Bug Summary

File:include/llvm/ADT/edit_distance.h
Warning:line 96, column 3
Assigned value is garbage or undefined

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn361465/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn361465/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn361465/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn361465/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn361465/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn361465/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn361465=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-24-031927-21217-1 -x c++ /build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Lex/HeaderSearch.h"
26#include "clang/Lex/ModuleLoader.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/Overload.h"
31#include "clang/Sema/Scope.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/Sema.h"
34#include "clang/Sema/SemaInternal.h"
35#include "clang/Sema/TemplateDeduction.h"
36#include "clang/Sema/TypoCorrection.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/ADT/edit_distance.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <iterator>
44#include <list>
45#include <set>
46#include <utility>
47#include <vector>
48
49using namespace clang;
50using namespace sema;
51
52namespace {
53 class UnqualUsingEntry {
54 const DeclContext *Nominated;
55 const DeclContext *CommonAncestor;
56
57 public:
58 UnqualUsingEntry(const DeclContext *Nominated,
59 const DeclContext *CommonAncestor)
60 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
61 }
62
63 const DeclContext *getCommonAncestor() const {
64 return CommonAncestor;
65 }
66
67 const DeclContext *getNominatedNamespace() const {
68 return Nominated;
69 }
70
71 // Sort by the pointer value of the common ancestor.
72 struct Comparator {
73 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
74 return L.getCommonAncestor() < R.getCommonAncestor();
75 }
76
77 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
78 return E.getCommonAncestor() < DC;
79 }
80
81 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
82 return DC < E.getCommonAncestor();
83 }
84 };
85 };
86
87 /// A collection of using directives, as used by C++ unqualified
88 /// lookup.
89 class UnqualUsingDirectiveSet {
90 Sema &SemaRef;
91
92 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94 ListTy list;
95 llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97 public:
98 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
99
100 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101 // C++ [namespace.udir]p1:
102 // During unqualified name lookup, the names appear as if they
103 // were declared in the nearest enclosing namespace which contains
104 // both the using-directive and the nominated namespace.
105 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
106 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 106, __PRETTY_FUNCTION__))
;
107
108 for (; S; S = S->getParent()) {
109 // C++ [namespace.udir]p1:
110 // A using-directive shall not appear in class scope, but may
111 // appear in namespace scope or in block scope.
112 DeclContext *Ctx = S->getEntity();
113 if (Ctx && Ctx->isFileContext()) {
114 visit(Ctx, Ctx);
115 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
116 for (auto *I : S->using_directives())
117 if (SemaRef.isVisible(I))
118 visit(I, InnermostFileDC);
119 }
120 }
121 }
122
123 // Visits a context and collect all of its using directives
124 // recursively. Treats all using directives as if they were
125 // declared in the context.
126 //
127 // A given context is only every visited once, so it is important
128 // that contexts be visited from the inside out in order to get
129 // the effective DCs right.
130 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131 if (!visited.insert(DC).second)
132 return;
133
134 addUsingDirectives(DC, EffectiveDC);
135 }
136
137 // Visits a using directive and collects all of its using
138 // directives recursively. Treats all using directives as if they
139 // were declared in the effective DC.
140 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141 DeclContext *NS = UD->getNominatedNamespace();
142 if (!visited.insert(NS).second)
143 return;
144
145 addUsingDirective(UD, EffectiveDC);
146 addUsingDirectives(NS, EffectiveDC);
147 }
148
149 // Adds all the using directives in a context (and those nominated
150 // by its using directives, transitively) as if they appeared in
151 // the given effective context.
152 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153 SmallVector<DeclContext*, 4> queue;
154 while (true) {
155 for (auto UD : DC->using_directives()) {
156 DeclContext *NS = UD->getNominatedNamespace();
157 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
158 addUsingDirective(UD, EffectiveDC);
159 queue.push_back(NS);
160 }
161 }
162
163 if (queue.empty())
164 return;
165
166 DC = queue.pop_back_val();
167 }
168 }
169
170 // Add a using directive as if it had been declared in the given
171 // context. This helps implement C++ [namespace.udir]p3:
172 // The using-directive is transitive: if a scope contains a
173 // using-directive that nominates a second namespace that itself
174 // contains using-directives, the effect is as if the
175 // using-directives from the second namespace also appeared in
176 // the first.
177 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178 // Find the common ancestor between the effective context and
179 // the nominated namespace.
180 DeclContext *Common = UD->getNominatedNamespace();
181 while (!Common->Encloses(EffectiveDC))
182 Common = Common->getParent();
183 Common = Common->getPrimaryContext();
184
185 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186 }
187
188 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
189
190 typedef ListTy::const_iterator const_iterator;
191
192 const_iterator begin() const { return list.begin(); }
193 const_iterator end() const { return list.end(); }
194
195 llvm::iterator_range<const_iterator>
196 getNamespacesFor(DeclContext *DC) const {
197 return llvm::make_range(std::equal_range(begin(), end(),
198 DC->getPrimaryContext(),
199 UnqualUsingEntry::Comparator()));
200 }
201 };
202} // end anonymous namespace
203
204// Retrieve the set of identifier namespaces that correspond to a
205// specific kind of name lookup.
206static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
207 bool CPlusPlus,
208 bool Redeclaration) {
209 unsigned IDNS = 0;
210 switch (NameKind) {
211 case Sema::LookupObjCImplicitSelfParam:
212 case Sema::LookupOrdinaryName:
213 case Sema::LookupRedeclarationWithLinkage:
214 case Sema::LookupLocalFriendName:
215 IDNS = Decl::IDNS_Ordinary;
216 if (CPlusPlus) {
217 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
218 if (Redeclaration)
219 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
220 }
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_LocalExtern;
223 break;
224
225 case Sema::LookupOperatorName:
226 // Operator lookup is its own crazy thing; it is not the same
227 // as (e.g.) looking up an operator name for redeclaration.
228 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 228, __PRETTY_FUNCTION__))
;
229 IDNS = Decl::IDNS_NonMemberOperator;
230 break;
231
232 case Sema::LookupTagName:
233 if (CPlusPlus) {
234 IDNS = Decl::IDNS_Type;
235
236 // When looking for a redeclaration of a tag name, we add:
237 // 1) TagFriend to find undeclared friend decls
238 // 2) Namespace because they can't "overload" with tag decls.
239 // 3) Tag because it includes class templates, which can't
240 // "overload" with tag decls.
241 if (Redeclaration)
242 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
243 } else {
244 IDNS = Decl::IDNS_Tag;
245 }
246 break;
247
248 case Sema::LookupLabel:
249 IDNS = Decl::IDNS_Label;
250 break;
251
252 case Sema::LookupMemberName:
253 IDNS = Decl::IDNS_Member;
254 if (CPlusPlus)
255 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
256 break;
257
258 case Sema::LookupNestedNameSpecifierName:
259 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
260 break;
261
262 case Sema::LookupNamespaceName:
263 IDNS = Decl::IDNS_Namespace;
264 break;
265
266 case Sema::LookupUsingDeclName:
267 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 267, __PRETTY_FUNCTION__))
;
268 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
269 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
270 Decl::IDNS_LocalExtern;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupOMPReductionName:
278 IDNS = Decl::IDNS_OMPReduction;
279 break;
280
281 case Sema::LookupOMPMapperName:
282 IDNS = Decl::IDNS_OMPMapper;
283 break;
284
285 case Sema::LookupAnyName:
286 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
287 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
288 | Decl::IDNS_Type;
289 break;
290 }
291 return IDNS;
292}
293
294void LookupResult::configure() {
295 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
296 isForRedeclaration());
297
298 // If we're looking for one of the allocation or deallocation
299 // operators, make sure that the implicitly-declared new and delete
300 // operators can be found.
301 switch (NameInfo.getName().getCXXOverloadedOperator()) {
302 case OO_New:
303 case OO_Delete:
304 case OO_Array_New:
305 case OO_Array_Delete:
306 getSema().DeclareGlobalNewDelete();
307 break;
308
309 default:
310 break;
311 }
312
313 // Compiler builtins are always visible, regardless of where they end
314 // up being declared.
315 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
316 if (unsigned BuiltinID = Id->getBuiltinID()) {
317 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
318 AllowHidden = true;
319 }
320 }
321}
322
323bool LookupResult::sanity() const {
324 // This function is never called by NDEBUG builds.
325 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
;
326 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
;
327 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
328 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
329 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
;
330 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 330, __PRETTY_FUNCTION__))
;
331 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
332 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
333 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
;
334 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
335 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
336 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
;
337 return true;
338}
339
340// Necessary because CXXBasePaths is not complete in Sema.h
341void LookupResult::deletePaths(CXXBasePaths *Paths) {
342 delete Paths;
343}
344
345/// Get a representative context for a declaration such that two declarations
346/// will have the same context if they were found within the same scope.
347static DeclContext *getContextForScopeMatching(Decl *D) {
348 // For function-local declarations, use that function as the context. This
349 // doesn't account for scopes within the function; the caller must deal with
350 // those.
351 DeclContext *DC = D->getLexicalDeclContext();
352 if (DC->isFunctionOrMethod())
353 return DC;
354
355 // Otherwise, look at the semantic context of the declaration. The
356 // declaration must have been found there.
357 return D->getDeclContext()->getRedeclContext();
358}
359
360/// Determine whether \p D is a better lookup result than \p Existing,
361/// given that they declare the same entity.
362static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
363 NamedDecl *D, NamedDecl *Existing) {
364 // When looking up redeclarations of a using declaration, prefer a using
365 // shadow declaration over any other declaration of the same entity.
366 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
367 !isa<UsingShadowDecl>(Existing))
368 return true;
369
370 auto *DUnderlying = D->getUnderlyingDecl();
371 auto *EUnderlying = Existing->getUnderlyingDecl();
372
373 // If they have different underlying declarations, prefer a typedef over the
374 // original type (this happens when two type declarations denote the same
375 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
376 // might carry additional semantic information, such as an alignment override.
377 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
378 // declaration over a typedef.
379 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
380 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 380, __PRETTY_FUNCTION__))
;
381 bool HaveTag = isa<TagDecl>(EUnderlying);
382 bool WantTag = Kind == Sema::LookupTagName;
383 return HaveTag != WantTag;
384 }
385
386 // Pick the function with more default arguments.
387 // FIXME: In the presence of ambiguous default arguments, we should keep both,
388 // so we can diagnose the ambiguity if the default argument is needed.
389 // See C++ [over.match.best]p3.
390 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
391 auto *EFD = cast<FunctionDecl>(EUnderlying);
392 unsigned DMin = DFD->getMinRequiredArguments();
393 unsigned EMin = EFD->getMinRequiredArguments();
394 // If D has more default arguments, it is preferred.
395 if (DMin != EMin)
396 return DMin < EMin;
397 // FIXME: When we track visibility for default function arguments, check
398 // that we pick the declaration with more visible default arguments.
399 }
400
401 // Pick the template with more default template arguments.
402 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
403 auto *ETD = cast<TemplateDecl>(EUnderlying);
404 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
405 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
406 // If D has more default arguments, it is preferred. Note that default
407 // arguments (and their visibility) is monotonically increasing across the
408 // redeclaration chain, so this is a quick proxy for "is more recent".
409 if (DMin != EMin)
410 return DMin < EMin;
411 // If D has more *visible* default arguments, it is preferred. Note, an
412 // earlier default argument being visible does not imply that a later
413 // default argument is visible, so we can't just check the first one.
414 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
415 I != N; ++I) {
416 if (!S.hasVisibleDefaultArgument(
417 ETD->getTemplateParameters()->getParam(I)) &&
418 S.hasVisibleDefaultArgument(
419 DTD->getTemplateParameters()->getParam(I)))
420 return true;
421 }
422 }
423
424 // VarDecl can have incomplete array types, prefer the one with more complete
425 // array type.
426 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
427 VarDecl *EVD = cast<VarDecl>(EUnderlying);
428 if (EVD->getType()->isIncompleteType() &&
429 !DVD->getType()->isIncompleteType()) {
430 // Prefer the decl with a more complete type if visible.
431 return S.isVisible(DVD);
432 }
433 return false; // Avoid picking up a newer decl, just because it was newer.
434 }
435
436 // For most kinds of declaration, it doesn't really matter which one we pick.
437 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
438 // If the existing declaration is hidden, prefer the new one. Otherwise,
439 // keep what we've got.
440 return !S.isVisible(Existing);
441 }
442
443 // Pick the newer declaration; it might have a more precise type.
444 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
445 Prev = Prev->getPreviousDecl())
446 if (Prev == EUnderlying)
447 return true;
448 return false;
449}
450
451/// Determine whether \p D can hide a tag declaration.
452static bool canHideTag(NamedDecl *D) {
453 // C++ [basic.scope.declarative]p4:
454 // Given a set of declarations in a single declarative region [...]
455 // exactly one declaration shall declare a class name or enumeration name
456 // that is not a typedef name and the other declarations shall all refer to
457 // the same variable, non-static data member, or enumerator, or all refer
458 // to functions and function templates; in this case the class name or
459 // enumeration name is hidden.
460 // C++ [basic.scope.hiding]p2:
461 // A class name or enumeration name can be hidden by the name of a
462 // variable, data member, function, or enumerator declared in the same
463 // scope.
464 // An UnresolvedUsingValueDecl always instantiates to one of these.
465 D = D->getUnderlyingDecl();
466 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
467 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
468 isa<UnresolvedUsingValueDecl>(D);
469}
470
471/// Resolves the result kind of this lookup.
472void LookupResult::resolveKind() {
473 unsigned N = Decls.size();
474
475 // Fast case: no possible ambiguity.
476 if (N == 0) {
477 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 478, __PRETTY_FUNCTION__))
478 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 478, __PRETTY_FUNCTION__))
;
479 return;
480 }
481
482 // If there's a single decl, we need to examine it to decide what
483 // kind of lookup this is.
484 if (N == 1) {
485 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
486 if (isa<FunctionTemplateDecl>(D))
487 ResultKind = FoundOverloaded;
488 else if (isa<UnresolvedUsingValueDecl>(D))
489 ResultKind = FoundUnresolvedValue;
490 return;
491 }
492
493 // Don't do any extra resolution if we've already resolved as ambiguous.
494 if (ResultKind == Ambiguous) return;
495
496 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
497 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
498
499 bool Ambiguous = false;
500 bool HasTag = false, HasFunction = false;
501 bool HasFunctionTemplate = false, HasUnresolved = false;
502 NamedDecl *HasNonFunction = nullptr;
503
504 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
505
506 unsigned UniqueTagIndex = 0;
507
508 unsigned I = 0;
509 while (I < N) {
510 NamedDecl *D = Decls[I]->getUnderlyingDecl();
511 D = cast<NamedDecl>(D->getCanonicalDecl());
512
513 // Ignore an invalid declaration unless it's the only one left.
514 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
515 Decls[I] = Decls[--N];
516 continue;
517 }
518
519 llvm::Optional<unsigned> ExistingI;
520
521 // Redeclarations of types via typedef can occur both within a scope
522 // and, through using declarations and directives, across scopes. There is
523 // no ambiguity if they all refer to the same type, so unique based on the
524 // canonical type.
525 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
526 QualType T = getSema().Context.getTypeDeclType(TD);
527 auto UniqueResult = UniqueTypes.insert(
528 std::make_pair(getSema().Context.getCanonicalType(T), I));
529 if (!UniqueResult.second) {
530 // The type is not unique.
531 ExistingI = UniqueResult.first->second;
532 }
533 }
534
535 // For non-type declarations, check for a prior lookup result naming this
536 // canonical declaration.
537 if (!ExistingI) {
538 auto UniqueResult = Unique.insert(std::make_pair(D, I));
539 if (!UniqueResult.second) {
540 // We've seen this entity before.
541 ExistingI = UniqueResult.first->second;
542 }
543 }
544
545 if (ExistingI) {
546 // This is not a unique lookup result. Pick one of the results and
547 // discard the other.
548 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
549 Decls[*ExistingI]))
550 Decls[*ExistingI] = Decls[I];
551 Decls[I] = Decls[--N];
552 continue;
553 }
554
555 // Otherwise, do some decl type analysis and then continue.
556
557 if (isa<UnresolvedUsingValueDecl>(D)) {
558 HasUnresolved = true;
559 } else if (isa<TagDecl>(D)) {
560 if (HasTag)
561 Ambiguous = true;
562 UniqueTagIndex = I;
563 HasTag = true;
564 } else if (isa<FunctionTemplateDecl>(D)) {
565 HasFunction = true;
566 HasFunctionTemplate = true;
567 } else if (isa<FunctionDecl>(D)) {
568 HasFunction = true;
569 } else {
570 if (HasNonFunction) {
571 // If we're about to create an ambiguity between two declarations that
572 // are equivalent, but one is an internal linkage declaration from one
573 // module and the other is an internal linkage declaration from another
574 // module, just skip it.
575 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
576 D)) {
577 EquivalentNonFunctions.push_back(D);
578 Decls[I] = Decls[--N];
579 continue;
580 }
581
582 Ambiguous = true;
583 }
584 HasNonFunction = D;
585 }
586 I++;
587 }
588
589 // C++ [basic.scope.hiding]p2:
590 // A class name or enumeration name can be hidden by the name of
591 // an object, function, or enumerator declared in the same
592 // scope. If a class or enumeration name and an object, function,
593 // or enumerator are declared in the same scope (in any order)
594 // with the same name, the class or enumeration name is hidden
595 // wherever the object, function, or enumerator name is visible.
596 // But it's still an error if there are distinct tag types found,
597 // even if they're not visible. (ref?)
598 if (N > 1 && HideTags && HasTag && !Ambiguous &&
599 (HasFunction || HasNonFunction || HasUnresolved)) {
600 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
601 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
602 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
603 getContextForScopeMatching(OtherDecl)) &&
604 canHideTag(OtherDecl))
605 Decls[UniqueTagIndex] = Decls[--N];
606 else
607 Ambiguous = true;
608 }
609
610 // FIXME: This diagnostic should really be delayed until we're done with
611 // the lookup result, in case the ambiguity is resolved by the caller.
612 if (!EquivalentNonFunctions.empty() && !Ambiguous)
613 getSema().diagnoseEquivalentInternalLinkageDeclarations(
614 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
615
616 Decls.set_size(N);
617
618 if (HasNonFunction && (HasFunction || HasUnresolved))
619 Ambiguous = true;
620
621 if (Ambiguous)
622 setAmbiguous(LookupResult::AmbiguousReference);
623 else if (HasUnresolved)
624 ResultKind = LookupResult::FoundUnresolvedValue;
625 else if (N > 1 || HasFunctionTemplate)
626 ResultKind = LookupResult::FoundOverloaded;
627 else
628 ResultKind = LookupResult::Found;
629}
630
631void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
632 CXXBasePaths::const_paths_iterator I, E;
633 for (I = P.begin(), E = P.end(); I != E; ++I)
634 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
635 DE = I->Decls.end(); DI != DE; ++DI)
636 addDecl(*DI);
637}
638
639void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
640 Paths = new CXXBasePaths;
641 Paths->swap(P);
642 addDeclsFromBasePaths(*Paths);
643 resolveKind();
644 setAmbiguous(AmbiguousBaseSubobjects);
645}
646
647void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
648 Paths = new CXXBasePaths;
649 Paths->swap(P);
650 addDeclsFromBasePaths(*Paths);
651 resolveKind();
652 setAmbiguous(AmbiguousBaseSubobjectTypes);
653}
654
655void LookupResult::print(raw_ostream &Out) {
656 Out << Decls.size() << " result(s)";
657 if (isAmbiguous()) Out << ", ambiguous";
658 if (Paths) Out << ", base paths present";
659
660 for (iterator I = begin(), E = end(); I != E; ++I) {
661 Out << "\n";
662 (*I)->print(Out, 2);
663 }
664}
665
666LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
667 llvm::errs() << "lookup results for " << getLookupName().getAsString()
668 << ":\n";
669 for (NamedDecl *D : *this)
670 D->dump();
671}
672
673/// Lookup a builtin function, when name lookup would otherwise
674/// fail.
675static bool LookupBuiltin(Sema &S, LookupResult &R) {
676 Sema::LookupNameKind NameKind = R.getLookupKind();
677
678 // If we didn't find a use of this identifier, and if the identifier
679 // corresponds to a compiler builtin, create the decl object for the builtin
680 // now, injecting it into translation unit scope, and return it.
681 if (NameKind == Sema::LookupOrdinaryName ||
682 NameKind == Sema::LookupRedeclarationWithLinkage) {
683 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
684 if (II) {
685 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
686 if (II == S.getASTContext().getMakeIntegerSeqName()) {
687 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
688 return true;
689 } else if (II == S.getASTContext().getTypePackElementName()) {
690 R.addDecl(S.getASTContext().getTypePackElementDecl());
691 return true;
692 }
693 }
694
695 // If this is a builtin on this (or all) targets, create the decl.
696 if (unsigned BuiltinID = II->getBuiltinID()) {
697 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
698 // library functions like 'malloc'. Instead, we'll just error.
699 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
700 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
701 return false;
702
703 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
704 BuiltinID, S.TUScope,
705 R.isForRedeclaration(),
706 R.getNameLoc())) {
707 R.addDecl(D);
708 return true;
709 }
710 }
711 }
712 }
713
714 return false;
715}
716
717/// Determine whether we can declare a special member function within
718/// the class at this point.
719static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
720 // We need to have a definition for the class.
721 if (!Class->getDefinition() || Class->isDependentContext())
722 return false;
723
724 // We can't be in the middle of defining the class.
725 return !Class->isBeingDefined();
726}
727
728void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
729 if (!CanDeclareSpecialMemberFunction(Class))
730 return;
731
732 // If the default constructor has not yet been declared, do so now.
733 if (Class->needsImplicitDefaultConstructor())
734 DeclareImplicitDefaultConstructor(Class);
735
736 // If the copy constructor has not yet been declared, do so now.
737 if (Class->needsImplicitCopyConstructor())
738 DeclareImplicitCopyConstructor(Class);
739
740 // If the copy assignment operator has not yet been declared, do so now.
741 if (Class->needsImplicitCopyAssignment())
742 DeclareImplicitCopyAssignment(Class);
743
744 if (getLangOpts().CPlusPlus11) {
745 // If the move constructor has not yet been declared, do so now.
746 if (Class->needsImplicitMoveConstructor())
747 DeclareImplicitMoveConstructor(Class);
748
749 // If the move assignment operator has not yet been declared, do so now.
750 if (Class->needsImplicitMoveAssignment())
751 DeclareImplicitMoveAssignment(Class);
752 }
753
754 // If the destructor has not yet been declared, do so now.
755 if (Class->needsImplicitDestructor())
756 DeclareImplicitDestructor(Class);
757}
758
759/// Determine whether this is the name of an implicitly-declared
760/// special member function.
761static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
762 switch (Name.getNameKind()) {
763 case DeclarationName::CXXConstructorName:
764 case DeclarationName::CXXDestructorName:
765 return true;
766
767 case DeclarationName::CXXOperatorName:
768 return Name.getCXXOverloadedOperator() == OO_Equal;
769
770 default:
771 break;
772 }
773
774 return false;
775}
776
777/// If there are any implicit member functions with the given name
778/// that need to be declared in the given declaration context, do so.
779static void DeclareImplicitMemberFunctionsWithName(Sema &S,
780 DeclarationName Name,
781 SourceLocation Loc,
782 const DeclContext *DC) {
783 if (!DC)
784 return;
785
786 switch (Name.getNameKind()) {
787 case DeclarationName::CXXConstructorName:
788 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
789 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
790 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
791 if (Record->needsImplicitDefaultConstructor())
792 S.DeclareImplicitDefaultConstructor(Class);
793 if (Record->needsImplicitCopyConstructor())
794 S.DeclareImplicitCopyConstructor(Class);
795 if (S.getLangOpts().CPlusPlus11 &&
796 Record->needsImplicitMoveConstructor())
797 S.DeclareImplicitMoveConstructor(Class);
798 }
799 break;
800
801 case DeclarationName::CXXDestructorName:
802 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
803 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
804 CanDeclareSpecialMemberFunction(Record))
805 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
806 break;
807
808 case DeclarationName::CXXOperatorName:
809 if (Name.getCXXOverloadedOperator() != OO_Equal)
810 break;
811
812 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
813 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
814 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
815 if (Record->needsImplicitCopyAssignment())
816 S.DeclareImplicitCopyAssignment(Class);
817 if (S.getLangOpts().CPlusPlus11 &&
818 Record->needsImplicitMoveAssignment())
819 S.DeclareImplicitMoveAssignment(Class);
820 }
821 }
822 break;
823
824 case DeclarationName::CXXDeductionGuideName:
825 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
826 break;
827
828 default:
829 break;
830 }
831}
832
833// Adds all qualifying matches for a name within a decl context to the
834// given lookup result. Returns true if any matches were found.
835static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
836 bool Found = false;
837
838 // Lazily declare C++ special member functions.
839 if (S.getLangOpts().CPlusPlus)
840 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
841 DC);
842
843 // Perform lookup into this declaration context.
844 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
845 for (NamedDecl *D : DR) {
846 if ((D = R.getAcceptableDecl(D))) {
847 R.addDecl(D);
848 Found = true;
849 }
850 }
851
852 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
853 return true;
854
855 if (R.getLookupName().getNameKind()
856 != DeclarationName::CXXConversionFunctionName ||
857 R.getLookupName().getCXXNameType()->isDependentType() ||
858 !isa<CXXRecordDecl>(DC))
859 return Found;
860
861 // C++ [temp.mem]p6:
862 // A specialization of a conversion function template is not found by
863 // name lookup. Instead, any conversion function templates visible in the
864 // context of the use are considered. [...]
865 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
866 if (!Record->isCompleteDefinition())
867 return Found;
868
869 // For conversion operators, 'operator auto' should only match
870 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
871 // as a candidate for template substitution.
872 auto *ContainedDeducedType =
873 R.getLookupName().getCXXNameType()->getContainedDeducedType();
874 if (R.getLookupName().getNameKind() ==
875 DeclarationName::CXXConversionFunctionName &&
876 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
877 return Found;
878
879 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
880 UEnd = Record->conversion_end(); U != UEnd; ++U) {
881 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
882 if (!ConvTemplate)
883 continue;
884
885 // When we're performing lookup for the purposes of redeclaration, just
886 // add the conversion function template. When we deduce template
887 // arguments for specializations, we'll end up unifying the return
888 // type of the new declaration with the type of the function template.
889 if (R.isForRedeclaration()) {
890 R.addDecl(ConvTemplate);
891 Found = true;
892 continue;
893 }
894
895 // C++ [temp.mem]p6:
896 // [...] For each such operator, if argument deduction succeeds
897 // (14.9.2.3), the resulting specialization is used as if found by
898 // name lookup.
899 //
900 // When referencing a conversion function for any purpose other than
901 // a redeclaration (such that we'll be building an expression with the
902 // result), perform template argument deduction and place the
903 // specialization into the result set. We do this to avoid forcing all
904 // callers to perform special deduction for conversion functions.
905 TemplateDeductionInfo Info(R.getNameLoc());
906 FunctionDecl *Specialization = nullptr;
907
908 const FunctionProtoType *ConvProto
909 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
910 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 910, __PRETTY_FUNCTION__))
;
911
912 // Compute the type of the function that we would expect the conversion
913 // function to have, if it were to match the name given.
914 // FIXME: Calling convention!
915 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
916 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
917 EPI.ExceptionSpec = EST_None;
918 QualType ExpectedType
919 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
920 None, EPI);
921
922 // Perform template argument deduction against the type that we would
923 // expect the function to have.
924 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
925 Specialization, Info)
926 == Sema::TDK_Success) {
927 R.addDecl(Specialization);
928 Found = true;
929 }
930 }
931
932 return Found;
933}
934
935// Performs C++ unqualified lookup into the given file context.
936static bool
937CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
938 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
939
940 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 940, __PRETTY_FUNCTION__))
;
941
942 // Perform direct name lookup into the LookupCtx.
943 bool Found = LookupDirect(S, R, NS);
944
945 // Perform direct name lookup into the namespaces nominated by the
946 // using directives whose common ancestor is this namespace.
947 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
948 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
949 Found = true;
950
951 R.resolveKind();
952
953 return Found;
954}
955
956static bool isNamespaceOrTranslationUnitScope(Scope *S) {
957 if (DeclContext *Ctx = S->getEntity())
958 return Ctx->isFileContext();
959 return false;
960}
961
962// Find the next outer declaration context from this scope. This
963// routine actually returns the semantic outer context, which may
964// differ from the lexical context (encoded directly in the Scope
965// stack) when we are parsing a member of a class template. In this
966// case, the second element of the pair will be true, to indicate that
967// name lookup should continue searching in this semantic context when
968// it leaves the current template parameter scope.
969static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
970 DeclContext *DC = S->getEntity();
971 DeclContext *Lexical = nullptr;
972 for (Scope *OuterS = S->getParent(); OuterS;
973 OuterS = OuterS->getParent()) {
974 if (OuterS->getEntity()) {
975 Lexical = OuterS->getEntity();
976 break;
977 }
978 }
979
980 // C++ [temp.local]p8:
981 // In the definition of a member of a class template that appears
982 // outside of the namespace containing the class template
983 // definition, the name of a template-parameter hides the name of
984 // a member of this namespace.
985 //
986 // Example:
987 //
988 // namespace N {
989 // class C { };
990 //
991 // template<class T> class B {
992 // void f(T);
993 // };
994 // }
995 //
996 // template<class C> void N::B<C>::f(C) {
997 // C b; // C is the template parameter, not N::C
998 // }
999 //
1000 // In this example, the lexical context we return is the
1001 // TranslationUnit, while the semantic context is the namespace N.
1002 if (!Lexical || !DC || !S->getParent() ||
1003 !S->getParent()->isTemplateParamScope())
1004 return std::make_pair(Lexical, false);
1005
1006 // Find the outermost template parameter scope.
1007 // For the example, this is the scope for the template parameters of
1008 // template<class C>.
1009 Scope *OutermostTemplateScope = S->getParent();
1010 while (OutermostTemplateScope->getParent() &&
1011 OutermostTemplateScope->getParent()->isTemplateParamScope())
1012 OutermostTemplateScope = OutermostTemplateScope->getParent();
1013
1014 // Find the namespace context in which the original scope occurs. In
1015 // the example, this is namespace N.
1016 DeclContext *Semantic = DC;
1017 while (!Semantic->isFileContext())
1018 Semantic = Semantic->getParent();
1019
1020 // Find the declaration context just outside of the template
1021 // parameter scope. This is the context in which the template is
1022 // being lexically declaration (a namespace context). In the
1023 // example, this is the global scope.
1024 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1025 Lexical->Encloses(Semantic))
1026 return std::make_pair(Semantic, true);
1027
1028 return std::make_pair(Lexical, false);
1029}
1030
1031namespace {
1032/// An RAII object to specify that we want to find block scope extern
1033/// declarations.
1034struct FindLocalExternScope {
1035 FindLocalExternScope(LookupResult &R)
1036 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1037 Decl::IDNS_LocalExtern) {
1038 R.setFindLocalExtern(R.getIdentifierNamespace() &
1039 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1040 }
1041 void restore() {
1042 R.setFindLocalExtern(OldFindLocalExtern);
1043 }
1044 ~FindLocalExternScope() {
1045 restore();
1046 }
1047 LookupResult &R;
1048 bool OldFindLocalExtern;
1049};
1050} // end anonymous namespace
1051
1052bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1053 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1053, __PRETTY_FUNCTION__))
;
1054
1055 DeclarationName Name = R.getLookupName();
1056 Sema::LookupNameKind NameKind = R.getLookupKind();
1057
1058 // If this is the name of an implicitly-declared special member function,
1059 // go through the scope stack to implicitly declare
1060 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1061 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1062 if (DeclContext *DC = PreS->getEntity())
1063 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1064 }
1065
1066 // Implicitly declare member functions with the name we're looking for, if in
1067 // fact we are in a scope where it matters.
1068
1069 Scope *Initial = S;
1070 IdentifierResolver::iterator
1071 I = IdResolver.begin(Name),
1072 IEnd = IdResolver.end();
1073
1074 // First we lookup local scope.
1075 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1076 // ...During unqualified name lookup (3.4.1), the names appear as if
1077 // they were declared in the nearest enclosing namespace which contains
1078 // both the using-directive and the nominated namespace.
1079 // [Note: in this context, "contains" means "contains directly or
1080 // indirectly".
1081 //
1082 // For example:
1083 // namespace A { int i; }
1084 // void foo() {
1085 // int i;
1086 // {
1087 // using namespace A;
1088 // ++i; // finds local 'i', A::i appears at global scope
1089 // }
1090 // }
1091 //
1092 UnqualUsingDirectiveSet UDirs(*this);
1093 bool VisitedUsingDirectives = false;
1094 bool LeftStartingScope = false;
1095 DeclContext *OutsideOfTemplateParamDC = nullptr;
1096
1097 // When performing a scope lookup, we want to find local extern decls.
1098 FindLocalExternScope FindLocals(R);
1099
1100 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1101 DeclContext *Ctx = S->getEntity();
1102 bool SearchNamespaceScope = true;
1103 // Check whether the IdResolver has anything in this scope.
1104 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1105 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1106 if (NameKind == LookupRedeclarationWithLinkage &&
1107 !(*I)->isTemplateParameter()) {
1108 // If it's a template parameter, we still find it, so we can diagnose
1109 // the invalid redeclaration.
1110
1111 // Determine whether this (or a previous) declaration is
1112 // out-of-scope.
1113 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1114 LeftStartingScope = true;
1115
1116 // If we found something outside of our starting scope that
1117 // does not have linkage, skip it.
1118 if (LeftStartingScope && !((*I)->hasLinkage())) {
1119 R.setShadowed();
1120 continue;
1121 }
1122 } else {
1123 // We found something in this scope, we should not look at the
1124 // namespace scope
1125 SearchNamespaceScope = false;
1126 }
1127 R.addDecl(ND);
1128 }
1129 }
1130 if (!SearchNamespaceScope) {
1131 R.resolveKind();
1132 if (S->isClassScope())
1133 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1134 R.setNamingClass(Record);
1135 return true;
1136 }
1137
1138 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1139 // C++11 [class.friend]p11:
1140 // If a friend declaration appears in a local class and the name
1141 // specified is an unqualified name, a prior declaration is
1142 // looked up without considering scopes that are outside the
1143 // innermost enclosing non-class scope.
1144 return false;
1145 }
1146
1147 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1148 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1149 // We've just searched the last template parameter scope and
1150 // found nothing, so look into the contexts between the
1151 // lexical and semantic declaration contexts returned by
1152 // findOuterContext(). This implements the name lookup behavior
1153 // of C++ [temp.local]p8.
1154 Ctx = OutsideOfTemplateParamDC;
1155 OutsideOfTemplateParamDC = nullptr;
1156 }
1157
1158 if (Ctx) {
1159 DeclContext *OuterCtx;
1160 bool SearchAfterTemplateScope;
1161 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1162 if (SearchAfterTemplateScope)
1163 OutsideOfTemplateParamDC = OuterCtx;
1164
1165 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1166 // We do not directly look into transparent contexts, since
1167 // those entities will be found in the nearest enclosing
1168 // non-transparent context.
1169 if (Ctx->isTransparentContext())
1170 continue;
1171
1172 // We do not look directly into function or method contexts,
1173 // since all of the local variables and parameters of the
1174 // function/method are present within the Scope.
1175 if (Ctx->isFunctionOrMethod()) {
1176 // If we have an Objective-C instance method, look for ivars
1177 // in the corresponding interface.
1178 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1179 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1180 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1181 ObjCInterfaceDecl *ClassDeclared;
1182 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1183 Name.getAsIdentifierInfo(),
1184 ClassDeclared)) {
1185 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1186 R.addDecl(ND);
1187 R.resolveKind();
1188 return true;
1189 }
1190 }
1191 }
1192 }
1193
1194 continue;
1195 }
1196
1197 // If this is a file context, we need to perform unqualified name
1198 // lookup considering using directives.
1199 if (Ctx->isFileContext()) {
1200 // If we haven't handled using directives yet, do so now.
1201 if (!VisitedUsingDirectives) {
1202 // Add using directives from this context up to the top level.
1203 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1204 if (UCtx->isTransparentContext())
1205 continue;
1206
1207 UDirs.visit(UCtx, UCtx);
1208 }
1209
1210 // Find the innermost file scope, so we can add using directives
1211 // from local scopes.
1212 Scope *InnermostFileScope = S;
1213 while (InnermostFileScope &&
1214 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1215 InnermostFileScope = InnermostFileScope->getParent();
1216 UDirs.visitScopeChain(Initial, InnermostFileScope);
1217
1218 UDirs.done();
1219
1220 VisitedUsingDirectives = true;
1221 }
1222
1223 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1224 R.resolveKind();
1225 return true;
1226 }
1227
1228 continue;
1229 }
1230
1231 // Perform qualified name lookup into this context.
1232 // FIXME: In some cases, we know that every name that could be found by
1233 // this qualified name lookup will also be on the identifier chain. For
1234 // example, inside a class without any base classes, we never need to
1235 // perform qualified lookup because all of the members are on top of the
1236 // identifier chain.
1237 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1238 return true;
1239 }
1240 }
1241 }
1242
1243 // Stop if we ran out of scopes.
1244 // FIXME: This really, really shouldn't be happening.
1245 if (!S) return false;
1246
1247 // If we are looking for members, no need to look into global/namespace scope.
1248 if (NameKind == LookupMemberName)
1249 return false;
1250
1251 // Collect UsingDirectiveDecls in all scopes, and recursively all
1252 // nominated namespaces by those using-directives.
1253 //
1254 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1255 // don't build it for each lookup!
1256 if (!VisitedUsingDirectives) {
1257 UDirs.visitScopeChain(Initial, S);
1258 UDirs.done();
1259 }
1260
1261 // If we're not performing redeclaration lookup, do not look for local
1262 // extern declarations outside of a function scope.
1263 if (!R.isForRedeclaration())
1264 FindLocals.restore();
1265
1266 // Lookup namespace scope, and global scope.
1267 // Unqualified name lookup in C++ requires looking into scopes
1268 // that aren't strictly lexical, and therefore we walk through the
1269 // context as well as walking through the scopes.
1270 for (; S; S = S->getParent()) {
1271 // Check whether the IdResolver has anything in this scope.
1272 bool Found = false;
1273 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1274 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1275 // We found something. Look for anything else in our scope
1276 // with this same name and in an acceptable identifier
1277 // namespace, so that we can construct an overload set if we
1278 // need to.
1279 Found = true;
1280 R.addDecl(ND);
1281 }
1282 }
1283
1284 if (Found && S->isTemplateParamScope()) {
1285 R.resolveKind();
1286 return true;
1287 }
1288
1289 DeclContext *Ctx = S->getEntity();
1290 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1291 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1292 // We've just searched the last template parameter scope and
1293 // found nothing, so look into the contexts between the
1294 // lexical and semantic declaration contexts returned by
1295 // findOuterContext(). This implements the name lookup behavior
1296 // of C++ [temp.local]p8.
1297 Ctx = OutsideOfTemplateParamDC;
1298 OutsideOfTemplateParamDC = nullptr;
1299 }
1300
1301 if (Ctx) {
1302 DeclContext *OuterCtx;
1303 bool SearchAfterTemplateScope;
1304 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1305 if (SearchAfterTemplateScope)
1306 OutsideOfTemplateParamDC = OuterCtx;
1307
1308 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1309 // We do not directly look into transparent contexts, since
1310 // those entities will be found in the nearest enclosing
1311 // non-transparent context.
1312 if (Ctx->isTransparentContext())
1313 continue;
1314
1315 // If we have a context, and it's not a context stashed in the
1316 // template parameter scope for an out-of-line definition, also
1317 // look into that context.
1318 if (!(Found && S->isTemplateParamScope())) {
1319 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1320, __PRETTY_FUNCTION__))
1320 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1320, __PRETTY_FUNCTION__))
;
1321
1322 // Look into context considering using-directives.
1323 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1324 Found = true;
1325 }
1326
1327 if (Found) {
1328 R.resolveKind();
1329 return true;
1330 }
1331
1332 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1333 return false;
1334 }
1335 }
1336
1337 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1338 return false;
1339 }
1340
1341 return !R.empty();
1342}
1343
1344void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1345 if (auto *M = getCurrentModule())
1346 Context.mergeDefinitionIntoModule(ND, M);
1347 else
1348 // We're not building a module; just make the definition visible.
1349 ND->setVisibleDespiteOwningModule();
1350
1351 // If ND is a template declaration, make the template parameters
1352 // visible too. They're not (necessarily) within a mergeable DeclContext.
1353 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1354 for (auto *Param : *TD->getTemplateParameters())
1355 makeMergedDefinitionVisible(Param);
1356}
1357
1358/// Find the module in which the given declaration was defined.
1359static Module *getDefiningModule(Sema &S, Decl *Entity) {
1360 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1361 // If this function was instantiated from a template, the defining module is
1362 // the module containing the pattern.
1363 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1364 Entity = Pattern;
1365 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1366 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1367 Entity = Pattern;
1368 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1369 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1370 Entity = Pattern;
1371 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1372 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1373 Entity = Pattern;
1374 }
1375
1376 // Walk up to the containing context. That might also have been instantiated
1377 // from a template.
1378 DeclContext *Context = Entity->getLexicalDeclContext();
1379 if (Context->isFileContext())
1380 return S.getOwningModule(Entity);
1381 return getDefiningModule(S, cast<Decl>(Context));
1382}
1383
1384llvm::DenseSet<Module*> &Sema::getLookupModules() {
1385 unsigned N = CodeSynthesisContexts.size();
1386 for (unsigned I = CodeSynthesisContextLookupModules.size();
1387 I != N; ++I) {
1388 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1389 if (M && !LookupModulesCache.insert(M).second)
1390 M = nullptr;
1391 CodeSynthesisContextLookupModules.push_back(M);
1392 }
1393 return LookupModulesCache;
1394}
1395
1396/// Determine whether the module M is part of the current module from the
1397/// perspective of a module-private visibility check.
1398static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1399 // If M is the global module fragment of a module that we've not yet finished
1400 // parsing, then it must be part of the current module.
1401 return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1402 (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1403}
1404
1405bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1406 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1407 if (isModuleVisible(Merged))
1408 return true;
1409 return false;
1410}
1411
1412bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1413 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1414 if (isInCurrentModule(Merged, getLangOpts()))
1415 return true;
1416 return false;
1417}
1418
1419template<typename ParmDecl>
1420static bool
1421hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1422 llvm::SmallVectorImpl<Module *> *Modules) {
1423 if (!D->hasDefaultArgument())
1424 return false;
1425
1426 while (D) {
1427 auto &DefaultArg = D->getDefaultArgStorage();
1428 if (!DefaultArg.isInherited() && S.isVisible(D))
1429 return true;
1430
1431 if (!DefaultArg.isInherited() && Modules) {
1432 auto *NonConstD = const_cast<ParmDecl*>(D);
1433 Modules->push_back(S.getOwningModule(NonConstD));
1434 }
1435
1436 // If there was a previous default argument, maybe its parameter is visible.
1437 D = DefaultArg.getInheritedFrom();
1438 }
1439 return false;
1440}
1441
1442bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1443 llvm::SmallVectorImpl<Module *> *Modules) {
1444 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1445 return ::hasVisibleDefaultArgument(*this, P, Modules);
1446 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1447 return ::hasVisibleDefaultArgument(*this, P, Modules);
1448 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1449 Modules);
1450}
1451
1452template<typename Filter>
1453static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1454 llvm::SmallVectorImpl<Module *> *Modules,
1455 Filter F) {
1456 bool HasFilteredRedecls = false;
1457
1458 for (auto *Redecl : D->redecls()) {
1459 auto *R = cast<NamedDecl>(Redecl);
1460 if (!F(R))
1461 continue;
1462
1463 if (S.isVisible(R))
1464 return true;
1465
1466 HasFilteredRedecls = true;
1467
1468 if (Modules)
1469 Modules->push_back(R->getOwningModule());
1470 }
1471
1472 // Only return false if there is at least one redecl that is not filtered out.
1473 if (HasFilteredRedecls)
1474 return false;
1475
1476 return true;
1477}
1478
1479bool Sema::hasVisibleExplicitSpecialization(
1480 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1481 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1482 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1483 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1484 if (auto *FD = dyn_cast<FunctionDecl>(D))
1485 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1486 if (auto *VD = dyn_cast<VarDecl>(D))
1487 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1488 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1488)
;
1489 });
1490}
1491
1492bool Sema::hasVisibleMemberSpecialization(
1493 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1494 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1495, __PRETTY_FUNCTION__))
1495 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1495, __PRETTY_FUNCTION__))
;
1496 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1497 // If the specialization is declared at namespace scope, then it's a member
1498 // specialization declaration. If it's lexically inside the class
1499 // definition then it was instantiated.
1500 //
1501 // FIXME: This is a hack. There should be a better way to determine this.
1502 // FIXME: What about MS-style explicit specializations declared within a
1503 // class definition?
1504 return D->getLexicalDeclContext()->isFileContext();
1505 });
1506}
1507
1508/// Determine whether a declaration is visible to name lookup.
1509///
1510/// This routine determines whether the declaration D is visible in the current
1511/// lookup context, taking into account the current template instantiation
1512/// stack. During template instantiation, a declaration is visible if it is
1513/// visible from a module containing any entity on the template instantiation
1514/// path (by instantiating a template, you allow it to see the declarations that
1515/// your module can see, including those later on in your module).
1516bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1517 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1517, __PRETTY_FUNCTION__))
;
1518
1519 Module *DeclModule = SemaRef.getOwningModule(D);
1520 assert(DeclModule && "hidden decl has no owning module")((DeclModule && "hidden decl has no owning module") ?
static_cast<void> (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1520, __PRETTY_FUNCTION__))
;
1521
1522 // If the owning module is visible, the decl is visible.
1523 if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1524 return true;
1525
1526 // Determine whether a decl context is a file context for the purpose of
1527 // visibility. This looks through some (export and linkage spec) transparent
1528 // contexts, but not others (enums).
1529 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1530 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1531 isa<ExportDecl>(DC);
1532 };
1533
1534 // If this declaration is not at namespace scope
1535 // then it is visible if its lexical parent has a visible definition.
1536 DeclContext *DC = D->getLexicalDeclContext();
1537 if (DC && !IsEffectivelyFileContext(DC)) {
1538 // For a parameter, check whether our current template declaration's
1539 // lexical context is visible, not whether there's some other visible
1540 // definition of it, because parameters aren't "within" the definition.
1541 //
1542 // In C++ we need to check for a visible definition due to ODR merging,
1543 // and in C we must not because each declaration of a function gets its own
1544 // set of declarations for tags in prototype scope.
1545 bool VisibleWithinParent;
1546 if (D->isTemplateParameter()) {
1547 bool SearchDefinitions = true;
1548 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1549 if (const auto *TD = DCD->getDescribedTemplate()) {
1550 TemplateParameterList *TPL = TD->getTemplateParameters();
1551 auto Index = getDepthAndIndex(D).second;
1552 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1553 }
1554 }
1555 if (SearchDefinitions)
1556 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1557 else
1558 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1559 } else if (isa<ParmVarDecl>(D) ||
1560 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1561 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1562 else if (D->isModulePrivate()) {
1563 // A module-private declaration is only visible if an enclosing lexical
1564 // parent was merged with another definition in the current module.
1565 VisibleWithinParent = false;
1566 do {
1567 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1568 VisibleWithinParent = true;
1569 break;
1570 }
1571 DC = DC->getLexicalParent();
1572 } while (!IsEffectivelyFileContext(DC));
1573 } else {
1574 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1575 }
1576
1577 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1578 // FIXME: Do something better in this case.
1579 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1580 // Cache the fact that this declaration is implicitly visible because
1581 // its parent has a visible definition.
1582 D->setVisibleDespiteOwningModule();
1583 }
1584 return VisibleWithinParent;
1585 }
1586
1587 return false;
1588}
1589
1590bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1591 // The module might be ordinarily visible. For a module-private query, that
1592 // means it is part of the current module. For any other query, that means it
1593 // is in our visible module set.
1594 if (ModulePrivate) {
1595 if (isInCurrentModule(M, getLangOpts()))
1596 return true;
1597 } else {
1598 if (VisibleModules.isVisible(M))
1599 return true;
1600 }
1601
1602 // Otherwise, it might be visible by virtue of the query being within a
1603 // template instantiation or similar that is permitted to look inside M.
1604
1605 // Find the extra places where we need to look.
1606 const auto &LookupModules = getLookupModules();
1607 if (LookupModules.empty())
1608 return false;
1609
1610 // If our lookup set contains the module, it's visible.
1611 if (LookupModules.count(M))
1612 return true;
1613
1614 // For a module-private query, that's everywhere we get to look.
1615 if (ModulePrivate)
1616 return false;
1617
1618 // Check whether M is transitively exported to an import of the lookup set.
1619 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1620 return LookupM->isModuleVisible(M);
1621 });
1622}
1623
1624bool Sema::isVisibleSlow(const NamedDecl *D) {
1625 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1626}
1627
1628bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1629 // FIXME: If there are both visible and hidden declarations, we need to take
1630 // into account whether redeclaration is possible. Example:
1631 //
1632 // Non-imported module:
1633 // int f(T); // #1
1634 // Some TU:
1635 // static int f(U); // #2, not a redeclaration of #1
1636 // int f(T); // #3, finds both, should link with #1 if T != U, but
1637 // // with #2 if T == U; neither should be ambiguous.
1638 for (auto *D : R) {
1639 if (isVisible(D))
1640 return true;
1641 assert(D->isExternallyDeclarable() &&((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1642, __PRETTY_FUNCTION__))
1642 "should not have hidden, non-externally-declarable result here")((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1642, __PRETTY_FUNCTION__))
;
1643 }
1644
1645 // This function is called once "New" is essentially complete, but before a
1646 // previous declaration is attached. We can't query the linkage of "New" in
1647 // general, because attaching the previous declaration can change the
1648 // linkage of New to match the previous declaration.
1649 //
1650 // However, because we've just determined that there is no *visible* prior
1651 // declaration, we can compute the linkage here. There are two possibilities:
1652 //
1653 // * This is not a redeclaration; it's safe to compute the linkage now.
1654 //
1655 // * This is a redeclaration of a prior declaration that is externally
1656 // redeclarable. In that case, the linkage of the declaration is not
1657 // changed by attaching the prior declaration, because both are externally
1658 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1659 //
1660 // FIXME: This is subtle and fragile.
1661 return New->isExternallyDeclarable();
1662}
1663
1664/// Retrieve the visible declaration corresponding to D, if any.
1665///
1666/// This routine determines whether the declaration D is visible in the current
1667/// module, with the current imports. If not, it checks whether any
1668/// redeclaration of D is visible, and if so, returns that declaration.
1669///
1670/// \returns D, or a visible previous declaration of D, whichever is more recent
1671/// and visible. If no declaration of D is visible, returns null.
1672static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1673 unsigned IDNS) {
1674 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1674, __PRETTY_FUNCTION__))
;
1675
1676 for (auto RD : D->redecls()) {
1677 // Don't bother with extra checks if we already know this one isn't visible.
1678 if (RD == D)
1679 continue;
1680
1681 auto ND = cast<NamedDecl>(RD);
1682 // FIXME: This is wrong in the case where the previous declaration is not
1683 // visible in the same scope as D. This needs to be done much more
1684 // carefully.
1685 if (ND->isInIdentifierNamespace(IDNS) &&
1686 LookupResult::isVisible(SemaRef, ND))
1687 return ND;
1688 }
1689
1690 return nullptr;
1691}
1692
1693bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1694 llvm::SmallVectorImpl<Module *> *Modules) {
1695 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1695, __PRETTY_FUNCTION__))
;
1696 return hasVisibleDeclarationImpl(*this, D, Modules,
1697 [](const NamedDecl *) { return true; });
1698}
1699
1700NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1701 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1702 // Namespaces are a bit of a special case: we expect there to be a lot of
1703 // redeclarations of some namespaces, all declarations of a namespace are
1704 // essentially interchangeable, all declarations are found by name lookup
1705 // if any is, and namespaces are never looked up during template
1706 // instantiation. So we benefit from caching the check in this case, and
1707 // it is correct to do so.
1708 auto *Key = ND->getCanonicalDecl();
1709 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1710 return Acceptable;
1711 auto *Acceptable = isVisible(getSema(), Key)
1712 ? Key
1713 : findAcceptableDecl(getSema(), Key, IDNS);
1714 if (Acceptable)
1715 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1716 return Acceptable;
1717 }
1718
1719 return findAcceptableDecl(getSema(), D, IDNS);
1720}
1721
1722/// Perform unqualified name lookup starting from a given
1723/// scope.
1724///
1725/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1726/// used to find names within the current scope. For example, 'x' in
1727/// @code
1728/// int x;
1729/// int f() {
1730/// return x; // unqualified name look finds 'x' in the global scope
1731/// }
1732/// @endcode
1733///
1734/// Different lookup criteria can find different names. For example, a
1735/// particular scope can have both a struct and a function of the same
1736/// name, and each can be found by certain lookup criteria. For more
1737/// information about lookup criteria, see the documentation for the
1738/// class LookupCriteria.
1739///
1740/// @param S The scope from which unqualified name lookup will
1741/// begin. If the lookup criteria permits, name lookup may also search
1742/// in the parent scopes.
1743///
1744/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1745/// look up and the lookup kind), and is updated with the results of lookup
1746/// including zero or more declarations and possibly additional information
1747/// used to diagnose ambiguities.
1748///
1749/// @returns \c true if lookup succeeded and false otherwise.
1750bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1751 DeclarationName Name = R.getLookupName();
1752 if (!Name) return false;
1753
1754 LookupNameKind NameKind = R.getLookupKind();
1755
1756 if (!getLangOpts().CPlusPlus) {
1757 // Unqualified name lookup in C/Objective-C is purely lexical, so
1758 // search in the declarations attached to the name.
1759 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1760 // Find the nearest non-transparent declaration scope.
1761 while (!(S->getFlags() & Scope::DeclScope) ||
1762 (S->getEntity() && S->getEntity()->isTransparentContext()))
1763 S = S->getParent();
1764 }
1765
1766 // When performing a scope lookup, we want to find local extern decls.
1767 FindLocalExternScope FindLocals(R);
1768
1769 // Scan up the scope chain looking for a decl that matches this
1770 // identifier that is in the appropriate namespace. This search
1771 // should not take long, as shadowing of names is uncommon, and
1772 // deep shadowing is extremely uncommon.
1773 bool LeftStartingScope = false;
1774
1775 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1776 IEnd = IdResolver.end();
1777 I != IEnd; ++I)
1778 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1779 if (NameKind == LookupRedeclarationWithLinkage) {
1780 // Determine whether this (or a previous) declaration is
1781 // out-of-scope.
1782 if (!LeftStartingScope && !S->isDeclScope(*I))
1783 LeftStartingScope = true;
1784
1785 // If we found something outside of our starting scope that
1786 // does not have linkage, skip it.
1787 if (LeftStartingScope && !((*I)->hasLinkage())) {
1788 R.setShadowed();
1789 continue;
1790 }
1791 }
1792 else if (NameKind == LookupObjCImplicitSelfParam &&
1793 !isa<ImplicitParamDecl>(*I))
1794 continue;
1795
1796 R.addDecl(D);
1797
1798 // Check whether there are any other declarations with the same name
1799 // and in the same scope.
1800 if (I != IEnd) {
1801 // Find the scope in which this declaration was declared (if it
1802 // actually exists in a Scope).
1803 while (S && !S->isDeclScope(D))
1804 S = S->getParent();
1805
1806 // If the scope containing the declaration is the translation unit,
1807 // then we'll need to perform our checks based on the matching
1808 // DeclContexts rather than matching scopes.
1809 if (S && isNamespaceOrTranslationUnitScope(S))
1810 S = nullptr;
1811
1812 // Compute the DeclContext, if we need it.
1813 DeclContext *DC = nullptr;
1814 if (!S)
1815 DC = (*I)->getDeclContext()->getRedeclContext();
1816
1817 IdentifierResolver::iterator LastI = I;
1818 for (++LastI; LastI != IEnd; ++LastI) {
1819 if (S) {
1820 // Match based on scope.
1821 if (!S->isDeclScope(*LastI))
1822 break;
1823 } else {
1824 // Match based on DeclContext.
1825 DeclContext *LastDC
1826 = (*LastI)->getDeclContext()->getRedeclContext();
1827 if (!LastDC->Equals(DC))
1828 break;
1829 }
1830
1831 // If the declaration is in the right namespace and visible, add it.
1832 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1833 R.addDecl(LastD);
1834 }
1835
1836 R.resolveKind();
1837 }
1838
1839 return true;
1840 }
1841 } else {
1842 // Perform C++ unqualified name lookup.
1843 if (CppLookupName(R, S))
1844 return true;
1845 }
1846
1847 // If we didn't find a use of this identifier, and if the identifier
1848 // corresponds to a compiler builtin, create the decl object for the builtin
1849 // now, injecting it into translation unit scope, and return it.
1850 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1851 return true;
1852
1853 // If we didn't find a use of this identifier, the ExternalSource
1854 // may be able to handle the situation.
1855 // Note: some lookup failures are expected!
1856 // See e.g. R.isForRedeclaration().
1857 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1858}
1859
1860/// Perform qualified name lookup in the namespaces nominated by
1861/// using directives by the given context.
1862///
1863/// C++98 [namespace.qual]p2:
1864/// Given X::m (where X is a user-declared namespace), or given \::m
1865/// (where X is the global namespace), let S be the set of all
1866/// declarations of m in X and in the transitive closure of all
1867/// namespaces nominated by using-directives in X and its used
1868/// namespaces, except that using-directives are ignored in any
1869/// namespace, including X, directly containing one or more
1870/// declarations of m. No namespace is searched more than once in
1871/// the lookup of a name. If S is the empty set, the program is
1872/// ill-formed. Otherwise, if S has exactly one member, or if the
1873/// context of the reference is a using-declaration
1874/// (namespace.udecl), S is the required set of declarations of
1875/// m. Otherwise if the use of m is not one that allows a unique
1876/// declaration to be chosen from S, the program is ill-formed.
1877///
1878/// C++98 [namespace.qual]p5:
1879/// During the lookup of a qualified namespace member name, if the
1880/// lookup finds more than one declaration of the member, and if one
1881/// declaration introduces a class name or enumeration name and the
1882/// other declarations either introduce the same object, the same
1883/// enumerator or a set of functions, the non-type name hides the
1884/// class or enumeration name if and only if the declarations are
1885/// from the same namespace; otherwise (the declarations are from
1886/// different namespaces), the program is ill-formed.
1887static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1888 DeclContext *StartDC) {
1889 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1889, __PRETTY_FUNCTION__))
;
1890
1891 // We have not yet looked into these namespaces, much less added
1892 // their "using-children" to the queue.
1893 SmallVector<NamespaceDecl*, 8> Queue;
1894
1895 // We have at least added all these contexts to the queue.
1896 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1897 Visited.insert(StartDC);
1898
1899 // We have already looked into the initial namespace; seed the queue
1900 // with its using-children.
1901 for (auto *I : StartDC->using_directives()) {
1902 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1903 if (S.isVisible(I) && Visited.insert(ND).second)
1904 Queue.push_back(ND);
1905 }
1906
1907 // The easiest way to implement the restriction in [namespace.qual]p5
1908 // is to check whether any of the individual results found a tag
1909 // and, if so, to declare an ambiguity if the final result is not
1910 // a tag.
1911 bool FoundTag = false;
1912 bool FoundNonTag = false;
1913
1914 LookupResult LocalR(LookupResult::Temporary, R);
1915
1916 bool Found = false;
1917 while (!Queue.empty()) {
1918 NamespaceDecl *ND = Queue.pop_back_val();
1919
1920 // We go through some convolutions here to avoid copying results
1921 // between LookupResults.
1922 bool UseLocal = !R.empty();
1923 LookupResult &DirectR = UseLocal ? LocalR : R;
1924 bool FoundDirect = LookupDirect(S, DirectR, ND);
1925
1926 if (FoundDirect) {
1927 // First do any local hiding.
1928 DirectR.resolveKind();
1929
1930 // If the local result is a tag, remember that.
1931 if (DirectR.isSingleTagDecl())
1932 FoundTag = true;
1933 else
1934 FoundNonTag = true;
1935
1936 // Append the local results to the total results if necessary.
1937 if (UseLocal) {
1938 R.addAllDecls(LocalR);
1939 LocalR.clear();
1940 }
1941 }
1942
1943 // If we find names in this namespace, ignore its using directives.
1944 if (FoundDirect) {
1945 Found = true;
1946 continue;
1947 }
1948
1949 for (auto I : ND->using_directives()) {
1950 NamespaceDecl *Nom = I->getNominatedNamespace();
1951 if (S.isVisible(I) && Visited.insert(Nom).second)
1952 Queue.push_back(Nom);
1953 }
1954 }
1955
1956 if (Found) {
1957 if (FoundTag && FoundNonTag)
1958 R.setAmbiguousQualifiedTagHiding();
1959 else
1960 R.resolveKind();
1961 }
1962
1963 return Found;
1964}
1965
1966/// Callback that looks for any member of a class with the given name.
1967static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1968 CXXBasePath &Path, DeclarationName Name) {
1969 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1970
1971 Path.Decls = BaseRecord->lookup(Name);
1972 return !Path.Decls.empty();
1973}
1974
1975/// Determine whether the given set of member declarations contains only
1976/// static members, nested types, and enumerators.
1977template<typename InputIterator>
1978static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1979 Decl *D = (*First)->getUnderlyingDecl();
1980 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1981 return true;
1982
1983 if (isa<CXXMethodDecl>(D)) {
1984 // Determine whether all of the methods are static.
1985 bool AllMethodsAreStatic = true;
1986 for(; First != Last; ++First) {
1987 D = (*First)->getUnderlyingDecl();
1988
1989 if (!isa<CXXMethodDecl>(D)) {
1990 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 1990, __PRETTY_FUNCTION__))
;
1991 break;
1992 }
1993
1994 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1995 AllMethodsAreStatic = false;
1996 break;
1997 }
1998 }
1999
2000 if (AllMethodsAreStatic)
2001 return true;
2002 }
2003
2004 return false;
2005}
2006
2007/// Perform qualified name lookup into a given context.
2008///
2009/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2010/// names when the context of those names is explicit specified, e.g.,
2011/// "std::vector" or "x->member", or as part of unqualified name lookup.
2012///
2013/// Different lookup criteria can find different names. For example, a
2014/// particular scope can have both a struct and a function of the same
2015/// name, and each can be found by certain lookup criteria. For more
2016/// information about lookup criteria, see the documentation for the
2017/// class LookupCriteria.
2018///
2019/// \param R captures both the lookup criteria and any lookup results found.
2020///
2021/// \param LookupCtx The context in which qualified name lookup will
2022/// search. If the lookup criteria permits, name lookup may also search
2023/// in the parent contexts or (for C++ classes) base classes.
2024///
2025/// \param InUnqualifiedLookup true if this is qualified name lookup that
2026/// occurs as part of unqualified name lookup.
2027///
2028/// \returns true if lookup succeeded, false if it failed.
2029bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2030 bool InUnqualifiedLookup) {
2031 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2031, __PRETTY_FUNCTION__))
;
2032
2033 if (!R.getLookupName())
2034 return false;
2035
2036 // Make sure that the declaration context is complete.
2037 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2041, __PRETTY_FUNCTION__))
2038 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2041, __PRETTY_FUNCTION__))
2039 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2041, __PRETTY_FUNCTION__))
2040 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2041, __PRETTY_FUNCTION__))
2041 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2041, __PRETTY_FUNCTION__))
;
2042
2043 struct QualifiedLookupInScope {
2044 bool oldVal;
2045 DeclContext *Context;
2046 // Set flag in DeclContext informing debugger that we're looking for qualified name
2047 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2048 oldVal = ctx->setUseQualifiedLookup();
2049 }
2050 ~QualifiedLookupInScope() {
2051 Context->setUseQualifiedLookup(oldVal);
2052 }
2053 } QL(LookupCtx);
2054
2055 if (LookupDirect(*this, R, LookupCtx)) {
2056 R.resolveKind();
2057 if (isa<CXXRecordDecl>(LookupCtx))
2058 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2059 return true;
2060 }
2061
2062 // Don't descend into implied contexts for redeclarations.
2063 // C++98 [namespace.qual]p6:
2064 // In a declaration for a namespace member in which the
2065 // declarator-id is a qualified-id, given that the qualified-id
2066 // for the namespace member has the form
2067 // nested-name-specifier unqualified-id
2068 // the unqualified-id shall name a member of the namespace
2069 // designated by the nested-name-specifier.
2070 // See also [class.mfct]p5 and [class.static.data]p2.
2071 if (R.isForRedeclaration())
2072 return false;
2073
2074 // If this is a namespace, look it up in the implied namespaces.
2075 if (LookupCtx->isFileContext())
2076 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2077
2078 // If this isn't a C++ class, we aren't allowed to look into base
2079 // classes, we're done.
2080 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2081 if (!LookupRec || !LookupRec->getDefinition())
2082 return false;
2083
2084 // If we're performing qualified name lookup into a dependent class,
2085 // then we are actually looking into a current instantiation. If we have any
2086 // dependent base classes, then we either have to delay lookup until
2087 // template instantiation time (at which point all bases will be available)
2088 // or we have to fail.
2089 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2090 LookupRec->hasAnyDependentBases()) {
2091 R.setNotFoundInCurrentInstantiation();
2092 return false;
2093 }
2094
2095 // Perform lookup into our base classes.
2096 CXXBasePaths Paths;
2097 Paths.setOrigin(LookupRec);
2098
2099 // Look for this member in our base classes
2100 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2101 DeclarationName Name) = nullptr;
2102 switch (R.getLookupKind()) {
2103 case LookupObjCImplicitSelfParam:
2104 case LookupOrdinaryName:
2105 case LookupMemberName:
2106 case LookupRedeclarationWithLinkage:
2107 case LookupLocalFriendName:
2108 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2109 break;
2110
2111 case LookupTagName:
2112 BaseCallback = &CXXRecordDecl::FindTagMember;
2113 break;
2114
2115 case LookupAnyName:
2116 BaseCallback = &LookupAnyMember;
2117 break;
2118
2119 case LookupOMPReductionName:
2120 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2121 break;
2122
2123 case LookupOMPMapperName:
2124 BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2125 break;
2126
2127 case LookupUsingDeclName:
2128 // This lookup is for redeclarations only.
2129
2130 case LookupOperatorName:
2131 case LookupNamespaceName:
2132 case LookupObjCProtocolName:
2133 case LookupLabel:
2134 // These lookups will never find a member in a C++ class (or base class).
2135 return false;
2136
2137 case LookupNestedNameSpecifierName:
2138 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2139 break;
2140 }
2141
2142 DeclarationName Name = R.getLookupName();
2143 if (!LookupRec->lookupInBases(
2144 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2145 return BaseCallback(Specifier, Path, Name);
2146 },
2147 Paths))
2148 return false;
2149
2150 R.setNamingClass(LookupRec);
2151
2152 // C++ [class.member.lookup]p2:
2153 // [...] If the resulting set of declarations are not all from
2154 // sub-objects of the same type, or the set has a nonstatic member
2155 // and includes members from distinct sub-objects, there is an
2156 // ambiguity and the program is ill-formed. Otherwise that set is
2157 // the result of the lookup.
2158 QualType SubobjectType;
2159 int SubobjectNumber = 0;
2160 AccessSpecifier SubobjectAccess = AS_none;
2161
2162 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2163 Path != PathEnd; ++Path) {
2164 const CXXBasePathElement &PathElement = Path->back();
2165
2166 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2167 // across all paths.
2168 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2169
2170 // Determine whether we're looking at a distinct sub-object or not.
2171 if (SubobjectType.isNull()) {
2172 // This is the first subobject we've looked at. Record its type.
2173 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2174 SubobjectNumber = PathElement.SubobjectNumber;
2175 continue;
2176 }
2177
2178 if (SubobjectType
2179 != Context.getCanonicalType(PathElement.Base->getType())) {
2180 // We found members of the given name in two subobjects of
2181 // different types. If the declaration sets aren't the same, this
2182 // lookup is ambiguous.
2183 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2184 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2185 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2186 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2187
2188 // Get the decl that we should use for deduplicating this lookup.
2189 auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2190 // C++ [temp.local]p3:
2191 // A lookup that finds an injected-class-name (10.2) can result in
2192 // an ambiguity in certain cases (for example, if it is found in
2193 // more than one base class). If all of the injected-class-names
2194 // that are found refer to specializations of the same class
2195 // template, and if the name is used as a template-name, the
2196 // reference refers to the class template itself and not a
2197 // specialization thereof, and is not ambiguous.
2198 if (R.isTemplateNameLookup())
2199 if (auto *TD = getAsTemplateNameDecl(D))
2200 D = TD;
2201 return D->getUnderlyingDecl()->getCanonicalDecl();
2202 };
2203
2204 while (FirstD != FirstPath->Decls.end() &&
2205 CurrentD != Path->Decls.end()) {
2206 if (GetRepresentativeDecl(*FirstD) !=
2207 GetRepresentativeDecl(*CurrentD))
2208 break;
2209
2210 ++FirstD;
2211 ++CurrentD;
2212 }
2213
2214 if (FirstD == FirstPath->Decls.end() &&
2215 CurrentD == Path->Decls.end())
2216 continue;
2217 }
2218
2219 R.setAmbiguousBaseSubobjectTypes(Paths);
2220 return true;
2221 }
2222
2223 if (SubobjectNumber != PathElement.SubobjectNumber) {
2224 // We have a different subobject of the same type.
2225
2226 // C++ [class.member.lookup]p5:
2227 // A static member, a nested type or an enumerator defined in
2228 // a base class T can unambiguously be found even if an object
2229 // has more than one base class subobject of type T.
2230 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2231 continue;
2232
2233 // We have found a nonstatic member name in multiple, distinct
2234 // subobjects. Name lookup is ambiguous.
2235 R.setAmbiguousBaseSubobjects(Paths);
2236 return true;
2237 }
2238 }
2239
2240 // Lookup in a base class succeeded; return these results.
2241
2242 for (auto *D : Paths.front().Decls) {
2243 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2244 D->getAccess());
2245 R.addDecl(D, AS);
2246 }
2247 R.resolveKind();
2248 return true;
2249}
2250
2251/// Performs qualified name lookup or special type of lookup for
2252/// "__super::" scope specifier.
2253///
2254/// This routine is a convenience overload meant to be called from contexts
2255/// that need to perform a qualified name lookup with an optional C++ scope
2256/// specifier that might require special kind of lookup.
2257///
2258/// \param R captures both the lookup criteria and any lookup results found.
2259///
2260/// \param LookupCtx The context in which qualified name lookup will
2261/// search.
2262///
2263/// \param SS An optional C++ scope-specifier.
2264///
2265/// \returns true if lookup succeeded, false if it failed.
2266bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2267 CXXScopeSpec &SS) {
2268 auto *NNS = SS.getScopeRep();
2269 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2270 return LookupInSuper(R, NNS->getAsRecordDecl());
2271 else
2272
2273 return LookupQualifiedName(R, LookupCtx);
2274}
2275
2276/// Performs name lookup for a name that was parsed in the
2277/// source code, and may contain a C++ scope specifier.
2278///
2279/// This routine is a convenience routine meant to be called from
2280/// contexts that receive a name and an optional C++ scope specifier
2281/// (e.g., "N::M::x"). It will then perform either qualified or
2282/// unqualified name lookup (with LookupQualifiedName or LookupName,
2283/// respectively) on the given name and return those results. It will
2284/// perform a special type of lookup for "__super::" scope specifier.
2285///
2286/// @param S The scope from which unqualified name lookup will
2287/// begin.
2288///
2289/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2290///
2291/// @param EnteringContext Indicates whether we are going to enter the
2292/// context of the scope-specifier SS (if present).
2293///
2294/// @returns True if any decls were found (but possibly ambiguous)
2295bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2296 bool AllowBuiltinCreation, bool EnteringContext) {
2297 if (SS && SS->isInvalid()) {
2298 // When the scope specifier is invalid, don't even look for
2299 // anything.
2300 return false;
2301 }
2302
2303 if (SS && SS->isSet()) {
2304 NestedNameSpecifier *NNS = SS->getScopeRep();
2305 if (NNS->getKind() == NestedNameSpecifier::Super)
2306 return LookupInSuper(R, NNS->getAsRecordDecl());
2307
2308 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2309 // We have resolved the scope specifier to a particular declaration
2310 // contex, and will perform name lookup in that context.
2311 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2312 return false;
2313
2314 R.setContextRange(SS->getRange());
2315 return LookupQualifiedName(R, DC);
2316 }
2317
2318 // We could not resolve the scope specified to a specific declaration
2319 // context, which means that SS refers to an unknown specialization.
2320 // Name lookup can't find anything in this case.
2321 R.setNotFoundInCurrentInstantiation();
2322 R.setContextRange(SS->getRange());
2323 return false;
2324 }
2325
2326 // Perform unqualified name lookup starting in the given scope.
2327 return LookupName(R, S, AllowBuiltinCreation);
2328}
2329
2330/// Perform qualified name lookup into all base classes of the given
2331/// class.
2332///
2333/// \param R captures both the lookup criteria and any lookup results found.
2334///
2335/// \param Class The context in which qualified name lookup will
2336/// search. Name lookup will search in all base classes merging the results.
2337///
2338/// @returns True if any decls were found (but possibly ambiguous)
2339bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2340 // The access-control rules we use here are essentially the rules for
2341 // doing a lookup in Class that just magically skipped the direct
2342 // members of Class itself. That is, the naming class is Class, and the
2343 // access includes the access of the base.
2344 for (const auto &BaseSpec : Class->bases()) {
2345 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2346 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2347 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2348 Result.setBaseObjectType(Context.getRecordType(Class));
2349 LookupQualifiedName(Result, RD);
2350
2351 // Copy the lookup results into the target, merging the base's access into
2352 // the path access.
2353 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2354 R.addDecl(I.getDecl(),
2355 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2356 I.getAccess()));
2357 }
2358
2359 Result.suppressDiagnostics();
2360 }
2361
2362 R.resolveKind();
2363 R.setNamingClass(Class);
2364
2365 return !R.empty();
2366}
2367
2368/// Produce a diagnostic describing the ambiguity that resulted
2369/// from name lookup.
2370///
2371/// \param Result The result of the ambiguous lookup to be diagnosed.
2372void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2373 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2373, __PRETTY_FUNCTION__))
;
2374
2375 DeclarationName Name = Result.getLookupName();
2376 SourceLocation NameLoc = Result.getNameLoc();
2377 SourceRange LookupRange = Result.getContextRange();
2378
2379 switch (Result.getAmbiguityKind()) {
2380 case LookupResult::AmbiguousBaseSubobjects: {
2381 CXXBasePaths *Paths = Result.getBasePaths();
2382 QualType SubobjectType = Paths->front().back().Base->getType();
2383 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2384 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2385 << LookupRange;
2386
2387 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2388 while (isa<CXXMethodDecl>(*Found) &&
2389 cast<CXXMethodDecl>(*Found)->isStatic())
2390 ++Found;
2391
2392 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2393 break;
2394 }
2395
2396 case LookupResult::AmbiguousBaseSubobjectTypes: {
2397 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2398 << Name << LookupRange;
2399
2400 CXXBasePaths *Paths = Result.getBasePaths();
2401 std::set<Decl *> DeclsPrinted;
2402 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2403 PathEnd = Paths->end();
2404 Path != PathEnd; ++Path) {
2405 Decl *D = Path->Decls.front();
2406 if (DeclsPrinted.insert(D).second)
2407 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2408 }
2409 break;
2410 }
2411
2412 case LookupResult::AmbiguousTagHiding: {
2413 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2414
2415 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2416
2417 for (auto *D : Result)
2418 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2419 TagDecls.insert(TD);
2420 Diag(TD->getLocation(), diag::note_hidden_tag);
2421 }
2422
2423 for (auto *D : Result)
2424 if (!isa<TagDecl>(D))
2425 Diag(D->getLocation(), diag::note_hiding_object);
2426
2427 // For recovery purposes, go ahead and implement the hiding.
2428 LookupResult::Filter F = Result.makeFilter();
2429 while (F.hasNext()) {
2430 if (TagDecls.count(F.next()))
2431 F.erase();
2432 }
2433 F.done();
2434 break;
2435 }
2436
2437 case LookupResult::AmbiguousReference: {
2438 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2439
2440 for (auto *D : Result)
2441 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2442 break;
2443 }
2444 }
2445}
2446
2447namespace {
2448 struct AssociatedLookup {
2449 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2450 Sema::AssociatedNamespaceSet &Namespaces,
2451 Sema::AssociatedClassSet &Classes)
2452 : S(S), Namespaces(Namespaces), Classes(Classes),
2453 InstantiationLoc(InstantiationLoc) {
2454 }
2455
2456 bool addClassTransitive(CXXRecordDecl *RD) {
2457 Classes.insert(RD);
2458 return ClassesTransitive.insert(RD);
2459 }
2460
2461 Sema &S;
2462 Sema::AssociatedNamespaceSet &Namespaces;
2463 Sema::AssociatedClassSet &Classes;
2464 SourceLocation InstantiationLoc;
2465
2466 private:
2467 Sema::AssociatedClassSet ClassesTransitive;
2468 };
2469} // end anonymous namespace
2470
2471static void
2472addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2473
2474// Given the declaration context \param Ctx of a class, class template or
2475// enumeration, add the associated namespaces to \param Namespaces as described
2476// in [basic.lookup.argdep]p2.
2477static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2478 DeclContext *Ctx) {
2479 // The exact wording has been changed in C++14 as a result of
2480 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2481 // to all language versions since it is possible to return a local type
2482 // from a lambda in C++11.
2483 //
2484 // C++14 [basic.lookup.argdep]p2:
2485 // If T is a class type [...]. Its associated namespaces are the innermost
2486 // enclosing namespaces of its associated classes. [...]
2487 //
2488 // If T is an enumeration type, its associated namespace is the innermost
2489 // enclosing namespace of its declaration. [...]
2490
2491 // We additionally skip inline namespaces. The innermost non-inline namespace
2492 // contains all names of all its nested inline namespaces anyway, so we can
2493 // replace the entire inline namespace tree with its root.
2494 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2495 Ctx = Ctx->getParent();
2496
2497 Namespaces.insert(Ctx->getPrimaryContext());
2498}
2499
2500// Add the associated classes and namespaces for argument-dependent
2501// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2502static void
2503addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2504 const TemplateArgument &Arg) {
2505 // C++ [basic.lookup.argdep]p2, last bullet:
2506 // -- [...] ;
2507 switch (Arg.getKind()) {
2508 case TemplateArgument::Null:
2509 break;
2510
2511 case TemplateArgument::Type:
2512 // [...] the namespaces and classes associated with the types of the
2513 // template arguments provided for template type parameters (excluding
2514 // template template parameters)
2515 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2516 break;
2517
2518 case TemplateArgument::Template:
2519 case TemplateArgument::TemplateExpansion: {
2520 // [...] the namespaces in which any template template arguments are
2521 // defined; and the classes in which any member templates used as
2522 // template template arguments are defined.
2523 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2524 if (ClassTemplateDecl *ClassTemplate
2525 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2526 DeclContext *Ctx = ClassTemplate->getDeclContext();
2527 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2528 Result.Classes.insert(EnclosingClass);
2529 // Add the associated namespace for this class.
2530 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2531 }
2532 break;
2533 }
2534
2535 case TemplateArgument::Declaration:
2536 case TemplateArgument::Integral:
2537 case TemplateArgument::Expression:
2538 case TemplateArgument::NullPtr:
2539 // [Note: non-type template arguments do not contribute to the set of
2540 // associated namespaces. ]
2541 break;
2542
2543 case TemplateArgument::Pack:
2544 for (const auto &P : Arg.pack_elements())
2545 addAssociatedClassesAndNamespaces(Result, P);
2546 break;
2547 }
2548}
2549
2550// Add the associated classes and namespaces for argument-dependent lookup
2551// with an argument of class type (C++ [basic.lookup.argdep]p2).
2552static void
2553addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2554 CXXRecordDecl *Class) {
2555
2556 // Just silently ignore anything whose name is __va_list_tag.
2557 if (Class->getDeclName() == Result.S.VAListTagName)
2558 return;
2559
2560 // C++ [basic.lookup.argdep]p2:
2561 // [...]
2562 // -- If T is a class type (including unions), its associated
2563 // classes are: the class itself; the class of which it is a
2564 // member, if any; and its direct and indirect base classes.
2565 // Its associated namespaces are the innermost enclosing
2566 // namespaces of its associated classes.
2567
2568 // Add the class of which it is a member, if any.
2569 DeclContext *Ctx = Class->getDeclContext();
2570 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2571 Result.Classes.insert(EnclosingClass);
2572
2573 // Add the associated namespace for this class.
2574 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2575
2576 // -- If T is a template-id, its associated namespaces and classes are
2577 // the namespace in which the template is defined; for member
2578 // templates, the member template's class; the namespaces and classes
2579 // associated with the types of the template arguments provided for
2580 // template type parameters (excluding template template parameters); the
2581 // namespaces in which any template template arguments are defined; and
2582 // the classes in which any member templates used as template template
2583 // arguments are defined. [Note: non-type template arguments do not
2584 // contribute to the set of associated namespaces. ]
2585 if (ClassTemplateSpecializationDecl *Spec
2586 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2587 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2588 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2589 Result.Classes.insert(EnclosingClass);
2590 // Add the associated namespace for this class.
2591 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2592
2593 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2594 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2595 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2596 }
2597
2598 // Add the class itself. If we've already transitively visited this class,
2599 // we don't need to visit base classes.
2600 if (!Result.addClassTransitive(Class))
2601 return;
2602
2603 // Only recurse into base classes for complete types.
2604 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2605 Result.S.Context.getRecordType(Class)))
2606 return;
2607
2608 // Add direct and indirect base classes along with their associated
2609 // namespaces.
2610 SmallVector<CXXRecordDecl *, 32> Bases;
2611 Bases.push_back(Class);
2612 while (!Bases.empty()) {
2613 // Pop this class off the stack.
2614 Class = Bases.pop_back_val();
2615
2616 // Visit the base classes.
2617 for (const auto &Base : Class->bases()) {
2618 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2619 // In dependent contexts, we do ADL twice, and the first time around,
2620 // the base type might be a dependent TemplateSpecializationType, or a
2621 // TemplateTypeParmType. If that happens, simply ignore it.
2622 // FIXME: If we want to support export, we probably need to add the
2623 // namespace of the template in a TemplateSpecializationType, or even
2624 // the classes and namespaces of known non-dependent arguments.
2625 if (!BaseType)
2626 continue;
2627 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2628 if (Result.addClassTransitive(BaseDecl)) {
2629 // Find the associated namespace for this base class.
2630 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2631 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2632
2633 // Make sure we visit the bases of this base class.
2634 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2635 Bases.push_back(BaseDecl);
2636 }
2637 }
2638 }
2639}
2640
2641// Add the associated classes and namespaces for
2642// argument-dependent lookup with an argument of type T
2643// (C++ [basic.lookup.koenig]p2).
2644static void
2645addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2646 // C++ [basic.lookup.koenig]p2:
2647 //
2648 // For each argument type T in the function call, there is a set
2649 // of zero or more associated namespaces and a set of zero or more
2650 // associated classes to be considered. The sets of namespaces and
2651 // classes is determined entirely by the types of the function
2652 // arguments (and the namespace of any template template
2653 // argument). Typedef names and using-declarations used to specify
2654 // the types do not contribute to this set. The sets of namespaces
2655 // and classes are determined in the following way:
2656
2657 SmallVector<const Type *, 16> Queue;
2658 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2659
2660 while (true) {
2661 switch (T->getTypeClass()) {
2662
2663#define TYPE(Class, Base)
2664#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2665#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2666#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2667#define ABSTRACT_TYPE(Class, Base)
2668#include "clang/AST/TypeNodes.def"
2669 // T is canonical. We can also ignore dependent types because
2670 // we don't need to do ADL at the definition point, but if we
2671 // wanted to implement template export (or if we find some other
2672 // use for associated classes and namespaces...) this would be
2673 // wrong.
2674 break;
2675
2676 // -- If T is a pointer to U or an array of U, its associated
2677 // namespaces and classes are those associated with U.
2678 case Type::Pointer:
2679 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2680 continue;
2681 case Type::ConstantArray:
2682 case Type::IncompleteArray:
2683 case Type::VariableArray:
2684 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2685 continue;
2686
2687 // -- If T is a fundamental type, its associated sets of
2688 // namespaces and classes are both empty.
2689 case Type::Builtin:
2690 break;
2691
2692 // -- If T is a class type (including unions), its associated
2693 // classes are: the class itself; the class of which it is
2694 // a member, if any; and its direct and indirect base classes.
2695 // Its associated namespaces are the innermost enclosing
2696 // namespaces of its associated classes.
2697 case Type::Record: {
2698 CXXRecordDecl *Class =
2699 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2700 addAssociatedClassesAndNamespaces(Result, Class);
2701 break;
2702 }
2703
2704 // -- If T is an enumeration type, its associated namespace
2705 // is the innermost enclosing namespace of its declaration.
2706 // If it is a class member, its associated class is the
2707 // member’s class; else it has no associated class.
2708 case Type::Enum: {
2709 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2710
2711 DeclContext *Ctx = Enum->getDeclContext();
2712 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2713 Result.Classes.insert(EnclosingClass);
2714
2715 // Add the associated namespace for this enumeration.
2716 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2717
2718 break;
2719 }
2720
2721 // -- If T is a function type, its associated namespaces and
2722 // classes are those associated with the function parameter
2723 // types and those associated with the return type.
2724 case Type::FunctionProto: {
2725 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2726 for (const auto &Arg : Proto->param_types())
2727 Queue.push_back(Arg.getTypePtr());
2728 // fallthrough
2729 LLVM_FALLTHROUGH[[clang::fallthrough]];
2730 }
2731 case Type::FunctionNoProto: {
2732 const FunctionType *FnType = cast<FunctionType>(T);
2733 T = FnType->getReturnType().getTypePtr();
2734 continue;
2735 }
2736
2737 // -- If T is a pointer to a member function of a class X, its
2738 // associated namespaces and classes are those associated
2739 // with the function parameter types and return type,
2740 // together with those associated with X.
2741 //
2742 // -- If T is a pointer to a data member of class X, its
2743 // associated namespaces and classes are those associated
2744 // with the member type together with those associated with
2745 // X.
2746 case Type::MemberPointer: {
2747 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2748
2749 // Queue up the class type into which this points.
2750 Queue.push_back(MemberPtr->getClass());
2751
2752 // And directly continue with the pointee type.
2753 T = MemberPtr->getPointeeType().getTypePtr();
2754 continue;
2755 }
2756
2757 // As an extension, treat this like a normal pointer.
2758 case Type::BlockPointer:
2759 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2760 continue;
2761
2762 // References aren't covered by the standard, but that's such an
2763 // obvious defect that we cover them anyway.
2764 case Type::LValueReference:
2765 case Type::RValueReference:
2766 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2767 continue;
2768
2769 // These are fundamental types.
2770 case Type::Vector:
2771 case Type::ExtVector:
2772 case Type::Complex:
2773 break;
2774
2775 // Non-deduced auto types only get here for error cases.
2776 case Type::Auto:
2777 case Type::DeducedTemplateSpecialization:
2778 break;
2779
2780 // If T is an Objective-C object or interface type, or a pointer to an
2781 // object or interface type, the associated namespace is the global
2782 // namespace.
2783 case Type::ObjCObject:
2784 case Type::ObjCInterface:
2785 case Type::ObjCObjectPointer:
2786 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2787 break;
2788
2789 // Atomic types are just wrappers; use the associations of the
2790 // contained type.
2791 case Type::Atomic:
2792 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2793 continue;
2794 case Type::Pipe:
2795 T = cast<PipeType>(T)->getElementType().getTypePtr();
2796 continue;
2797 }
2798
2799 if (Queue.empty())
2800 break;
2801 T = Queue.pop_back_val();
2802 }
2803}
2804
2805/// Find the associated classes and namespaces for
2806/// argument-dependent lookup for a call with the given set of
2807/// arguments.
2808///
2809/// This routine computes the sets of associated classes and associated
2810/// namespaces searched by argument-dependent lookup
2811/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2812void Sema::FindAssociatedClassesAndNamespaces(
2813 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2814 AssociatedNamespaceSet &AssociatedNamespaces,
2815 AssociatedClassSet &AssociatedClasses) {
2816 AssociatedNamespaces.clear();
2817 AssociatedClasses.clear();
2818
2819 AssociatedLookup Result(*this, InstantiationLoc,
2820 AssociatedNamespaces, AssociatedClasses);
2821
2822 // C++ [basic.lookup.koenig]p2:
2823 // For each argument type T in the function call, there is a set
2824 // of zero or more associated namespaces and a set of zero or more
2825 // associated classes to be considered. The sets of namespaces and
2826 // classes is determined entirely by the types of the function
2827 // arguments (and the namespace of any template template
2828 // argument).
2829 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2830 Expr *Arg = Args[ArgIdx];
2831
2832 if (Arg->getType() != Context.OverloadTy) {
2833 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2834 continue;
2835 }
2836
2837 // [...] In addition, if the argument is the name or address of a
2838 // set of overloaded functions and/or function templates, its
2839 // associated classes and namespaces are the union of those
2840 // associated with each of the members of the set: the namespace
2841 // in which the function or function template is defined and the
2842 // classes and namespaces associated with its (non-dependent)
2843 // parameter types and return type.
2844 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
2845
2846 for (const NamedDecl *D : OE->decls()) {
2847 // Look through any using declarations to find the underlying function.
2848 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2849
2850 // Add the classes and namespaces associated with the parameter
2851 // types and return type of this function.
2852 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2853 }
2854 }
2855}
2856
2857NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2858 SourceLocation Loc,
2859 LookupNameKind NameKind,
2860 RedeclarationKind Redecl) {
2861 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2862 LookupName(R, S);
2863 return R.getAsSingle<NamedDecl>();
2864}
2865
2866/// Find the protocol with the given name, if any.
2867ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2868 SourceLocation IdLoc,
2869 RedeclarationKind Redecl) {
2870 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2871 LookupObjCProtocolName, Redecl);
2872 return cast_or_null<ObjCProtocolDecl>(D);
2873}
2874
2875void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2876 QualType T1, QualType T2,
2877 UnresolvedSetImpl &Functions) {
2878 // C++ [over.match.oper]p3:
2879 // -- The set of non-member candidates is the result of the
2880 // unqualified lookup of operator@ in the context of the
2881 // expression according to the usual rules for name lookup in
2882 // unqualified function calls (3.4.2) except that all member
2883 // functions are ignored.
2884 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2885 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2886 LookupName(Operators, S);
2887
2888 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2888, __PRETTY_FUNCTION__))
;
2889 Functions.append(Operators.begin(), Operators.end());
2890}
2891
2892Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2893 CXXSpecialMember SM,
2894 bool ConstArg,
2895 bool VolatileArg,
2896 bool RValueThis,
2897 bool ConstThis,
2898 bool VolatileThis) {
2899 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2900, __PRETTY_FUNCTION__))
2900 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2900, __PRETTY_FUNCTION__))
;
2901 RD = RD->getDefinition();
2902 if (RValueThis || ConstThis || VolatileThis)
2903 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2904, __PRETTY_FUNCTION__))
2904 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2904, __PRETTY_FUNCTION__))
;
2905 if (ConstArg || VolatileArg)
2906 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2907, __PRETTY_FUNCTION__))
2907 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2907, __PRETTY_FUNCTION__))
;
2908
2909 // FIXME: Get the caller to pass in a location for the lookup.
2910 SourceLocation LookupLoc = RD->getLocation();
2911
2912 llvm::FoldingSetNodeID ID;
2913 ID.AddPointer(RD);
2914 ID.AddInteger(SM);
2915 ID.AddInteger(ConstArg);
2916 ID.AddInteger(VolatileArg);
2917 ID.AddInteger(RValueThis);
2918 ID.AddInteger(ConstThis);
2919 ID.AddInteger(VolatileThis);
2920
2921 void *InsertPoint;
2922 SpecialMemberOverloadResultEntry *Result =
2923 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2924
2925 // This was already cached
2926 if (Result)
2927 return *Result;
2928
2929 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2930 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2931 SpecialMemberCache.InsertNode(Result, InsertPoint);
2932
2933 if (SM == CXXDestructor) {
2934 if (RD->needsImplicitDestructor())
2935 DeclareImplicitDestructor(RD);
2936 CXXDestructorDecl *DD = RD->getDestructor();
2937 assert(DD && "record without a destructor")((DD && "record without a destructor") ? static_cast<
void> (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 2937, __PRETTY_FUNCTION__))
;
2938 Result->setMethod(DD);
2939 Result->setKind(DD->isDeleted() ?
2940 SpecialMemberOverloadResult::NoMemberOrDeleted :
2941 SpecialMemberOverloadResult::Success);
2942 return *Result;
2943 }
2944
2945 // Prepare for overload resolution. Here we construct a synthetic argument
2946 // if necessary and make sure that implicit functions are declared.
2947 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2948 DeclarationName Name;
2949 Expr *Arg = nullptr;
2950 unsigned NumArgs;
2951
2952 QualType ArgType = CanTy;
2953 ExprValueKind VK = VK_LValue;
2954
2955 if (SM == CXXDefaultConstructor) {
2956 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2957 NumArgs = 0;
2958 if (RD->needsImplicitDefaultConstructor())
2959 DeclareImplicitDefaultConstructor(RD);
2960 } else {
2961 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2962 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2963 if (RD->needsImplicitCopyConstructor())
2964 DeclareImplicitCopyConstructor(RD);
2965 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2966 DeclareImplicitMoveConstructor(RD);
2967 } else {
2968 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2969 if (RD->needsImplicitCopyAssignment())
2970 DeclareImplicitCopyAssignment(RD);
2971 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2972 DeclareImplicitMoveAssignment(RD);
2973 }
2974
2975 if (ConstArg)
2976 ArgType.addConst();
2977 if (VolatileArg)
2978 ArgType.addVolatile();
2979
2980 // This isn't /really/ specified by the standard, but it's implied
2981 // we should be working from an RValue in the case of move to ensure
2982 // that we prefer to bind to rvalue references, and an LValue in the
2983 // case of copy to ensure we don't bind to rvalue references.
2984 // Possibly an XValue is actually correct in the case of move, but
2985 // there is no semantic difference for class types in this restricted
2986 // case.
2987 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2988 VK = VK_LValue;
2989 else
2990 VK = VK_RValue;
2991 }
2992
2993 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2994
2995 if (SM != CXXDefaultConstructor) {
2996 NumArgs = 1;
2997 Arg = &FakeArg;
2998 }
2999
3000 // Create the object argument
3001 QualType ThisTy = CanTy;
3002 if (ConstThis)
3003 ThisTy.addConst();
3004 if (VolatileThis)
3005 ThisTy.addVolatile();
3006 Expr::Classification Classification =
3007 OpaqueValueExpr(LookupLoc, ThisTy,
3008 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3009
3010 // Now we perform lookup on the name we computed earlier and do overload
3011 // resolution. Lookup is only performed directly into the class since there
3012 // will always be a (possibly implicit) declaration to shadow any others.
3013 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3014 DeclContext::lookup_result R = RD->lookup(Name);
3015
3016 if (R.empty()) {
3017 // We might have no default constructor because we have a lambda's closure
3018 // type, rather than because there's some other declared constructor.
3019 // Every class has a copy/move constructor, copy/move assignment, and
3020 // destructor.
3021 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3022, __PRETTY_FUNCTION__))
3022 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3022, __PRETTY_FUNCTION__))
;
3023 Result->setMethod(nullptr);
3024 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3025 return *Result;
3026 }
3027
3028 // Copy the candidates as our processing of them may load new declarations
3029 // from an external source and invalidate lookup_result.
3030 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3031
3032 for (NamedDecl *CandDecl : Candidates) {
3033 if (CandDecl->isInvalidDecl())
3034 continue;
3035
3036 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3037 auto CtorInfo = getConstructorInfo(Cand);
3038 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3039 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3040 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3041 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3042 else if (CtorInfo)
3043 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3044 llvm::makeArrayRef(&Arg, NumArgs), OCS,
3045 /*SuppressUserConversions*/ true);
3046 else
3047 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3048 /*SuppressUserConversions*/ true);
3049 } else if (FunctionTemplateDecl *Tmpl =
3050 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3051 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3052 AddMethodTemplateCandidate(
3053 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3054 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3055 else if (CtorInfo)
3056 AddTemplateOverloadCandidate(
3057 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3058 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3059 else
3060 AddTemplateOverloadCandidate(
3061 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3062 } else {
3063 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
3064 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
;
3065 }
3066 }
3067
3068 OverloadCandidateSet::iterator Best;
3069 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3070 case OR_Success:
3071 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3072 Result->setKind(SpecialMemberOverloadResult::Success);
3073 break;
3074
3075 case OR_Deleted:
3076 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3077 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3078 break;
3079
3080 case OR_Ambiguous:
3081 Result->setMethod(nullptr);
3082 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3083 break;
3084
3085 case OR_No_Viable_Function:
3086 Result->setMethod(nullptr);
3087 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3088 break;
3089 }
3090
3091 return *Result;
3092}
3093
3094/// Look up the default constructor for the given class.
3095CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3096 SpecialMemberOverloadResult Result =
3097 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3098 false, false);
3099
3100 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3101}
3102
3103/// Look up the copying constructor for the given class.
3104CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3105 unsigned Quals) {
3106 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3107, __PRETTY_FUNCTION__))
3107 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3107, __PRETTY_FUNCTION__))
;
3108 SpecialMemberOverloadResult Result =
3109 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3110 Quals & Qualifiers::Volatile, false, false, false);
3111
3112 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3113}
3114
3115/// Look up the moving constructor for the given class.
3116CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3117 unsigned Quals) {
3118 SpecialMemberOverloadResult Result =
3119 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3120 Quals & Qualifiers::Volatile, false, false, false);
3121
3122 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3123}
3124
3125/// Look up the constructors for the given class.
3126DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3127 // If the implicit constructors have not yet been declared, do so now.
3128 if (CanDeclareSpecialMemberFunction(Class)) {
3129 if (Class->needsImplicitDefaultConstructor())
3130 DeclareImplicitDefaultConstructor(Class);
3131 if (Class->needsImplicitCopyConstructor())
3132 DeclareImplicitCopyConstructor(Class);
3133 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3134 DeclareImplicitMoveConstructor(Class);
3135 }
3136
3137 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3138 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3139 return Class->lookup(Name);
3140}
3141
3142/// Look up the copying assignment operator for the given class.
3143CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3144 unsigned Quals, bool RValueThis,
3145 unsigned ThisQuals) {
3146 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3147, __PRETTY_FUNCTION__))
3147 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3147, __PRETTY_FUNCTION__))
;
3148 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3149, __PRETTY_FUNCTION__))
3149 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3149, __PRETTY_FUNCTION__))
;
3150 SpecialMemberOverloadResult Result =
3151 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3152 Quals & Qualifiers::Volatile, RValueThis,
3153 ThisQuals & Qualifiers::Const,
3154 ThisQuals & Qualifiers::Volatile);
3155
3156 return Result.getMethod();
3157}
3158
3159/// Look up the moving assignment operator for the given class.
3160CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3161 unsigned Quals,
3162 bool RValueThis,
3163 unsigned ThisQuals) {
3164 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3165, __PRETTY_FUNCTION__))
3165 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3165, __PRETTY_FUNCTION__))
;
3166 SpecialMemberOverloadResult Result =
3167 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3168 Quals & Qualifiers::Volatile, RValueThis,
3169 ThisQuals & Qualifiers::Const,
3170 ThisQuals & Qualifiers::Volatile);
3171
3172 return Result.getMethod();
3173}
3174
3175/// Look for the destructor of the given class.
3176///
3177/// During semantic analysis, this routine should be used in lieu of
3178/// CXXRecordDecl::getDestructor().
3179///
3180/// \returns The destructor for this class.
3181CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3182 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3183 false, false, false,
3184 false, false).getMethod());
3185}
3186
3187/// LookupLiteralOperator - Determine which literal operator should be used for
3188/// a user-defined literal, per C++11 [lex.ext].
3189///
3190/// Normal overload resolution is not used to select which literal operator to
3191/// call for a user-defined literal. Look up the provided literal operator name,
3192/// and filter the results to the appropriate set for the given argument types.
3193Sema::LiteralOperatorLookupResult
3194Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3195 ArrayRef<QualType> ArgTys,
3196 bool AllowRaw, bool AllowTemplate,
3197 bool AllowStringTemplate, bool DiagnoseMissing) {
3198 LookupName(R, S);
3199 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3200, __PRETTY_FUNCTION__))
3200 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3200, __PRETTY_FUNCTION__))
;
3201
3202 // Filter the lookup results appropriately.
3203 LookupResult::Filter F = R.makeFilter();
3204
3205 bool FoundRaw = false;
3206 bool FoundTemplate = false;
3207 bool FoundStringTemplate = false;
3208 bool FoundExactMatch = false;
3209
3210 while (F.hasNext()) {
3211 Decl *D = F.next();
3212 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3213 D = USD->getTargetDecl();
3214
3215 // If the declaration we found is invalid, skip it.
3216 if (D->isInvalidDecl()) {
3217 F.erase();
3218 continue;
3219 }
3220
3221 bool IsRaw = false;
3222 bool IsTemplate = false;
3223 bool IsStringTemplate = false;
3224 bool IsExactMatch = false;
3225
3226 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3227 if (FD->getNumParams() == 1 &&
3228 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3229 IsRaw = true;
3230 else if (FD->getNumParams() == ArgTys.size()) {
3231 IsExactMatch = true;
3232 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3233 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3234 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3235 IsExactMatch = false;
3236 break;
3237 }
3238 }
3239 }
3240 }
3241 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3242 TemplateParameterList *Params = FD->getTemplateParameters();
3243 if (Params->size() == 1)
3244 IsTemplate = true;
3245 else
3246 IsStringTemplate = true;
3247 }
3248
3249 if (IsExactMatch) {
3250 FoundExactMatch = true;
3251 AllowRaw = false;
3252 AllowTemplate = false;
3253 AllowStringTemplate = false;
3254 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3255 // Go through again and remove the raw and template decls we've
3256 // already found.
3257 F.restart();
3258 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3259 }
3260 } else if (AllowRaw && IsRaw) {
3261 FoundRaw = true;
3262 } else if (AllowTemplate && IsTemplate) {
3263 FoundTemplate = true;
3264 } else if (AllowStringTemplate && IsStringTemplate) {
3265 FoundStringTemplate = true;
3266 } else {
3267 F.erase();
3268 }
3269 }
3270
3271 F.done();
3272
3273 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3274 // parameter type, that is used in preference to a raw literal operator
3275 // or literal operator template.
3276 if (FoundExactMatch)
3277 return LOLR_Cooked;
3278
3279 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3280 // operator template, but not both.
3281 if (FoundRaw && FoundTemplate) {
3282 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3283 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3284 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3285 return LOLR_Error;
3286 }
3287
3288 if (FoundRaw)
3289 return LOLR_Raw;
3290
3291 if (FoundTemplate)
3292 return LOLR_Template;
3293
3294 if (FoundStringTemplate)
3295 return LOLR_StringTemplate;
3296
3297 // Didn't find anything we could use.
3298 if (DiagnoseMissing) {
3299 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3300 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3301 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3302 << (AllowTemplate || AllowStringTemplate);
3303 return LOLR_Error;
3304 }
3305
3306 return LOLR_ErrorNoDiagnostic;
3307}
3308
3309void ADLResult::insert(NamedDecl *New) {
3310 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3311
3312 // If we haven't yet seen a decl for this key, or the last decl
3313 // was exactly this one, we're done.
3314 if (Old == nullptr || Old == New) {
3315 Old = New;
3316 return;
3317 }
3318
3319 // Otherwise, decide which is a more recent redeclaration.
3320 FunctionDecl *OldFD = Old->getAsFunction();
3321 FunctionDecl *NewFD = New->getAsFunction();
3322
3323 FunctionDecl *Cursor = NewFD;
3324 while (true) {
3325 Cursor = Cursor->getPreviousDecl();
3326
3327 // If we got to the end without finding OldFD, OldFD is the newer
3328 // declaration; leave things as they are.
3329 if (!Cursor) return;
3330
3331 // If we do find OldFD, then NewFD is newer.
3332 if (Cursor == OldFD) break;
3333
3334 // Otherwise, keep looking.
3335 }
3336
3337 Old = New;
3338}
3339
3340void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3341 ArrayRef<Expr *> Args, ADLResult &Result) {
3342 // Find all of the associated namespaces and classes based on the
3343 // arguments we have.
3344 AssociatedNamespaceSet AssociatedNamespaces;
3345 AssociatedClassSet AssociatedClasses;
3346 FindAssociatedClassesAndNamespaces(Loc, Args,
3347 AssociatedNamespaces,
3348 AssociatedClasses);
3349
3350 // C++ [basic.lookup.argdep]p3:
3351 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3352 // and let Y be the lookup set produced by argument dependent
3353 // lookup (defined as follows). If X contains [...] then Y is
3354 // empty. Otherwise Y is the set of declarations found in the
3355 // namespaces associated with the argument types as described
3356 // below. The set of declarations found by the lookup of the name
3357 // is the union of X and Y.
3358 //
3359 // Here, we compute Y and add its members to the overloaded
3360 // candidate set.
3361 for (auto *NS : AssociatedNamespaces) {
3362 // When considering an associated namespace, the lookup is the
3363 // same as the lookup performed when the associated namespace is
3364 // used as a qualifier (3.4.3.2) except that:
3365 //
3366 // -- Any using-directives in the associated namespace are
3367 // ignored.
3368 //
3369 // -- Any namespace-scope friend functions declared in
3370 // associated classes are visible within their respective
3371 // namespaces even if they are not visible during an ordinary
3372 // lookup (11.4).
3373 DeclContext::lookup_result R = NS->lookup(Name);
3374 for (auto *D : R) {
3375 auto *Underlying = D;
3376 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3377 Underlying = USD->getTargetDecl();
3378
3379 if (!isa<FunctionDecl>(Underlying) &&
3380 !isa<FunctionTemplateDecl>(Underlying))
3381 continue;
3382
3383 // The declaration is visible to argument-dependent lookup if either
3384 // it's ordinarily visible or declared as a friend in an associated
3385 // class.
3386 bool Visible = false;
3387 for (D = D->getMostRecentDecl(); D;
3388 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3389 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3390 if (isVisible(D)) {
3391 Visible = true;
3392 break;
3393 }
3394 } else if (D->getFriendObjectKind()) {
3395 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3396 if (AssociatedClasses.count(RD) && isVisible(D)) {
3397 Visible = true;
3398 break;
3399 }
3400 }
3401 }
3402
3403 // FIXME: Preserve D as the FoundDecl.
3404 if (Visible)
3405 Result.insert(Underlying);
3406 }
3407 }
3408}
3409
3410//----------------------------------------------------------------------------
3411// Search for all visible declarations.
3412//----------------------------------------------------------------------------
3413VisibleDeclConsumer::~VisibleDeclConsumer() { }
3414
3415bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3416
3417namespace {
3418
3419class ShadowContextRAII;
3420
3421class VisibleDeclsRecord {
3422public:
3423 /// An entry in the shadow map, which is optimized to store a
3424 /// single declaration (the common case) but can also store a list
3425 /// of declarations.
3426 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3427
3428private:
3429 /// A mapping from declaration names to the declarations that have
3430 /// this name within a particular scope.
3431 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3432
3433 /// A list of shadow maps, which is used to model name hiding.
3434 std::list<ShadowMap> ShadowMaps;
3435
3436 /// The declaration contexts we have already visited.
3437 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3438
3439 friend class ShadowContextRAII;
3440
3441public:
3442 /// Determine whether we have already visited this context
3443 /// (and, if not, note that we are going to visit that context now).
3444 bool visitedContext(DeclContext *Ctx) {
3445 return !VisitedContexts.insert(Ctx).second;
3446 }
3447
3448 bool alreadyVisitedContext(DeclContext *Ctx) {
3449 return VisitedContexts.count(Ctx);
3450 }
3451
3452 /// Determine whether the given declaration is hidden in the
3453 /// current scope.
3454 ///
3455 /// \returns the declaration that hides the given declaration, or
3456 /// NULL if no such declaration exists.
3457 NamedDecl *checkHidden(NamedDecl *ND);
3458
3459 /// Add a declaration to the current shadow map.
3460 void add(NamedDecl *ND) {
3461 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3462 }
3463};
3464
3465/// RAII object that records when we've entered a shadow context.
3466class ShadowContextRAII {
3467 VisibleDeclsRecord &Visible;
3468
3469 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3470
3471public:
3472 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3473 Visible.ShadowMaps.emplace_back();
3474 }
3475
3476 ~ShadowContextRAII() {
3477 Visible.ShadowMaps.pop_back();
3478 }
3479};
3480
3481} // end anonymous namespace
3482
3483NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3484 unsigned IDNS = ND->getIdentifierNamespace();
3485 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3486 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3487 SM != SMEnd; ++SM) {
3488 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3489 if (Pos == SM->end())
3490 continue;
3491
3492 for (auto *D : Pos->second) {
3493 // A tag declaration does not hide a non-tag declaration.
3494 if (D->hasTagIdentifierNamespace() &&
3495 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3496 Decl::IDNS_ObjCProtocol)))
3497 continue;
3498
3499 // Protocols are in distinct namespaces from everything else.
3500 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3501 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3502 D->getIdentifierNamespace() != IDNS)
3503 continue;
3504
3505 // Functions and function templates in the same scope overload
3506 // rather than hide. FIXME: Look for hiding based on function
3507 // signatures!
3508 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3509 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3510 SM == ShadowMaps.rbegin())
3511 continue;
3512
3513 // A shadow declaration that's created by a resolved using declaration
3514 // is not hidden by the same using declaration.
3515 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3516 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3517 continue;
3518
3519 // We've found a declaration that hides this one.
3520 return D;
3521 }
3522 }
3523
3524 return nullptr;
3525}
3526
3527static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3528 bool QualifiedNameLookup,
3529 bool InBaseClass,
3530 VisibleDeclConsumer &Consumer,
3531 VisibleDeclsRecord &Visited,
3532 bool IncludeDependentBases,
3533 bool LoadExternal) {
3534 if (!Ctx)
3535 return;
3536
3537 // Make sure we don't visit the same context twice.
3538 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3539 return;
3540
3541 Consumer.EnteredContext(Ctx);
3542
3543 // Outside C++, lookup results for the TU live on identifiers.
3544 if (isa<TranslationUnitDecl>(Ctx) &&
3545 !Result.getSema().getLangOpts().CPlusPlus) {
3546 auto &S = Result.getSema();
3547 auto &Idents = S.Context.Idents;
3548
3549 // Ensure all external identifiers are in the identifier table.
3550 if (LoadExternal)
3551 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3552 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3553 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3554 Idents.get(Name);
3555 }
3556
3557 // Walk all lookup results in the TU for each identifier.
3558 for (const auto &Ident : Idents) {
3559 for (auto I = S.IdResolver.begin(Ident.getValue()),
3560 E = S.IdResolver.end();
3561 I != E; ++I) {
3562 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3563 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3564 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3565 Visited.add(ND);
3566 }
3567 }
3568 }
3569 }
3570
3571 return;
3572 }
3573
3574 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3575 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3576
3577 // We sometimes skip loading namespace-level results (they tend to be huge).
3578 bool Load = LoadExternal ||
3579 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3580 // Enumerate all of the results in this context.
3581 for (DeclContextLookupResult R :
3582 Load ? Ctx->lookups()
3583 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3584 for (auto *D : R) {
3585 if (auto *ND = Result.getAcceptableDecl(D)) {
3586 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3587 Visited.add(ND);
3588 }
3589 }
3590 }
3591
3592 // Traverse using directives for qualified name lookup.
3593 if (QualifiedNameLookup) {
3594 ShadowContextRAII Shadow(Visited);
3595 for (auto I : Ctx->using_directives()) {
3596 if (!Result.getSema().isVisible(I))
3597 continue;
3598 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3599 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3600 IncludeDependentBases, LoadExternal);
3601 }
3602 }
3603
3604 // Traverse the contexts of inherited C++ classes.
3605 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3606 if (!Record->hasDefinition())
3607 return;
3608
3609 for (const auto &B : Record->bases()) {
3610 QualType BaseType = B.getType();
3611
3612 RecordDecl *RD;
3613 if (BaseType->isDependentType()) {
3614 if (!IncludeDependentBases) {
3615 // Don't look into dependent bases, because name lookup can't look
3616 // there anyway.
3617 continue;
3618 }
3619 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3620 if (!TST)
3621 continue;
3622 TemplateName TN = TST->getTemplateName();
3623 const auto *TD =
3624 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3625 if (!TD)
3626 continue;
3627 RD = TD->getTemplatedDecl();
3628 } else {
3629 const auto *Record = BaseType->getAs<RecordType>();
3630 if (!Record)
3631 continue;
3632 RD = Record->getDecl();
3633 }
3634
3635 // FIXME: It would be nice to be able to determine whether referencing
3636 // a particular member would be ambiguous. For example, given
3637 //
3638 // struct A { int member; };
3639 // struct B { int member; };
3640 // struct C : A, B { };
3641 //
3642 // void f(C *c) { c->### }
3643 //
3644 // accessing 'member' would result in an ambiguity. However, we
3645 // could be smart enough to qualify the member with the base
3646 // class, e.g.,
3647 //
3648 // c->B::member
3649 //
3650 // or
3651 //
3652 // c->A::member
3653
3654 // Find results in this base class (and its bases).
3655 ShadowContextRAII Shadow(Visited);
3656 LookupVisibleDecls(RD, Result, QualifiedNameLookup, /*InBaseClass=*/true,
3657 Consumer, Visited, IncludeDependentBases,
3658 LoadExternal);
3659 }
3660 }
3661
3662 // Traverse the contexts of Objective-C classes.
3663 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3664 // Traverse categories.
3665 for (auto *Cat : IFace->visible_categories()) {
3666 ShadowContextRAII Shadow(Visited);
3667 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3668 Visited, IncludeDependentBases, LoadExternal);
3669 }
3670
3671 // Traverse protocols.
3672 for (auto *I : IFace->all_referenced_protocols()) {
3673 ShadowContextRAII Shadow(Visited);
3674 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3675 Visited, IncludeDependentBases, LoadExternal);
3676 }
3677
3678 // Traverse the superclass.
3679 if (IFace->getSuperClass()) {
3680 ShadowContextRAII Shadow(Visited);
3681 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3682 true, Consumer, Visited, IncludeDependentBases,
3683 LoadExternal);
3684 }
3685
3686 // If there is an implementation, traverse it. We do this to find
3687 // synthesized ivars.
3688 if (IFace->getImplementation()) {
3689 ShadowContextRAII Shadow(Visited);
3690 LookupVisibleDecls(IFace->getImplementation(), Result,
3691 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3692 IncludeDependentBases, LoadExternal);
3693 }
3694 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3695 for (auto *I : Protocol->protocols()) {
3696 ShadowContextRAII Shadow(Visited);
3697 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3698 Visited, IncludeDependentBases, LoadExternal);
3699 }
3700 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3701 for (auto *I : Category->protocols()) {
3702 ShadowContextRAII Shadow(Visited);
3703 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3704 Visited, IncludeDependentBases, LoadExternal);
3705 }
3706
3707 // If there is an implementation, traverse it.
3708 if (Category->getImplementation()) {
3709 ShadowContextRAII Shadow(Visited);
3710 LookupVisibleDecls(Category->getImplementation(), Result,
3711 QualifiedNameLookup, true, Consumer, Visited,
3712 IncludeDependentBases, LoadExternal);
3713 }
3714 }
3715}
3716
3717static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3718 UnqualUsingDirectiveSet &UDirs,
3719 VisibleDeclConsumer &Consumer,
3720 VisibleDeclsRecord &Visited,
3721 bool LoadExternal) {
3722 if (!S)
3723 return;
3724
3725 if (!S->getEntity() ||
3726 (!S->getParent() &&
3727 !Visited.alreadyVisitedContext(S->getEntity())) ||
3728 (S->getEntity())->isFunctionOrMethod()) {
3729 FindLocalExternScope FindLocals(Result);
3730 // Walk through the declarations in this Scope. The consumer might add new
3731 // decls to the scope as part of deserialization, so make a copy first.
3732 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3733 for (Decl *D : ScopeDecls) {
3734 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3735 if ((ND = Result.getAcceptableDecl(ND))) {
3736 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3737 Visited.add(ND);
3738 }
3739 }
3740 }
3741
3742 // FIXME: C++ [temp.local]p8
3743 DeclContext *Entity = nullptr;
3744 if (S->getEntity()) {
3745 // Look into this scope's declaration context, along with any of its
3746 // parent lookup contexts (e.g., enclosing classes), up to the point
3747 // where we hit the context stored in the next outer scope.
3748 Entity = S->getEntity();
3749 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3750
3751 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3752 Ctx = Ctx->getLookupParent()) {
3753 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3754 if (Method->isInstanceMethod()) {
3755 // For instance methods, look for ivars in the method's interface.
3756 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3757 Result.getNameLoc(), Sema::LookupMemberName);
3758 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3759 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3760 /*InBaseClass=*/false, Consumer, Visited,
3761 /*IncludeDependentBases=*/false, LoadExternal);
3762 }
3763 }
3764
3765 // We've already performed all of the name lookup that we need
3766 // to for Objective-C methods; the next context will be the
3767 // outer scope.
3768 break;
3769 }
3770
3771 if (Ctx->isFunctionOrMethod())
3772 continue;
3773
3774 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3775 /*InBaseClass=*/false, Consumer, Visited,
3776 /*IncludeDependentBases=*/false, LoadExternal);
3777 }
3778 } else if (!S->getParent()) {
3779 // Look into the translation unit scope. We walk through the translation
3780 // unit's declaration context, because the Scope itself won't have all of
3781 // the declarations if we loaded a precompiled header.
3782 // FIXME: We would like the translation unit's Scope object to point to the
3783 // translation unit, so we don't need this special "if" branch. However,
3784 // doing so would force the normal C++ name-lookup code to look into the
3785 // translation unit decl when the IdentifierInfo chains would suffice.
3786 // Once we fix that problem (which is part of a more general "don't look
3787 // in DeclContexts unless we have to" optimization), we can eliminate this.
3788 Entity = Result.getSema().Context.getTranslationUnitDecl();
3789 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3790 /*InBaseClass=*/false, Consumer, Visited,
3791 /*IncludeDependentBases=*/false, LoadExternal);
3792 }
3793
3794 if (Entity) {
3795 // Lookup visible declarations in any namespaces found by using
3796 // directives.
3797 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3798 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3799 Result, /*QualifiedNameLookup=*/false,
3800 /*InBaseClass=*/false, Consumer, Visited,
3801 /*IncludeDependentBases=*/false, LoadExternal);
3802 }
3803
3804 // Lookup names in the parent scope.
3805 ShadowContextRAII Shadow(Visited);
3806 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3807 LoadExternal);
3808}
3809
3810void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3811 VisibleDeclConsumer &Consumer,
3812 bool IncludeGlobalScope, bool LoadExternal) {
3813 // Determine the set of using directives available during
3814 // unqualified name lookup.
3815 Scope *Initial = S;
3816 UnqualUsingDirectiveSet UDirs(*this);
3817 if (getLangOpts().CPlusPlus) {
3818 // Find the first namespace or translation-unit scope.
3819 while (S && !isNamespaceOrTranslationUnitScope(S))
3820 S = S->getParent();
3821
3822 UDirs.visitScopeChain(Initial, S);
3823 }
3824 UDirs.done();
3825
3826 // Look for visible declarations.
3827 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3828 Result.setAllowHidden(Consumer.includeHiddenDecls());
3829 VisibleDeclsRecord Visited;
3830 if (!IncludeGlobalScope)
3831 Visited.visitedContext(Context.getTranslationUnitDecl());
3832 ShadowContextRAII Shadow(Visited);
3833 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3834}
3835
3836void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3837 VisibleDeclConsumer &Consumer,
3838 bool IncludeGlobalScope,
3839 bool IncludeDependentBases, bool LoadExternal) {
3840 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3841 Result.setAllowHidden(Consumer.includeHiddenDecls());
3842 VisibleDeclsRecord Visited;
3843 if (!IncludeGlobalScope)
3844 Visited.visitedContext(Context.getTranslationUnitDecl());
3845 ShadowContextRAII Shadow(Visited);
3846 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3847 /*InBaseClass=*/false, Consumer, Visited,
3848 IncludeDependentBases, LoadExternal);
3849}
3850
3851/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3852/// If GnuLabelLoc is a valid source location, then this is a definition
3853/// of an __label__ label name, otherwise it is a normal label definition
3854/// or use.
3855LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3856 SourceLocation GnuLabelLoc) {
3857 // Do a lookup to see if we have a label with this name already.
3858 NamedDecl *Res = nullptr;
3859
3860 if (GnuLabelLoc.isValid()) {
3861 // Local label definitions always shadow existing labels.
3862 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3863 Scope *S = CurScope;
3864 PushOnScopeChains(Res, S, true);
3865 return cast<LabelDecl>(Res);
3866 }
3867
3868 // Not a GNU local label.
3869 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3870 // If we found a label, check to see if it is in the same context as us.
3871 // When in a Block, we don't want to reuse a label in an enclosing function.
3872 if (Res && Res->getDeclContext() != CurContext)
3873 Res = nullptr;
3874 if (!Res) {
3875 // If not forward referenced or defined already, create the backing decl.
3876 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3877 Scope *S = CurScope->getFnParent();
3878 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 3878, __PRETTY_FUNCTION__))
;
3879 PushOnScopeChains(Res, S, true);
3880 }
3881 return cast<LabelDecl>(Res);
3882}
3883
3884//===----------------------------------------------------------------------===//
3885// Typo correction
3886//===----------------------------------------------------------------------===//
3887
3888static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3889 TypoCorrection &Candidate) {
3890 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3891 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3892}
3893
3894static void LookupPotentialTypoResult(Sema &SemaRef,
3895 LookupResult &Res,
3896 IdentifierInfo *Name,
3897 Scope *S, CXXScopeSpec *SS,
3898 DeclContext *MemberContext,
3899 bool EnteringContext,
3900 bool isObjCIvarLookup,
3901 bool FindHidden);
3902
3903/// Check whether the declarations found for a typo correction are
3904/// visible. Set the correction's RequiresImport flag to true if none of the
3905/// declarations are visible, false otherwise.
3906static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3907 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3908
3909 for (/**/; DI != DE; ++DI)
3910 if (!LookupResult::isVisible(SemaRef, *DI))
3911 break;
3912 // No filtering needed if all decls are visible.
3913 if (DI == DE) {
3914 TC.setRequiresImport(false);
3915 return;
3916 }
3917
3918 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3919 bool AnyVisibleDecls = !NewDecls.empty();
3920
3921 for (/**/; DI != DE; ++DI) {
3922 if (LookupResult::isVisible(SemaRef, *DI)) {
3923 if (!AnyVisibleDecls) {
3924 // Found a visible decl, discard all hidden ones.
3925 AnyVisibleDecls = true;
3926 NewDecls.clear();
3927 }
3928 NewDecls.push_back(*DI);
3929 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3930 NewDecls.push_back(*DI);
3931 }
3932
3933 if (NewDecls.empty())
3934 TC = TypoCorrection();
3935 else {
3936 TC.setCorrectionDecls(NewDecls);
3937 TC.setRequiresImport(!AnyVisibleDecls);
3938 }
3939}
3940
3941// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3942// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3943// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3944static void getNestedNameSpecifierIdentifiers(
3945 NestedNameSpecifier *NNS,
3946 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3947 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3948 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3949 else
3950 Identifiers.clear();
3951
3952 const IdentifierInfo *II = nullptr;
3953
3954 switch (NNS->getKind()) {
3955 case NestedNameSpecifier::Identifier:
3956 II = NNS->getAsIdentifier();
3957 break;
3958
3959 case NestedNameSpecifier::Namespace:
3960 if (NNS->getAsNamespace()->isAnonymousNamespace())
3961 return;
3962 II = NNS->getAsNamespace()->getIdentifier();
3963 break;
3964
3965 case NestedNameSpecifier::NamespaceAlias:
3966 II = NNS->getAsNamespaceAlias()->getIdentifier();
3967 break;
3968
3969 case NestedNameSpecifier::TypeSpecWithTemplate:
3970 case NestedNameSpecifier::TypeSpec:
3971 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3972 break;
3973
3974 case NestedNameSpecifier::Global:
3975 case NestedNameSpecifier::Super:
3976 return;
3977 }
3978
3979 if (II)
3980 Identifiers.push_back(II);
3981}
3982
3983void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3984 DeclContext *Ctx, bool InBaseClass) {
3985 // Don't consider hidden names for typo correction.
3986 if (Hiding)
3987 return;
3988
3989 // Only consider entities with identifiers for names, ignoring
3990 // special names (constructors, overloaded operators, selectors,
3991 // etc.).
3992 IdentifierInfo *Name = ND->getIdentifier();
3993 if (!Name)
3994 return;
3995
3996 // Only consider visible declarations and declarations from modules with
3997 // names that exactly match.
3998 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3999 return;
4000
4001 FoundName(Name->getName());
4002}
4003
4004void TypoCorrectionConsumer::FoundName(StringRef Name) {
4005 // Compute the edit distance between the typo and the name of this
4006 // entity, and add the identifier to the list of results.
4007 addName(Name, nullptr);
4008}
4009
4010void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4011 // Compute the edit distance between the typo and this keyword,
4012 // and add the keyword to the list of results.
4013 addName(Keyword, nullptr, nullptr, true);
4014}
4015
4016void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4017 NestedNameSpecifier *NNS, bool isKeyword) {
4018 // Use a simple length-based heuristic to determine the minimum possible
4019 // edit distance. If the minimum isn't good enough, bail out early.
4020 StringRef TypoStr = Typo->getName();
4021 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4022 if (MinED && TypoStr.size() / MinED < 3)
4023 return;
4024
4025 // Compute an upper bound on the allowable edit distance, so that the
4026 // edit-distance algorithm can short-circuit.
4027 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4028 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4029 if (ED > UpperBound) return;
4030
4031 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4032 if (isKeyword) TC.makeKeyword();
4033 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4034 addCorrection(TC);
4035}
4036
4037static const unsigned MaxTypoDistanceResultSets = 5;
4038
4039void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4040 StringRef TypoStr = Typo->getName();
4041 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4042
4043 // For very short typos, ignore potential corrections that have a different
4044 // base identifier from the typo or which have a normalized edit distance
4045 // longer than the typo itself.
4046 if (TypoStr.size() < 3 &&
4047 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4048 return;
4049
4050 // If the correction is resolved but is not viable, ignore it.
4051 if (Correction.isResolved()) {
4052 checkCorrectionVisibility(SemaRef, Correction);
4053 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4054 return;
4055 }
4056
4057 TypoResultList &CList =
4058 CorrectionResults[Correction.getEditDistance(false)][Name];
4059
4060 if (!CList.empty() && !CList.back().isResolved())
4061 CList.pop_back();
4062 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4063 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4064 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4065 RI != RIEnd; ++RI) {
4066 // If the Correction refers to a decl already in the result list,
4067 // replace the existing result if the string representation of Correction
4068 // comes before the current result alphabetically, then stop as there is
4069 // nothing more to be done to add Correction to the candidate set.
4070 if (RI->getCorrectionDecl() == NewND) {
4071 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4072 *RI = Correction;
4073 return;
4074 }
4075 }
4076 }
4077 if (CList.empty() || Correction.isResolved())
4078 CList.push_back(Correction);
4079
4080 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4081 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4082}
4083
4084void TypoCorrectionConsumer::addNamespaces(
4085 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4086 SearchNamespaces = true;
4087
4088 for (auto KNPair : KnownNamespaces)
4089 Namespaces.addNameSpecifier(KNPair.first);
1
Calling 'NamespaceSpecifierSet::addNameSpecifier'
4090
4091 bool SSIsTemplate = false;
4092 if (NestedNameSpecifier *NNS =
4093 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4094 if (const Type *T = NNS->getAsType())
4095 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4096 }
4097 // Do not transform this into an iterator-based loop. The loop body can
4098 // trigger the creation of further types (through lazy deserialization) and
4099 // invalid iterators into this list.
4100 auto &Types = SemaRef.getASTContext().getTypes();
4101 for (unsigned I = 0; I != Types.size(); ++I) {
4102 const auto *TI = Types[I];
4103 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4104 CD = CD->getCanonicalDecl();
4105 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4106 !CD->isUnion() && CD->getIdentifier() &&
4107 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4108 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4109 Namespaces.addNameSpecifier(CD);
4110 }
4111 }
4112}
4113
4114const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4115 if (++CurrentTCIndex < ValidatedCorrections.size())
4116 return ValidatedCorrections[CurrentTCIndex];
4117
4118 CurrentTCIndex = ValidatedCorrections.size();
4119 while (!CorrectionResults.empty()) {
4120 auto DI = CorrectionResults.begin();
4121 if (DI->second.empty()) {
4122 CorrectionResults.erase(DI);
4123 continue;
4124 }
4125
4126 auto RI = DI->second.begin();
4127 if (RI->second.empty()) {
4128 DI->second.erase(RI);
4129 performQualifiedLookups();
4130 continue;
4131 }
4132
4133 TypoCorrection TC = RI->second.pop_back_val();
4134 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4135 ValidatedCorrections.push_back(TC);
4136 return ValidatedCorrections[CurrentTCIndex];
4137 }
4138 }
4139 return ValidatedCorrections[0]; // The empty correction.
4140}
4141
4142bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4143 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4144 DeclContext *TempMemberContext = MemberContext;
4145 CXXScopeSpec *TempSS = SS.get();
4146retry_lookup:
4147 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4148 EnteringContext,
4149 CorrectionValidator->IsObjCIvarLookup,
4150 Name == Typo && !Candidate.WillReplaceSpecifier());
4151 switch (Result.getResultKind()) {
4152 case LookupResult::NotFound:
4153 case LookupResult::NotFoundInCurrentInstantiation:
4154 case LookupResult::FoundUnresolvedValue:
4155 if (TempSS) {
4156 // Immediately retry the lookup without the given CXXScopeSpec
4157 TempSS = nullptr;
4158 Candidate.WillReplaceSpecifier(true);
4159 goto retry_lookup;
4160 }
4161 if (TempMemberContext) {
4162 if (SS && !TempSS)
4163 TempSS = SS.get();
4164 TempMemberContext = nullptr;
4165 goto retry_lookup;
4166 }
4167 if (SearchNamespaces)
4168 QualifiedResults.push_back(Candidate);
4169 break;
4170
4171 case LookupResult::Ambiguous:
4172 // We don't deal with ambiguities.
4173 break;
4174
4175 case LookupResult::Found:
4176 case LookupResult::FoundOverloaded:
4177 // Store all of the Decls for overloaded symbols
4178 for (auto *TRD : Result)
4179 Candidate.addCorrectionDecl(TRD);
4180 checkCorrectionVisibility(SemaRef, Candidate);
4181 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4182 if (SearchNamespaces)
4183 QualifiedResults.push_back(Candidate);
4184 break;
4185 }
4186 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4187 return true;
4188 }
4189 return false;
4190}
4191
4192void TypoCorrectionConsumer::performQualifiedLookups() {
4193 unsigned TypoLen = Typo->getName().size();
4194 for (const TypoCorrection &QR : QualifiedResults) {
4195 for (const auto &NSI : Namespaces) {
4196 DeclContext *Ctx = NSI.DeclCtx;
4197 const Type *NSType = NSI.NameSpecifier->getAsType();
4198
4199 // If the current NestedNameSpecifier refers to a class and the
4200 // current correction candidate is the name of that class, then skip
4201 // it as it is unlikely a qualified version of the class' constructor
4202 // is an appropriate correction.
4203 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4204 nullptr) {
4205 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4206 continue;
4207 }
4208
4209 TypoCorrection TC(QR);
4210 TC.ClearCorrectionDecls();
4211 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4212 TC.setQualifierDistance(NSI.EditDistance);
4213 TC.setCallbackDistance(0); // Reset the callback distance
4214
4215 // If the current correction candidate and namespace combination are
4216 // too far away from the original typo based on the normalized edit
4217 // distance, then skip performing a qualified name lookup.
4218 unsigned TmpED = TC.getEditDistance(true);
4219 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4220 TypoLen / TmpED < 3)
4221 continue;
4222
4223 Result.clear();
4224 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4225 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4226 continue;
4227
4228 // Any corrections added below will be validated in subsequent
4229 // iterations of the main while() loop over the Consumer's contents.
4230 switch (Result.getResultKind()) {
4231 case LookupResult::Found:
4232 case LookupResult::FoundOverloaded: {
4233 if (SS && SS->isValid()) {
4234 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4235 std::string OldQualified;
4236 llvm::raw_string_ostream OldOStream(OldQualified);
4237 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4238 OldOStream << Typo->getName();
4239 // If correction candidate would be an identical written qualified
4240 // identifier, then the existing CXXScopeSpec probably included a
4241 // typedef that didn't get accounted for properly.
4242 if (OldOStream.str() == NewQualified)
4243 break;
4244 }
4245 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4246 TRD != TRDEnd; ++TRD) {
4247 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4248 NSType ? NSType->getAsCXXRecordDecl()
4249 : nullptr,
4250 TRD.getPair()) == Sema::AR_accessible)
4251 TC.addCorrectionDecl(*TRD);
4252 }
4253 if (TC.isResolved()) {
4254 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4255 addCorrection(TC);
4256 }
4257 break;
4258 }
4259 case LookupResult::NotFound:
4260 case LookupResult::NotFoundInCurrentInstantiation:
4261 case LookupResult::Ambiguous:
4262 case LookupResult::FoundUnresolvedValue:
4263 break;
4264 }
4265 }
4266 }
4267 QualifiedResults.clear();
4268}
4269
4270TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4271 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4272 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4273 if (NestedNameSpecifier *NNS =
4274 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4275 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4276 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4277
4278 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4279 }
4280 // Build the list of identifiers that would be used for an absolute
4281 // (from the global context) NestedNameSpecifier referring to the current
4282 // context.
4283 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4284 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4285 CurContextIdentifiers.push_back(ND->getIdentifier());
4286 }
4287
4288 // Add the global context as a NestedNameSpecifier
4289 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4290 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4291 DistanceMap[1].push_back(SI);
4292}
4293
4294auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4295 DeclContext *Start) -> DeclContextList {
4296 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 4296, __PRETTY_FUNCTION__))
;
4297 DeclContextList Chain;
4298 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4299 DC = DC->getLookupParent()) {
4300 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4301 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4302 !(ND && ND->isAnonymousNamespace()))
4303 Chain.push_back(DC->getPrimaryContext());
4304 }
4305 return Chain;
4306}
4307
4308unsigned
4309TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4310 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4311 unsigned NumSpecifiers = 0;
4312 for (DeclContext *C : llvm::reverse(DeclChain)) {
4313 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4314 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4315 ++NumSpecifiers;
4316 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4317 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4318 RD->getTypeForDecl());
4319 ++NumSpecifiers;
4320 }
4321 }
4322 return NumSpecifiers;
4323}
4324
4325void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4326 DeclContext *Ctx) {
4327 NestedNameSpecifier *NNS = nullptr;
4328 unsigned NumSpecifiers = 0;
4329 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4330 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4331
4332 // Eliminate common elements from the two DeclContext chains.
4333 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4334 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4335 break;
4336 NamespaceDeclChain.pop_back();
4337 }
4338
4339 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4340 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4341
4342 // Add an explicit leading '::' specifier if needed.
4343 if (NamespaceDeclChain.empty()) {
2
Taking true branch
4344 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4345 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4346 NumSpecifiers =
4347 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4348 } else if (NamedDecl *ND =
4349 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4350 IdentifierInfo *Name = ND->getIdentifier();
4351 bool SameNameSpecifier = false;
4352 if (std::find(CurNameSpecifierIdentifiers.begin(),
4353 CurNameSpecifierIdentifiers.end(),
4354 Name) != CurNameSpecifierIdentifiers.end()) {
4355 std::string NewNameSpecifier;
4356 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4357 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4358 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4359 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4360 SpecifierOStream.flush();
4361 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4362 }
4363 if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4364 CurContextIdentifiers.end()) {
4365 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4366 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4367 NumSpecifiers =
4368 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4369 }
4370 }
4371
4372 // If the built NestedNameSpecifier would be replacing an existing
4373 // NestedNameSpecifier, use the number of component identifiers that
4374 // would need to be changed as the edit distance instead of the number
4375 // of components in the built NestedNameSpecifier.
4376 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3
Assuming 'NNS' is non-null
4
Taking true branch
4377 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4378 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4379 NumSpecifiers = llvm::ComputeEditDistance(
5
Calling 'ComputeEditDistance<const clang::IdentifierInfo *>'
4380 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4381 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4382 }
4383
4384 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4385 DistanceMap[NumSpecifiers].push_back(SI);
4386}
4387
4388/// Perform name lookup for a possible result for typo correction.
4389static void LookupPotentialTypoResult(Sema &SemaRef,
4390 LookupResult &Res,
4391 IdentifierInfo *Name,
4392 Scope *S, CXXScopeSpec *SS,
4393 DeclContext *MemberContext,
4394 bool EnteringContext,
4395 bool isObjCIvarLookup,
4396 bool FindHidden) {
4397 Res.suppressDiagnostics();
4398 Res.clear();
4399 Res.setLookupName(Name);
4400 Res.setAllowHidden(FindHidden);
4401 if (MemberContext) {
4402 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4403 if (isObjCIvarLookup) {
4404 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4405 Res.addDecl(Ivar);
4406 Res.resolveKind();
4407 return;
4408 }
4409 }
4410
4411 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4412 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4413 Res.addDecl(Prop);
4414 Res.resolveKind();
4415 return;
4416 }
4417 }
4418
4419 SemaRef.LookupQualifiedName(Res, MemberContext);
4420 return;
4421 }
4422
4423 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4424 EnteringContext);
4425
4426 // Fake ivar lookup; this should really be part of
4427 // LookupParsedName.
4428 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4429 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4430 (Res.empty() ||
4431 (Res.isSingleResult() &&
4432 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4433 if (ObjCIvarDecl *IV
4434 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4435 Res.addDecl(IV);
4436 Res.resolveKind();
4437 }
4438 }
4439 }
4440}
4441
4442/// Add keywords to the consumer as possible typo corrections.
4443static void AddKeywordsToConsumer(Sema &SemaRef,
4444 TypoCorrectionConsumer &Consumer,
4445 Scope *S, CorrectionCandidateCallback &CCC,
4446 bool AfterNestedNameSpecifier) {
4447 if (AfterNestedNameSpecifier) {
4448 // For 'X::', we know exactly which keywords can appear next.
4449 Consumer.addKeywordResult("template");
4450 if (CCC.WantExpressionKeywords)
4451 Consumer.addKeywordResult("operator");
4452 return;
4453 }
4454
4455 if (CCC.WantObjCSuper)
4456 Consumer.addKeywordResult("super");
4457
4458 if (CCC.WantTypeSpecifiers) {
4459 // Add type-specifier keywords to the set of results.
4460 static const char *const CTypeSpecs[] = {
4461 "char", "const", "double", "enum", "float", "int", "long", "short",
4462 "signed", "struct", "union", "unsigned", "void", "volatile",
4463 "_Complex", "_Imaginary",
4464 // storage-specifiers as well
4465 "extern", "inline", "static", "typedef"
4466 };
4467
4468 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4469 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4470 Consumer.addKeywordResult(CTypeSpecs[I]);
4471
4472 if (SemaRef.getLangOpts().C99)
4473 Consumer.addKeywordResult("restrict");
4474 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4475 Consumer.addKeywordResult("bool");
4476 else if (SemaRef.getLangOpts().C99)
4477 Consumer.addKeywordResult("_Bool");
4478
4479 if (SemaRef.getLangOpts().CPlusPlus) {
4480 Consumer.addKeywordResult("class");
4481 Consumer.addKeywordResult("typename");
4482 Consumer.addKeywordResult("wchar_t");
4483
4484 if (SemaRef.getLangOpts().CPlusPlus11) {
4485 Consumer.addKeywordResult("char16_t");
4486 Consumer.addKeywordResult("char32_t");
4487 Consumer.addKeywordResult("constexpr");
4488 Consumer.addKeywordResult("decltype");
4489 Consumer.addKeywordResult("thread_local");
4490 }
4491 }
4492
4493 if (SemaRef.getLangOpts().GNUKeywords)
4494 Consumer.addKeywordResult("typeof");
4495 } else if (CCC.WantFunctionLikeCasts) {
4496 static const char *const CastableTypeSpecs[] = {
4497 "char", "double", "float", "int", "long", "short",
4498 "signed", "unsigned", "void"
4499 };
4500 for (auto *kw : CastableTypeSpecs)
4501 Consumer.addKeywordResult(kw);
4502 }
4503
4504 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4505 Consumer.addKeywordResult("const_cast");
4506 Consumer.addKeywordResult("dynamic_cast");
4507 Consumer.addKeywordResult("reinterpret_cast");
4508 Consumer.addKeywordResult("static_cast");
4509 }
4510
4511 if (CCC.WantExpressionKeywords) {
4512 Consumer.addKeywordResult("sizeof");
4513 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4514 Consumer.addKeywordResult("false");
4515 Consumer.addKeywordResult("true");
4516 }
4517
4518 if (SemaRef.getLangOpts().CPlusPlus) {
4519 static const char *const CXXExprs[] = {
4520 "delete", "new", "operator", "throw", "typeid"
4521 };
4522 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4523 for (unsigned I = 0; I != NumCXXExprs; ++I)
4524 Consumer.addKeywordResult(CXXExprs[I]);
4525
4526 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4527 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4528 Consumer.addKeywordResult("this");
4529
4530 if (SemaRef.getLangOpts().CPlusPlus11) {
4531 Consumer.addKeywordResult("alignof");
4532 Consumer.addKeywordResult("nullptr");
4533 }
4534 }
4535
4536 if (SemaRef.getLangOpts().C11) {
4537 // FIXME: We should not suggest _Alignof if the alignof macro
4538 // is present.
4539 Consumer.addKeywordResult("_Alignof");
4540 }
4541 }
4542
4543 if (CCC.WantRemainingKeywords) {
4544 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4545 // Statements.
4546 static const char *const CStmts[] = {
4547 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4548 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4549 for (unsigned I = 0; I != NumCStmts; ++I)
4550 Consumer.addKeywordResult(CStmts[I]);
4551
4552 if (SemaRef.getLangOpts().CPlusPlus) {
4553 Consumer.addKeywordResult("catch");
4554 Consumer.addKeywordResult("try");
4555 }
4556
4557 if (S && S->getBreakParent())
4558 Consumer.addKeywordResult("break");
4559
4560 if (S && S->getContinueParent())
4561 Consumer.addKeywordResult("continue");
4562
4563 if (SemaRef.getCurFunction() &&
4564 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4565 Consumer.addKeywordResult("case");
4566 Consumer.addKeywordResult("default");
4567 }
4568 } else {
4569 if (SemaRef.getLangOpts().CPlusPlus) {
4570 Consumer.addKeywordResult("namespace");
4571 Consumer.addKeywordResult("template");
4572 }
4573
4574 if (S && S->isClassScope()) {
4575 Consumer.addKeywordResult("explicit");
4576 Consumer.addKeywordResult("friend");
4577 Consumer.addKeywordResult("mutable");
4578 Consumer.addKeywordResult("private");
4579 Consumer.addKeywordResult("protected");
4580 Consumer.addKeywordResult("public");
4581 Consumer.addKeywordResult("virtual");
4582 }
4583 }
4584
4585 if (SemaRef.getLangOpts().CPlusPlus) {
4586 Consumer.addKeywordResult("using");
4587
4588 if (SemaRef.getLangOpts().CPlusPlus11)
4589 Consumer.addKeywordResult("static_assert");
4590 }
4591 }
4592}
4593
4594std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4595 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4596 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4597 DeclContext *MemberContext, bool EnteringContext,
4598 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4599
4600 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4601 DisableTypoCorrection)
4602 return nullptr;
4603
4604 // In Microsoft mode, don't perform typo correction in a template member
4605 // function dependent context because it interferes with the "lookup into
4606 // dependent bases of class templates" feature.
4607 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4608 isa<CXXMethodDecl>(CurContext))
4609 return nullptr;
4610
4611 // We only attempt to correct typos for identifiers.
4612 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4613 if (!Typo)
4614 return nullptr;
4615
4616 // If the scope specifier itself was invalid, don't try to correct
4617 // typos.
4618 if (SS && SS->isInvalid())
4619 return nullptr;
4620
4621 // Never try to correct typos during any kind of code synthesis.
4622 if (!CodeSynthesisContexts.empty())
4623 return nullptr;
4624
4625 // Don't try to correct 'super'.
4626 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4627 return nullptr;
4628
4629 // Abort if typo correction already failed for this specific typo.
4630 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4631 if (locs != TypoCorrectionFailures.end() &&
4632 locs->second.count(TypoName.getLoc()))
4633 return nullptr;
4634
4635 // Don't try to correct the identifier "vector" when in AltiVec mode.
4636 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4637 // remove this workaround.
4638 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4639 return nullptr;
4640
4641 // Provide a stop gap for files that are just seriously broken. Trying
4642 // to correct all typos can turn into a HUGE performance penalty, causing
4643 // some files to take minutes to get rejected by the parser.
4644 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4645 if (Limit && TyposCorrected >= Limit)
4646 return nullptr;
4647 ++TyposCorrected;
4648
4649 // If we're handling a missing symbol error, using modules, and the
4650 // special search all modules option is used, look for a missing import.
4651 if (ErrorRecovery && getLangOpts().Modules &&
4652 getLangOpts().ModulesSearchAll) {
4653 // The following has the side effect of loading the missing module.
4654 getModuleLoader().lookupMissingImports(Typo->getName(),
4655 TypoName.getBeginLoc());
4656 }
4657
4658 // Extend the lifetime of the callback. We delayed this until here
4659 // to avoid allocations in the hot path (which is where no typo correction
4660 // occurs). Note that CorrectionCandidateCallback is polymorphic and
4661 // initially stack-allocated.
4662 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4663 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4664 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4665 EnteringContext);
4666
4667 // Perform name lookup to find visible, similarly-named entities.
4668 bool IsUnqualifiedLookup = false;
4669 DeclContext *QualifiedDC = MemberContext;
4670 if (MemberContext) {
4671 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4672
4673 // Look in qualified interfaces.
4674 if (OPT) {
4675 for (auto *I : OPT->quals())
4676 LookupVisibleDecls(I, LookupKind, *Consumer);
4677 }
4678 } else if (SS && SS->isSet()) {
4679 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4680 if (!QualifiedDC)
4681 return nullptr;
4682
4683 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4684 } else {
4685 IsUnqualifiedLookup = true;
4686 }
4687
4688 // Determine whether we are going to search in the various namespaces for
4689 // corrections.
4690 bool SearchNamespaces
4691 = getLangOpts().CPlusPlus &&
4692 (IsUnqualifiedLookup || (SS && SS->isSet()));
4693
4694 if (IsUnqualifiedLookup || SearchNamespaces) {
4695 // For unqualified lookup, look through all of the names that we have
4696 // seen in this translation unit.
4697 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4698 for (const auto &I : Context.Idents)
4699 Consumer->FoundName(I.getKey());
4700
4701 // Walk through identifiers in external identifier sources.
4702 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4703 if (IdentifierInfoLookup *External
4704 = Context.Idents.getExternalIdentifierLookup()) {
4705 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4706 do {
4707 StringRef Name = Iter->Next();
4708 if (Name.empty())
4709 break;
4710
4711 Consumer->FoundName(Name);
4712 } while (true);
4713 }
4714 }
4715
4716 AddKeywordsToConsumer(*this, *Consumer, S,
4717 *Consumer->getCorrectionValidator(),
4718 SS && SS->isNotEmpty());
4719
4720 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4721 // to search those namespaces.
4722 if (SearchNamespaces) {
4723 // Load any externally-known namespaces.
4724 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4725 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4726 LoadedExternalKnownNamespaces = true;
4727 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4728 for (auto *N : ExternalKnownNamespaces)
4729 KnownNamespaces[N] = true;
4730 }
4731
4732 Consumer->addNamespaces(KnownNamespaces);
4733 }
4734
4735 return Consumer;
4736}
4737
4738/// Try to "correct" a typo in the source code by finding
4739/// visible declarations whose names are similar to the name that was
4740/// present in the source code.
4741///
4742/// \param TypoName the \c DeclarationNameInfo structure that contains
4743/// the name that was present in the source code along with its location.
4744///
4745/// \param LookupKind the name-lookup criteria used to search for the name.
4746///
4747/// \param S the scope in which name lookup occurs.
4748///
4749/// \param SS the nested-name-specifier that precedes the name we're
4750/// looking for, if present.
4751///
4752/// \param CCC A CorrectionCandidateCallback object that provides further
4753/// validation of typo correction candidates. It also provides flags for
4754/// determining the set of keywords permitted.
4755///
4756/// \param MemberContext if non-NULL, the context in which to look for
4757/// a member access expression.
4758///
4759/// \param EnteringContext whether we're entering the context described by
4760/// the nested-name-specifier SS.
4761///
4762/// \param OPT when non-NULL, the search for visible declarations will
4763/// also walk the protocols in the qualified interfaces of \p OPT.
4764///
4765/// \returns a \c TypoCorrection containing the corrected name if the typo
4766/// along with information such as the \c NamedDecl where the corrected name
4767/// was declared, and any additional \c NestedNameSpecifier needed to access
4768/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4769TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4770 Sema::LookupNameKind LookupKind,
4771 Scope *S, CXXScopeSpec *SS,
4772 CorrectionCandidateCallback &CCC,
4773 CorrectTypoKind Mode,
4774 DeclContext *MemberContext,
4775 bool EnteringContext,
4776 const ObjCObjectPointerType *OPT,
4777 bool RecordFailure) {
4778 // Always let the ExternalSource have the first chance at correction, even
4779 // if we would otherwise have given up.
4780 if (ExternalSource) {
4781 if (TypoCorrection Correction =
4782 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
4783 MemberContext, EnteringContext, OPT))
4784 return Correction;
4785 }
4786
4787 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4788 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4789 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4790 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4791 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
4792
4793 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4794 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4795 MemberContext, EnteringContext,
4796 OPT, Mode == CTK_ErrorRecovery);
4797
4798 if (!Consumer)
4799 return TypoCorrection();
4800
4801 // If we haven't found anything, we're done.
4802 if (Consumer->empty())
4803 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4804
4805 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4806 // is not more that about a third of the length of the typo's identifier.
4807 unsigned ED = Consumer->getBestEditDistance(true);
4808 unsigned TypoLen = Typo->getName().size();
4809 if (ED > 0 && TypoLen / ED < 3)
4810 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4811
4812 TypoCorrection BestTC = Consumer->getNextCorrection();
4813 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4814 if (!BestTC)
4815 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4816
4817 ED = BestTC.getEditDistance();
4818
4819 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4820 // If this was an unqualified lookup and we believe the callback
4821 // object wouldn't have filtered out possible corrections, note
4822 // that no correction was found.
4823 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4824 }
4825
4826 // If only a single name remains, return that result.
4827 if (!SecondBestTC ||
4828 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4829 const TypoCorrection &Result = BestTC;
4830
4831 // Don't correct to a keyword that's the same as the typo; the keyword
4832 // wasn't actually in scope.
4833 if (ED == 0 && Result.isKeyword())
4834 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4835
4836 TypoCorrection TC = Result;
4837 TC.setCorrectionRange(SS, TypoName);
4838 checkCorrectionVisibility(*this, TC);
4839 return TC;
4840 } else if (SecondBestTC && ObjCMessageReceiver) {
4841 // Prefer 'super' when we're completing in a message-receiver
4842 // context.
4843
4844 if (BestTC.getCorrection().getAsString() != "super") {
4845 if (SecondBestTC.getCorrection().getAsString() == "super")
4846 BestTC = SecondBestTC;
4847 else if ((*Consumer)["super"].front().isKeyword())
4848 BestTC = (*Consumer)["super"].front();
4849 }
4850 // Don't correct to a keyword that's the same as the typo; the keyword
4851 // wasn't actually in scope.
4852 if (BestTC.getEditDistance() == 0 ||
4853 BestTC.getCorrection().getAsString() != "super")
4854 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4855
4856 BestTC.setCorrectionRange(SS, TypoName);
4857 return BestTC;
4858 }
4859
4860 // Record the failure's location if needed and return an empty correction. If
4861 // this was an unqualified lookup and we believe the callback object did not
4862 // filter out possible corrections, also cache the failure for the typo.
4863 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4864}
4865
4866/// Try to "correct" a typo in the source code by finding
4867/// visible declarations whose names are similar to the name that was
4868/// present in the source code.
4869///
4870/// \param TypoName the \c DeclarationNameInfo structure that contains
4871/// the name that was present in the source code along with its location.
4872///
4873/// \param LookupKind the name-lookup criteria used to search for the name.
4874///
4875/// \param S the scope in which name lookup occurs.
4876///
4877/// \param SS the nested-name-specifier that precedes the name we're
4878/// looking for, if present.
4879///
4880/// \param CCC A CorrectionCandidateCallback object that provides further
4881/// validation of typo correction candidates. It also provides flags for
4882/// determining the set of keywords permitted.
4883///
4884/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4885/// diagnostics when the actual typo correction is attempted.
4886///
4887/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4888/// Expr from a typo correction candidate.
4889///
4890/// \param MemberContext if non-NULL, the context in which to look for
4891/// a member access expression.
4892///
4893/// \param EnteringContext whether we're entering the context described by
4894/// the nested-name-specifier SS.
4895///
4896/// \param OPT when non-NULL, the search for visible declarations will
4897/// also walk the protocols in the qualified interfaces of \p OPT.
4898///
4899/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4900/// Expr representing the result of performing typo correction, or nullptr if
4901/// typo correction is not possible. If nullptr is returned, no diagnostics will
4902/// be emitted and it is the responsibility of the caller to emit any that are
4903/// needed.
4904TypoExpr *Sema::CorrectTypoDelayed(
4905 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4906 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4907 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4908 DeclContext *MemberContext, bool EnteringContext,
4909 const ObjCObjectPointerType *OPT) {
4910 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4911 MemberContext, EnteringContext,
4912 OPT, Mode == CTK_ErrorRecovery);
4913
4914 // Give the external sema source a chance to correct the typo.
4915 TypoCorrection ExternalTypo;
4916 if (ExternalSource && Consumer) {
4917 ExternalTypo = ExternalSource->CorrectTypo(
4918 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4919 MemberContext, EnteringContext, OPT);
4920 if (ExternalTypo)
4921 Consumer->addCorrection(ExternalTypo);
4922 }
4923
4924 if (!Consumer || Consumer->empty())
4925 return nullptr;
4926
4927 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4928 // is not more that about a third of the length of the typo's identifier.
4929 unsigned ED = Consumer->getBestEditDistance(true);
4930 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4931 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4932 return nullptr;
4933
4934 ExprEvalContexts.back().NumTypos++;
4935 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4936}
4937
4938void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4939 if (!CDecl) return;
4940
4941 if (isKeyword())
4942 CorrectionDecls.clear();
4943
4944 CorrectionDecls.push_back(CDecl);
4945
4946 if (!CorrectionName)
4947 CorrectionName = CDecl->getDeclName();
4948}
4949
4950std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4951 if (CorrectionNameSpec) {
4952 std::string tmpBuffer;
4953 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4954 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4955 PrefixOStream << CorrectionName;
4956 return PrefixOStream.str();
4957 }
4958
4959 return CorrectionName.getAsString();
4960}
4961
4962bool CorrectionCandidateCallback::ValidateCandidate(
4963 const TypoCorrection &candidate) {
4964 if (!candidate.isResolved())
4965 return true;
4966
4967 if (candidate.isKeyword())
4968 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4969 WantRemainingKeywords || WantObjCSuper;
4970
4971 bool HasNonType = false;
4972 bool HasStaticMethod = false;
4973 bool HasNonStaticMethod = false;
4974 for (Decl *D : candidate) {
4975 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4976 D = FTD->getTemplatedDecl();
4977 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4978 if (Method->isStatic())
4979 HasStaticMethod = true;
4980 else
4981 HasNonStaticMethod = true;
4982 }
4983 if (!isa<TypeDecl>(D))
4984 HasNonType = true;
4985 }
4986
4987 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4988 !candidate.getCorrectionSpecifier())
4989 return false;
4990
4991 return WantTypeSpecifiers || HasNonType;
4992}
4993
4994FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4995 bool HasExplicitTemplateArgs,
4996 MemberExpr *ME)
4997 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4998 CurContext(SemaRef.CurContext), MemberFn(ME) {
4999 WantTypeSpecifiers = false;
5000 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5001 !HasExplicitTemplateArgs && NumArgs == 1;
5002 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5003 WantRemainingKeywords = false;
5004}
5005
5006bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5007 if (!candidate.getCorrectionDecl())
5008 return candidate.isKeyword();
5009
5010 for (auto *C : candidate) {
5011 FunctionDecl *FD = nullptr;
5012 NamedDecl *ND = C->getUnderlyingDecl();
5013 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5014 FD = FTD->getTemplatedDecl();
5015 if (!HasExplicitTemplateArgs && !FD) {
5016 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5017 // If the Decl is neither a function nor a template function,
5018 // determine if it is a pointer or reference to a function. If so,
5019 // check against the number of arguments expected for the pointee.
5020 QualType ValType = cast<ValueDecl>(ND)->getType();
5021 if (ValType.isNull())
5022 continue;
5023 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5024 ValType = ValType->getPointeeType();
5025 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5026 if (FPT->getNumParams() == NumArgs)
5027 return true;
5028 }
5029 }
5030
5031 // A typo for a function-style cast can look like a function call in C++.
5032 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5033 : isa<TypeDecl>(ND)) &&
5034 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5035 // Only a class or class template can take two or more arguments.
5036 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5037
5038 // Skip the current candidate if it is not a FunctionDecl or does not accept
5039 // the current number of arguments.
5040 if (!FD || !(FD->getNumParams() >= NumArgs &&
5041 FD->getMinRequiredArguments() <= NumArgs))
5042 continue;
5043
5044 // If the current candidate is a non-static C++ method, skip the candidate
5045 // unless the method being corrected--or the current DeclContext, if the
5046 // function being corrected is not a method--is a method in the same class
5047 // or a descendent class of the candidate's parent class.
5048 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5049 if (MemberFn || !MD->isStatic()) {
5050 CXXMethodDecl *CurMD =
5051 MemberFn
5052 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5053 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5054 CXXRecordDecl *CurRD =
5055 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5056 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5057 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5058 continue;
5059 }
5060 }
5061 return true;
5062 }
5063 return false;
5064}
5065
5066void Sema::diagnoseTypo(const TypoCorrection &Correction,
5067 const PartialDiagnostic &TypoDiag,
5068 bool ErrorRecovery) {
5069 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5070 ErrorRecovery);
5071}
5072
5073/// Find which declaration we should import to provide the definition of
5074/// the given declaration.
5075static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5076 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5077 return VD->getDefinition();
5078 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5079 return FD->getDefinition();
5080 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5081 return TD->getDefinition();
5082 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5083 return ID->getDefinition();
5084 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5085 return PD->getDefinition();
5086 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5087 return getDefinitionToImport(TD->getTemplatedDecl());
5088 return nullptr;
5089}
5090
5091void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5092 MissingImportKind MIK, bool Recover) {
5093 // Suggest importing a module providing the definition of this entity, if
5094 // possible.
5095 NamedDecl *Def = getDefinitionToImport(Decl);
5096 if (!Def)
5097 Def = Decl;
5098
5099 Module *Owner = getOwningModule(Def);
5100 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5100, __PRETTY_FUNCTION__))
;
5101
5102 llvm::SmallVector<Module*, 8> OwningModules;
5103 OwningModules.push_back(Owner);
5104 auto Merged = Context.getModulesWithMergedDefinition(Def);
5105 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5106
5107 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5108 Recover);
5109}
5110
5111/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5112/// suggesting the addition of a #include of the specified file.
5113static std::string getIncludeStringForHeader(Preprocessor &PP,
5114 const FileEntry *E) {
5115 bool IsSystem;
5116 auto Path =
5117 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
5118 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5119}
5120
5121void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5122 SourceLocation DeclLoc,
5123 ArrayRef<Module *> Modules,
5124 MissingImportKind MIK, bool Recover) {
5125 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5125, __PRETTY_FUNCTION__))
;
5126
5127 auto NotePrevious = [&] {
5128 unsigned DiagID;
5129 switch (MIK) {
5130 case MissingImportKind::Declaration:
5131 DiagID = diag::note_previous_declaration;
5132 break;
5133 case MissingImportKind::Definition:
5134 DiagID = diag::note_previous_definition;
5135 break;
5136 case MissingImportKind::DefaultArgument:
5137 DiagID = diag::note_default_argument_declared_here;
5138 break;
5139 case MissingImportKind::ExplicitSpecialization:
5140 DiagID = diag::note_explicit_specialization_declared_here;
5141 break;
5142 case MissingImportKind::PartialSpecialization:
5143 DiagID = diag::note_partial_specialization_declared_here;
5144 break;
5145 }
5146 Diag(DeclLoc, DiagID);
5147 };
5148
5149 // Weed out duplicates from module list.
5150 llvm::SmallVector<Module*, 8> UniqueModules;
5151 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5152 for (auto *M : Modules) {
5153 if (M->Kind == Module::GlobalModuleFragment)
5154 continue;
5155 if (UniqueModuleSet.insert(M).second)
5156 UniqueModules.push_back(M);
5157 }
5158
5159 if (UniqueModules.empty()) {
5160 // All candidates were global module fragments. Try to suggest a #include.
5161 const FileEntry *E =
5162 PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5163 // FIXME: Find a smart place to suggest inserting a #include, and add
5164 // a FixItHint there.
5165 Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5166 << (int)MIK << Decl << !!E
5167 << (E ? getIncludeStringForHeader(PP, E) : "");
5168 // Produce a "previous" note if it will point to a header rather than some
5169 // random global module fragment.
5170 // FIXME: Suppress the note backtrace even under
5171 // -fdiagnostics-show-note-include-stack.
5172 if (E)
5173 NotePrevious();
5174 if (Recover)
5175 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5176 return;
5177 }
5178
5179 Modules = UniqueModules;
5180
5181 if (Modules.size() > 1) {
5182 std::string ModuleList;
5183 unsigned N = 0;
5184 for (Module *M : Modules) {
5185 ModuleList += "\n ";
5186 if (++N == 5 && N != Modules.size()) {
5187 ModuleList += "[...]";
5188 break;
5189 }
5190 ModuleList += M->getFullModuleName();
5191 }
5192
5193 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5194 << (int)MIK << Decl << ModuleList;
5195 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5196 UseLoc, Modules[0], DeclLoc)) {
5197 // The right way to make the declaration visible is to include a header;
5198 // suggest doing so.
5199 //
5200 // FIXME: Find a smart place to suggest inserting a #include, and add
5201 // a FixItHint there.
5202 Diag(UseLoc, diag::err_module_unimported_use_header)
5203 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5204 << getIncludeStringForHeader(PP, E);
5205 } else {
5206 // FIXME: Add a FixItHint that imports the corresponding module.
5207 Diag(UseLoc, diag::err_module_unimported_use)
5208 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5209 }
5210
5211 NotePrevious();
5212
5213 // Try to recover by implicitly importing this module.
5214 if (Recover)
5215 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5216}
5217
5218/// Diagnose a successfully-corrected typo. Separated from the correction
5219/// itself to allow external validation of the result, etc.
5220///
5221/// \param Correction The result of performing typo correction.
5222/// \param TypoDiag The diagnostic to produce. This will have the corrected
5223/// string added to it (and usually also a fixit).
5224/// \param PrevNote A note to use when indicating the location of the entity to
5225/// which we are correcting. Will have the correction string added to it.
5226/// \param ErrorRecovery If \c true (the default), the caller is going to
5227/// recover from the typo as if the corrected string had been typed.
5228/// In this case, \c PDiag must be an error, and we will attach a fixit
5229/// to it.
5230void Sema::diagnoseTypo(const TypoCorrection &Correction,
5231 const PartialDiagnostic &TypoDiag,
5232 const PartialDiagnostic &PrevNote,
5233 bool ErrorRecovery) {
5234 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5235 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5236 FixItHint FixTypo = FixItHint::CreateReplacement(
5237 Correction.getCorrectionRange(), CorrectedStr);
5238
5239 // Maybe we're just missing a module import.
5240 if (Correction.requiresImport()) {
5241 NamedDecl *Decl = Correction.getFoundDecl();
5242 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5242, __PRETTY_FUNCTION__))
;
5243
5244 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5245 MissingImportKind::Declaration, ErrorRecovery);
5246 return;
5247 }
5248
5249 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5250 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5251
5252 NamedDecl *ChosenDecl =
5253 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5254 if (PrevNote.getDiagID() && ChosenDecl)
5255 Diag(ChosenDecl->getLocation(), PrevNote)
5256 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5257
5258 // Add any extra diagnostics.
5259 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5260 Diag(Correction.getCorrectionRange().getBegin(), PD);
5261}
5262
5263TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5264 TypoDiagnosticGenerator TDG,
5265 TypoRecoveryCallback TRC) {
5266 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5266, __PRETTY_FUNCTION__))
;
5267 auto TE = new (Context) TypoExpr(Context.DependentTy);
5268 auto &State = DelayedTypos[TE];
5269 State.Consumer = std::move(TCC);
5270 State.DiagHandler = std::move(TDG);
5271 State.RecoveryHandler = std::move(TRC);
5272 return TE;
5273}
5274
5275const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5276 auto Entry = DelayedTypos.find(TE);
5277 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5278, __PRETTY_FUNCTION__))
5278 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-9~svn361465/tools/clang/lib/Sema/SemaLookup.cpp"
, 5278, __PRETTY_FUNCTION__))
;
5279 return Entry->second;
5280}
5281
5282void Sema::clearDelayedTypo(TypoExpr *TE) {
5283 DelayedTypos.erase(TE);
5284}
5285
5286void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5287 DeclarationNameInfo Name(II, IILoc);
5288 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5289 R.suppressDiagnostics();
5290 R.setHideTags(false);
5291 LookupName(R, S);
5292 R.dump();
5293}

/build/llvm-toolchain-snapshot-9~svn361465/include/llvm/ADT/edit_distance.h

1//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a Levenshtein distance function that works for any two
10// sequences, with each element of each sequence being analogous to a character
11// in a string.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_EDIT_DISTANCE_H
16#define LLVM_ADT_EDIT_DISTANCE_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include <algorithm>
20#include <memory>
21
22namespace llvm {
23
24/// Determine the edit distance between two sequences.
25///
26/// \param FromArray the first sequence to compare.
27///
28/// \param ToArray the second sequence to compare.
29///
30/// \param AllowReplacements whether to allow element replacements (change one
31/// element into another) as a single operation, rather than as two operations
32/// (an insertion and a removal).
33///
34/// \param MaxEditDistance If non-zero, the maximum edit distance that this
35/// routine is allowed to compute. If the edit distance will exceed that
36/// maximum, returns \c MaxEditDistance+1.
37///
38/// \returns the minimum number of element insertions, removals, or (if
39/// \p AllowReplacements is \c true) replacements needed to transform one of
40/// the given sequences into the other. If zero, the sequences are identical.
41template<typename T>
42unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
43 bool AllowReplacements = true,
44 unsigned MaxEditDistance = 0) {
45 // The algorithm implemented below is the "classic"
46 // dynamic-programming algorithm for computing the Levenshtein
47 // distance, which is described here:
48 //
49 // http://en.wikipedia.org/wiki/Levenshtein_distance
50 //
51 // Although the algorithm is typically described using an m x n
52 // array, only one row plus one element are used at a time, so this
53 // implementation just keeps one vector for the row. To update one entry,
54 // only the entries to the left, top, and top-left are needed. The left
55 // entry is in Row[x-1], the top entry is what's in Row[x] from the last
56 // iteration, and the top-left entry is stored in Previous.
57 typename ArrayRef<T>::size_type m = FromArray.size();
58 typename ArrayRef<T>::size_type n = ToArray.size();
59
60 const unsigned SmallBufferSize = 64;
61 unsigned SmallBuffer[SmallBufferSize];
62 std::unique_ptr<unsigned[]> Allocated;
63 unsigned *Row = SmallBuffer;
64 if (n + 1 > SmallBufferSize) {
6
Assuming the condition is false
7
Taking false branch
65 Row = new unsigned[n + 1];
66 Allocated.reset(Row);
67 }
68
69 for (unsigned i = 1; i <= n; ++i)
8
Assuming 'i' is > 'n'
9
Loop condition is false. Execution continues on line 72
70 Row[i] = i;
71
72 for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
10
Assuming 'y' is > 'm'
11
Loop condition is false. Execution continues on line 96
73 Row[0] = y;
74 unsigned BestThisRow = Row[0];
75
76 unsigned Previous = y - 1;
77 for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
78 int OldRow = Row[x];
79 if (AllowReplacements) {
80 Row[x] = std::min(
81 Previous + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
82 std::min(Row[x-1], Row[x])+1);
83 }
84 else {
85 if (FromArray[y-1] == ToArray[x-1]) Row[x] = Previous;
86 else Row[x] = std::min(Row[x-1], Row[x]) + 1;
87 }
88 Previous = OldRow;
89 BestThisRow = std::min(BestThisRow, Row[x]);
90 }
91
92 if (MaxEditDistance && BestThisRow > MaxEditDistance)
93 return MaxEditDistance + 1;
94 }
95
96 unsigned Result = Row[n];
12
Assigned value is garbage or undefined
97 return Result;
98}
99
100} // End llvm namespace
101
102#endif