Bug Summary

File:include/llvm/ADT/edit_distance.h
Warning:line 96, column 3
Assigned value is garbage or undefined

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50#include "OpenCLBuiltins.inc"
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 Sema &SemaRef;
94
95 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97 ListTy list;
98 llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100 public:
101 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
103 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104 // C++ [namespace.udir]p1:
105 // During unqualified name lookup, the names appear as if they
106 // were declared in the nearest enclosing namespace which contains
107 // both the using-directive and the nominated namespace.
108 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 109, __PRETTY_FUNCTION__))
;
110
111 for (; S; S = S->getParent()) {
112 // C++ [namespace.udir]p1:
113 // A using-directive shall not appear in class scope, but may
114 // appear in namespace scope or in block scope.
115 DeclContext *Ctx = S->getEntity();
116 if (Ctx && Ctx->isFileContext()) {
117 visit(Ctx, Ctx);
118 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119 for (auto *I : S->using_directives())
120 if (SemaRef.isVisible(I))
121 visit(I, InnermostFileDC);
122 }
123 }
124 }
125
126 // Visits a context and collect all of its using directives
127 // recursively. Treats all using directives as if they were
128 // declared in the context.
129 //
130 // A given context is only every visited once, so it is important
131 // that contexts be visited from the inside out in order to get
132 // the effective DCs right.
133 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134 if (!visited.insert(DC).second)
135 return;
136
137 addUsingDirectives(DC, EffectiveDC);
138 }
139
140 // Visits a using directive and collects all of its using
141 // directives recursively. Treats all using directives as if they
142 // were declared in the effective DC.
143 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144 DeclContext *NS = UD->getNominatedNamespace();
145 if (!visited.insert(NS).second)
146 return;
147
148 addUsingDirective(UD, EffectiveDC);
149 addUsingDirectives(NS, EffectiveDC);
150 }
151
152 // Adds all the using directives in a context (and those nominated
153 // by its using directives, transitively) as if they appeared in
154 // the given effective context.
155 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156 SmallVector<DeclContext*, 4> queue;
157 while (true) {
158 for (auto UD : DC->using_directives()) {
159 DeclContext *NS = UD->getNominatedNamespace();
160 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161 addUsingDirective(UD, EffectiveDC);
162 queue.push_back(NS);
163 }
164 }
165
166 if (queue.empty())
167 return;
168
169 DC = queue.pop_back_val();
170 }
171 }
172
173 // Add a using directive as if it had been declared in the given
174 // context. This helps implement C++ [namespace.udir]p3:
175 // The using-directive is transitive: if a scope contains a
176 // using-directive that nominates a second namespace that itself
177 // contains using-directives, the effect is as if the
178 // using-directives from the second namespace also appeared in
179 // the first.
180 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181 // Find the common ancestor between the effective context and
182 // the nominated namespace.
183 DeclContext *Common = UD->getNominatedNamespace();
184 while (!Common->Encloses(EffectiveDC))
185 Common = Common->getParent();
186 Common = Common->getPrimaryContext();
187
188 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189 }
190
191 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193 typedef ListTy::const_iterator const_iterator;
194
195 const_iterator begin() const { return list.begin(); }
196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 IDNS = Decl::IDNS_Ordinary;
219 if (CPlusPlus) {
220 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223 }
224 if (Redeclaration)
225 IDNS |= Decl::IDNS_LocalExtern;
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 231, __PRETTY_FUNCTION__))
;
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250
251 case Sema::LookupLabel:
252 IDNS = Decl::IDNS_Label;
253 break;
254
255 case Sema::LookupMemberName:
256 IDNS = Decl::IDNS_Member;
257 if (CPlusPlus)
258 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259 break;
260
261 case Sema::LookupNestedNameSpecifierName:
262 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263 break;
264
265 case Sema::LookupNamespaceName:
266 IDNS = Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupUsingDeclName:
270 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273 Decl::IDNS_LocalExtern;
274 break;
275
276 case Sema::LookupObjCProtocolName:
277 IDNS = Decl::IDNS_ObjCProtocol;
278 break;
279
280 case Sema::LookupOMPReductionName:
281 IDNS = Decl::IDNS_OMPReduction;
282 break;
283
284 case Sema::LookupOMPMapperName:
285 IDNS = Decl::IDNS_OMPMapper;
286 break;
287
288 case Sema::LookupAnyName:
289 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
290 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
291 | Decl::IDNS_Type;
292 break;
293 }
294 return IDNS;
295}
296
297void LookupResult::configure() {
298 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
299 isForRedeclaration());
300
301 // If we're looking for one of the allocation or deallocation
302 // operators, make sure that the implicitly-declared new and delete
303 // operators can be found.
304 switch (NameInfo.getName().getCXXOverloadedOperator()) {
305 case OO_New:
306 case OO_Delete:
307 case OO_Array_New:
308 case OO_Array_Delete:
309 getSema().DeclareGlobalNewDelete();
310 break;
311
312 default:
313 break;
314 }
315
316 // Compiler builtins are always visible, regardless of where they end
317 // up being declared.
318 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
319 if (unsigned BuiltinID = Id->getBuiltinID()) {
320 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
321 AllowHidden = true;
322 }
323 }
324}
325
326bool LookupResult::sanity() const {
327 // This function is never called by NDEBUG builds.
328 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __PRETTY_FUNCTION__))
;
329 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
;
330 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
331 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
332 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
;
333 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
;
334 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
335 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
336 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 336, __PRETTY_FUNCTION__))
;
337 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 339, __PRETTY_FUNCTION__))
338 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 339, __PRETTY_FUNCTION__))
339 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 339, __PRETTY_FUNCTION__))
;
340 return true;
341}
342
343// Necessary because CXXBasePaths is not complete in Sema.h
344void LookupResult::deletePaths(CXXBasePaths *Paths) {
345 delete Paths;
346}
347
348/// Get a representative context for a declaration such that two declarations
349/// will have the same context if they were found within the same scope.
350static DeclContext *getContextForScopeMatching(Decl *D) {
351 // For function-local declarations, use that function as the context. This
352 // doesn't account for scopes within the function; the caller must deal with
353 // those.
354 DeclContext *DC = D->getLexicalDeclContext();
355 if (DC->isFunctionOrMethod())
356 return DC;
357
358 // Otherwise, look at the semantic context of the declaration. The
359 // declaration must have been found there.
360 return D->getDeclContext()->getRedeclContext();
361}
362
363/// Determine whether \p D is a better lookup result than \p Existing,
364/// given that they declare the same entity.
365static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
366 NamedDecl *D, NamedDecl *Existing) {
367 // When looking up redeclarations of a using declaration, prefer a using
368 // shadow declaration over any other declaration of the same entity.
369 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
370 !isa<UsingShadowDecl>(Existing))
371 return true;
372
373 auto *DUnderlying = D->getUnderlyingDecl();
374 auto *EUnderlying = Existing->getUnderlyingDecl();
375
376 // If they have different underlying declarations, prefer a typedef over the
377 // original type (this happens when two type declarations denote the same
378 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
379 // might carry additional semantic information, such as an alignment override.
380 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
381 // declaration over a typedef.
382 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
383 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 383, __PRETTY_FUNCTION__))
;
384 bool HaveTag = isa<TagDecl>(EUnderlying);
385 bool WantTag = Kind == Sema::LookupTagName;
386 return HaveTag != WantTag;
387 }
388
389 // Pick the function with more default arguments.
390 // FIXME: In the presence of ambiguous default arguments, we should keep both,
391 // so we can diagnose the ambiguity if the default argument is needed.
392 // See C++ [over.match.best]p3.
393 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
394 auto *EFD = cast<FunctionDecl>(EUnderlying);
395 unsigned DMin = DFD->getMinRequiredArguments();
396 unsigned EMin = EFD->getMinRequiredArguments();
397 // If D has more default arguments, it is preferred.
398 if (DMin != EMin)
399 return DMin < EMin;
400 // FIXME: When we track visibility for default function arguments, check
401 // that we pick the declaration with more visible default arguments.
402 }
403
404 // Pick the template with more default template arguments.
405 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
406 auto *ETD = cast<TemplateDecl>(EUnderlying);
407 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
408 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
409 // If D has more default arguments, it is preferred. Note that default
410 // arguments (and their visibility) is monotonically increasing across the
411 // redeclaration chain, so this is a quick proxy for "is more recent".
412 if (DMin != EMin)
413 return DMin < EMin;
414 // If D has more *visible* default arguments, it is preferred. Note, an
415 // earlier default argument being visible does not imply that a later
416 // default argument is visible, so we can't just check the first one.
417 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
418 I != N; ++I) {
419 if (!S.hasVisibleDefaultArgument(
420 ETD->getTemplateParameters()->getParam(I)) &&
421 S.hasVisibleDefaultArgument(
422 DTD->getTemplateParameters()->getParam(I)))
423 return true;
424 }
425 }
426
427 // VarDecl can have incomplete array types, prefer the one with more complete
428 // array type.
429 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
430 VarDecl *EVD = cast<VarDecl>(EUnderlying);
431 if (EVD->getType()->isIncompleteType() &&
432 !DVD->getType()->isIncompleteType()) {
433 // Prefer the decl with a more complete type if visible.
434 return S.isVisible(DVD);
435 }
436 return false; // Avoid picking up a newer decl, just because it was newer.
437 }
438
439 // For most kinds of declaration, it doesn't really matter which one we pick.
440 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
441 // If the existing declaration is hidden, prefer the new one. Otherwise,
442 // keep what we've got.
443 return !S.isVisible(Existing);
444 }
445
446 // Pick the newer declaration; it might have a more precise type.
447 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
448 Prev = Prev->getPreviousDecl())
449 if (Prev == EUnderlying)
450 return true;
451 return false;
452}
453
454/// Determine whether \p D can hide a tag declaration.
455static bool canHideTag(NamedDecl *D) {
456 // C++ [basic.scope.declarative]p4:
457 // Given a set of declarations in a single declarative region [...]
458 // exactly one declaration shall declare a class name or enumeration name
459 // that is not a typedef name and the other declarations shall all refer to
460 // the same variable, non-static data member, or enumerator, or all refer
461 // to functions and function templates; in this case the class name or
462 // enumeration name is hidden.
463 // C++ [basic.scope.hiding]p2:
464 // A class name or enumeration name can be hidden by the name of a
465 // variable, data member, function, or enumerator declared in the same
466 // scope.
467 // An UnresolvedUsingValueDecl always instantiates to one of these.
468 D = D->getUnderlyingDecl();
469 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
470 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
471 isa<UnresolvedUsingValueDecl>(D);
472}
473
474/// Resolves the result kind of this lookup.
475void LookupResult::resolveKind() {
476 unsigned N = Decls.size();
477
478 // Fast case: no possible ambiguity.
479 if (N == 0) {
480 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 481, __PRETTY_FUNCTION__))
481 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 481, __PRETTY_FUNCTION__))
;
482 return;
483 }
484
485 // If there's a single decl, we need to examine it to decide what
486 // kind of lookup this is.
487 if (N == 1) {
488 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
489 if (isa<FunctionTemplateDecl>(D))
490 ResultKind = FoundOverloaded;
491 else if (isa<UnresolvedUsingValueDecl>(D))
492 ResultKind = FoundUnresolvedValue;
493 return;
494 }
495
496 // Don't do any extra resolution if we've already resolved as ambiguous.
497 if (ResultKind == Ambiguous) return;
498
499 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
500 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
501
502 bool Ambiguous = false;
503 bool HasTag = false, HasFunction = false;
504 bool HasFunctionTemplate = false, HasUnresolved = false;
505 NamedDecl *HasNonFunction = nullptr;
506
507 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
508
509 unsigned UniqueTagIndex = 0;
510
511 unsigned I = 0;
512 while (I < N) {
513 NamedDecl *D = Decls[I]->getUnderlyingDecl();
514 D = cast<NamedDecl>(D->getCanonicalDecl());
515
516 // Ignore an invalid declaration unless it's the only one left.
517 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
518 Decls[I] = Decls[--N];
519 continue;
520 }
521
522 llvm::Optional<unsigned> ExistingI;
523
524 // Redeclarations of types via typedef can occur both within a scope
525 // and, through using declarations and directives, across scopes. There is
526 // no ambiguity if they all refer to the same type, so unique based on the
527 // canonical type.
528 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
529 QualType T = getSema().Context.getTypeDeclType(TD);
530 auto UniqueResult = UniqueTypes.insert(
531 std::make_pair(getSema().Context.getCanonicalType(T), I));
532 if (!UniqueResult.second) {
533 // The type is not unique.
534 ExistingI = UniqueResult.first->second;
535 }
536 }
537
538 // For non-type declarations, check for a prior lookup result naming this
539 // canonical declaration.
540 if (!ExistingI) {
541 auto UniqueResult = Unique.insert(std::make_pair(D, I));
542 if (!UniqueResult.second) {
543 // We've seen this entity before.
544 ExistingI = UniqueResult.first->second;
545 }
546 }
547
548 if (ExistingI) {
549 // This is not a unique lookup result. Pick one of the results and
550 // discard the other.
551 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
552 Decls[*ExistingI]))
553 Decls[*ExistingI] = Decls[I];
554 Decls[I] = Decls[--N];
555 continue;
556 }
557
558 // Otherwise, do some decl type analysis and then continue.
559
560 if (isa<UnresolvedUsingValueDecl>(D)) {
561 HasUnresolved = true;
562 } else if (isa<TagDecl>(D)) {
563 if (HasTag)
564 Ambiguous = true;
565 UniqueTagIndex = I;
566 HasTag = true;
567 } else if (isa<FunctionTemplateDecl>(D)) {
568 HasFunction = true;
569 HasFunctionTemplate = true;
570 } else if (isa<FunctionDecl>(D)) {
571 HasFunction = true;
572 } else {
573 if (HasNonFunction) {
574 // If we're about to create an ambiguity between two declarations that
575 // are equivalent, but one is an internal linkage declaration from one
576 // module and the other is an internal linkage declaration from another
577 // module, just skip it.
578 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
579 D)) {
580 EquivalentNonFunctions.push_back(D);
581 Decls[I] = Decls[--N];
582 continue;
583 }
584
585 Ambiguous = true;
586 }
587 HasNonFunction = D;
588 }
589 I++;
590 }
591
592 // C++ [basic.scope.hiding]p2:
593 // A class name or enumeration name can be hidden by the name of
594 // an object, function, or enumerator declared in the same
595 // scope. If a class or enumeration name and an object, function,
596 // or enumerator are declared in the same scope (in any order)
597 // with the same name, the class or enumeration name is hidden
598 // wherever the object, function, or enumerator name is visible.
599 // But it's still an error if there are distinct tag types found,
600 // even if they're not visible. (ref?)
601 if (N > 1 && HideTags && HasTag && !Ambiguous &&
602 (HasFunction || HasNonFunction || HasUnresolved)) {
603 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
604 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
605 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
606 getContextForScopeMatching(OtherDecl)) &&
607 canHideTag(OtherDecl))
608 Decls[UniqueTagIndex] = Decls[--N];
609 else
610 Ambiguous = true;
611 }
612
613 // FIXME: This diagnostic should really be delayed until we're done with
614 // the lookup result, in case the ambiguity is resolved by the caller.
615 if (!EquivalentNonFunctions.empty() && !Ambiguous)
616 getSema().diagnoseEquivalentInternalLinkageDeclarations(
617 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
618
619 Decls.set_size(N);
620
621 if (HasNonFunction && (HasFunction || HasUnresolved))
622 Ambiguous = true;
623
624 if (Ambiguous)
625 setAmbiguous(LookupResult::AmbiguousReference);
626 else if (HasUnresolved)
627 ResultKind = LookupResult::FoundUnresolvedValue;
628 else if (N > 1 || HasFunctionTemplate)
629 ResultKind = LookupResult::FoundOverloaded;
630 else
631 ResultKind = LookupResult::Found;
632}
633
634void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
635 CXXBasePaths::const_paths_iterator I, E;
636 for (I = P.begin(), E = P.end(); I != E; ++I)
637 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
638 DE = I->Decls.end(); DI != DE; ++DI)
639 addDecl(*DI);
640}
641
642void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
643 Paths = new CXXBasePaths;
644 Paths->swap(P);
645 addDeclsFromBasePaths(*Paths);
646 resolveKind();
647 setAmbiguous(AmbiguousBaseSubobjects);
648}
649
650void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
651 Paths = new CXXBasePaths;
652 Paths->swap(P);
653 addDeclsFromBasePaths(*Paths);
654 resolveKind();
655 setAmbiguous(AmbiguousBaseSubobjectTypes);
656}
657
658void LookupResult::print(raw_ostream &Out) {
659 Out << Decls.size() << " result(s)";
660 if (isAmbiguous()) Out << ", ambiguous";
661 if (Paths) Out << ", base paths present";
662
663 for (iterator I = begin(), E = end(); I != E; ++I) {
664 Out << "\n";
665 (*I)->print(Out, 2);
666 }
667}
668
669LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
670 llvm::errs() << "lookup results for " << getLookupName().getAsString()
671 << ":\n";
672 for (NamedDecl *D : *this)
673 D->dump();
674}
675
676/// Get the QualType instances of the return type and arguments for an OpenCL
677/// builtin function signature.
678/// \param Context (in) The Context instance.
679/// \param OpenCLBuiltin (in) The signature currently handled.
680/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
681/// type used as return type or as argument.
682/// Only meaningful for generic types, otherwise equals 1.
683/// \param RetTypes (out) List of the possible return types.
684/// \param ArgTypes (out) List of the possible argument types. For each
685/// argument, ArgTypes contains QualTypes for the Cartesian product
686/// of (vector sizes) x (types) .
687static void GetQualTypesForOpenCLBuiltin(
688 ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
689 unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
690 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
691 // Get the QualType instances of the return types.
692 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
693 OCL2Qual(Context, TypeTable[Sig], RetTypes);
694 GenTypeMaxCnt = RetTypes.size();
695
696 // Get the QualType instances of the arguments.
697 // First type is the return type, skip it.
698 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
699 SmallVector<QualType, 1> Ty;
700 OCL2Qual(Context,
701 TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
702 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
703 ArgTypes.push_back(std::move(Ty));
704 }
705}
706
707/// Create a list of the candidate function overloads for an OpenCL builtin
708/// function.
709/// \param Context (in) The ASTContext instance.
710/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
711/// type used as return type or as argument.
712/// Only meaningful for generic types, otherwise equals 1.
713/// \param FunctionList (out) List of FunctionTypes.
714/// \param RetTypes (in) List of the possible return types.
715/// \param ArgTypes (in) List of the possible types for the arguments.
716static void GetOpenCLBuiltinFctOverloads(
717 ASTContext &Context, unsigned GenTypeMaxCnt,
718 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
719 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
720 FunctionProtoType::ExtProtoInfo PI;
721 PI.Variadic = false;
722
723 // Create FunctionTypes for each (gen)type.
724 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
725 SmallVector<QualType, 5> ArgList;
726
727 for (unsigned A = 0; A < ArgTypes.size(); A++) {
728 // Builtins such as "max" have an "sgentype" argument that represents
729 // the corresponding scalar type of a gentype. The number of gentypes
730 // must be a multiple of the number of sgentypes.
731 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&((GenTypeMaxCnt % ArgTypes[A].size() == 0 && "argument type count not compatible with gentype type count"
) ? static_cast<void> (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 732, __PRETTY_FUNCTION__))
732 "argument type count not compatible with gentype type count")((GenTypeMaxCnt % ArgTypes[A].size() == 0 && "argument type count not compatible with gentype type count"
) ? static_cast<void> (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 732, __PRETTY_FUNCTION__))
;
733 unsigned Idx = IGenType % ArgTypes[A].size();
734 ArgList.push_back(ArgTypes[A][Idx]);
735 }
736
737 FunctionList.push_back(Context.getFunctionType(
738 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
739 }
740}
741
742/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
743/// non-null <Index, Len> pair, then the name is referencing an OpenCL
744/// builtin function. Add all candidate signatures to the LookUpResult.
745///
746/// \param S (in) The Sema instance.
747/// \param LR (inout) The LookupResult instance.
748/// \param II (in) The identifier being resolved.
749/// \param FctIndex (in) Starting index in the BuiltinTable.
750/// \param Len (in) The signature list has Len elements.
751static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
752 IdentifierInfo *II,
753 const unsigned FctIndex,
754 const unsigned Len) {
755 // The builtin function declaration uses generic types (gentype).
756 bool HasGenType = false;
757
758 // Maximum number of types contained in a generic type used as return type or
759 // as argument. Only meaningful for generic types, otherwise equals 1.
760 unsigned GenTypeMaxCnt;
761
762 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
763 const OpenCLBuiltinStruct &OpenCLBuiltin =
764 BuiltinTable[FctIndex + SignatureIndex];
765 ASTContext &Context = S.Context;
766
767 // Ignore this BIF if its version does not match the language options.
768 if (Context.getLangOpts().OpenCLVersion < OpenCLBuiltin.MinVersion)
769 continue;
770 if ((OpenCLBuiltin.MaxVersion != 0) &&
771 (Context.getLangOpts().OpenCLVersion >= OpenCLBuiltin.MaxVersion))
772 continue;
773
774 SmallVector<QualType, 1> RetTypes;
775 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
776
777 // Obtain QualType lists for the function signature.
778 GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
779 RetTypes, ArgTypes);
780 if (GenTypeMaxCnt > 1) {
781 HasGenType = true;
782 }
783
784 // Create function overload for each type combination.
785 std::vector<QualType> FunctionList;
786 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
787 ArgTypes);
788
789 SourceLocation Loc = LR.getNameLoc();
790 DeclContext *Parent = Context.getTranslationUnitDecl();
791 FunctionDecl *NewOpenCLBuiltin;
792
793 for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
794 NewOpenCLBuiltin = FunctionDecl::Create(
795 Context, Parent, Loc, Loc, II, FunctionList[Index],
796 /*TInfo=*/nullptr, SC_Extern, false,
797 FunctionList[Index]->isFunctionProtoType());
798 NewOpenCLBuiltin->setImplicit();
799
800 // Create Decl objects for each parameter, adding them to the
801 // FunctionDecl.
802 if (const FunctionProtoType *FP =
803 dyn_cast<FunctionProtoType>(FunctionList[Index])) {
804 SmallVector<ParmVarDecl *, 16> ParmList;
805 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
806 ParmVarDecl *Parm = ParmVarDecl::Create(
807 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
808 nullptr, FP->getParamType(IParm),
809 /*TInfo=*/nullptr, SC_None, nullptr);
810 Parm->setScopeInfo(0, IParm);
811 ParmList.push_back(Parm);
812 }
813 NewOpenCLBuiltin->setParams(ParmList);
814 }
815 if (!S.getLangOpts().OpenCLCPlusPlus) {
816 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
817 }
818 LR.addDecl(NewOpenCLBuiltin);
819 }
820 }
821
822 // If we added overloads, need to resolve the lookup result.
823 if (Len > 1 || HasGenType)
824 LR.resolveKind();
825}
826
827/// Lookup a builtin function, when name lookup would otherwise
828/// fail.
829bool Sema::LookupBuiltin(LookupResult &R) {
830 Sema::LookupNameKind NameKind = R.getLookupKind();
831
832 // If we didn't find a use of this identifier, and if the identifier
833 // corresponds to a compiler builtin, create the decl object for the builtin
834 // now, injecting it into translation unit scope, and return it.
835 if (NameKind == Sema::LookupOrdinaryName ||
836 NameKind == Sema::LookupRedeclarationWithLinkage) {
837 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
838 if (II) {
839 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
840 if (II == getASTContext().getMakeIntegerSeqName()) {
841 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
842 return true;
843 } else if (II == getASTContext().getTypePackElementName()) {
844 R.addDecl(getASTContext().getTypePackElementDecl());
845 return true;
846 }
847 }
848
849 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
850 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
851 auto Index = isOpenCLBuiltin(II->getName());
852 if (Index.first) {
853 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
854 Index.second);
855 return true;
856 }
857 }
858
859 // If this is a builtin on this (or all) targets, create the decl.
860 if (unsigned BuiltinID = II->getBuiltinID()) {
861 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
862 // library functions like 'malloc'. Instead, we'll just error.
863 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
864 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
865 return false;
866
867 if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
868 BuiltinID, TUScope,
869 R.isForRedeclaration(),
870 R.getNameLoc())) {
871 R.addDecl(D);
872 return true;
873 }
874 }
875 }
876 }
877
878 return false;
879}
880
881/// Determine whether we can declare a special member function within
882/// the class at this point.
883static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
884 // We need to have a definition for the class.
885 if (!Class->getDefinition() || Class->isDependentContext())
886 return false;
887
888 // We can't be in the middle of defining the class.
889 return !Class->isBeingDefined();
890}
891
892void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
893 if (!CanDeclareSpecialMemberFunction(Class))
894 return;
895
896 // If the default constructor has not yet been declared, do so now.
897 if (Class->needsImplicitDefaultConstructor())
898 DeclareImplicitDefaultConstructor(Class);
899
900 // If the copy constructor has not yet been declared, do so now.
901 if (Class->needsImplicitCopyConstructor())
902 DeclareImplicitCopyConstructor(Class);
903
904 // If the copy assignment operator has not yet been declared, do so now.
905 if (Class->needsImplicitCopyAssignment())
906 DeclareImplicitCopyAssignment(Class);
907
908 if (getLangOpts().CPlusPlus11) {
909 // If the move constructor has not yet been declared, do so now.
910 if (Class->needsImplicitMoveConstructor())
911 DeclareImplicitMoveConstructor(Class);
912
913 // If the move assignment operator has not yet been declared, do so now.
914 if (Class->needsImplicitMoveAssignment())
915 DeclareImplicitMoveAssignment(Class);
916 }
917
918 // If the destructor has not yet been declared, do so now.
919 if (Class->needsImplicitDestructor())
920 DeclareImplicitDestructor(Class);
921}
922
923/// Determine whether this is the name of an implicitly-declared
924/// special member function.
925static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
926 switch (Name.getNameKind()) {
927 case DeclarationName::CXXConstructorName:
928 case DeclarationName::CXXDestructorName:
929 return true;
930
931 case DeclarationName::CXXOperatorName:
932 return Name.getCXXOverloadedOperator() == OO_Equal;
933
934 default:
935 break;
936 }
937
938 return false;
939}
940
941/// If there are any implicit member functions with the given name
942/// that need to be declared in the given declaration context, do so.
943static void DeclareImplicitMemberFunctionsWithName(Sema &S,
944 DeclarationName Name,
945 SourceLocation Loc,
946 const DeclContext *DC) {
947 if (!DC)
948 return;
949
950 switch (Name.getNameKind()) {
951 case DeclarationName::CXXConstructorName:
952 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
953 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
954 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
955 if (Record->needsImplicitDefaultConstructor())
956 S.DeclareImplicitDefaultConstructor(Class);
957 if (Record->needsImplicitCopyConstructor())
958 S.DeclareImplicitCopyConstructor(Class);
959 if (S.getLangOpts().CPlusPlus11 &&
960 Record->needsImplicitMoveConstructor())
961 S.DeclareImplicitMoveConstructor(Class);
962 }
963 break;
964
965 case DeclarationName::CXXDestructorName:
966 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
967 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
968 CanDeclareSpecialMemberFunction(Record))
969 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
970 break;
971
972 case DeclarationName::CXXOperatorName:
973 if (Name.getCXXOverloadedOperator() != OO_Equal)
974 break;
975
976 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
977 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
978 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
979 if (Record->needsImplicitCopyAssignment())
980 S.DeclareImplicitCopyAssignment(Class);
981 if (S.getLangOpts().CPlusPlus11 &&
982 Record->needsImplicitMoveAssignment())
983 S.DeclareImplicitMoveAssignment(Class);
984 }
985 }
986 break;
987
988 case DeclarationName::CXXDeductionGuideName:
989 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
990 break;
991
992 default:
993 break;
994 }
995}
996
997// Adds all qualifying matches for a name within a decl context to the
998// given lookup result. Returns true if any matches were found.
999static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1000 bool Found = false;
1001
1002 // Lazily declare C++ special member functions.
1003 if (S.getLangOpts().CPlusPlus)
1004 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1005 DC);
1006
1007 // Perform lookup into this declaration context.
1008 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1009 for (NamedDecl *D : DR) {
1010 if ((D = R.getAcceptableDecl(D))) {
1011 R.addDecl(D);
1012 Found = true;
1013 }
1014 }
1015
1016 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1017 return true;
1018
1019 if (R.getLookupName().getNameKind()
1020 != DeclarationName::CXXConversionFunctionName ||
1021 R.getLookupName().getCXXNameType()->isDependentType() ||
1022 !isa<CXXRecordDecl>(DC))
1023 return Found;
1024
1025 // C++ [temp.mem]p6:
1026 // A specialization of a conversion function template is not found by
1027 // name lookup. Instead, any conversion function templates visible in the
1028 // context of the use are considered. [...]
1029 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1030 if (!Record->isCompleteDefinition())
1031 return Found;
1032
1033 // For conversion operators, 'operator auto' should only match
1034 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1035 // as a candidate for template substitution.
1036 auto *ContainedDeducedType =
1037 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1038 if (R.getLookupName().getNameKind() ==
1039 DeclarationName::CXXConversionFunctionName &&
1040 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1041 return Found;
1042
1043 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1044 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1045 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1046 if (!ConvTemplate)
1047 continue;
1048
1049 // When we're performing lookup for the purposes of redeclaration, just
1050 // add the conversion function template. When we deduce template
1051 // arguments for specializations, we'll end up unifying the return
1052 // type of the new declaration with the type of the function template.
1053 if (R.isForRedeclaration()) {
1054 R.addDecl(ConvTemplate);
1055 Found = true;
1056 continue;
1057 }
1058
1059 // C++ [temp.mem]p6:
1060 // [...] For each such operator, if argument deduction succeeds
1061 // (14.9.2.3), the resulting specialization is used as if found by
1062 // name lookup.
1063 //
1064 // When referencing a conversion function for any purpose other than
1065 // a redeclaration (such that we'll be building an expression with the
1066 // result), perform template argument deduction and place the
1067 // specialization into the result set. We do this to avoid forcing all
1068 // callers to perform special deduction for conversion functions.
1069 TemplateDeductionInfo Info(R.getNameLoc());
1070 FunctionDecl *Specialization = nullptr;
1071
1072 const FunctionProtoType *ConvProto
1073 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1074 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1074, __PRETTY_FUNCTION__))
;
1075
1076 // Compute the type of the function that we would expect the conversion
1077 // function to have, if it were to match the name given.
1078 // FIXME: Calling convention!
1079 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1080 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1081 EPI.ExceptionSpec = EST_None;
1082 QualType ExpectedType
1083 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1084 None, EPI);
1085
1086 // Perform template argument deduction against the type that we would
1087 // expect the function to have.
1088 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1089 Specialization, Info)
1090 == Sema::TDK_Success) {
1091 R.addDecl(Specialization);
1092 Found = true;
1093 }
1094 }
1095
1096 return Found;
1097}
1098
1099// Performs C++ unqualified lookup into the given file context.
1100static bool
1101CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1102 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1103
1104 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1104, __PRETTY_FUNCTION__))
;
1105
1106 // Perform direct name lookup into the LookupCtx.
1107 bool Found = LookupDirect(S, R, NS);
1108
1109 // Perform direct name lookup into the namespaces nominated by the
1110 // using directives whose common ancestor is this namespace.
1111 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1112 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1113 Found = true;
1114
1115 R.resolveKind();
1116
1117 return Found;
1118}
1119
1120static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1121 if (DeclContext *Ctx = S->getEntity())
1122 return Ctx->isFileContext();
1123 return false;
1124}
1125
1126// Find the next outer declaration context from this scope. This
1127// routine actually returns the semantic outer context, which may
1128// differ from the lexical context (encoded directly in the Scope
1129// stack) when we are parsing a member of a class template. In this
1130// case, the second element of the pair will be true, to indicate that
1131// name lookup should continue searching in this semantic context when
1132// it leaves the current template parameter scope.
1133static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1134 DeclContext *DC = S->getEntity();
1135 DeclContext *Lexical = nullptr;
1136 for (Scope *OuterS = S->getParent(); OuterS;
1137 OuterS = OuterS->getParent()) {
1138 if (OuterS->getEntity()) {
1139 Lexical = OuterS->getEntity();
1140 break;
1141 }
1142 }
1143
1144 // C++ [temp.local]p8:
1145 // In the definition of a member of a class template that appears
1146 // outside of the namespace containing the class template
1147 // definition, the name of a template-parameter hides the name of
1148 // a member of this namespace.
1149 //
1150 // Example:
1151 //
1152 // namespace N {
1153 // class C { };
1154 //
1155 // template<class T> class B {
1156 // void f(T);
1157 // };
1158 // }
1159 //
1160 // template<class C> void N::B<C>::f(C) {
1161 // C b; // C is the template parameter, not N::C
1162 // }
1163 //
1164 // In this example, the lexical context we return is the
1165 // TranslationUnit, while the semantic context is the namespace N.
1166 if (!Lexical || !DC || !S->getParent() ||
1167 !S->getParent()->isTemplateParamScope())
1168 return std::make_pair(Lexical, false);
1169
1170 // Find the outermost template parameter scope.
1171 // For the example, this is the scope for the template parameters of
1172 // template<class C>.
1173 Scope *OutermostTemplateScope = S->getParent();
1174 while (OutermostTemplateScope->getParent() &&
1175 OutermostTemplateScope->getParent()->isTemplateParamScope())
1176 OutermostTemplateScope = OutermostTemplateScope->getParent();
1177
1178 // Find the namespace context in which the original scope occurs. In
1179 // the example, this is namespace N.
1180 DeclContext *Semantic = DC;
1181 while (!Semantic->isFileContext())
1182 Semantic = Semantic->getParent();
1183
1184 // Find the declaration context just outside of the template
1185 // parameter scope. This is the context in which the template is
1186 // being lexically declaration (a namespace context). In the
1187 // example, this is the global scope.
1188 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1189 Lexical->Encloses(Semantic))
1190 return std::make_pair(Semantic, true);
1191
1192 return std::make_pair(Lexical, false);
1193}
1194
1195namespace {
1196/// An RAII object to specify that we want to find block scope extern
1197/// declarations.
1198struct FindLocalExternScope {
1199 FindLocalExternScope(LookupResult &R)
1200 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1201 Decl::IDNS_LocalExtern) {
1202 R.setFindLocalExtern(R.getIdentifierNamespace() &
1203 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1204 }
1205 void restore() {
1206 R.setFindLocalExtern(OldFindLocalExtern);
1207 }
1208 ~FindLocalExternScope() {
1209 restore();
1210 }
1211 LookupResult &R;
1212 bool OldFindLocalExtern;
1213};
1214} // end anonymous namespace
1215
1216bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1217 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218
1219 DeclarationName Name = R.getLookupName();
1220 Sema::LookupNameKind NameKind = R.getLookupKind();
1221
1222 // If this is the name of an implicitly-declared special member function,
1223 // go through the scope stack to implicitly declare
1224 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1225 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1226 if (DeclContext *DC = PreS->getEntity())
1227 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1228 }
1229
1230 // Implicitly declare member functions with the name we're looking for, if in
1231 // fact we are in a scope where it matters.
1232
1233 Scope *Initial = S;
1234 IdentifierResolver::iterator
1235 I = IdResolver.begin(Name),
1236 IEnd = IdResolver.end();
1237
1238 // First we lookup local scope.
1239 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1240 // ...During unqualified name lookup (3.4.1), the names appear as if
1241 // they were declared in the nearest enclosing namespace which contains
1242 // both the using-directive and the nominated namespace.
1243 // [Note: in this context, "contains" means "contains directly or
1244 // indirectly".
1245 //
1246 // For example:
1247 // namespace A { int i; }
1248 // void foo() {
1249 // int i;
1250 // {
1251 // using namespace A;
1252 // ++i; // finds local 'i', A::i appears at global scope
1253 // }
1254 // }
1255 //
1256 UnqualUsingDirectiveSet UDirs(*this);
1257 bool VisitedUsingDirectives = false;
1258 bool LeftStartingScope = false;
1259 DeclContext *OutsideOfTemplateParamDC = nullptr;
1260
1261 // When performing a scope lookup, we want to find local extern decls.
1262 FindLocalExternScope FindLocals(R);
1263
1264 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1265 DeclContext *Ctx = S->getEntity();
1266 bool SearchNamespaceScope = true;
1267 // Check whether the IdResolver has anything in this scope.
1268 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1269 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1270 if (NameKind == LookupRedeclarationWithLinkage &&
1271 !(*I)->isTemplateParameter()) {
1272 // If it's a template parameter, we still find it, so we can diagnose
1273 // the invalid redeclaration.
1274
1275 // Determine whether this (or a previous) declaration is
1276 // out-of-scope.
1277 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1278 LeftStartingScope = true;
1279
1280 // If we found something outside of our starting scope that
1281 // does not have linkage, skip it.
1282 if (LeftStartingScope && !((*I)->hasLinkage())) {
1283 R.setShadowed();
1284 continue;
1285 }
1286 } else {
1287 // We found something in this scope, we should not look at the
1288 // namespace scope
1289 SearchNamespaceScope = false;
1290 }
1291 R.addDecl(ND);
1292 }
1293 }
1294 if (!SearchNamespaceScope) {
1295 R.resolveKind();
1296 if (S->isClassScope())
1297 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1298 R.setNamingClass(Record);
1299 return true;
1300 }
1301
1302 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1303 // C++11 [class.friend]p11:
1304 // If a friend declaration appears in a local class and the name
1305 // specified is an unqualified name, a prior declaration is
1306 // looked up without considering scopes that are outside the
1307 // innermost enclosing non-class scope.
1308 return false;
1309 }
1310
1311 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1312 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1313 // We've just searched the last template parameter scope and
1314 // found nothing, so look into the contexts between the
1315 // lexical and semantic declaration contexts returned by
1316 // findOuterContext(). This implements the name lookup behavior
1317 // of C++ [temp.local]p8.
1318 Ctx = OutsideOfTemplateParamDC;
1319 OutsideOfTemplateParamDC = nullptr;
1320 }
1321
1322 if (Ctx) {
1323 DeclContext *OuterCtx;
1324 bool SearchAfterTemplateScope;
1325 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1326 if (SearchAfterTemplateScope)
1327 OutsideOfTemplateParamDC = OuterCtx;
1328
1329 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1330 // We do not directly look into transparent contexts, since
1331 // those entities will be found in the nearest enclosing
1332 // non-transparent context.
1333 if (Ctx->isTransparentContext())
1334 continue;
1335
1336 // We do not look directly into function or method contexts,
1337 // since all of the local variables and parameters of the
1338 // function/method are present within the Scope.
1339 if (Ctx->isFunctionOrMethod()) {
1340 // If we have an Objective-C instance method, look for ivars
1341 // in the corresponding interface.
1342 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1343 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1344 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1345 ObjCInterfaceDecl *ClassDeclared;
1346 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1347 Name.getAsIdentifierInfo(),
1348 ClassDeclared)) {
1349 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1350 R.addDecl(ND);
1351 R.resolveKind();
1352 return true;
1353 }
1354 }
1355 }
1356 }
1357
1358 continue;
1359 }
1360
1361 // If this is a file context, we need to perform unqualified name
1362 // lookup considering using directives.
1363 if (Ctx->isFileContext()) {
1364 // If we haven't handled using directives yet, do so now.
1365 if (!VisitedUsingDirectives) {
1366 // Add using directives from this context up to the top level.
1367 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1368 if (UCtx->isTransparentContext())
1369 continue;
1370
1371 UDirs.visit(UCtx, UCtx);
1372 }
1373
1374 // Find the innermost file scope, so we can add using directives
1375 // from local scopes.
1376 Scope *InnermostFileScope = S;
1377 while (InnermostFileScope &&
1378 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1379 InnermostFileScope = InnermostFileScope->getParent();
1380 UDirs.visitScopeChain(Initial, InnermostFileScope);
1381
1382 UDirs.done();
1383
1384 VisitedUsingDirectives = true;
1385 }
1386
1387 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1388 R.resolveKind();
1389 return true;
1390 }
1391
1392 continue;
1393 }
1394
1395 // Perform qualified name lookup into this context.
1396 // FIXME: In some cases, we know that every name that could be found by
1397 // this qualified name lookup will also be on the identifier chain. For
1398 // example, inside a class without any base classes, we never need to
1399 // perform qualified lookup because all of the members are on top of the
1400 // identifier chain.
1401 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1402 return true;
1403 }
1404 }
1405 }
1406
1407 // Stop if we ran out of scopes.
1408 // FIXME: This really, really shouldn't be happening.
1409 if (!S) return false;
1410
1411 // If we are looking for members, no need to look into global/namespace scope.
1412 if (NameKind == LookupMemberName)
1413 return false;
1414
1415 // Collect UsingDirectiveDecls in all scopes, and recursively all
1416 // nominated namespaces by those using-directives.
1417 //
1418 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1419 // don't build it for each lookup!
1420 if (!VisitedUsingDirectives) {
1421 UDirs.visitScopeChain(Initial, S);
1422 UDirs.done();
1423 }
1424
1425 // If we're not performing redeclaration lookup, do not look for local
1426 // extern declarations outside of a function scope.
1427 if (!R.isForRedeclaration())
1428 FindLocals.restore();
1429
1430 // Lookup namespace scope, and global scope.
1431 // Unqualified name lookup in C++ requires looking into scopes
1432 // that aren't strictly lexical, and therefore we walk through the
1433 // context as well as walking through the scopes.
1434 for (; S; S = S->getParent()) {
1435 // Check whether the IdResolver has anything in this scope.
1436 bool Found = false;
1437 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1438 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1439 // We found something. Look for anything else in our scope
1440 // with this same name and in an acceptable identifier
1441 // namespace, so that we can construct an overload set if we
1442 // need to.
1443 Found = true;
1444 R.addDecl(ND);
1445 }
1446 }
1447
1448 if (Found && S->isTemplateParamScope()) {
1449 R.resolveKind();
1450 return true;
1451 }
1452
1453 DeclContext *Ctx = S->getEntity();
1454 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1455 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1456 // We've just searched the last template parameter scope and
1457 // found nothing, so look into the contexts between the
1458 // lexical and semantic declaration contexts returned by
1459 // findOuterContext(). This implements the name lookup behavior
1460 // of C++ [temp.local]p8.
1461 Ctx = OutsideOfTemplateParamDC;
1462 OutsideOfTemplateParamDC = nullptr;
1463 }
1464
1465 if (Ctx) {
1466 DeclContext *OuterCtx;
1467 bool SearchAfterTemplateScope;
1468 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1469 if (SearchAfterTemplateScope)
1470 OutsideOfTemplateParamDC = OuterCtx;
1471
1472 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1473 // We do not directly look into transparent contexts, since
1474 // those entities will be found in the nearest enclosing
1475 // non-transparent context.
1476 if (Ctx->isTransparentContext())
1477 continue;
1478
1479 // If we have a context, and it's not a context stashed in the
1480 // template parameter scope for an out-of-line definition, also
1481 // look into that context.
1482 if (!(Found && S->isTemplateParamScope())) {
1483 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1484, __PRETTY_FUNCTION__))
1484 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1484, __PRETTY_FUNCTION__))
;
1485
1486 // Look into context considering using-directives.
1487 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1488 Found = true;
1489 }
1490
1491 if (Found) {
1492 R.resolveKind();
1493 return true;
1494 }
1495
1496 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1497 return false;
1498 }
1499 }
1500
1501 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1502 return false;
1503 }
1504
1505 return !R.empty();
1506}
1507
1508void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1509 if (auto *M = getCurrentModule())
1510 Context.mergeDefinitionIntoModule(ND, M);
1511 else
1512 // We're not building a module; just make the definition visible.
1513 ND->setVisibleDespiteOwningModule();
1514
1515 // If ND is a template declaration, make the template parameters
1516 // visible too. They're not (necessarily) within a mergeable DeclContext.
1517 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1518 for (auto *Param : *TD->getTemplateParameters())
1519 makeMergedDefinitionVisible(Param);
1520}
1521
1522/// Find the module in which the given declaration was defined.
1523static Module *getDefiningModule(Sema &S, Decl *Entity) {
1524 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1525 // If this function was instantiated from a template, the defining module is
1526 // the module containing the pattern.
1527 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1528 Entity = Pattern;
1529 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1530 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1531 Entity = Pattern;
1532 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1533 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1534 Entity = Pattern;
1535 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1536 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1537 Entity = Pattern;
1538 }
1539
1540 // Walk up to the containing context. That might also have been instantiated
1541 // from a template.
1542 DeclContext *Context = Entity->getLexicalDeclContext();
1543 if (Context->isFileContext())
1544 return S.getOwningModule(Entity);
1545 return getDefiningModule(S, cast<Decl>(Context));
1546}
1547
1548llvm::DenseSet<Module*> &Sema::getLookupModules() {
1549 unsigned N = CodeSynthesisContexts.size();
1550 for (unsigned I = CodeSynthesisContextLookupModules.size();
1551 I != N; ++I) {
1552 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1553 if (M && !LookupModulesCache.insert(M).second)
1554 M = nullptr;
1555 CodeSynthesisContextLookupModules.push_back(M);
1556 }
1557 return LookupModulesCache;
1558}
1559
1560/// Determine whether the module M is part of the current module from the
1561/// perspective of a module-private visibility check.
1562static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1563 // If M is the global module fragment of a module that we've not yet finished
1564 // parsing, then it must be part of the current module.
1565 return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1566 (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1567}
1568
1569bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1570 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1571 if (isModuleVisible(Merged))
1572 return true;
1573 return false;
1574}
1575
1576bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1577 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1578 if (isInCurrentModule(Merged, getLangOpts()))
1579 return true;
1580 return false;
1581}
1582
1583template<typename ParmDecl>
1584static bool
1585hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1586 llvm::SmallVectorImpl<Module *> *Modules) {
1587 if (!D->hasDefaultArgument())
1588 return false;
1589
1590 while (D) {
1591 auto &DefaultArg = D->getDefaultArgStorage();
1592 if (!DefaultArg.isInherited() && S.isVisible(D))
1593 return true;
1594
1595 if (!DefaultArg.isInherited() && Modules) {
1596 auto *NonConstD = const_cast<ParmDecl*>(D);
1597 Modules->push_back(S.getOwningModule(NonConstD));
1598 }
1599
1600 // If there was a previous default argument, maybe its parameter is visible.
1601 D = DefaultArg.getInheritedFrom();
1602 }
1603 return false;
1604}
1605
1606bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1607 llvm::SmallVectorImpl<Module *> *Modules) {
1608 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1609 return ::hasVisibleDefaultArgument(*this, P, Modules);
1610 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1611 return ::hasVisibleDefaultArgument(*this, P, Modules);
1612 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1613 Modules);
1614}
1615
1616template<typename Filter>
1617static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1618 llvm::SmallVectorImpl<Module *> *Modules,
1619 Filter F) {
1620 bool HasFilteredRedecls = false;
1621
1622 for (auto *Redecl : D->redecls()) {
1623 auto *R = cast<NamedDecl>(Redecl);
1624 if (!F(R))
1625 continue;
1626
1627 if (S.isVisible(R))
1628 return true;
1629
1630 HasFilteredRedecls = true;
1631
1632 if (Modules)
1633 Modules->push_back(R->getOwningModule());
1634 }
1635
1636 // Only return false if there is at least one redecl that is not filtered out.
1637 if (HasFilteredRedecls)
1638 return false;
1639
1640 return true;
1641}
1642
1643bool Sema::hasVisibleExplicitSpecialization(
1644 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1645 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1646 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1647 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1648 if (auto *FD = dyn_cast<FunctionDecl>(D))
1649 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1650 if (auto *VD = dyn_cast<VarDecl>(D))
1651 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1652 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1652)
;
1653 });
1654}
1655
1656bool Sema::hasVisibleMemberSpecialization(
1657 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1658 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1659, __PRETTY_FUNCTION__))
1659 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1659, __PRETTY_FUNCTION__))
;
1660 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1661 // If the specialization is declared at namespace scope, then it's a member
1662 // specialization declaration. If it's lexically inside the class
1663 // definition then it was instantiated.
1664 //
1665 // FIXME: This is a hack. There should be a better way to determine this.
1666 // FIXME: What about MS-style explicit specializations declared within a
1667 // class definition?
1668 return D->getLexicalDeclContext()->isFileContext();
1669 });
1670}
1671
1672/// Determine whether a declaration is visible to name lookup.
1673///
1674/// This routine determines whether the declaration D is visible in the current
1675/// lookup context, taking into account the current template instantiation
1676/// stack. During template instantiation, a declaration is visible if it is
1677/// visible from a module containing any entity on the template instantiation
1678/// path (by instantiating a template, you allow it to see the declarations that
1679/// your module can see, including those later on in your module).
1680bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1681 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1681, __PRETTY_FUNCTION__))
;
1682
1683 Module *DeclModule = SemaRef.getOwningModule(D);
1684 assert(DeclModule && "hidden decl has no owning module")((DeclModule && "hidden decl has no owning module") ?
static_cast<void> (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1684, __PRETTY_FUNCTION__))
;
1685
1686 // If the owning module is visible, the decl is visible.
1687 if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1688 return true;
1689
1690 // Determine whether a decl context is a file context for the purpose of
1691 // visibility. This looks through some (export and linkage spec) transparent
1692 // contexts, but not others (enums).
1693 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1694 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1695 isa<ExportDecl>(DC);
1696 };
1697
1698 // If this declaration is not at namespace scope
1699 // then it is visible if its lexical parent has a visible definition.
1700 DeclContext *DC = D->getLexicalDeclContext();
1701 if (DC && !IsEffectivelyFileContext(DC)) {
1702 // For a parameter, check whether our current template declaration's
1703 // lexical context is visible, not whether there's some other visible
1704 // definition of it, because parameters aren't "within" the definition.
1705 //
1706 // In C++ we need to check for a visible definition due to ODR merging,
1707 // and in C we must not because each declaration of a function gets its own
1708 // set of declarations for tags in prototype scope.
1709 bool VisibleWithinParent;
1710 if (D->isTemplateParameter()) {
1711 bool SearchDefinitions = true;
1712 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1713 if (const auto *TD = DCD->getDescribedTemplate()) {
1714 TemplateParameterList *TPL = TD->getTemplateParameters();
1715 auto Index = getDepthAndIndex(D).second;
1716 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1717 }
1718 }
1719 if (SearchDefinitions)
1720 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1721 else
1722 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1723 } else if (isa<ParmVarDecl>(D) ||
1724 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1725 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1726 else if (D->isModulePrivate()) {
1727 // A module-private declaration is only visible if an enclosing lexical
1728 // parent was merged with another definition in the current module.
1729 VisibleWithinParent = false;
1730 do {
1731 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1732 VisibleWithinParent = true;
1733 break;
1734 }
1735 DC = DC->getLexicalParent();
1736 } while (!IsEffectivelyFileContext(DC));
1737 } else {
1738 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1739 }
1740
1741 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1742 // FIXME: Do something better in this case.
1743 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1744 // Cache the fact that this declaration is implicitly visible because
1745 // its parent has a visible definition.
1746 D->setVisibleDespiteOwningModule();
1747 }
1748 return VisibleWithinParent;
1749 }
1750
1751 return false;
1752}
1753
1754bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1755 // The module might be ordinarily visible. For a module-private query, that
1756 // means it is part of the current module. For any other query, that means it
1757 // is in our visible module set.
1758 if (ModulePrivate) {
1759 if (isInCurrentModule(M, getLangOpts()))
1760 return true;
1761 } else {
1762 if (VisibleModules.isVisible(M))
1763 return true;
1764 }
1765
1766 // Otherwise, it might be visible by virtue of the query being within a
1767 // template instantiation or similar that is permitted to look inside M.
1768
1769 // Find the extra places where we need to look.
1770 const auto &LookupModules = getLookupModules();
1771 if (LookupModules.empty())
1772 return false;
1773
1774 // If our lookup set contains the module, it's visible.
1775 if (LookupModules.count(M))
1776 return true;
1777
1778 // For a module-private query, that's everywhere we get to look.
1779 if (ModulePrivate)
1780 return false;
1781
1782 // Check whether M is transitively exported to an import of the lookup set.
1783 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1784 return LookupM->isModuleVisible(M);
1785 });
1786}
1787
1788bool Sema::isVisibleSlow(const NamedDecl *D) {
1789 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1790}
1791
1792bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1793 // FIXME: If there are both visible and hidden declarations, we need to take
1794 // into account whether redeclaration is possible. Example:
1795 //
1796 // Non-imported module:
1797 // int f(T); // #1
1798 // Some TU:
1799 // static int f(U); // #2, not a redeclaration of #1
1800 // int f(T); // #3, finds both, should link with #1 if T != U, but
1801 // // with #2 if T == U; neither should be ambiguous.
1802 for (auto *D : R) {
1803 if (isVisible(D))
1804 return true;
1805 assert(D->isExternallyDeclarable() &&((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1806, __PRETTY_FUNCTION__))
1806 "should not have hidden, non-externally-declarable result here")((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1806, __PRETTY_FUNCTION__))
;
1807 }
1808
1809 // This function is called once "New" is essentially complete, but before a
1810 // previous declaration is attached. We can't query the linkage of "New" in
1811 // general, because attaching the previous declaration can change the
1812 // linkage of New to match the previous declaration.
1813 //
1814 // However, because we've just determined that there is no *visible* prior
1815 // declaration, we can compute the linkage here. There are two possibilities:
1816 //
1817 // * This is not a redeclaration; it's safe to compute the linkage now.
1818 //
1819 // * This is a redeclaration of a prior declaration that is externally
1820 // redeclarable. In that case, the linkage of the declaration is not
1821 // changed by attaching the prior declaration, because both are externally
1822 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1823 //
1824 // FIXME: This is subtle and fragile.
1825 return New->isExternallyDeclarable();
1826}
1827
1828/// Retrieve the visible declaration corresponding to D, if any.
1829///
1830/// This routine determines whether the declaration D is visible in the current
1831/// module, with the current imports. If not, it checks whether any
1832/// redeclaration of D is visible, and if so, returns that declaration.
1833///
1834/// \returns D, or a visible previous declaration of D, whichever is more recent
1835/// and visible. If no declaration of D is visible, returns null.
1836static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1837 unsigned IDNS) {
1838 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1838, __PRETTY_FUNCTION__))
;
1839
1840 for (auto RD : D->redecls()) {
1841 // Don't bother with extra checks if we already know this one isn't visible.
1842 if (RD == D)
1843 continue;
1844
1845 auto ND = cast<NamedDecl>(RD);
1846 // FIXME: This is wrong in the case where the previous declaration is not
1847 // visible in the same scope as D. This needs to be done much more
1848 // carefully.
1849 if (ND->isInIdentifierNamespace(IDNS) &&
1850 LookupResult::isVisible(SemaRef, ND))
1851 return ND;
1852 }
1853
1854 return nullptr;
1855}
1856
1857bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1858 llvm::SmallVectorImpl<Module *> *Modules) {
1859 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 1859, __PRETTY_FUNCTION__))
;
1860 return hasVisibleDeclarationImpl(*this, D, Modules,
1861 [](const NamedDecl *) { return true; });
1862}
1863
1864NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1865 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1866 // Namespaces are a bit of a special case: we expect there to be a lot of
1867 // redeclarations of some namespaces, all declarations of a namespace are
1868 // essentially interchangeable, all declarations are found by name lookup
1869 // if any is, and namespaces are never looked up during template
1870 // instantiation. So we benefit from caching the check in this case, and
1871 // it is correct to do so.
1872 auto *Key = ND->getCanonicalDecl();
1873 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1874 return Acceptable;
1875 auto *Acceptable = isVisible(getSema(), Key)
1876 ? Key
1877 : findAcceptableDecl(getSema(), Key, IDNS);
1878 if (Acceptable)
1879 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1880 return Acceptable;
1881 }
1882
1883 return findAcceptableDecl(getSema(), D, IDNS);
1884}
1885
1886/// Perform unqualified name lookup starting from a given
1887/// scope.
1888///
1889/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1890/// used to find names within the current scope. For example, 'x' in
1891/// @code
1892/// int x;
1893/// int f() {
1894/// return x; // unqualified name look finds 'x' in the global scope
1895/// }
1896/// @endcode
1897///
1898/// Different lookup criteria can find different names. For example, a
1899/// particular scope can have both a struct and a function of the same
1900/// name, and each can be found by certain lookup criteria. For more
1901/// information about lookup criteria, see the documentation for the
1902/// class LookupCriteria.
1903///
1904/// @param S The scope from which unqualified name lookup will
1905/// begin. If the lookup criteria permits, name lookup may also search
1906/// in the parent scopes.
1907///
1908/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1909/// look up and the lookup kind), and is updated with the results of lookup
1910/// including zero or more declarations and possibly additional information
1911/// used to diagnose ambiguities.
1912///
1913/// @returns \c true if lookup succeeded and false otherwise.
1914bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1915 DeclarationName Name = R.getLookupName();
1916 if (!Name) return false;
1917
1918 LookupNameKind NameKind = R.getLookupKind();
1919
1920 if (!getLangOpts().CPlusPlus) {
1921 // Unqualified name lookup in C/Objective-C is purely lexical, so
1922 // search in the declarations attached to the name.
1923 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1924 // Find the nearest non-transparent declaration scope.
1925 while (!(S->getFlags() & Scope::DeclScope) ||
1926 (S->getEntity() && S->getEntity()->isTransparentContext()))
1927 S = S->getParent();
1928 }
1929
1930 // When performing a scope lookup, we want to find local extern decls.
1931 FindLocalExternScope FindLocals(R);
1932
1933 // Scan up the scope chain looking for a decl that matches this
1934 // identifier that is in the appropriate namespace. This search
1935 // should not take long, as shadowing of names is uncommon, and
1936 // deep shadowing is extremely uncommon.
1937 bool LeftStartingScope = false;
1938
1939 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1940 IEnd = IdResolver.end();
1941 I != IEnd; ++I)
1942 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1943 if (NameKind == LookupRedeclarationWithLinkage) {
1944 // Determine whether this (or a previous) declaration is
1945 // out-of-scope.
1946 if (!LeftStartingScope && !S->isDeclScope(*I))
1947 LeftStartingScope = true;
1948
1949 // If we found something outside of our starting scope that
1950 // does not have linkage, skip it.
1951 if (LeftStartingScope && !((*I)->hasLinkage())) {
1952 R.setShadowed();
1953 continue;
1954 }
1955 }
1956 else if (NameKind == LookupObjCImplicitSelfParam &&
1957 !isa<ImplicitParamDecl>(*I))
1958 continue;
1959
1960 R.addDecl(D);
1961
1962 // Check whether there are any other declarations with the same name
1963 // and in the same scope.
1964 if (I != IEnd) {
1965 // Find the scope in which this declaration was declared (if it
1966 // actually exists in a Scope).
1967 while (S && !S->isDeclScope(D))
1968 S = S->getParent();
1969
1970 // If the scope containing the declaration is the translation unit,
1971 // then we'll need to perform our checks based on the matching
1972 // DeclContexts rather than matching scopes.
1973 if (S && isNamespaceOrTranslationUnitScope(S))
1974 S = nullptr;
1975
1976 // Compute the DeclContext, if we need it.
1977 DeclContext *DC = nullptr;
1978 if (!S)
1979 DC = (*I)->getDeclContext()->getRedeclContext();
1980
1981 IdentifierResolver::iterator LastI = I;
1982 for (++LastI; LastI != IEnd; ++LastI) {
1983 if (S) {
1984 // Match based on scope.
1985 if (!S->isDeclScope(*LastI))
1986 break;
1987 } else {
1988 // Match based on DeclContext.
1989 DeclContext *LastDC
1990 = (*LastI)->getDeclContext()->getRedeclContext();
1991 if (!LastDC->Equals(DC))
1992 break;
1993 }
1994
1995 // If the declaration is in the right namespace and visible, add it.
1996 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1997 R.addDecl(LastD);
1998 }
1999
2000 R.resolveKind();
2001 }
2002
2003 return true;
2004 }
2005 } else {
2006 // Perform C++ unqualified name lookup.
2007 if (CppLookupName(R, S))
2008 return true;
2009 }
2010
2011 // If we didn't find a use of this identifier, and if the identifier
2012 // corresponds to a compiler builtin, create the decl object for the builtin
2013 // now, injecting it into translation unit scope, and return it.
2014 if (AllowBuiltinCreation && LookupBuiltin(R))
2015 return true;
2016
2017 // If we didn't find a use of this identifier, the ExternalSource
2018 // may be able to handle the situation.
2019 // Note: some lookup failures are expected!
2020 // See e.g. R.isForRedeclaration().
2021 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2022}
2023
2024/// Perform qualified name lookup in the namespaces nominated by
2025/// using directives by the given context.
2026///
2027/// C++98 [namespace.qual]p2:
2028/// Given X::m (where X is a user-declared namespace), or given \::m
2029/// (where X is the global namespace), let S be the set of all
2030/// declarations of m in X and in the transitive closure of all
2031/// namespaces nominated by using-directives in X and its used
2032/// namespaces, except that using-directives are ignored in any
2033/// namespace, including X, directly containing one or more
2034/// declarations of m. No namespace is searched more than once in
2035/// the lookup of a name. If S is the empty set, the program is
2036/// ill-formed. Otherwise, if S has exactly one member, or if the
2037/// context of the reference is a using-declaration
2038/// (namespace.udecl), S is the required set of declarations of
2039/// m. Otherwise if the use of m is not one that allows a unique
2040/// declaration to be chosen from S, the program is ill-formed.
2041///
2042/// C++98 [namespace.qual]p5:
2043/// During the lookup of a qualified namespace member name, if the
2044/// lookup finds more than one declaration of the member, and if one
2045/// declaration introduces a class name or enumeration name and the
2046/// other declarations either introduce the same object, the same
2047/// enumerator or a set of functions, the non-type name hides the
2048/// class or enumeration name if and only if the declarations are
2049/// from the same namespace; otherwise (the declarations are from
2050/// different namespaces), the program is ill-formed.
2051static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2052 DeclContext *StartDC) {
2053 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2053, __PRETTY_FUNCTION__))
;
2054
2055 // We have not yet looked into these namespaces, much less added
2056 // their "using-children" to the queue.
2057 SmallVector<NamespaceDecl*, 8> Queue;
2058
2059 // We have at least added all these contexts to the queue.
2060 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2061 Visited.insert(StartDC);
2062
2063 // We have already looked into the initial namespace; seed the queue
2064 // with its using-children.
2065 for (auto *I : StartDC->using_directives()) {
2066 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2067 if (S.isVisible(I) && Visited.insert(ND).second)
2068 Queue.push_back(ND);
2069 }
2070
2071 // The easiest way to implement the restriction in [namespace.qual]p5
2072 // is to check whether any of the individual results found a tag
2073 // and, if so, to declare an ambiguity if the final result is not
2074 // a tag.
2075 bool FoundTag = false;
2076 bool FoundNonTag = false;
2077
2078 LookupResult LocalR(LookupResult::Temporary, R);
2079
2080 bool Found = false;
2081 while (!Queue.empty()) {
2082 NamespaceDecl *ND = Queue.pop_back_val();
2083
2084 // We go through some convolutions here to avoid copying results
2085 // between LookupResults.
2086 bool UseLocal = !R.empty();
2087 LookupResult &DirectR = UseLocal ? LocalR : R;
2088 bool FoundDirect = LookupDirect(S, DirectR, ND);
2089
2090 if (FoundDirect) {
2091 // First do any local hiding.
2092 DirectR.resolveKind();
2093
2094 // If the local result is a tag, remember that.
2095 if (DirectR.isSingleTagDecl())
2096 FoundTag = true;
2097 else
2098 FoundNonTag = true;
2099
2100 // Append the local results to the total results if necessary.
2101 if (UseLocal) {
2102 R.addAllDecls(LocalR);
2103 LocalR.clear();
2104 }
2105 }
2106
2107 // If we find names in this namespace, ignore its using directives.
2108 if (FoundDirect) {
2109 Found = true;
2110 continue;
2111 }
2112
2113 for (auto I : ND->using_directives()) {
2114 NamespaceDecl *Nom = I->getNominatedNamespace();
2115 if (S.isVisible(I) && Visited.insert(Nom).second)
2116 Queue.push_back(Nom);
2117 }
2118 }
2119
2120 if (Found) {
2121 if (FoundTag && FoundNonTag)
2122 R.setAmbiguousQualifiedTagHiding();
2123 else
2124 R.resolveKind();
2125 }
2126
2127 return Found;
2128}
2129
2130/// Callback that looks for any member of a class with the given name.
2131static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2132 CXXBasePath &Path, DeclarationName Name) {
2133 RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2134
2135 Path.Decls = BaseRecord->lookup(Name);
2136 return !Path.Decls.empty();
2137}
2138
2139/// Determine whether the given set of member declarations contains only
2140/// static members, nested types, and enumerators.
2141template<typename InputIterator>
2142static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2143 Decl *D = (*First)->getUnderlyingDecl();
2144 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2145 return true;
2146
2147 if (isa<CXXMethodDecl>(D)) {
2148 // Determine whether all of the methods are static.
2149 bool AllMethodsAreStatic = true;
2150 for(; First != Last; ++First) {
2151 D = (*First)->getUnderlyingDecl();
2152
2153 if (!isa<CXXMethodDecl>(D)) {
2154 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2154, __PRETTY_FUNCTION__))
;
2155 break;
2156 }
2157
2158 if (!cast<CXXMethodDecl>(D)->isStatic()) {
2159 AllMethodsAreStatic = false;
2160 break;
2161 }
2162 }
2163
2164 if (AllMethodsAreStatic)
2165 return true;
2166 }
2167
2168 return false;
2169}
2170
2171/// Perform qualified name lookup into a given context.
2172///
2173/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2174/// names when the context of those names is explicit specified, e.g.,
2175/// "std::vector" or "x->member", or as part of unqualified name lookup.
2176///
2177/// Different lookup criteria can find different names. For example, a
2178/// particular scope can have both a struct and a function of the same
2179/// name, and each can be found by certain lookup criteria. For more
2180/// information about lookup criteria, see the documentation for the
2181/// class LookupCriteria.
2182///
2183/// \param R captures both the lookup criteria and any lookup results found.
2184///
2185/// \param LookupCtx The context in which qualified name lookup will
2186/// search. If the lookup criteria permits, name lookup may also search
2187/// in the parent contexts or (for C++ classes) base classes.
2188///
2189/// \param InUnqualifiedLookup true if this is qualified name lookup that
2190/// occurs as part of unqualified name lookup.
2191///
2192/// \returns true if lookup succeeded, false if it failed.
2193bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2194 bool InUnqualifiedLookup) {
2195 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196
2197 if (!R.getLookupName())
2198 return false;
2199
2200 // Make sure that the declaration context is complete.
2201 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2205, __PRETTY_FUNCTION__))
2202 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2205, __PRETTY_FUNCTION__))
2203 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2205, __PRETTY_FUNCTION__))
2204 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2205, __PRETTY_FUNCTION__))
2205 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2205, __PRETTY_FUNCTION__))
;
2206
2207 struct QualifiedLookupInScope {
2208 bool oldVal;
2209 DeclContext *Context;
2210 // Set flag in DeclContext informing debugger that we're looking for qualified name
2211 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2212 oldVal = ctx->setUseQualifiedLookup();
2213 }
2214 ~QualifiedLookupInScope() {
2215 Context->setUseQualifiedLookup(oldVal);
2216 }
2217 } QL(LookupCtx);
2218
2219 if (LookupDirect(*this, R, LookupCtx)) {
2220 R.resolveKind();
2221 if (isa<CXXRecordDecl>(LookupCtx))
2222 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2223 return true;
2224 }
2225
2226 // Don't descend into implied contexts for redeclarations.
2227 // C++98 [namespace.qual]p6:
2228 // In a declaration for a namespace member in which the
2229 // declarator-id is a qualified-id, given that the qualified-id
2230 // for the namespace member has the form
2231 // nested-name-specifier unqualified-id
2232 // the unqualified-id shall name a member of the namespace
2233 // designated by the nested-name-specifier.
2234 // See also [class.mfct]p5 and [class.static.data]p2.
2235 if (R.isForRedeclaration())
2236 return false;
2237
2238 // If this is a namespace, look it up in the implied namespaces.
2239 if (LookupCtx->isFileContext())
2240 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2241
2242 // If this isn't a C++ class, we aren't allowed to look into base
2243 // classes, we're done.
2244 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2245 if (!LookupRec || !LookupRec->getDefinition())
2246 return false;
2247
2248 // If we're performing qualified name lookup into a dependent class,
2249 // then we are actually looking into a current instantiation. If we have any
2250 // dependent base classes, then we either have to delay lookup until
2251 // template instantiation time (at which point all bases will be available)
2252 // or we have to fail.
2253 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2254 LookupRec->hasAnyDependentBases()) {
2255 R.setNotFoundInCurrentInstantiation();
2256 return false;
2257 }
2258
2259 // Perform lookup into our base classes.
2260 CXXBasePaths Paths;
2261 Paths.setOrigin(LookupRec);
2262
2263 // Look for this member in our base classes
2264 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2265 DeclarationName Name) = nullptr;
2266 switch (R.getLookupKind()) {
2267 case LookupObjCImplicitSelfParam:
2268 case LookupOrdinaryName:
2269 case LookupMemberName:
2270 case LookupRedeclarationWithLinkage:
2271 case LookupLocalFriendName:
2272 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2273 break;
2274
2275 case LookupTagName:
2276 BaseCallback = &CXXRecordDecl::FindTagMember;
2277 break;
2278
2279 case LookupAnyName:
2280 BaseCallback = &LookupAnyMember;
2281 break;
2282
2283 case LookupOMPReductionName:
2284 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2285 break;
2286
2287 case LookupOMPMapperName:
2288 BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2289 break;
2290
2291 case LookupUsingDeclName:
2292 // This lookup is for redeclarations only.
2293
2294 case LookupOperatorName:
2295 case LookupNamespaceName:
2296 case LookupObjCProtocolName:
2297 case LookupLabel:
2298 // These lookups will never find a member in a C++ class (or base class).
2299 return false;
2300
2301 case LookupNestedNameSpecifierName:
2302 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2303 break;
2304 }
2305
2306 DeclarationName Name = R.getLookupName();
2307 if (!LookupRec->lookupInBases(
2308 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2309 return BaseCallback(Specifier, Path, Name);
2310 },
2311 Paths))
2312 return false;
2313
2314 R.setNamingClass(LookupRec);
2315
2316 // C++ [class.member.lookup]p2:
2317 // [...] If the resulting set of declarations are not all from
2318 // sub-objects of the same type, or the set has a nonstatic member
2319 // and includes members from distinct sub-objects, there is an
2320 // ambiguity and the program is ill-formed. Otherwise that set is
2321 // the result of the lookup.
2322 QualType SubobjectType;
2323 int SubobjectNumber = 0;
2324 AccessSpecifier SubobjectAccess = AS_none;
2325
2326 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2327 Path != PathEnd; ++Path) {
2328 const CXXBasePathElement &PathElement = Path->back();
2329
2330 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2331 // across all paths.
2332 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2333
2334 // Determine whether we're looking at a distinct sub-object or not.
2335 if (SubobjectType.isNull()) {
2336 // This is the first subobject we've looked at. Record its type.
2337 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2338 SubobjectNumber = PathElement.SubobjectNumber;
2339 continue;
2340 }
2341
2342 if (SubobjectType
2343 != Context.getCanonicalType(PathElement.Base->getType())) {
2344 // We found members of the given name in two subobjects of
2345 // different types. If the declaration sets aren't the same, this
2346 // lookup is ambiguous.
2347 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2348 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2349 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2350 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2351
2352 // Get the decl that we should use for deduplicating this lookup.
2353 auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2354 // C++ [temp.local]p3:
2355 // A lookup that finds an injected-class-name (10.2) can result in
2356 // an ambiguity in certain cases (for example, if it is found in
2357 // more than one base class). If all of the injected-class-names
2358 // that are found refer to specializations of the same class
2359 // template, and if the name is used as a template-name, the
2360 // reference refers to the class template itself and not a
2361 // specialization thereof, and is not ambiguous.
2362 if (R.isTemplateNameLookup())
2363 if (auto *TD = getAsTemplateNameDecl(D))
2364 D = TD;
2365 return D->getUnderlyingDecl()->getCanonicalDecl();
2366 };
2367
2368 while (FirstD != FirstPath->Decls.end() &&
2369 CurrentD != Path->Decls.end()) {
2370 if (GetRepresentativeDecl(*FirstD) !=
2371 GetRepresentativeDecl(*CurrentD))
2372 break;
2373
2374 ++FirstD;
2375 ++CurrentD;
2376 }
2377
2378 if (FirstD == FirstPath->Decls.end() &&
2379 CurrentD == Path->Decls.end())
2380 continue;
2381 }
2382
2383 R.setAmbiguousBaseSubobjectTypes(Paths);
2384 return true;
2385 }
2386
2387 if (SubobjectNumber != PathElement.SubobjectNumber) {
2388 // We have a different subobject of the same type.
2389
2390 // C++ [class.member.lookup]p5:
2391 // A static member, a nested type or an enumerator defined in
2392 // a base class T can unambiguously be found even if an object
2393 // has more than one base class subobject of type T.
2394 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2395 continue;
2396
2397 // We have found a nonstatic member name in multiple, distinct
2398 // subobjects. Name lookup is ambiguous.
2399 R.setAmbiguousBaseSubobjects(Paths);
2400 return true;
2401 }
2402 }
2403
2404 // Lookup in a base class succeeded; return these results.
2405
2406 for (auto *D : Paths.front().Decls) {
2407 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2408 D->getAccess());
2409 R.addDecl(D, AS);
2410 }
2411 R.resolveKind();
2412 return true;
2413}
2414
2415/// Performs qualified name lookup or special type of lookup for
2416/// "__super::" scope specifier.
2417///
2418/// This routine is a convenience overload meant to be called from contexts
2419/// that need to perform a qualified name lookup with an optional C++ scope
2420/// specifier that might require special kind of lookup.
2421///
2422/// \param R captures both the lookup criteria and any lookup results found.
2423///
2424/// \param LookupCtx The context in which qualified name lookup will
2425/// search.
2426///
2427/// \param SS An optional C++ scope-specifier.
2428///
2429/// \returns true if lookup succeeded, false if it failed.
2430bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2431 CXXScopeSpec &SS) {
2432 auto *NNS = SS.getScopeRep();
2433 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2434 return LookupInSuper(R, NNS->getAsRecordDecl());
2435 else
2436
2437 return LookupQualifiedName(R, LookupCtx);
2438}
2439
2440/// Performs name lookup for a name that was parsed in the
2441/// source code, and may contain a C++ scope specifier.
2442///
2443/// This routine is a convenience routine meant to be called from
2444/// contexts that receive a name and an optional C++ scope specifier
2445/// (e.g., "N::M::x"). It will then perform either qualified or
2446/// unqualified name lookup (with LookupQualifiedName or LookupName,
2447/// respectively) on the given name and return those results. It will
2448/// perform a special type of lookup for "__super::" scope specifier.
2449///
2450/// @param S The scope from which unqualified name lookup will
2451/// begin.
2452///
2453/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2454///
2455/// @param EnteringContext Indicates whether we are going to enter the
2456/// context of the scope-specifier SS (if present).
2457///
2458/// @returns True if any decls were found (but possibly ambiguous)
2459bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2460 bool AllowBuiltinCreation, bool EnteringContext) {
2461 if (SS && SS->isInvalid()) {
2462 // When the scope specifier is invalid, don't even look for
2463 // anything.
2464 return false;
2465 }
2466
2467 if (SS && SS->isSet()) {
2468 NestedNameSpecifier *NNS = SS->getScopeRep();
2469 if (NNS->getKind() == NestedNameSpecifier::Super)
2470 return LookupInSuper(R, NNS->getAsRecordDecl());
2471
2472 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2473 // We have resolved the scope specifier to a particular declaration
2474 // contex, and will perform name lookup in that context.
2475 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2476 return false;
2477
2478 R.setContextRange(SS->getRange());
2479 return LookupQualifiedName(R, DC);
2480 }
2481
2482 // We could not resolve the scope specified to a specific declaration
2483 // context, which means that SS refers to an unknown specialization.
2484 // Name lookup can't find anything in this case.
2485 R.setNotFoundInCurrentInstantiation();
2486 R.setContextRange(SS->getRange());
2487 return false;
2488 }
2489
2490 // Perform unqualified name lookup starting in the given scope.
2491 return LookupName(R, S, AllowBuiltinCreation);
2492}
2493
2494/// Perform qualified name lookup into all base classes of the given
2495/// class.
2496///
2497/// \param R captures both the lookup criteria and any lookup results found.
2498///
2499/// \param Class The context in which qualified name lookup will
2500/// search. Name lookup will search in all base classes merging the results.
2501///
2502/// @returns True if any decls were found (but possibly ambiguous)
2503bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2504 // The access-control rules we use here are essentially the rules for
2505 // doing a lookup in Class that just magically skipped the direct
2506 // members of Class itself. That is, the naming class is Class, and the
2507 // access includes the access of the base.
2508 for (const auto &BaseSpec : Class->bases()) {
2509 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2510 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2511 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2512 Result.setBaseObjectType(Context.getRecordType(Class));
2513 LookupQualifiedName(Result, RD);
2514
2515 // Copy the lookup results into the target, merging the base's access into
2516 // the path access.
2517 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2518 R.addDecl(I.getDecl(),
2519 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2520 I.getAccess()));
2521 }
2522
2523 Result.suppressDiagnostics();
2524 }
2525
2526 R.resolveKind();
2527 R.setNamingClass(Class);
2528
2529 return !R.empty();
2530}
2531
2532/// Produce a diagnostic describing the ambiguity that resulted
2533/// from name lookup.
2534///
2535/// \param Result The result of the ambiguous lookup to be diagnosed.
2536void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2537 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 2537, __PRETTY_FUNCTION__))
;
2538
2539 DeclarationName Name = Result.getLookupName();
2540 SourceLocation NameLoc = Result.getNameLoc();
2541 SourceRange LookupRange = Result.getContextRange();
2542
2543 switch (Result.getAmbiguityKind()) {
2544 case LookupResult::AmbiguousBaseSubobjects: {
2545 CXXBasePaths *Paths = Result.getBasePaths();
2546 QualType SubobjectType = Paths->front().back().Base->getType();
2547 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2548 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2549 << LookupRange;
2550
2551 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2552 while (isa<CXXMethodDecl>(*Found) &&
2553 cast<CXXMethodDecl>(*Found)->isStatic())
2554 ++Found;
2555
2556 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2557 break;
2558 }
2559
2560 case LookupResult::AmbiguousBaseSubobjectTypes: {
2561 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2562 << Name << LookupRange;
2563
2564 CXXBasePaths *Paths = Result.getBasePaths();
2565 std::set<Decl *> DeclsPrinted;
2566 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2567 PathEnd = Paths->end();
2568 Path != PathEnd; ++Path) {
2569 Decl *D = Path->Decls.front();
2570 if (DeclsPrinted.insert(D).second)
2571 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2572 }
2573 break;
2574 }
2575
2576 case LookupResult::AmbiguousTagHiding: {
2577 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2578
2579 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2580
2581 for (auto *D : Result)
2582 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2583 TagDecls.insert(TD);
2584 Diag(TD->getLocation(), diag::note_hidden_tag);
2585 }
2586
2587 for (auto *D : Result)
2588 if (!isa<TagDecl>(D))
2589 Diag(D->getLocation(), diag::note_hiding_object);
2590
2591 // For recovery purposes, go ahead and implement the hiding.
2592 LookupResult::Filter F = Result.makeFilter();
2593 while (F.hasNext()) {
2594 if (TagDecls.count(F.next()))
2595 F.erase();
2596 }
2597 F.done();
2598 break;
2599 }
2600
2601 case LookupResult::AmbiguousReference: {
2602 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2603
2604 for (auto *D : Result)
2605 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2606 break;
2607 }
2608 }
2609}
2610
2611namespace {
2612 struct AssociatedLookup {
2613 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2614 Sema::AssociatedNamespaceSet &Namespaces,
2615 Sema::AssociatedClassSet &Classes)
2616 : S(S), Namespaces(Namespaces), Classes(Classes),
2617 InstantiationLoc(InstantiationLoc) {
2618 }
2619
2620 bool addClassTransitive(CXXRecordDecl *RD) {
2621 Classes.insert(RD);
2622 return ClassesTransitive.insert(RD);
2623 }
2624
2625 Sema &S;
2626 Sema::AssociatedNamespaceSet &Namespaces;
2627 Sema::AssociatedClassSet &Classes;
2628 SourceLocation InstantiationLoc;
2629
2630 private:
2631 Sema::AssociatedClassSet ClassesTransitive;
2632 };
2633} // end anonymous namespace
2634
2635static void
2636addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2637
2638// Given the declaration context \param Ctx of a class, class template or
2639// enumeration, add the associated namespaces to \param Namespaces as described
2640// in [basic.lookup.argdep]p2.
2641static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2642 DeclContext *Ctx) {
2643 // The exact wording has been changed in C++14 as a result of
2644 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2645 // to all language versions since it is possible to return a local type
2646 // from a lambda in C++11.
2647 //
2648 // C++14 [basic.lookup.argdep]p2:
2649 // If T is a class type [...]. Its associated namespaces are the innermost
2650 // enclosing namespaces of its associated classes. [...]
2651 //
2652 // If T is an enumeration type, its associated namespace is the innermost
2653 // enclosing namespace of its declaration. [...]
2654
2655 // We additionally skip inline namespaces. The innermost non-inline namespace
2656 // contains all names of all its nested inline namespaces anyway, so we can
2657 // replace the entire inline namespace tree with its root.
2658 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2659 Ctx = Ctx->getParent();
2660
2661 Namespaces.insert(Ctx->getPrimaryContext());
2662}
2663
2664// Add the associated classes and namespaces for argument-dependent
2665// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2666static void
2667addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2668 const TemplateArgument &Arg) {
2669 // C++ [basic.lookup.argdep]p2, last bullet:
2670 // -- [...] ;
2671 switch (Arg.getKind()) {
2672 case TemplateArgument::Null:
2673 break;
2674
2675 case TemplateArgument::Type:
2676 // [...] the namespaces and classes associated with the types of the
2677 // template arguments provided for template type parameters (excluding
2678 // template template parameters)
2679 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2680 break;
2681
2682 case TemplateArgument::Template:
2683 case TemplateArgument::TemplateExpansion: {
2684 // [...] the namespaces in which any template template arguments are
2685 // defined; and the classes in which any member templates used as
2686 // template template arguments are defined.
2687 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2688 if (ClassTemplateDecl *ClassTemplate
2689 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2690 DeclContext *Ctx = ClassTemplate->getDeclContext();
2691 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2692 Result.Classes.insert(EnclosingClass);
2693 // Add the associated namespace for this class.
2694 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2695 }
2696 break;
2697 }
2698
2699 case TemplateArgument::Declaration:
2700 case TemplateArgument::Integral:
2701 case TemplateArgument::Expression:
2702 case TemplateArgument::NullPtr:
2703 // [Note: non-type template arguments do not contribute to the set of
2704 // associated namespaces. ]
2705 break;
2706
2707 case TemplateArgument::Pack:
2708 for (const auto &P : Arg.pack_elements())
2709 addAssociatedClassesAndNamespaces(Result, P);
2710 break;
2711 }
2712}
2713
2714// Add the associated classes and namespaces for argument-dependent lookup
2715// with an argument of class type (C++ [basic.lookup.argdep]p2).
2716static void
2717addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2718 CXXRecordDecl *Class) {
2719
2720 // Just silently ignore anything whose name is __va_list_tag.
2721 if (Class->getDeclName() == Result.S.VAListTagName)
2722 return;
2723
2724 // C++ [basic.lookup.argdep]p2:
2725 // [...]
2726 // -- If T is a class type (including unions), its associated
2727 // classes are: the class itself; the class of which it is a
2728 // member, if any; and its direct and indirect base classes.
2729 // Its associated namespaces are the innermost enclosing
2730 // namespaces of its associated classes.
2731
2732 // Add the class of which it is a member, if any.
2733 DeclContext *Ctx = Class->getDeclContext();
2734 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2735 Result.Classes.insert(EnclosingClass);
2736
2737 // Add the associated namespace for this class.
2738 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2739
2740 // -- If T is a template-id, its associated namespaces and classes are
2741 // the namespace in which the template is defined; for member
2742 // templates, the member template's class; the namespaces and classes
2743 // associated with the types of the template arguments provided for
2744 // template type parameters (excluding template template parameters); the
2745 // namespaces in which any template template arguments are defined; and
2746 // the classes in which any member templates used as template template
2747 // arguments are defined. [Note: non-type template arguments do not
2748 // contribute to the set of associated namespaces. ]
2749 if (ClassTemplateSpecializationDecl *Spec
2750 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2751 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2752 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2753 Result.Classes.insert(EnclosingClass);
2754 // Add the associated namespace for this class.
2755 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2756
2757 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2758 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2759 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2760 }
2761
2762 // Add the class itself. If we've already transitively visited this class,
2763 // we don't need to visit base classes.
2764 if (!Result.addClassTransitive(Class))
2765 return;
2766
2767 // Only recurse into base classes for complete types.
2768 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2769 Result.S.Context.getRecordType(Class)))
2770 return;
2771
2772 // Add direct and indirect base classes along with their associated
2773 // namespaces.
2774 SmallVector<CXXRecordDecl *, 32> Bases;
2775 Bases.push_back(Class);
2776 while (!Bases.empty()) {
2777 // Pop this class off the stack.
2778 Class = Bases.pop_back_val();
2779
2780 // Visit the base classes.
2781 for (const auto &Base : Class->bases()) {
2782 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2783 // In dependent contexts, we do ADL twice, and the first time around,
2784 // the base type might be a dependent TemplateSpecializationType, or a
2785 // TemplateTypeParmType. If that happens, simply ignore it.
2786 // FIXME: If we want to support export, we probably need to add the
2787 // namespace of the template in a TemplateSpecializationType, or even
2788 // the classes and namespaces of known non-dependent arguments.
2789 if (!BaseType)
2790 continue;
2791 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2792 if (Result.addClassTransitive(BaseDecl)) {
2793 // Find the associated namespace for this base class.
2794 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2795 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2796
2797 // Make sure we visit the bases of this base class.
2798 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2799 Bases.push_back(BaseDecl);
2800 }
2801 }
2802 }
2803}
2804
2805// Add the associated classes and namespaces for
2806// argument-dependent lookup with an argument of type T
2807// (C++ [basic.lookup.koenig]p2).
2808static void
2809addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2810 // C++ [basic.lookup.koenig]p2:
2811 //
2812 // For each argument type T in the function call, there is a set
2813 // of zero or more associated namespaces and a set of zero or more
2814 // associated classes to be considered. The sets of namespaces and
2815 // classes is determined entirely by the types of the function
2816 // arguments (and the namespace of any template template
2817 // argument). Typedef names and using-declarations used to specify
2818 // the types do not contribute to this set. The sets of namespaces
2819 // and classes are determined in the following way:
2820
2821 SmallVector<const Type *, 16> Queue;
2822 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2823
2824 while (true) {
2825 switch (T->getTypeClass()) {
2826
2827#define TYPE(Class, Base)
2828#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2829#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2830#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2831#define ABSTRACT_TYPE(Class, Base)
2832#include "clang/AST/TypeNodes.inc"
2833 // T is canonical. We can also ignore dependent types because
2834 // we don't need to do ADL at the definition point, but if we
2835 // wanted to implement template export (or if we find some other
2836 // use for associated classes and namespaces...) this would be
2837 // wrong.
2838 break;
2839
2840 // -- If T is a pointer to U or an array of U, its associated
2841 // namespaces and classes are those associated with U.
2842 case Type::Pointer:
2843 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2844 continue;
2845 case Type::ConstantArray:
2846 case Type::IncompleteArray:
2847 case Type::VariableArray:
2848 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2849 continue;
2850
2851 // -- If T is a fundamental type, its associated sets of
2852 // namespaces and classes are both empty.
2853 case Type::Builtin:
2854 break;
2855
2856 // -- If T is a class type (including unions), its associated
2857 // classes are: the class itself; the class of which it is
2858 // a member, if any; and its direct and indirect base classes.
2859 // Its associated namespaces are the innermost enclosing
2860 // namespaces of its associated classes.
2861 case Type::Record: {
2862 CXXRecordDecl *Class =
2863 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2864 addAssociatedClassesAndNamespaces(Result, Class);
2865 break;
2866 }
2867
2868 // -- If T is an enumeration type, its associated namespace
2869 // is the innermost enclosing namespace of its declaration.
2870 // If it is a class member, its associated class is the
2871 // member’s class; else it has no associated class.
2872 case Type::Enum: {
2873 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2874
2875 DeclContext *Ctx = Enum->getDeclContext();
2876 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2877 Result.Classes.insert(EnclosingClass);
2878
2879 // Add the associated namespace for this enumeration.
2880 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2881
2882 break;
2883 }
2884
2885 // -- If T is a function type, its associated namespaces and
2886 // classes are those associated with the function parameter
2887 // types and those associated with the return type.
2888 case Type::FunctionProto: {
2889 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2890 for (const auto &Arg : Proto->param_types())
2891 Queue.push_back(Arg.getTypePtr());
2892 // fallthrough
2893 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2894 }
2895 case Type::FunctionNoProto: {
2896 const FunctionType *FnType = cast<FunctionType>(T);
2897 T = FnType->getReturnType().getTypePtr();
2898 continue;
2899 }
2900
2901 // -- If T is a pointer to a member function of a class X, its
2902 // associated namespaces and classes are those associated
2903 // with the function parameter types and return type,
2904 // together with those associated with X.
2905 //
2906 // -- If T is a pointer to a data member of class X, its
2907 // associated namespaces and classes are those associated
2908 // with the member type together with those associated with
2909 // X.
2910 case Type::MemberPointer: {
2911 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2912
2913 // Queue up the class type into which this points.
2914 Queue.push_back(MemberPtr->getClass());
2915
2916 // And directly continue with the pointee type.
2917 T = MemberPtr->getPointeeType().getTypePtr();
2918 continue;
2919 }
2920
2921 // As an extension, treat this like a normal pointer.
2922 case Type::BlockPointer:
2923 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2924 continue;
2925
2926 // References aren't covered by the standard, but that's such an
2927 // obvious defect that we cover them anyway.
2928 case Type::LValueReference:
2929 case Type::RValueReference:
2930 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2931 continue;
2932
2933 // These are fundamental types.
2934 case Type::Vector:
2935 case Type::ExtVector:
2936 case Type::Complex:
2937 break;
2938
2939 // Non-deduced auto types only get here for error cases.
2940 case Type::Auto:
2941 case Type::DeducedTemplateSpecialization:
2942 break;
2943
2944 // If T is an Objective-C object or interface type, or a pointer to an
2945 // object or interface type, the associated namespace is the global
2946 // namespace.
2947 case Type::ObjCObject:
2948 case Type::ObjCInterface:
2949 case Type::ObjCObjectPointer:
2950 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2951 break;
2952
2953 // Atomic types are just wrappers; use the associations of the
2954 // contained type.
2955 case Type::Atomic:
2956 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2957 continue;
2958 case Type::Pipe:
2959 T = cast<PipeType>(T)->getElementType().getTypePtr();
2960 continue;
2961 }
2962
2963 if (Queue.empty())
2964 break;
2965 T = Queue.pop_back_val();
2966 }
2967}
2968
2969/// Find the associated classes and namespaces for
2970/// argument-dependent lookup for a call with the given set of
2971/// arguments.
2972///
2973/// This routine computes the sets of associated classes and associated
2974/// namespaces searched by argument-dependent lookup
2975/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2976void Sema::FindAssociatedClassesAndNamespaces(
2977 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2978 AssociatedNamespaceSet &AssociatedNamespaces,
2979 AssociatedClassSet &AssociatedClasses) {
2980 AssociatedNamespaces.clear();
2981 AssociatedClasses.clear();
2982
2983 AssociatedLookup Result(*this, InstantiationLoc,
2984 AssociatedNamespaces, AssociatedClasses);
2985
2986 // C++ [basic.lookup.koenig]p2:
2987 // For each argument type T in the function call, there is a set
2988 // of zero or more associated namespaces and a set of zero or more
2989 // associated classes to be considered. The sets of namespaces and
2990 // classes is determined entirely by the types of the function
2991 // arguments (and the namespace of any template template
2992 // argument).
2993 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2994 Expr *Arg = Args[ArgIdx];
2995
2996 if (Arg->getType() != Context.OverloadTy) {
2997 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2998 continue;
2999 }
3000
3001 // [...] In addition, if the argument is the name or address of a
3002 // set of overloaded functions and/or function templates, its
3003 // associated classes and namespaces are the union of those
3004 // associated with each of the members of the set: the namespace
3005 // in which the function or function template is defined and the
3006 // classes and namespaces associated with its (non-dependent)
3007 // parameter types and return type.
3008 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3009
3010 for (const NamedDecl *D : OE->decls()) {
3011 // Look through any using declarations to find the underlying function.
3012 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3013
3014 // Add the classes and namespaces associated with the parameter
3015 // types and return type of this function.
3016 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3017 }
3018 }
3019}
3020
3021NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3022 SourceLocation Loc,
3023 LookupNameKind NameKind,
3024 RedeclarationKind Redecl) {
3025 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3026 LookupName(R, S);
3027 return R.getAsSingle<NamedDecl>();
3028}
3029
3030/// Find the protocol with the given name, if any.
3031ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3032 SourceLocation IdLoc,
3033 RedeclarationKind Redecl) {
3034 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3035 LookupObjCProtocolName, Redecl);
3036 return cast_or_null<ObjCProtocolDecl>(D);
3037}
3038
3039void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3040 QualType T1, QualType T2,
3041 UnresolvedSetImpl &Functions) {
3042 // C++ [over.match.oper]p3:
3043 // -- The set of non-member candidates is the result of the
3044 // unqualified lookup of operator@ in the context of the
3045 // expression according to the usual rules for name lookup in
3046 // unqualified function calls (3.4.2) except that all member
3047 // functions are ignored.
3048 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3049 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3050 LookupName(Operators, S);
3051
3052 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3052, __PRETTY_FUNCTION__))
;
3053 Functions.append(Operators.begin(), Operators.end());
3054}
3055
3056Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3057 CXXSpecialMember SM,
3058 bool ConstArg,
3059 bool VolatileArg,
3060 bool RValueThis,
3061 bool ConstThis,
3062 bool VolatileThis) {
3063 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
3064 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
;
3065 RD = RD->getDefinition();
3066 if (RValueThis || ConstThis || VolatileThis)
3067 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3068, __PRETTY_FUNCTION__))
3068 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3068, __PRETTY_FUNCTION__))
;
3069 if (ConstArg || VolatileArg)
3070 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3071, __PRETTY_FUNCTION__))
3071 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3071, __PRETTY_FUNCTION__))
;
3072
3073 // FIXME: Get the caller to pass in a location for the lookup.
3074 SourceLocation LookupLoc = RD->getLocation();
3075
3076 llvm::FoldingSetNodeID ID;
3077 ID.AddPointer(RD);
3078 ID.AddInteger(SM);
3079 ID.AddInteger(ConstArg);
3080 ID.AddInteger(VolatileArg);
3081 ID.AddInteger(RValueThis);
3082 ID.AddInteger(ConstThis);
3083 ID.AddInteger(VolatileThis);
3084
3085 void *InsertPoint;
3086 SpecialMemberOverloadResultEntry *Result =
3087 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3088
3089 // This was already cached
3090 if (Result)
3091 return *Result;
3092
3093 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3094 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3095 SpecialMemberCache.InsertNode(Result, InsertPoint);
3096
3097 if (SM == CXXDestructor) {
3098 if (RD->needsImplicitDestructor()) {
3099 runWithSufficientStackSpace(RD->getLocation(), [&] {
3100 DeclareImplicitDestructor(RD);
3101 });
3102 }
3103 CXXDestructorDecl *DD = RD->getDestructor();
3104 assert(DD && "record without a destructor")((DD && "record without a destructor") ? static_cast<
void> (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3104, __PRETTY_FUNCTION__))
;
3105 Result->setMethod(DD);
3106 Result->setKind(DD->isDeleted() ?
3107 SpecialMemberOverloadResult::NoMemberOrDeleted :
3108 SpecialMemberOverloadResult::Success);
3109 return *Result;
3110 }
3111
3112 // Prepare for overload resolution. Here we construct a synthetic argument
3113 // if necessary and make sure that implicit functions are declared.
3114 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3115 DeclarationName Name;
3116 Expr *Arg = nullptr;
3117 unsigned NumArgs;
3118
3119 QualType ArgType = CanTy;
3120 ExprValueKind VK = VK_LValue;
3121
3122 if (SM == CXXDefaultConstructor) {
3123 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3124 NumArgs = 0;
3125 if (RD->needsImplicitDefaultConstructor()) {
3126 runWithSufficientStackSpace(RD->getLocation(), [&] {
3127 DeclareImplicitDefaultConstructor(RD);
3128 });
3129 }
3130 } else {
3131 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3132 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3133 if (RD->needsImplicitCopyConstructor()) {
3134 runWithSufficientStackSpace(RD->getLocation(), [&] {
3135 DeclareImplicitCopyConstructor(RD);
3136 });
3137 }
3138 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3139 runWithSufficientStackSpace(RD->getLocation(), [&] {
3140 DeclareImplicitMoveConstructor(RD);
3141 });
3142 }
3143 } else {
3144 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3145 if (RD->needsImplicitCopyAssignment()) {
3146 runWithSufficientStackSpace(RD->getLocation(), [&] {
3147 DeclareImplicitCopyAssignment(RD);
3148 });
3149 }
3150 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3151 runWithSufficientStackSpace(RD->getLocation(), [&] {
3152 DeclareImplicitMoveAssignment(RD);
3153 });
3154 }
3155 }
3156
3157 if (ConstArg)
3158 ArgType.addConst();
3159 if (VolatileArg)
3160 ArgType.addVolatile();
3161
3162 // This isn't /really/ specified by the standard, but it's implied
3163 // we should be working from an RValue in the case of move to ensure
3164 // that we prefer to bind to rvalue references, and an LValue in the
3165 // case of copy to ensure we don't bind to rvalue references.
3166 // Possibly an XValue is actually correct in the case of move, but
3167 // there is no semantic difference for class types in this restricted
3168 // case.
3169 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3170 VK = VK_LValue;
3171 else
3172 VK = VK_RValue;
3173 }
3174
3175 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3176
3177 if (SM != CXXDefaultConstructor) {
3178 NumArgs = 1;
3179 Arg = &FakeArg;
3180 }
3181
3182 // Create the object argument
3183 QualType ThisTy = CanTy;
3184 if (ConstThis)
3185 ThisTy.addConst();
3186 if (VolatileThis)
3187 ThisTy.addVolatile();
3188 Expr::Classification Classification =
3189 OpaqueValueExpr(LookupLoc, ThisTy,
3190 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3191
3192 // Now we perform lookup on the name we computed earlier and do overload
3193 // resolution. Lookup is only performed directly into the class since there
3194 // will always be a (possibly implicit) declaration to shadow any others.
3195 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3196 DeclContext::lookup_result R = RD->lookup(Name);
3197
3198 if (R.empty()) {
3199 // We might have no default constructor because we have a lambda's closure
3200 // type, rather than because there's some other declared constructor.
3201 // Every class has a copy/move constructor, copy/move assignment, and
3202 // destructor.
3203 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3204, __PRETTY_FUNCTION__))
3204 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3204, __PRETTY_FUNCTION__))
;
3205 Result->setMethod(nullptr);
3206 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3207 return *Result;
3208 }
3209
3210 // Copy the candidates as our processing of them may load new declarations
3211 // from an external source and invalidate lookup_result.
3212 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3213
3214 for (NamedDecl *CandDecl : Candidates) {
3215 if (CandDecl->isInvalidDecl())
3216 continue;
3217
3218 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3219 auto CtorInfo = getConstructorInfo(Cand);
3220 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3221 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3222 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3223 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3224 else if (CtorInfo)
3225 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3226 llvm::makeArrayRef(&Arg, NumArgs), OCS,
3227 /*SuppressUserConversions*/ true);
3228 else
3229 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3230 /*SuppressUserConversions*/ true);
3231 } else if (FunctionTemplateDecl *Tmpl =
3232 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3233 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3234 AddMethodTemplateCandidate(
3235 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3236 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3237 else if (CtorInfo)
3238 AddTemplateOverloadCandidate(
3239 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3240 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3241 else
3242 AddTemplateOverloadCandidate(
3243 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3244 } else {
3245 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3246, __PRETTY_FUNCTION__))
3246 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3246, __PRETTY_FUNCTION__))
;
3247 }
3248 }
3249
3250 OverloadCandidateSet::iterator Best;
3251 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3252 case OR_Success:
3253 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3254 Result->setKind(SpecialMemberOverloadResult::Success);
3255 break;
3256
3257 case OR_Deleted:
3258 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3259 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3260 break;
3261
3262 case OR_Ambiguous:
3263 Result->setMethod(nullptr);
3264 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3265 break;
3266
3267 case OR_No_Viable_Function:
3268 Result->setMethod(nullptr);
3269 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3270 break;
3271 }
3272
3273 return *Result;
3274}
3275
3276/// Look up the default constructor for the given class.
3277CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3278 SpecialMemberOverloadResult Result =
3279 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3280 false, false);
3281
3282 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3283}
3284
3285/// Look up the copying constructor for the given class.
3286CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3287 unsigned Quals) {
3288 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3289, __PRETTY_FUNCTION__))
3289 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3289, __PRETTY_FUNCTION__))
;
3290 SpecialMemberOverloadResult Result =
3291 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3292 Quals & Qualifiers::Volatile, false, false, false);
3293
3294 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3295}
3296
3297/// Look up the moving constructor for the given class.
3298CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3299 unsigned Quals) {
3300 SpecialMemberOverloadResult Result =
3301 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3302 Quals & Qualifiers::Volatile, false, false, false);
3303
3304 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3305}
3306
3307/// Look up the constructors for the given class.
3308DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3309 // If the implicit constructors have not yet been declared, do so now.
3310 if (CanDeclareSpecialMemberFunction(Class)) {
3311 runWithSufficientStackSpace(Class->getLocation(), [&] {
3312 if (Class->needsImplicitDefaultConstructor())
3313 DeclareImplicitDefaultConstructor(Class);
3314 if (Class->needsImplicitCopyConstructor())
3315 DeclareImplicitCopyConstructor(Class);
3316 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3317 DeclareImplicitMoveConstructor(Class);
3318 });
3319 }
3320
3321 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3322 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3323 return Class->lookup(Name);
3324}
3325
3326/// Look up the copying assignment operator for the given class.
3327CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3328 unsigned Quals, bool RValueThis,
3329 unsigned ThisQuals) {
3330 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3331, __PRETTY_FUNCTION__))
3331 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3331, __PRETTY_FUNCTION__))
;
3332 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3333, __PRETTY_FUNCTION__))
3333 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3333, __PRETTY_FUNCTION__))
;
3334 SpecialMemberOverloadResult Result =
3335 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3336 Quals & Qualifiers::Volatile, RValueThis,
3337 ThisQuals & Qualifiers::Const,
3338 ThisQuals & Qualifiers::Volatile);
3339
3340 return Result.getMethod();
3341}
3342
3343/// Look up the moving assignment operator for the given class.
3344CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3345 unsigned Quals,
3346 bool RValueThis,
3347 unsigned ThisQuals) {
3348 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3349, __PRETTY_FUNCTION__))
3349 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3349, __PRETTY_FUNCTION__))
;
3350 SpecialMemberOverloadResult Result =
3351 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3352 Quals & Qualifiers::Volatile, RValueThis,
3353 ThisQuals & Qualifiers::Const,
3354 ThisQuals & Qualifiers::Volatile);
3355
3356 return Result.getMethod();
3357}
3358
3359/// Look for the destructor of the given class.
3360///
3361/// During semantic analysis, this routine should be used in lieu of
3362/// CXXRecordDecl::getDestructor().
3363///
3364/// \returns The destructor for this class.
3365CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3366 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3367 false, false, false,
3368 false, false).getMethod());
3369}
3370
3371/// LookupLiteralOperator - Determine which literal operator should be used for
3372/// a user-defined literal, per C++11 [lex.ext].
3373///
3374/// Normal overload resolution is not used to select which literal operator to
3375/// call for a user-defined literal. Look up the provided literal operator name,
3376/// and filter the results to the appropriate set for the given argument types.
3377Sema::LiteralOperatorLookupResult
3378Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3379 ArrayRef<QualType> ArgTys,
3380 bool AllowRaw, bool AllowTemplate,
3381 bool AllowStringTemplate, bool DiagnoseMissing) {
3382 LookupName(R, S);
3383 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3384, __PRETTY_FUNCTION__))
3384 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3384, __PRETTY_FUNCTION__))
;
3385
3386 // Filter the lookup results appropriately.
3387 LookupResult::Filter F = R.makeFilter();
3388
3389 bool FoundRaw = false;
3390 bool FoundTemplate = false;
3391 bool FoundStringTemplate = false;
3392 bool FoundExactMatch = false;
3393
3394 while (F.hasNext()) {
3395 Decl *D = F.next();
3396 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3397 D = USD->getTargetDecl();
3398
3399 // If the declaration we found is invalid, skip it.
3400 if (D->isInvalidDecl()) {
3401 F.erase();
3402 continue;
3403 }
3404
3405 bool IsRaw = false;
3406 bool IsTemplate = false;
3407 bool IsStringTemplate = false;
3408 bool IsExactMatch = false;
3409
3410 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3411 if (FD->getNumParams() == 1 &&
3412 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3413 IsRaw = true;
3414 else if (FD->getNumParams() == ArgTys.size()) {
3415 IsExactMatch = true;
3416 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3417 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3418 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3419 IsExactMatch = false;
3420 break;
3421 }
3422 }
3423 }
3424 }
3425 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3426 TemplateParameterList *Params = FD->getTemplateParameters();
3427 if (Params->size() == 1)
3428 IsTemplate = true;
3429 else
3430 IsStringTemplate = true;
3431 }
3432
3433 if (IsExactMatch) {
3434 FoundExactMatch = true;
3435 AllowRaw = false;
3436 AllowTemplate = false;
3437 AllowStringTemplate = false;
3438 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3439 // Go through again and remove the raw and template decls we've
3440 // already found.
3441 F.restart();
3442 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3443 }
3444 } else if (AllowRaw && IsRaw) {
3445 FoundRaw = true;
3446 } else if (AllowTemplate && IsTemplate) {
3447 FoundTemplate = true;
3448 } else if (AllowStringTemplate && IsStringTemplate) {
3449 FoundStringTemplate = true;
3450 } else {
3451 F.erase();
3452 }
3453 }
3454
3455 F.done();
3456
3457 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3458 // parameter type, that is used in preference to a raw literal operator
3459 // or literal operator template.
3460 if (FoundExactMatch)
3461 return LOLR_Cooked;
3462
3463 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3464 // operator template, but not both.
3465 if (FoundRaw && FoundTemplate) {
3466 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3467 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3468 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3469 return LOLR_Error;
3470 }
3471
3472 if (FoundRaw)
3473 return LOLR_Raw;
3474
3475 if (FoundTemplate)
3476 return LOLR_Template;
3477
3478 if (FoundStringTemplate)
3479 return LOLR_StringTemplate;
3480
3481 // Didn't find anything we could use.
3482 if (DiagnoseMissing) {
3483 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3484 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3485 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3486 << (AllowTemplate || AllowStringTemplate);
3487 return LOLR_Error;
3488 }
3489
3490 return LOLR_ErrorNoDiagnostic;
3491}
3492
3493void ADLResult::insert(NamedDecl *New) {
3494 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3495
3496 // If we haven't yet seen a decl for this key, or the last decl
3497 // was exactly this one, we're done.
3498 if (Old == nullptr || Old == New) {
3499 Old = New;
3500 return;
3501 }
3502
3503 // Otherwise, decide which is a more recent redeclaration.
3504 FunctionDecl *OldFD = Old->getAsFunction();
3505 FunctionDecl *NewFD = New->getAsFunction();
3506
3507 FunctionDecl *Cursor = NewFD;
3508 while (true) {
3509 Cursor = Cursor->getPreviousDecl();
3510
3511 // If we got to the end without finding OldFD, OldFD is the newer
3512 // declaration; leave things as they are.
3513 if (!Cursor) return;
3514
3515 // If we do find OldFD, then NewFD is newer.
3516 if (Cursor == OldFD) break;
3517
3518 // Otherwise, keep looking.
3519 }
3520
3521 Old = New;
3522}
3523
3524void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3525 ArrayRef<Expr *> Args, ADLResult &Result) {
3526 // Find all of the associated namespaces and classes based on the
3527 // arguments we have.
3528 AssociatedNamespaceSet AssociatedNamespaces;
3529 AssociatedClassSet AssociatedClasses;
3530 FindAssociatedClassesAndNamespaces(Loc, Args,
3531 AssociatedNamespaces,
3532 AssociatedClasses);
3533
3534 // C++ [basic.lookup.argdep]p3:
3535 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3536 // and let Y be the lookup set produced by argument dependent
3537 // lookup (defined as follows). If X contains [...] then Y is
3538 // empty. Otherwise Y is the set of declarations found in the
3539 // namespaces associated with the argument types as described
3540 // below. The set of declarations found by the lookup of the name
3541 // is the union of X and Y.
3542 //
3543 // Here, we compute Y and add its members to the overloaded
3544 // candidate set.
3545 for (auto *NS : AssociatedNamespaces) {
3546 // When considering an associated namespace, the lookup is the
3547 // same as the lookup performed when the associated namespace is
3548 // used as a qualifier (3.4.3.2) except that:
3549 //
3550 // -- Any using-directives in the associated namespace are
3551 // ignored.
3552 //
3553 // -- Any namespace-scope friend functions declared in
3554 // associated classes are visible within their respective
3555 // namespaces even if they are not visible during an ordinary
3556 // lookup (11.4).
3557 DeclContext::lookup_result R = NS->lookup(Name);
3558 for (auto *D : R) {
3559 auto *Underlying = D;
3560 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3561 Underlying = USD->getTargetDecl();
3562
3563 if (!isa<FunctionDecl>(Underlying) &&
3564 !isa<FunctionTemplateDecl>(Underlying))
3565 continue;
3566
3567 // The declaration is visible to argument-dependent lookup if either
3568 // it's ordinarily visible or declared as a friend in an associated
3569 // class.
3570 bool Visible = false;
3571 for (D = D->getMostRecentDecl(); D;
3572 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3573 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3574 if (isVisible(D)) {
3575 Visible = true;
3576 break;
3577 }
3578 } else if (D->getFriendObjectKind()) {
3579 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3580 if (AssociatedClasses.count(RD) && isVisible(D)) {
3581 Visible = true;
3582 break;
3583 }
3584 }
3585 }
3586
3587 // FIXME: Preserve D as the FoundDecl.
3588 if (Visible)
3589 Result.insert(Underlying);
3590 }
3591 }
3592}
3593
3594//----------------------------------------------------------------------------
3595// Search for all visible declarations.
3596//----------------------------------------------------------------------------
3597VisibleDeclConsumer::~VisibleDeclConsumer() { }
3598
3599bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3600
3601namespace {
3602
3603class ShadowContextRAII;
3604
3605class VisibleDeclsRecord {
3606public:
3607 /// An entry in the shadow map, which is optimized to store a
3608 /// single declaration (the common case) but can also store a list
3609 /// of declarations.
3610 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3611
3612private:
3613 /// A mapping from declaration names to the declarations that have
3614 /// this name within a particular scope.
3615 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3616
3617 /// A list of shadow maps, which is used to model name hiding.
3618 std::list<ShadowMap> ShadowMaps;
3619
3620 /// The declaration contexts we have already visited.
3621 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3622
3623 friend class ShadowContextRAII;
3624
3625public:
3626 /// Determine whether we have already visited this context
3627 /// (and, if not, note that we are going to visit that context now).
3628 bool visitedContext(DeclContext *Ctx) {
3629 return !VisitedContexts.insert(Ctx).second;
3630 }
3631
3632 bool alreadyVisitedContext(DeclContext *Ctx) {
3633 return VisitedContexts.count(Ctx);
3634 }
3635
3636 /// Determine whether the given declaration is hidden in the
3637 /// current scope.
3638 ///
3639 /// \returns the declaration that hides the given declaration, or
3640 /// NULL if no such declaration exists.
3641 NamedDecl *checkHidden(NamedDecl *ND);
3642
3643 /// Add a declaration to the current shadow map.
3644 void add(NamedDecl *ND) {
3645 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3646 }
3647};
3648
3649/// RAII object that records when we've entered a shadow context.
3650class ShadowContextRAII {
3651 VisibleDeclsRecord &Visible;
3652
3653 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3654
3655public:
3656 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3657 Visible.ShadowMaps.emplace_back();
3658 }
3659
3660 ~ShadowContextRAII() {
3661 Visible.ShadowMaps.pop_back();
3662 }
3663};
3664
3665} // end anonymous namespace
3666
3667NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3668 unsigned IDNS = ND->getIdentifierNamespace();
3669 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3670 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3671 SM != SMEnd; ++SM) {
3672 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3673 if (Pos == SM->end())
3674 continue;
3675
3676 for (auto *D : Pos->second) {
3677 // A tag declaration does not hide a non-tag declaration.
3678 if (D->hasTagIdentifierNamespace() &&
3679 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3680 Decl::IDNS_ObjCProtocol)))
3681 continue;
3682
3683 // Protocols are in distinct namespaces from everything else.
3684 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3685 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3686 D->getIdentifierNamespace() != IDNS)
3687 continue;
3688
3689 // Functions and function templates in the same scope overload
3690 // rather than hide. FIXME: Look for hiding based on function
3691 // signatures!
3692 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3693 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3694 SM == ShadowMaps.rbegin())
3695 continue;
3696
3697 // A shadow declaration that's created by a resolved using declaration
3698 // is not hidden by the same using declaration.
3699 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3700 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3701 continue;
3702
3703 // We've found a declaration that hides this one.
3704 return D;
3705 }
3706 }
3707
3708 return nullptr;
3709}
3710
3711namespace {
3712class LookupVisibleHelper {
3713public:
3714 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3715 bool LoadExternal)
3716 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3717 LoadExternal(LoadExternal) {}
3718
3719 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3720 bool IncludeGlobalScope) {
3721 // Determine the set of using directives available during
3722 // unqualified name lookup.
3723 Scope *Initial = S;
3724 UnqualUsingDirectiveSet UDirs(SemaRef);
3725 if (SemaRef.getLangOpts().CPlusPlus) {
3726 // Find the first namespace or translation-unit scope.
3727 while (S && !isNamespaceOrTranslationUnitScope(S))
3728 S = S->getParent();
3729
3730 UDirs.visitScopeChain(Initial, S);
3731 }
3732 UDirs.done();
3733
3734 // Look for visible declarations.
3735 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3736 Result.setAllowHidden(Consumer.includeHiddenDecls());
3737 if (!IncludeGlobalScope)
3738 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3739 ShadowContextRAII Shadow(Visited);
3740 lookupInScope(Initial, Result, UDirs);
3741 }
3742
3743 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3744 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3745 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3746 Result.setAllowHidden(Consumer.includeHiddenDecls());
3747 if (!IncludeGlobalScope)
3748 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3749
3750 ShadowContextRAII Shadow(Visited);
3751 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3752 /*InBaseClass=*/false);
3753 }
3754
3755private:
3756 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3757 bool QualifiedNameLookup, bool InBaseClass) {
3758 if (!Ctx)
3759 return;
3760
3761 // Make sure we don't visit the same context twice.
3762 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3763 return;
3764
3765 Consumer.EnteredContext(Ctx);
3766
3767 // Outside C++, lookup results for the TU live on identifiers.
3768 if (isa<TranslationUnitDecl>(Ctx) &&
3769 !Result.getSema().getLangOpts().CPlusPlus) {
3770 auto &S = Result.getSema();
3771 auto &Idents = S.Context.Idents;
3772
3773 // Ensure all external identifiers are in the identifier table.
3774 if (LoadExternal)
3775 if (IdentifierInfoLookup *External =
3776 Idents.getExternalIdentifierLookup()) {
3777 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3778 for (StringRef Name = Iter->Next(); !Name.empty();
3779 Name = Iter->Next())
3780 Idents.get(Name);
3781 }
3782
3783 // Walk all lookup results in the TU for each identifier.
3784 for (const auto &Ident : Idents) {
3785 for (auto I = S.IdResolver.begin(Ident.getValue()),
3786 E = S.IdResolver.end();
3787 I != E; ++I) {
3788 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3789 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3790 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3791 Visited.add(ND);
3792 }
3793 }
3794 }
3795 }
3796
3797 return;
3798 }
3799
3800 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3801 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3802
3803 // We sometimes skip loading namespace-level results (they tend to be huge).
3804 bool Load = LoadExternal ||
3805 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3806 // Enumerate all of the results in this context.
3807 for (DeclContextLookupResult R :
3808 Load ? Ctx->lookups()
3809 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3810 for (auto *D : R) {
3811 if (auto *ND = Result.getAcceptableDecl(D)) {
3812 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3813 Visited.add(ND);
3814 }
3815 }
3816 }
3817
3818 // Traverse using directives for qualified name lookup.
3819 if (QualifiedNameLookup) {
3820 ShadowContextRAII Shadow(Visited);
3821 for (auto I : Ctx->using_directives()) {
3822 if (!Result.getSema().isVisible(I))
3823 continue;
3824 lookupInDeclContext(I->getNominatedNamespace(), Result,
3825 QualifiedNameLookup, InBaseClass);
3826 }
3827 }
3828
3829 // Traverse the contexts of inherited C++ classes.
3830 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3831 if (!Record->hasDefinition())
3832 return;
3833
3834 for (const auto &B : Record->bases()) {
3835 QualType BaseType = B.getType();
3836
3837 RecordDecl *RD;
3838 if (BaseType->isDependentType()) {
3839 if (!IncludeDependentBases) {
3840 // Don't look into dependent bases, because name lookup can't look
3841 // there anyway.
3842 continue;
3843 }
3844 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3845 if (!TST)
3846 continue;
3847 TemplateName TN = TST->getTemplateName();
3848 const auto *TD =
3849 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3850 if (!TD)
3851 continue;
3852 RD = TD->getTemplatedDecl();
3853 } else {
3854 const auto *Record = BaseType->getAs<RecordType>();
3855 if (!Record)
3856 continue;
3857 RD = Record->getDecl();
3858 }
3859
3860 // FIXME: It would be nice to be able to determine whether referencing
3861 // a particular member would be ambiguous. For example, given
3862 //
3863 // struct A { int member; };
3864 // struct B { int member; };
3865 // struct C : A, B { };
3866 //
3867 // void f(C *c) { c->### }
3868 //
3869 // accessing 'member' would result in an ambiguity. However, we
3870 // could be smart enough to qualify the member with the base
3871 // class, e.g.,
3872 //
3873 // c->B::member
3874 //
3875 // or
3876 //
3877 // c->A::member
3878
3879 // Find results in this base class (and its bases).
3880 ShadowContextRAII Shadow(Visited);
3881 lookupInDeclContext(RD, Result, QualifiedNameLookup,
3882 /*InBaseClass=*/true);
3883 }
3884 }
3885
3886 // Traverse the contexts of Objective-C classes.
3887 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3888 // Traverse categories.
3889 for (auto *Cat : IFace->visible_categories()) {
3890 ShadowContextRAII Shadow(Visited);
3891 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3892 /*InBaseClass=*/false);
3893 }
3894
3895 // Traverse protocols.
3896 for (auto *I : IFace->all_referenced_protocols()) {
3897 ShadowContextRAII Shadow(Visited);
3898 lookupInDeclContext(I, Result, QualifiedNameLookup,
3899 /*InBaseClass=*/false);
3900 }
3901
3902 // Traverse the superclass.
3903 if (IFace->getSuperClass()) {
3904 ShadowContextRAII Shadow(Visited);
3905 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3906 /*InBaseClass=*/true);
3907 }
3908
3909 // If there is an implementation, traverse it. We do this to find
3910 // synthesized ivars.
3911 if (IFace->getImplementation()) {
3912 ShadowContextRAII Shadow(Visited);
3913 lookupInDeclContext(IFace->getImplementation(), Result,
3914 QualifiedNameLookup, InBaseClass);
3915 }
3916 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3917 for (auto *I : Protocol->protocols()) {
3918 ShadowContextRAII Shadow(Visited);
3919 lookupInDeclContext(I, Result, QualifiedNameLookup,
3920 /*InBaseClass=*/false);
3921 }
3922 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3923 for (auto *I : Category->protocols()) {
3924 ShadowContextRAII Shadow(Visited);
3925 lookupInDeclContext(I, Result, QualifiedNameLookup,
3926 /*InBaseClass=*/false);
3927 }
3928
3929 // If there is an implementation, traverse it.
3930 if (Category->getImplementation()) {
3931 ShadowContextRAII Shadow(Visited);
3932 lookupInDeclContext(Category->getImplementation(), Result,
3933 QualifiedNameLookup, /*InBaseClass=*/true);
3934 }
3935 }
3936 }
3937
3938 void lookupInScope(Scope *S, LookupResult &Result,
3939 UnqualUsingDirectiveSet &UDirs) {
3940 // No clients run in this mode and it's not supported. Please add tests and
3941 // remove the assertion if you start relying on it.
3942 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")((!IncludeDependentBases && "Unsupported flag for lookupInScope"
) ? static_cast<void> (0) : __assert_fail ("!IncludeDependentBases && \"Unsupported flag for lookupInScope\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 3942, __PRETTY_FUNCTION__))
;
3943
3944 if (!S)
3945 return;
3946
3947 if (!S->getEntity() ||
3948 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3949 (S->getEntity())->isFunctionOrMethod()) {
3950 FindLocalExternScope FindLocals(Result);
3951 // Walk through the declarations in this Scope. The consumer might add new
3952 // decls to the scope as part of deserialization, so make a copy first.
3953 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3954 for (Decl *D : ScopeDecls) {
3955 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3956 if ((ND = Result.getAcceptableDecl(ND))) {
3957 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3958 Visited.add(ND);
3959 }
3960 }
3961 }
3962
3963 // FIXME: C++ [temp.local]p8
3964 DeclContext *Entity = nullptr;
3965 if (S->getEntity()) {
3966 // Look into this scope's declaration context, along with any of its
3967 // parent lookup contexts (e.g., enclosing classes), up to the point
3968 // where we hit the context stored in the next outer scope.
3969 Entity = S->getEntity();
3970 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3971
3972 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3973 Ctx = Ctx->getLookupParent()) {
3974 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3975 if (Method->isInstanceMethod()) {
3976 // For instance methods, look for ivars in the method's interface.
3977 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3978 Result.getNameLoc(),
3979 Sema::LookupMemberName);
3980 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3981 lookupInDeclContext(IFace, IvarResult,
3982 /*QualifiedNameLookup=*/false,
3983 /*InBaseClass=*/false);
3984 }
3985 }
3986
3987 // We've already performed all of the name lookup that we need
3988 // to for Objective-C methods; the next context will be the
3989 // outer scope.
3990 break;
3991 }
3992
3993 if (Ctx->isFunctionOrMethod())
3994 continue;
3995
3996 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
3997 /*InBaseClass=*/false);
3998 }
3999 } else if (!S->getParent()) {
4000 // Look into the translation unit scope. We walk through the translation
4001 // unit's declaration context, because the Scope itself won't have all of
4002 // the declarations if we loaded a precompiled header.
4003 // FIXME: We would like the translation unit's Scope object to point to
4004 // the translation unit, so we don't need this special "if" branch.
4005 // However, doing so would force the normal C++ name-lookup code to look
4006 // into the translation unit decl when the IdentifierInfo chains would
4007 // suffice. Once we fix that problem (which is part of a more general
4008 // "don't look in DeclContexts unless we have to" optimization), we can
4009 // eliminate this.
4010 Entity = Result.getSema().Context.getTranslationUnitDecl();
4011 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4012 /*InBaseClass=*/false);
4013 }
4014
4015 if (Entity) {
4016 // Lookup visible declarations in any namespaces found by using
4017 // directives.
4018 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4019 lookupInDeclContext(
4020 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4021 /*QualifiedNameLookup=*/false,
4022 /*InBaseClass=*/false);
4023 }
4024
4025 // Lookup names in the parent scope.
4026 ShadowContextRAII Shadow(Visited);
4027 lookupInScope(S->getParent(), Result, UDirs);
4028 }
4029
4030private:
4031 VisibleDeclsRecord Visited;
4032 VisibleDeclConsumer &Consumer;
4033 bool IncludeDependentBases;
4034 bool LoadExternal;
4035};
4036} // namespace
4037
4038void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4039 VisibleDeclConsumer &Consumer,
4040 bool IncludeGlobalScope, bool LoadExternal) {
4041 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4042 LoadExternal);
4043 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4044}
4045
4046void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4047 VisibleDeclConsumer &Consumer,
4048 bool IncludeGlobalScope,
4049 bool IncludeDependentBases, bool LoadExternal) {
4050 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4051 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4052}
4053
4054/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4055/// If GnuLabelLoc is a valid source location, then this is a definition
4056/// of an __label__ label name, otherwise it is a normal label definition
4057/// or use.
4058LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4059 SourceLocation GnuLabelLoc) {
4060 // Do a lookup to see if we have a label with this name already.
4061 NamedDecl *Res = nullptr;
4062
4063 if (GnuLabelLoc.isValid()) {
4064 // Local label definitions always shadow existing labels.
4065 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4066 Scope *S = CurScope;
4067 PushOnScopeChains(Res, S, true);
4068 return cast<LabelDecl>(Res);
4069 }
4070
4071 // Not a GNU local label.
4072 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4073 // If we found a label, check to see if it is in the same context as us.
4074 // When in a Block, we don't want to reuse a label in an enclosing function.
4075 if (Res && Res->getDeclContext() != CurContext)
4076 Res = nullptr;
4077 if (!Res) {
4078 // If not forward referenced or defined already, create the backing decl.
4079 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4080 Scope *S = CurScope->getFnParent();
4081 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 4081, __PRETTY_FUNCTION__))
;
4082 PushOnScopeChains(Res, S, true);
4083 }
4084 return cast<LabelDecl>(Res);
4085}
4086
4087//===----------------------------------------------------------------------===//
4088// Typo correction
4089//===----------------------------------------------------------------------===//
4090
4091static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4092 TypoCorrection &Candidate) {
4093 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4094 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4095}
4096
4097static void LookupPotentialTypoResult(Sema &SemaRef,
4098 LookupResult &Res,
4099 IdentifierInfo *Name,
4100 Scope *S, CXXScopeSpec *SS,
4101 DeclContext *MemberContext,
4102 bool EnteringContext,
4103 bool isObjCIvarLookup,
4104 bool FindHidden);
4105
4106/// Check whether the declarations found for a typo correction are
4107/// visible. Set the correction's RequiresImport flag to true if none of the
4108/// declarations are visible, false otherwise.
4109static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4110 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4111
4112 for (/**/; DI != DE; ++DI)
4113 if (!LookupResult::isVisible(SemaRef, *DI))
4114 break;
4115 // No filtering needed if all decls are visible.
4116 if (DI == DE) {
4117 TC.setRequiresImport(false);
4118 return;
4119 }
4120
4121 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4122 bool AnyVisibleDecls = !NewDecls.empty();
4123
4124 for (/**/; DI != DE; ++DI) {
4125 if (LookupResult::isVisible(SemaRef, *DI)) {
4126 if (!AnyVisibleDecls) {
4127 // Found a visible decl, discard all hidden ones.
4128 AnyVisibleDecls = true;
4129 NewDecls.clear();
4130 }
4131 NewDecls.push_back(*DI);
4132 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4133 NewDecls.push_back(*DI);
4134 }
4135
4136 if (NewDecls.empty())
4137 TC = TypoCorrection();
4138 else {
4139 TC.setCorrectionDecls(NewDecls);
4140 TC.setRequiresImport(!AnyVisibleDecls);
4141 }
4142}
4143
4144// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4145// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4146// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4147static void getNestedNameSpecifierIdentifiers(
4148 NestedNameSpecifier *NNS,
4149 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4150 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4151 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4152 else
4153 Identifiers.clear();
4154
4155 const IdentifierInfo *II = nullptr;
4156
4157 switch (NNS->getKind()) {
4158 case NestedNameSpecifier::Identifier:
4159 II = NNS->getAsIdentifier();
4160 break;
4161
4162 case NestedNameSpecifier::Namespace:
4163 if (NNS->getAsNamespace()->isAnonymousNamespace())
4164 return;
4165 II = NNS->getAsNamespace()->getIdentifier();
4166 break;
4167
4168 case NestedNameSpecifier::NamespaceAlias:
4169 II = NNS->getAsNamespaceAlias()->getIdentifier();
4170 break;
4171
4172 case NestedNameSpecifier::TypeSpecWithTemplate:
4173 case NestedNameSpecifier::TypeSpec:
4174 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4175 break;
4176
4177 case NestedNameSpecifier::Global:
4178 case NestedNameSpecifier::Super:
4179 return;
4180 }
4181
4182 if (II)
4183 Identifiers.push_back(II);
4184}
4185
4186void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4187 DeclContext *Ctx, bool InBaseClass) {
4188 // Don't consider hidden names for typo correction.
4189 if (Hiding)
4190 return;
4191
4192 // Only consider entities with identifiers for names, ignoring
4193 // special names (constructors, overloaded operators, selectors,
4194 // etc.).
4195 IdentifierInfo *Name = ND->getIdentifier();
4196 if (!Name)
4197 return;
4198
4199 // Only consider visible declarations and declarations from modules with
4200 // names that exactly match.
4201 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4202 return;
4203
4204 FoundName(Name->getName());
4205}
4206
4207void TypoCorrectionConsumer::FoundName(StringRef Name) {
4208 // Compute the edit distance between the typo and the name of this
4209 // entity, and add the identifier to the list of results.
4210 addName(Name, nullptr);
4211}
4212
4213void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4214 // Compute the edit distance between the typo and this keyword,
4215 // and add the keyword to the list of results.
4216 addName(Keyword, nullptr, nullptr, true);
4217}
4218
4219void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4220 NestedNameSpecifier *NNS, bool isKeyword) {
4221 // Use a simple length-based heuristic to determine the minimum possible
4222 // edit distance. If the minimum isn't good enough, bail out early.
4223 StringRef TypoStr = Typo->getName();
4224 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4225 if (MinED && TypoStr.size() / MinED < 3)
4226 return;
4227
4228 // Compute an upper bound on the allowable edit distance, so that the
4229 // edit-distance algorithm can short-circuit.
4230 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4231 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4232 if (ED > UpperBound) return;
4233
4234 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4235 if (isKeyword) TC.makeKeyword();
4236 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4237 addCorrection(TC);
4238}
4239
4240static const unsigned MaxTypoDistanceResultSets = 5;
4241
4242void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4243 StringRef TypoStr = Typo->getName();
4244 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4245
4246 // For very short typos, ignore potential corrections that have a different
4247 // base identifier from the typo or which have a normalized edit distance
4248 // longer than the typo itself.
4249 if (TypoStr.size() < 3 &&
4250 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4251 return;
4252
4253 // If the correction is resolved but is not viable, ignore it.
4254 if (Correction.isResolved()) {
4255 checkCorrectionVisibility(SemaRef, Correction);
4256 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4257 return;
4258 }
4259
4260 TypoResultList &CList =
4261 CorrectionResults[Correction.getEditDistance(false)][Name];
4262
4263 if (!CList.empty() && !CList.back().isResolved())
4264 CList.pop_back();
4265 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4266 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4267 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4268 RI != RIEnd; ++RI) {
4269 // If the Correction refers to a decl already in the result list,
4270 // replace the existing result if the string representation of Correction
4271 // comes before the current result alphabetically, then stop as there is
4272 // nothing more to be done to add Correction to the candidate set.
4273 if (RI->getCorrectionDecl() == NewND) {
4274 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4275 *RI = Correction;
4276 return;
4277 }
4278 }
4279 }
4280 if (CList.empty() || Correction.isResolved())
4281 CList.push_back(Correction);
4282
4283 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4284 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4285}
4286
4287void TypoCorrectionConsumer::addNamespaces(
4288 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4289 SearchNamespaces = true;
4290
4291 for (auto KNPair : KnownNamespaces)
4292 Namespaces.addNameSpecifier(KNPair.first);
1
Calling 'NamespaceSpecifierSet::addNameSpecifier'
4293
4294 bool SSIsTemplate = false;
4295 if (NestedNameSpecifier *NNS =
4296 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4297 if (const Type *T = NNS->getAsType())
4298 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4299 }
4300 // Do not transform this into an iterator-based loop. The loop body can
4301 // trigger the creation of further types (through lazy deserialization) and
4302 // invalid iterators into this list.
4303 auto &Types = SemaRef.getASTContext().getTypes();
4304 for (unsigned I = 0; I != Types.size(); ++I) {
4305 const auto *TI = Types[I];
4306 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4307 CD = CD->getCanonicalDecl();
4308 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4309 !CD->isUnion() && CD->getIdentifier() &&
4310 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4311 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4312 Namespaces.addNameSpecifier(CD);
4313 }
4314 }
4315}
4316
4317const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4318 if (++CurrentTCIndex < ValidatedCorrections.size())
4319 return ValidatedCorrections[CurrentTCIndex];
4320
4321 CurrentTCIndex = ValidatedCorrections.size();
4322 while (!CorrectionResults.empty()) {
4323 auto DI = CorrectionResults.begin();
4324 if (DI->second.empty()) {
4325 CorrectionResults.erase(DI);
4326 continue;
4327 }
4328
4329 auto RI = DI->second.begin();
4330 if (RI->second.empty()) {
4331 DI->second.erase(RI);
4332 performQualifiedLookups();
4333 continue;
4334 }
4335
4336 TypoCorrection TC = RI->second.pop_back_val();
4337 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4338 ValidatedCorrections.push_back(TC);
4339 return ValidatedCorrections[CurrentTCIndex];
4340 }
4341 }
4342 return ValidatedCorrections[0]; // The empty correction.
4343}
4344
4345bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4346 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4347 DeclContext *TempMemberContext = MemberContext;
4348 CXXScopeSpec *TempSS = SS.get();
4349retry_lookup:
4350 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4351 EnteringContext,
4352 CorrectionValidator->IsObjCIvarLookup,
4353 Name == Typo && !Candidate.WillReplaceSpecifier());
4354 switch (Result.getResultKind()) {
4355 case LookupResult::NotFound:
4356 case LookupResult::NotFoundInCurrentInstantiation:
4357 case LookupResult::FoundUnresolvedValue:
4358 if (TempSS) {
4359 // Immediately retry the lookup without the given CXXScopeSpec
4360 TempSS = nullptr;
4361 Candidate.WillReplaceSpecifier(true);
4362 goto retry_lookup;
4363 }
4364 if (TempMemberContext) {
4365 if (SS && !TempSS)
4366 TempSS = SS.get();
4367 TempMemberContext = nullptr;
4368 goto retry_lookup;
4369 }
4370 if (SearchNamespaces)
4371 QualifiedResults.push_back(Candidate);
4372 break;
4373
4374 case LookupResult::Ambiguous:
4375 // We don't deal with ambiguities.
4376 break;
4377
4378 case LookupResult::Found:
4379 case LookupResult::FoundOverloaded:
4380 // Store all of the Decls for overloaded symbols
4381 for (auto *TRD : Result)
4382 Candidate.addCorrectionDecl(TRD);
4383 checkCorrectionVisibility(SemaRef, Candidate);
4384 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4385 if (SearchNamespaces)
4386 QualifiedResults.push_back(Candidate);
4387 break;
4388 }
4389 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4390 return true;
4391 }
4392 return false;
4393}
4394
4395void TypoCorrectionConsumer::performQualifiedLookups() {
4396 unsigned TypoLen = Typo->getName().size();
4397 for (const TypoCorrection &QR : QualifiedResults) {
4398 for (const auto &NSI : Namespaces) {
4399 DeclContext *Ctx = NSI.DeclCtx;
4400 const Type *NSType = NSI.NameSpecifier->getAsType();
4401
4402 // If the current NestedNameSpecifier refers to a class and the
4403 // current correction candidate is the name of that class, then skip
4404 // it as it is unlikely a qualified version of the class' constructor
4405 // is an appropriate correction.
4406 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4407 nullptr) {
4408 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4409 continue;
4410 }
4411
4412 TypoCorrection TC(QR);
4413 TC.ClearCorrectionDecls();
4414 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4415 TC.setQualifierDistance(NSI.EditDistance);
4416 TC.setCallbackDistance(0); // Reset the callback distance
4417
4418 // If the current correction candidate and namespace combination are
4419 // too far away from the original typo based on the normalized edit
4420 // distance, then skip performing a qualified name lookup.
4421 unsigned TmpED = TC.getEditDistance(true);
4422 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4423 TypoLen / TmpED < 3)
4424 continue;
4425
4426 Result.clear();
4427 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4428 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4429 continue;
4430
4431 // Any corrections added below will be validated in subsequent
4432 // iterations of the main while() loop over the Consumer's contents.
4433 switch (Result.getResultKind()) {
4434 case LookupResult::Found:
4435 case LookupResult::FoundOverloaded: {
4436 if (SS && SS->isValid()) {
4437 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4438 std::string OldQualified;
4439 llvm::raw_string_ostream OldOStream(OldQualified);
4440 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4441 OldOStream << Typo->getName();
4442 // If correction candidate would be an identical written qualified
4443 // identifier, then the existing CXXScopeSpec probably included a
4444 // typedef that didn't get accounted for properly.
4445 if (OldOStream.str() == NewQualified)
4446 break;
4447 }
4448 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4449 TRD != TRDEnd; ++TRD) {
4450 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4451 NSType ? NSType->getAsCXXRecordDecl()
4452 : nullptr,
4453 TRD.getPair()) == Sema::AR_accessible)
4454 TC.addCorrectionDecl(*TRD);
4455 }
4456 if (TC.isResolved()) {
4457 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4458 addCorrection(TC);
4459 }
4460 break;
4461 }
4462 case LookupResult::NotFound:
4463 case LookupResult::NotFoundInCurrentInstantiation:
4464 case LookupResult::Ambiguous:
4465 case LookupResult::FoundUnresolvedValue:
4466 break;
4467 }
4468 }
4469 }
4470 QualifiedResults.clear();
4471}
4472
4473TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4474 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4475 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4476 if (NestedNameSpecifier *NNS =
4477 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4478 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4479 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4480
4481 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4482 }
4483 // Build the list of identifiers that would be used for an absolute
4484 // (from the global context) NestedNameSpecifier referring to the current
4485 // context.
4486 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4487 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4488 CurContextIdentifiers.push_back(ND->getIdentifier());
4489 }
4490
4491 // Add the global context as a NestedNameSpecifier
4492 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4493 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4494 DistanceMap[1].push_back(SI);
4495}
4496
4497auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4498 DeclContext *Start) -> DeclContextList {
4499 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 4499, __PRETTY_FUNCTION__))
;
4500 DeclContextList Chain;
4501 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4502 DC = DC->getLookupParent()) {
4503 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4504 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4505 !(ND && ND->isAnonymousNamespace()))
4506 Chain.push_back(DC->getPrimaryContext());
4507 }
4508 return Chain;
4509}
4510
4511unsigned
4512TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4513 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4514 unsigned NumSpecifiers = 0;
4515 for (DeclContext *C : llvm::reverse(DeclChain)) {
4516 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4517 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4518 ++NumSpecifiers;
4519 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4520 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4521 RD->getTypeForDecl());
4522 ++NumSpecifiers;
4523 }
4524 }
4525 return NumSpecifiers;
4526}
4527
4528void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4529 DeclContext *Ctx) {
4530 NestedNameSpecifier *NNS = nullptr;
4531 unsigned NumSpecifiers = 0;
4532 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4533 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4534
4535 // Eliminate common elements from the two DeclContext chains.
4536 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4537 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4538 break;
4539 NamespaceDeclChain.pop_back();
4540 }
4541
4542 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4543 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4544
4545 // Add an explicit leading '::' specifier if needed.
4546 if (NamespaceDeclChain.empty()) {
2
Taking false branch
4547 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4548 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4549 NumSpecifiers =
4550 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4551 } else if (NamedDecl *ND
3.1
'ND' is non-null
3.1
'ND' is non-null
=
4
Taking true branch
4552 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3
Assuming the object is a 'NamedDecl'
4553 IdentifierInfo *Name = ND->getIdentifier();
4554 bool SameNameSpecifier = false;
4555 if (std::find(CurNameSpecifierIdentifiers.begin(),
5
Assuming the condition is false
6
Taking false branch
4556 CurNameSpecifierIdentifiers.end(),
4557 Name) != CurNameSpecifierIdentifiers.end()) {
4558 std::string NewNameSpecifier;
4559 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4560 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4561 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4562 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4563 SpecifierOStream.flush();
4564 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4565 }
4566 if (SameNameSpecifier
6.1
'SameNameSpecifier' is false
6.1
'SameNameSpecifier' is false
|| llvm::find(CurContextIdentifiers, Name) !=
7
Assuming the condition is true
8
Taking true branch
4567 CurContextIdentifiers.end()) {
4568 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4569 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4570 NumSpecifiers =
4571 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4572 }
4573 }
4574
4575 // If the built NestedNameSpecifier would be replacing an existing
4576 // NestedNameSpecifier, use the number of component identifiers that
4577 // would need to be changed as the edit distance instead of the number
4578 // of components in the built NestedNameSpecifier.
4579 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
9
Assuming 'NNS' is non-null
10
Taking true branch
4580 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4581 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4582 NumSpecifiers = llvm::ComputeEditDistance(
11
Calling 'ComputeEditDistance<const clang::IdentifierInfo *>'
4583 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4584 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4585 }
4586
4587 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4588 DistanceMap[NumSpecifiers].push_back(SI);
4589}
4590
4591/// Perform name lookup for a possible result for typo correction.
4592static void LookupPotentialTypoResult(Sema &SemaRef,
4593 LookupResult &Res,
4594 IdentifierInfo *Name,
4595 Scope *S, CXXScopeSpec *SS,
4596 DeclContext *MemberContext,
4597 bool EnteringContext,
4598 bool isObjCIvarLookup,
4599 bool FindHidden) {
4600 Res.suppressDiagnostics();
4601 Res.clear();
4602 Res.setLookupName(Name);
4603 Res.setAllowHidden(FindHidden);
4604 if (MemberContext) {
4605 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4606 if (isObjCIvarLookup) {
4607 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4608 Res.addDecl(Ivar);
4609 Res.resolveKind();
4610 return;
4611 }
4612 }
4613
4614 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4615 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4616 Res.addDecl(Prop);
4617 Res.resolveKind();
4618 return;
4619 }
4620 }
4621
4622 SemaRef.LookupQualifiedName(Res, MemberContext);
4623 return;
4624 }
4625
4626 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4627 EnteringContext);
4628
4629 // Fake ivar lookup; this should really be part of
4630 // LookupParsedName.
4631 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4632 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4633 (Res.empty() ||
4634 (Res.isSingleResult() &&
4635 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4636 if (ObjCIvarDecl *IV
4637 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4638 Res.addDecl(IV);
4639 Res.resolveKind();
4640 }
4641 }
4642 }
4643}
4644
4645/// Add keywords to the consumer as possible typo corrections.
4646static void AddKeywordsToConsumer(Sema &SemaRef,
4647 TypoCorrectionConsumer &Consumer,
4648 Scope *S, CorrectionCandidateCallback &CCC,
4649 bool AfterNestedNameSpecifier) {
4650 if (AfterNestedNameSpecifier) {
4651 // For 'X::', we know exactly which keywords can appear next.
4652 Consumer.addKeywordResult("template");
4653 if (CCC.WantExpressionKeywords)
4654 Consumer.addKeywordResult("operator");
4655 return;
4656 }
4657
4658 if (CCC.WantObjCSuper)
4659 Consumer.addKeywordResult("super");
4660
4661 if (CCC.WantTypeSpecifiers) {
4662 // Add type-specifier keywords to the set of results.
4663 static const char *const CTypeSpecs[] = {
4664 "char", "const", "double", "enum", "float", "int", "long", "short",
4665 "signed", "struct", "union", "unsigned", "void", "volatile",
4666 "_Complex", "_Imaginary",
4667 // storage-specifiers as well
4668 "extern", "inline", "static", "typedef"
4669 };
4670
4671 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4672 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4673 Consumer.addKeywordResult(CTypeSpecs[I]);
4674
4675 if (SemaRef.getLangOpts().C99)
4676 Consumer.addKeywordResult("restrict");
4677 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4678 Consumer.addKeywordResult("bool");
4679 else if (SemaRef.getLangOpts().C99)
4680 Consumer.addKeywordResult("_Bool");
4681
4682 if (SemaRef.getLangOpts().CPlusPlus) {
4683 Consumer.addKeywordResult("class");
4684 Consumer.addKeywordResult("typename");
4685 Consumer.addKeywordResult("wchar_t");
4686
4687 if (SemaRef.getLangOpts().CPlusPlus11) {
4688 Consumer.addKeywordResult("char16_t");
4689 Consumer.addKeywordResult("char32_t");
4690 Consumer.addKeywordResult("constexpr");
4691 Consumer.addKeywordResult("decltype");
4692 Consumer.addKeywordResult("thread_local");
4693 }
4694 }
4695
4696 if (SemaRef.getLangOpts().GNUKeywords)
4697 Consumer.addKeywordResult("typeof");
4698 } else if (CCC.WantFunctionLikeCasts) {
4699 static const char *const CastableTypeSpecs[] = {
4700 "char", "double", "float", "int", "long", "short",
4701 "signed", "unsigned", "void"
4702 };
4703 for (auto *kw : CastableTypeSpecs)
4704 Consumer.addKeywordResult(kw);
4705 }
4706
4707 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4708 Consumer.addKeywordResult("const_cast");
4709 Consumer.addKeywordResult("dynamic_cast");
4710 Consumer.addKeywordResult("reinterpret_cast");
4711 Consumer.addKeywordResult("static_cast");
4712 }
4713
4714 if (CCC.WantExpressionKeywords) {
4715 Consumer.addKeywordResult("sizeof");
4716 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4717 Consumer.addKeywordResult("false");
4718 Consumer.addKeywordResult("true");
4719 }
4720
4721 if (SemaRef.getLangOpts().CPlusPlus) {
4722 static const char *const CXXExprs[] = {
4723 "delete", "new", "operator", "throw", "typeid"
4724 };
4725 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4726 for (unsigned I = 0; I != NumCXXExprs; ++I)
4727 Consumer.addKeywordResult(CXXExprs[I]);
4728
4729 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4730 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4731 Consumer.addKeywordResult("this");
4732
4733 if (SemaRef.getLangOpts().CPlusPlus11) {
4734 Consumer.addKeywordResult("alignof");
4735 Consumer.addKeywordResult("nullptr");
4736 }
4737 }
4738
4739 if (SemaRef.getLangOpts().C11) {
4740 // FIXME: We should not suggest _Alignof if the alignof macro
4741 // is present.
4742 Consumer.addKeywordResult("_Alignof");
4743 }
4744 }
4745
4746 if (CCC.WantRemainingKeywords) {
4747 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4748 // Statements.
4749 static const char *const CStmts[] = {
4750 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4751 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4752 for (unsigned I = 0; I != NumCStmts; ++I)
4753 Consumer.addKeywordResult(CStmts[I]);
4754
4755 if (SemaRef.getLangOpts().CPlusPlus) {
4756 Consumer.addKeywordResult("catch");
4757 Consumer.addKeywordResult("try");
4758 }
4759
4760 if (S && S->getBreakParent())
4761 Consumer.addKeywordResult("break");
4762
4763 if (S && S->getContinueParent())
4764 Consumer.addKeywordResult("continue");
4765
4766 if (SemaRef.getCurFunction() &&
4767 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4768 Consumer.addKeywordResult("case");
4769 Consumer.addKeywordResult("default");
4770 }
4771 } else {
4772 if (SemaRef.getLangOpts().CPlusPlus) {
4773 Consumer.addKeywordResult("namespace");
4774 Consumer.addKeywordResult("template");
4775 }
4776
4777 if (S && S->isClassScope()) {
4778 Consumer.addKeywordResult("explicit");
4779 Consumer.addKeywordResult("friend");
4780 Consumer.addKeywordResult("mutable");
4781 Consumer.addKeywordResult("private");
4782 Consumer.addKeywordResult("protected");
4783 Consumer.addKeywordResult("public");
4784 Consumer.addKeywordResult("virtual");
4785 }
4786 }
4787
4788 if (SemaRef.getLangOpts().CPlusPlus) {
4789 Consumer.addKeywordResult("using");
4790
4791 if (SemaRef.getLangOpts().CPlusPlus11)
4792 Consumer.addKeywordResult("static_assert");
4793 }
4794 }
4795}
4796
4797std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4798 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4799 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4800 DeclContext *MemberContext, bool EnteringContext,
4801 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4802
4803 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4804 DisableTypoCorrection)
4805 return nullptr;
4806
4807 // In Microsoft mode, don't perform typo correction in a template member
4808 // function dependent context because it interferes with the "lookup into
4809 // dependent bases of class templates" feature.
4810 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4811 isa<CXXMethodDecl>(CurContext))
4812 return nullptr;
4813
4814 // We only attempt to correct typos for identifiers.
4815 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4816 if (!Typo)
4817 return nullptr;
4818
4819 // If the scope specifier itself was invalid, don't try to correct
4820 // typos.
4821 if (SS && SS->isInvalid())
4822 return nullptr;
4823
4824 // Never try to correct typos during any kind of code synthesis.
4825 if (!CodeSynthesisContexts.empty())
4826 return nullptr;
4827
4828 // Don't try to correct 'super'.
4829 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4830 return nullptr;
4831
4832 // Abort if typo correction already failed for this specific typo.
4833 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4834 if (locs != TypoCorrectionFailures.end() &&
4835 locs->second.count(TypoName.getLoc()))
4836 return nullptr;
4837
4838 // Don't try to correct the identifier "vector" when in AltiVec mode.
4839 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4840 // remove this workaround.
4841 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4842 return nullptr;
4843
4844 // Provide a stop gap for files that are just seriously broken. Trying
4845 // to correct all typos can turn into a HUGE performance penalty, causing
4846 // some files to take minutes to get rejected by the parser.
4847 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4848 if (Limit && TyposCorrected >= Limit)
4849 return nullptr;
4850 ++TyposCorrected;
4851
4852 // If we're handling a missing symbol error, using modules, and the
4853 // special search all modules option is used, look for a missing import.
4854 if (ErrorRecovery && getLangOpts().Modules &&
4855 getLangOpts().ModulesSearchAll) {
4856 // The following has the side effect of loading the missing module.
4857 getModuleLoader().lookupMissingImports(Typo->getName(),
4858 TypoName.getBeginLoc());
4859 }
4860
4861 // Extend the lifetime of the callback. We delayed this until here
4862 // to avoid allocations in the hot path (which is where no typo correction
4863 // occurs). Note that CorrectionCandidateCallback is polymorphic and
4864 // initially stack-allocated.
4865 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4866 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4867 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4868 EnteringContext);
4869
4870 // Perform name lookup to find visible, similarly-named entities.
4871 bool IsUnqualifiedLookup = false;
4872 DeclContext *QualifiedDC = MemberContext;
4873 if (MemberContext) {
4874 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4875
4876 // Look in qualified interfaces.
4877 if (OPT) {
4878 for (auto *I : OPT->quals())
4879 LookupVisibleDecls(I, LookupKind, *Consumer);
4880 }
4881 } else if (SS && SS->isSet()) {
4882 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4883 if (!QualifiedDC)
4884 return nullptr;
4885
4886 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4887 } else {
4888 IsUnqualifiedLookup = true;
4889 }
4890
4891 // Determine whether we are going to search in the various namespaces for
4892 // corrections.
4893 bool SearchNamespaces
4894 = getLangOpts().CPlusPlus &&
4895 (IsUnqualifiedLookup || (SS && SS->isSet()));
4896
4897 if (IsUnqualifiedLookup || SearchNamespaces) {
4898 // For unqualified lookup, look through all of the names that we have
4899 // seen in this translation unit.
4900 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4901 for (const auto &I : Context.Idents)
4902 Consumer->FoundName(I.getKey());
4903
4904 // Walk through identifiers in external identifier sources.
4905 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4906 if (IdentifierInfoLookup *External
4907 = Context.Idents.getExternalIdentifierLookup()) {
4908 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4909 do {
4910 StringRef Name = Iter->Next();
4911 if (Name.empty())
4912 break;
4913
4914 Consumer->FoundName(Name);
4915 } while (true);
4916 }
4917 }
4918
4919 AddKeywordsToConsumer(*this, *Consumer, S,
4920 *Consumer->getCorrectionValidator(),
4921 SS && SS->isNotEmpty());
4922
4923 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4924 // to search those namespaces.
4925 if (SearchNamespaces) {
4926 // Load any externally-known namespaces.
4927 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4928 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4929 LoadedExternalKnownNamespaces = true;
4930 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4931 for (auto *N : ExternalKnownNamespaces)
4932 KnownNamespaces[N] = true;
4933 }
4934
4935 Consumer->addNamespaces(KnownNamespaces);
4936 }
4937
4938 return Consumer;
4939}
4940
4941/// Try to "correct" a typo in the source code by finding
4942/// visible declarations whose names are similar to the name that was
4943/// present in the source code.
4944///
4945/// \param TypoName the \c DeclarationNameInfo structure that contains
4946/// the name that was present in the source code along with its location.
4947///
4948/// \param LookupKind the name-lookup criteria used to search for the name.
4949///
4950/// \param S the scope in which name lookup occurs.
4951///
4952/// \param SS the nested-name-specifier that precedes the name we're
4953/// looking for, if present.
4954///
4955/// \param CCC A CorrectionCandidateCallback object that provides further
4956/// validation of typo correction candidates. It also provides flags for
4957/// determining the set of keywords permitted.
4958///
4959/// \param MemberContext if non-NULL, the context in which to look for
4960/// a member access expression.
4961///
4962/// \param EnteringContext whether we're entering the context described by
4963/// the nested-name-specifier SS.
4964///
4965/// \param OPT when non-NULL, the search for visible declarations will
4966/// also walk the protocols in the qualified interfaces of \p OPT.
4967///
4968/// \returns a \c TypoCorrection containing the corrected name if the typo
4969/// along with information such as the \c NamedDecl where the corrected name
4970/// was declared, and any additional \c NestedNameSpecifier needed to access
4971/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4972TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4973 Sema::LookupNameKind LookupKind,
4974 Scope *S, CXXScopeSpec *SS,
4975 CorrectionCandidateCallback &CCC,
4976 CorrectTypoKind Mode,
4977 DeclContext *MemberContext,
4978 bool EnteringContext,
4979 const ObjCObjectPointerType *OPT,
4980 bool RecordFailure) {
4981 // Always let the ExternalSource have the first chance at correction, even
4982 // if we would otherwise have given up.
4983 if (ExternalSource) {
4984 if (TypoCorrection Correction =
4985 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
4986 MemberContext, EnteringContext, OPT))
4987 return Correction;
4988 }
4989
4990 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4991 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4992 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4993 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4994 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
4995
4996 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4997 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4998 MemberContext, EnteringContext,
4999 OPT, Mode == CTK_ErrorRecovery);
5000
5001 if (!Consumer)
5002 return TypoCorrection();
5003
5004 // If we haven't found anything, we're done.
5005 if (Consumer->empty())
5006 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5007
5008 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5009 // is not more that about a third of the length of the typo's identifier.
5010 unsigned ED = Consumer->getBestEditDistance(true);
5011 unsigned TypoLen = Typo->getName().size();
5012 if (ED > 0 && TypoLen / ED < 3)
5013 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5014
5015 TypoCorrection BestTC = Consumer->getNextCorrection();
5016 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5017 if (!BestTC)
5018 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5019
5020 ED = BestTC.getEditDistance();
5021
5022 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5023 // If this was an unqualified lookup and we believe the callback
5024 // object wouldn't have filtered out possible corrections, note
5025 // that no correction was found.
5026 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5027 }
5028
5029 // If only a single name remains, return that result.
5030 if (!SecondBestTC ||
5031 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5032 const TypoCorrection &Result = BestTC;
5033
5034 // Don't correct to a keyword that's the same as the typo; the keyword
5035 // wasn't actually in scope.
5036 if (ED == 0 && Result.isKeyword())
5037 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5038
5039 TypoCorrection TC = Result;
5040 TC.setCorrectionRange(SS, TypoName);
5041 checkCorrectionVisibility(*this, TC);
5042 return TC;
5043 } else if (SecondBestTC && ObjCMessageReceiver) {
5044 // Prefer 'super' when we're completing in a message-receiver
5045 // context.
5046
5047 if (BestTC.getCorrection().getAsString() != "super") {
5048 if (SecondBestTC.getCorrection().getAsString() == "super")
5049 BestTC = SecondBestTC;
5050 else if ((*Consumer)["super"].front().isKeyword())
5051 BestTC = (*Consumer)["super"].front();
5052 }
5053 // Don't correct to a keyword that's the same as the typo; the keyword
5054 // wasn't actually in scope.
5055 if (BestTC.getEditDistance() == 0 ||
5056 BestTC.getCorrection().getAsString() != "super")
5057 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5058
5059 BestTC.setCorrectionRange(SS, TypoName);
5060 return BestTC;
5061 }
5062
5063 // Record the failure's location if needed and return an empty correction. If
5064 // this was an unqualified lookup and we believe the callback object did not
5065 // filter out possible corrections, also cache the failure for the typo.
5066 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5067}
5068
5069/// Try to "correct" a typo in the source code by finding
5070/// visible declarations whose names are similar to the name that was
5071/// present in the source code.
5072///
5073/// \param TypoName the \c DeclarationNameInfo structure that contains
5074/// the name that was present in the source code along with its location.
5075///
5076/// \param LookupKind the name-lookup criteria used to search for the name.
5077///
5078/// \param S the scope in which name lookup occurs.
5079///
5080/// \param SS the nested-name-specifier that precedes the name we're
5081/// looking for, if present.
5082///
5083/// \param CCC A CorrectionCandidateCallback object that provides further
5084/// validation of typo correction candidates. It also provides flags for
5085/// determining the set of keywords permitted.
5086///
5087/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5088/// diagnostics when the actual typo correction is attempted.
5089///
5090/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5091/// Expr from a typo correction candidate.
5092///
5093/// \param MemberContext if non-NULL, the context in which to look for
5094/// a member access expression.
5095///
5096/// \param EnteringContext whether we're entering the context described by
5097/// the nested-name-specifier SS.
5098///
5099/// \param OPT when non-NULL, the search for visible declarations will
5100/// also walk the protocols in the qualified interfaces of \p OPT.
5101///
5102/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5103/// Expr representing the result of performing typo correction, or nullptr if
5104/// typo correction is not possible. If nullptr is returned, no diagnostics will
5105/// be emitted and it is the responsibility of the caller to emit any that are
5106/// needed.
5107TypoExpr *Sema::CorrectTypoDelayed(
5108 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5109 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5110 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5111 DeclContext *MemberContext, bool EnteringContext,
5112 const ObjCObjectPointerType *OPT) {
5113 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5114 MemberContext, EnteringContext,
5115 OPT, Mode == CTK_ErrorRecovery);
5116
5117 // Give the external sema source a chance to correct the typo.
5118 TypoCorrection ExternalTypo;
5119 if (ExternalSource && Consumer) {
5120 ExternalTypo = ExternalSource->CorrectTypo(
5121 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5122 MemberContext, EnteringContext, OPT);
5123 if (ExternalTypo)
5124 Consumer->addCorrection(ExternalTypo);
5125 }
5126
5127 if (!Consumer || Consumer->empty())
5128 return nullptr;
5129
5130 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5131 // is not more that about a third of the length of the typo's identifier.
5132 unsigned ED = Consumer->getBestEditDistance(true);
5133 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5134 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5135 return nullptr;
5136
5137 ExprEvalContexts.back().NumTypos++;
5138 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5139}
5140
5141void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5142 if (!CDecl) return;
5143
5144 if (isKeyword())
5145 CorrectionDecls.clear();
5146
5147 CorrectionDecls.push_back(CDecl);
5148
5149 if (!CorrectionName)
5150 CorrectionName = CDecl->getDeclName();
5151}
5152
5153std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5154 if (CorrectionNameSpec) {
5155 std::string tmpBuffer;
5156 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5157 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5158 PrefixOStream << CorrectionName;
5159 return PrefixOStream.str();
5160 }
5161
5162 return CorrectionName.getAsString();
5163}
5164
5165bool CorrectionCandidateCallback::ValidateCandidate(
5166 const TypoCorrection &candidate) {
5167 if (!candidate.isResolved())
5168 return true;
5169
5170 if (candidate.isKeyword())
5171 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5172 WantRemainingKeywords || WantObjCSuper;
5173
5174 bool HasNonType = false;
5175 bool HasStaticMethod = false;
5176 bool HasNonStaticMethod = false;
5177 for (Decl *D : candidate) {
5178 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5179 D = FTD->getTemplatedDecl();
5180 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5181 if (Method->isStatic())
5182 HasStaticMethod = true;
5183 else
5184 HasNonStaticMethod = true;
5185 }
5186 if (!isa<TypeDecl>(D))
5187 HasNonType = true;
5188 }
5189
5190 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5191 !candidate.getCorrectionSpecifier())
5192 return false;
5193
5194 return WantTypeSpecifiers || HasNonType;
5195}
5196
5197FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5198 bool HasExplicitTemplateArgs,
5199 MemberExpr *ME)
5200 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5201 CurContext(SemaRef.CurContext), MemberFn(ME) {
5202 WantTypeSpecifiers = false;
5203 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5204 !HasExplicitTemplateArgs && NumArgs == 1;
5205 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5206 WantRemainingKeywords = false;
5207}
5208
5209bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5210 if (!candidate.getCorrectionDecl())
5211 return candidate.isKeyword();
5212
5213 for (auto *C : candidate) {
5214 FunctionDecl *FD = nullptr;
5215 NamedDecl *ND = C->getUnderlyingDecl();
5216 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5217 FD = FTD->getTemplatedDecl();
5218 if (!HasExplicitTemplateArgs && !FD) {
5219 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5220 // If the Decl is neither a function nor a template function,
5221 // determine if it is a pointer or reference to a function. If so,
5222 // check against the number of arguments expected for the pointee.
5223 QualType ValType = cast<ValueDecl>(ND)->getType();
5224 if (ValType.isNull())
5225 continue;
5226 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5227 ValType = ValType->getPointeeType();
5228 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5229 if (FPT->getNumParams() == NumArgs)
5230 return true;
5231 }
5232 }
5233
5234 // A typo for a function-style cast can look like a function call in C++.
5235 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5236 : isa<TypeDecl>(ND)) &&
5237 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5238 // Only a class or class template can take two or more arguments.
5239 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5240
5241 // Skip the current candidate if it is not a FunctionDecl or does not accept
5242 // the current number of arguments.
5243 if (!FD || !(FD->getNumParams() >= NumArgs &&
5244 FD->getMinRequiredArguments() <= NumArgs))
5245 continue;
5246
5247 // If the current candidate is a non-static C++ method, skip the candidate
5248 // unless the method being corrected--or the current DeclContext, if the
5249 // function being corrected is not a method--is a method in the same class
5250 // or a descendent class of the candidate's parent class.
5251 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5252 if (MemberFn || !MD->isStatic()) {
5253 CXXMethodDecl *CurMD =
5254 MemberFn
5255 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5256 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5257 CXXRecordDecl *CurRD =
5258 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5259 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5260 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5261 continue;
5262 }
5263 }
5264 return true;
5265 }
5266 return false;
5267}
5268
5269void Sema::diagnoseTypo(const TypoCorrection &Correction,
5270 const PartialDiagnostic &TypoDiag,
5271 bool ErrorRecovery) {
5272 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5273 ErrorRecovery);
5274}
5275
5276/// Find which declaration we should import to provide the definition of
5277/// the given declaration.
5278static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5279 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5280 return VD->getDefinition();
5281 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5282 return FD->getDefinition();
5283 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5284 return TD->getDefinition();
5285 // The first definition for this ObjCInterfaceDecl might be in the TU
5286 // and not associated with any module. Use the one we know to be complete
5287 // and have just seen in a module.
5288 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5289 return ID;
5290 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5291 return PD->getDefinition();
5292 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5293 if (NamedDecl *TTD = TD->getTemplatedDecl())
5294 return getDefinitionToImport(TTD);
5295 return nullptr;
5296}
5297
5298void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5299 MissingImportKind MIK, bool Recover) {
5300 // Suggest importing a module providing the definition of this entity, if
5301 // possible.
5302 NamedDecl *Def = getDefinitionToImport(Decl);
5303 if (!Def)
5304 Def = Decl;
5305
5306 Module *Owner = getOwningModule(Def);
5307 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5307, __PRETTY_FUNCTION__))
;
5308
5309 llvm::SmallVector<Module*, 8> OwningModules;
5310 OwningModules.push_back(Owner);
5311 auto Merged = Context.getModulesWithMergedDefinition(Def);
5312 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5313
5314 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5315 Recover);
5316}
5317
5318/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5319/// suggesting the addition of a #include of the specified file.
5320static std::string getIncludeStringForHeader(Preprocessor &PP,
5321 const FileEntry *E,
5322 llvm::StringRef IncludingFile) {
5323 bool IsSystem = false;
5324 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5325 E, IncludingFile, &IsSystem);
5326 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5327}
5328
5329void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5330 SourceLocation DeclLoc,
5331 ArrayRef<Module *> Modules,
5332 MissingImportKind MIK, bool Recover) {
5333 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5333, __PRETTY_FUNCTION__))
;
5334
5335 auto NotePrevious = [&] {
5336 unsigned DiagID;
5337 switch (MIK) {
5338 case MissingImportKind::Declaration:
5339 DiagID = diag::note_previous_declaration;
5340 break;
5341 case MissingImportKind::Definition:
5342 DiagID = diag::note_previous_definition;
5343 break;
5344 case MissingImportKind::DefaultArgument:
5345 DiagID = diag::note_default_argument_declared_here;
5346 break;
5347 case MissingImportKind::ExplicitSpecialization:
5348 DiagID = diag::note_explicit_specialization_declared_here;
5349 break;
5350 case MissingImportKind::PartialSpecialization:
5351 DiagID = diag::note_partial_specialization_declared_here;
5352 break;
5353 }
5354 Diag(DeclLoc, DiagID);
5355 };
5356
5357 // Weed out duplicates from module list.
5358 llvm::SmallVector<Module*, 8> UniqueModules;
5359 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5360 for (auto *M : Modules) {
5361 if (M->Kind == Module::GlobalModuleFragment)
5362 continue;
5363 if (UniqueModuleSet.insert(M).second)
5364 UniqueModules.push_back(M);
5365 }
5366
5367 llvm::StringRef IncludingFile;
5368 if (const FileEntry *FE =
5369 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5370 IncludingFile = FE->tryGetRealPathName();
5371
5372 if (UniqueModules.empty()) {
5373 // All candidates were global module fragments. Try to suggest a #include.
5374 const FileEntry *E =
5375 PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5376 // FIXME: Find a smart place to suggest inserting a #include, and add
5377 // a FixItHint there.
5378 Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5379 << (int)MIK << Decl << !!E
5380 << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5381 // Produce a "previous" note if it will point to a header rather than some
5382 // random global module fragment.
5383 // FIXME: Suppress the note backtrace even under
5384 // -fdiagnostics-show-note-include-stack.
5385 if (E)
5386 NotePrevious();
5387 if (Recover)
5388 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5389 return;
5390 }
5391
5392 Modules = UniqueModules;
5393
5394 if (Modules.size() > 1) {
5395 std::string ModuleList;
5396 unsigned N = 0;
5397 for (Module *M : Modules) {
5398 ModuleList += "\n ";
5399 if (++N == 5 && N != Modules.size()) {
5400 ModuleList += "[...]";
5401 break;
5402 }
5403 ModuleList += M->getFullModuleName();
5404 }
5405
5406 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5407 << (int)MIK << Decl << ModuleList;
5408 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5409 UseLoc, Modules[0], DeclLoc)) {
5410 // The right way to make the declaration visible is to include a header;
5411 // suggest doing so.
5412 //
5413 // FIXME: Find a smart place to suggest inserting a #include, and add
5414 // a FixItHint there.
5415 Diag(UseLoc, diag::err_module_unimported_use_header)
5416 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5417 << getIncludeStringForHeader(PP, E, IncludingFile);
5418 } else {
5419 // FIXME: Add a FixItHint that imports the corresponding module.
5420 Diag(UseLoc, diag::err_module_unimported_use)
5421 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5422 }
5423
5424 NotePrevious();
5425
5426 // Try to recover by implicitly importing this module.
5427 if (Recover)
5428 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5429}
5430
5431/// Diagnose a successfully-corrected typo. Separated from the correction
5432/// itself to allow external validation of the result, etc.
5433///
5434/// \param Correction The result of performing typo correction.
5435/// \param TypoDiag The diagnostic to produce. This will have the corrected
5436/// string added to it (and usually also a fixit).
5437/// \param PrevNote A note to use when indicating the location of the entity to
5438/// which we are correcting. Will have the correction string added to it.
5439/// \param ErrorRecovery If \c true (the default), the caller is going to
5440/// recover from the typo as if the corrected string had been typed.
5441/// In this case, \c PDiag must be an error, and we will attach a fixit
5442/// to it.
5443void Sema::diagnoseTypo(const TypoCorrection &Correction,
5444 const PartialDiagnostic &TypoDiag,
5445 const PartialDiagnostic &PrevNote,
5446 bool ErrorRecovery) {
5447 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5448 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5449 FixItHint FixTypo = FixItHint::CreateReplacement(
5450 Correction.getCorrectionRange(), CorrectedStr);
5451
5452 // Maybe we're just missing a module import.
5453 if (Correction.requiresImport()) {
5454 NamedDecl *Decl = Correction.getFoundDecl();
5455 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5455, __PRETTY_FUNCTION__))
;
5456
5457 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5458 MissingImportKind::Declaration, ErrorRecovery);
5459 return;
5460 }
5461
5462 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5463 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5464
5465 NamedDecl *ChosenDecl =
5466 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5467 if (PrevNote.getDiagID() && ChosenDecl)
5468 Diag(ChosenDecl->getLocation(), PrevNote)
5469 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5470
5471 // Add any extra diagnostics.
5472 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5473 Diag(Correction.getCorrectionRange().getBegin(), PD);
5474}
5475
5476TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5477 TypoDiagnosticGenerator TDG,
5478 TypoRecoveryCallback TRC) {
5479 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5479, __PRETTY_FUNCTION__))
;
5480 auto TE = new (Context) TypoExpr(Context.DependentTy);
5481 auto &State = DelayedTypos[TE];
5482 State.Consumer = std::move(TCC);
5483 State.DiagHandler = std::move(TDG);
5484 State.RecoveryHandler = std::move(TRC);
5485 if (TE)
5486 TypoExprs.push_back(TE);
5487 return TE;
5488}
5489
5490const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5491 auto Entry = DelayedTypos.find(TE);
5492 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5493, __PRETTY_FUNCTION__))
5493 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaLookup.cpp"
, 5493, __PRETTY_FUNCTION__))
;
5494 return Entry->second;
5495}
5496
5497void Sema::clearDelayedTypo(TypoExpr *TE) {
5498 DelayedTypos.erase(TE);
5499}
5500
5501void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5502 DeclarationNameInfo Name(II, IILoc);
5503 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5504 R.suppressDiagnostics();
5505 R.setHideTags(false);
5506 LookupName(R, S);
5507 R.dump();
5508}

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/edit_distance.h

1//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a Levenshtein distance function that works for any two
10// sequences, with each element of each sequence being analogous to a character
11// in a string.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_EDIT_DISTANCE_H
16#define LLVM_ADT_EDIT_DISTANCE_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include <algorithm>
20#include <memory>
21
22namespace llvm {
23
24/// Determine the edit distance between two sequences.
25///
26/// \param FromArray the first sequence to compare.
27///
28/// \param ToArray the second sequence to compare.
29///
30/// \param AllowReplacements whether to allow element replacements (change one
31/// element into another) as a single operation, rather than as two operations
32/// (an insertion and a removal).
33///
34/// \param MaxEditDistance If non-zero, the maximum edit distance that this
35/// routine is allowed to compute. If the edit distance will exceed that
36/// maximum, returns \c MaxEditDistance+1.
37///
38/// \returns the minimum number of element insertions, removals, or (if
39/// \p AllowReplacements is \c true) replacements needed to transform one of
40/// the given sequences into the other. If zero, the sequences are identical.
41template<typename T>
42unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
43 bool AllowReplacements = true,
44 unsigned MaxEditDistance = 0) {
45 // The algorithm implemented below is the "classic"
46 // dynamic-programming algorithm for computing the Levenshtein
47 // distance, which is described here:
48 //
49 // http://en.wikipedia.org/wiki/Levenshtein_distance
50 //
51 // Although the algorithm is typically described using an m x n
52 // array, only one row plus one element are used at a time, so this
53 // implementation just keeps one vector for the row. To update one entry,
54 // only the entries to the left, top, and top-left are needed. The left
55 // entry is in Row[x-1], the top entry is what's in Row[x] from the last
56 // iteration, and the top-left entry is stored in Previous.
57 typename ArrayRef<T>::size_type m = FromArray.size();
58 typename ArrayRef<T>::size_type n = ToArray.size();
12
'n' initialized here
59
60 const unsigned SmallBufferSize = 64;
61 unsigned SmallBuffer[SmallBufferSize];
62 std::unique_ptr<unsigned[]> Allocated;
63 unsigned *Row = SmallBuffer;
64 if (n + 1 > SmallBufferSize) {
13
Assuming the condition is false
14
Taking false branch
65 Row = new unsigned[n + 1];
66 Allocated.reset(Row);
67 }
68
69 for (unsigned i = 1; i <= n; ++i)
15
Assuming 'i' is > 'n'
16
Loop condition is false. Execution continues on line 72
70 Row[i] = i;
71
72 for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
17
Assuming 'y' is > 'm'
18
Loop condition is false. Execution continues on line 96
73 Row[0] = y;
74 unsigned BestThisRow = Row[0];
75
76 unsigned Previous = y - 1;
77 for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
78 int OldRow = Row[x];
79 if (AllowReplacements) {
80 Row[x] = std::min(
81 Previous + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
82 std::min(Row[x-1], Row[x])+1);
83 }
84 else {
85 if (FromArray[y-1] == ToArray[x-1]) Row[x] = Previous;
86 else Row[x] = std::min(Row[x-1], Row[x]) + 1;
87 }
88 Previous = OldRow;
89 BestThisRow = std::min(BestThisRow, Row[x]);
90 }
91
92 if (MaxEditDistance && BestThisRow > MaxEditDistance)
93 return MaxEditDistance + 1;
94 }
95
96 unsigned Result = Row[n];
19
Assigned value is garbage or undefined
97 return Result;
98}
99
100} // End llvm namespace
101
102#endif