 | : VK_XValue); |
5048 | } |
5049 | } |
5050 | |
5051 | /// Attempt character array initialization from a string literal |
5052 | /// (C++ [dcl.init.string], C99 6.7.8). |
5053 | static void TryStringLiteralInitialization(Sema &S, |
5054 | const InitializedEntity &Entity, |
5055 | const InitializationKind &Kind, |
5056 | Expr *Initializer, |
5057 | InitializationSequence &Sequence) { |
5058 | Sequence.AddStringInitStep(Entity.getType()); |
5059 | } |
5060 | |
5061 | /// Attempt value initialization (C++ [dcl.init]p7). |
5062 | static void TryValueInitialization(Sema &S, |
5063 | const InitializedEntity &Entity, |
5064 | const InitializationKind &Kind, |
5065 | InitializationSequence &Sequence, |
5066 | InitListExpr *InitList) { |
5067 | assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists" ) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5068, __PRETTY_FUNCTION__)) |
5068 | "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists" ) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5068, __PRETTY_FUNCTION__)); |
5069 | |
5070 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
5071 | // |
5072 | // To value-initialize an object of type T means: |
5073 | QualType T = Entity.getType(); |
5074 | |
5075 | // -- if T is an array type, then each element is value-initialized; |
5076 | T = S.Context.getBaseElementType(T); |
5077 | |
5078 | if (const RecordType *RT = T->getAs<RecordType>()) { |
5079 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
5080 | bool NeedZeroInitialization = true; |
5081 | // C++98: |
5082 | // -- if T is a class type (clause 9) with a user-declared constructor |
5083 | // (12.1), then the default constructor for T is called (and the |
5084 | // initialization is ill-formed if T has no accessible default |
5085 | // constructor); |
5086 | // C++11: |
5087 | // -- if T is a class type (clause 9) with either no default constructor |
5088 | // (12.1 [class.ctor]) or a default constructor that is user-provided |
5089 | // or deleted, then the object is default-initialized; |
5090 | // |
5091 | // Note that the C++11 rule is the same as the C++98 rule if there are no |
5092 | // defaulted or deleted constructors, so we just use it unconditionally. |
5093 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); |
5094 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
5095 | NeedZeroInitialization = false; |
5096 | |
5097 | // -- if T is a (possibly cv-qualified) non-union class type without a |
5098 | // user-provided or deleted default constructor, then the object is |
5099 | // zero-initialized and, if T has a non-trivial default constructor, |
5100 | // default-initialized; |
5101 | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
5102 | // constructor' part was removed by DR1507. |
5103 | if (NeedZeroInitialization) |
5104 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5105 | |
5106 | // C++03: |
5107 | // -- if T is a non-union class type without a user-declared constructor, |
5108 | // then every non-static data member and base class component of T is |
5109 | // value-initialized; |
5110 | // [...] A program that calls for [...] value-initialization of an |
5111 | // entity of reference type is ill-formed. |
5112 | // |
5113 | // C++11 doesn't need this handling, because value-initialization does not |
5114 | // occur recursively there, and the implicit default constructor is |
5115 | // defined as deleted in the problematic cases. |
5116 | if (!S.getLangOpts().CPlusPlus11 && |
5117 | ClassDecl->hasUninitializedReferenceMember()) { |
5118 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
5119 | return; |
5120 | } |
5121 | |
5122 | // If this is list-value-initialization, pass the empty init list on when |
5123 | // building the constructor call. This affects the semantics of a few |
5124 | // things (such as whether an explicit default constructor can be called). |
5125 | Expr *InitListAsExpr = InitList; |
5126 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
5127 | bool InitListSyntax = InitList; |
5128 | |
5129 | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
5130 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
5131 | return TryConstructorInitialization( |
5132 | S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); |
5133 | } |
5134 | } |
5135 | |
5136 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5137 | } |
5138 | |
5139 | /// Attempt default initialization (C++ [dcl.init]p6). |
5140 | static void TryDefaultInitialization(Sema &S, |
5141 | const InitializedEntity &Entity, |
5142 | const InitializationKind &Kind, |
5143 | InitializationSequence &Sequence) { |
5144 | assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast <void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5144, __PRETTY_FUNCTION__)); |
5145 | |
5146 | // C++ [dcl.init]p6: |
5147 | // To default-initialize an object of type T means: |
5148 | // - if T is an array type, each element is default-initialized; |
5149 | QualType DestType = S.Context.getBaseElementType(Entity.getType()); |
5150 | |
5151 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
5152 | // constructor for T is called (and the initialization is ill-formed if |
5153 | // T has no accessible default constructor); |
5154 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
5155 | TryConstructorInitialization(S, Entity, Kind, None, DestType, |
5156 | Entity.getType(), Sequence); |
5157 | return; |
5158 | } |
5159 | |
5160 | // - otherwise, no initialization is performed. |
5161 | |
5162 | // If a program calls for the default initialization of an object of |
5163 | // a const-qualified type T, T shall be a class type with a user-provided |
5164 | // default constructor. |
5165 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
5166 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
5167 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
5168 | return; |
5169 | } |
5170 | |
5171 | // If the destination type has a lifetime property, zero-initialize it. |
5172 | if (DestType.getQualifiers().hasObjCLifetime()) { |
5173 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5174 | return; |
5175 | } |
5176 | } |
5177 | |
5178 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
5179 | /// which enumerates all conversion functions and performs overload resolution |
5180 | /// to select the best. |
5181 | static void TryUserDefinedConversion(Sema &S, |
5182 | QualType DestType, |
5183 | const InitializationKind &Kind, |
5184 | Expr *Initializer, |
5185 | InitializationSequence &Sequence, |
5186 | bool TopLevelOfInitList) { |
5187 | assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere" ) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5187, __PRETTY_FUNCTION__)); |
5188 | QualType SourceType = Initializer->getType(); |
5189 | assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType ()) && "Must have a class type to perform a user-defined conversion" ) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5190, __PRETTY_FUNCTION__)) |
5190 | "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType ()) && "Must have a class type to perform a user-defined conversion" ) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5190, __PRETTY_FUNCTION__)); |
5191 | |
5192 | // Build the candidate set directly in the initialization sequence |
5193 | // structure, so that it will persist if we fail. |
5194 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
5195 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
5196 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
5197 | |
5198 | // Determine whether we are allowed to call explicit constructors or |
5199 | // explicit conversion operators. |
5200 | bool AllowExplicit = Kind.AllowExplicit(); |
5201 | |
5202 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
5203 | // The type we're converting to is a class type. Enumerate its constructors |
5204 | // to see if there is a suitable conversion. |
5205 | CXXRecordDecl *DestRecordDecl |
5206 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
5207 | |
5208 | // Try to complete the type we're converting to. |
5209 | if (S.isCompleteType(Kind.getLocation(), DestType)) { |
5210 | for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { |
5211 | auto Info = getConstructorInfo(D); |
5212 | if (!Info.Constructor) |
5213 | continue; |
5214 | |
5215 | if (!Info.Constructor->isInvalidDecl() && |
5216 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
5217 | if (Info.ConstructorTmpl) |
5218 | S.AddTemplateOverloadCandidate( |
5219 | Info.ConstructorTmpl, Info.FoundDecl, |
5220 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
5221 | /*SuppressUserConversions=*/true, |
5222 | /*PartialOverloading*/ false, AllowExplicit); |
5223 | else |
5224 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
5225 | Initializer, CandidateSet, |
5226 | /*SuppressUserConversions=*/true, |
5227 | /*PartialOverloading*/ false, AllowExplicit); |
5228 | } |
5229 | } |
5230 | } |
5231 | } |
5232 | |
5233 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5234 | |
5235 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
5236 | // The type we're converting from is a class type, enumerate its conversion |
5237 | // functions. |
5238 | |
5239 | // We can only enumerate the conversion functions for a complete type; if |
5240 | // the type isn't complete, simply skip this step. |
5241 | if (S.isCompleteType(DeclLoc, SourceType)) { |
5242 | CXXRecordDecl *SourceRecordDecl |
5243 | = cast<CXXRecordDecl>(SourceRecordType->getDecl()); |
5244 | |
5245 | const auto &Conversions = |
5246 | SourceRecordDecl->getVisibleConversionFunctions(); |
5247 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5248 | NamedDecl *D = *I; |
5249 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
5250 | if (isa<UsingShadowDecl>(D)) |
5251 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
5252 | |
5253 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
5254 | CXXConversionDecl *Conv; |
5255 | if (ConvTemplate) |
5256 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
5257 | else |
5258 | Conv = cast<CXXConversionDecl>(D); |
5259 | |
5260 | if (ConvTemplate) |
5261 | S.AddTemplateConversionCandidate( |
5262 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
5263 | CandidateSet, AllowExplicit, AllowExplicit); |
5264 | else |
5265 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
5266 | DestType, CandidateSet, AllowExplicit, |
5267 | AllowExplicit); |
5268 | } |
5269 | } |
5270 | } |
5271 | |
5272 | // Perform overload resolution. If it fails, return the failed result. |
5273 | OverloadCandidateSet::iterator Best; |
5274 | if (OverloadingResult Result |
5275 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
5276 | Sequence.SetOverloadFailure( |
5277 | InitializationSequence::FK_UserConversionOverloadFailed, Result); |
5278 | |
5279 | // [class.copy.elision]p3: |
5280 | // In some copy-initialization contexts, a two-stage overload resolution |
5281 | // is performed. |
5282 | // If the first overload resolution selects a deleted function, we also |
5283 | // need the initialization sequence to decide whether to perform the second |
5284 | // overload resolution. |
5285 | if (!(Result == OR_Deleted && |
5286 | Kind.getKind() == InitializationKind::IK_Copy)) |
5287 | return; |
5288 | } |
5289 | |
5290 | FunctionDecl *Function = Best->Function; |
5291 | Function->setReferenced(); |
5292 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5293 | |
5294 | if (isa<CXXConstructorDecl>(Function)) { |
5295 | // Add the user-defined conversion step. Any cv-qualification conversion is |
5296 | // subsumed by the initialization. Per DR5, the created temporary is of the |
5297 | // cv-unqualified type of the destination. |
5298 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
5299 | DestType.getUnqualifiedType(), |
5300 | HadMultipleCandidates); |
5301 | |
5302 | // C++14 and before: |
5303 | // - if the function is a constructor, the call initializes a temporary |
5304 | // of the cv-unqualified version of the destination type. The [...] |
5305 | // temporary [...] is then used to direct-initialize, according to the |
5306 | // rules above, the object that is the destination of the |
5307 | // copy-initialization. |
5308 | // Note that this just performs a simple object copy from the temporary. |
5309 | // |
5310 | // C++17: |
5311 | // - if the function is a constructor, the call is a prvalue of the |
5312 | // cv-unqualified version of the destination type whose return object |
5313 | // is initialized by the constructor. The call is used to |
5314 | // direct-initialize, according to the rules above, the object that |
5315 | // is the destination of the copy-initialization. |
5316 | // Therefore we need to do nothing further. |
5317 | // |
5318 | // FIXME: Mark this copy as extraneous. |
5319 | if (!S.getLangOpts().CPlusPlus17) |
5320 | Sequence.AddFinalCopy(DestType); |
5321 | else if (DestType.hasQualifiers()) |
5322 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
5323 | return; |
5324 | } |
5325 | |
5326 | // Add the user-defined conversion step that calls the conversion function. |
5327 | QualType ConvType = Function->getCallResultType(); |
5328 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, |
5329 | HadMultipleCandidates); |
5330 | |
5331 | if (ConvType->getAs<RecordType>()) { |
5332 | // The call is used to direct-initialize [...] the object that is the |
5333 | // destination of the copy-initialization. |
5334 | // |
5335 | // In C++17, this does not call a constructor if we enter /17.6.1: |
5336 | // - If the initializer expression is a prvalue and the cv-unqualified |
5337 | // version of the source type is the same as the class of the |
5338 | // destination [... do not make an extra copy] |
5339 | // |
5340 | // FIXME: Mark this copy as extraneous. |
5341 | if (!S.getLangOpts().CPlusPlus17 || |
5342 | Function->getReturnType()->isReferenceType() || |
5343 | !S.Context.hasSameUnqualifiedType(ConvType, DestType)) |
5344 | Sequence.AddFinalCopy(DestType); |
5345 | else if (!S.Context.hasSameType(ConvType, DestType)) |
5346 | Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
5347 | return; |
5348 | } |
5349 | |
5350 | // If the conversion following the call to the conversion function |
5351 | // is interesting, add it as a separate step. |
5352 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
5353 | Best->FinalConversion.Third) { |
5354 | ImplicitConversionSequence ICS; |
5355 | ICS.setStandard(); |
5356 | ICS.Standard = Best->FinalConversion; |
5357 | Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
5358 | } |
5359 | } |
5360 | |
5361 | /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
5362 | /// a function with a pointer return type contains a 'return false;' statement. |
5363 | /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
5364 | /// code using that header. |
5365 | /// |
5366 | /// Work around this by treating 'return false;' as zero-initializing the result |
5367 | /// if it's used in a pointer-returning function in a system header. |
5368 | static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
5369 | const InitializedEntity &Entity, |
5370 | const Expr *Init) { |
5371 | return S.getLangOpts().CPlusPlus11 && |
5372 | Entity.getKind() == InitializedEntity::EK_Result && |
5373 | Entity.getType()->isPointerType() && |
5374 | isa<CXXBoolLiteralExpr>(Init) && |
5375 | !cast<CXXBoolLiteralExpr>(Init)->getValue() && |
5376 | S.getSourceManager().isInSystemHeader(Init->getExprLoc()); |
5377 | } |
5378 | |
5379 | /// The non-zero enum values here are indexes into diagnostic alternatives. |
5380 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
5381 | |
5382 | /// Determines whether this expression is an acceptable ICR source. |
5383 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
5384 | bool isAddressOf, bool &isWeakAccess) { |
5385 | // Skip parens. |
5386 | e = e->IgnoreParens(); |
5387 | |
5388 | // Skip address-of nodes. |
5389 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
5390 | if (op->getOpcode() == UO_AddrOf) |
5391 | return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, |
5392 | isWeakAccess); |
5393 | |
5394 | // Skip certain casts. |
5395 | } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { |
5396 | switch (ce->getCastKind()) { |
5397 | case CK_Dependent: |
5398 | case CK_BitCast: |
5399 | case CK_LValueBitCast: |
5400 | case CK_NoOp: |
5401 | return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); |
5402 | |
5403 | case CK_ArrayToPointerDecay: |
5404 | return IIK_nonscalar; |
5405 | |
5406 | case CK_NullToPointer: |
5407 | return IIK_okay; |
5408 | |
5409 | default: |
5410 | break; |
5411 | } |
5412 | |
5413 | // If we have a declaration reference, it had better be a local variable. |
5414 | } else if (isa<DeclRefExpr>(e)) { |
5415 | // set isWeakAccess to true, to mean that there will be an implicit |
5416 | // load which requires a cleanup. |
5417 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
5418 | isWeakAccess = true; |
5419 | |
5420 | if (!isAddressOf) return IIK_nonlocal; |
5421 | |
5422 | VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); |
5423 | if (!var) return IIK_nonlocal; |
5424 | |
5425 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
5426 | |
5427 | // If we have a conditional operator, check both sides. |
5428 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { |
5429 | if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, |
5430 | isWeakAccess)) |
5431 | return iik; |
5432 | |
5433 | return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); |
5434 | |
5435 | // These are never scalar. |
5436 | } else if (isa<ArraySubscriptExpr>(e)) { |
5437 | return IIK_nonscalar; |
5438 | |
5439 | // Otherwise, it needs to be a null pointer constant. |
5440 | } else { |
5441 | return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) |
5442 | ? IIK_okay : IIK_nonlocal); |
5443 | } |
5444 | |
5445 | return IIK_nonlocal; |
5446 | } |
5447 | |
5448 | /// Check whether the given expression is a valid operand for an |
5449 | /// indirect copy/restore. |
5450 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
5451 | assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail ("src->isRValue()", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5451, __PRETTY_FUNCTION__)); |
5452 | bool isWeakAccess = false; |
5453 | InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); |
5454 | // If isWeakAccess to true, there will be an implicit |
5455 | // load which requires a cleanup. |
5456 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
5457 | S.Cleanup.setExprNeedsCleanups(true); |
5458 | |
5459 | if (iik == IIK_okay) return; |
5460 | |
5461 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
5462 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
5463 | << src->getSourceRange(); |
5464 | } |
5465 | |
5466 | /// Determine whether we have compatible array types for the |
5467 | /// purposes of GNU by-copy array initialization. |
5468 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
5469 | const ArrayType *Source) { |
5470 | // If the source and destination array types are equivalent, we're |
5471 | // done. |
5472 | if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) |
5473 | return true; |
5474 | |
5475 | // Make sure that the element types are the same. |
5476 | if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) |
5477 | return false; |
5478 | |
5479 | // The only mismatch we allow is when the destination is an |
5480 | // incomplete array type and the source is a constant array type. |
5481 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
5482 | } |
5483 | |
5484 | static bool tryObjCWritebackConversion(Sema &S, |
5485 | InitializationSequence &Sequence, |
5486 | const InitializedEntity &Entity, |
5487 | Expr *Initializer) { |
5488 | bool ArrayDecay = false; |
5489 | QualType ArgType = Initializer->getType(); |
5490 | QualType ArgPointee; |
5491 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { |
5492 | ArrayDecay = true; |
5493 | ArgPointee = ArgArrayType->getElementType(); |
5494 | ArgType = S.Context.getPointerType(ArgPointee); |
5495 | } |
5496 | |
5497 | // Handle write-back conversion. |
5498 | QualType ConvertedArgType; |
5499 | if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), |
5500 | ConvertedArgType)) |
5501 | return false; |
5502 | |
5503 | // We should copy unless we're passing to an argument explicitly |
5504 | // marked 'out'. |
5505 | bool ShouldCopy = true; |
5506 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
5507 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
5508 | |
5509 | // Do we need an lvalue conversion? |
5510 | if (ArrayDecay || Initializer->isGLValue()) { |
5511 | ImplicitConversionSequence ICS; |
5512 | ICS.setStandard(); |
5513 | ICS.Standard.setAsIdentityConversion(); |
5514 | |
5515 | QualType ResultType; |
5516 | if (ArrayDecay) { |
5517 | ICS.Standard.First = ICK_Array_To_Pointer; |
5518 | ResultType = S.Context.getPointerType(ArgPointee); |
5519 | } else { |
5520 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
5521 | ResultType = Initializer->getType().getNonLValueExprType(S.Context); |
5522 | } |
5523 | |
5524 | Sequence.AddConversionSequenceStep(ICS, ResultType); |
5525 | } |
5526 | |
5527 | Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
5528 | return true; |
5529 | } |
5530 | |
5531 | static bool TryOCLSamplerInitialization(Sema &S, |
5532 | InitializationSequence &Sequence, |
5533 | QualType DestType, |
5534 | Expr *Initializer) { |
5535 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
5536 | (!Initializer->isIntegerConstantExpr(S.Context) && |
5537 | !Initializer->getType()->isSamplerT())) |
5538 | return false; |
5539 | |
5540 | Sequence.AddOCLSamplerInitStep(DestType); |
5541 | return true; |
5542 | } |
5543 | |
5544 | static bool IsZeroInitializer(Expr *Initializer, Sema &S) { |
5545 | return Initializer->isIntegerConstantExpr(S.getASTContext()) && |
5546 | (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); |
5547 | } |
5548 | |
5549 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
5550 | InitializationSequence &Sequence, |
5551 | QualType DestType, |
5552 | Expr *Initializer) { |
5553 | if (!S.getLangOpts().OpenCL) |
5554 | return false; |
5555 | |
5556 | // |
5557 | // OpenCL 1.2 spec, s6.12.10 |
5558 | // |
5559 | // The event argument can also be used to associate the |
5560 | // async_work_group_copy with a previous async copy allowing |
5561 | // an event to be shared by multiple async copies; otherwise |
5562 | // event should be zero. |
5563 | // |
5564 | if (DestType->isEventT() || DestType->isQueueT()) { |
5565 | if (!IsZeroInitializer(Initializer, S)) |
5566 | return false; |
5567 | |
5568 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
5569 | return true; |
5570 | } |
5571 | |
5572 | // We should allow zero initialization for all types defined in the |
5573 | // cl_intel_device_side_avc_motion_estimation extension, except |
5574 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
5575 | if (S.getOpenCLOptions().isEnabled( |
5576 | "cl_intel_device_side_avc_motion_estimation") && |
5577 | DestType->isOCLIntelSubgroupAVCType()) { |
5578 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
5579 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
5580 | return false; |
5581 | if (!IsZeroInitializer(Initializer, S)) |
5582 | return false; |
5583 | |
5584 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
5585 | return true; |
5586 | } |
5587 | |
5588 | return false; |
5589 | } |
5590 | |
5591 | InitializationSequence::InitializationSequence( |
5592 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
5593 | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) |
5594 | : FailedOverloadResult(OR_Success), |
5595 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
5596 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
5597 | TreatUnavailableAsInvalid); |
5598 | } |
5599 | |
5600 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
5601 | /// address of that function, this returns true. Otherwise, it returns false. |
5602 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
5603 | auto *DRE = dyn_cast<DeclRefExpr>(E); |
5604 | if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) |
5605 | return false; |
5606 | |
5607 | return !S.checkAddressOfFunctionIsAvailable( |
5608 | cast<FunctionDecl>(DRE->getDecl())); |
5609 | } |
5610 | |
5611 | /// Determine whether we can perform an elementwise array copy for this kind |
5612 | /// of entity. |
5613 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
5614 | switch (Entity.getKind()) { |
5615 | case InitializedEntity::EK_LambdaCapture: |
5616 | // C++ [expr.prim.lambda]p24: |
5617 | // For array members, the array elements are direct-initialized in |
5618 | // increasing subscript order. |
5619 | return true; |
5620 | |
5621 | case InitializedEntity::EK_Variable: |
5622 | // C++ [dcl.decomp]p1: |
5623 | // [...] each element is copy-initialized or direct-initialized from the |
5624 | // corresponding element of the assignment-expression [...] |
5625 | return isa<DecompositionDecl>(Entity.getDecl()); |
5626 | |
5627 | case InitializedEntity::EK_Member: |
5628 | // C++ [class.copy.ctor]p14: |
5629 | // - if the member is an array, each element is direct-initialized with |
5630 | // the corresponding subobject of x |
5631 | return Entity.isImplicitMemberInitializer(); |
5632 | |
5633 | case InitializedEntity::EK_ArrayElement: |
5634 | // All the above cases are intended to apply recursively, even though none |
5635 | // of them actually say that. |
5636 | if (auto *E = Entity.getParent()) |
5637 | return canPerformArrayCopy(*E); |
5638 | break; |
5639 | |
5640 | default: |
5641 | break; |
5642 | } |
5643 | |
5644 | return false; |
5645 | } |
5646 | |
5647 | void InitializationSequence::InitializeFrom(Sema &S, |
5648 | const InitializedEntity &Entity, |
5649 | const InitializationKind &Kind, |
5650 | MultiExprArg Args, |
5651 | bool TopLevelOfInitList, |
5652 | bool TreatUnavailableAsInvalid) { |
5653 | ASTContext &Context = S.Context; |
5654 | |
5655 | // Eliminate non-overload placeholder types in the arguments. We |
5656 | // need to do this before checking whether types are dependent |
5657 | // because lowering a pseudo-object expression might well give us |
5658 | // something of dependent type. |
5659 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
5660 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
5661 | // FIXME: should we be doing this here? |
5662 | ExprResult result = S.CheckPlaceholderExpr(Args[I]); |
5663 | if (result.isInvalid()) { |
5664 | SetFailed(FK_PlaceholderType); |
5665 | return; |
5666 | } |
5667 | Args[I] = result.get(); |
5668 | } |
5669 | |
5670 | // C++0x [dcl.init]p16: |
5671 | // The semantics of initializers are as follows. The destination type is |
5672 | // the type of the object or reference being initialized and the source |
5673 | // type is the type of the initializer expression. The source type is not |
5674 | // defined when the initializer is a braced-init-list or when it is a |
5675 | // parenthesized list of expressions. |
5676 | QualType DestType = Entity.getType(); |
5677 | |
5678 | if (DestType->isDependentType() || |
5679 | Expr::hasAnyTypeDependentArguments(Args)) { |
5680 | SequenceKind = DependentSequence; |
5681 | return; |
5682 | } |
5683 | |
5684 | // Almost everything is a normal sequence. |
5685 | setSequenceKind(NormalSequence); |
5686 | |
5687 | QualType SourceType; |
5688 | Expr *Initializer = nullptr; |
5689 | if (Args.size() == 1) { |
5690 | Initializer = Args[0]; |
5691 | if (S.getLangOpts().ObjC) { |
5692 | if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), |
5693 | DestType, Initializer->getType(), |
5694 | Initializer) || |
5695 | S.CheckConversionToObjCLiteral(DestType, Initializer)) |
5696 | Args[0] = Initializer; |
5697 | } |
5698 | if (!isa<InitListExpr>(Initializer)) |
5699 | SourceType = Initializer->getType(); |
5700 | } |
5701 | |
5702 | // - If the initializer is a (non-parenthesized) braced-init-list, the |
5703 | // object is list-initialized (8.5.4). |
5704 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
5705 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { |
5706 | TryListInitialization(S, Entity, Kind, InitList, *this, |
5707 | TreatUnavailableAsInvalid); |
5708 | return; |
5709 | } |
5710 | } |
5711 | |
5712 | // - If the destination type is a reference type, see 8.5.3. |
5713 | if (DestType->isReferenceType()) { |
5714 | // C++0x [dcl.init.ref]p1: |
5715 | // A variable declared to be a T& or T&&, that is, "reference to type T" |
5716 | // (8.3.2), shall be initialized by an object, or function, of type T or |
5717 | // by an object that can be converted into a T. |
5718 | // (Therefore, multiple arguments are not permitted.) |
5719 | if (Args.size() != 1) |
5720 | SetFailed(FK_TooManyInitsForReference); |
5721 | // C++17 [dcl.init.ref]p5: |
5722 | // A reference [...] is initialized by an expression [...] as follows: |
5723 | // If the initializer is not an expression, presumably we should reject, |
5724 | // but the standard fails to actually say so. |
5725 | else if (isa<InitListExpr>(Args[0])) |
5726 | SetFailed(FK_ParenthesizedListInitForReference); |
5727 | else |
5728 | TryReferenceInitialization(S, Entity, Kind, Args[0], *this); |
5729 | return; |
5730 | } |
5731 | |
5732 | // - If the initializer is (), the object is value-initialized. |
5733 | if (Kind.getKind() == InitializationKind::IK_Value || |
5734 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
5735 | TryValueInitialization(S, Entity, Kind, *this); |
5736 | return; |
5737 | } |
5738 | |
5739 | // Handle default initialization. |
5740 | if (Kind.getKind() == InitializationKind::IK_Default) { |
5741 | TryDefaultInitialization(S, Entity, Kind, *this); |
5742 | return; |
5743 | } |
5744 | |
5745 | // - If the destination type is an array of characters, an array of |
5746 | // char16_t, an array of char32_t, or an array of wchar_t, and the |
5747 | // initializer is a string literal, see 8.5.2. |
5748 | // - Otherwise, if the destination type is an array, the program is |
5749 | // ill-formed. |
5750 | if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { |
5751 | if (Initializer && isa<VariableArrayType>(DestAT)) { |
5752 | SetFailed(FK_VariableLengthArrayHasInitializer); |
5753 | return; |
5754 | } |
5755 | |
5756 | if (Initializer) { |
5757 | switch (IsStringInit(Initializer, DestAT, Context)) { |
5758 | case SIF_None: |
5759 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); |
5760 | return; |
5761 | case SIF_NarrowStringIntoWideChar: |
5762 | SetFailed(FK_NarrowStringIntoWideCharArray); |
5763 | return; |
5764 | case SIF_WideStringIntoChar: |
5765 | SetFailed(FK_WideStringIntoCharArray); |
5766 | return; |
5767 | case SIF_IncompatWideStringIntoWideChar: |
5768 | SetFailed(FK_IncompatWideStringIntoWideChar); |
5769 | return; |
5770 | case SIF_PlainStringIntoUTF8Char: |
5771 | SetFailed(FK_PlainStringIntoUTF8Char); |
5772 | return; |
5773 | case SIF_UTF8StringIntoPlainChar: |
5774 | SetFailed(FK_UTF8StringIntoPlainChar); |
5775 | return; |
5776 | case SIF_Other: |
5777 | break; |
5778 | } |
5779 | } |
5780 | |
5781 | // Some kinds of initialization permit an array to be initialized from |
5782 | // another array of the same type, and perform elementwise initialization. |
5783 | if (Initializer && isa<ConstantArrayType>(DestAT) && |
5784 | S.Context.hasSameUnqualifiedType(Initializer->getType(), |
5785 | Entity.getType()) && |
5786 | canPerformArrayCopy(Entity)) { |
5787 | // If source is a prvalue, use it directly. |
5788 | if (Initializer->getValueKind() == VK_RValue) { |
5789 | AddArrayInitStep(DestType, /*IsGNUExtension*/false); |
5790 | return; |
5791 | } |
5792 | |
5793 | // Emit element-at-a-time copy loop. |
5794 | InitializedEntity Element = |
5795 | InitializedEntity::InitializeElement(S.Context, 0, Entity); |
5796 | QualType InitEltT = |
5797 | Context.getAsArrayType(Initializer->getType())->getElementType(); |
5798 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
5799 | Initializer->getValueKind(), |
5800 | Initializer->getObjectKind()); |
5801 | Expr *OVEAsExpr = &OVE; |
5802 | InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, |
5803 | TreatUnavailableAsInvalid); |
5804 | if (!Failed()) |
5805 | AddArrayInitLoopStep(Entity.getType(), InitEltT); |
5806 | return; |
5807 | } |
5808 | |
5809 | // Note: as an GNU C extension, we allow initialization of an |
5810 | // array from a compound literal that creates an array of the same |
5811 | // type, so long as the initializer has no side effects. |
5812 | if (!S.getLangOpts().CPlusPlus && Initializer && |
5813 | isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && |
5814 | Initializer->getType()->isArrayType()) { |
5815 | const ArrayType *SourceAT |
5816 | = Context.getAsArrayType(Initializer->getType()); |
5817 | if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) |
5818 | SetFailed(FK_ArrayTypeMismatch); |
5819 | else if (Initializer->HasSideEffects(S.Context)) |
5820 | SetFailed(FK_NonConstantArrayInit); |
5821 | else { |
5822 | AddArrayInitStep(DestType, /*IsGNUExtension*/true); |
5823 | } |
5824 | } |
5825 | // Note: as a GNU C++ extension, we allow list-initialization of a |
5826 | // class member of array type from a parenthesized initializer list. |
5827 | else if (S.getLangOpts().CPlusPlus && |
5828 | Entity.getKind() == InitializedEntity::EK_Member && |
5829 | Initializer && isa<InitListExpr>(Initializer)) { |
5830 | TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), |
5831 | *this, TreatUnavailableAsInvalid); |
5832 | AddParenthesizedArrayInitStep(DestType); |
5833 | } else if (DestAT->getElementType()->isCharType()) |
5834 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
5835 | else if (IsWideCharCompatible(DestAT->getElementType(), Context)) |
5836 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
5837 | else |
5838 | SetFailed(FK_ArrayNeedsInitList); |
5839 | |
5840 | return; |
5841 | } |
5842 | |
5843 | // Determine whether we should consider writeback conversions for |
5844 | // Objective-C ARC. |
5845 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
5846 | Entity.isParameterKind(); |
5847 | |
5848 | if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) |
5849 | return; |
5850 | |
5851 | // We're at the end of the line for C: it's either a write-back conversion |
5852 | // or it's a C assignment. There's no need to check anything else. |
5853 | if (!S.getLangOpts().CPlusPlus) { |
5854 | // If allowed, check whether this is an Objective-C writeback conversion. |
5855 | if (allowObjCWritebackConversion && |
5856 | tryObjCWritebackConversion(S, *this, Entity, Initializer)) { |
5857 | return; |
5858 | } |
5859 | |
5860 | if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) |
5861 | return; |
5862 | |
5863 | // Handle initialization in C |
5864 | AddCAssignmentStep(DestType); |
5865 | MaybeProduceObjCObject(S, *this, Entity); |
5866 | return; |
5867 | } |
5868 | |
5869 | assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5869, __PRETTY_FUNCTION__)); |
5870 | |
5871 | // - If the destination type is a (possibly cv-qualified) class type: |
5872 | if (DestType->isRecordType()) { |
5873 | // - If the initialization is direct-initialization, or if it is |
5874 | // copy-initialization where the cv-unqualified version of the |
5875 | // source type is the same class as, or a derived class of, the |
5876 | // class of the destination, constructors are considered. [...] |
5877 | if (Kind.getKind() == InitializationKind::IK_Direct || |
5878 | (Kind.getKind() == InitializationKind::IK_Copy && |
5879 | (Context.hasSameUnqualifiedType(SourceType, DestType) || |
5880 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) |
5881 | TryConstructorInitialization(S, Entity, Kind, Args, |
5882 | DestType, DestType, *this); |
5883 | // - Otherwise (i.e., for the remaining copy-initialization cases), |
5884 | // user-defined conversion sequences that can convert from the source |
5885 | // type to the destination type or (when a conversion function is |
5886 | // used) to a derived class thereof are enumerated as described in |
5887 | // 13.3.1.4, and the best one is chosen through overload resolution |
5888 | // (13.3). |
5889 | else |
5890 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
5891 | TopLevelOfInitList); |
5892 | return; |
5893 | } |
5894 | |
5895 | assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above" ) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/clang/lib/Sema/SemaInit.cpp" , 5895, __PRETTY_FUNCTION__)); |
5896 | |
5897 | // The remaining cases all need a source type. |
5898 | if (Args.size() > 1) { |
5899 | SetFailed(FK_TooManyInitsForScalar); |
5900 | return; |
5901 | } else if (isa<InitListExpr>(Args[0])) { |
5902 | SetFailed(FK_ParenthesizedListInitForScalar); |
5903 | return; |
5904 | } |
5905 | |
5906 | // - Otherwise, if the source type is a (possibly cv-qualified) class |
5907 | // type, conversion functions are considered. |
5908 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
5909 | // For a conversion to _Atomic(T) from either T or a class type derived |
5910 | // from T, initialize the T object then convert to _Atomic type. |
5911 | bool NeedAtomicConversion = false; |
5912 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
5913 | if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || |
5914 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, |
5915 | Atomic->getValueType())) { |
5916 | DestType = Atomic->getValueType(); |
5917 | NeedAtomicConversion = true; |
5918 | } |
5919 | } |
5920 | |
5921 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
5922 | TopLevelOfInitList); |
5923 | MaybeProduceObjCObject(S, *this, Entity); |
5924 | if (!Failed() && NeedAtomicConversion) |
5925 | AddAtomicConversionStep(Entity.getType()); |
5926 | return; |
5927 | } |
5928 | |
5929 | // - Otherwise, if the initialization is direct-initialization, the source |
5930 | // type is std::nullptr_t, and the destination type is bool, the initial |
5931 | // value of the object being initialized is false. |
5932 | if (!SourceType.isNull() && SourceType->isNullPtrType() && |
5933 | DestType->isBooleanType() && |
5934 | Kind.getKind() == InitializationKind::IK_Direct) { |
5935 | AddConversionSequenceStep( |
5936 | ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, |
5937 | Initializer->isGLValue()), |
5938 | DestType); |
5939 | return; |
5940 | } |
5941 | |
5942 | // - Otherwise, the initial value of the object being initialized is the |
5943 | // (possibly converted) value of the initializer expression. Standard |
5944 | // conversions (Clause 4) will be used, if necessary, to convert the |
5945 | // initializer expression to the cv-unqualified version of the |
5946 | // destination type; no user-defined conversions are considered. |
5947 | |
5948 | ImplicitConversionSequence ICS |
5949 | = S.TryImplicitConversion(Initializer, DestType, |
5950 | /*SuppressUserConversions*/true, |
5951 | Sema::AllowedExplicit::None, |
5952 | /*InOverloadResolution*/ false, |
5953 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
5954 | allowObjCWritebackConversion); |
5955 | |
5956 | if (ICS.isStandard() && |
5957 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
5958 | // Objective-C ARC writeback conversion. |
5959 | |
5960 | // We should copy unless we're passing to an argument explicitly |
5961 | // marked 'out'. |
5962 | bool ShouldCopy = true; |
5963 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
5964 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
5965 | |
5966 | // If there was an lvalue adjustment, add it as a separate conversion. |
5967 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
5968 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
5969 | ImplicitConversionSequence LvalueICS; |
5970 | LvalueICS.setStandard(); |
5971 | LvalueICS.Standard.setAsIdentityConversion(); |
5972 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); |
5973 | LvalueICS.Standard.First = ICS.Standard.First; |
5974 | AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); |
5975 | } |
5976 | |
5977 | AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); |
5978 | } else if (ICS.isBad()) { |
5979 | DeclAccessPair dap; |
5980 | if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { |
5981 | AddZeroInitializationStep(Entity.getType()); |
5982 | } else if (Initializer->getType() == Context.OverloadTy && |
5983 | !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, |
5984 | false, dap)) |
5985 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5986 | else if (Initializer->getType()->isFunctionType() && |
5987 | isExprAnUnaddressableFunction(S, Initializer)) |
5988 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
5989 | else |
5990 | SetFailed(InitializationSequence::FK_ConversionFailed); |
5991 | } else { |
5992 | AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
5993 | |
5994 | MaybeProduceObjCObject(S, *this, Entity); |
5995 | } |
5996 | } |
5997 | |
5998 | InitializationSequence::~InitializationSequence() { |
5999 | for (auto &S : Steps) |
6000 | S.Destroy(); |
6001 | } |
6002 | |
6003 | //===----------------------------------------------------------------------===// |
6004 | // Perform initialization |
6005 | //===----------------------------------------------------------------------===// |
6006 | static Sema::AssignmentAction |
6007 | getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { |
6008 | switch(Entity.getKind()) { |
6009 | case InitializedEntity::EK_Variable: |
6010 | case InitializedEntity::EK_New: |
6011 | case InitializedEntity::EK_Exception: |
6012 | case InitializedEntity::EK_Base: |
6013 | case InitializedEntity::EK_Delegating: |
6014 | return Sema::AA_Initializing; |
6015 | |
6016 | case InitializedEntity::EK_Parameter: |
6017 | if (Entity.getDecl() && |
6018 | isa<ObjCMethodDecl>(Entity.getDecl()-> |