Bug Summary

File:build/source/clang/lib/Sema/SemaLookup.cpp
Warning:line 4931, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1680300532 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-04-01-083001-16331-1 -x c++ /build/source/clang/lib/Sema/SemaLookup.cpp
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/RISCVIntrinsicManager.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "clang/Sema/Sema.h"
36#include "clang/Sema/SemaInternal.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "clang/Sema/TypoCorrection.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/TinyPtrVector.h"
42#include "llvm/ADT/edit_distance.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <algorithm>
46#include <iterator>
47#include <list>
48#include <optional>
49#include <set>
50#include <utility>
51#include <vector>
52
53#include "OpenCLBuiltins.inc"
54
55using namespace clang;
56using namespace sema;
57
58namespace {
59 class UnqualUsingEntry {
60 const DeclContext *Nominated;
61 const DeclContext *CommonAncestor;
62
63 public:
64 UnqualUsingEntry(const DeclContext *Nominated,
65 const DeclContext *CommonAncestor)
66 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67 }
68
69 const DeclContext *getCommonAncestor() const {
70 return CommonAncestor;
71 }
72
73 const DeclContext *getNominatedNamespace() const {
74 return Nominated;
75 }
76
77 // Sort by the pointer value of the common ancestor.
78 struct Comparator {
79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80 return L.getCommonAncestor() < R.getCommonAncestor();
81 }
82
83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84 return E.getCommonAncestor() < DC;
85 }
86
87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88 return DC < E.getCommonAncestor();
89 }
90 };
91 };
92
93 /// A collection of using directives, as used by C++ unqualified
94 /// lookup.
95 class UnqualUsingDirectiveSet {
96 Sema &SemaRef;
97
98 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99
100 ListTy list;
101 llvm::SmallPtrSet<DeclContext*, 8> visited;
102
103 public:
104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105
106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107 // C++ [namespace.udir]p1:
108 // During unqualified name lookup, the names appear as if they
109 // were declared in the nearest enclosing namespace which contains
110 // both the using-directive and the nominated namespace.
111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112 assert(InnermostFileDC && InnermostFileDC->isFileContext())(static_cast <bool> (InnermostFileDC && InnermostFileDC
->isFileContext()) ? void (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "clang/lib/Sema/SemaLookup.cpp", 112, __extension__ __PRETTY_FUNCTION__
))
;
113
114 for (; S; S = S->getParent()) {
115 // C++ [namespace.udir]p1:
116 // A using-directive shall not appear in class scope, but may
117 // appear in namespace scope or in block scope.
118 DeclContext *Ctx = S->getEntity();
119 if (Ctx && Ctx->isFileContext()) {
120 visit(Ctx, Ctx);
121 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122 for (auto *I : S->using_directives())
123 if (SemaRef.isVisible(I))
124 visit(I, InnermostFileDC);
125 }
126 }
127 }
128
129 // Visits a context and collect all of its using directives
130 // recursively. Treats all using directives as if they were
131 // declared in the context.
132 //
133 // A given context is only every visited once, so it is important
134 // that contexts be visited from the inside out in order to get
135 // the effective DCs right.
136 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137 if (!visited.insert(DC).second)
138 return;
139
140 addUsingDirectives(DC, EffectiveDC);
141 }
142
143 // Visits a using directive and collects all of its using
144 // directives recursively. Treats all using directives as if they
145 // were declared in the effective DC.
146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147 DeclContext *NS = UD->getNominatedNamespace();
148 if (!visited.insert(NS).second)
149 return;
150
151 addUsingDirective(UD, EffectiveDC);
152 addUsingDirectives(NS, EffectiveDC);
153 }
154
155 // Adds all the using directives in a context (and those nominated
156 // by its using directives, transitively) as if they appeared in
157 // the given effective context.
158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159 SmallVector<DeclContext*, 4> queue;
160 while (true) {
161 for (auto *UD : DC->using_directives()) {
162 DeclContext *NS = UD->getNominatedNamespace();
163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164 addUsingDirective(UD, EffectiveDC);
165 queue.push_back(NS);
166 }
167 }
168
169 if (queue.empty())
170 return;
171
172 DC = queue.pop_back_val();
173 }
174 }
175
176 // Add a using directive as if it had been declared in the given
177 // context. This helps implement C++ [namespace.udir]p3:
178 // The using-directive is transitive: if a scope contains a
179 // using-directive that nominates a second namespace that itself
180 // contains using-directives, the effect is as if the
181 // using-directives from the second namespace also appeared in
182 // the first.
183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184 // Find the common ancestor between the effective context and
185 // the nominated namespace.
186 DeclContext *Common = UD->getNominatedNamespace();
187 while (!Common->Encloses(EffectiveDC))
188 Common = Common->getParent();
189 Common = Common->getPrimaryContext();
190
191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192 }
193
194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195
196 typedef ListTy::const_iterator const_iterator;
197
198 const_iterator begin() const { return list.begin(); }
199 const_iterator end() const { return list.end(); }
200
201 llvm::iterator_range<const_iterator>
202 getNamespacesFor(DeclContext *DC) const {
203 return llvm::make_range(std::equal_range(begin(), end(),
204 DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator()));
206 }
207 };
208} // end anonymous namespace
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 case Sema::LookupLocalFriendName:
221 case Sema::LookupDestructorName:
222 IDNS = Decl::IDNS_Ordinary;
223 if (CPlusPlus) {
224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225 if (Redeclaration)
226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227 }
228 if (Redeclaration)
229 IDNS |= Decl::IDNS_LocalExtern;
230 break;
231
232 case Sema::LookupOperatorName:
233 // Operator lookup is its own crazy thing; it is not the same
234 // as (e.g.) looking up an operator name for redeclaration.
235 assert(!Redeclaration && "cannot do redeclaration operator lookup")(static_cast <bool> (!Redeclaration && "cannot do redeclaration operator lookup"
) ? void (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 235, __extension__ __PRETTY_FUNCTION__
))
;
236 IDNS = Decl::IDNS_NonMemberOperator;
237 break;
238
239 case Sema::LookupTagName:
240 if (CPlusPlus) {
241 IDNS = Decl::IDNS_Type;
242
243 // When looking for a redeclaration of a tag name, we add:
244 // 1) TagFriend to find undeclared friend decls
245 // 2) Namespace because they can't "overload" with tag decls.
246 // 3) Tag because it includes class templates, which can't
247 // "overload" with tag decls.
248 if (Redeclaration)
249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250 } else {
251 IDNS = Decl::IDNS_Tag;
252 }
253 break;
254
255 case Sema::LookupLabel:
256 IDNS = Decl::IDNS_Label;
257 break;
258
259 case Sema::LookupMemberName:
260 IDNS = Decl::IDNS_Member;
261 if (CPlusPlus)
262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263 break;
264
265 case Sema::LookupNestedNameSpecifierName:
266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupNamespaceName:
270 IDNS = Decl::IDNS_Namespace;
271 break;
272
273 case Sema::LookupUsingDeclName:
274 assert(Redeclaration && "should only be used for redecl lookup")(static_cast <bool> (Redeclaration && "should only be used for redecl lookup"
) ? void (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 274, __extension__ __PRETTY_FUNCTION__
))
;
275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277 Decl::IDNS_LocalExtern;
278 break;
279
280 case Sema::LookupObjCProtocolName:
281 IDNS = Decl::IDNS_ObjCProtocol;
282 break;
283
284 case Sema::LookupOMPReductionName:
285 IDNS = Decl::IDNS_OMPReduction;
286 break;
287
288 case Sema::LookupOMPMapperName:
289 IDNS = Decl::IDNS_OMPMapper;
290 break;
291
292 case Sema::LookupAnyName:
293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295 | Decl::IDNS_Type;
296 break;
297 }
298 return IDNS;
299}
300
301void LookupResult::configure() {
302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303 isForRedeclaration());
304
305 // If we're looking for one of the allocation or deallocation
306 // operators, make sure that the implicitly-declared new and delete
307 // operators can be found.
308 switch (NameInfo.getName().getCXXOverloadedOperator()) {
309 case OO_New:
310 case OO_Delete:
311 case OO_Array_New:
312 case OO_Array_Delete:
313 getSema().DeclareGlobalNewDelete();
314 break;
315
316 default:
317 break;
318 }
319
320 // Compiler builtins are always visible, regardless of where they end
321 // up being declared.
322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323 if (unsigned BuiltinID = Id->getBuiltinID()) {
324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325 AllowHidden = true;
326 }
327 }
328}
329
330bool LookupResult::checkDebugAssumptions() const {
331 // This function is never called by NDEBUG builds.
332 assert(ResultKind != NotFound || Decls.size() == 0)(static_cast <bool> (ResultKind != NotFound || Decls.size
() == 0) ? void (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "clang/lib/Sema/SemaLookup.cpp", 332, __extension__ __PRETTY_FUNCTION__
))
;
333 assert(ResultKind != Found || Decls.size() == 1)(static_cast <bool> (ResultKind != Found || Decls.size(
) == 1) ? void (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "clang/lib/Sema/SemaLookup.cpp", 333, __extension__ __PRETTY_FUNCTION__
))
;
334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
335 (Decls.size() == 1 &&(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
;
337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved())(static_cast <bool> (ResultKind != FoundUnresolvedValue
|| checkUnresolved()) ? void (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || checkUnresolved()"
, "clang/lib/Sema/SemaLookup.cpp", 337, __extension__ __PRETTY_FUNCTION__
))
;
338 assert(ResultKind != Ambiguous || Decls.size() > 1 ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
340 Ambiguity == AmbiguousBaseSubobjectTypes)))(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
;
341 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
342 (Ambiguity == AmbiguousBaseSubobjectTypes ||(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
343 Ambiguity == AmbiguousBaseSubobjects)))(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
;
344 return true;
345}
346
347// Necessary because CXXBasePaths is not complete in Sema.h
348void LookupResult::deletePaths(CXXBasePaths *Paths) {
349 delete Paths;
350}
351
352/// Get a representative context for a declaration such that two declarations
353/// will have the same context if they were found within the same scope.
354static DeclContext *getContextForScopeMatching(Decl *D) {
355 // For function-local declarations, use that function as the context. This
356 // doesn't account for scopes within the function; the caller must deal with
357 // those.
358 DeclContext *DC = D->getLexicalDeclContext();
359 if (DC->isFunctionOrMethod())
360 return DC;
361
362 // Otherwise, look at the semantic context of the declaration. The
363 // declaration must have been found there.
364 return D->getDeclContext()->getRedeclContext();
365}
366
367/// Determine whether \p D is a better lookup result than \p Existing,
368/// given that they declare the same entity.
369static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370 NamedDecl *D, NamedDecl *Existing) {
371 // When looking up redeclarations of a using declaration, prefer a using
372 // shadow declaration over any other declaration of the same entity.
373 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
374 !isa<UsingShadowDecl>(Existing))
375 return true;
376
377 auto *DUnderlying = D->getUnderlyingDecl();
378 auto *EUnderlying = Existing->getUnderlyingDecl();
379
380 // If they have different underlying declarations, prefer a typedef over the
381 // original type (this happens when two type declarations denote the same
382 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
383 // might carry additional semantic information, such as an alignment override.
384 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
385 // declaration over a typedef. Also prefer a tag over a typedef for
386 // destructor name lookup because in some contexts we only accept a
387 // class-name in a destructor declaration.
388 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
389 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))(static_cast <bool> (isa<TypeDecl>(DUnderlying) &&
isa<TypeDecl>(EUnderlying)) ? void (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "clang/lib/Sema/SemaLookup.cpp", 389, __extension__ __PRETTY_FUNCTION__
))
;
390 bool HaveTag = isa<TagDecl>(EUnderlying);
391 bool WantTag =
392 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
393 return HaveTag != WantTag;
394 }
395
396 // Pick the function with more default arguments.
397 // FIXME: In the presence of ambiguous default arguments, we should keep both,
398 // so we can diagnose the ambiguity if the default argument is needed.
399 // See C++ [over.match.best]p3.
400 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
401 auto *EFD = cast<FunctionDecl>(EUnderlying);
402 unsigned DMin = DFD->getMinRequiredArguments();
403 unsigned EMin = EFD->getMinRequiredArguments();
404 // If D has more default arguments, it is preferred.
405 if (DMin != EMin)
406 return DMin < EMin;
407 // FIXME: When we track visibility for default function arguments, check
408 // that we pick the declaration with more visible default arguments.
409 }
410
411 // Pick the template with more default template arguments.
412 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
413 auto *ETD = cast<TemplateDecl>(EUnderlying);
414 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
415 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
416 // If D has more default arguments, it is preferred. Note that default
417 // arguments (and their visibility) is monotonically increasing across the
418 // redeclaration chain, so this is a quick proxy for "is more recent".
419 if (DMin != EMin)
420 return DMin < EMin;
421 // If D has more *visible* default arguments, it is preferred. Note, an
422 // earlier default argument being visible does not imply that a later
423 // default argument is visible, so we can't just check the first one.
424 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
425 I != N; ++I) {
426 if (!S.hasVisibleDefaultArgument(
427 ETD->getTemplateParameters()->getParam(I)) &&
428 S.hasVisibleDefaultArgument(
429 DTD->getTemplateParameters()->getParam(I)))
430 return true;
431 }
432 }
433
434 // VarDecl can have incomplete array types, prefer the one with more complete
435 // array type.
436 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
437 VarDecl *EVD = cast<VarDecl>(EUnderlying);
438 if (EVD->getType()->isIncompleteType() &&
439 !DVD->getType()->isIncompleteType()) {
440 // Prefer the decl with a more complete type if visible.
441 return S.isVisible(DVD);
442 }
443 return false; // Avoid picking up a newer decl, just because it was newer.
444 }
445
446 // For most kinds of declaration, it doesn't really matter which one we pick.
447 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
448 // If the existing declaration is hidden, prefer the new one. Otherwise,
449 // keep what we've got.
450 return !S.isVisible(Existing);
451 }
452
453 // Pick the newer declaration; it might have a more precise type.
454 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
455 Prev = Prev->getPreviousDecl())
456 if (Prev == EUnderlying)
457 return true;
458 return false;
459}
460
461/// Determine whether \p D can hide a tag declaration.
462static bool canHideTag(NamedDecl *D) {
463 // C++ [basic.scope.declarative]p4:
464 // Given a set of declarations in a single declarative region [...]
465 // exactly one declaration shall declare a class name or enumeration name
466 // that is not a typedef name and the other declarations shall all refer to
467 // the same variable, non-static data member, or enumerator, or all refer
468 // to functions and function templates; in this case the class name or
469 // enumeration name is hidden.
470 // C++ [basic.scope.hiding]p2:
471 // A class name or enumeration name can be hidden by the name of a
472 // variable, data member, function, or enumerator declared in the same
473 // scope.
474 // An UnresolvedUsingValueDecl always instantiates to one of these.
475 D = D->getUnderlyingDecl();
476 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
477 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
478 isa<UnresolvedUsingValueDecl>(D);
479}
480
481/// Resolves the result kind of this lookup.
482void LookupResult::resolveKind() {
483 unsigned N = Decls.size();
484
485 // Fast case: no possible ambiguity.
486 if (N == 0) {
487 assert(ResultKind == NotFound ||(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "clang/lib/Sema/SemaLookup.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
488 ResultKind == NotFoundInCurrentInstantiation)(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "clang/lib/Sema/SemaLookup.cpp", 488, __extension__ __PRETTY_FUNCTION__
))
;
489 return;
490 }
491
492 // If there's a single decl, we need to examine it to decide what
493 // kind of lookup this is.
494 if (N == 1) {
495 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
496 if (isa<FunctionTemplateDecl>(D))
497 ResultKind = FoundOverloaded;
498 else if (isa<UnresolvedUsingValueDecl>(D))
499 ResultKind = FoundUnresolvedValue;
500 return;
501 }
502
503 // Don't do any extra resolution if we've already resolved as ambiguous.
504 if (ResultKind == Ambiguous) return;
505
506 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
507 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
508
509 bool Ambiguous = false;
510 bool HasTag = false, HasFunction = false;
511 bool HasFunctionTemplate = false, HasUnresolved = false;
512 NamedDecl *HasNonFunction = nullptr;
513
514 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
515
516 unsigned UniqueTagIndex = 0;
517
518 unsigned I = 0;
519 while (I < N) {
520 NamedDecl *D = Decls[I]->getUnderlyingDecl();
521 D = cast<NamedDecl>(D->getCanonicalDecl());
522
523 // Ignore an invalid declaration unless it's the only one left.
524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) {
526 Decls[I] = Decls[--N];
527 continue;
528 }
529
530 std::optional<unsigned> ExistingI;
531
532 // Redeclarations of types via typedef can occur both within a scope
533 // and, through using declarations and directives, across scopes. There is
534 // no ambiguity if they all refer to the same type, so unique based on the
535 // canonical type.
536 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
537 QualType T = getSema().Context.getTypeDeclType(TD);
538 auto UniqueResult = UniqueTypes.insert(
539 std::make_pair(getSema().Context.getCanonicalType(T), I));
540 if (!UniqueResult.second) {
541 // The type is not unique.
542 ExistingI = UniqueResult.first->second;
543 }
544 }
545
546 // For non-type declarations, check for a prior lookup result naming this
547 // canonical declaration.
548 if (!ExistingI) {
549 auto UniqueResult = Unique.insert(std::make_pair(D, I));
550 if (!UniqueResult.second) {
551 // We've seen this entity before.
552 ExistingI = UniqueResult.first->second;
553 }
554 }
555
556 if (ExistingI) {
557 // This is not a unique lookup result. Pick one of the results and
558 // discard the other.
559 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
560 Decls[*ExistingI]))
561 Decls[*ExistingI] = Decls[I];
562 Decls[I] = Decls[--N];
563 continue;
564 }
565
566 // Otherwise, do some decl type analysis and then continue.
567
568 if (isa<UnresolvedUsingValueDecl>(D)) {
569 HasUnresolved = true;
570 } else if (isa<TagDecl>(D)) {
571 if (HasTag)
572 Ambiguous = true;
573 UniqueTagIndex = I;
574 HasTag = true;
575 } else if (isa<FunctionTemplateDecl>(D)) {
576 HasFunction = true;
577 HasFunctionTemplate = true;
578 } else if (isa<FunctionDecl>(D)) {
579 HasFunction = true;
580 } else {
581 if (HasNonFunction) {
582 // If we're about to create an ambiguity between two declarations that
583 // are equivalent, but one is an internal linkage declaration from one
584 // module and the other is an internal linkage declaration from another
585 // module, just skip it.
586 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
587 D)) {
588 EquivalentNonFunctions.push_back(D);
589 Decls[I] = Decls[--N];
590 continue;
591 }
592
593 Ambiguous = true;
594 }
595 HasNonFunction = D;
596 }
597 I++;
598 }
599
600 // C++ [basic.scope.hiding]p2:
601 // A class name or enumeration name can be hidden by the name of
602 // an object, function, or enumerator declared in the same
603 // scope. If a class or enumeration name and an object, function,
604 // or enumerator are declared in the same scope (in any order)
605 // with the same name, the class or enumeration name is hidden
606 // wherever the object, function, or enumerator name is visible.
607 // But it's still an error if there are distinct tag types found,
608 // even if they're not visible. (ref?)
609 if (N > 1 && HideTags && HasTag && !Ambiguous &&
610 (HasFunction || HasNonFunction || HasUnresolved)) {
611 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
612 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
613 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
614 getContextForScopeMatching(OtherDecl)) &&
615 canHideTag(OtherDecl))
616 Decls[UniqueTagIndex] = Decls[--N];
617 else
618 Ambiguous = true;
619 }
620
621 // FIXME: This diagnostic should really be delayed until we're done with
622 // the lookup result, in case the ambiguity is resolved by the caller.
623 if (!EquivalentNonFunctions.empty() && !Ambiguous)
624 getSema().diagnoseEquivalentInternalLinkageDeclarations(
625 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
626
627 Decls.truncate(N);
628
629 if (HasNonFunction && (HasFunction || HasUnresolved))
630 Ambiguous = true;
631
632 if (Ambiguous)
633 setAmbiguous(LookupResult::AmbiguousReference);
634 else if (HasUnresolved)
635 ResultKind = LookupResult::FoundUnresolvedValue;
636 else if (N > 1 || HasFunctionTemplate)
637 ResultKind = LookupResult::FoundOverloaded;
638 else
639 ResultKind = LookupResult::Found;
640}
641
642void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
643 CXXBasePaths::const_paths_iterator I, E;
644 for (I = P.begin(), E = P.end(); I != E; ++I)
645 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
646 ++DI)
647 addDecl(*DI);
648}
649
650void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
651 Paths = new CXXBasePaths;
652 Paths->swap(P);
653 addDeclsFromBasePaths(*Paths);
654 resolveKind();
655 setAmbiguous(AmbiguousBaseSubobjects);
656}
657
658void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
659 Paths = new CXXBasePaths;
660 Paths->swap(P);
661 addDeclsFromBasePaths(*Paths);
662 resolveKind();
663 setAmbiguous(AmbiguousBaseSubobjectTypes);
664}
665
666void LookupResult::print(raw_ostream &Out) {
667 Out << Decls.size() << " result(s)";
668 if (isAmbiguous()) Out << ", ambiguous";
669 if (Paths) Out << ", base paths present";
670
671 for (iterator I = begin(), E = end(); I != E; ++I) {
672 Out << "\n";
673 (*I)->print(Out, 2);
674 }
675}
676
677LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
678 llvm::errs() << "lookup results for " << getLookupName().getAsString()
679 << ":\n";
680 for (NamedDecl *D : *this)
681 D->dump();
682}
683
684/// Diagnose a missing builtin type.
685static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
686 llvm::StringRef Name) {
687 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
688 << TypeClass << Name;
689 return S.Context.VoidTy;
690}
691
692/// Lookup an OpenCL enum type.
693static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
694 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
695 Sema::LookupTagName);
696 S.LookupName(Result, S.TUScope);
697 if (Result.empty())
698 return diagOpenCLBuiltinTypeError(S, "enum", Name);
699 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
700 if (!Decl)
701 return diagOpenCLBuiltinTypeError(S, "enum", Name);
702 return S.Context.getEnumType(Decl);
703}
704
705/// Lookup an OpenCL typedef type.
706static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
707 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
708 Sema::LookupOrdinaryName);
709 S.LookupName(Result, S.TUScope);
710 if (Result.empty())
711 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
712 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
713 if (!Decl)
714 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
715 return S.Context.getTypedefType(Decl);
716}
717
718/// Get the QualType instances of the return type and arguments for an OpenCL
719/// builtin function signature.
720/// \param S (in) The Sema instance.
721/// \param OpenCLBuiltin (in) The signature currently handled.
722/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
723/// type used as return type or as argument.
724/// Only meaningful for generic types, otherwise equals 1.
725/// \param RetTypes (out) List of the possible return types.
726/// \param ArgTypes (out) List of the possible argument types. For each
727/// argument, ArgTypes contains QualTypes for the Cartesian product
728/// of (vector sizes) x (types) .
729static void GetQualTypesForOpenCLBuiltin(
730 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
731 SmallVector<QualType, 1> &RetTypes,
732 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
733 // Get the QualType instances of the return types.
734 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
735 OCL2Qual(S, TypeTable[Sig], RetTypes);
736 GenTypeMaxCnt = RetTypes.size();
737
738 // Get the QualType instances of the arguments.
739 // First type is the return type, skip it.
740 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
741 SmallVector<QualType, 1> Ty;
742 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
743 Ty);
744 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
745 ArgTypes.push_back(std::move(Ty));
746 }
747}
748
749/// Create a list of the candidate function overloads for an OpenCL builtin
750/// function.
751/// \param Context (in) The ASTContext instance.
752/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
753/// type used as return type or as argument.
754/// Only meaningful for generic types, otherwise equals 1.
755/// \param FunctionList (out) List of FunctionTypes.
756/// \param RetTypes (in) List of the possible return types.
757/// \param ArgTypes (in) List of the possible types for the arguments.
758static void GetOpenCLBuiltinFctOverloads(
759 ASTContext &Context, unsigned GenTypeMaxCnt,
760 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
761 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
762 FunctionProtoType::ExtProtoInfo PI(
763 Context.getDefaultCallingConvention(false, false, true));
764 PI.Variadic = false;
765
766 // Do not attempt to create any FunctionTypes if there are no return types,
767 // which happens when a type belongs to a disabled extension.
768 if (RetTypes.size() == 0)
769 return;
770
771 // Create FunctionTypes for each (gen)type.
772 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
773 SmallVector<QualType, 5> ArgList;
774
775 for (unsigned A = 0; A < ArgTypes.size(); A++) {
776 // Bail out if there is an argument that has no available types.
777 if (ArgTypes[A].size() == 0)
778 return;
779
780 // Builtins such as "max" have an "sgentype" argument that represents
781 // the corresponding scalar type of a gentype. The number of gentypes
782 // must be a multiple of the number of sgentypes.
783 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&(static_cast <bool> (GenTypeMaxCnt % ArgTypes[A].size()
== 0 && "argument type count not compatible with gentype type count"
) ? void (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "clang/lib/Sema/SemaLookup.cpp", 784, __extension__ __PRETTY_FUNCTION__
))
784 "argument type count not compatible with gentype type count")(static_cast <bool> (GenTypeMaxCnt % ArgTypes[A].size()
== 0 && "argument type count not compatible with gentype type count"
) ? void (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "clang/lib/Sema/SemaLookup.cpp", 784, __extension__ __PRETTY_FUNCTION__
))
;
785 unsigned Idx = IGenType % ArgTypes[A].size();
786 ArgList.push_back(ArgTypes[A][Idx]);
787 }
788
789 FunctionList.push_back(Context.getFunctionType(
790 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
791 }
792}
793
794/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
795/// non-null <Index, Len> pair, then the name is referencing an OpenCL
796/// builtin function. Add all candidate signatures to the LookUpResult.
797///
798/// \param S (in) The Sema instance.
799/// \param LR (inout) The LookupResult instance.
800/// \param II (in) The identifier being resolved.
801/// \param FctIndex (in) Starting index in the BuiltinTable.
802/// \param Len (in) The signature list has Len elements.
803static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
804 IdentifierInfo *II,
805 const unsigned FctIndex,
806 const unsigned Len) {
807 // The builtin function declaration uses generic types (gentype).
808 bool HasGenType = false;
809
810 // Maximum number of types contained in a generic type used as return type or
811 // as argument. Only meaningful for generic types, otherwise equals 1.
812 unsigned GenTypeMaxCnt;
813
814 ASTContext &Context = S.Context;
815
816 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
817 const OpenCLBuiltinStruct &OpenCLBuiltin =
818 BuiltinTable[FctIndex + SignatureIndex];
819
820 // Ignore this builtin function if it is not available in the currently
821 // selected language version.
822 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
823 OpenCLBuiltin.Versions))
824 continue;
825
826 // Ignore this builtin function if it carries an extension macro that is
827 // not defined. This indicates that the extension is not supported by the
828 // target, so the builtin function should not be available.
829 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
830 if (!Extensions.empty()) {
831 SmallVector<StringRef, 2> ExtVec;
832 Extensions.split(ExtVec, " ");
833 bool AllExtensionsDefined = true;
834 for (StringRef Ext : ExtVec) {
835 if (!S.getPreprocessor().isMacroDefined(Ext)) {
836 AllExtensionsDefined = false;
837 break;
838 }
839 }
840 if (!AllExtensionsDefined)
841 continue;
842 }
843
844 SmallVector<QualType, 1> RetTypes;
845 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
846
847 // Obtain QualType lists for the function signature.
848 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
849 ArgTypes);
850 if (GenTypeMaxCnt > 1) {
851 HasGenType = true;
852 }
853
854 // Create function overload for each type combination.
855 std::vector<QualType> FunctionList;
856 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
857 ArgTypes);
858
859 SourceLocation Loc = LR.getNameLoc();
860 DeclContext *Parent = Context.getTranslationUnitDecl();
861 FunctionDecl *NewOpenCLBuiltin;
862
863 for (const auto &FTy : FunctionList) {
864 NewOpenCLBuiltin = FunctionDecl::Create(
865 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
866 S.getCurFPFeatures().isFPConstrained(), false,
867 FTy->isFunctionProtoType());
868 NewOpenCLBuiltin->setImplicit();
869
870 // Create Decl objects for each parameter, adding them to the
871 // FunctionDecl.
872 const auto *FP = cast<FunctionProtoType>(FTy);
873 SmallVector<ParmVarDecl *, 4> ParmList;
874 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
875 ParmVarDecl *Parm = ParmVarDecl::Create(
876 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
877 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
878 Parm->setScopeInfo(0, IParm);
879 ParmList.push_back(Parm);
880 }
881 NewOpenCLBuiltin->setParams(ParmList);
882
883 // Add function attributes.
884 if (OpenCLBuiltin.IsPure)
885 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
886 if (OpenCLBuiltin.IsConst)
887 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
888 if (OpenCLBuiltin.IsConv)
889 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
890
891 if (!S.getLangOpts().OpenCLCPlusPlus)
892 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
893
894 LR.addDecl(NewOpenCLBuiltin);
895 }
896 }
897
898 // If we added overloads, need to resolve the lookup result.
899 if (Len > 1 || HasGenType)
900 LR.resolveKind();
901}
902
903/// Lookup a builtin function, when name lookup would otherwise
904/// fail.
905bool Sema::LookupBuiltin(LookupResult &R) {
906 Sema::LookupNameKind NameKind = R.getLookupKind();
907
908 // If we didn't find a use of this identifier, and if the identifier
909 // corresponds to a compiler builtin, create the decl object for the builtin
910 // now, injecting it into translation unit scope, and return it.
911 if (NameKind == Sema::LookupOrdinaryName ||
912 NameKind == Sema::LookupRedeclarationWithLinkage) {
913 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
914 if (II) {
915 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
916 if (II == getASTContext().getMakeIntegerSeqName()) {
917 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
918 return true;
919 } else if (II == getASTContext().getTypePackElementName()) {
920 R.addDecl(getASTContext().getTypePackElementDecl());
921 return true;
922 }
923 }
924
925 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
926 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
927 auto Index = isOpenCLBuiltin(II->getName());
928 if (Index.first) {
929 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
930 Index.second);
931 return true;
932 }
933 }
934
935 if (DeclareRISCVVBuiltins) {
936 if (!RVIntrinsicManager)
937 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
938
939 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
940 return true;
941 }
942
943 // If this is a builtin on this (or all) targets, create the decl.
944 if (unsigned BuiltinID = II->getBuiltinID()) {
945 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
946 // library functions like 'malloc'. Instead, we'll just error.
947 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
948 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
949 return false;
950
951 if (NamedDecl *D =
952 LazilyCreateBuiltin(II, BuiltinID, TUScope,
953 R.isForRedeclaration(), R.getNameLoc())) {
954 R.addDecl(D);
955 return true;
956 }
957 }
958 }
959 }
960
961 return false;
962}
963
964/// Looks up the declaration of "struct objc_super" and
965/// saves it for later use in building builtin declaration of
966/// objc_msgSendSuper and objc_msgSendSuper_stret.
967static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
968 ASTContext &Context = Sema.Context;
969 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
970 Sema::LookupTagName);
971 Sema.LookupName(Result, S);
972 if (Result.getResultKind() == LookupResult::Found)
973 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
974 Context.setObjCSuperType(Context.getTagDeclType(TD));
975}
976
977void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
978 if (ID == Builtin::BIobjc_msgSendSuper)
979 LookupPredefedObjCSuperType(*this, S);
980}
981
982/// Determine whether we can declare a special member function within
983/// the class at this point.
984static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
985 // We need to have a definition for the class.
986 if (!Class->getDefinition() || Class->isDependentContext())
987 return false;
988
989 // We can't be in the middle of defining the class.
990 return !Class->isBeingDefined();
991}
992
993void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
994 if (!CanDeclareSpecialMemberFunction(Class))
995 return;
996
997 // If the default constructor has not yet been declared, do so now.
998 if (Class->needsImplicitDefaultConstructor())
999 DeclareImplicitDefaultConstructor(Class);
1000
1001 // If the copy constructor has not yet been declared, do so now.
1002 if (Class->needsImplicitCopyConstructor())
1003 DeclareImplicitCopyConstructor(Class);
1004
1005 // If the copy assignment operator has not yet been declared, do so now.
1006 if (Class->needsImplicitCopyAssignment())
1007 DeclareImplicitCopyAssignment(Class);
1008
1009 if (getLangOpts().CPlusPlus11) {
1010 // If the move constructor has not yet been declared, do so now.
1011 if (Class->needsImplicitMoveConstructor())
1012 DeclareImplicitMoveConstructor(Class);
1013
1014 // If the move assignment operator has not yet been declared, do so now.
1015 if (Class->needsImplicitMoveAssignment())
1016 DeclareImplicitMoveAssignment(Class);
1017 }
1018
1019 // If the destructor has not yet been declared, do so now.
1020 if (Class->needsImplicitDestructor())
1021 DeclareImplicitDestructor(Class);
1022}
1023
1024/// Determine whether this is the name of an implicitly-declared
1025/// special member function.
1026static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1027 switch (Name.getNameKind()) {
1028 case DeclarationName::CXXConstructorName:
1029 case DeclarationName::CXXDestructorName:
1030 return true;
1031
1032 case DeclarationName::CXXOperatorName:
1033 return Name.getCXXOverloadedOperator() == OO_Equal;
1034
1035 default:
1036 break;
1037 }
1038
1039 return false;
1040}
1041
1042/// If there are any implicit member functions with the given name
1043/// that need to be declared in the given declaration context, do so.
1044static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1045 DeclarationName Name,
1046 SourceLocation Loc,
1047 const DeclContext *DC) {
1048 if (!DC)
1049 return;
1050
1051 switch (Name.getNameKind()) {
1052 case DeclarationName::CXXConstructorName:
1053 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1054 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1055 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1056 if (Record->needsImplicitDefaultConstructor())
1057 S.DeclareImplicitDefaultConstructor(Class);
1058 if (Record->needsImplicitCopyConstructor())
1059 S.DeclareImplicitCopyConstructor(Class);
1060 if (S.getLangOpts().CPlusPlus11 &&
1061 Record->needsImplicitMoveConstructor())
1062 S.DeclareImplicitMoveConstructor(Class);
1063 }
1064 break;
1065
1066 case DeclarationName::CXXDestructorName:
1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1068 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1069 CanDeclareSpecialMemberFunction(Record))
1070 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1071 break;
1072
1073 case DeclarationName::CXXOperatorName:
1074 if (Name.getCXXOverloadedOperator() != OO_Equal)
1075 break;
1076
1077 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1078 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1079 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1080 if (Record->needsImplicitCopyAssignment())
1081 S.DeclareImplicitCopyAssignment(Class);
1082 if (S.getLangOpts().CPlusPlus11 &&
1083 Record->needsImplicitMoveAssignment())
1084 S.DeclareImplicitMoveAssignment(Class);
1085 }
1086 }
1087 break;
1088
1089 case DeclarationName::CXXDeductionGuideName:
1090 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1091 break;
1092
1093 default:
1094 break;
1095 }
1096}
1097
1098// Adds all qualifying matches for a name within a decl context to the
1099// given lookup result. Returns true if any matches were found.
1100static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1101 bool Found = false;
1102
1103 // Lazily declare C++ special member functions.
1104 if (S.getLangOpts().CPlusPlus)
1105 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1106 DC);
1107
1108 // Perform lookup into this declaration context.
1109 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1110 for (NamedDecl *D : DR) {
1111 if ((D = R.getAcceptableDecl(D))) {
1112 R.addDecl(D);
1113 Found = true;
1114 }
1115 }
1116
1117 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1118 return true;
1119
1120 if (R.getLookupName().getNameKind()
1121 != DeclarationName::CXXConversionFunctionName ||
1122 R.getLookupName().getCXXNameType()->isDependentType() ||
1123 !isa<CXXRecordDecl>(DC))
1124 return Found;
1125
1126 // C++ [temp.mem]p6:
1127 // A specialization of a conversion function template is not found by
1128 // name lookup. Instead, any conversion function templates visible in the
1129 // context of the use are considered. [...]
1130 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1131 if (!Record->isCompleteDefinition())
1132 return Found;
1133
1134 // For conversion operators, 'operator auto' should only match
1135 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1136 // as a candidate for template substitution.
1137 auto *ContainedDeducedType =
1138 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1139 if (R.getLookupName().getNameKind() ==
1140 DeclarationName::CXXConversionFunctionName &&
1141 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1142 return Found;
1143
1144 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1145 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1146 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1147 if (!ConvTemplate)
1148 continue;
1149
1150 // When we're performing lookup for the purposes of redeclaration, just
1151 // add the conversion function template. When we deduce template
1152 // arguments for specializations, we'll end up unifying the return
1153 // type of the new declaration with the type of the function template.
1154 if (R.isForRedeclaration()) {
1155 R.addDecl(ConvTemplate);
1156 Found = true;
1157 continue;
1158 }
1159
1160 // C++ [temp.mem]p6:
1161 // [...] For each such operator, if argument deduction succeeds
1162 // (14.9.2.3), the resulting specialization is used as if found by
1163 // name lookup.
1164 //
1165 // When referencing a conversion function for any purpose other than
1166 // a redeclaration (such that we'll be building an expression with the
1167 // result), perform template argument deduction and place the
1168 // specialization into the result set. We do this to avoid forcing all
1169 // callers to perform special deduction for conversion functions.
1170 TemplateDeductionInfo Info(R.getNameLoc());
1171 FunctionDecl *Specialization = nullptr;
1172
1173 const FunctionProtoType *ConvProto
1174 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1175 assert(ConvProto && "Nonsensical conversion function template type")(static_cast <bool> (ConvProto && "Nonsensical conversion function template type"
) ? void (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "clang/lib/Sema/SemaLookup.cpp", 1175, __extension__ __PRETTY_FUNCTION__
))
;
1176
1177 // Compute the type of the function that we would expect the conversion
1178 // function to have, if it were to match the name given.
1179 // FIXME: Calling convention!
1180 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1181 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1182 EPI.ExceptionSpec = EST_None;
1183 QualType ExpectedType = R.getSema().Context.getFunctionType(
1184 R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1185
1186 // Perform template argument deduction against the type that we would
1187 // expect the function to have.
1188 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1189 Specialization, Info)
1190 == Sema::TDK_Success) {
1191 R.addDecl(Specialization);
1192 Found = true;
1193 }
1194 }
1195
1196 return Found;
1197}
1198
1199// Performs C++ unqualified lookup into the given file context.
1200static bool
1201CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1202 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1203
1204 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")(static_cast <bool> (NS && NS->isFileContext
() && "CppNamespaceLookup() requires namespace!") ? void
(0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "clang/lib/Sema/SemaLookup.cpp", 1204, __extension__ __PRETTY_FUNCTION__
))
;
1205
1206 // Perform direct name lookup into the LookupCtx.
1207 bool Found = LookupDirect(S, R, NS);
1208
1209 // Perform direct name lookup into the namespaces nominated by the
1210 // using directives whose common ancestor is this namespace.
1211 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1212 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1213 Found = true;
1214
1215 R.resolveKind();
1216
1217 return Found;
1218}
1219
1220static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1221 if (DeclContext *Ctx = S->getEntity())
1222 return Ctx->isFileContext();
1223 return false;
1224}
1225
1226/// Find the outer declaration context from this scope. This indicates the
1227/// context that we should search up to (exclusive) before considering the
1228/// parent of the specified scope.
1229static DeclContext *findOuterContext(Scope *S) {
1230 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1231 if (DeclContext *DC = OuterS->getLookupEntity())
1232 return DC;
1233 return nullptr;
1234}
1235
1236namespace {
1237/// An RAII object to specify that we want to find block scope extern
1238/// declarations.
1239struct FindLocalExternScope {
1240 FindLocalExternScope(LookupResult &R)
1241 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1242 Decl::IDNS_LocalExtern) {
1243 R.setFindLocalExtern(R.getIdentifierNamespace() &
1244 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1245 }
1246 void restore() {
1247 R.setFindLocalExtern(OldFindLocalExtern);
1248 }
1249 ~FindLocalExternScope() {
1250 restore();
1251 }
1252 LookupResult &R;
1253 bool OldFindLocalExtern;
1254};
1255} // end anonymous namespace
1256
1257bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1258 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Can perform only C++ lookup") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 1258, __extension__ __PRETTY_FUNCTION__
))
;
1259
1260 DeclarationName Name = R.getLookupName();
1261 Sema::LookupNameKind NameKind = R.getLookupKind();
1262
1263 // If this is the name of an implicitly-declared special member function,
1264 // go through the scope stack to implicitly declare
1265 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1266 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1267 if (DeclContext *DC = PreS->getEntity())
1268 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1269 }
1270
1271 // Implicitly declare member functions with the name we're looking for, if in
1272 // fact we are in a scope where it matters.
1273
1274 Scope *Initial = S;
1275 IdentifierResolver::iterator
1276 I = IdResolver.begin(Name),
1277 IEnd = IdResolver.end();
1278
1279 // First we lookup local scope.
1280 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1281 // ...During unqualified name lookup (3.4.1), the names appear as if
1282 // they were declared in the nearest enclosing namespace which contains
1283 // both the using-directive and the nominated namespace.
1284 // [Note: in this context, "contains" means "contains directly or
1285 // indirectly".
1286 //
1287 // For example:
1288 // namespace A { int i; }
1289 // void foo() {
1290 // int i;
1291 // {
1292 // using namespace A;
1293 // ++i; // finds local 'i', A::i appears at global scope
1294 // }
1295 // }
1296 //
1297 UnqualUsingDirectiveSet UDirs(*this);
1298 bool VisitedUsingDirectives = false;
1299 bool LeftStartingScope = false;
1300
1301 // When performing a scope lookup, we want to find local extern decls.
1302 FindLocalExternScope FindLocals(R);
1303
1304 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1305 bool SearchNamespaceScope = true;
1306 // Check whether the IdResolver has anything in this scope.
1307 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1308 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1309 if (NameKind == LookupRedeclarationWithLinkage &&
1310 !(*I)->isTemplateParameter()) {
1311 // If it's a template parameter, we still find it, so we can diagnose
1312 // the invalid redeclaration.
1313
1314 // Determine whether this (or a previous) declaration is
1315 // out-of-scope.
1316 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1317 LeftStartingScope = true;
1318
1319 // If we found something outside of our starting scope that
1320 // does not have linkage, skip it.
1321 if (LeftStartingScope && !((*I)->hasLinkage())) {
1322 R.setShadowed();
1323 continue;
1324 }
1325 } else {
1326 // We found something in this scope, we should not look at the
1327 // namespace scope
1328 SearchNamespaceScope = false;
1329 }
1330 R.addDecl(ND);
1331 }
1332 }
1333 if (!SearchNamespaceScope) {
1334 R.resolveKind();
1335 if (S->isClassScope())
1336 if (CXXRecordDecl *Record =
1337 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1338 R.setNamingClass(Record);
1339 return true;
1340 }
1341
1342 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1343 // C++11 [class.friend]p11:
1344 // If a friend declaration appears in a local class and the name
1345 // specified is an unqualified name, a prior declaration is
1346 // looked up without considering scopes that are outside the
1347 // innermost enclosing non-class scope.
1348 return false;
1349 }
1350
1351 if (DeclContext *Ctx = S->getLookupEntity()) {
1352 DeclContext *OuterCtx = findOuterContext(S);
1353 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1354 // We do not directly look into transparent contexts, since
1355 // those entities will be found in the nearest enclosing
1356 // non-transparent context.
1357 if (Ctx->isTransparentContext())
1358 continue;
1359
1360 // We do not look directly into function or method contexts,
1361 // since all of the local variables and parameters of the
1362 // function/method are present within the Scope.
1363 if (Ctx->isFunctionOrMethod()) {
1364 // If we have an Objective-C instance method, look for ivars
1365 // in the corresponding interface.
1366 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1367 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1368 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1369 ObjCInterfaceDecl *ClassDeclared;
1370 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1371 Name.getAsIdentifierInfo(),
1372 ClassDeclared)) {
1373 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1374 R.addDecl(ND);
1375 R.resolveKind();
1376 return true;
1377 }
1378 }
1379 }
1380 }
1381
1382 continue;
1383 }
1384
1385 // If this is a file context, we need to perform unqualified name
1386 // lookup considering using directives.
1387 if (Ctx->isFileContext()) {
1388 // If we haven't handled using directives yet, do so now.
1389 if (!VisitedUsingDirectives) {
1390 // Add using directives from this context up to the top level.
1391 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1392 if (UCtx->isTransparentContext())
1393 continue;
1394
1395 UDirs.visit(UCtx, UCtx);
1396 }
1397
1398 // Find the innermost file scope, so we can add using directives
1399 // from local scopes.
1400 Scope *InnermostFileScope = S;
1401 while (InnermostFileScope &&
1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1403 InnermostFileScope = InnermostFileScope->getParent();
1404 UDirs.visitScopeChain(Initial, InnermostFileScope);
1405
1406 UDirs.done();
1407
1408 VisitedUsingDirectives = true;
1409 }
1410
1411 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1412 R.resolveKind();
1413 return true;
1414 }
1415
1416 continue;
1417 }
1418
1419 // Perform qualified name lookup into this context.
1420 // FIXME: In some cases, we know that every name that could be found by
1421 // this qualified name lookup will also be on the identifier chain. For
1422 // example, inside a class without any base classes, we never need to
1423 // perform qualified lookup because all of the members are on top of the
1424 // identifier chain.
1425 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1426 return true;
1427 }
1428 }
1429 }
1430
1431 // Stop if we ran out of scopes.
1432 // FIXME: This really, really shouldn't be happening.
1433 if (!S) return false;
1434
1435 // If we are looking for members, no need to look into global/namespace scope.
1436 if (NameKind == LookupMemberName)
1437 return false;
1438
1439 // Collect UsingDirectiveDecls in all scopes, and recursively all
1440 // nominated namespaces by those using-directives.
1441 //
1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1443 // don't build it for each lookup!
1444 if (!VisitedUsingDirectives) {
1445 UDirs.visitScopeChain(Initial, S);
1446 UDirs.done();
1447 }
1448
1449 // If we're not performing redeclaration lookup, do not look for local
1450 // extern declarations outside of a function scope.
1451 if (!R.isForRedeclaration())
1452 FindLocals.restore();
1453
1454 // Lookup namespace scope, and global scope.
1455 // Unqualified name lookup in C++ requires looking into scopes
1456 // that aren't strictly lexical, and therefore we walk through the
1457 // context as well as walking through the scopes.
1458 for (; S; S = S->getParent()) {
1459 // Check whether the IdResolver has anything in this scope.
1460 bool Found = false;
1461 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1462 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1463 // We found something. Look for anything else in our scope
1464 // with this same name and in an acceptable identifier
1465 // namespace, so that we can construct an overload set if we
1466 // need to.
1467 Found = true;
1468 R.addDecl(ND);
1469 }
1470 }
1471
1472 if (Found && S->isTemplateParamScope()) {
1473 R.resolveKind();
1474 return true;
1475 }
1476
1477 DeclContext *Ctx = S->getLookupEntity();
1478 if (Ctx) {
1479 DeclContext *OuterCtx = findOuterContext(S);
1480 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1481 // We do not directly look into transparent contexts, since
1482 // those entities will be found in the nearest enclosing
1483 // non-transparent context.
1484 if (Ctx->isTransparentContext())
1485 continue;
1486
1487 // If we have a context, and it's not a context stashed in the
1488 // template parameter scope for an out-of-line definition, also
1489 // look into that context.
1490 if (!(Found && S->isTemplateParamScope())) {
1491 assert(Ctx->isFileContext() &&(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "clang/lib/Sema/SemaLookup.cpp", 1492, __extension__ __PRETTY_FUNCTION__
))
1492 "We should have been looking only at file context here already.")(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "clang/lib/Sema/SemaLookup.cpp", 1492, __extension__ __PRETTY_FUNCTION__
))
;
1493
1494 // Look into context considering using-directives.
1495 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1496 Found = true;
1497 }
1498
1499 if (Found) {
1500 R.resolveKind();
1501 return true;
1502 }
1503
1504 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1505 return false;
1506 }
1507 }
1508
1509 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1510 return false;
1511 }
1512
1513 return !R.empty();
1514}
1515
1516void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1517 if (auto *M = getCurrentModule())
1518 Context.mergeDefinitionIntoModule(ND, M);
1519 else
1520 // We're not building a module; just make the definition visible.
1521 ND->setVisibleDespiteOwningModule();
1522
1523 // If ND is a template declaration, make the template parameters
1524 // visible too. They're not (necessarily) within a mergeable DeclContext.
1525 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1526 for (auto *Param : *TD->getTemplateParameters())
1527 makeMergedDefinitionVisible(Param);
1528}
1529
1530/// Find the module in which the given declaration was defined.
1531static Module *getDefiningModule(Sema &S, Decl *Entity) {
1532 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1533 // If this function was instantiated from a template, the defining module is
1534 // the module containing the pattern.
1535 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1536 Entity = Pattern;
1537 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1538 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1539 Entity = Pattern;
1540 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1541 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1542 Entity = Pattern;
1543 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1544 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1545 Entity = Pattern;
1546 }
1547
1548 // Walk up to the containing context. That might also have been instantiated
1549 // from a template.
1550 DeclContext *Context = Entity->getLexicalDeclContext();
1551 if (Context->isFileContext())
1552 return S.getOwningModule(Entity);
1553 return getDefiningModule(S, cast<Decl>(Context));
1554}
1555
1556llvm::DenseSet<Module*> &Sema::getLookupModules() {
1557 unsigned N = CodeSynthesisContexts.size();
1558 for (unsigned I = CodeSynthesisContextLookupModules.size();
1559 I != N; ++I) {
1560 Module *M = CodeSynthesisContexts[I].Entity ?
1561 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1562 nullptr;
1563 if (M && !LookupModulesCache.insert(M).second)
1564 M = nullptr;
1565 CodeSynthesisContextLookupModules.push_back(M);
1566 }
1567 return LookupModulesCache;
1568}
1569
1570/// Determine if we could use all the declarations in the module.
1571bool Sema::isUsableModule(const Module *M) {
1572 assert(M && "We shouldn't check nullness for module here")(static_cast <bool> (M && "We shouldn't check nullness for module here"
) ? void (0) : __assert_fail ("M && \"We shouldn't check nullness for module here\""
, "clang/lib/Sema/SemaLookup.cpp", 1572, __extension__ __PRETTY_FUNCTION__
))
;
1573 // Return quickly if we cached the result.
1574 if (UsableModuleUnitsCache.count(M))
1575 return true;
1576
1577 // If M is the global module fragment of the current translation unit. So it
1578 // should be usable.
1579 // [module.global.frag]p1:
1580 // The global module fragment can be used to provide declarations that are
1581 // attached to the global module and usable within the module unit.
1582 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1583 M == TheExportedImplicitGlobalModuleFragment ||
1584 // If M is the module we're parsing, it should be usable. This covers the
1585 // private module fragment. The private module fragment is usable only if
1586 // it is within the current module unit. And it must be the current
1587 // parsing module unit if it is within the current module unit according
1588 // to the grammar of the private module fragment. NOTE: This is covered by
1589 // the following condition. The intention of the check is to avoid string
1590 // comparison as much as possible.
1591 M == getCurrentModule() ||
1592 // The module unit which is in the same module with the current module
1593 // unit is usable.
1594 //
1595 // FIXME: Here we judge if they are in the same module by comparing the
1596 // string. Is there any better solution?
1597 M->getPrimaryModuleInterfaceName() ==
1598 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1599 UsableModuleUnitsCache.insert(M);
1600 return true;
1601 }
1602
1603 return false;
1604}
1605
1606bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1607 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1608 if (isModuleVisible(Merged))
1609 return true;
1610 return false;
1611}
1612
1613bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1614 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1615 if (isUsableModule(Merged))
1616 return true;
1617 return false;
1618}
1619
1620template <typename ParmDecl>
1621static bool
1622hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1623 llvm::SmallVectorImpl<Module *> *Modules,
1624 Sema::AcceptableKind Kind) {
1625 if (!D->hasDefaultArgument())
1626 return false;
1627
1628 llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1629 while (D && Visited.insert(D).second) {
1630 auto &DefaultArg = D->getDefaultArgStorage();
1631 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1632 return true;
1633
1634 if (!DefaultArg.isInherited() && Modules) {
1635 auto *NonConstD = const_cast<ParmDecl*>(D);
1636 Modules->push_back(S.getOwningModule(NonConstD));
1637 }
1638
1639 // If there was a previous default argument, maybe its parameter is
1640 // acceptable.
1641 D = DefaultArg.getInheritedFrom();
1642 }
1643 return false;
1644}
1645
1646bool Sema::hasAcceptableDefaultArgument(
1647 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1648 Sema::AcceptableKind Kind) {
1649 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1650 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1651
1652 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1653 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1654
1655 return ::hasAcceptableDefaultArgument(
1656 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1657}
1658
1659bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1660 llvm::SmallVectorImpl<Module *> *Modules) {
1661 return hasAcceptableDefaultArgument(D, Modules,
1662 Sema::AcceptableKind::Visible);
1663}
1664
1665bool Sema::hasReachableDefaultArgument(
1666 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1667 return hasAcceptableDefaultArgument(D, Modules,
1668 Sema::AcceptableKind::Reachable);
1669}
1670
1671template <typename Filter>
1672static bool
1673hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1674 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1675 Sema::AcceptableKind Kind) {
1676 bool HasFilteredRedecls = false;
1677
1678 for (auto *Redecl : D->redecls()) {
1679 auto *R = cast<NamedDecl>(Redecl);
1680 if (!F(R))
1681 continue;
1682
1683 if (S.isAcceptable(R, Kind))
1684 return true;
1685
1686 HasFilteredRedecls = true;
1687
1688 if (Modules)
1689 Modules->push_back(R->getOwningModule());
1690 }
1691
1692 // Only return false if there is at least one redecl that is not filtered out.
1693 if (HasFilteredRedecls)
1694 return false;
1695
1696 return true;
1697}
1698
1699static bool
1700hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1701 llvm::SmallVectorImpl<Module *> *Modules,
1702 Sema::AcceptableKind Kind) {
1703 return hasAcceptableDeclarationImpl(
1704 S, D, Modules,
1705 [](const NamedDecl *D) {
1706 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1707 return RD->getTemplateSpecializationKind() ==
1708 TSK_ExplicitSpecialization;
1709 if (auto *FD = dyn_cast<FunctionDecl>(D))
1710 return FD->getTemplateSpecializationKind() ==
1711 TSK_ExplicitSpecialization;
1712 if (auto *VD = dyn_cast<VarDecl>(D))
1713 return VD->getTemplateSpecializationKind() ==
1714 TSK_ExplicitSpecialization;
1715 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "clang/lib/Sema/SemaLookup.cpp", 1715)
;
1716 },
1717 Kind);
1718}
1719
1720bool Sema::hasVisibleExplicitSpecialization(
1721 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1722 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1723 Sema::AcceptableKind::Visible);
1724}
1725
1726bool Sema::hasReachableExplicitSpecialization(
1727 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1728 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1729 Sema::AcceptableKind::Reachable);
1730}
1731
1732static bool
1733hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1734 llvm::SmallVectorImpl<Module *> *Modules,
1735 Sema::AcceptableKind Kind) {
1736 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "clang/lib/Sema/SemaLookup.cpp", 1737, __extension__ __PRETTY_FUNCTION__
))
1737 "not a member specialization")(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "clang/lib/Sema/SemaLookup.cpp", 1737, __extension__ __PRETTY_FUNCTION__
))
;
1738 return hasAcceptableDeclarationImpl(
1739 S, D, Modules,
1740 [](const NamedDecl *D) {
1741 // If the specialization is declared at namespace scope, then it's a
1742 // member specialization declaration. If it's lexically inside the class
1743 // definition then it was instantiated.
1744 //
1745 // FIXME: This is a hack. There should be a better way to determine
1746 // this.
1747 // FIXME: What about MS-style explicit specializations declared within a
1748 // class definition?
1749 return D->getLexicalDeclContext()->isFileContext();
1750 },
1751 Kind);
1752}
1753
1754bool Sema::hasVisibleMemberSpecialization(
1755 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1756 return hasAcceptableMemberSpecialization(*this, D, Modules,
1757 Sema::AcceptableKind::Visible);
1758}
1759
1760bool Sema::hasReachableMemberSpecialization(
1761 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1762 return hasAcceptableMemberSpecialization(*this, D, Modules,
1763 Sema::AcceptableKind::Reachable);
1764}
1765
1766/// Determine whether a declaration is acceptable to name lookup.
1767///
1768/// This routine determines whether the declaration D is acceptable in the
1769/// current lookup context, taking into account the current template
1770/// instantiation stack. During template instantiation, a declaration is
1771/// acceptable if it is acceptable from a module containing any entity on the
1772/// template instantiation path (by instantiating a template, you allow it to
1773/// see the declarations that your module can see, including those later on in
1774/// your module).
1775bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1776 Sema::AcceptableKind Kind) {
1777 assert(!D->isUnconditionallyVisible() &&(static_cast <bool> (!D->isUnconditionallyVisible() &&
"should not call this: not in slow case") ? void (0) : __assert_fail
("!D->isUnconditionallyVisible() && \"should not call this: not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 1778, __extension__ __PRETTY_FUNCTION__
))
1778 "should not call this: not in slow case")(static_cast <bool> (!D->isUnconditionallyVisible() &&
"should not call this: not in slow case") ? void (0) : __assert_fail
("!D->isUnconditionallyVisible() && \"should not call this: not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 1778, __extension__ __PRETTY_FUNCTION__
))
;
1779
1780 Module *DeclModule = SemaRef.getOwningModule(D);
1781 assert(DeclModule && "hidden decl has no owning module")(static_cast <bool> (DeclModule && "hidden decl has no owning module"
) ? void (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "clang/lib/Sema/SemaLookup.cpp", 1781, __extension__ __PRETTY_FUNCTION__
))
;
1782
1783 // If the owning module is visible, the decl is acceptable.
1784 if (SemaRef.isModuleVisible(DeclModule,
1785 D->isInvisibleOutsideTheOwningModule()))
1786 return true;
1787
1788 // Determine whether a decl context is a file context for the purpose of
1789 // visibility/reachability. This looks through some (export and linkage spec)
1790 // transparent contexts, but not others (enums).
1791 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1792 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1793 isa<ExportDecl>(DC);
1794 };
1795
1796 // If this declaration is not at namespace scope
1797 // then it is acceptable if its lexical parent has a acceptable definition.
1798 DeclContext *DC = D->getLexicalDeclContext();
1799 if (DC && !IsEffectivelyFileContext(DC)) {
1800 // For a parameter, check whether our current template declaration's
1801 // lexical context is acceptable, not whether there's some other acceptable
1802 // definition of it, because parameters aren't "within" the definition.
1803 //
1804 // In C++ we need to check for a acceptable definition due to ODR merging,
1805 // and in C we must not because each declaration of a function gets its own
1806 // set of declarations for tags in prototype scope.
1807 bool AcceptableWithinParent;
1808 if (D->isTemplateParameter()) {
1809 bool SearchDefinitions = true;
1810 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1811 if (const auto *TD = DCD->getDescribedTemplate()) {
1812 TemplateParameterList *TPL = TD->getTemplateParameters();
1813 auto Index = getDepthAndIndex(D).second;
1814 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1815 }
1816 }
1817 if (SearchDefinitions)
1818 AcceptableWithinParent =
1819 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1820 else
1821 AcceptableWithinParent =
1822 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1823 } else if (isa<ParmVarDecl>(D) ||
1824 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1825 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1826 else if (D->isModulePrivate()) {
1827 // A module-private declaration is only acceptable if an enclosing lexical
1828 // parent was merged with another definition in the current module.
1829 AcceptableWithinParent = false;
1830 do {
1831 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1832 AcceptableWithinParent = true;
1833 break;
1834 }
1835 DC = DC->getLexicalParent();
1836 } while (!IsEffectivelyFileContext(DC));
1837 } else {
1838 AcceptableWithinParent =
1839 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1840 }
1841
1842 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1843 Kind == Sema::AcceptableKind::Visible &&
1844 // FIXME: Do something better in this case.
1845 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1846 // Cache the fact that this declaration is implicitly visible because
1847 // its parent has a visible definition.
1848 D->setVisibleDespiteOwningModule();
1849 }
1850 return AcceptableWithinParent;
1851 }
1852
1853 if (Kind == Sema::AcceptableKind::Visible)
1854 return false;
1855
1856 assert(Kind == Sema::AcceptableKind::Reachable &&(static_cast <bool> (Kind == Sema::AcceptableKind::Reachable
&& "Additional Sema::AcceptableKind?") ? void (0) : __assert_fail
("Kind == Sema::AcceptableKind::Reachable && \"Additional Sema::AcceptableKind?\""
, "clang/lib/Sema/SemaLookup.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
1857 "Additional Sema::AcceptableKind?")(static_cast <bool> (Kind == Sema::AcceptableKind::Reachable
&& "Additional Sema::AcceptableKind?") ? void (0) : __assert_fail
("Kind == Sema::AcceptableKind::Reachable && \"Additional Sema::AcceptableKind?\""
, "clang/lib/Sema/SemaLookup.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
;
1858 return isReachableSlow(SemaRef, D);
1859}
1860
1861bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1862 // The module might be ordinarily visible. For a module-private query, that
1863 // means it is part of the current module.
1864 if (ModulePrivate && isUsableModule(M))
1865 return true;
1866
1867 // For a query which is not module-private, that means it is in our visible
1868 // module set.
1869 if (!ModulePrivate && VisibleModules.isVisible(M))
1870 return true;
1871
1872 // Otherwise, it might be visible by virtue of the query being within a
1873 // template instantiation or similar that is permitted to look inside M.
1874
1875 // Find the extra places where we need to look.
1876 const auto &LookupModules = getLookupModules();
1877 if (LookupModules.empty())
1878 return false;
1879
1880 // The global module fragments are visible to its corresponding module unit.
1881 // So the global module fragment should be visible if the its corresponding
1882 // module unit is visible.
1883 if (M->isGlobalModule())
1884 M = M->getTopLevelModule();
1885
1886 // If our lookup set contains the module, it's visible.
1887 if (LookupModules.count(M))
1888 return true;
1889
1890 // For a module-private query, that's everywhere we get to look.
1891 if (ModulePrivate)
1892 return false;
1893
1894 // Check whether M is transitively exported to an import of the lookup set.
1895 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1896 return LookupM->isModuleVisible(M);
1897 });
1898}
1899
1900// FIXME: Return false directly if we don't have an interface dependency on the
1901// translation unit containing D.
1902bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1903 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n")(static_cast <bool> (!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"
) ? void (0) : __assert_fail ("!isVisible(SemaRef, D) && \"Shouldn't call the slow case.\\n\""
, "clang/lib/Sema/SemaLookup.cpp", 1903, __extension__ __PRETTY_FUNCTION__
))
;
1904
1905 Module *DeclModule = SemaRef.getOwningModule(D);
1906 assert(DeclModule && "hidden decl has no owning module")(static_cast <bool> (DeclModule && "hidden decl has no owning module"
) ? void (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "clang/lib/Sema/SemaLookup.cpp", 1906, __extension__ __PRETTY_FUNCTION__
))
;
1907
1908 // Entities in module map modules are reachable only if they're visible.
1909 if (DeclModule->isModuleMapModule())
1910 return false;
1911
1912 // If D comes from a module and SemaRef doesn't own a module, it implies D
1913 // comes from another TU. In case SemaRef owns a module, we could judge if D
1914 // comes from another TU by comparing the module unit.
1915 if (SemaRef.isModuleUnitOfCurrentTU(DeclModule))
1916 return true;
1917
1918 // [module.reach]/p3:
1919 // A declaration D is reachable from a point P if:
1920 // ...
1921 // - D is not discarded ([module.global.frag]), appears in a translation unit
1922 // that is reachable from P, and does not appear within a private module
1923 // fragment.
1924 //
1925 // A declaration that's discarded in the GMF should be module-private.
1926 if (D->isModulePrivate())
1927 return false;
1928
1929 // [module.reach]/p1
1930 // A translation unit U is necessarily reachable from a point P if U is a
1931 // module interface unit on which the translation unit containing P has an
1932 // interface dependency, or the translation unit containing P imports U, in
1933 // either case prior to P ([module.import]).
1934 //
1935 // [module.import]/p10
1936 // A translation unit has an interface dependency on a translation unit U if
1937 // it contains a declaration (possibly a module-declaration) that imports U
1938 // or if it has an interface dependency on a translation unit that has an
1939 // interface dependency on U.
1940 //
1941 // So we could conclude the module unit U is necessarily reachable if:
1942 // (1) The module unit U is module interface unit.
1943 // (2) The current unit has an interface dependency on the module unit U.
1944 //
1945 // Here we only check for the first condition. Since we couldn't see
1946 // DeclModule if it isn't (transitively) imported.
1947 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1948 return true;
1949
1950 // [module.reach]/p2
1951 // Additional translation units on
1952 // which the point within the program has an interface dependency may be
1953 // considered reachable, but it is unspecified which are and under what
1954 // circumstances.
1955 //
1956 // The decision here is to treat all additional tranditional units as
1957 // unreachable.
1958 return false;
1959}
1960
1961bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1962 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1963}
1964
1965bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1966 // FIXME: If there are both visible and hidden declarations, we need to take
1967 // into account whether redeclaration is possible. Example:
1968 //
1969 // Non-imported module:
1970 // int f(T); // #1
1971 // Some TU:
1972 // static int f(U); // #2, not a redeclaration of #1
1973 // int f(T); // #3, finds both, should link with #1 if T != U, but
1974 // // with #2 if T == U; neither should be ambiguous.
1975 for (auto *D : R) {
1976 if (isVisible(D))
1977 return true;
1978 assert(D->isExternallyDeclarable() &&(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "clang/lib/Sema/SemaLookup.cpp", 1979, __extension__ __PRETTY_FUNCTION__
))
1979 "should not have hidden, non-externally-declarable result here")(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "clang/lib/Sema/SemaLookup.cpp", 1979, __extension__ __PRETTY_FUNCTION__
))
;
1980 }
1981
1982 // This function is called once "New" is essentially complete, but before a
1983 // previous declaration is attached. We can't query the linkage of "New" in
1984 // general, because attaching the previous declaration can change the
1985 // linkage of New to match the previous declaration.
1986 //
1987 // However, because we've just determined that there is no *visible* prior
1988 // declaration, we can compute the linkage here. There are two possibilities:
1989 //
1990 // * This is not a redeclaration; it's safe to compute the linkage now.
1991 //
1992 // * This is a redeclaration of a prior declaration that is externally
1993 // redeclarable. In that case, the linkage of the declaration is not
1994 // changed by attaching the prior declaration, because both are externally
1995 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1996 //
1997 // FIXME: This is subtle and fragile.
1998 return New->isExternallyDeclarable();
1999}
2000
2001/// Retrieve the visible declaration corresponding to D, if any.
2002///
2003/// This routine determines whether the declaration D is visible in the current
2004/// module, with the current imports. If not, it checks whether any
2005/// redeclaration of D is visible, and if so, returns that declaration.
2006///
2007/// \returns D, or a visible previous declaration of D, whichever is more recent
2008/// and visible. If no declaration of D is visible, returns null.
2009static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2010 unsigned IDNS) {
2011 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case")(static_cast <bool> (!LookupResult::isAvailableForLookup
(SemaRef, D) && "not in slow case") ? void (0) : __assert_fail
("!LookupResult::isAvailableForLookup(SemaRef, D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2011, __extension__ __PRETTY_FUNCTION__
))
;
2012
2013 for (auto *RD : D->redecls()) {
2014 // Don't bother with extra checks if we already know this one isn't visible.
2015 if (RD == D)
2016 continue;
2017
2018 auto ND = cast<NamedDecl>(RD);
2019 // FIXME: This is wrong in the case where the previous declaration is not
2020 // visible in the same scope as D. This needs to be done much more
2021 // carefully.
2022 if (ND->isInIdentifierNamespace(IDNS) &&
2023 LookupResult::isAvailableForLookup(SemaRef, ND))
2024 return ND;
2025 }
2026
2027 return nullptr;
2028}
2029
2030bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2031 llvm::SmallVectorImpl<Module *> *Modules) {
2032 assert(!isVisible(D) && "not in slow case")(static_cast <bool> (!isVisible(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2032, __extension__ __PRETTY_FUNCTION__
))
;
2033 return hasAcceptableDeclarationImpl(
2034 *this, D, Modules, [](const NamedDecl *) { return true; },
2035 Sema::AcceptableKind::Visible);
2036}
2037
2038bool Sema::hasReachableDeclarationSlow(
2039 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2040 assert(!isReachable(D) && "not in slow case")(static_cast <bool> (!isReachable(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isReachable(D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2040, __extension__ __PRETTY_FUNCTION__
))
;
2041 return hasAcceptableDeclarationImpl(
2042 *this, D, Modules, [](const NamedDecl *) { return true; },
2043 Sema::AcceptableKind::Reachable);
2044}
2045
2046NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2047 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2048 // Namespaces are a bit of a special case: we expect there to be a lot of
2049 // redeclarations of some namespaces, all declarations of a namespace are
2050 // essentially interchangeable, all declarations are found by name lookup
2051 // if any is, and namespaces are never looked up during template
2052 // instantiation. So we benefit from caching the check in this case, and
2053 // it is correct to do so.
2054 auto *Key = ND->getCanonicalDecl();
2055 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2056 return Acceptable;
2057 auto *Acceptable = isVisible(getSema(), Key)
2058 ? Key
2059 : findAcceptableDecl(getSema(), Key, IDNS);
2060 if (Acceptable)
2061 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2062 return Acceptable;
2063 }
2064
2065 return findAcceptableDecl(getSema(), D, IDNS);
2066}
2067
2068bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2069 // If this declaration is already visible, return it directly.
2070 if (D->isUnconditionallyVisible())
2071 return true;
2072
2073 // During template instantiation, we can refer to hidden declarations, if
2074 // they were visible in any module along the path of instantiation.
2075 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2076}
2077
2078bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2079 if (D->isUnconditionallyVisible())
2080 return true;
2081
2082 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2083}
2084
2085bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2086 // We should check the visibility at the callsite already.
2087 if (isVisible(SemaRef, ND))
2088 return true;
2089
2090 // Deduction guide lives in namespace scope generally, but it is just a
2091 // hint to the compilers. What we actually lookup for is the generated member
2092 // of the corresponding template. So it is sufficient to check the
2093 // reachability of the template decl.
2094 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2095 return SemaRef.hasReachableDefinition(DeductionGuide);
2096
2097 // FIXME: The lookup for allocation function is a standalone process.
2098 // (We can find the logics in Sema::FindAllocationFunctions)
2099 //
2100 // Such structure makes it a problem when we instantiate a template
2101 // declaration using placement allocation function if the placement
2102 // allocation function is invisible.
2103 // (See https://github.com/llvm/llvm-project/issues/59601)
2104 //
2105 // Here we workaround it by making the placement allocation functions
2106 // always acceptable. The downside is that we can't diagnose the direct
2107 // use of the invisible placement allocation functions. (Although such uses
2108 // should be rare).
2109 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2110 FD && FD->isReservedGlobalPlacementOperator())
2111 return true;
2112
2113 auto *DC = ND->getDeclContext();
2114 // If ND is not visible and it is at namespace scope, it shouldn't be found
2115 // by name lookup.
2116 if (DC->isFileContext())
2117 return false;
2118
2119 // [module.interface]p7
2120 // Class and enumeration member names can be found by name lookup in any
2121 // context in which a definition of the type is reachable.
2122 //
2123 // FIXME: The current implementation didn't consider about scope. For example,
2124 // ```
2125 // // m.cppm
2126 // export module m;
2127 // enum E1 { e1 };
2128 // // Use.cpp
2129 // import m;
2130 // void test() {
2131 // auto a = E1::e1; // Error as expected.
2132 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2133 // }
2134 // ```
2135 // For the above example, the current implementation would emit error for `a`
2136 // correctly. However, the implementation wouldn't diagnose about `b` now.
2137 // Since we only check the reachability for the parent only.
2138 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2139 if (auto *TD = dyn_cast<TagDecl>(DC))
2140 return SemaRef.hasReachableDefinition(TD);
2141
2142 return false;
2143}
2144
2145/// Perform unqualified name lookup starting from a given
2146/// scope.
2147///
2148/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2149/// used to find names within the current scope. For example, 'x' in
2150/// @code
2151/// int x;
2152/// int f() {
2153/// return x; // unqualified name look finds 'x' in the global scope
2154/// }
2155/// @endcode
2156///
2157/// Different lookup criteria can find different names. For example, a
2158/// particular scope can have both a struct and a function of the same
2159/// name, and each can be found by certain lookup criteria. For more
2160/// information about lookup criteria, see the documentation for the
2161/// class LookupCriteria.
2162///
2163/// @param S The scope from which unqualified name lookup will
2164/// begin. If the lookup criteria permits, name lookup may also search
2165/// in the parent scopes.
2166///
2167/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2168/// look up and the lookup kind), and is updated with the results of lookup
2169/// including zero or more declarations and possibly additional information
2170/// used to diagnose ambiguities.
2171///
2172/// @returns \c true if lookup succeeded and false otherwise.
2173bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2174 bool ForceNoCPlusPlus) {
2175 DeclarationName Name = R.getLookupName();
2176 if (!Name) return false;
2177
2178 LookupNameKind NameKind = R.getLookupKind();
2179
2180 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2181 // Unqualified name lookup in C/Objective-C is purely lexical, so
2182 // search in the declarations attached to the name.
2183 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2184 // Find the nearest non-transparent declaration scope.
2185 while (!(S->getFlags() & Scope::DeclScope) ||
2186 (S->getEntity() && S->getEntity()->isTransparentContext()))
2187 S = S->getParent();
2188 }
2189
2190 // When performing a scope lookup, we want to find local extern decls.
2191 FindLocalExternScope FindLocals(R);
2192
2193 // Scan up the scope chain looking for a decl that matches this
2194 // identifier that is in the appropriate namespace. This search
2195 // should not take long, as shadowing of names is uncommon, and
2196 // deep shadowing is extremely uncommon.
2197 bool LeftStartingScope = false;
2198
2199 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2200 IEnd = IdResolver.end();
2201 I != IEnd; ++I)
2202 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2203 if (NameKind == LookupRedeclarationWithLinkage) {
2204 // Determine whether this (or a previous) declaration is
2205 // out-of-scope.
2206 if (!LeftStartingScope && !S->isDeclScope(*I))
2207 LeftStartingScope = true;
2208
2209 // If we found something outside of our starting scope that
2210 // does not have linkage, skip it.
2211 if (LeftStartingScope && !((*I)->hasLinkage())) {
2212 R.setShadowed();
2213 continue;
2214 }
2215 }
2216 else if (NameKind == LookupObjCImplicitSelfParam &&
2217 !isa<ImplicitParamDecl>(*I))
2218 continue;
2219
2220 R.addDecl(D);
2221
2222 // Check whether there are any other declarations with the same name
2223 // and in the same scope.
2224 if (I != IEnd) {
2225 // Find the scope in which this declaration was declared (if it
2226 // actually exists in a Scope).
2227 while (S && !S->isDeclScope(D))
2228 S = S->getParent();
2229
2230 // If the scope containing the declaration is the translation unit,
2231 // then we'll need to perform our checks based on the matching
2232 // DeclContexts rather than matching scopes.
2233 if (S && isNamespaceOrTranslationUnitScope(S))
2234 S = nullptr;
2235
2236 // Compute the DeclContext, if we need it.
2237 DeclContext *DC = nullptr;
2238 if (!S)
2239 DC = (*I)->getDeclContext()->getRedeclContext();
2240
2241 IdentifierResolver::iterator LastI = I;
2242 for (++LastI; LastI != IEnd; ++LastI) {
2243 if (S) {
2244 // Match based on scope.
2245 if (!S->isDeclScope(*LastI))
2246 break;
2247 } else {
2248 // Match based on DeclContext.
2249 DeclContext *LastDC
2250 = (*LastI)->getDeclContext()->getRedeclContext();
2251 if (!LastDC->Equals(DC))
2252 break;
2253 }
2254
2255 // If the declaration is in the right namespace and visible, add it.
2256 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2257 R.addDecl(LastD);
2258 }
2259
2260 R.resolveKind();
2261 }
2262
2263 return true;
2264 }
2265 } else {
2266 // Perform C++ unqualified name lookup.
2267 if (CppLookupName(R, S))
2268 return true;
2269 }
2270
2271 // If we didn't find a use of this identifier, and if the identifier
2272 // corresponds to a compiler builtin, create the decl object for the builtin
2273 // now, injecting it into translation unit scope, and return it.
2274 if (AllowBuiltinCreation && LookupBuiltin(R))
2275 return true;
2276
2277 // If we didn't find a use of this identifier, the ExternalSource
2278 // may be able to handle the situation.
2279 // Note: some lookup failures are expected!
2280 // See e.g. R.isForRedeclaration().
2281 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2282}
2283
2284/// Perform qualified name lookup in the namespaces nominated by
2285/// using directives by the given context.
2286///
2287/// C++98 [namespace.qual]p2:
2288/// Given X::m (where X is a user-declared namespace), or given \::m
2289/// (where X is the global namespace), let S be the set of all
2290/// declarations of m in X and in the transitive closure of all
2291/// namespaces nominated by using-directives in X and its used
2292/// namespaces, except that using-directives are ignored in any
2293/// namespace, including X, directly containing one or more
2294/// declarations of m. No namespace is searched more than once in
2295/// the lookup of a name. If S is the empty set, the program is
2296/// ill-formed. Otherwise, if S has exactly one member, or if the
2297/// context of the reference is a using-declaration
2298/// (namespace.udecl), S is the required set of declarations of
2299/// m. Otherwise if the use of m is not one that allows a unique
2300/// declaration to be chosen from S, the program is ill-formed.
2301///
2302/// C++98 [namespace.qual]p5:
2303/// During the lookup of a qualified namespace member name, if the
2304/// lookup finds more than one declaration of the member, and if one
2305/// declaration introduces a class name or enumeration name and the
2306/// other declarations either introduce the same object, the same
2307/// enumerator or a set of functions, the non-type name hides the
2308/// class or enumeration name if and only if the declarations are
2309/// from the same namespace; otherwise (the declarations are from
2310/// different namespaces), the program is ill-formed.
2311static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2312 DeclContext *StartDC) {
2313 assert(StartDC->isFileContext() && "start context is not a file context")(static_cast <bool> (StartDC->isFileContext() &&
"start context is not a file context") ? void (0) : __assert_fail
("StartDC->isFileContext() && \"start context is not a file context\""
, "clang/lib/Sema/SemaLookup.cpp", 2313, __extension__ __PRETTY_FUNCTION__
))
;
2314
2315 // We have not yet looked into these namespaces, much less added
2316 // their "using-children" to the queue.
2317 SmallVector<NamespaceDecl*, 8> Queue;
2318
2319 // We have at least added all these contexts to the queue.
2320 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2321 Visited.insert(StartDC);
2322
2323 // We have already looked into the initial namespace; seed the queue
2324 // with its using-children.
2325 for (auto *I : StartDC->using_directives()) {
2326 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2327 if (S.isVisible(I) && Visited.insert(ND).second)
2328 Queue.push_back(ND);
2329 }
2330
2331 // The easiest way to implement the restriction in [namespace.qual]p5
2332 // is to check whether any of the individual results found a tag
2333 // and, if so, to declare an ambiguity if the final result is not
2334 // a tag.
2335 bool FoundTag = false;
2336 bool FoundNonTag = false;
2337
2338 LookupResult LocalR(LookupResult::Temporary, R);
2339
2340 bool Found = false;
2341 while (!Queue.empty()) {
2342 NamespaceDecl *ND = Queue.pop_back_val();
2343
2344 // We go through some convolutions here to avoid copying results
2345 // between LookupResults.
2346 bool UseLocal = !R.empty();
2347 LookupResult &DirectR = UseLocal ? LocalR : R;
2348 bool FoundDirect = LookupDirect(S, DirectR, ND);
2349
2350 if (FoundDirect) {
2351 // First do any local hiding.
2352 DirectR.resolveKind();
2353
2354 // If the local result is a tag, remember that.
2355 if (DirectR.isSingleTagDecl())
2356 FoundTag = true;
2357 else
2358 FoundNonTag = true;
2359
2360 // Append the local results to the total results if necessary.
2361 if (UseLocal) {
2362 R.addAllDecls(LocalR);
2363 LocalR.clear();
2364 }
2365 }
2366
2367 // If we find names in this namespace, ignore its using directives.
2368 if (FoundDirect) {
2369 Found = true;
2370 continue;
2371 }
2372
2373 for (auto *I : ND->using_directives()) {
2374 NamespaceDecl *Nom = I->getNominatedNamespace();
2375 if (S.isVisible(I) && Visited.insert(Nom).second)
2376 Queue.push_back(Nom);
2377 }
2378 }
2379
2380 if (Found) {
2381 if (FoundTag && FoundNonTag)
2382 R.setAmbiguousQualifiedTagHiding();
2383 else
2384 R.resolveKind();
2385 }
2386
2387 return Found;
2388}
2389
2390/// Perform qualified name lookup into a given context.
2391///
2392/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2393/// names when the context of those names is explicit specified, e.g.,
2394/// "std::vector" or "x->member", or as part of unqualified name lookup.
2395///
2396/// Different lookup criteria can find different names. For example, a
2397/// particular scope can have both a struct and a function of the same
2398/// name, and each can be found by certain lookup criteria. For more
2399/// information about lookup criteria, see the documentation for the
2400/// class LookupCriteria.
2401///
2402/// \param R captures both the lookup criteria and any lookup results found.
2403///
2404/// \param LookupCtx The context in which qualified name lookup will
2405/// search. If the lookup criteria permits, name lookup may also search
2406/// in the parent contexts or (for C++ classes) base classes.
2407///
2408/// \param InUnqualifiedLookup true if this is qualified name lookup that
2409/// occurs as part of unqualified name lookup.
2410///
2411/// \returns true if lookup succeeded, false if it failed.
2412bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2413 bool InUnqualifiedLookup) {
2414 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")(static_cast <bool> (LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? void (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "clang/lib/Sema/SemaLookup.cpp", 2414, __extension__ __PRETTY_FUNCTION__
))
;
2415
2416 if (!R.getLookupName())
2417 return false;
2418
2419 // Make sure that the declaration context is complete.
2420 assert((!isa<TagDecl>(LookupCtx) ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
2421 LookupCtx->isDependentContext() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
2422 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
2423 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
2424 "Declaration context must already be complete!")(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
;
2425
2426 struct QualifiedLookupInScope {
2427 bool oldVal;
2428 DeclContext *Context;
2429 // Set flag in DeclContext informing debugger that we're looking for qualified name
2430 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2431 oldVal = ctx->setUseQualifiedLookup();
2432 }
2433 ~QualifiedLookupInScope() {
2434 Context->setUseQualifiedLookup(oldVal);
2435 }
2436 } QL(LookupCtx);
2437
2438 if (LookupDirect(*this, R, LookupCtx)) {
2439 R.resolveKind();
2440 if (isa<CXXRecordDecl>(LookupCtx))
2441 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2442 return true;
2443 }
2444
2445 // Don't descend into implied contexts for redeclarations.
2446 // C++98 [namespace.qual]p6:
2447 // In a declaration for a namespace member in which the
2448 // declarator-id is a qualified-id, given that the qualified-id
2449 // for the namespace member has the form
2450 // nested-name-specifier unqualified-id
2451 // the unqualified-id shall name a member of the namespace
2452 // designated by the nested-name-specifier.
2453 // See also [class.mfct]p5 and [class.static.data]p2.
2454 if (R.isForRedeclaration())
2455 return false;
2456
2457 // If this is a namespace, look it up in the implied namespaces.
2458 if (LookupCtx->isFileContext())
2459 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2460
2461 // If this isn't a C++ class, we aren't allowed to look into base
2462 // classes, we're done.
2463 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2464 if (!LookupRec || !LookupRec->getDefinition())
2465 return false;
2466
2467 // We're done for lookups that can never succeed for C++ classes.
2468 if (R.getLookupKind() == LookupOperatorName ||
2469 R.getLookupKind() == LookupNamespaceName ||
2470 R.getLookupKind() == LookupObjCProtocolName ||
2471 R.getLookupKind() == LookupLabel)
2472 return false;
2473
2474 // If we're performing qualified name lookup into a dependent class,
2475 // then we are actually looking into a current instantiation. If we have any
2476 // dependent base classes, then we either have to delay lookup until
2477 // template instantiation time (at which point all bases will be available)
2478 // or we have to fail.
2479 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2480 LookupRec->hasAnyDependentBases()) {
2481 R.setNotFoundInCurrentInstantiation();
2482 return false;
2483 }
2484
2485 // Perform lookup into our base classes.
2486
2487 DeclarationName Name = R.getLookupName();
2488 unsigned IDNS = R.getIdentifierNamespace();
2489
2490 // Look for this member in our base classes.
2491 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2492 CXXBasePath &Path) -> bool {
2493 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2494 // Drop leading non-matching lookup results from the declaration list so
2495 // we don't need to consider them again below.
2496 for (Path.Decls = BaseRecord->lookup(Name).begin();
2497 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2498 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2499 return true;
2500 }
2501 return false;
2502 };
2503
2504 CXXBasePaths Paths;
2505 Paths.setOrigin(LookupRec);
2506 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2507 return false;
2508
2509 R.setNamingClass(LookupRec);
2510
2511 // C++ [class.member.lookup]p2:
2512 // [...] If the resulting set of declarations are not all from
2513 // sub-objects of the same type, or the set has a nonstatic member
2514 // and includes members from distinct sub-objects, there is an
2515 // ambiguity and the program is ill-formed. Otherwise that set is
2516 // the result of the lookup.
2517 QualType SubobjectType;
2518 int SubobjectNumber = 0;
2519 AccessSpecifier SubobjectAccess = AS_none;
2520
2521 // Check whether the given lookup result contains only static members.
2522 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2523 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2524 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2525 return false;
2526 return true;
2527 };
2528
2529 bool TemplateNameLookup = R.isTemplateNameLookup();
2530
2531 // Determine whether two sets of members contain the same members, as
2532 // required by C++ [class.member.lookup]p6.
2533 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2534 DeclContext::lookup_iterator B) {
2535 using Iterator = DeclContextLookupResult::iterator;
2536 using Result = const void *;
2537
2538 auto Next = [&](Iterator &It, Iterator End) -> Result {
2539 while (It != End) {
2540 NamedDecl *ND = *It++;
2541 if (!ND->isInIdentifierNamespace(IDNS))
2542 continue;
2543
2544 // C++ [temp.local]p3:
2545 // A lookup that finds an injected-class-name (10.2) can result in
2546 // an ambiguity in certain cases (for example, if it is found in
2547 // more than one base class). If all of the injected-class-names
2548 // that are found refer to specializations of the same class
2549 // template, and if the name is used as a template-name, the
2550 // reference refers to the class template itself and not a
2551 // specialization thereof, and is not ambiguous.
2552 if (TemplateNameLookup)
2553 if (auto *TD = getAsTemplateNameDecl(ND))
2554 ND = TD;
2555
2556 // C++ [class.member.lookup]p3:
2557 // type declarations (including injected-class-names) are replaced by
2558 // the types they designate
2559 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2560 QualType T = Context.getTypeDeclType(TD);
2561 return T.getCanonicalType().getAsOpaquePtr();
2562 }
2563
2564 return ND->getUnderlyingDecl()->getCanonicalDecl();
2565 }
2566 return nullptr;
2567 };
2568
2569 // We'll often find the declarations are in the same order. Handle this
2570 // case (and the special case of only one declaration) efficiently.
2571 Iterator AIt = A, BIt = B, AEnd, BEnd;
2572 while (true) {
2573 Result AResult = Next(AIt, AEnd);
2574 Result BResult = Next(BIt, BEnd);
2575 if (!AResult && !BResult)
2576 return true;
2577 if (!AResult || !BResult)
2578 return false;
2579 if (AResult != BResult) {
2580 // Found a mismatch; carefully check both lists, accounting for the
2581 // possibility of declarations appearing more than once.
2582 llvm::SmallDenseMap<Result, bool, 32> AResults;
2583 for (; AResult; AResult = Next(AIt, AEnd))
2584 AResults.insert({AResult, /*FoundInB*/false});
2585 unsigned Found = 0;
2586 for (; BResult; BResult = Next(BIt, BEnd)) {
2587 auto It = AResults.find(BResult);
2588 if (It == AResults.end())
2589 return false;
2590 if (!It->second) {
2591 It->second = true;
2592 ++Found;
2593 }
2594 }
2595 return AResults.size() == Found;
2596 }
2597 }
2598 };
2599
2600 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2601 Path != PathEnd; ++Path) {
2602 const CXXBasePathElement &PathElement = Path->back();
2603
2604 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2605 // across all paths.
2606 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2607
2608 // Determine whether we're looking at a distinct sub-object or not.
2609 if (SubobjectType.isNull()) {
2610 // This is the first subobject we've looked at. Record its type.
2611 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2612 SubobjectNumber = PathElement.SubobjectNumber;
2613 continue;
2614 }
2615
2616 if (SubobjectType !=
2617 Context.getCanonicalType(PathElement.Base->getType())) {
2618 // We found members of the given name in two subobjects of
2619 // different types. If the declaration sets aren't the same, this
2620 // lookup is ambiguous.
2621 //
2622 // FIXME: The language rule says that this applies irrespective of
2623 // whether the sets contain only static members.
2624 if (HasOnlyStaticMembers(Path->Decls) &&
2625 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2626 continue;
2627
2628 R.setAmbiguousBaseSubobjectTypes(Paths);
2629 return true;
2630 }
2631
2632 // FIXME: This language rule no longer exists. Checking for ambiguous base
2633 // subobjects should be done as part of formation of a class member access
2634 // expression (when converting the object parameter to the member's type).
2635 if (SubobjectNumber != PathElement.SubobjectNumber) {
2636 // We have a different subobject of the same type.
2637
2638 // C++ [class.member.lookup]p5:
2639 // A static member, a nested type or an enumerator defined in
2640 // a base class T can unambiguously be found even if an object
2641 // has more than one base class subobject of type T.
2642 if (HasOnlyStaticMembers(Path->Decls))
2643 continue;
2644
2645 // We have found a nonstatic member name in multiple, distinct
2646 // subobjects. Name lookup is ambiguous.
2647 R.setAmbiguousBaseSubobjects(Paths);
2648 return true;
2649 }
2650 }
2651
2652 // Lookup in a base class succeeded; return these results.
2653
2654 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2655 I != E; ++I) {
2656 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2657 (*I)->getAccess());
2658 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2659 R.addDecl(ND, AS);
2660 }
2661 R.resolveKind();
2662 return true;
2663}
2664
2665/// Performs qualified name lookup or special type of lookup for
2666/// "__super::" scope specifier.
2667///
2668/// This routine is a convenience overload meant to be called from contexts
2669/// that need to perform a qualified name lookup with an optional C++ scope
2670/// specifier that might require special kind of lookup.
2671///
2672/// \param R captures both the lookup criteria and any lookup results found.
2673///
2674/// \param LookupCtx The context in which qualified name lookup will
2675/// search.
2676///
2677/// \param SS An optional C++ scope-specifier.
2678///
2679/// \returns true if lookup succeeded, false if it failed.
2680bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2681 CXXScopeSpec &SS) {
2682 auto *NNS = SS.getScopeRep();
2683 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2684 return LookupInSuper(R, NNS->getAsRecordDecl());
2685 else
2686
2687 return LookupQualifiedName(R, LookupCtx);
2688}
2689
2690/// Performs name lookup for a name that was parsed in the
2691/// source code, and may contain a C++ scope specifier.
2692///
2693/// This routine is a convenience routine meant to be called from
2694/// contexts that receive a name and an optional C++ scope specifier
2695/// (e.g., "N::M::x"). It will then perform either qualified or
2696/// unqualified name lookup (with LookupQualifiedName or LookupName,
2697/// respectively) on the given name and return those results. It will
2698/// perform a special type of lookup for "__super::" scope specifier.
2699///
2700/// @param S The scope from which unqualified name lookup will
2701/// begin.
2702///
2703/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2704///
2705/// @param EnteringContext Indicates whether we are going to enter the
2706/// context of the scope-specifier SS (if present).
2707///
2708/// @returns True if any decls were found (but possibly ambiguous)
2709bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2710 bool AllowBuiltinCreation, bool EnteringContext) {
2711 if (SS && SS->isInvalid()) {
2712 // When the scope specifier is invalid, don't even look for
2713 // anything.
2714 return false;
2715 }
2716
2717 if (SS && SS->isSet()) {
2718 NestedNameSpecifier *NNS = SS->getScopeRep();
2719 if (NNS->getKind() == NestedNameSpecifier::Super)
2720 return LookupInSuper(R, NNS->getAsRecordDecl());
2721
2722 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2723 // We have resolved the scope specifier to a particular declaration
2724 // contex, and will perform name lookup in that context.
2725 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2726 return false;
2727
2728 R.setContextRange(SS->getRange());
2729 return LookupQualifiedName(R, DC);
2730 }
2731
2732 // We could not resolve the scope specified to a specific declaration
2733 // context, which means that SS refers to an unknown specialization.
2734 // Name lookup can't find anything in this case.
2735 R.setNotFoundInCurrentInstantiation();
2736 R.setContextRange(SS->getRange());
2737 return false;
2738 }
2739
2740 // Perform unqualified name lookup starting in the given scope.
2741 return LookupName(R, S, AllowBuiltinCreation);
2742}
2743
2744/// Perform qualified name lookup into all base classes of the given
2745/// class.
2746///
2747/// \param R captures both the lookup criteria and any lookup results found.
2748///
2749/// \param Class The context in which qualified name lookup will
2750/// search. Name lookup will search in all base classes merging the results.
2751///
2752/// @returns True if any decls were found (but possibly ambiguous)
2753bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2754 // The access-control rules we use here are essentially the rules for
2755 // doing a lookup in Class that just magically skipped the direct
2756 // members of Class itself. That is, the naming class is Class, and the
2757 // access includes the access of the base.
2758 for (const auto &BaseSpec : Class->bases()) {
2759 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2760 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2761 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2762 Result.setBaseObjectType(Context.getRecordType(Class));
2763 LookupQualifiedName(Result, RD);
2764
2765 // Copy the lookup results into the target, merging the base's access into
2766 // the path access.
2767 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2768 R.addDecl(I.getDecl(),
2769 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2770 I.getAccess()));
2771 }
2772
2773 Result.suppressDiagnostics();
2774 }
2775
2776 R.resolveKind();
2777 R.setNamingClass(Class);
2778
2779 return !R.empty();
2780}
2781
2782/// Produce a diagnostic describing the ambiguity that resulted
2783/// from name lookup.
2784///
2785/// \param Result The result of the ambiguous lookup to be diagnosed.
2786void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2787 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")(static_cast <bool> (Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? void (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 2787, __extension__ __PRETTY_FUNCTION__
))
;
2788
2789 DeclarationName Name = Result.getLookupName();
2790 SourceLocation NameLoc = Result.getNameLoc();
2791 SourceRange LookupRange = Result.getContextRange();
2792
2793 switch (Result.getAmbiguityKind()) {
2794 case LookupResult::AmbiguousBaseSubobjects: {
2795 CXXBasePaths *Paths = Result.getBasePaths();
2796 QualType SubobjectType = Paths->front().back().Base->getType();
2797 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2798 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2799 << LookupRange;
2800
2801 DeclContext::lookup_iterator Found = Paths->front().Decls;
2802 while (isa<CXXMethodDecl>(*Found) &&
2803 cast<CXXMethodDecl>(*Found)->isStatic())
2804 ++Found;
2805
2806 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2807 break;
2808 }
2809
2810 case LookupResult::AmbiguousBaseSubobjectTypes: {
2811 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2812 << Name << LookupRange;
2813
2814 CXXBasePaths *Paths = Result.getBasePaths();
2815 std::set<const NamedDecl *> DeclsPrinted;
2816 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2817 PathEnd = Paths->end();
2818 Path != PathEnd; ++Path) {
2819 const NamedDecl *D = *Path->Decls;
2820 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2821 continue;
2822 if (DeclsPrinted.insert(D).second) {
2823 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2824 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2825 << TD->getUnderlyingType();
2826 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2827 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2828 << Context.getTypeDeclType(TD);
2829 else
2830 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2831 }
2832 }
2833 break;
2834 }
2835
2836 case LookupResult::AmbiguousTagHiding: {
2837 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2838
2839 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2840
2841 for (auto *D : Result)
2842 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2843 TagDecls.insert(TD);
2844 Diag(TD->getLocation(), diag::note_hidden_tag);
2845 }
2846
2847 for (auto *D : Result)
2848 if (!isa<TagDecl>(D))
2849 Diag(D->getLocation(), diag::note_hiding_object);
2850
2851 // For recovery purposes, go ahead and implement the hiding.
2852 LookupResult::Filter F = Result.makeFilter();
2853 while (F.hasNext()) {
2854 if (TagDecls.count(F.next()))
2855 F.erase();
2856 }
2857 F.done();
2858 break;
2859 }
2860
2861 case LookupResult::AmbiguousReference: {
2862 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2863
2864 for (auto *D : Result)
2865 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2866 break;
2867 }
2868 }
2869}
2870
2871namespace {
2872 struct AssociatedLookup {
2873 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2874 Sema::AssociatedNamespaceSet &Namespaces,
2875 Sema::AssociatedClassSet &Classes)
2876 : S(S), Namespaces(Namespaces), Classes(Classes),
2877 InstantiationLoc(InstantiationLoc) {
2878 }
2879
2880 bool addClassTransitive(CXXRecordDecl *RD) {
2881 Classes.insert(RD);
2882 return ClassesTransitive.insert(RD);
2883 }
2884
2885 Sema &S;
2886 Sema::AssociatedNamespaceSet &Namespaces;
2887 Sema::AssociatedClassSet &Classes;
2888 SourceLocation InstantiationLoc;
2889
2890 private:
2891 Sema::AssociatedClassSet ClassesTransitive;
2892 };
2893} // end anonymous namespace
2894
2895static void
2896addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2897
2898// Given the declaration context \param Ctx of a class, class template or
2899// enumeration, add the associated namespaces to \param Namespaces as described
2900// in [basic.lookup.argdep]p2.
2901static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2902 DeclContext *Ctx) {
2903 // The exact wording has been changed in C++14 as a result of
2904 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2905 // to all language versions since it is possible to return a local type
2906 // from a lambda in C++11.
2907 //
2908 // C++14 [basic.lookup.argdep]p2:
2909 // If T is a class type [...]. Its associated namespaces are the innermost
2910 // enclosing namespaces of its associated classes. [...]
2911 //
2912 // If T is an enumeration type, its associated namespace is the innermost
2913 // enclosing namespace of its declaration. [...]
2914
2915 // We additionally skip inline namespaces. The innermost non-inline namespace
2916 // contains all names of all its nested inline namespaces anyway, so we can
2917 // replace the entire inline namespace tree with its root.
2918 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2919 Ctx = Ctx->getParent();
2920
2921 Namespaces.insert(Ctx->getPrimaryContext());
2922}
2923
2924// Add the associated classes and namespaces for argument-dependent
2925// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2926static void
2927addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2928 const TemplateArgument &Arg) {
2929 // C++ [basic.lookup.argdep]p2, last bullet:
2930 // -- [...] ;
2931 switch (Arg.getKind()) {
2932 case TemplateArgument::Null:
2933 break;
2934
2935 case TemplateArgument::Type:
2936 // [...] the namespaces and classes associated with the types of the
2937 // template arguments provided for template type parameters (excluding
2938 // template template parameters)
2939 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2940 break;
2941
2942 case TemplateArgument::Template:
2943 case TemplateArgument::TemplateExpansion: {
2944 // [...] the namespaces in which any template template arguments are
2945 // defined; and the classes in which any member templates used as
2946 // template template arguments are defined.
2947 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2948 if (ClassTemplateDecl *ClassTemplate
2949 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2950 DeclContext *Ctx = ClassTemplate->getDeclContext();
2951 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2952 Result.Classes.insert(EnclosingClass);
2953 // Add the associated namespace for this class.
2954 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2955 }
2956 break;
2957 }
2958
2959 case TemplateArgument::Declaration:
2960 case TemplateArgument::Integral:
2961 case TemplateArgument::Expression:
2962 case TemplateArgument::NullPtr:
2963 // [Note: non-type template arguments do not contribute to the set of
2964 // associated namespaces. ]
2965 break;
2966
2967 case TemplateArgument::Pack:
2968 for (const auto &P : Arg.pack_elements())
2969 addAssociatedClassesAndNamespaces(Result, P);
2970 break;
2971 }
2972}
2973
2974// Add the associated classes and namespaces for argument-dependent lookup
2975// with an argument of class type (C++ [basic.lookup.argdep]p2).
2976static void
2977addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2978 CXXRecordDecl *Class) {
2979
2980 // Just silently ignore anything whose name is __va_list_tag.
2981 if (Class->getDeclName() == Result.S.VAListTagName)
2982 return;
2983
2984 // C++ [basic.lookup.argdep]p2:
2985 // [...]
2986 // -- If T is a class type (including unions), its associated
2987 // classes are: the class itself; the class of which it is a
2988 // member, if any; and its direct and indirect base classes.
2989 // Its associated namespaces are the innermost enclosing
2990 // namespaces of its associated classes.
2991
2992 // Add the class of which it is a member, if any.
2993 DeclContext *Ctx = Class->getDeclContext();
2994 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2995 Result.Classes.insert(EnclosingClass);
2996
2997 // Add the associated namespace for this class.
2998 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2999
3000 // -- If T is a template-id, its associated namespaces and classes are
3001 // the namespace in which the template is defined; for member
3002 // templates, the member template's class; the namespaces and classes
3003 // associated with the types of the template arguments provided for
3004 // template type parameters (excluding template template parameters); the
3005 // namespaces in which any template template arguments are defined; and
3006 // the classes in which any member templates used as template template
3007 // arguments are defined. [Note: non-type template arguments do not
3008 // contribute to the set of associated namespaces. ]
3009 if (ClassTemplateSpecializationDecl *Spec
3010 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3011 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3012 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3013 Result.Classes.insert(EnclosingClass);
3014 // Add the associated namespace for this class.
3015 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3016
3017 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3018 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3019 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3020 }
3021
3022 // Add the class itself. If we've already transitively visited this class,
3023 // we don't need to visit base classes.
3024 if (!Result.addClassTransitive(Class))
3025 return;
3026
3027 // Only recurse into base classes for complete types.
3028 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3029 Result.S.Context.getRecordType(Class)))
3030 return;
3031
3032 // Add direct and indirect base classes along with their associated
3033 // namespaces.
3034 SmallVector<CXXRecordDecl *, 32> Bases;
3035 Bases.push_back(Class);
3036 while (!Bases.empty()) {
3037 // Pop this class off the stack.
3038 Class = Bases.pop_back_val();
3039
3040 // Visit the base classes.
3041 for (const auto &Base : Class->bases()) {
3042 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3043 // In dependent contexts, we do ADL twice, and the first time around,
3044 // the base type might be a dependent TemplateSpecializationType, or a
3045 // TemplateTypeParmType. If that happens, simply ignore it.
3046 // FIXME: If we want to support export, we probably need to add the
3047 // namespace of the template in a TemplateSpecializationType, or even
3048 // the classes and namespaces of known non-dependent arguments.
3049 if (!BaseType)
3050 continue;
3051 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3052 if (Result.addClassTransitive(BaseDecl)) {
3053 // Find the associated namespace for this base class.
3054 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3055 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3056
3057 // Make sure we visit the bases of this base class.
3058 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3059 Bases.push_back(BaseDecl);
3060 }
3061 }
3062 }
3063}
3064
3065// Add the associated classes and namespaces for
3066// argument-dependent lookup with an argument of type T
3067// (C++ [basic.lookup.koenig]p2).
3068static void
3069addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3070 // C++ [basic.lookup.koenig]p2:
3071 //
3072 // For each argument type T in the function call, there is a set
3073 // of zero or more associated namespaces and a set of zero or more
3074 // associated classes to be considered. The sets of namespaces and
3075 // classes is determined entirely by the types of the function
3076 // arguments (and the namespace of any template template
3077 // argument). Typedef names and using-declarations used to specify
3078 // the types do not contribute to this set. The sets of namespaces
3079 // and classes are determined in the following way:
3080
3081 SmallVector<const Type *, 16> Queue;
3082 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3083
3084 while (true) {
3085 switch (T->getTypeClass()) {
3086
3087#define TYPE(Class, Base)
3088#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3089#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3090#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3091#define ABSTRACT_TYPE(Class, Base)
3092#include "clang/AST/TypeNodes.inc"
3093 // T is canonical. We can also ignore dependent types because
3094 // we don't need to do ADL at the definition point, but if we
3095 // wanted to implement template export (or if we find some other
3096 // use for associated classes and namespaces...) this would be
3097 // wrong.
3098 break;
3099
3100 // -- If T is a pointer to U or an array of U, its associated
3101 // namespaces and classes are those associated with U.
3102 case Type::Pointer:
3103 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3104 continue;
3105 case Type::ConstantArray:
3106 case Type::IncompleteArray:
3107 case Type::VariableArray:
3108 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3109 continue;
3110
3111 // -- If T is a fundamental type, its associated sets of
3112 // namespaces and classes are both empty.
3113 case Type::Builtin:
3114 break;
3115
3116 // -- If T is a class type (including unions), its associated
3117 // classes are: the class itself; the class of which it is
3118 // a member, if any; and its direct and indirect base classes.
3119 // Its associated namespaces are the innermost enclosing
3120 // namespaces of its associated classes.
3121 case Type::Record: {
3122 CXXRecordDecl *Class =
3123 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3124 addAssociatedClassesAndNamespaces(Result, Class);
3125 break;
3126 }
3127
3128 // -- If T is an enumeration type, its associated namespace
3129 // is the innermost enclosing namespace of its declaration.
3130 // If it is a class member, its associated class is the
3131 // member’s class; else it has no associated class.
3132 case Type::Enum: {
3133 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3134
3135 DeclContext *Ctx = Enum->getDeclContext();
3136 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3137 Result.Classes.insert(EnclosingClass);
3138
3139 // Add the associated namespace for this enumeration.
3140 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3141
3142 break;
3143 }
3144
3145 // -- If T is a function type, its associated namespaces and
3146 // classes are those associated with the function parameter
3147 // types and those associated with the return type.
3148 case Type::FunctionProto: {
3149 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3150 for (const auto &Arg : Proto->param_types())
3151 Queue.push_back(Arg.getTypePtr());
3152 // fallthrough
3153 [[fallthrough]];
3154 }
3155 case Type::FunctionNoProto: {
3156 const FunctionType *FnType = cast<FunctionType>(T);
3157 T = FnType->getReturnType().getTypePtr();
3158 continue;
3159 }
3160
3161 // -- If T is a pointer to a member function of a class X, its
3162 // associated namespaces and classes are those associated
3163 // with the function parameter types and return type,
3164 // together with those associated with X.
3165 //
3166 // -- If T is a pointer to a data member of class X, its
3167 // associated namespaces and classes are those associated
3168 // with the member type together with those associated with
3169 // X.
3170 case Type::MemberPointer: {
3171 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3172
3173 // Queue up the class type into which this points.
3174 Queue.push_back(MemberPtr->getClass());
3175
3176 // And directly continue with the pointee type.
3177 T = MemberPtr->getPointeeType().getTypePtr();
3178 continue;
3179 }
3180
3181 // As an extension, treat this like a normal pointer.
3182 case Type::BlockPointer:
3183 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3184 continue;
3185
3186 // References aren't covered by the standard, but that's such an
3187 // obvious defect that we cover them anyway.
3188 case Type::LValueReference:
3189 case Type::RValueReference:
3190 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3191 continue;
3192
3193 // These are fundamental types.
3194 case Type::Vector:
3195 case Type::ExtVector:
3196 case Type::ConstantMatrix:
3197 case Type::Complex:
3198 case Type::BitInt:
3199 break;
3200
3201 // Non-deduced auto types only get here for error cases.
3202 case Type::Auto:
3203 case Type::DeducedTemplateSpecialization:
3204 break;
3205
3206 // If T is an Objective-C object or interface type, or a pointer to an
3207 // object or interface type, the associated namespace is the global
3208 // namespace.
3209 case Type::ObjCObject:
3210 case Type::ObjCInterface:
3211 case Type::ObjCObjectPointer:
3212 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3213 break;
3214
3215 // Atomic types are just wrappers; use the associations of the
3216 // contained type.
3217 case Type::Atomic:
3218 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3219 continue;
3220 case Type::Pipe:
3221 T = cast<PipeType>(T)->getElementType().getTypePtr();
3222 continue;
3223 }
3224
3225 if (Queue.empty())
3226 break;
3227 T = Queue.pop_back_val();
3228 }
3229}
3230
3231/// Find the associated classes and namespaces for
3232/// argument-dependent lookup for a call with the given set of
3233/// arguments.
3234///
3235/// This routine computes the sets of associated classes and associated
3236/// namespaces searched by argument-dependent lookup
3237/// (C++ [basic.lookup.argdep]) for a given set of arguments.
3238void Sema::FindAssociatedClassesAndNamespaces(
3239 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3240 AssociatedNamespaceSet &AssociatedNamespaces,
3241 AssociatedClassSet &AssociatedClasses) {
3242 AssociatedNamespaces.clear();
3243 AssociatedClasses.clear();
3244
3245 AssociatedLookup Result(*this, InstantiationLoc,
3246 AssociatedNamespaces, AssociatedClasses);
3247
3248 // C++ [basic.lookup.koenig]p2:
3249 // For each argument type T in the function call, there is a set
3250 // of zero or more associated namespaces and a set of zero or more
3251 // associated classes to be considered. The sets of namespaces and
3252 // classes is determined entirely by the types of the function
3253 // arguments (and the namespace of any template template
3254 // argument).
3255 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3256 Expr *Arg = Args[ArgIdx];
3257
3258 if (Arg->getType() != Context.OverloadTy) {
3259 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3260 continue;
3261 }
3262
3263 // [...] In addition, if the argument is the name or address of a
3264 // set of overloaded functions and/or function templates, its
3265 // associated classes and namespaces are the union of those
3266 // associated with each of the members of the set: the namespace
3267 // in which the function or function template is defined and the
3268 // classes and namespaces associated with its (non-dependent)
3269 // parameter types and return type.
3270 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3271
3272 for (const NamedDecl *D : OE->decls()) {
3273 // Look through any using declarations to find the underlying function.
3274 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3275
3276 // Add the classes and namespaces associated with the parameter
3277 // types and return type of this function.
3278 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3279 }
3280 }
3281}
3282
3283NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3284 SourceLocation Loc,
3285 LookupNameKind NameKind,
3286 RedeclarationKind Redecl) {
3287 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3288 LookupName(R, S);
3289 return R.getAsSingle<NamedDecl>();
3290}
3291
3292/// Find the protocol with the given name, if any.
3293ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3294 SourceLocation IdLoc,
3295 RedeclarationKind Redecl) {
3296 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3297 LookupObjCProtocolName, Redecl);
3298 return cast_or_null<ObjCProtocolDecl>(D);
3299}
3300
3301void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3302 UnresolvedSetImpl &Functions) {
3303 // C++ [over.match.oper]p3:
3304 // -- The set of non-member candidates is the result of the
3305 // unqualified lookup of operator@ in the context of the
3306 // expression according to the usual rules for name lookup in
3307 // unqualified function calls (3.4.2) except that all member
3308 // functions are ignored.
3309 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3310 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3311 LookupName(Operators, S);
3312
3313 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3313, __extension__ __PRETTY_FUNCTION__
))
;
3314 Functions.append(Operators.begin(), Operators.end());
3315}
3316
3317Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3318 CXXSpecialMember SM,
3319 bool ConstArg,
3320 bool VolatileArg,
3321 bool RValueThis,
3322 bool ConstThis,
3323 bool VolatileThis) {
3324 assert(CanDeclareSpecialMemberFunction(RD) &&(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "clang/lib/Sema/SemaLookup.cpp", 3325, __extension__ __PRETTY_FUNCTION__
))
3325 "doing special member lookup into record that isn't fully complete")(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "clang/lib/Sema/SemaLookup.cpp", 3325, __extension__ __PRETTY_FUNCTION__
))
;
3326 RD = RD->getDefinition();
3327 if (RValueThis || ConstThis || VolatileThis)
3328 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "clang/lib/Sema/SemaLookup.cpp", 3329, __extension__ __PRETTY_FUNCTION__
))
3329 "constructors and destructors always have unqualified lvalue this")(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "clang/lib/Sema/SemaLookup.cpp", 3329, __extension__ __PRETTY_FUNCTION__
))
;
3330 if (ConstArg || VolatileArg)
3331 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "clang/lib/Sema/SemaLookup.cpp", 3332, __extension__ __PRETTY_FUNCTION__
))
3332 "parameter-less special members can't have qualified arguments")(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "clang/lib/Sema/SemaLookup.cpp", 3332, __extension__ __PRETTY_FUNCTION__
))
;
3333
3334 // FIXME: Get the caller to pass in a location for the lookup.
3335 SourceLocation LookupLoc = RD->getLocation();
3336
3337 llvm::FoldingSetNodeID ID;
3338 ID.AddPointer(RD);
3339 ID.AddInteger(SM);
3340 ID.AddInteger(ConstArg);
3341 ID.AddInteger(VolatileArg);
3342 ID.AddInteger(RValueThis);
3343 ID.AddInteger(ConstThis);
3344 ID.AddInteger(VolatileThis);
3345
3346 void *InsertPoint;
3347 SpecialMemberOverloadResultEntry *Result =
3348 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3349
3350 // This was already cached
3351 if (Result)
3352 return *Result;
3353
3354 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3355 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3356 SpecialMemberCache.InsertNode(Result, InsertPoint);
3357
3358 if (SM == CXXDestructor) {
3359 if (RD->needsImplicitDestructor()) {
3360 runWithSufficientStackSpace(RD->getLocation(), [&] {
3361 DeclareImplicitDestructor(RD);
3362 });
3363 }
3364 CXXDestructorDecl *DD = RD->getDestructor();
3365 Result->setMethod(DD);
3366 Result->setKind(DD && !DD->isDeleted()
3367 ? SpecialMemberOverloadResult::Success
3368 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3369 return *Result;
3370 }
3371
3372 // Prepare for overload resolution. Here we construct a synthetic argument
3373 // if necessary and make sure that implicit functions are declared.
3374 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3375 DeclarationName Name;
3376 Expr *Arg = nullptr;
3377 unsigned NumArgs;
3378
3379 QualType ArgType = CanTy;
3380 ExprValueKind VK = VK_LValue;
3381
3382 if (SM == CXXDefaultConstructor) {
3383 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3384 NumArgs = 0;
3385 if (RD->needsImplicitDefaultConstructor()) {
3386 runWithSufficientStackSpace(RD->getLocation(), [&] {
3387 DeclareImplicitDefaultConstructor(RD);
3388 });
3389 }
3390 } else {
3391 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3392 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3393 if (RD->needsImplicitCopyConstructor()) {
3394 runWithSufficientStackSpace(RD->getLocation(), [&] {
3395 DeclareImplicitCopyConstructor(RD);
3396 });
3397 }
3398 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3399 runWithSufficientStackSpace(RD->getLocation(), [&] {
3400 DeclareImplicitMoveConstructor(RD);
3401 });
3402 }
3403 } else {
3404 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3405 if (RD->needsImplicitCopyAssignment()) {
3406 runWithSufficientStackSpace(RD->getLocation(), [&] {
3407 DeclareImplicitCopyAssignment(RD);
3408 });
3409 }
3410 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3411 runWithSufficientStackSpace(RD->getLocation(), [&] {
3412 DeclareImplicitMoveAssignment(RD);
3413 });
3414 }
3415 }
3416
3417 if (ConstArg)
3418 ArgType.addConst();
3419 if (VolatileArg)
3420 ArgType.addVolatile();
3421
3422 // This isn't /really/ specified by the standard, but it's implied
3423 // we should be working from a PRValue in the case of move to ensure
3424 // that we prefer to bind to rvalue references, and an LValue in the
3425 // case of copy to ensure we don't bind to rvalue references.
3426 // Possibly an XValue is actually correct in the case of move, but
3427 // there is no semantic difference for class types in this restricted
3428 // case.
3429 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3430 VK = VK_LValue;
3431 else
3432 VK = VK_PRValue;
3433 }
3434
3435 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3436
3437 if (SM != CXXDefaultConstructor) {
3438 NumArgs = 1;
3439 Arg = &FakeArg;
3440 }
3441
3442 // Create the object argument
3443 QualType ThisTy = CanTy;
3444 if (ConstThis)
3445 ThisTy.addConst();
3446 if (VolatileThis)
3447 ThisTy.addVolatile();
3448 Expr::Classification Classification =
3449 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3450 .Classify(Context);
3451
3452 // Now we perform lookup on the name we computed earlier and do overload
3453 // resolution. Lookup is only performed directly into the class since there
3454 // will always be a (possibly implicit) declaration to shadow any others.
3455 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3456 DeclContext::lookup_result R = RD->lookup(Name);
3457
3458 if (R.empty()) {
3459 // We might have no default constructor because we have a lambda's closure
3460 // type, rather than because there's some other declared constructor.
3461 // Every class has a copy/move constructor, copy/move assignment, and
3462 // destructor.
3463 assert(SM == CXXDefaultConstructor &&(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "clang/lib/Sema/SemaLookup.cpp", 3464, __extension__ __PRETTY_FUNCTION__
))
3464 "lookup for a constructor or assignment operator was empty")(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "clang/lib/Sema/SemaLookup.cpp", 3464, __extension__ __PRETTY_FUNCTION__
))
;
3465 Result->setMethod(nullptr);
3466 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3467 return *Result;
3468 }
3469
3470 // Copy the candidates as our processing of them may load new declarations
3471 // from an external source and invalidate lookup_result.
3472 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3473
3474 for (NamedDecl *CandDecl : Candidates) {
3475 if (CandDecl->isInvalidDecl())
3476 continue;
3477
3478 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3479 auto CtorInfo = getConstructorInfo(Cand);
3480 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3481 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3482 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3483 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3484 else if (CtorInfo)
3485 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3486 llvm::ArrayRef(&Arg, NumArgs), OCS,
3487 /*SuppressUserConversions*/ true);
3488 else
3489 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3490 /*SuppressUserConversions*/ true);
3491 } else if (FunctionTemplateDecl *Tmpl =
3492 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3493 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3494 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3495 Classification,
3496 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3497 else if (CtorInfo)
3498 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3499 CtorInfo.FoundDecl, nullptr,
3500 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3501 else
3502 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3503 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3504 } else {
3505 assert(isa<UsingDecl>(Cand.getDecl()) &&(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "clang/lib/Sema/SemaLookup.cpp", 3506, __extension__ __PRETTY_FUNCTION__
))
3506 "illegal Kind of operator = Decl")(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "clang/lib/Sema/SemaLookup.cpp", 3506, __extension__ __PRETTY_FUNCTION__
))
;
3507 }
3508 }
3509
3510 OverloadCandidateSet::iterator Best;
3511 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3512 case OR_Success:
3513 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3514 Result->setKind(SpecialMemberOverloadResult::Success);
3515 break;
3516
3517 case OR_Deleted:
3518 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3519 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3520 break;
3521
3522 case OR_Ambiguous:
3523 Result->setMethod(nullptr);
3524 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3525 break;
3526
3527 case OR_No_Viable_Function:
3528 Result->setMethod(nullptr);
3529 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3530 break;
3531 }
3532
3533 return *Result;
3534}
3535
3536/// Look up the default constructor for the given class.
3537CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3538 SpecialMemberOverloadResult Result =
3539 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3540 false, false);
3541
3542 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3543}
3544
3545/// Look up the copying constructor for the given class.
3546CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3547 unsigned Quals) {
3548 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3549, __extension__ __PRETTY_FUNCTION__
))
3549 "non-const, non-volatile qualifiers for copy ctor arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3549, __extension__ __PRETTY_FUNCTION__
))
;
3550 SpecialMemberOverloadResult Result =
3551 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3552 Quals & Qualifiers::Volatile, false, false, false);
3553
3554 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3555}
3556
3557/// Look up the moving constructor for the given class.
3558CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3559 unsigned Quals) {
3560 SpecialMemberOverloadResult Result =
3561 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3562 Quals & Qualifiers::Volatile, false, false, false);
3563
3564 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3565}
3566
3567/// Look up the constructors for the given class.
3568DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3569 // If the implicit constructors have not yet been declared, do so now.
3570 if (CanDeclareSpecialMemberFunction(Class)) {
3571 runWithSufficientStackSpace(Class->getLocation(), [&] {
3572 if (Class->needsImplicitDefaultConstructor())
3573 DeclareImplicitDefaultConstructor(Class);
3574 if (Class->needsImplicitCopyConstructor())
3575 DeclareImplicitCopyConstructor(Class);
3576 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3577 DeclareImplicitMoveConstructor(Class);
3578 });
3579 }
3580
3581 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3582 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3583 return Class->lookup(Name);
3584}
3585
3586/// Look up the copying assignment operator for the given class.
3587CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3588 unsigned Quals, bool RValueThis,
3589 unsigned ThisQuals) {
3590 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3591, __extension__ __PRETTY_FUNCTION__
))
3591 "non-const, non-volatile qualifiers for copy assignment arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3591, __extension__ __PRETTY_FUNCTION__
))
;
3592 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3593, __extension__ __PRETTY_FUNCTION__
))
3593 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3593, __extension__ __PRETTY_FUNCTION__
))
;
3594 SpecialMemberOverloadResult Result =
3595 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3596 Quals & Qualifiers::Volatile, RValueThis,
3597 ThisQuals & Qualifiers::Const,
3598 ThisQuals & Qualifiers::Volatile);
3599
3600 return Result.getMethod();
3601}
3602
3603/// Look up the moving assignment operator for the given class.
3604CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3605 unsigned Quals,
3606 bool RValueThis,
3607 unsigned ThisQuals) {
3608 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3609, __extension__ __PRETTY_FUNCTION__
))
3609 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3609, __extension__ __PRETTY_FUNCTION__
))
;
3610 SpecialMemberOverloadResult Result =
3611 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3612 Quals & Qualifiers::Volatile, RValueThis,
3613 ThisQuals & Qualifiers::Const,
3614 ThisQuals & Qualifiers::Volatile);
3615
3616 return Result.getMethod();
3617}
3618
3619/// Look for the destructor of the given class.
3620///
3621/// During semantic analysis, this routine should be used in lieu of
3622/// CXXRecordDecl::getDestructor().
3623///
3624/// \returns The destructor for this class.
3625CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3626 return cast_or_null<CXXDestructorDecl>(
3627 LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3628 false)
3629 .getMethod());
3630}
3631
3632/// LookupLiteralOperator - Determine which literal operator should be used for
3633/// a user-defined literal, per C++11 [lex.ext].
3634///
3635/// Normal overload resolution is not used to select which literal operator to
3636/// call for a user-defined literal. Look up the provided literal operator name,
3637/// and filter the results to the appropriate set for the given argument types.
3638Sema::LiteralOperatorLookupResult
3639Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3640 ArrayRef<QualType> ArgTys, bool AllowRaw,
3641 bool AllowTemplate, bool AllowStringTemplatePack,
3642 bool DiagnoseMissing, StringLiteral *StringLit) {
3643 LookupName(R, S);
3644 assert(R.getResultKind() != LookupResult::Ambiguous &&(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3645, __extension__ __PRETTY_FUNCTION__
))
3645 "literal operator lookup can't be ambiguous")(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3645, __extension__ __PRETTY_FUNCTION__
))
;
3646
3647 // Filter the lookup results appropriately.
3648 LookupResult::Filter F = R.makeFilter();
3649
3650 bool AllowCooked = true;
3651 bool FoundRaw = false;
3652 bool FoundTemplate = false;
3653 bool FoundStringTemplatePack = false;
3654 bool FoundCooked = false;
3655
3656 while (F.hasNext()) {
3657 Decl *D = F.next();
3658 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3659 D = USD->getTargetDecl();
3660
3661 // If the declaration we found is invalid, skip it.
3662 if (D->isInvalidDecl()) {
3663 F.erase();
3664 continue;
3665 }
3666
3667 bool IsRaw = false;
3668 bool IsTemplate = false;
3669 bool IsStringTemplatePack = false;
3670 bool IsCooked = false;
3671
3672 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3673 if (FD->getNumParams() == 1 &&
3674 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3675 IsRaw = true;
3676 else if (FD->getNumParams() == ArgTys.size()) {
3677 IsCooked = true;
3678 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3679 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3680 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3681 IsCooked = false;
3682 break;
3683 }
3684 }
3685 }
3686 }
3687 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3688 TemplateParameterList *Params = FD->getTemplateParameters();
3689 if (Params->size() == 1) {
3690 IsTemplate = true;
3691 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3692 // Implied but not stated: user-defined integer and floating literals
3693 // only ever use numeric literal operator templates, not templates
3694 // taking a parameter of class type.
3695 F.erase();
3696 continue;
3697 }
3698
3699 // A string literal template is only considered if the string literal
3700 // is a well-formed template argument for the template parameter.
3701 if (StringLit) {
3702 SFINAETrap Trap(*this);
3703 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3704 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3705 if (CheckTemplateArgument(
3706 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3707 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3708 Trap.hasErrorOccurred())
3709 IsTemplate = false;
3710 }
3711 } else {
3712 IsStringTemplatePack = true;
3713 }
3714 }
3715
3716 if (AllowTemplate && StringLit && IsTemplate) {
3717 FoundTemplate = true;
3718 AllowRaw = false;
3719 AllowCooked = false;
3720 AllowStringTemplatePack = false;
3721 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3722 F.restart();
3723 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3724 }
3725 } else if (AllowCooked && IsCooked) {
3726 FoundCooked = true;
3727 AllowRaw = false;
3728 AllowTemplate = StringLit;
3729 AllowStringTemplatePack = false;
3730 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3731 // Go through again and remove the raw and template decls we've
3732 // already found.
3733 F.restart();
3734 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3735 }
3736 } else if (AllowRaw && IsRaw) {
3737 FoundRaw = true;
3738 } else if (AllowTemplate && IsTemplate) {
3739 FoundTemplate = true;
3740 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3741 FoundStringTemplatePack = true;
3742 } else {
3743 F.erase();
3744 }
3745 }
3746
3747 F.done();
3748
3749 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3750 // form for string literal operator templates.
3751 if (StringLit && FoundTemplate)
3752 return LOLR_Template;
3753
3754 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3755 // parameter type, that is used in preference to a raw literal operator
3756 // or literal operator template.
3757 if (FoundCooked)
3758 return LOLR_Cooked;
3759
3760 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3761 // operator template, but not both.
3762 if (FoundRaw && FoundTemplate) {
3763 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3764 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3765 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3766 return LOLR_Error;
3767 }
3768
3769 if (FoundRaw)
3770 return LOLR_Raw;
3771
3772 if (FoundTemplate)
3773 return LOLR_Template;
3774
3775 if (FoundStringTemplatePack)
3776 return LOLR_StringTemplatePack;
3777
3778 // Didn't find anything we could use.
3779 if (DiagnoseMissing) {
3780 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3781 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3782 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3783 << (AllowTemplate || AllowStringTemplatePack);
3784 return LOLR_Error;
3785 }
3786
3787 return LOLR_ErrorNoDiagnostic;
3788}
3789
3790void ADLResult::insert(NamedDecl *New) {
3791 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3792
3793 // If we haven't yet seen a decl for this key, or the last decl
3794 // was exactly this one, we're done.
3795 if (Old == nullptr || Old == New) {
3796 Old = New;
3797 return;
3798 }
3799
3800 // Otherwise, decide which is a more recent redeclaration.
3801 FunctionDecl *OldFD = Old->getAsFunction();
3802 FunctionDecl *NewFD = New->getAsFunction();
3803
3804 FunctionDecl *Cursor = NewFD;
3805 while (true) {
3806 Cursor = Cursor->getPreviousDecl();
3807
3808 // If we got to the end without finding OldFD, OldFD is the newer
3809 // declaration; leave things as they are.
3810 if (!Cursor) return;
3811
3812 // If we do find OldFD, then NewFD is newer.
3813 if (Cursor == OldFD) break;
3814
3815 // Otherwise, keep looking.
3816 }
3817
3818 Old = New;
3819}
3820
3821void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3822 ArrayRef<Expr *> Args, ADLResult &Result) {
3823 // Find all of the associated namespaces and classes based on the
3824 // arguments we have.
3825 AssociatedNamespaceSet AssociatedNamespaces;
3826 AssociatedClassSet AssociatedClasses;
3827 FindAssociatedClassesAndNamespaces(Loc, Args,
3828 AssociatedNamespaces,
3829 AssociatedClasses);
3830
3831 // C++ [basic.lookup.argdep]p3:
3832 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3833 // and let Y be the lookup set produced by argument dependent
3834 // lookup (defined as follows). If X contains [...] then Y is
3835 // empty. Otherwise Y is the set of declarations found in the
3836 // namespaces associated with the argument types as described
3837 // below. The set of declarations found by the lookup of the name
3838 // is the union of X and Y.
3839 //
3840 // Here, we compute Y and add its members to the overloaded
3841 // candidate set.
3842 for (auto *NS : AssociatedNamespaces) {
3843 // When considering an associated namespace, the lookup is the
3844 // same as the lookup performed when the associated namespace is
3845 // used as a qualifier (3.4.3.2) except that:
3846 //
3847 // -- Any using-directives in the associated namespace are
3848 // ignored.
3849 //
3850 // -- Any namespace-scope friend functions declared in
3851 // associated classes are visible within their respective
3852 // namespaces even if they are not visible during an ordinary
3853 // lookup (11.4).
3854 //
3855 // C++20 [basic.lookup.argdep] p4.3
3856 // -- are exported, are attached to a named module M, do not appear
3857 // in the translation unit containing the point of the lookup, and
3858 // have the same innermost enclosing non-inline namespace scope as
3859 // a declaration of an associated entity attached to M.
3860 DeclContext::lookup_result R = NS->lookup(Name);
3861 for (auto *D : R) {
3862 auto *Underlying = D;
3863 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3864 Underlying = USD->getTargetDecl();
3865
3866 if (!isa<FunctionDecl>(Underlying) &&
3867 !isa<FunctionTemplateDecl>(Underlying))
3868 continue;
3869
3870 // The declaration is visible to argument-dependent lookup if either
3871 // it's ordinarily visible or declared as a friend in an associated
3872 // class.
3873 bool Visible = false;
3874 for (D = D->getMostRecentDecl(); D;
3875 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3876 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3877 if (isVisible(D)) {
3878 Visible = true;
3879 break;
3880 }
3881
3882 if (!getLangOpts().CPlusPlusModules)
3883 continue;
3884
3885 if (D->isInExportDeclContext()) {
3886 Module *FM = D->getOwningModule();
3887 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3888 // exports are only valid in module purview and outside of any
3889 // PMF (although a PMF should not even be present in a module
3890 // with an import).
3891 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&(static_cast <bool> (FM && FM->isModulePurview
() && !FM->isPrivateModule() && "bad export context"
) ? void (0) : __assert_fail ("FM && FM->isModulePurview() && !FM->isPrivateModule() && \"bad export context\""
, "clang/lib/Sema/SemaLookup.cpp", 3892, __extension__ __PRETTY_FUNCTION__
))
3892 "bad export context")(static_cast <bool> (FM && FM->isModulePurview
() && !FM->isPrivateModule() && "bad export context"
) ? void (0) : __assert_fail ("FM && FM->isModulePurview() && !FM->isPrivateModule() && \"bad export context\""
, "clang/lib/Sema/SemaLookup.cpp", 3892, __extension__ __PRETTY_FUNCTION__
))
;
3893 // .. are attached to a named module M, do not appear in the
3894 // translation unit containing the point of the lookup..
3895 if (!isModuleUnitOfCurrentTU(FM) &&
3896 llvm::any_of(AssociatedClasses, [&](auto *E) {
3897 // ... and have the same innermost enclosing non-inline
3898 // namespace scope as a declaration of an associated entity
3899 // attached to M
3900 if (!E->hasOwningModule() ||
3901 E->getOwningModule()->getTopLevelModuleName() !=
3902 FM->getTopLevelModuleName())
3903 return false;
3904 // TODO: maybe this could be cached when generating the
3905 // associated namespaces / entities.
3906 DeclContext *Ctx = E->getDeclContext();
3907 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3908 Ctx = Ctx->getParent();
3909 return Ctx == NS;
3910 })) {
3911 Visible = true;
3912 break;
3913 }
3914 }
3915 } else if (D->getFriendObjectKind()) {
3916 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3917 // [basic.lookup.argdep]p4:
3918 // Argument-dependent lookup finds all declarations of functions and
3919 // function templates that
3920 // - ...
3921 // - are declared as a friend ([class.friend]) of any class with a
3922 // reachable definition in the set of associated entities,
3923 //
3924 // FIXME: If there's a merged definition of D that is reachable, then
3925 // the friend declaration should be considered.
3926 if (AssociatedClasses.count(RD) && isReachable(D)) {
3927 Visible = true;
3928 break;
3929 }
3930 }
3931 }
3932
3933 // FIXME: Preserve D as the FoundDecl.
3934 if (Visible)
3935 Result.insert(Underlying);
3936 }
3937 }
3938}
3939
3940//----------------------------------------------------------------------------
3941// Search for all visible declarations.
3942//----------------------------------------------------------------------------
3943VisibleDeclConsumer::~VisibleDeclConsumer() { }
3944
3945bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3946
3947namespace {
3948
3949class ShadowContextRAII;
3950
3951class VisibleDeclsRecord {
3952public:
3953 /// An entry in the shadow map, which is optimized to store a
3954 /// single declaration (the common case) but can also store a list
3955 /// of declarations.
3956 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3957
3958private:
3959 /// A mapping from declaration names to the declarations that have
3960 /// this name within a particular scope.
3961 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3962
3963 /// A list of shadow maps, which is used to model name hiding.
3964 std::list<ShadowMap> ShadowMaps;
3965
3966 /// The declaration contexts we have already visited.
3967 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3968
3969 friend class ShadowContextRAII;
3970
3971public:
3972 /// Determine whether we have already visited this context
3973 /// (and, if not, note that we are going to visit that context now).
3974 bool visitedContext(DeclContext *Ctx) {
3975 return !VisitedContexts.insert(Ctx).second;
3976 }
3977
3978 bool alreadyVisitedContext(DeclContext *Ctx) {
3979 return VisitedContexts.count(Ctx);
3980 }
3981
3982 /// Determine whether the given declaration is hidden in the
3983 /// current scope.
3984 ///
3985 /// \returns the declaration that hides the given declaration, or
3986 /// NULL if no such declaration exists.
3987 NamedDecl *checkHidden(NamedDecl *ND);
3988
3989 /// Add a declaration to the current shadow map.
3990 void add(NamedDecl *ND) {
3991 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3992 }
3993};
3994
3995/// RAII object that records when we've entered a shadow context.
3996class ShadowContextRAII {
3997 VisibleDeclsRecord &Visible;
3998
3999 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4000
4001public:
4002 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4003 Visible.ShadowMaps.emplace_back();
4004 }
4005
4006 ~ShadowContextRAII() {
4007 Visible.ShadowMaps.pop_back();
4008 }
4009};
4010
4011} // end anonymous namespace
4012
4013NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4014 unsigned IDNS = ND->getIdentifierNamespace();
4015 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4016 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4017 SM != SMEnd; ++SM) {
4018 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4019 if (Pos == SM->end())
4020 continue;
4021
4022 for (auto *D : Pos->second) {
4023 // A tag declaration does not hide a non-tag declaration.
4024 if (D->hasTagIdentifierNamespace() &&
4025 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4026 Decl::IDNS_ObjCProtocol)))
4027 continue;
4028
4029 // Protocols are in distinct namespaces from everything else.
4030 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4031 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4032 D->getIdentifierNamespace() != IDNS)
4033 continue;
4034
4035 // Functions and function templates in the same scope overload
4036 // rather than hide. FIXME: Look for hiding based on function
4037 // signatures!
4038 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4039 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4040 SM == ShadowMaps.rbegin())
4041 continue;
4042
4043 // A shadow declaration that's created by a resolved using declaration
4044 // is not hidden by the same using declaration.
4045 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4046 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4047 continue;
4048
4049 // We've found a declaration that hides this one.
4050 return D;
4051 }
4052 }
4053
4054 return nullptr;
4055}
4056
4057namespace {
4058class LookupVisibleHelper {
4059public:
4060 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4061 bool LoadExternal)
4062 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4063 LoadExternal(LoadExternal) {}
4064
4065 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4066 bool IncludeGlobalScope) {
4067 // Determine the set of using directives available during
4068 // unqualified name lookup.
4069 Scope *Initial = S;
4070 UnqualUsingDirectiveSet UDirs(SemaRef);
4071 if (SemaRef.getLangOpts().CPlusPlus) {
4072 // Find the first namespace or translation-unit scope.
4073 while (S && !isNamespaceOrTranslationUnitScope(S))
4074 S = S->getParent();
4075
4076 UDirs.visitScopeChain(Initial, S);
4077 }
4078 UDirs.done();
4079
4080 // Look for visible declarations.
4081 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4082 Result.setAllowHidden(Consumer.includeHiddenDecls());
4083 if (!IncludeGlobalScope)
4084 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4085 ShadowContextRAII Shadow(Visited);
4086 lookupInScope(Initial, Result, UDirs);
4087 }
4088
4089 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4090 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4091 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4092 Result.setAllowHidden(Consumer.includeHiddenDecls());
4093 if (!IncludeGlobalScope)
4094 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4095
4096 ShadowContextRAII Shadow(Visited);
4097 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4098 /*InBaseClass=*/false);
4099 }
4100
4101private:
4102 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4103 bool QualifiedNameLookup, bool InBaseClass) {
4104 if (!Ctx)
4105 return;
4106
4107 // Make sure we don't visit the same context twice.
4108 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4109 return;
4110
4111 Consumer.EnteredContext(Ctx);
4112
4113 // Outside C++, lookup results for the TU live on identifiers.
4114 if (isa<TranslationUnitDecl>(Ctx) &&
4115 !Result.getSema().getLangOpts().CPlusPlus) {
4116 auto &S = Result.getSema();
4117 auto &Idents = S.Context.Idents;
4118
4119 // Ensure all external identifiers are in the identifier table.
4120 if (LoadExternal)
4121 if (IdentifierInfoLookup *External =
4122 Idents.getExternalIdentifierLookup()) {
4123 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4124 for (StringRef Name = Iter->Next(); !Name.empty();
4125 Name = Iter->Next())
4126 Idents.get(Name);
4127 }
4128
4129 // Walk all lookup results in the TU for each identifier.
4130 for (const auto &Ident : Idents) {
4131 for (auto I = S.IdResolver.begin(Ident.getValue()),
4132 E = S.IdResolver.end();
4133 I != E; ++I) {
4134 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4135 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4136 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4137 Visited.add(ND);
4138 }
4139 }
4140 }
4141 }
4142
4143 return;
4144 }
4145
4146 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4147 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4148
4149 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4150 // We sometimes skip loading namespace-level results (they tend to be huge).
4151 bool Load = LoadExternal ||
4152 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4153 // Enumerate all of the results in this context.
4154 for (DeclContextLookupResult R :
4155 Load ? Ctx->lookups()
4156 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
4157 for (auto *D : R) {
4158 if (auto *ND = Result.getAcceptableDecl(D)) {
4159 // Rather than visit immediately, we put ND into a vector and visit
4160 // all decls, in order, outside of this loop. The reason is that
4161 // Consumer.FoundDecl() may invalidate the iterators used in the two
4162 // loops above.
4163 DeclsToVisit.push_back(ND);
4164 }
4165 }
4166 }
4167
4168 for (auto *ND : DeclsToVisit) {
4169 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4170 Visited.add(ND);
4171 }
4172 DeclsToVisit.clear();
4173
4174 // Traverse using directives for qualified name lookup.
4175 if (QualifiedNameLookup) {
4176 ShadowContextRAII Shadow(Visited);
4177 for (auto *I : Ctx->using_directives()) {
4178 if (!Result.getSema().isVisible(I))
4179 continue;
4180 lookupInDeclContext(I->getNominatedNamespace(), Result,
4181 QualifiedNameLookup, InBaseClass);
4182 }
4183 }
4184
4185 // Traverse the contexts of inherited C++ classes.
4186 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4187 if (!Record->hasDefinition())
4188 return;
4189
4190 for (const auto &B : Record->bases()) {
4191 QualType BaseType = B.getType();
4192
4193 RecordDecl *RD;
4194 if (BaseType->isDependentType()) {
4195 if (!IncludeDependentBases) {
4196 // Don't look into dependent bases, because name lookup can't look
4197 // there anyway.
4198 continue;
4199 }
4200 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4201 if (!TST)
4202 continue;
4203 TemplateName TN = TST->getTemplateName();
4204 const auto *TD =
4205 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4206 if (!TD)
4207 continue;
4208 RD = TD->getTemplatedDecl();
4209 } else {
4210 const auto *Record = BaseType->getAs<RecordType>();
4211 if (!Record)
4212 continue;
4213 RD = Record->getDecl();
4214 }
4215
4216 // FIXME: It would be nice to be able to determine whether referencing
4217 // a particular member would be ambiguous. For example, given
4218 //
4219 // struct A { int member; };
4220 // struct B { int member; };
4221 // struct C : A, B { };
4222 //
4223 // void f(C *c) { c->### }
4224 //
4225 // accessing 'member' would result in an ambiguity. However, we
4226 // could be smart enough to qualify the member with the base
4227 // class, e.g.,
4228 //
4229 // c->B::member
4230 //
4231 // or
4232 //
4233 // c->A::member
4234
4235 // Find results in this base class (and its bases).
4236 ShadowContextRAII Shadow(Visited);
4237 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4238 /*InBaseClass=*/true);
4239 }
4240 }
4241
4242 // Traverse the contexts of Objective-C classes.
4243 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4244 // Traverse categories.
4245 for (auto *Cat : IFace->visible_categories()) {
4246 ShadowContextRAII Shadow(Visited);
4247 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4248 /*InBaseClass=*/false);
4249 }
4250
4251 // Traverse protocols.
4252 for (auto *I : IFace->all_referenced_protocols()) {
4253 ShadowContextRAII Shadow(Visited);
4254 lookupInDeclContext(I, Result, QualifiedNameLookup,
4255 /*InBaseClass=*/false);
4256 }
4257
4258 // Traverse the superclass.
4259 if (IFace->getSuperClass()) {
4260 ShadowContextRAII Shadow(Visited);
4261 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4262 /*InBaseClass=*/true);
4263 }
4264
4265 // If there is an implementation, traverse it. We do this to find
4266 // synthesized ivars.
4267 if (IFace->getImplementation()) {
4268 ShadowContextRAII Shadow(Visited);
4269 lookupInDeclContext(IFace->getImplementation(), Result,
4270 QualifiedNameLookup, InBaseClass);
4271 }
4272 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4273 for (auto *I : Protocol->protocols()) {
4274 ShadowContextRAII Shadow(Visited);
4275 lookupInDeclContext(I, Result, QualifiedNameLookup,
4276 /*InBaseClass=*/false);
4277 }
4278 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4279 for (auto *I : Category->protocols()) {
4280 ShadowContextRAII Shadow(Visited);
4281 lookupInDeclContext(I, Result, QualifiedNameLookup,
4282 /*InBaseClass=*/false);
4283 }
4284
4285 // If there is an implementation, traverse it.
4286 if (Category->getImplementation()) {
4287 ShadowContextRAII Shadow(Visited);
4288 lookupInDeclContext(Category->getImplementation(), Result,
4289 QualifiedNameLookup, /*InBaseClass=*/true);
4290 }
4291 }
4292 }
4293
4294 void lookupInScope(Scope *S, LookupResult &Result,
4295 UnqualUsingDirectiveSet &UDirs) {
4296 // No clients run in this mode and it's not supported. Please add tests and
4297 // remove the assertion if you start relying on it.
4298 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")(static_cast <bool> (!IncludeDependentBases && "Unsupported flag for lookupInScope"
) ? void (0) : __assert_fail ("!IncludeDependentBases && \"Unsupported flag for lookupInScope\""
, "clang/lib/Sema/SemaLookup.cpp", 4298, __extension__ __PRETTY_FUNCTION__
))
;
4299
4300 if (!S)
4301 return;
4302
4303 if (!S->getEntity() ||
4304 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4305 (S->getEntity())->isFunctionOrMethod()) {
4306 FindLocalExternScope FindLocals(Result);
4307 // Walk through the declarations in this Scope. The consumer might add new
4308 // decls to the scope as part of deserialization, so make a copy first.
4309 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4310 for (Decl *D : ScopeDecls) {
4311 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4312 if ((ND = Result.getAcceptableDecl(ND))) {
4313 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4314 Visited.add(ND);
4315 }
4316 }
4317 }
4318
4319 DeclContext *Entity = S->getLookupEntity();
4320 if (Entity) {
4321 // Look into this scope's declaration context, along with any of its
4322 // parent lookup contexts (e.g., enclosing classes), up to the point
4323 // where we hit the context stored in the next outer scope.
4324 DeclContext *OuterCtx = findOuterContext(S);
4325
4326 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4327 Ctx = Ctx->getLookupParent()) {
4328 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4329 if (Method->isInstanceMethod()) {
4330 // For instance methods, look for ivars in the method's interface.
4331 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4332 Result.getNameLoc(),
4333 Sema::LookupMemberName);
4334 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4335 lookupInDeclContext(IFace, IvarResult,
4336 /*QualifiedNameLookup=*/false,
4337 /*InBaseClass=*/false);
4338 }
4339 }
4340
4341 // We've already performed all of the name lookup that we need
4342 // to for Objective-C methods; the next context will be the
4343 // outer scope.
4344 break;
4345 }
4346
4347 if (Ctx->isFunctionOrMethod())
4348 continue;
4349
4350 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4351 /*InBaseClass=*/false);
4352 }
4353 } else if (!S->getParent()) {
4354 // Look into the translation unit scope. We walk through the translation
4355 // unit's declaration context, because the Scope itself won't have all of
4356 // the declarations if we loaded a precompiled header.
4357 // FIXME: We would like the translation unit's Scope object to point to
4358 // the translation unit, so we don't need this special "if" branch.
4359 // However, doing so would force the normal C++ name-lookup code to look
4360 // into the translation unit decl when the IdentifierInfo chains would
4361 // suffice. Once we fix that problem (which is part of a more general
4362 // "don't look in DeclContexts unless we have to" optimization), we can
4363 // eliminate this.
4364 Entity = Result.getSema().Context.getTranslationUnitDecl();
4365 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4366 /*InBaseClass=*/false);
4367 }
4368
4369 if (Entity) {
4370 // Lookup visible declarations in any namespaces found by using
4371 // directives.
4372 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4373 lookupInDeclContext(
4374 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4375 /*QualifiedNameLookup=*/false,
4376 /*InBaseClass=*/false);
4377 }
4378
4379 // Lookup names in the parent scope.
4380 ShadowContextRAII Shadow(Visited);
4381 lookupInScope(S->getParent(), Result, UDirs);
4382 }
4383
4384private:
4385 VisibleDeclsRecord Visited;
4386 VisibleDeclConsumer &Consumer;
4387 bool IncludeDependentBases;
4388 bool LoadExternal;
4389};
4390} // namespace
4391
4392void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4393 VisibleDeclConsumer &Consumer,
4394 bool IncludeGlobalScope, bool LoadExternal) {
4395 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4396 LoadExternal);
4397 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4398}
4399
4400void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4401 VisibleDeclConsumer &Consumer,
4402 bool IncludeGlobalScope,
4403 bool IncludeDependentBases, bool LoadExternal) {
4404 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4405 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4406}
4407
4408/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4409/// If GnuLabelLoc is a valid source location, then this is a definition
4410/// of an __label__ label name, otherwise it is a normal label definition
4411/// or use.
4412LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4413 SourceLocation GnuLabelLoc) {
4414 // Do a lookup to see if we have a label with this name already.
4415 NamedDecl *Res = nullptr;
4416
4417 if (GnuLabelLoc.isValid()) {
4418 // Local label definitions always shadow existing labels.
4419 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4420 Scope *S = CurScope;
4421 PushOnScopeChains(Res, S, true);
4422 return cast<LabelDecl>(Res);
4423 }
4424
4425 // Not a GNU local label.
4426 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4427 // If we found a label, check to see if it is in the same context as us.
4428 // When in a Block, we don't want to reuse a label in an enclosing function.
4429 if (Res && Res->getDeclContext() != CurContext)
4430 Res = nullptr;
4431 if (!Res) {
4432 // If not forward referenced or defined already, create the backing decl.
4433 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4434 Scope *S = CurScope->getFnParent();
4435 assert(S && "Not in a function?")(static_cast <bool> (S && "Not in a function?")
? void (0) : __assert_fail ("S && \"Not in a function?\""
, "clang/lib/Sema/SemaLookup.cpp", 4435, __extension__ __PRETTY_FUNCTION__
))
;
4436 PushOnScopeChains(Res, S, true);
4437 }
4438 return cast<LabelDecl>(Res);
4439}
4440
4441//===----------------------------------------------------------------------===//
4442// Typo correction
4443//===----------------------------------------------------------------------===//
4444
4445static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4446 TypoCorrection &Candidate) {
4447 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4448 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4449}
4450
4451static void LookupPotentialTypoResult(Sema &SemaRef,
4452 LookupResult &Res,
4453 IdentifierInfo *Name,
4454 Scope *S, CXXScopeSpec *SS,
4455 DeclContext *MemberContext,
4456 bool EnteringContext,
4457 bool isObjCIvarLookup,
4458 bool FindHidden);
4459
4460/// Check whether the declarations found for a typo correction are
4461/// visible. Set the correction's RequiresImport flag to true if none of the
4462/// declarations are visible, false otherwise.
4463static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4464 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4465
4466 for (/**/; DI != DE; ++DI)
4467 if (!LookupResult::isVisible(SemaRef, *DI))
4468 break;
4469 // No filtering needed if all decls are visible.
4470 if (DI == DE) {
4471 TC.setRequiresImport(false);
4472 return;
4473 }
4474
4475 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4476 bool AnyVisibleDecls = !NewDecls.empty();
4477
4478 for (/**/; DI != DE; ++DI) {
4479 if (LookupResult::isVisible(SemaRef, *DI)) {
4480 if (!AnyVisibleDecls) {
4481 // Found a visible decl, discard all hidden ones.
4482 AnyVisibleDecls = true;
4483 NewDecls.clear();
4484 }
4485 NewDecls.push_back(*DI);
4486 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4487 NewDecls.push_back(*DI);
4488 }
4489
4490 if (NewDecls.empty())
4491 TC = TypoCorrection();
4492 else {
4493 TC.setCorrectionDecls(NewDecls);
4494 TC.setRequiresImport(!AnyVisibleDecls);
4495 }
4496}
4497
4498// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4499// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4500// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4501static void getNestedNameSpecifierIdentifiers(
4502 NestedNameSpecifier *NNS,
4503 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4504 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4505 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4506 else
4507 Identifiers.clear();
4508
4509 const IdentifierInfo *II = nullptr;
4510
4511 switch (NNS->getKind()) {
4512 case NestedNameSpecifier::Identifier:
4513 II = NNS->getAsIdentifier();
4514 break;
4515
4516 case NestedNameSpecifier::Namespace:
4517 if (NNS->getAsNamespace()->isAnonymousNamespace())
4518 return;
4519 II = NNS->getAsNamespace()->getIdentifier();
4520 break;
4521
4522 case NestedNameSpecifier::NamespaceAlias:
4523 II = NNS->getAsNamespaceAlias()->getIdentifier();
4524 break;
4525
4526 case NestedNameSpecifier::TypeSpecWithTemplate:
4527 case NestedNameSpecifier::TypeSpec:
4528 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4529 break;
4530
4531 case NestedNameSpecifier::Global:
4532 case NestedNameSpecifier::Super:
4533 return;
4534 }
4535
4536 if (II)
4537 Identifiers.push_back(II);
4538}
4539
4540void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4541 DeclContext *Ctx, bool InBaseClass) {
4542 // Don't consider hidden names for typo correction.
4543 if (Hiding)
4544 return;
4545
4546 // Only consider entities with identifiers for names, ignoring
4547 // special names (constructors, overloaded operators, selectors,
4548 // etc.).
4549 IdentifierInfo *Name = ND->getIdentifier();
4550 if (!Name)
4551 return;
4552
4553 // Only consider visible declarations and declarations from modules with
4554 // names that exactly match.
4555 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4556 return;
4557
4558 FoundName(Name->getName());
4559}
4560
4561void TypoCorrectionConsumer::FoundName(StringRef Name) {
4562 // Compute the edit distance between the typo and the name of this
4563 // entity, and add the identifier to the list of results.
4564 addName(Name, nullptr);
4565}
4566
4567void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4568 // Compute the edit distance between the typo and this keyword,
4569 // and add the keyword to the list of results.
4570 addName(Keyword, nullptr, nullptr, true);
4571}
4572
4573void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4574 NestedNameSpecifier *NNS, bool isKeyword) {
4575 // Use a simple length-based heuristic to determine the minimum possible
4576 // edit distance. If the minimum isn't good enough, bail out early.
4577 StringRef TypoStr = Typo->getName();
4578 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4579 if (MinED && TypoStr.size() / MinED < 3)
4580 return;
4581
4582 // Compute an upper bound on the allowable edit distance, so that the
4583 // edit-distance algorithm can short-circuit.
4584 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4585 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4586 if (ED > UpperBound) return;
4587
4588 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4589 if (isKeyword) TC.makeKeyword();
4590 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4591 addCorrection(TC);
4592}
4593
4594static const unsigned MaxTypoDistanceResultSets = 5;
4595
4596void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4597 StringRef TypoStr = Typo->getName();
4598 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4599
4600 // For very short typos, ignore potential corrections that have a different
4601 // base identifier from the typo or which have a normalized edit distance
4602 // longer than the typo itself.
4603 if (TypoStr.size() < 3 &&
4604 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4605 return;
4606
4607 // If the correction is resolved but is not viable, ignore it.
4608 if (Correction.isResolved()) {
4609 checkCorrectionVisibility(SemaRef, Correction);
4610 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4611 return;
4612 }
4613
4614 TypoResultList &CList =
4615 CorrectionResults[Correction.getEditDistance(false)][Name];
4616
4617 if (!CList.empty() && !CList.back().isResolved())
4618 CList.pop_back();
4619 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4620 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4621 return TypoCorr.getCorrectionDecl() == NewND;
4622 });
4623 if (RI != CList.end()) {
4624 // The Correction refers to a decl already in the list. No insertion is
4625 // necessary and all further cases will return.
4626
4627 auto IsDeprecated = [](Decl *D) {
4628 while (D) {
4629 if (D->isDeprecated())
4630 return true;
4631 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4632 }
4633 return false;
4634 };
4635
4636 // Prefer non deprecated Corrections over deprecated and only then
4637 // sort using an alphabetical order.
4638 std::pair<bool, std::string> NewKey = {
4639 IsDeprecated(Correction.getFoundDecl()),
4640 Correction.getAsString(SemaRef.getLangOpts())};
4641
4642 std::pair<bool, std::string> PrevKey = {
4643 IsDeprecated(RI->getFoundDecl()),
4644 RI->getAsString(SemaRef.getLangOpts())};
4645
4646 if (NewKey < PrevKey)
4647 *RI = Correction;
4648 return;
4649 }
4650 }
4651 if (CList.empty() || Correction.isResolved())
4652 CList.push_back(Correction);
4653
4654 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4655 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4656}
4657
4658void TypoCorrectionConsumer::addNamespaces(
4659 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4660 SearchNamespaces = true;
4661
4662 for (auto KNPair : KnownNamespaces)
4663 Namespaces.addNameSpecifier(KNPair.first);
1
Calling 'NamespaceSpecifierSet::addNameSpecifier'
4664
4665 bool SSIsTemplate = false;
4666 if (NestedNameSpecifier *NNS =
4667 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4668 if (const Type *T = NNS->getAsType())
4669 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4670 }
4671 // Do not transform this into an iterator-based loop. The loop body can
4672 // trigger the creation of further types (through lazy deserialization) and
4673 // invalid iterators into this list.
4674 auto &Types = SemaRef.getASTContext().getTypes();
4675 for (unsigned I = 0; I != Types.size(); ++I) {
4676 const auto *TI = Types[I];
4677 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4678 CD = CD->getCanonicalDecl();
4679 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4680 !CD->isUnion() && CD->getIdentifier() &&
4681 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4682 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4683 Namespaces.addNameSpecifier(CD);
4684 }
4685 }
4686}
4687
4688const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4689 if (++CurrentTCIndex < ValidatedCorrections.size())
4690 return ValidatedCorrections[CurrentTCIndex];
4691
4692 CurrentTCIndex = ValidatedCorrections.size();
4693 while (!CorrectionResults.empty()) {
4694 auto DI = CorrectionResults.begin();
4695 if (DI->second.empty()) {
4696 CorrectionResults.erase(DI);
4697 continue;
4698 }
4699
4700 auto RI = DI->second.begin();
4701 if (RI->second.empty()) {
4702 DI->second.erase(RI);
4703 performQualifiedLookups();
4704 continue;
4705 }
4706
4707 TypoCorrection TC = RI->second.pop_back_val();
4708 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4709 ValidatedCorrections.push_back(TC);
4710 return ValidatedCorrections[CurrentTCIndex];
4711 }
4712 }
4713 return ValidatedCorrections[0]; // The empty correction.
4714}
4715
4716bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4717 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4718 DeclContext *TempMemberContext = MemberContext;
4719 CXXScopeSpec *TempSS = SS.get();
4720retry_lookup:
4721 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4722 EnteringContext,
4723 CorrectionValidator->IsObjCIvarLookup,
4724 Name == Typo && !Candidate.WillReplaceSpecifier());
4725 switch (Result.getResultKind()) {
4726 case LookupResult::NotFound:
4727 case LookupResult::NotFoundInCurrentInstantiation:
4728 case LookupResult::FoundUnresolvedValue:
4729 if (TempSS) {
4730 // Immediately retry the lookup without the given CXXScopeSpec
4731 TempSS = nullptr;
4732 Candidate.WillReplaceSpecifier(true);
4733 goto retry_lookup;
4734 }
4735 if (TempMemberContext) {
4736 if (SS && !TempSS)
4737 TempSS = SS.get();
4738 TempMemberContext = nullptr;
4739 goto retry_lookup;
4740 }
4741 if (SearchNamespaces)
4742 QualifiedResults.push_back(Candidate);
4743 break;
4744
4745 case LookupResult::Ambiguous:
4746 // We don't deal with ambiguities.
4747 break;
4748
4749 case LookupResult::Found:
4750 case LookupResult::FoundOverloaded:
4751 // Store all of the Decls for overloaded symbols
4752 for (auto *TRD : Result)
4753 Candidate.addCorrectionDecl(TRD);
4754 checkCorrectionVisibility(SemaRef, Candidate);
4755 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4756 if (SearchNamespaces)
4757 QualifiedResults.push_back(Candidate);
4758 break;
4759 }
4760 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4761 return true;
4762 }
4763 return false;
4764}
4765
4766void TypoCorrectionConsumer::performQualifiedLookups() {
4767 unsigned TypoLen = Typo->getName().size();
4768 for (const TypoCorrection &QR : QualifiedResults) {
4769 for (const auto &NSI : Namespaces) {
4770 DeclContext *Ctx = NSI.DeclCtx;
4771 const Type *NSType = NSI.NameSpecifier->getAsType();
4772
4773 // If the current NestedNameSpecifier refers to a class and the
4774 // current correction candidate is the name of that class, then skip
4775 // it as it is unlikely a qualified version of the class' constructor
4776 // is an appropriate correction.
4777 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4778 nullptr) {
4779 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4780 continue;
4781 }
4782
4783 TypoCorrection TC(QR);
4784 TC.ClearCorrectionDecls();
4785 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4786 TC.setQualifierDistance(NSI.EditDistance);
4787 TC.setCallbackDistance(0); // Reset the callback distance
4788
4789 // If the current correction candidate and namespace combination are
4790 // too far away from the original typo based on the normalized edit
4791 // distance, then skip performing a qualified name lookup.
4792 unsigned TmpED = TC.getEditDistance(true);
4793 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4794 TypoLen / TmpED < 3)
4795 continue;
4796
4797 Result.clear();
4798 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4799 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4800 continue;
4801
4802 // Any corrections added below will be validated in subsequent
4803 // iterations of the main while() loop over the Consumer's contents.
4804 switch (Result.getResultKind()) {
4805 case LookupResult::Found:
4806 case LookupResult::FoundOverloaded: {
4807 if (SS && SS->isValid()) {
4808 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4809 std::string OldQualified;
4810 llvm::raw_string_ostream OldOStream(OldQualified);
4811 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4812 OldOStream << Typo->getName();
4813 // If correction candidate would be an identical written qualified
4814 // identifier, then the existing CXXScopeSpec probably included a
4815 // typedef that didn't get accounted for properly.
4816 if (OldOStream.str() == NewQualified)
4817 break;
4818 }
4819 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4820 TRD != TRDEnd; ++TRD) {
4821 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4822 NSType ? NSType->getAsCXXRecordDecl()
4823 : nullptr,
4824 TRD.getPair()) == Sema::AR_accessible)
4825 TC.addCorrectionDecl(*TRD);
4826 }
4827 if (TC.isResolved()) {
4828 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4829 addCorrection(TC);
4830 }
4831 break;
4832 }
4833 case LookupResult::NotFound:
4834 case LookupResult::NotFoundInCurrentInstantiation:
4835 case LookupResult::Ambiguous:
4836 case LookupResult::FoundUnresolvedValue:
4837 break;
4838 }
4839 }
4840 }
4841 QualifiedResults.clear();
4842}
4843
4844TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4845 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4846 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4847 if (NestedNameSpecifier *NNS =
4848 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4849 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4850 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4851
4852 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4853 }
4854 // Build the list of identifiers that would be used for an absolute
4855 // (from the global context) NestedNameSpecifier referring to the current
4856 // context.
4857 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4858 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4859 CurContextIdentifiers.push_back(ND->getIdentifier());
4860 }
4861
4862 // Add the global context as a NestedNameSpecifier
4863 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4864 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4865 DistanceMap[1].push_back(SI);
4866}
4867
4868auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4869 DeclContext *Start) -> DeclContextList {
4870 assert(Start && "Building a context chain from a null context")(static_cast <bool> (Start && "Building a context chain from a null context"
) ? void (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "clang/lib/Sema/SemaLookup.cpp", 4870, __extension__ __PRETTY_FUNCTION__
))
;
4871 DeclContextList Chain;
4872 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4873 DC = DC->getLookupParent()) {
4874 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4875 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4876 !(ND && ND->isAnonymousNamespace()))
4877 Chain.push_back(DC->getPrimaryContext());
4878 }
4879 return Chain;
4880}
4881
4882unsigned
4883TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4884 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4885 unsigned NumSpecifiers = 0;
4886 for (DeclContext *C : llvm::reverse(DeclChain)) {
4887 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4888 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4889 ++NumSpecifiers;
4890 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4891 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4892 RD->getTypeForDecl());
4893 ++NumSpecifiers;
4894 }
4895 }
4896 return NumSpecifiers;
5
Returning without writing to 'NNS'
4897}
4898
4899void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4900 DeclContext *Ctx) {
4901 NestedNameSpecifier *NNS = nullptr;
2
'NNS' initialized to a null pointer value
4902 unsigned NumSpecifiers = 0;
4903 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4904 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4905
4906 // Eliminate common elements from the two DeclContext chains.
4907 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4908 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4909 break;
4910 NamespaceDeclChain.pop_back();
4911 }
4912
4913 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4914 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3
Execution continues on line 4914
4
Calling 'NamespaceSpecifierSet::buildNestedNameSpecifier'
6
Returning from 'NamespaceSpecifierSet::buildNestedNameSpecifier'
4915
4916 // Add an explicit leading '::' specifier if needed.
4917 if (NamespaceDeclChain.empty()) {
7
Taking false branch
4918 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4919 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4920 NumSpecifiers =
4921 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4922 } else if (NamedDecl *ND
8.1
'ND' is non-null
=
9
Taking true branch
4923 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
8
Assuming the object is a 'CastReturnType'
4924 IdentifierInfo *Name = ND->getIdentifier();
4925 bool SameNameSpecifier = false;
4926 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
10
Taking true branch
4927 std::string NewNameSpecifier;
4928 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4929 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4930 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4931 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
11
Called C++ object pointer is null
4932 SpecifierOStream.flush();
4933 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4934 }
4935 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4936 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4937 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4938 NumSpecifiers =
4939 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4940 }
4941 }
4942
4943 // If the built NestedNameSpecifier would be replacing an existing
4944 // NestedNameSpecifier, use the number of component identifiers that
4945 // would need to be changed as the edit distance instead of the number
4946 // of components in the built NestedNameSpecifier.
4947 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4948 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4949 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4950 NumSpecifiers =
4951 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4952 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4953 }
4954
4955 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4956 DistanceMap[NumSpecifiers].push_back(SI);
4957}
4958
4959/// Perform name lookup for a possible result for typo correction.
4960static void LookupPotentialTypoResult(Sema &SemaRef,
4961 LookupResult &Res,
4962 IdentifierInfo *Name,
4963 Scope *S, CXXScopeSpec *SS,
4964 DeclContext *MemberContext,
4965 bool EnteringContext,
4966 bool isObjCIvarLookup,
4967 bool FindHidden) {
4968 Res.suppressDiagnostics();
4969 Res.clear();
4970 Res.setLookupName(Name);
4971 Res.setAllowHidden(FindHidden);
4972 if (MemberContext) {
4973 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4974 if (isObjCIvarLookup) {
4975 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4976 Res.addDecl(Ivar);
4977 Res.resolveKind();
4978 return;
4979 }
4980 }
4981
4982 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4983 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4984 Res.addDecl(Prop);
4985 Res.resolveKind();
4986 return;
4987 }
4988 }
4989
4990 SemaRef.LookupQualifiedName(Res, MemberContext);
4991 return;
4992 }
4993
4994 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4995 EnteringContext);
4996
4997 // Fake ivar lookup; this should really be part of
4998 // LookupParsedName.
4999 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5000 if (Method->isInstanceMethod() && Method->getClassInterface() &&
5001 (Res.empty() ||
5002 (Res.isSingleResult() &&
5003 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5004 if (ObjCIvarDecl *IV
5005 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5006 Res.addDecl(IV);
5007 Res.resolveKind();
5008 }
5009 }
5010 }
5011}
5012
5013/// Add keywords to the consumer as possible typo corrections.
5014static void AddKeywordsToConsumer(Sema &SemaRef,
5015 TypoCorrectionConsumer &Consumer,
5016 Scope *S, CorrectionCandidateCallback &CCC,
5017 bool AfterNestedNameSpecifier) {
5018 if (AfterNestedNameSpecifier) {
5019 // For 'X::', we know exactly which keywords can appear next.
5020 Consumer.addKeywordResult("template");
5021 if (CCC.WantExpressionKeywords)
5022 Consumer.addKeywordResult("operator");
5023 return;
5024 }
5025
5026 if (CCC.WantObjCSuper)
5027 Consumer.addKeywordResult("super");
5028
5029 if (CCC.WantTypeSpecifiers) {
5030 // Add type-specifier keywords to the set of results.
5031 static const char *const CTypeSpecs[] = {
5032 "char", "const", "double", "enum", "float", "int", "long", "short",
5033 "signed", "struct", "union", "unsigned", "void", "volatile",
5034 "_Complex", "_Imaginary",
5035 // storage-specifiers as well
5036 "extern", "inline", "static", "typedef"
5037 };
5038
5039 for (const auto *CTS : CTypeSpecs)
5040 Consumer.addKeywordResult(CTS);
5041
5042 if (SemaRef.getLangOpts().C99)
5043 Consumer.addKeywordResult("restrict");
5044 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5045 Consumer.addKeywordResult("bool");
5046 else if (SemaRef.getLangOpts().C99)
5047 Consumer.addKeywordResult("_Bool");
5048
5049 if (SemaRef.getLangOpts().CPlusPlus) {
5050 Consumer.addKeywordResult("class");
5051 Consumer.addKeywordResult("typename");
5052 Consumer.addKeywordResult("wchar_t");
5053
5054 if (SemaRef.getLangOpts().CPlusPlus11) {
5055 Consumer.addKeywordResult("char16_t");
5056 Consumer.addKeywordResult("char32_t");
5057 Consumer.addKeywordResult("constexpr");
5058 Consumer.addKeywordResult("decltype");
5059 Consumer.addKeywordResult("thread_local");
5060 }
5061 }
5062
5063 if (SemaRef.getLangOpts().GNUKeywords)
5064 Consumer.addKeywordResult("typeof");
5065 } else if (CCC.WantFunctionLikeCasts) {
5066 static const char *const CastableTypeSpecs[] = {
5067 "char", "double", "float", "int", "long", "short",
5068 "signed", "unsigned", "void"
5069 };
5070 for (auto *kw : CastableTypeSpecs)
5071 Consumer.addKeywordResult(kw);
5072 }
5073
5074 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5075 Consumer.addKeywordResult("const_cast");
5076 Consumer.addKeywordResult("dynamic_cast");
5077 Consumer.addKeywordResult("reinterpret_cast");
5078 Consumer.addKeywordResult("static_cast");
5079 }
5080
5081 if (CCC.WantExpressionKeywords) {
5082 Consumer.addKeywordResult("sizeof");
5083 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5084 Consumer.addKeywordResult("false");
5085 Consumer.addKeywordResult("true");
5086 }
5087
5088 if (SemaRef.getLangOpts().CPlusPlus) {
5089 static const char *const CXXExprs[] = {
5090 "delete", "new", "operator", "throw", "typeid"
5091 };
5092 for (const auto *CE : CXXExprs)
5093 Consumer.addKeywordResult(CE);
5094
5095 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5096 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5097 Consumer.addKeywordResult("this");
5098
5099 if (SemaRef.getLangOpts().CPlusPlus11) {
5100 Consumer.addKeywordResult("alignof");
5101 Consumer.addKeywordResult("nullptr");
5102 }
5103 }
5104
5105 if (SemaRef.getLangOpts().C11) {
5106 // FIXME: We should not suggest _Alignof if the alignof macro
5107 // is present.
5108 Consumer.addKeywordResult("_Alignof");
5109 }
5110 }
5111
5112 if (CCC.WantRemainingKeywords) {
5113 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5114 // Statements.
5115 static const char *const CStmts[] = {
5116 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5117 for (const auto *CS : CStmts)
5118 Consumer.addKeywordResult(CS);
5119
5120 if (SemaRef.getLangOpts().CPlusPlus) {
5121 Consumer.addKeywordResult("catch");
5122 Consumer.addKeywordResult("try");
5123 }
5124
5125 if (S && S->getBreakParent())
5126 Consumer.addKeywordResult("break");
5127
5128 if (S && S->getContinueParent())
5129 Consumer.addKeywordResult("continue");
5130
5131 if (SemaRef.getCurFunction() &&
5132 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5133 Consumer.addKeywordResult("case");
5134 Consumer.addKeywordResult("default");
5135 }
5136 } else {
5137 if (SemaRef.getLangOpts().CPlusPlus) {
5138 Consumer.addKeywordResult("namespace");
5139 Consumer.addKeywordResult("template");
5140 }
5141
5142 if (S && S->isClassScope()) {
5143 Consumer.addKeywordResult("explicit");
5144 Consumer.addKeywordResult("friend");
5145 Consumer.addKeywordResult("mutable");
5146 Consumer.addKeywordResult("private");
5147 Consumer.addKeywordResult("protected");
5148 Consumer.addKeywordResult("public");
5149 Consumer.addKeywordResult("virtual");
5150 }
5151 }
5152
5153 if (SemaRef.getLangOpts().CPlusPlus) {
5154 Consumer.addKeywordResult("using");
5155
5156 if (SemaRef.getLangOpts().CPlusPlus11)
5157 Consumer.addKeywordResult("static_assert");
5158 }
5159 }
5160}
5161
5162std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5163 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5164 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5165 DeclContext *MemberContext, bool EnteringContext,
5166 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5167
5168 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5169 DisableTypoCorrection)
5170 return nullptr;
5171
5172 // In Microsoft mode, don't perform typo correction in a template member
5173 // function dependent context because it interferes with the "lookup into
5174 // dependent bases of class templates" feature.
5175 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5176 isa<CXXMethodDecl>(CurContext))
5177 return nullptr;
5178
5179 // We only attempt to correct typos for identifiers.
5180 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5181 if (!Typo)
5182 return nullptr;
5183
5184 // If the scope specifier itself was invalid, don't try to correct
5185 // typos.
5186 if (SS && SS->isInvalid())
5187 return nullptr;
5188
5189 // Never try to correct typos during any kind of code synthesis.
5190 if (!CodeSynthesisContexts.empty())
5191 return nullptr;
5192
5193 // Don't try to correct 'super'.
5194 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5195 return nullptr;
5196
5197 // Abort if typo correction already failed for this specific typo.
5198 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5199 if (locs != TypoCorrectionFailures.end() &&
5200 locs->second.count(TypoName.getLoc()))
5201 return nullptr;
5202
5203 // Don't try to correct the identifier "vector" when in AltiVec mode.
5204 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5205 // remove this workaround.
5206 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5207 return nullptr;
5208
5209 // Provide a stop gap for files that are just seriously broken. Trying
5210 // to correct all typos can turn into a HUGE performance penalty, causing
5211 // some files to take minutes to get rejected by the parser.
5212 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5213 if (Limit && TyposCorrected >= Limit)
5214 return nullptr;
5215 ++TyposCorrected;
5216
5217 // If we're handling a missing symbol error, using modules, and the
5218 // special search all modules option is used, look for a missing import.
5219 if (ErrorRecovery && getLangOpts().Modules &&
5220 getLangOpts().ModulesSearchAll) {
5221 // The following has the side effect of loading the missing module.
5222 getModuleLoader().lookupMissingImports(Typo->getName(),
5223 TypoName.getBeginLoc());
5224 }
5225
5226 // Extend the lifetime of the callback. We delayed this until here
5227 // to avoid allocations in the hot path (which is where no typo correction
5228 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5229 // initially stack-allocated.
5230 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5231 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5232 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5233 EnteringContext);
5234
5235 // Perform name lookup to find visible, similarly-named entities.
5236 bool IsUnqualifiedLookup = false;
5237 DeclContext *QualifiedDC = MemberContext;
5238 if (MemberContext) {
5239 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5240
5241 // Look in qualified interfaces.
5242 if (OPT) {
5243 for (auto *I : OPT->quals())
5244 LookupVisibleDecls(I, LookupKind, *Consumer);
5245 }
5246 } else if (SS && SS->isSet()) {
5247 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5248 if (!QualifiedDC)
5249 return nullptr;
5250
5251 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5252 } else {
5253 IsUnqualifiedLookup = true;
5254 }
5255
5256 // Determine whether we are going to search in the various namespaces for
5257 // corrections.
5258 bool SearchNamespaces
5259 = getLangOpts().CPlusPlus &&
5260 (IsUnqualifiedLookup || (SS && SS->isSet()));
5261
5262 if (IsUnqualifiedLookup || SearchNamespaces) {
5263 // For unqualified lookup, look through all of the names that we have
5264 // seen in this translation unit.
5265 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5266 for (const auto &I : Context.Idents)
5267 Consumer->FoundName(I.getKey());
5268
5269 // Walk through identifiers in external identifier sources.
5270 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5271 if (IdentifierInfoLookup *External
5272 = Context.Idents.getExternalIdentifierLookup()) {
5273 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5274 do {
5275 StringRef Name = Iter->Next();
5276 if (Name.empty())
5277 break;
5278
5279 Consumer->FoundName(Name);
5280 } while (true);
5281 }
5282 }
5283
5284 AddKeywordsToConsumer(*this, *Consumer, S,
5285 *Consumer->getCorrectionValidator(),
5286 SS && SS->isNotEmpty());
5287
5288 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5289 // to search those namespaces.
5290 if (SearchNamespaces) {
5291 // Load any externally-known namespaces.
5292 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5293 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5294 LoadedExternalKnownNamespaces = true;
5295 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5296 for (auto *N : ExternalKnownNamespaces)
5297 KnownNamespaces[N] = true;
5298 }
5299
5300 Consumer->addNamespaces(KnownNamespaces);
5301 }
5302
5303 return Consumer;
5304}
5305
5306/// Try to "correct" a typo in the source code by finding
5307/// visible declarations whose names are similar to the name that was
5308/// present in the source code.
5309///
5310/// \param TypoName the \c DeclarationNameInfo structure that contains
5311/// the name that was present in the source code along with its location.
5312///
5313/// \param LookupKind the name-lookup criteria used to search for the name.
5314///
5315/// \param S the scope in which name lookup occurs.
5316///
5317/// \param SS the nested-name-specifier that precedes the name we're
5318/// looking for, if present.
5319///
5320/// \param CCC A CorrectionCandidateCallback object that provides further
5321/// validation of typo correction candidates. It also provides flags for
5322/// determining the set of keywords permitted.
5323///
5324/// \param MemberContext if non-NULL, the context in which to look for
5325/// a member access expression.
5326///
5327/// \param EnteringContext whether we're entering the context described by
5328/// the nested-name-specifier SS.
5329///
5330/// \param OPT when non-NULL, the search for visible declarations will
5331/// also walk the protocols in the qualified interfaces of \p OPT.
5332///
5333/// \returns a \c TypoCorrection containing the corrected name if the typo
5334/// along with information such as the \c NamedDecl where the corrected name
5335/// was declared, and any additional \c NestedNameSpecifier needed to access
5336/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5337TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5338 Sema::LookupNameKind LookupKind,
5339 Scope *S, CXXScopeSpec *SS,
5340 CorrectionCandidateCallback &CCC,
5341 CorrectTypoKind Mode,
5342 DeclContext *MemberContext,
5343 bool EnteringContext,
5344 const ObjCObjectPointerType *OPT,
5345 bool RecordFailure) {
5346 // Always let the ExternalSource have the first chance at correction, even
5347 // if we would otherwise have given up.
5348 if (ExternalSource) {
5349 if (TypoCorrection Correction =
5350 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5351 MemberContext, EnteringContext, OPT))
5352 return Correction;
5353 }
5354
5355 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5356 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5357 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5358 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5359 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5360
5361 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5362 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5363 MemberContext, EnteringContext,
5364 OPT, Mode == CTK_ErrorRecovery);
5365
5366 if (!Consumer)
5367 return TypoCorrection();
5368
5369 // If we haven't found anything, we're done.
5370 if (Consumer->empty())
5371 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5372
5373 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5374 // is not more that about a third of the length of the typo's identifier.
5375 unsigned ED = Consumer->getBestEditDistance(true);
5376 unsigned TypoLen = Typo->getName().size();
5377 if (ED > 0 && TypoLen / ED < 3)
5378 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5379
5380 TypoCorrection BestTC = Consumer->getNextCorrection();
5381 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5382 if (!BestTC)
5383 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5384
5385 ED = BestTC.getEditDistance();
5386
5387 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5388 // If this was an unqualified lookup and we believe the callback
5389 // object wouldn't have filtered out possible corrections, note
5390 // that no correction was found.
5391 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5392 }
5393
5394 // If only a single name remains, return that result.
5395 if (!SecondBestTC ||
5396 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5397 const TypoCorrection &Result = BestTC;
5398
5399 // Don't correct to a keyword that's the same as the typo; the keyword
5400 // wasn't actually in scope.
5401 if (ED == 0 && Result.isKeyword())
5402 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5403
5404 TypoCorrection TC = Result;
5405 TC.setCorrectionRange(SS, TypoName);
5406 checkCorrectionVisibility(*this, TC);
5407 return TC;
5408 } else if (SecondBestTC && ObjCMessageReceiver) {
5409 // Prefer 'super' when we're completing in a message-receiver
5410 // context.
5411
5412 if (BestTC.getCorrection().getAsString() != "super") {
5413 if (SecondBestTC.getCorrection().getAsString() == "super")
5414 BestTC = SecondBestTC;
5415 else if ((*Consumer)["super"].front().isKeyword())
5416 BestTC = (*Consumer)["super"].front();
5417 }
5418 // Don't correct to a keyword that's the same as the typo; the keyword
5419 // wasn't actually in scope.
5420 if (BestTC.getEditDistance() == 0 ||
5421 BestTC.getCorrection().getAsString() != "super")
5422 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5423
5424 BestTC.setCorrectionRange(SS, TypoName);
5425 return BestTC;
5426 }
5427
5428 // Record the failure's location if needed and return an empty correction. If
5429 // this was an unqualified lookup and we believe the callback object did not
5430 // filter out possible corrections, also cache the failure for the typo.
5431 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5432}
5433
5434/// Try to "correct" a typo in the source code by finding
5435/// visible declarations whose names are similar to the name that was
5436/// present in the source code.
5437///
5438/// \param TypoName the \c DeclarationNameInfo structure that contains
5439/// the name that was present in the source code along with its location.
5440///
5441/// \param LookupKind the name-lookup criteria used to search for the name.
5442///
5443/// \param S the scope in which name lookup occurs.
5444///
5445/// \param SS the nested-name-specifier that precedes the name we're
5446/// looking for, if present.
5447///
5448/// \param CCC A CorrectionCandidateCallback object that provides further
5449/// validation of typo correction candidates. It also provides flags for
5450/// determining the set of keywords permitted.
5451///
5452/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5453/// diagnostics when the actual typo correction is attempted.
5454///
5455/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5456/// Expr from a typo correction candidate.
5457///
5458/// \param MemberContext if non-NULL, the context in which to look for
5459/// a member access expression.
5460///
5461/// \param EnteringContext whether we're entering the context described by
5462/// the nested-name-specifier SS.
5463///
5464/// \param OPT when non-NULL, the search for visible declarations will
5465/// also walk the protocols in the qualified interfaces of \p OPT.
5466///
5467/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5468/// Expr representing the result of performing typo correction, or nullptr if
5469/// typo correction is not possible. If nullptr is returned, no diagnostics will
5470/// be emitted and it is the responsibility of the caller to emit any that are
5471/// needed.
5472TypoExpr *Sema::CorrectTypoDelayed(
5473 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5474 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5475 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5476 DeclContext *MemberContext, bool EnteringContext,
5477 const ObjCObjectPointerType *OPT) {
5478 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5479 MemberContext, EnteringContext,
5480 OPT, Mode == CTK_ErrorRecovery);
5481
5482 // Give the external sema source a chance to correct the typo.
5483 TypoCorrection ExternalTypo;
5484 if (ExternalSource && Consumer) {
5485 ExternalTypo = ExternalSource->CorrectTypo(
5486 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5487 MemberContext, EnteringContext, OPT);
5488 if (ExternalTypo)
5489 Consumer->addCorrection(ExternalTypo);
5490 }
5491
5492 if (!Consumer || Consumer->empty())
5493 return nullptr;
5494
5495 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5496 // is not more that about a third of the length of the typo's identifier.
5497 unsigned ED = Consumer->getBestEditDistance(true);
5498 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5499 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5500 return nullptr;
5501 ExprEvalContexts.back().NumTypos++;
5502 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5503 TypoName.getLoc());
5504}
5505
5506void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5507 if (!CDecl) return;
5508
5509 if (isKeyword())
5510 CorrectionDecls.clear();
5511
5512 CorrectionDecls.push_back(CDecl);
5513
5514 if (!CorrectionName)
5515 CorrectionName = CDecl->getDeclName();
5516}
5517
5518std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5519 if (CorrectionNameSpec) {
5520 std::string tmpBuffer;
5521 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5522 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5523 PrefixOStream << CorrectionName;
5524 return PrefixOStream.str();
5525 }
5526
5527 return CorrectionName.getAsString();
5528}
5529
5530bool CorrectionCandidateCallback::ValidateCandidate(
5531 const TypoCorrection &candidate) {
5532 if (!candidate.isResolved())
5533 return true;
5534
5535 if (candidate.isKeyword())
5536 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5537 WantRemainingKeywords || WantObjCSuper;
5538
5539 bool HasNonType = false;
5540 bool HasStaticMethod = false;
5541 bool HasNonStaticMethod = false;
5542 for (Decl *D : candidate) {
5543 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5544 D = FTD->getTemplatedDecl();
5545 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5546 if (Method->isStatic())
5547 HasStaticMethod = true;
5548 else
5549 HasNonStaticMethod = true;
5550 }
5551 if (!isa<TypeDecl>(D))
5552 HasNonType = true;
5553 }
5554
5555 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5556 !candidate.getCorrectionSpecifier())
5557 return false;
5558
5559 return WantTypeSpecifiers || HasNonType;
5560}
5561
5562FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5563 bool HasExplicitTemplateArgs,
5564 MemberExpr *ME)
5565 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5566 CurContext(SemaRef.CurContext), MemberFn(ME) {
5567 WantTypeSpecifiers = false;
5568 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5569 !HasExplicitTemplateArgs && NumArgs == 1;
5570 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5571 WantRemainingKeywords = false;
5572}
5573
5574bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5575 if (!candidate.getCorrectionDecl())
5576 return candidate.isKeyword();
5577
5578 for (auto *C : candidate) {
5579 FunctionDecl *FD = nullptr;
5580 NamedDecl *ND = C->getUnderlyingDecl();
5581 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5582 FD = FTD->getTemplatedDecl();
5583 if (!HasExplicitTemplateArgs && !FD) {
5584 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5585 // If the Decl is neither a function nor a template function,
5586 // determine if it is a pointer or reference to a function. If so,
5587 // check against the number of arguments expected for the pointee.
5588 QualType ValType = cast<ValueDecl>(ND)->getType();
5589 if (ValType.isNull())
5590 continue;
5591 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5592 ValType = ValType->getPointeeType();
5593 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5594 if (FPT->getNumParams() == NumArgs)
5595 return true;
5596 }
5597 }
5598
5599 // A typo for a function-style cast can look like a function call in C++.
5600 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5601 : isa<TypeDecl>(ND)) &&
5602 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5603 // Only a class or class template can take two or more arguments.
5604 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5605
5606 // Skip the current candidate if it is not a FunctionDecl or does not accept
5607 // the current number of arguments.
5608 if (!FD || !(FD->getNumParams() >= NumArgs &&
5609 FD->getMinRequiredArguments() <= NumArgs))
5610 continue;
5611
5612 // If the current candidate is a non-static C++ method, skip the candidate
5613 // unless the method being corrected--or the current DeclContext, if the
5614 // function being corrected is not a method--is a method in the same class
5615 // or a descendent class of the candidate's parent class.
5616 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5617 if (MemberFn || !MD->isStatic()) {
5618 CXXMethodDecl *CurMD =
5619 MemberFn
5620 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5621 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5622 CXXRecordDecl *CurRD =
5623 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5624 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5625 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5626 continue;
5627 }
5628 }
5629 return true;
5630 }
5631 return false;
5632}
5633
5634void Sema::diagnoseTypo(const TypoCorrection &Correction,
5635 const PartialDiagnostic &TypoDiag,
5636 bool ErrorRecovery) {
5637 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5638 ErrorRecovery);
5639}
5640
5641/// Find which declaration we should import to provide the definition of
5642/// the given declaration.
5643static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5644 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5645 return VD->getDefinition();
5646 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5647 return FD->getDefinition();
5648 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5649 return TD->getDefinition();
5650 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5651 return ID->getDefinition();
5652 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5653 return PD->getDefinition();
5654 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5655 if (NamedDecl *TTD = TD->getTemplatedDecl())
5656 return getDefinitionToImport(TTD);
5657 return nullptr;
5658}
5659
5660void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5661 MissingImportKind MIK, bool Recover) {
5662 // Suggest importing a module providing the definition of this entity, if
5663 // possible.
5664 NamedDecl *Def = getDefinitionToImport(Decl);
5665 if (!Def)
5666 Def = Decl;
5667
5668 Module *Owner = getOwningModule(Def);
5669 assert(Owner && "definition of hidden declaration is not in a module")(static_cast <bool> (Owner && "definition of hidden declaration is not in a module"
) ? void (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "clang/lib/Sema/SemaLookup.cpp", 5669, __extension__ __PRETTY_FUNCTION__
))
;
5670
5671 llvm::SmallVector<Module*, 8> OwningModules;
5672 OwningModules.push_back(Owner);
5673 auto Merged = Context.getModulesWithMergedDefinition(Def);
5674 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5675
5676 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5677 Recover);
5678}
5679
5680/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5681/// suggesting the addition of a #include of the specified file.
5682static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5683 llvm::StringRef IncludingFile) {
5684 bool IsSystem = false;
5685 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5686 E, IncludingFile, &IsSystem);
5687 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5688}
5689
5690void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5691 SourceLocation DeclLoc,
5692 ArrayRef<Module *> Modules,
5693 MissingImportKind MIK, bool Recover) {
5694 assert(!Modules.empty())(static_cast <bool> (!Modules.empty()) ? void (0) : __assert_fail
("!Modules.empty()", "clang/lib/Sema/SemaLookup.cpp", 5694, __extension__
__PRETTY_FUNCTION__))
;
5695
5696 auto NotePrevious = [&] {
5697 // FIXME: Suppress the note backtrace even under
5698 // -fdiagnostics-show-note-include-stack. We don't care how this
5699 // declaration was previously reached.
5700 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5701 };
5702
5703 // Weed out duplicates from module list.
5704 llvm::SmallVector<Module*, 8> UniqueModules;
5705 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5706 for (auto *M : Modules) {
5707 if (M->isGlobalModule() || M->isPrivateModule())
5708 continue;
5709 if (UniqueModuleSet.insert(M).second)
5710 UniqueModules.push_back(M);
5711 }
5712
5713 // Try to find a suitable header-name to #include.
5714 std::string HeaderName;
5715 if (const FileEntry *Header =
5716 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5717 if (const FileEntry *FE =
5718 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5719 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5720 }
5721
5722 // If we have a #include we should suggest, or if all definition locations
5723 // were in global module fragments, don't suggest an import.
5724 if (!HeaderName.empty() || UniqueModules.empty()) {
5725 // FIXME: Find a smart place to suggest inserting a #include, and add
5726 // a FixItHint there.
5727 Diag(UseLoc, diag::err_module_unimported_use_header)
5728 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5729 // Produce a note showing where the entity was declared.
5730 NotePrevious();
5731 if (Recover)
5732 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5733 return;
5734 }
5735
5736 Modules = UniqueModules;
5737
5738 if (Modules.size() > 1) {
5739 std::string ModuleList;
5740 unsigned N = 0;
5741 for (Module *M : Modules) {
5742 ModuleList += "\n ";
5743 if (++N == 5 && N != Modules.size()) {
5744 ModuleList += "[...]";
5745 break;
5746 }
5747 ModuleList += M->getFullModuleName();
5748 }
5749
5750 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5751 << (int)MIK << Decl << ModuleList;
5752 } else {
5753 // FIXME: Add a FixItHint that imports the corresponding module.
5754 Diag(UseLoc, diag::err_module_unimported_use)
5755 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5756 }
5757
5758 NotePrevious();
5759
5760 // Try to recover by implicitly importing this module.
5761 if (Recover)
5762 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5763}
5764
5765/// Diagnose a successfully-corrected typo. Separated from the correction
5766/// itself to allow external validation of the result, etc.
5767///
5768/// \param Correction The result of performing typo correction.
5769/// \param TypoDiag The diagnostic to produce. This will have the corrected
5770/// string added to it (and usually also a fixit).
5771/// \param PrevNote A note to use when indicating the location of the entity to
5772/// which we are correcting. Will have the correction string added to it.
5773/// \param ErrorRecovery If \c true (the default), the caller is going to
5774/// recover from the typo as if the corrected string had been typed.
5775/// In this case, \c PDiag must be an error, and we will attach a fixit
5776/// to it.
5777void Sema::diagnoseTypo(const TypoCorrection &Correction,
5778 const PartialDiagnostic &TypoDiag,
5779 const PartialDiagnostic &PrevNote,
5780 bool ErrorRecovery) {
5781 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5782 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5783 FixItHint FixTypo = FixItHint::CreateReplacement(
5784 Correction.getCorrectionRange(), CorrectedStr);
5785
5786 // Maybe we're just missing a module import.
5787 if (Correction.requiresImport()) {
5788 NamedDecl *Decl = Correction.getFoundDecl();
5789 assert(Decl && "import required but no declaration to import")(static_cast <bool> (Decl && "import required but no declaration to import"
) ? void (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "clang/lib/Sema/SemaLookup.cpp", 5789, __extension__ __PRETTY_FUNCTION__
))
;
5790
5791 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5792 MissingImportKind::Declaration, ErrorRecovery);
5793 return;
5794 }
5795
5796 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5797 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5798
5799 NamedDecl *ChosenDecl =
5800 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5801 if (PrevNote.getDiagID() && ChosenDecl)
5802 Diag(ChosenDecl->getLocation(), PrevNote)
5803 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5804
5805 // Add any extra diagnostics.
5806 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5807 Diag(Correction.getCorrectionRange().getBegin(), PD);
5808}
5809
5810TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5811 TypoDiagnosticGenerator TDG,
5812 TypoRecoveryCallback TRC,
5813 SourceLocation TypoLoc) {
5814 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")(static_cast <bool> (TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? void (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "clang/lib/Sema/SemaLookup.cpp", 5814, __extension__ __PRETTY_FUNCTION__
))
;
5815 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5816 auto &State = DelayedTypos[TE];
5817 State.Consumer = std::move(TCC);
5818 State.DiagHandler = std::move(TDG);
5819 State.RecoveryHandler = std::move(TRC);
5820 if (TE)
5821 TypoExprs.push_back(TE);
5822 return TE;
5823}
5824
5825const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5826 auto Entry = DelayedTypos.find(TE);
5827 assert(Entry != DelayedTypos.end() &&(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "clang/lib/Sema/SemaLookup.cpp", 5828, __extension__ __PRETTY_FUNCTION__
))
5828 "Failed to get the state for a TypoExpr!")(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "clang/lib/Sema/SemaLookup.cpp", 5828, __extension__ __PRETTY_FUNCTION__
))
;
5829 return Entry->second;
5830}
5831
5832void Sema::clearDelayedTypo(TypoExpr *TE) {
5833 DelayedTypos.erase(TE);
5834}
5835
5836void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5837 DeclarationNameInfo Name(II, IILoc);
5838 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5839 R.suppressDiagnostics();
5840 R.setHideTags(false);
5841 LookupName(R, S);
5842 R.dump();
5843}
5844
5845void Sema::ActOnPragmaDump(Expr *E) {
5846 E->dump();
5847}