Bug Summary

File:build/source/clang/lib/Sema/SemaLookup.cpp
Warning:line 4499, column 37
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/Sema/SemaLookup.cpp
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/RISCVIntrinsicManager.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "clang/Sema/Sema.h"
36#include "clang/Sema/SemaInternal.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "clang/Sema/TypoCorrection.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/TinyPtrVector.h"
42#include "llvm/ADT/edit_distance.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <algorithm>
46#include <iterator>
47#include <list>
48#include <optional>
49#include <set>
50#include <utility>
51#include <vector>
52
53#include "OpenCLBuiltins.inc"
54
55using namespace clang;
56using namespace sema;
57
58namespace {
59 class UnqualUsingEntry {
60 const DeclContext *Nominated;
61 const DeclContext *CommonAncestor;
62
63 public:
64 UnqualUsingEntry(const DeclContext *Nominated,
65 const DeclContext *CommonAncestor)
66 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67 }
68
69 const DeclContext *getCommonAncestor() const {
70 return CommonAncestor;
71 }
72
73 const DeclContext *getNominatedNamespace() const {
74 return Nominated;
75 }
76
77 // Sort by the pointer value of the common ancestor.
78 struct Comparator {
79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80 return L.getCommonAncestor() < R.getCommonAncestor();
81 }
82
83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84 return E.getCommonAncestor() < DC;
85 }
86
87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88 return DC < E.getCommonAncestor();
89 }
90 };
91 };
92
93 /// A collection of using directives, as used by C++ unqualified
94 /// lookup.
95 class UnqualUsingDirectiveSet {
96 Sema &SemaRef;
97
98 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99
100 ListTy list;
101 llvm::SmallPtrSet<DeclContext*, 8> visited;
102
103 public:
104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105
106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107 // C++ [namespace.udir]p1:
108 // During unqualified name lookup, the names appear as if they
109 // were declared in the nearest enclosing namespace which contains
110 // both the using-directive and the nominated namespace.
111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112 assert(InnermostFileDC && InnermostFileDC->isFileContext())(static_cast <bool> (InnermostFileDC && InnermostFileDC
->isFileContext()) ? void (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "clang/lib/Sema/SemaLookup.cpp", 112, __extension__ __PRETTY_FUNCTION__
))
;
113
114 for (; S; S = S->getParent()) {
115 // C++ [namespace.udir]p1:
116 // A using-directive shall not appear in class scope, but may
117 // appear in namespace scope or in block scope.
118 DeclContext *Ctx = S->getEntity();
119 if (Ctx && Ctx->isFileContext()) {
120 visit(Ctx, Ctx);
121 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122 for (auto *I : S->using_directives())
123 if (SemaRef.isVisible(I))
124 visit(I, InnermostFileDC);
125 }
126 }
127 }
128
129 // Visits a context and collect all of its using directives
130 // recursively. Treats all using directives as if they were
131 // declared in the context.
132 //
133 // A given context is only every visited once, so it is important
134 // that contexts be visited from the inside out in order to get
135 // the effective DCs right.
136 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137 if (!visited.insert(DC).second)
138 return;
139
140 addUsingDirectives(DC, EffectiveDC);
141 }
142
143 // Visits a using directive and collects all of its using
144 // directives recursively. Treats all using directives as if they
145 // were declared in the effective DC.
146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147 DeclContext *NS = UD->getNominatedNamespace();
148 if (!visited.insert(NS).second)
149 return;
150
151 addUsingDirective(UD, EffectiveDC);
152 addUsingDirectives(NS, EffectiveDC);
153 }
154
155 // Adds all the using directives in a context (and those nominated
156 // by its using directives, transitively) as if they appeared in
157 // the given effective context.
158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159 SmallVector<DeclContext*, 4> queue;
160 while (true) {
161 for (auto *UD : DC->using_directives()) {
162 DeclContext *NS = UD->getNominatedNamespace();
163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164 addUsingDirective(UD, EffectiveDC);
165 queue.push_back(NS);
166 }
167 }
168
169 if (queue.empty())
170 return;
171
172 DC = queue.pop_back_val();
173 }
174 }
175
176 // Add a using directive as if it had been declared in the given
177 // context. This helps implement C++ [namespace.udir]p3:
178 // The using-directive is transitive: if a scope contains a
179 // using-directive that nominates a second namespace that itself
180 // contains using-directives, the effect is as if the
181 // using-directives from the second namespace also appeared in
182 // the first.
183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184 // Find the common ancestor between the effective context and
185 // the nominated namespace.
186 DeclContext *Common = UD->getNominatedNamespace();
187 while (!Common->Encloses(EffectiveDC))
188 Common = Common->getParent();
189 Common = Common->getPrimaryContext();
190
191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192 }
193
194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195
196 typedef ListTy::const_iterator const_iterator;
197
198 const_iterator begin() const { return list.begin(); }
199 const_iterator end() const { return list.end(); }
200
201 llvm::iterator_range<const_iterator>
202 getNamespacesFor(const DeclContext *DC) const {
203 return llvm::make_range(std::equal_range(begin(), end(),
204 DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator()));
206 }
207 };
208} // end anonymous namespace
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 case Sema::LookupLocalFriendName:
221 case Sema::LookupDestructorName:
222 IDNS = Decl::IDNS_Ordinary;
223 if (CPlusPlus) {
224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225 if (Redeclaration)
226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227 }
228 if (Redeclaration)
229 IDNS |= Decl::IDNS_LocalExtern;
230 break;
231
232 case Sema::LookupOperatorName:
233 // Operator lookup is its own crazy thing; it is not the same
234 // as (e.g.) looking up an operator name for redeclaration.
235 assert(!Redeclaration && "cannot do redeclaration operator lookup")(static_cast <bool> (!Redeclaration && "cannot do redeclaration operator lookup"
) ? void (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 235, __extension__ __PRETTY_FUNCTION__
))
;
236 IDNS = Decl::IDNS_NonMemberOperator;
237 break;
238
239 case Sema::LookupTagName:
240 if (CPlusPlus) {
241 IDNS = Decl::IDNS_Type;
242
243 // When looking for a redeclaration of a tag name, we add:
244 // 1) TagFriend to find undeclared friend decls
245 // 2) Namespace because they can't "overload" with tag decls.
246 // 3) Tag because it includes class templates, which can't
247 // "overload" with tag decls.
248 if (Redeclaration)
249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250 } else {
251 IDNS = Decl::IDNS_Tag;
252 }
253 break;
254
255 case Sema::LookupLabel:
256 IDNS = Decl::IDNS_Label;
257 break;
258
259 case Sema::LookupMemberName:
260 IDNS = Decl::IDNS_Member;
261 if (CPlusPlus)
262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263 break;
264
265 case Sema::LookupNestedNameSpecifierName:
266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupNamespaceName:
270 IDNS = Decl::IDNS_Namespace;
271 break;
272
273 case Sema::LookupUsingDeclName:
274 assert(Redeclaration && "should only be used for redecl lookup")(static_cast <bool> (Redeclaration && "should only be used for redecl lookup"
) ? void (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 274, __extension__ __PRETTY_FUNCTION__
))
;
275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277 Decl::IDNS_LocalExtern;
278 break;
279
280 case Sema::LookupObjCProtocolName:
281 IDNS = Decl::IDNS_ObjCProtocol;
282 break;
283
284 case Sema::LookupOMPReductionName:
285 IDNS = Decl::IDNS_OMPReduction;
286 break;
287
288 case Sema::LookupOMPMapperName:
289 IDNS = Decl::IDNS_OMPMapper;
290 break;
291
292 case Sema::LookupAnyName:
293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295 | Decl::IDNS_Type;
296 break;
297 }
298 return IDNS;
299}
300
301void LookupResult::configure() {
302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303 isForRedeclaration());
304
305 // If we're looking for one of the allocation or deallocation
306 // operators, make sure that the implicitly-declared new and delete
307 // operators can be found.
308 switch (NameInfo.getName().getCXXOverloadedOperator()) {
309 case OO_New:
310 case OO_Delete:
311 case OO_Array_New:
312 case OO_Array_Delete:
313 getSema().DeclareGlobalNewDelete();
314 break;
315
316 default:
317 break;
318 }
319
320 // Compiler builtins are always visible, regardless of where they end
321 // up being declared.
322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323 if (unsigned BuiltinID = Id->getBuiltinID()) {
324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325 AllowHidden = true;
326 }
327 }
328}
329
330bool LookupResult::checkDebugAssumptions() const {
331 // This function is never called by NDEBUG builds.
332 assert(ResultKind != NotFound || Decls.size() == 0)(static_cast <bool> (ResultKind != NotFound || Decls.size
() == 0) ? void (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "clang/lib/Sema/SemaLookup.cpp", 332, __extension__ __PRETTY_FUNCTION__
))
;
333 assert(ResultKind != Found || Decls.size() == 1)(static_cast <bool> (ResultKind != Found || Decls.size(
) == 1) ? void (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "clang/lib/Sema/SemaLookup.cpp", 333, __extension__ __PRETTY_FUNCTION__
))
;
334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
335 (Decls.size() == 1 &&(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "clang/lib/Sema/SemaLookup.cpp", 336, __extension__ __PRETTY_FUNCTION__
))
;
337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved())(static_cast <bool> (ResultKind != FoundUnresolvedValue
|| checkUnresolved()) ? void (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || checkUnresolved()"
, "clang/lib/Sema/SemaLookup.cpp", 337, __extension__ __PRETTY_FUNCTION__
))
;
338 assert(ResultKind != Ambiguous || Decls.size() > 1 ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
340 Ambiguity == AmbiguousBaseSubobjectTypes)))(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "clang/lib/Sema/SemaLookup.cpp", 340, __extension__ __PRETTY_FUNCTION__
))
;
341 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
342 (Ambiguity == AmbiguousBaseSubobjectTypes ||(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
343 Ambiguity == AmbiguousBaseSubobjects)))(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "clang/lib/Sema/SemaLookup.cpp", 343, __extension__ __PRETTY_FUNCTION__
))
;
344 return true;
345}
346
347// Necessary because CXXBasePaths is not complete in Sema.h
348void LookupResult::deletePaths(CXXBasePaths *Paths) {
349 delete Paths;
350}
351
352/// Get a representative context for a declaration such that two declarations
353/// will have the same context if they were found within the same scope.
354static const DeclContext *getContextForScopeMatching(const Decl *D) {
355 // For function-local declarations, use that function as the context. This
356 // doesn't account for scopes within the function; the caller must deal with
357 // those.
358 if (const DeclContext *DC = D->getLexicalDeclContext();
359 DC->isFunctionOrMethod())
360 return DC;
361
362 // Otherwise, look at the semantic context of the declaration. The
363 // declaration must have been found there.
364 return D->getDeclContext()->getRedeclContext();
365}
366
367/// Determine whether \p D is a better lookup result than \p Existing,
368/// given that they declare the same entity.
369static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370 const NamedDecl *D,
371 const NamedDecl *Existing) {
372 // When looking up redeclarations of a using declaration, prefer a using
373 // shadow declaration over any other declaration of the same entity.
374 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
375 !isa<UsingShadowDecl>(Existing))
376 return true;
377
378 const auto *DUnderlying = D->getUnderlyingDecl();
379 const auto *EUnderlying = Existing->getUnderlyingDecl();
380
381 // If they have different underlying declarations, prefer a typedef over the
382 // original type (this happens when two type declarations denote the same
383 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
384 // might carry additional semantic information, such as an alignment override.
385 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
386 // declaration over a typedef. Also prefer a tag over a typedef for
387 // destructor name lookup because in some contexts we only accept a
388 // class-name in a destructor declaration.
389 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
390 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))(static_cast <bool> (isa<TypeDecl>(DUnderlying) &&
isa<TypeDecl>(EUnderlying)) ? void (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "clang/lib/Sema/SemaLookup.cpp", 390, __extension__ __PRETTY_FUNCTION__
))
;
391 bool HaveTag = isa<TagDecl>(EUnderlying);
392 bool WantTag =
393 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
394 return HaveTag != WantTag;
395 }
396
397 // Pick the function with more default arguments.
398 // FIXME: In the presence of ambiguous default arguments, we should keep both,
399 // so we can diagnose the ambiguity if the default argument is needed.
400 // See C++ [over.match.best]p3.
401 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
402 const auto *EFD = cast<FunctionDecl>(EUnderlying);
403 unsigned DMin = DFD->getMinRequiredArguments();
404 unsigned EMin = EFD->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred.
406 if (DMin != EMin)
407 return DMin < EMin;
408 // FIXME: When we track visibility for default function arguments, check
409 // that we pick the declaration with more visible default arguments.
410 }
411
412 // Pick the template with more default template arguments.
413 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
414 const auto *ETD = cast<TemplateDecl>(EUnderlying);
415 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
416 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
417 // If D has more default arguments, it is preferred. Note that default
418 // arguments (and their visibility) is monotonically increasing across the
419 // redeclaration chain, so this is a quick proxy for "is more recent".
420 if (DMin != EMin)
421 return DMin < EMin;
422 // If D has more *visible* default arguments, it is preferred. Note, an
423 // earlier default argument being visible does not imply that a later
424 // default argument is visible, so we can't just check the first one.
425 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
426 I != N; ++I) {
427 if (!S.hasVisibleDefaultArgument(
428 ETD->getTemplateParameters()->getParam(I)) &&
429 S.hasVisibleDefaultArgument(
430 DTD->getTemplateParameters()->getParam(I)))
431 return true;
432 }
433 }
434
435 // VarDecl can have incomplete array types, prefer the one with more complete
436 // array type.
437 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
438 const auto *EVD = cast<VarDecl>(EUnderlying);
439 if (EVD->getType()->isIncompleteType() &&
440 !DVD->getType()->isIncompleteType()) {
441 // Prefer the decl with a more complete type if visible.
442 return S.isVisible(DVD);
443 }
444 return false; // Avoid picking up a newer decl, just because it was newer.
445 }
446
447 // For most kinds of declaration, it doesn't really matter which one we pick.
448 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
449 // If the existing declaration is hidden, prefer the new one. Otherwise,
450 // keep what we've got.
451 return !S.isVisible(Existing);
452 }
453
454 // Pick the newer declaration; it might have a more precise type.
455 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
456 Prev = Prev->getPreviousDecl())
457 if (Prev == EUnderlying)
458 return true;
459 return false;
460}
461
462/// Determine whether \p D can hide a tag declaration.
463static bool canHideTag(const NamedDecl *D) {
464 // C++ [basic.scope.declarative]p4:
465 // Given a set of declarations in a single declarative region [...]
466 // exactly one declaration shall declare a class name or enumeration name
467 // that is not a typedef name and the other declarations shall all refer to
468 // the same variable, non-static data member, or enumerator, or all refer
469 // to functions and function templates; in this case the class name or
470 // enumeration name is hidden.
471 // C++ [basic.scope.hiding]p2:
472 // A class name or enumeration name can be hidden by the name of a
473 // variable, data member, function, or enumerator declared in the same
474 // scope.
475 // An UnresolvedUsingValueDecl always instantiates to one of these.
476 D = D->getUnderlyingDecl();
477 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
478 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
479 isa<UnresolvedUsingValueDecl>(D);
480}
481
482/// Resolves the result kind of this lookup.
483void LookupResult::resolveKind() {
484 unsigned N = Decls.size();
485
486 // Fast case: no possible ambiguity.
487 if (N == 0) {
488 assert(ResultKind == NotFound ||(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "clang/lib/Sema/SemaLookup.cpp", 489, __extension__ __PRETTY_FUNCTION__
))
489 ResultKind == NotFoundInCurrentInstantiation)(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "clang/lib/Sema/SemaLookup.cpp", 489, __extension__ __PRETTY_FUNCTION__
))
;
490 return;
491 }
492
493 // If there's a single decl, we need to examine it to decide what
494 // kind of lookup this is.
495 if (N == 1) {
496 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
497 if (isa<FunctionTemplateDecl>(D))
498 ResultKind = FoundOverloaded;
499 else if (isa<UnresolvedUsingValueDecl>(D))
500 ResultKind = FoundUnresolvedValue;
501 return;
502 }
503
504 // Don't do any extra resolution if we've already resolved as ambiguous.
505 if (ResultKind == Ambiguous) return;
506
507 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
508 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
509
510 bool Ambiguous = false;
511 bool HasTag = false, HasFunction = false;
512 bool HasFunctionTemplate = false, HasUnresolved = false;
513 const NamedDecl *HasNonFunction = nullptr;
514
515 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
516
517 unsigned UniqueTagIndex = 0;
518
519 unsigned I = 0;
520 while (I < N) {
521 const NamedDecl *D = Decls[I]->getUnderlyingDecl();
522 D = cast<NamedDecl>(D->getCanonicalDecl());
523
524 // Ignore an invalid declaration unless it's the only one left.
525 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
526 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) {
527 Decls[I] = Decls[--N];
528 continue;
529 }
530
531 std::optional<unsigned> ExistingI;
532
533 // Redeclarations of types via typedef can occur both within a scope
534 // and, through using declarations and directives, across scopes. There is
535 // no ambiguity if they all refer to the same type, so unique based on the
536 // canonical type.
537 if (const auto *TD = dyn_cast<TypeDecl>(D)) {
538 QualType T = getSema().Context.getTypeDeclType(TD);
539 auto UniqueResult = UniqueTypes.insert(
540 std::make_pair(getSema().Context.getCanonicalType(T), I));
541 if (!UniqueResult.second) {
542 // The type is not unique.
543 ExistingI = UniqueResult.first->second;
544 }
545 }
546
547 // For non-type declarations, check for a prior lookup result naming this
548 // canonical declaration.
549 if (!ExistingI) {
550 auto UniqueResult = Unique.insert(std::make_pair(D, I));
551 if (!UniqueResult.second) {
552 // We've seen this entity before.
553 ExistingI = UniqueResult.first->second;
554 }
555 }
556
557 if (ExistingI) {
558 // This is not a unique lookup result. Pick one of the results and
559 // discard the other.
560 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
561 Decls[*ExistingI]))
562 Decls[*ExistingI] = Decls[I];
563 Decls[I] = Decls[--N];
564 continue;
565 }
566
567 // Otherwise, do some decl type analysis and then continue.
568
569 if (isa<UnresolvedUsingValueDecl>(D)) {
570 HasUnresolved = true;
571 } else if (isa<TagDecl>(D)) {
572 if (HasTag)
573 Ambiguous = true;
574 UniqueTagIndex = I;
575 HasTag = true;
576 } else if (isa<FunctionTemplateDecl>(D)) {
577 HasFunction = true;
578 HasFunctionTemplate = true;
579 } else if (isa<FunctionDecl>(D)) {
580 HasFunction = true;
581 } else {
582 if (HasNonFunction) {
583 // If we're about to create an ambiguity between two declarations that
584 // are equivalent, but one is an internal linkage declaration from one
585 // module and the other is an internal linkage declaration from another
586 // module, just skip it.
587 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
588 D)) {
589 EquivalentNonFunctions.push_back(D);
590 Decls[I] = Decls[--N];
591 continue;
592 }
593
594 Ambiguous = true;
595 }
596 HasNonFunction = D;
597 }
598 I++;
599 }
600
601 // C++ [basic.scope.hiding]p2:
602 // A class name or enumeration name can be hidden by the name of
603 // an object, function, or enumerator declared in the same
604 // scope. If a class or enumeration name and an object, function,
605 // or enumerator are declared in the same scope (in any order)
606 // with the same name, the class or enumeration name is hidden
607 // wherever the object, function, or enumerator name is visible.
608 // But it's still an error if there are distinct tag types found,
609 // even if they're not visible. (ref?)
610 if (N > 1 && HideTags && HasTag && !Ambiguous &&
611 (HasFunction || HasNonFunction || HasUnresolved)) {
612 const NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
613 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
614 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
615 getContextForScopeMatching(OtherDecl)) &&
616 canHideTag(OtherDecl))
617 Decls[UniqueTagIndex] = Decls[--N];
618 else
619 Ambiguous = true;
620 }
621
622 // FIXME: This diagnostic should really be delayed until we're done with
623 // the lookup result, in case the ambiguity is resolved by the caller.
624 if (!EquivalentNonFunctions.empty() && !Ambiguous)
625 getSema().diagnoseEquivalentInternalLinkageDeclarations(
626 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
627
628 Decls.truncate(N);
629
630 if (HasNonFunction && (HasFunction || HasUnresolved))
631 Ambiguous = true;
632
633 if (Ambiguous)
634 setAmbiguous(LookupResult::AmbiguousReference);
635 else if (HasUnresolved)
636 ResultKind = LookupResult::FoundUnresolvedValue;
637 else if (N > 1 || HasFunctionTemplate)
638 ResultKind = LookupResult::FoundOverloaded;
639 else
640 ResultKind = LookupResult::Found;
641}
642
643void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
644 CXXBasePaths::const_paths_iterator I, E;
645 for (I = P.begin(), E = P.end(); I != E; ++I)
646 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
647 ++DI)
648 addDecl(*DI);
649}
650
651void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
652 Paths = new CXXBasePaths;
653 Paths->swap(P);
654 addDeclsFromBasePaths(*Paths);
655 resolveKind();
656 setAmbiguous(AmbiguousBaseSubobjects);
657}
658
659void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
660 Paths = new CXXBasePaths;
661 Paths->swap(P);
662 addDeclsFromBasePaths(*Paths);
663 resolveKind();
664 setAmbiguous(AmbiguousBaseSubobjectTypes);
665}
666
667void LookupResult::print(raw_ostream &Out) {
668 Out << Decls.size() << " result(s)";
669 if (isAmbiguous()) Out << ", ambiguous";
670 if (Paths) Out << ", base paths present";
671
672 for (iterator I = begin(), E = end(); I != E; ++I) {
673 Out << "\n";
674 (*I)->print(Out, 2);
675 }
676}
677
678LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
679 llvm::errs() << "lookup results for " << getLookupName().getAsString()
680 << ":\n";
681 for (NamedDecl *D : *this)
682 D->dump();
683}
684
685/// Diagnose a missing builtin type.
686static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
687 llvm::StringRef Name) {
688 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
689 << TypeClass << Name;
690 return S.Context.VoidTy;
691}
692
693/// Lookup an OpenCL enum type.
694static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
695 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
696 Sema::LookupTagName);
697 S.LookupName(Result, S.TUScope);
698 if (Result.empty())
699 return diagOpenCLBuiltinTypeError(S, "enum", Name);
700 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
701 if (!Decl)
702 return diagOpenCLBuiltinTypeError(S, "enum", Name);
703 return S.Context.getEnumType(Decl);
704}
705
706/// Lookup an OpenCL typedef type.
707static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
708 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
709 Sema::LookupOrdinaryName);
710 S.LookupName(Result, S.TUScope);
711 if (Result.empty())
712 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
713 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
714 if (!Decl)
715 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
716 return S.Context.getTypedefType(Decl);
717}
718
719/// Get the QualType instances of the return type and arguments for an OpenCL
720/// builtin function signature.
721/// \param S (in) The Sema instance.
722/// \param OpenCLBuiltin (in) The signature currently handled.
723/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
724/// type used as return type or as argument.
725/// Only meaningful for generic types, otherwise equals 1.
726/// \param RetTypes (out) List of the possible return types.
727/// \param ArgTypes (out) List of the possible argument types. For each
728/// argument, ArgTypes contains QualTypes for the Cartesian product
729/// of (vector sizes) x (types) .
730static void GetQualTypesForOpenCLBuiltin(
731 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
732 SmallVector<QualType, 1> &RetTypes,
733 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
734 // Get the QualType instances of the return types.
735 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
736 OCL2Qual(S, TypeTable[Sig], RetTypes);
737 GenTypeMaxCnt = RetTypes.size();
738
739 // Get the QualType instances of the arguments.
740 // First type is the return type, skip it.
741 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
742 SmallVector<QualType, 1> Ty;
743 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
744 Ty);
745 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
746 ArgTypes.push_back(std::move(Ty));
747 }
748}
749
750/// Create a list of the candidate function overloads for an OpenCL builtin
751/// function.
752/// \param Context (in) The ASTContext instance.
753/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
754/// type used as return type or as argument.
755/// Only meaningful for generic types, otherwise equals 1.
756/// \param FunctionList (out) List of FunctionTypes.
757/// \param RetTypes (in) List of the possible return types.
758/// \param ArgTypes (in) List of the possible types for the arguments.
759static void GetOpenCLBuiltinFctOverloads(
760 ASTContext &Context, unsigned GenTypeMaxCnt,
761 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
762 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
763 FunctionProtoType::ExtProtoInfo PI(
764 Context.getDefaultCallingConvention(false, false, true));
765 PI.Variadic = false;
766
767 // Do not attempt to create any FunctionTypes if there are no return types,
768 // which happens when a type belongs to a disabled extension.
769 if (RetTypes.size() == 0)
770 return;
771
772 // Create FunctionTypes for each (gen)type.
773 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
774 SmallVector<QualType, 5> ArgList;
775
776 for (unsigned A = 0; A < ArgTypes.size(); A++) {
777 // Bail out if there is an argument that has no available types.
778 if (ArgTypes[A].size() == 0)
779 return;
780
781 // Builtins such as "max" have an "sgentype" argument that represents
782 // the corresponding scalar type of a gentype. The number of gentypes
783 // must be a multiple of the number of sgentypes.
784 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&(static_cast <bool> (GenTypeMaxCnt % ArgTypes[A].size()
== 0 && "argument type count not compatible with gentype type count"
) ? void (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "clang/lib/Sema/SemaLookup.cpp", 785, __extension__ __PRETTY_FUNCTION__
))
785 "argument type count not compatible with gentype type count")(static_cast <bool> (GenTypeMaxCnt % ArgTypes[A].size()
== 0 && "argument type count not compatible with gentype type count"
) ? void (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "clang/lib/Sema/SemaLookup.cpp", 785, __extension__ __PRETTY_FUNCTION__
))
;
786 unsigned Idx = IGenType % ArgTypes[A].size();
787 ArgList.push_back(ArgTypes[A][Idx]);
788 }
789
790 FunctionList.push_back(Context.getFunctionType(
791 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
792 }
793}
794
795/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
796/// non-null <Index, Len> pair, then the name is referencing an OpenCL
797/// builtin function. Add all candidate signatures to the LookUpResult.
798///
799/// \param S (in) The Sema instance.
800/// \param LR (inout) The LookupResult instance.
801/// \param II (in) The identifier being resolved.
802/// \param FctIndex (in) Starting index in the BuiltinTable.
803/// \param Len (in) The signature list has Len elements.
804static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
805 IdentifierInfo *II,
806 const unsigned FctIndex,
807 const unsigned Len) {
808 // The builtin function declaration uses generic types (gentype).
809 bool HasGenType = false;
810
811 // Maximum number of types contained in a generic type used as return type or
812 // as argument. Only meaningful for generic types, otherwise equals 1.
813 unsigned GenTypeMaxCnt;
814
815 ASTContext &Context = S.Context;
816
817 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
818 const OpenCLBuiltinStruct &OpenCLBuiltin =
819 BuiltinTable[FctIndex + SignatureIndex];
820
821 // Ignore this builtin function if it is not available in the currently
822 // selected language version.
823 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
824 OpenCLBuiltin.Versions))
825 continue;
826
827 // Ignore this builtin function if it carries an extension macro that is
828 // not defined. This indicates that the extension is not supported by the
829 // target, so the builtin function should not be available.
830 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
831 if (!Extensions.empty()) {
832 SmallVector<StringRef, 2> ExtVec;
833 Extensions.split(ExtVec, " ");
834 bool AllExtensionsDefined = true;
835 for (StringRef Ext : ExtVec) {
836 if (!S.getPreprocessor().isMacroDefined(Ext)) {
837 AllExtensionsDefined = false;
838 break;
839 }
840 }
841 if (!AllExtensionsDefined)
842 continue;
843 }
844
845 SmallVector<QualType, 1> RetTypes;
846 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
847
848 // Obtain QualType lists for the function signature.
849 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
850 ArgTypes);
851 if (GenTypeMaxCnt > 1) {
852 HasGenType = true;
853 }
854
855 // Create function overload for each type combination.
856 std::vector<QualType> FunctionList;
857 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
858 ArgTypes);
859
860 SourceLocation Loc = LR.getNameLoc();
861 DeclContext *Parent = Context.getTranslationUnitDecl();
862 FunctionDecl *NewOpenCLBuiltin;
863
864 for (const auto &FTy : FunctionList) {
865 NewOpenCLBuiltin = FunctionDecl::Create(
866 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
867 S.getCurFPFeatures().isFPConstrained(), false,
868 FTy->isFunctionProtoType());
869 NewOpenCLBuiltin->setImplicit();
870
871 // Create Decl objects for each parameter, adding them to the
872 // FunctionDecl.
873 const auto *FP = cast<FunctionProtoType>(FTy);
874 SmallVector<ParmVarDecl *, 4> ParmList;
875 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
876 ParmVarDecl *Parm = ParmVarDecl::Create(
877 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
878 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
879 Parm->setScopeInfo(0, IParm);
880 ParmList.push_back(Parm);
881 }
882 NewOpenCLBuiltin->setParams(ParmList);
883
884 // Add function attributes.
885 if (OpenCLBuiltin.IsPure)
886 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
887 if (OpenCLBuiltin.IsConst)
888 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
889 if (OpenCLBuiltin.IsConv)
890 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
891
892 if (!S.getLangOpts().OpenCLCPlusPlus)
893 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
894
895 LR.addDecl(NewOpenCLBuiltin);
896 }
897 }
898
899 // If we added overloads, need to resolve the lookup result.
900 if (Len > 1 || HasGenType)
901 LR.resolveKind();
902}
903
904/// Lookup a builtin function, when name lookup would otherwise
905/// fail.
906bool Sema::LookupBuiltin(LookupResult &R) {
907 Sema::LookupNameKind NameKind = R.getLookupKind();
908
909 // If we didn't find a use of this identifier, and if the identifier
910 // corresponds to a compiler builtin, create the decl object for the builtin
911 // now, injecting it into translation unit scope, and return it.
912 if (NameKind == Sema::LookupOrdinaryName ||
913 NameKind == Sema::LookupRedeclarationWithLinkage) {
914 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
915 if (II) {
916 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
917 if (II == getASTContext().getMakeIntegerSeqName()) {
918 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
919 return true;
920 } else if (II == getASTContext().getTypePackElementName()) {
921 R.addDecl(getASTContext().getTypePackElementDecl());
922 return true;
923 }
924 }
925
926 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
927 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
928 auto Index = isOpenCLBuiltin(II->getName());
929 if (Index.first) {
930 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
931 Index.second);
932 return true;
933 }
934 }
935
936 if (DeclareRISCVVBuiltins || DeclareRISCVVectorBuiltins) {
937 if (!RVIntrinsicManager)
938 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
939
940 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
941 return true;
942 }
943
944 // If this is a builtin on this (or all) targets, create the decl.
945 if (unsigned BuiltinID = II->getBuiltinID()) {
946 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
947 // library functions like 'malloc'. Instead, we'll just error.
948 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
949 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
950 return false;
951
952 if (NamedDecl *D =
953 LazilyCreateBuiltin(II, BuiltinID, TUScope,
954 R.isForRedeclaration(), R.getNameLoc())) {
955 R.addDecl(D);
956 return true;
957 }
958 }
959 }
960 }
961
962 return false;
963}
964
965/// Looks up the declaration of "struct objc_super" and
966/// saves it for later use in building builtin declaration of
967/// objc_msgSendSuper and objc_msgSendSuper_stret.
968static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
969 ASTContext &Context = Sema.Context;
970 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
971 Sema::LookupTagName);
972 Sema.LookupName(Result, S);
973 if (Result.getResultKind() == LookupResult::Found)
974 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
975 Context.setObjCSuperType(Context.getTagDeclType(TD));
976}
977
978void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
979 if (ID == Builtin::BIobjc_msgSendSuper)
980 LookupPredefedObjCSuperType(*this, S);
981}
982
983/// Determine whether we can declare a special member function within
984/// the class at this point.
985static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
986 // We need to have a definition for the class.
987 if (!Class->getDefinition() || Class->isDependentContext())
988 return false;
989
990 // We can't be in the middle of defining the class.
991 return !Class->isBeingDefined();
992}
993
994void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
995 if (!CanDeclareSpecialMemberFunction(Class))
996 return;
997
998 // If the default constructor has not yet been declared, do so now.
999 if (Class->needsImplicitDefaultConstructor())
1000 DeclareImplicitDefaultConstructor(Class);
1001
1002 // If the copy constructor has not yet been declared, do so now.
1003 if (Class->needsImplicitCopyConstructor())
1004 DeclareImplicitCopyConstructor(Class);
1005
1006 // If the copy assignment operator has not yet been declared, do so now.
1007 if (Class->needsImplicitCopyAssignment())
1008 DeclareImplicitCopyAssignment(Class);
1009
1010 if (getLangOpts().CPlusPlus11) {
1011 // If the move constructor has not yet been declared, do so now.
1012 if (Class->needsImplicitMoveConstructor())
1013 DeclareImplicitMoveConstructor(Class);
1014
1015 // If the move assignment operator has not yet been declared, do so now.
1016 if (Class->needsImplicitMoveAssignment())
1017 DeclareImplicitMoveAssignment(Class);
1018 }
1019
1020 // If the destructor has not yet been declared, do so now.
1021 if (Class->needsImplicitDestructor())
1022 DeclareImplicitDestructor(Class);
1023}
1024
1025/// Determine whether this is the name of an implicitly-declared
1026/// special member function.
1027static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1028 switch (Name.getNameKind()) {
1029 case DeclarationName::CXXConstructorName:
1030 case DeclarationName::CXXDestructorName:
1031 return true;
1032
1033 case DeclarationName::CXXOperatorName:
1034 return Name.getCXXOverloadedOperator() == OO_Equal;
1035
1036 default:
1037 break;
1038 }
1039
1040 return false;
1041}
1042
1043/// If there are any implicit member functions with the given name
1044/// that need to be declared in the given declaration context, do so.
1045static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1046 DeclarationName Name,
1047 SourceLocation Loc,
1048 const DeclContext *DC) {
1049 if (!DC)
1050 return;
1051
1052 switch (Name.getNameKind()) {
1053 case DeclarationName::CXXConstructorName:
1054 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1055 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1056 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1057 if (Record->needsImplicitDefaultConstructor())
1058 S.DeclareImplicitDefaultConstructor(Class);
1059 if (Record->needsImplicitCopyConstructor())
1060 S.DeclareImplicitCopyConstructor(Class);
1061 if (S.getLangOpts().CPlusPlus11 &&
1062 Record->needsImplicitMoveConstructor())
1063 S.DeclareImplicitMoveConstructor(Class);
1064 }
1065 break;
1066
1067 case DeclarationName::CXXDestructorName:
1068 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1069 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1070 CanDeclareSpecialMemberFunction(Record))
1071 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1072 break;
1073
1074 case DeclarationName::CXXOperatorName:
1075 if (Name.getCXXOverloadedOperator() != OO_Equal)
1076 break;
1077
1078 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1079 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1080 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1081 if (Record->needsImplicitCopyAssignment())
1082 S.DeclareImplicitCopyAssignment(Class);
1083 if (S.getLangOpts().CPlusPlus11 &&
1084 Record->needsImplicitMoveAssignment())
1085 S.DeclareImplicitMoveAssignment(Class);
1086 }
1087 }
1088 break;
1089
1090 case DeclarationName::CXXDeductionGuideName:
1091 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1092 break;
1093
1094 default:
1095 break;
1096 }
1097}
1098
1099// Adds all qualifying matches for a name within a decl context to the
1100// given lookup result. Returns true if any matches were found.
1101static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1102 bool Found = false;
1103
1104 // Lazily declare C++ special member functions.
1105 if (S.getLangOpts().CPlusPlus)
1106 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1107 DC);
1108
1109 // Perform lookup into this declaration context.
1110 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1111 for (NamedDecl *D : DR) {
1112 if ((D = R.getAcceptableDecl(D))) {
1113 R.addDecl(D);
1114 Found = true;
1115 }
1116 }
1117
1118 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1119 return true;
1120
1121 if (R.getLookupName().getNameKind()
1122 != DeclarationName::CXXConversionFunctionName ||
1123 R.getLookupName().getCXXNameType()->isDependentType() ||
1124 !isa<CXXRecordDecl>(DC))
1125 return Found;
1126
1127 // C++ [temp.mem]p6:
1128 // A specialization of a conversion function template is not found by
1129 // name lookup. Instead, any conversion function templates visible in the
1130 // context of the use are considered. [...]
1131 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1132 if (!Record->isCompleteDefinition())
1133 return Found;
1134
1135 // For conversion operators, 'operator auto' should only match
1136 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1137 // as a candidate for template substitution.
1138 auto *ContainedDeducedType =
1139 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1140 if (R.getLookupName().getNameKind() ==
1141 DeclarationName::CXXConversionFunctionName &&
1142 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1143 return Found;
1144
1145 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1146 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1147 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1148 if (!ConvTemplate)
1149 continue;
1150
1151 // When we're performing lookup for the purposes of redeclaration, just
1152 // add the conversion function template. When we deduce template
1153 // arguments for specializations, we'll end up unifying the return
1154 // type of the new declaration with the type of the function template.
1155 if (R.isForRedeclaration()) {
1156 R.addDecl(ConvTemplate);
1157 Found = true;
1158 continue;
1159 }
1160
1161 // C++ [temp.mem]p6:
1162 // [...] For each such operator, if argument deduction succeeds
1163 // (14.9.2.3), the resulting specialization is used as if found by
1164 // name lookup.
1165 //
1166 // When referencing a conversion function for any purpose other than
1167 // a redeclaration (such that we'll be building an expression with the
1168 // result), perform template argument deduction and place the
1169 // specialization into the result set. We do this to avoid forcing all
1170 // callers to perform special deduction for conversion functions.
1171 TemplateDeductionInfo Info(R.getNameLoc());
1172 FunctionDecl *Specialization = nullptr;
1173
1174 const FunctionProtoType *ConvProto
1175 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1176 assert(ConvProto && "Nonsensical conversion function template type")(static_cast <bool> (ConvProto && "Nonsensical conversion function template type"
) ? void (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "clang/lib/Sema/SemaLookup.cpp", 1176, __extension__ __PRETTY_FUNCTION__
))
;
1177
1178 // Compute the type of the function that we would expect the conversion
1179 // function to have, if it were to match the name given.
1180 // FIXME: Calling convention!
1181 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1182 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1183 EPI.ExceptionSpec = EST_None;
1184 QualType ExpectedType = R.getSema().Context.getFunctionType(
1185 R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1186
1187 // Perform template argument deduction against the type that we would
1188 // expect the function to have.
1189 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1190 Specialization, Info)
1191 == Sema::TDK_Success) {
1192 R.addDecl(Specialization);
1193 Found = true;
1194 }
1195 }
1196
1197 return Found;
1198}
1199
1200// Performs C++ unqualified lookup into the given file context.
1201static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1202 const DeclContext *NS,
1203 UnqualUsingDirectiveSet &UDirs) {
1204
1205 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")(static_cast <bool> (NS && NS->isFileContext
() && "CppNamespaceLookup() requires namespace!") ? void
(0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "clang/lib/Sema/SemaLookup.cpp", 1205, __extension__ __PRETTY_FUNCTION__
))
;
1206
1207 // Perform direct name lookup into the LookupCtx.
1208 bool Found = LookupDirect(S, R, NS);
1209
1210 // Perform direct name lookup into the namespaces nominated by the
1211 // using directives whose common ancestor is this namespace.
1212 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1213 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1214 Found = true;
1215
1216 R.resolveKind();
1217
1218 return Found;
1219}
1220
1221static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1222 if (DeclContext *Ctx = S->getEntity())
1223 return Ctx->isFileContext();
1224 return false;
1225}
1226
1227/// Find the outer declaration context from this scope. This indicates the
1228/// context that we should search up to (exclusive) before considering the
1229/// parent of the specified scope.
1230static DeclContext *findOuterContext(Scope *S) {
1231 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1232 if (DeclContext *DC = OuterS->getLookupEntity())
1233 return DC;
1234 return nullptr;
1235}
1236
1237namespace {
1238/// An RAII object to specify that we want to find block scope extern
1239/// declarations.
1240struct FindLocalExternScope {
1241 FindLocalExternScope(LookupResult &R)
1242 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1243 Decl::IDNS_LocalExtern) {
1244 R.setFindLocalExtern(R.getIdentifierNamespace() &
1245 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1246 }
1247 void restore() {
1248 R.setFindLocalExtern(OldFindLocalExtern);
1249 }
1250 ~FindLocalExternScope() {
1251 restore();
1252 }
1253 LookupResult &R;
1254 bool OldFindLocalExtern;
1255};
1256} // end anonymous namespace
1257
1258bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1259 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Can perform only C++ lookup") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "clang/lib/Sema/SemaLookup.cpp", 1259, __extension__ __PRETTY_FUNCTION__
))
;
1260
1261 DeclarationName Name = R.getLookupName();
1262 Sema::LookupNameKind NameKind = R.getLookupKind();
1263
1264 // If this is the name of an implicitly-declared special member function,
1265 // go through the scope stack to implicitly declare
1266 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1267 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1268 if (DeclContext *DC = PreS->getEntity())
1269 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1270 }
1271
1272 // Implicitly declare member functions with the name we're looking for, if in
1273 // fact we are in a scope where it matters.
1274
1275 Scope *Initial = S;
1276 IdentifierResolver::iterator
1277 I = IdResolver.begin(Name),
1278 IEnd = IdResolver.end();
1279
1280 // First we lookup local scope.
1281 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1282 // ...During unqualified name lookup (3.4.1), the names appear as if
1283 // they were declared in the nearest enclosing namespace which contains
1284 // both the using-directive and the nominated namespace.
1285 // [Note: in this context, "contains" means "contains directly or
1286 // indirectly".
1287 //
1288 // For example:
1289 // namespace A { int i; }
1290 // void foo() {
1291 // int i;
1292 // {
1293 // using namespace A;
1294 // ++i; // finds local 'i', A::i appears at global scope
1295 // }
1296 // }
1297 //
1298 UnqualUsingDirectiveSet UDirs(*this);
1299 bool VisitedUsingDirectives = false;
1300 bool LeftStartingScope = false;
1301
1302 // When performing a scope lookup, we want to find local extern decls.
1303 FindLocalExternScope FindLocals(R);
1304
1305 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1306 bool SearchNamespaceScope = true;
1307 // Check whether the IdResolver has anything in this scope.
1308 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1309 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1310 if (NameKind == LookupRedeclarationWithLinkage &&
1311 !(*I)->isTemplateParameter()) {
1312 // If it's a template parameter, we still find it, so we can diagnose
1313 // the invalid redeclaration.
1314
1315 // Determine whether this (or a previous) declaration is
1316 // out-of-scope.
1317 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1318 LeftStartingScope = true;
1319
1320 // If we found something outside of our starting scope that
1321 // does not have linkage, skip it.
1322 if (LeftStartingScope && !((*I)->hasLinkage())) {
1323 R.setShadowed();
1324 continue;
1325 }
1326 } else {
1327 // We found something in this scope, we should not look at the
1328 // namespace scope
1329 SearchNamespaceScope = false;
1330 }
1331 R.addDecl(ND);
1332 }
1333 }
1334 if (!SearchNamespaceScope) {
1335 R.resolveKind();
1336 if (S->isClassScope())
1337 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1338 R.setNamingClass(Record);
1339 return true;
1340 }
1341
1342 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1343 // C++11 [class.friend]p11:
1344 // If a friend declaration appears in a local class and the name
1345 // specified is an unqualified name, a prior declaration is
1346 // looked up without considering scopes that are outside the
1347 // innermost enclosing non-class scope.
1348 return false;
1349 }
1350
1351 if (DeclContext *Ctx = S->getLookupEntity()) {
1352 DeclContext *OuterCtx = findOuterContext(S);
1353 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1354 // We do not directly look into transparent contexts, since
1355 // those entities will be found in the nearest enclosing
1356 // non-transparent context.
1357 if (Ctx->isTransparentContext())
1358 continue;
1359
1360 // We do not look directly into function or method contexts,
1361 // since all of the local variables and parameters of the
1362 // function/method are present within the Scope.
1363 if (Ctx->isFunctionOrMethod()) {
1364 // If we have an Objective-C instance method, look for ivars
1365 // in the corresponding interface.
1366 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1367 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1368 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1369 ObjCInterfaceDecl *ClassDeclared;
1370 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1371 Name.getAsIdentifierInfo(),
1372 ClassDeclared)) {
1373 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1374 R.addDecl(ND);
1375 R.resolveKind();
1376 return true;
1377 }
1378 }
1379 }
1380 }
1381
1382 continue;
1383 }
1384
1385 // If this is a file context, we need to perform unqualified name
1386 // lookup considering using directives.
1387 if (Ctx->isFileContext()) {
1388 // If we haven't handled using directives yet, do so now.
1389 if (!VisitedUsingDirectives) {
1390 // Add using directives from this context up to the top level.
1391 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1392 if (UCtx->isTransparentContext())
1393 continue;
1394
1395 UDirs.visit(UCtx, UCtx);
1396 }
1397
1398 // Find the innermost file scope, so we can add using directives
1399 // from local scopes.
1400 Scope *InnermostFileScope = S;
1401 while (InnermostFileScope &&
1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1403 InnermostFileScope = InnermostFileScope->getParent();
1404 UDirs.visitScopeChain(Initial, InnermostFileScope);
1405
1406 UDirs.done();
1407
1408 VisitedUsingDirectives = true;
1409 }
1410
1411 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1412 R.resolveKind();
1413 return true;
1414 }
1415
1416 continue;
1417 }
1418
1419 // Perform qualified name lookup into this context.
1420 // FIXME: In some cases, we know that every name that could be found by
1421 // this qualified name lookup will also be on the identifier chain. For
1422 // example, inside a class without any base classes, we never need to
1423 // perform qualified lookup because all of the members are on top of the
1424 // identifier chain.
1425 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1426 return true;
1427 }
1428 }
1429 }
1430
1431 // Stop if we ran out of scopes.
1432 // FIXME: This really, really shouldn't be happening.
1433 if (!S) return false;
1434
1435 // If we are looking for members, no need to look into global/namespace scope.
1436 if (NameKind == LookupMemberName)
1437 return false;
1438
1439 // Collect UsingDirectiveDecls in all scopes, and recursively all
1440 // nominated namespaces by those using-directives.
1441 //
1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1443 // don't build it for each lookup!
1444 if (!VisitedUsingDirectives) {
1445 UDirs.visitScopeChain(Initial, S);
1446 UDirs.done();
1447 }
1448
1449 // If we're not performing redeclaration lookup, do not look for local
1450 // extern declarations outside of a function scope.
1451 if (!R.isForRedeclaration())
1452 FindLocals.restore();
1453
1454 // Lookup namespace scope, and global scope.
1455 // Unqualified name lookup in C++ requires looking into scopes
1456 // that aren't strictly lexical, and therefore we walk through the
1457 // context as well as walking through the scopes.
1458 for (; S; S = S->getParent()) {
1459 // Check whether the IdResolver has anything in this scope.
1460 bool Found = false;
1461 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1462 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1463 // We found something. Look for anything else in our scope
1464 // with this same name and in an acceptable identifier
1465 // namespace, so that we can construct an overload set if we
1466 // need to.
1467 Found = true;
1468 R.addDecl(ND);
1469 }
1470 }
1471
1472 if (Found && S->isTemplateParamScope()) {
1473 R.resolveKind();
1474 return true;
1475 }
1476
1477 DeclContext *Ctx = S->getLookupEntity();
1478 if (Ctx) {
1479 DeclContext *OuterCtx = findOuterContext(S);
1480 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1481 // We do not directly look into transparent contexts, since
1482 // those entities will be found in the nearest enclosing
1483 // non-transparent context.
1484 if (Ctx->isTransparentContext())
1485 continue;
1486
1487 // If we have a context, and it's not a context stashed in the
1488 // template parameter scope for an out-of-line definition, also
1489 // look into that context.
1490 if (!(Found && S->isTemplateParamScope())) {
1491 assert(Ctx->isFileContext() &&(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "clang/lib/Sema/SemaLookup.cpp", 1492, __extension__ __PRETTY_FUNCTION__
))
1492 "We should have been looking only at file context here already.")(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "clang/lib/Sema/SemaLookup.cpp", 1492, __extension__ __PRETTY_FUNCTION__
))
;
1493
1494 // Look into context considering using-directives.
1495 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1496 Found = true;
1497 }
1498
1499 if (Found) {
1500 R.resolveKind();
1501 return true;
1502 }
1503
1504 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1505 return false;
1506 }
1507 }
1508
1509 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1510 return false;
1511 }
1512
1513 return !R.empty();
1514}
1515
1516void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1517 if (auto *M = getCurrentModule())
1518 Context.mergeDefinitionIntoModule(ND, M);
1519 else
1520 // We're not building a module; just make the definition visible.
1521 ND->setVisibleDespiteOwningModule();
1522
1523 // If ND is a template declaration, make the template parameters
1524 // visible too. They're not (necessarily) within a mergeable DeclContext.
1525 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1526 for (auto *Param : *TD->getTemplateParameters())
1527 makeMergedDefinitionVisible(Param);
1528}
1529
1530/// Find the module in which the given declaration was defined.
1531static Module *getDefiningModule(Sema &S, Decl *Entity) {
1532 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1533 // If this function was instantiated from a template, the defining module is
1534 // the module containing the pattern.
1535 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1536 Entity = Pattern;
1537 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1538 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1539 Entity = Pattern;
1540 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1541 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1542 Entity = Pattern;
1543 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1544 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1545 Entity = Pattern;
1546 }
1547
1548 // Walk up to the containing context. That might also have been instantiated
1549 // from a template.
1550 DeclContext *Context = Entity->getLexicalDeclContext();
1551 if (Context->isFileContext())
1552 return S.getOwningModule(Entity);
1553 return getDefiningModule(S, cast<Decl>(Context));
1554}
1555
1556llvm::DenseSet<Module*> &Sema::getLookupModules() {
1557 unsigned N = CodeSynthesisContexts.size();
1558 for (unsigned I = CodeSynthesisContextLookupModules.size();
1559 I != N; ++I) {
1560 Module *M = CodeSynthesisContexts[I].Entity ?
1561 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1562 nullptr;
1563 if (M && !LookupModulesCache.insert(M).second)
1564 M = nullptr;
1565 CodeSynthesisContextLookupModules.push_back(M);
1566 }
1567 return LookupModulesCache;
1568}
1569
1570/// Determine if we could use all the declarations in the module.
1571bool Sema::isUsableModule(const Module *M) {
1572 assert(M && "We shouldn't check nullness for module here")(static_cast <bool> (M && "We shouldn't check nullness for module here"
) ? void (0) : __assert_fail ("M && \"We shouldn't check nullness for module here\""
, "clang/lib/Sema/SemaLookup.cpp", 1572, __extension__ __PRETTY_FUNCTION__
))
;
1573 // Return quickly if we cached the result.
1574 if (UsableModuleUnitsCache.count(M))
1575 return true;
1576
1577 // If M is the global module fragment of the current translation unit. So it
1578 // should be usable.
1579 // [module.global.frag]p1:
1580 // The global module fragment can be used to provide declarations that are
1581 // attached to the global module and usable within the module unit.
1582 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1583 M == TheExportedImplicitGlobalModuleFragment ||
1584 // If M is the module we're parsing, it should be usable. This covers the
1585 // private module fragment. The private module fragment is usable only if
1586 // it is within the current module unit. And it must be the current
1587 // parsing module unit if it is within the current module unit according
1588 // to the grammar of the private module fragment. NOTE: This is covered by
1589 // the following condition. The intention of the check is to avoid string
1590 // comparison as much as possible.
1591 M == getCurrentModule() ||
1592 // The module unit which is in the same module with the current module
1593 // unit is usable.
1594 //
1595 // FIXME: Here we judge if they are in the same module by comparing the
1596 // string. Is there any better solution?
1597 M->getPrimaryModuleInterfaceName() ==
1598 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1599 UsableModuleUnitsCache.insert(M);
1600 return true;
1601 }
1602
1603 return false;
1604}
1605
1606bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1607 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1608 if (isModuleVisible(Merged))
1609 return true;
1610 return false;
1611}
1612
1613bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1614 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1615 if (isUsableModule(Merged))
1616 return true;
1617 return false;
1618}
1619
1620template <typename ParmDecl>
1621static bool
1622hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1623 llvm::SmallVectorImpl<Module *> *Modules,
1624 Sema::AcceptableKind Kind) {
1625 if (!D->hasDefaultArgument())
1626 return false;
1627
1628 llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1629 while (D && Visited.insert(D).second) {
1630 auto &DefaultArg = D->getDefaultArgStorage();
1631 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1632 return true;
1633
1634 if (!DefaultArg.isInherited() && Modules) {
1635 auto *NonConstD = const_cast<ParmDecl*>(D);
1636 Modules->push_back(S.getOwningModule(NonConstD));
1637 }
1638
1639 // If there was a previous default argument, maybe its parameter is
1640 // acceptable.
1641 D = DefaultArg.getInheritedFrom();
1642 }
1643 return false;
1644}
1645
1646bool Sema::hasAcceptableDefaultArgument(
1647 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1648 Sema::AcceptableKind Kind) {
1649 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1650 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1651
1652 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1653 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1654
1655 return ::hasAcceptableDefaultArgument(
1656 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1657}
1658
1659bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1660 llvm::SmallVectorImpl<Module *> *Modules) {
1661 return hasAcceptableDefaultArgument(D, Modules,
1662 Sema::AcceptableKind::Visible);
1663}
1664
1665bool Sema::hasReachableDefaultArgument(
1666 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1667 return hasAcceptableDefaultArgument(D, Modules,
1668 Sema::AcceptableKind::Reachable);
1669}
1670
1671template <typename Filter>
1672static bool
1673hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1674 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1675 Sema::AcceptableKind Kind) {
1676 bool HasFilteredRedecls = false;
1677
1678 for (auto *Redecl : D->redecls()) {
1679 auto *R = cast<NamedDecl>(Redecl);
1680 if (!F(R))
1681 continue;
1682
1683 if (S.isAcceptable(R, Kind))
1684 return true;
1685
1686 HasFilteredRedecls = true;
1687
1688 if (Modules)
1689 Modules->push_back(R->getOwningModule());
1690 }
1691
1692 // Only return false if there is at least one redecl that is not filtered out.
1693 if (HasFilteredRedecls)
1694 return false;
1695
1696 return true;
1697}
1698
1699static bool
1700hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1701 llvm::SmallVectorImpl<Module *> *Modules,
1702 Sema::AcceptableKind Kind) {
1703 return hasAcceptableDeclarationImpl(
1704 S, D, Modules,
1705 [](const NamedDecl *D) {
1706 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1707 return RD->getTemplateSpecializationKind() ==
1708 TSK_ExplicitSpecialization;
1709 if (auto *FD = dyn_cast<FunctionDecl>(D))
1710 return FD->getTemplateSpecializationKind() ==
1711 TSK_ExplicitSpecialization;
1712 if (auto *VD = dyn_cast<VarDecl>(D))
1713 return VD->getTemplateSpecializationKind() ==
1714 TSK_ExplicitSpecialization;
1715 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "clang/lib/Sema/SemaLookup.cpp", 1715)
;
1716 },
1717 Kind);
1718}
1719
1720bool Sema::hasVisibleExplicitSpecialization(
1721 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1722 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1723 Sema::AcceptableKind::Visible);
1724}
1725
1726bool Sema::hasReachableExplicitSpecialization(
1727 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1728 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1729 Sema::AcceptableKind::Reachable);
1730}
1731
1732static bool
1733hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1734 llvm::SmallVectorImpl<Module *> *Modules,
1735 Sema::AcceptableKind Kind) {
1736 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "clang/lib/Sema/SemaLookup.cpp", 1737, __extension__ __PRETTY_FUNCTION__
))
1737 "not a member specialization")(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "clang/lib/Sema/SemaLookup.cpp", 1737, __extension__ __PRETTY_FUNCTION__
))
;
1738 return hasAcceptableDeclarationImpl(
1739 S, D, Modules,
1740 [](const NamedDecl *D) {
1741 // If the specialization is declared at namespace scope, then it's a
1742 // member specialization declaration. If it's lexically inside the class
1743 // definition then it was instantiated.
1744 //
1745 // FIXME: This is a hack. There should be a better way to determine
1746 // this.
1747 // FIXME: What about MS-style explicit specializations declared within a
1748 // class definition?
1749 return D->getLexicalDeclContext()->isFileContext();
1750 },
1751 Kind);
1752}
1753
1754bool Sema::hasVisibleMemberSpecialization(
1755 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1756 return hasAcceptableMemberSpecialization(*this, D, Modules,
1757 Sema::AcceptableKind::Visible);
1758}
1759
1760bool Sema::hasReachableMemberSpecialization(
1761 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1762 return hasAcceptableMemberSpecialization(*this, D, Modules,
1763 Sema::AcceptableKind::Reachable);
1764}
1765
1766/// Determine whether a declaration is acceptable to name lookup.
1767///
1768/// This routine determines whether the declaration D is acceptable in the
1769/// current lookup context, taking into account the current template
1770/// instantiation stack. During template instantiation, a declaration is
1771/// acceptable if it is acceptable from a module containing any entity on the
1772/// template instantiation path (by instantiating a template, you allow it to
1773/// see the declarations that your module can see, including those later on in
1774/// your module).
1775bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1776 Sema::AcceptableKind Kind) {
1777 assert(!D->isUnconditionallyVisible() &&(static_cast <bool> (!D->isUnconditionallyVisible() &&
"should not call this: not in slow case") ? void (0) : __assert_fail
("!D->isUnconditionallyVisible() && \"should not call this: not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 1778, __extension__ __PRETTY_FUNCTION__
))
1778 "should not call this: not in slow case")(static_cast <bool> (!D->isUnconditionallyVisible() &&
"should not call this: not in slow case") ? void (0) : __assert_fail
("!D->isUnconditionallyVisible() && \"should not call this: not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 1778, __extension__ __PRETTY_FUNCTION__
))
;
1779
1780 Module *DeclModule = SemaRef.getOwningModule(D);
1781 assert(DeclModule && "hidden decl has no owning module")(static_cast <bool> (DeclModule && "hidden decl has no owning module"
) ? void (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "clang/lib/Sema/SemaLookup.cpp", 1781, __extension__ __PRETTY_FUNCTION__
))
;
1782
1783 // If the owning module is visible, the decl is acceptable.
1784 if (SemaRef.isModuleVisible(DeclModule,
1785 D->isInvisibleOutsideTheOwningModule()))
1786 return true;
1787
1788 // Determine whether a decl context is a file context for the purpose of
1789 // visibility/reachability. This looks through some (export and linkage spec)
1790 // transparent contexts, but not others (enums).
1791 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1792 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1793 isa<ExportDecl>(DC);
1794 };
1795
1796 // If this declaration is not at namespace scope
1797 // then it is acceptable if its lexical parent has a acceptable definition.
1798 DeclContext *DC = D->getLexicalDeclContext();
1799 if (DC && !IsEffectivelyFileContext(DC)) {
1800 // For a parameter, check whether our current template declaration's
1801 // lexical context is acceptable, not whether there's some other acceptable
1802 // definition of it, because parameters aren't "within" the definition.
1803 //
1804 // In C++ we need to check for a acceptable definition due to ODR merging,
1805 // and in C we must not because each declaration of a function gets its own
1806 // set of declarations for tags in prototype scope.
1807 bool AcceptableWithinParent;
1808 if (D->isTemplateParameter()) {
1809 bool SearchDefinitions = true;
1810 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1811 if (const auto *TD = DCD->getDescribedTemplate()) {
1812 TemplateParameterList *TPL = TD->getTemplateParameters();
1813 auto Index = getDepthAndIndex(D).second;
1814 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1815 }
1816 }
1817 if (SearchDefinitions)
1818 AcceptableWithinParent =
1819 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1820 else
1821 AcceptableWithinParent =
1822 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1823 } else if (isa<ParmVarDecl>(D) ||
1824 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1825 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1826 else if (D->isModulePrivate()) {
1827 // A module-private declaration is only acceptable if an enclosing lexical
1828 // parent was merged with another definition in the current module.
1829 AcceptableWithinParent = false;
1830 do {
1831 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1832 AcceptableWithinParent = true;
1833 break;
1834 }
1835 DC = DC->getLexicalParent();
1836 } while (!IsEffectivelyFileContext(DC));
1837 } else {
1838 AcceptableWithinParent =
1839 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1840 }
1841
1842 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1843 Kind == Sema::AcceptableKind::Visible &&
1844 // FIXME: Do something better in this case.
1845 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1846 // Cache the fact that this declaration is implicitly visible because
1847 // its parent has a visible definition.
1848 D->setVisibleDespiteOwningModule();
1849 }
1850 return AcceptableWithinParent;
1851 }
1852
1853 if (Kind == Sema::AcceptableKind::Visible)
1854 return false;
1855
1856 assert(Kind == Sema::AcceptableKind::Reachable &&(static_cast <bool> (Kind == Sema::AcceptableKind::Reachable
&& "Additional Sema::AcceptableKind?") ? void (0) : __assert_fail
("Kind == Sema::AcceptableKind::Reachable && \"Additional Sema::AcceptableKind?\""
, "clang/lib/Sema/SemaLookup.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
1857 "Additional Sema::AcceptableKind?")(static_cast <bool> (Kind == Sema::AcceptableKind::Reachable
&& "Additional Sema::AcceptableKind?") ? void (0) : __assert_fail
("Kind == Sema::AcceptableKind::Reachable && \"Additional Sema::AcceptableKind?\""
, "clang/lib/Sema/SemaLookup.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
;
1858 return isReachableSlow(SemaRef, D);
1859}
1860
1861bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1862 // The module might be ordinarily visible. For a module-private query, that
1863 // means it is part of the current module.
1864 if (ModulePrivate && isUsableModule(M))
1865 return true;
1866
1867 // For a query which is not module-private, that means it is in our visible
1868 // module set.
1869 if (!ModulePrivate && VisibleModules.isVisible(M))
1870 return true;
1871
1872 // Otherwise, it might be visible by virtue of the query being within a
1873 // template instantiation or similar that is permitted to look inside M.
1874
1875 // Find the extra places where we need to look.
1876 const auto &LookupModules = getLookupModules();
1877 if (LookupModules.empty())
1878 return false;
1879
1880 // If our lookup set contains the module, it's visible.
1881 if (LookupModules.count(M))
1882 return true;
1883
1884 // The global module fragments are visible to its corresponding module unit.
1885 // So the global module fragment should be visible if the its corresponding
1886 // module unit is visible.
1887 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1888 return true;
1889
1890 // For a module-private query, that's everywhere we get to look.
1891 if (ModulePrivate)
1892 return false;
1893
1894 // Check whether M is transitively exported to an import of the lookup set.
1895 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1896 return LookupM->isModuleVisible(M);
1897 });
1898}
1899
1900// FIXME: Return false directly if we don't have an interface dependency on the
1901// translation unit containing D.
1902bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1903 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n")(static_cast <bool> (!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"
) ? void (0) : __assert_fail ("!isVisible(SemaRef, D) && \"Shouldn't call the slow case.\\n\""
, "clang/lib/Sema/SemaLookup.cpp", 1903, __extension__ __PRETTY_FUNCTION__
))
;
1904
1905 Module *DeclModule = SemaRef.getOwningModule(D);
1906 assert(DeclModule && "hidden decl has no owning module")(static_cast <bool> (DeclModule && "hidden decl has no owning module"
) ? void (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "clang/lib/Sema/SemaLookup.cpp", 1906, __extension__ __PRETTY_FUNCTION__
))
;
1907
1908 // Entities in header like modules are reachable only if they're visible.
1909 if (DeclModule->isHeaderLikeModule())
1910 return false;
1911
1912 if (!D->isInAnotherModuleUnit())
1913 return true;
1914
1915 // [module.reach]/p3:
1916 // A declaration D is reachable from a point P if:
1917 // ...
1918 // - D is not discarded ([module.global.frag]), appears in a translation unit
1919 // that is reachable from P, and does not appear within a private module
1920 // fragment.
1921 //
1922 // A declaration that's discarded in the GMF should be module-private.
1923 if (D->isModulePrivate())
1924 return false;
1925
1926 // [module.reach]/p1
1927 // A translation unit U is necessarily reachable from a point P if U is a
1928 // module interface unit on which the translation unit containing P has an
1929 // interface dependency, or the translation unit containing P imports U, in
1930 // either case prior to P ([module.import]).
1931 //
1932 // [module.import]/p10
1933 // A translation unit has an interface dependency on a translation unit U if
1934 // it contains a declaration (possibly a module-declaration) that imports U
1935 // or if it has an interface dependency on a translation unit that has an
1936 // interface dependency on U.
1937 //
1938 // So we could conclude the module unit U is necessarily reachable if:
1939 // (1) The module unit U is module interface unit.
1940 // (2) The current unit has an interface dependency on the module unit U.
1941 //
1942 // Here we only check for the first condition. Since we couldn't see
1943 // DeclModule if it isn't (transitively) imported.
1944 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1945 return true;
1946
1947 // [module.reach]/p2
1948 // Additional translation units on
1949 // which the point within the program has an interface dependency may be
1950 // considered reachable, but it is unspecified which are and under what
1951 // circumstances.
1952 //
1953 // The decision here is to treat all additional tranditional units as
1954 // unreachable.
1955 return false;
1956}
1957
1958bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1959 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1960}
1961
1962bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1963 // FIXME: If there are both visible and hidden declarations, we need to take
1964 // into account whether redeclaration is possible. Example:
1965 //
1966 // Non-imported module:
1967 // int f(T); // #1
1968 // Some TU:
1969 // static int f(U); // #2, not a redeclaration of #1
1970 // int f(T); // #3, finds both, should link with #1 if T != U, but
1971 // // with #2 if T == U; neither should be ambiguous.
1972 for (auto *D : R) {
1973 if (isVisible(D))
1974 return true;
1975 assert(D->isExternallyDeclarable() &&(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "clang/lib/Sema/SemaLookup.cpp", 1976, __extension__ __PRETTY_FUNCTION__
))
1976 "should not have hidden, non-externally-declarable result here")(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "clang/lib/Sema/SemaLookup.cpp", 1976, __extension__ __PRETTY_FUNCTION__
))
;
1977 }
1978
1979 // This function is called once "New" is essentially complete, but before a
1980 // previous declaration is attached. We can't query the linkage of "New" in
1981 // general, because attaching the previous declaration can change the
1982 // linkage of New to match the previous declaration.
1983 //
1984 // However, because we've just determined that there is no *visible* prior
1985 // declaration, we can compute the linkage here. There are two possibilities:
1986 //
1987 // * This is not a redeclaration; it's safe to compute the linkage now.
1988 //
1989 // * This is a redeclaration of a prior declaration that is externally
1990 // redeclarable. In that case, the linkage of the declaration is not
1991 // changed by attaching the prior declaration, because both are externally
1992 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1993 //
1994 // FIXME: This is subtle and fragile.
1995 return New->isExternallyDeclarable();
1996}
1997
1998/// Retrieve the visible declaration corresponding to D, if any.
1999///
2000/// This routine determines whether the declaration D is visible in the current
2001/// module, with the current imports. If not, it checks whether any
2002/// redeclaration of D is visible, and if so, returns that declaration.
2003///
2004/// \returns D, or a visible previous declaration of D, whichever is more recent
2005/// and visible. If no declaration of D is visible, returns null.
2006static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2007 unsigned IDNS) {
2008 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case")(static_cast <bool> (!LookupResult::isAvailableForLookup
(SemaRef, D) && "not in slow case") ? void (0) : __assert_fail
("!LookupResult::isAvailableForLookup(SemaRef, D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2008, __extension__ __PRETTY_FUNCTION__
))
;
2009
2010 for (auto *RD : D->redecls()) {
2011 // Don't bother with extra checks if we already know this one isn't visible.
2012 if (RD == D)
2013 continue;
2014
2015 auto ND = cast<NamedDecl>(RD);
2016 // FIXME: This is wrong in the case where the previous declaration is not
2017 // visible in the same scope as D. This needs to be done much more
2018 // carefully.
2019 if (ND->isInIdentifierNamespace(IDNS) &&
2020 LookupResult::isAvailableForLookup(SemaRef, ND))
2021 return ND;
2022 }
2023
2024 return nullptr;
2025}
2026
2027bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2028 llvm::SmallVectorImpl<Module *> *Modules) {
2029 assert(!isVisible(D) && "not in slow case")(static_cast <bool> (!isVisible(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2029, __extension__ __PRETTY_FUNCTION__
))
;
2030 return hasAcceptableDeclarationImpl(
2031 *this, D, Modules, [](const NamedDecl *) { return true; },
2032 Sema::AcceptableKind::Visible);
2033}
2034
2035bool Sema::hasReachableDeclarationSlow(
2036 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2037 assert(!isReachable(D) && "not in slow case")(static_cast <bool> (!isReachable(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isReachable(D) && \"not in slow case\""
, "clang/lib/Sema/SemaLookup.cpp", 2037, __extension__ __PRETTY_FUNCTION__
))
;
2038 return hasAcceptableDeclarationImpl(
2039 *this, D, Modules, [](const NamedDecl *) { return true; },
2040 Sema::AcceptableKind::Reachable);
2041}
2042
2043NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2044 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2045 // Namespaces are a bit of a special case: we expect there to be a lot of
2046 // redeclarations of some namespaces, all declarations of a namespace are
2047 // essentially interchangeable, all declarations are found by name lookup
2048 // if any is, and namespaces are never looked up during template
2049 // instantiation. So we benefit from caching the check in this case, and
2050 // it is correct to do so.
2051 auto *Key = ND->getCanonicalDecl();
2052 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2053 return Acceptable;
2054 auto *Acceptable = isVisible(getSema(), Key)
2055 ? Key
2056 : findAcceptableDecl(getSema(), Key, IDNS);
2057 if (Acceptable)
2058 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2059 return Acceptable;
2060 }
2061
2062 return findAcceptableDecl(getSema(), D, IDNS);
2063}
2064
2065bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2066 // If this declaration is already visible, return it directly.
2067 if (D->isUnconditionallyVisible())
2068 return true;
2069
2070 // During template instantiation, we can refer to hidden declarations, if
2071 // they were visible in any module along the path of instantiation.
2072 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2073}
2074
2075bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2076 if (D->isUnconditionallyVisible())
2077 return true;
2078
2079 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2080}
2081
2082bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2083 // We should check the visibility at the callsite already.
2084 if (isVisible(SemaRef, ND))
2085 return true;
2086
2087 // Deduction guide lives in namespace scope generally, but it is just a
2088 // hint to the compilers. What we actually lookup for is the generated member
2089 // of the corresponding template. So it is sufficient to check the
2090 // reachability of the template decl.
2091 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2092 return SemaRef.hasReachableDefinition(DeductionGuide);
2093
2094 // FIXME: The lookup for allocation function is a standalone process.
2095 // (We can find the logics in Sema::FindAllocationFunctions)
2096 //
2097 // Such structure makes it a problem when we instantiate a template
2098 // declaration using placement allocation function if the placement
2099 // allocation function is invisible.
2100 // (See https://github.com/llvm/llvm-project/issues/59601)
2101 //
2102 // Here we workaround it by making the placement allocation functions
2103 // always acceptable. The downside is that we can't diagnose the direct
2104 // use of the invisible placement allocation functions. (Although such uses
2105 // should be rare).
2106 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2107 FD && FD->isReservedGlobalPlacementOperator())
2108 return true;
2109
2110 auto *DC = ND->getDeclContext();
2111 // If ND is not visible and it is at namespace scope, it shouldn't be found
2112 // by name lookup.
2113 if (DC->isFileContext())
2114 return false;
2115
2116 // [module.interface]p7
2117 // Class and enumeration member names can be found by name lookup in any
2118 // context in which a definition of the type is reachable.
2119 //
2120 // FIXME: The current implementation didn't consider about scope. For example,
2121 // ```
2122 // // m.cppm
2123 // export module m;
2124 // enum E1 { e1 };
2125 // // Use.cpp
2126 // import m;
2127 // void test() {
2128 // auto a = E1::e1; // Error as expected.
2129 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2130 // }
2131 // ```
2132 // For the above example, the current implementation would emit error for `a`
2133 // correctly. However, the implementation wouldn't diagnose about `b` now.
2134 // Since we only check the reachability for the parent only.
2135 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2136 if (auto *TD = dyn_cast<TagDecl>(DC))
2137 return SemaRef.hasReachableDefinition(TD);
2138
2139 return false;
2140}
2141
2142/// Perform unqualified name lookup starting from a given
2143/// scope.
2144///
2145/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2146/// used to find names within the current scope. For example, 'x' in
2147/// @code
2148/// int x;
2149/// int f() {
2150/// return x; // unqualified name look finds 'x' in the global scope
2151/// }
2152/// @endcode
2153///
2154/// Different lookup criteria can find different names. For example, a
2155/// particular scope can have both a struct and a function of the same
2156/// name, and each can be found by certain lookup criteria. For more
2157/// information about lookup criteria, see the documentation for the
2158/// class LookupCriteria.
2159///
2160/// @param S The scope from which unqualified name lookup will
2161/// begin. If the lookup criteria permits, name lookup may also search
2162/// in the parent scopes.
2163///
2164/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2165/// look up and the lookup kind), and is updated with the results of lookup
2166/// including zero or more declarations and possibly additional information
2167/// used to diagnose ambiguities.
2168///
2169/// @returns \c true if lookup succeeded and false otherwise.
2170bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2171 bool ForceNoCPlusPlus) {
2172 DeclarationName Name = R.getLookupName();
2173 if (!Name) return false;
2174
2175 LookupNameKind NameKind = R.getLookupKind();
2176
2177 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2178 // Unqualified name lookup in C/Objective-C is purely lexical, so
2179 // search in the declarations attached to the name.
2180 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2181 // Find the nearest non-transparent declaration scope.
2182 while (!(S->getFlags() & Scope::DeclScope) ||
2183 (S->getEntity() && S->getEntity()->isTransparentContext()))
2184 S = S->getParent();
2185 }
2186
2187 // When performing a scope lookup, we want to find local extern decls.
2188 FindLocalExternScope FindLocals(R);
2189
2190 // Scan up the scope chain looking for a decl that matches this
2191 // identifier that is in the appropriate namespace. This search
2192 // should not take long, as shadowing of names is uncommon, and
2193 // deep shadowing is extremely uncommon.
2194 bool LeftStartingScope = false;
2195
2196 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2197 IEnd = IdResolver.end();
2198 I != IEnd; ++I)
2199 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2200 if (NameKind == LookupRedeclarationWithLinkage) {
2201 // Determine whether this (or a previous) declaration is
2202 // out-of-scope.
2203 if (!LeftStartingScope && !S->isDeclScope(*I))
2204 LeftStartingScope = true;
2205
2206 // If we found something outside of our starting scope that
2207 // does not have linkage, skip it.
2208 if (LeftStartingScope && !((*I)->hasLinkage())) {
2209 R.setShadowed();
2210 continue;
2211 }
2212 }
2213 else if (NameKind == LookupObjCImplicitSelfParam &&
2214 !isa<ImplicitParamDecl>(*I))
2215 continue;
2216
2217 R.addDecl(D);
2218
2219 // Check whether there are any other declarations with the same name
2220 // and in the same scope.
2221 if (I != IEnd) {
2222 // Find the scope in which this declaration was declared (if it
2223 // actually exists in a Scope).
2224 while (S && !S->isDeclScope(D))
2225 S = S->getParent();
2226
2227 // If the scope containing the declaration is the translation unit,
2228 // then we'll need to perform our checks based on the matching
2229 // DeclContexts rather than matching scopes.
2230 if (S && isNamespaceOrTranslationUnitScope(S))
2231 S = nullptr;
2232
2233 // Compute the DeclContext, if we need it.
2234 DeclContext *DC = nullptr;
2235 if (!S)
2236 DC = (*I)->getDeclContext()->getRedeclContext();
2237
2238 IdentifierResolver::iterator LastI = I;
2239 for (++LastI; LastI != IEnd; ++LastI) {
2240 if (S) {
2241 // Match based on scope.
2242 if (!S->isDeclScope(*LastI))
2243 break;
2244 } else {
2245 // Match based on DeclContext.
2246 DeclContext *LastDC
2247 = (*LastI)->getDeclContext()->getRedeclContext();
2248 if (!LastDC->Equals(DC))
2249 break;
2250 }
2251
2252 // If the declaration is in the right namespace and visible, add it.
2253 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2254 R.addDecl(LastD);
2255 }
2256
2257 R.resolveKind();
2258 }
2259
2260 return true;
2261 }
2262 } else {
2263 // Perform C++ unqualified name lookup.
2264 if (CppLookupName(R, S))
2265 return true;
2266 }
2267
2268 // If we didn't find a use of this identifier, and if the identifier
2269 // corresponds to a compiler builtin, create the decl object for the builtin
2270 // now, injecting it into translation unit scope, and return it.
2271 if (AllowBuiltinCreation && LookupBuiltin(R))
2272 return true;
2273
2274 // If we didn't find a use of this identifier, the ExternalSource
2275 // may be able to handle the situation.
2276 // Note: some lookup failures are expected!
2277 // See e.g. R.isForRedeclaration().
2278 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2279}
2280
2281/// Perform qualified name lookup in the namespaces nominated by
2282/// using directives by the given context.
2283///
2284/// C++98 [namespace.qual]p2:
2285/// Given X::m (where X is a user-declared namespace), or given \::m
2286/// (where X is the global namespace), let S be the set of all
2287/// declarations of m in X and in the transitive closure of all
2288/// namespaces nominated by using-directives in X and its used
2289/// namespaces, except that using-directives are ignored in any
2290/// namespace, including X, directly containing one or more
2291/// declarations of m. No namespace is searched more than once in
2292/// the lookup of a name. If S is the empty set, the program is
2293/// ill-formed. Otherwise, if S has exactly one member, or if the
2294/// context of the reference is a using-declaration
2295/// (namespace.udecl), S is the required set of declarations of
2296/// m. Otherwise if the use of m is not one that allows a unique
2297/// declaration to be chosen from S, the program is ill-formed.
2298///
2299/// C++98 [namespace.qual]p5:
2300/// During the lookup of a qualified namespace member name, if the
2301/// lookup finds more than one declaration of the member, and if one
2302/// declaration introduces a class name or enumeration name and the
2303/// other declarations either introduce the same object, the same
2304/// enumerator or a set of functions, the non-type name hides the
2305/// class or enumeration name if and only if the declarations are
2306/// from the same namespace; otherwise (the declarations are from
2307/// different namespaces), the program is ill-formed.
2308static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2309 DeclContext *StartDC) {
2310 assert(StartDC->isFileContext() && "start context is not a file context")(static_cast <bool> (StartDC->isFileContext() &&
"start context is not a file context") ? void (0) : __assert_fail
("StartDC->isFileContext() && \"start context is not a file context\""
, "clang/lib/Sema/SemaLookup.cpp", 2310, __extension__ __PRETTY_FUNCTION__
))
;
2311
2312 // We have not yet looked into these namespaces, much less added
2313 // their "using-children" to the queue.
2314 SmallVector<NamespaceDecl*, 8> Queue;
2315
2316 // We have at least added all these contexts to the queue.
2317 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2318 Visited.insert(StartDC);
2319
2320 // We have already looked into the initial namespace; seed the queue
2321 // with its using-children.
2322 for (auto *I : StartDC->using_directives()) {
2323 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2324 if (S.isVisible(I) && Visited.insert(ND).second)
2325 Queue.push_back(ND);
2326 }
2327
2328 // The easiest way to implement the restriction in [namespace.qual]p5
2329 // is to check whether any of the individual results found a tag
2330 // and, if so, to declare an ambiguity if the final result is not
2331 // a tag.
2332 bool FoundTag = false;
2333 bool FoundNonTag = false;
2334
2335 LookupResult LocalR(LookupResult::Temporary, R);
2336
2337 bool Found = false;
2338 while (!Queue.empty()) {
2339 NamespaceDecl *ND = Queue.pop_back_val();
2340
2341 // We go through some convolutions here to avoid copying results
2342 // between LookupResults.
2343 bool UseLocal = !R.empty();
2344 LookupResult &DirectR = UseLocal ? LocalR : R;
2345 bool FoundDirect = LookupDirect(S, DirectR, ND);
2346
2347 if (FoundDirect) {
2348 // First do any local hiding.
2349 DirectR.resolveKind();
2350
2351 // If the local result is a tag, remember that.
2352 if (DirectR.isSingleTagDecl())
2353 FoundTag = true;
2354 else
2355 FoundNonTag = true;
2356
2357 // Append the local results to the total results if necessary.
2358 if (UseLocal) {
2359 R.addAllDecls(LocalR);
2360 LocalR.clear();
2361 }
2362 }
2363
2364 // If we find names in this namespace, ignore its using directives.
2365 if (FoundDirect) {
2366 Found = true;
2367 continue;
2368 }
2369
2370 for (auto *I : ND->using_directives()) {
2371 NamespaceDecl *Nom = I->getNominatedNamespace();
2372 if (S.isVisible(I) && Visited.insert(Nom).second)
2373 Queue.push_back(Nom);
2374 }
2375 }
2376
2377 if (Found) {
2378 if (FoundTag && FoundNonTag)
2379 R.setAmbiguousQualifiedTagHiding();
2380 else
2381 R.resolveKind();
2382 }
2383
2384 return Found;
2385}
2386
2387/// Perform qualified name lookup into a given context.
2388///
2389/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2390/// names when the context of those names is explicit specified, e.g.,
2391/// "std::vector" or "x->member", or as part of unqualified name lookup.
2392///
2393/// Different lookup criteria can find different names. For example, a
2394/// particular scope can have both a struct and a function of the same
2395/// name, and each can be found by certain lookup criteria. For more
2396/// information about lookup criteria, see the documentation for the
2397/// class LookupCriteria.
2398///
2399/// \param R captures both the lookup criteria and any lookup results found.
2400///
2401/// \param LookupCtx The context in which qualified name lookup will
2402/// search. If the lookup criteria permits, name lookup may also search
2403/// in the parent contexts or (for C++ classes) base classes.
2404///
2405/// \param InUnqualifiedLookup true if this is qualified name lookup that
2406/// occurs as part of unqualified name lookup.
2407///
2408/// \returns true if lookup succeeded, false if it failed.
2409bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2410 bool InUnqualifiedLookup) {
2411 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")(static_cast <bool> (LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? void (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "clang/lib/Sema/SemaLookup.cpp", 2411, __extension__ __PRETTY_FUNCTION__
))
;
2412
2413 if (!R.getLookupName())
2414 return false;
2415
2416 // Make sure that the declaration context is complete.
2417 assert((!isa<TagDecl>(LookupCtx) ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2421, __extension__ __PRETTY_FUNCTION__
))
2418 LookupCtx->isDependentContext() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2421, __extension__ __PRETTY_FUNCTION__
))
2419 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2421, __extension__ __PRETTY_FUNCTION__
))
2420 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2421, __extension__ __PRETTY_FUNCTION__
))
2421 "Declaration context must already be complete!")(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "clang/lib/Sema/SemaLookup.cpp", 2421, __extension__ __PRETTY_FUNCTION__
))
;
2422
2423 struct QualifiedLookupInScope {
2424 bool oldVal;
2425 DeclContext *Context;
2426 // Set flag in DeclContext informing debugger that we're looking for qualified name
2427 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2428 oldVal = ctx->setUseQualifiedLookup();
2429 }
2430 ~QualifiedLookupInScope() {
2431 Context->setUseQualifiedLookup(oldVal);
2432 }
2433 } QL(LookupCtx);
2434
2435 if (LookupDirect(*this, R, LookupCtx)) {
2436 R.resolveKind();
2437 if (isa<CXXRecordDecl>(LookupCtx))
2438 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2439 return true;
2440 }
2441
2442 // Don't descend into implied contexts for redeclarations.
2443 // C++98 [namespace.qual]p6:
2444 // In a declaration for a namespace member in which the
2445 // declarator-id is a qualified-id, given that the qualified-id
2446 // for the namespace member has the form
2447 // nested-name-specifier unqualified-id
2448 // the unqualified-id shall name a member of the namespace
2449 // designated by the nested-name-specifier.
2450 // See also [class.mfct]p5 and [class.static.data]p2.
2451 if (R.isForRedeclaration())
2452 return false;
2453
2454 // If this is a namespace, look it up in the implied namespaces.
2455 if (LookupCtx->isFileContext())
2456 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2457
2458 // If this isn't a C++ class, we aren't allowed to look into base
2459 // classes, we're done.
2460 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2461 if (!LookupRec || !LookupRec->getDefinition())
2462 return false;
2463
2464 // We're done for lookups that can never succeed for C++ classes.
2465 if (R.getLookupKind() == LookupOperatorName ||
2466 R.getLookupKind() == LookupNamespaceName ||
2467 R.getLookupKind() == LookupObjCProtocolName ||
2468 R.getLookupKind() == LookupLabel)
2469 return false;
2470
2471 // If we're performing qualified name lookup into a dependent class,
2472 // then we are actually looking into a current instantiation. If we have any
2473 // dependent base classes, then we either have to delay lookup until
2474 // template instantiation time (at which point all bases will be available)
2475 // or we have to fail.
2476 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2477 LookupRec->hasAnyDependentBases()) {
2478 R.setNotFoundInCurrentInstantiation();
2479 return false;
2480 }
2481
2482 // Perform lookup into our base classes.
2483
2484 DeclarationName Name = R.getLookupName();
2485 unsigned IDNS = R.getIdentifierNamespace();
2486
2487 // Look for this member in our base classes.
2488 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2489 CXXBasePath &Path) -> bool {
2490 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2491 // Drop leading non-matching lookup results from the declaration list so
2492 // we don't need to consider them again below.
2493 for (Path.Decls = BaseRecord->lookup(Name).begin();
2494 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2495 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2496 return true;
2497 }
2498 return false;
2499 };
2500
2501 CXXBasePaths Paths;
2502 Paths.setOrigin(LookupRec);
2503 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2504 return false;
2505
2506 R.setNamingClass(LookupRec);
2507
2508 // C++ [class.member.lookup]p2:
2509 // [...] If the resulting set of declarations are not all from
2510 // sub-objects of the same type, or the set has a nonstatic member
2511 // and includes members from distinct sub-objects, there is an
2512 // ambiguity and the program is ill-formed. Otherwise that set is
2513 // the result of the lookup.
2514 QualType SubobjectType;
2515 int SubobjectNumber = 0;
2516 AccessSpecifier SubobjectAccess = AS_none;
2517
2518 // Check whether the given lookup result contains only static members.
2519 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2520 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2521 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2522 return false;
2523 return true;
2524 };
2525
2526 bool TemplateNameLookup = R.isTemplateNameLookup();
2527
2528 // Determine whether two sets of members contain the same members, as
2529 // required by C++ [class.member.lookup]p6.
2530 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2531 DeclContext::lookup_iterator B) {
2532 using Iterator = DeclContextLookupResult::iterator;
2533 using Result = const void *;
2534
2535 auto Next = [&](Iterator &It, Iterator End) -> Result {
2536 while (It != End) {
2537 NamedDecl *ND = *It++;
2538 if (!ND->isInIdentifierNamespace(IDNS))
2539 continue;
2540
2541 // C++ [temp.local]p3:
2542 // A lookup that finds an injected-class-name (10.2) can result in
2543 // an ambiguity in certain cases (for example, if it is found in
2544 // more than one base class). If all of the injected-class-names
2545 // that are found refer to specializations of the same class
2546 // template, and if the name is used as a template-name, the
2547 // reference refers to the class template itself and not a
2548 // specialization thereof, and is not ambiguous.
2549 if (TemplateNameLookup)
2550 if (auto *TD = getAsTemplateNameDecl(ND))
2551 ND = TD;
2552
2553 // C++ [class.member.lookup]p3:
2554 // type declarations (including injected-class-names) are replaced by
2555 // the types they designate
2556 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2557 QualType T = Context.getTypeDeclType(TD);
2558 return T.getCanonicalType().getAsOpaquePtr();
2559 }
2560
2561 return ND->getUnderlyingDecl()->getCanonicalDecl();
2562 }
2563 return nullptr;
2564 };
2565
2566 // We'll often find the declarations are in the same order. Handle this
2567 // case (and the special case of only one declaration) efficiently.
2568 Iterator AIt = A, BIt = B, AEnd, BEnd;
2569 while (true) {
2570 Result AResult = Next(AIt, AEnd);
2571 Result BResult = Next(BIt, BEnd);
2572 if (!AResult && !BResult)
2573 return true;
2574 if (!AResult || !BResult)
2575 return false;
2576 if (AResult != BResult) {
2577 // Found a mismatch; carefully check both lists, accounting for the
2578 // possibility of declarations appearing more than once.
2579 llvm::SmallDenseMap<Result, bool, 32> AResults;
2580 for (; AResult; AResult = Next(AIt, AEnd))
2581 AResults.insert({AResult, /*FoundInB*/false});
2582 unsigned Found = 0;
2583 for (; BResult; BResult = Next(BIt, BEnd)) {
2584 auto It = AResults.find(BResult);
2585 if (It == AResults.end())
2586 return false;
2587 if (!It->second) {
2588 It->second = true;
2589 ++Found;
2590 }
2591 }
2592 return AResults.size() == Found;
2593 }
2594 }
2595 };
2596
2597 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2598 Path != PathEnd; ++Path) {
2599 const CXXBasePathElement &PathElement = Path->back();
2600
2601 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2602 // across all paths.
2603 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2604
2605 // Determine whether we're looking at a distinct sub-object or not.
2606 if (SubobjectType.isNull()) {
2607 // This is the first subobject we've looked at. Record its type.
2608 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2609 SubobjectNumber = PathElement.SubobjectNumber;
2610 continue;
2611 }
2612
2613 if (SubobjectType !=
2614 Context.getCanonicalType(PathElement.Base->getType())) {
2615 // We found members of the given name in two subobjects of
2616 // different types. If the declaration sets aren't the same, this
2617 // lookup is ambiguous.
2618 //
2619 // FIXME: The language rule says that this applies irrespective of
2620 // whether the sets contain only static members.
2621 if (HasOnlyStaticMembers(Path->Decls) &&
2622 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2623 continue;
2624
2625 R.setAmbiguousBaseSubobjectTypes(Paths);
2626 return true;
2627 }
2628
2629 // FIXME: This language rule no longer exists. Checking for ambiguous base
2630 // subobjects should be done as part of formation of a class member access
2631 // expression (when converting the object parameter to the member's type).
2632 if (SubobjectNumber != PathElement.SubobjectNumber) {
2633 // We have a different subobject of the same type.
2634
2635 // C++ [class.member.lookup]p5:
2636 // A static member, a nested type or an enumerator defined in
2637 // a base class T can unambiguously be found even if an object
2638 // has more than one base class subobject of type T.
2639 if (HasOnlyStaticMembers(Path->Decls))
2640 continue;
2641
2642 // We have found a nonstatic member name in multiple, distinct
2643 // subobjects. Name lookup is ambiguous.
2644 R.setAmbiguousBaseSubobjects(Paths);
2645 return true;
2646 }
2647 }
2648
2649 // Lookup in a base class succeeded; return these results.
2650
2651 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2652 I != E; ++I) {
2653 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2654 (*I)->getAccess());
2655 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2656 R.addDecl(ND, AS);
2657 }
2658 R.resolveKind();
2659 return true;
2660}
2661
2662/// Performs qualified name lookup or special type of lookup for
2663/// "__super::" scope specifier.
2664///
2665/// This routine is a convenience overload meant to be called from contexts
2666/// that need to perform a qualified name lookup with an optional C++ scope
2667/// specifier that might require special kind of lookup.
2668///
2669/// \param R captures both the lookup criteria and any lookup results found.
2670///
2671/// \param LookupCtx The context in which qualified name lookup will
2672/// search.
2673///
2674/// \param SS An optional C++ scope-specifier.
2675///
2676/// \returns true if lookup succeeded, false if it failed.
2677bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2678 CXXScopeSpec &SS) {
2679 auto *NNS = SS.getScopeRep();
2680 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2681 return LookupInSuper(R, NNS->getAsRecordDecl());
2682 else
2683
2684 return LookupQualifiedName(R, LookupCtx);
2685}
2686
2687/// Performs name lookup for a name that was parsed in the
2688/// source code, and may contain a C++ scope specifier.
2689///
2690/// This routine is a convenience routine meant to be called from
2691/// contexts that receive a name and an optional C++ scope specifier
2692/// (e.g., "N::M::x"). It will then perform either qualified or
2693/// unqualified name lookup (with LookupQualifiedName or LookupName,
2694/// respectively) on the given name and return those results. It will
2695/// perform a special type of lookup for "__super::" scope specifier.
2696///
2697/// @param S The scope from which unqualified name lookup will
2698/// begin.
2699///
2700/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2701///
2702/// @param EnteringContext Indicates whether we are going to enter the
2703/// context of the scope-specifier SS (if present).
2704///
2705/// @returns True if any decls were found (but possibly ambiguous)
2706bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2707 bool AllowBuiltinCreation, bool EnteringContext) {
2708 if (SS && SS->isInvalid()) {
2709 // When the scope specifier is invalid, don't even look for
2710 // anything.
2711 return false;
2712 }
2713
2714 if (SS && SS->isSet()) {
2715 NestedNameSpecifier *NNS = SS->getScopeRep();
2716 if (NNS->getKind() == NestedNameSpecifier::Super)
2717 return LookupInSuper(R, NNS->getAsRecordDecl());
2718
2719 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2720 // We have resolved the scope specifier to a particular declaration
2721 // contex, and will perform name lookup in that context.
2722 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2723 return false;
2724
2725 R.setContextRange(SS->getRange());
2726 return LookupQualifiedName(R, DC);
2727 }
2728
2729 // We could not resolve the scope specified to a specific declaration
2730 // context, which means that SS refers to an unknown specialization.
2731 // Name lookup can't find anything in this case.
2732 R.setNotFoundInCurrentInstantiation();
2733 R.setContextRange(SS->getRange());
2734 return false;
2735 }
2736
2737 // Perform unqualified name lookup starting in the given scope.
2738 return LookupName(R, S, AllowBuiltinCreation);
2739}
2740
2741/// Perform qualified name lookup into all base classes of the given
2742/// class.
2743///
2744/// \param R captures both the lookup criteria and any lookup results found.
2745///
2746/// \param Class The context in which qualified name lookup will
2747/// search. Name lookup will search in all base classes merging the results.
2748///
2749/// @returns True if any decls were found (but possibly ambiguous)
2750bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2751 // The access-control rules we use here are essentially the rules for
2752 // doing a lookup in Class that just magically skipped the direct
2753 // members of Class itself. That is, the naming class is Class, and the
2754 // access includes the access of the base.
2755 for (const auto &BaseSpec : Class->bases()) {
2756 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2757 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2758 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2759 Result.setBaseObjectType(Context.getRecordType(Class));
2760 LookupQualifiedName(Result, RD);
2761
2762 // Copy the lookup results into the target, merging the base's access into
2763 // the path access.
2764 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2765 R.addDecl(I.getDecl(),
2766 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2767 I.getAccess()));
2768 }
2769
2770 Result.suppressDiagnostics();
2771 }
2772
2773 R.resolveKind();
2774 R.setNamingClass(Class);
2775
2776 return !R.empty();
2777}
2778
2779/// Produce a diagnostic describing the ambiguity that resulted
2780/// from name lookup.
2781///
2782/// \param Result The result of the ambiguous lookup to be diagnosed.
2783void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2784 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")(static_cast <bool> (Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? void (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 2784, __extension__ __PRETTY_FUNCTION__
))
;
2785
2786 DeclarationName Name = Result.getLookupName();
2787 SourceLocation NameLoc = Result.getNameLoc();
2788 SourceRange LookupRange = Result.getContextRange();
2789
2790 switch (Result.getAmbiguityKind()) {
2791 case LookupResult::AmbiguousBaseSubobjects: {
2792 CXXBasePaths *Paths = Result.getBasePaths();
2793 QualType SubobjectType = Paths->front().back().Base->getType();
2794 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2795 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2796 << LookupRange;
2797
2798 DeclContext::lookup_iterator Found = Paths->front().Decls;
2799 while (isa<CXXMethodDecl>(*Found) &&
2800 cast<CXXMethodDecl>(*Found)->isStatic())
2801 ++Found;
2802
2803 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2804 break;
2805 }
2806
2807 case LookupResult::AmbiguousBaseSubobjectTypes: {
2808 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2809 << Name << LookupRange;
2810
2811 CXXBasePaths *Paths = Result.getBasePaths();
2812 std::set<const NamedDecl *> DeclsPrinted;
2813 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2814 PathEnd = Paths->end();
2815 Path != PathEnd; ++Path) {
2816 const NamedDecl *D = *Path->Decls;
2817 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2818 continue;
2819 if (DeclsPrinted.insert(D).second) {
2820 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2821 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2822 << TD->getUnderlyingType();
2823 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2824 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2825 << Context.getTypeDeclType(TD);
2826 else
2827 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2828 }
2829 }
2830 break;
2831 }
2832
2833 case LookupResult::AmbiguousTagHiding: {
2834 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2835
2836 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2837
2838 for (auto *D : Result)
2839 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2840 TagDecls.insert(TD);
2841 Diag(TD->getLocation(), diag::note_hidden_tag);
2842 }
2843
2844 for (auto *D : Result)
2845 if (!isa<TagDecl>(D))
2846 Diag(D->getLocation(), diag::note_hiding_object);
2847
2848 // For recovery purposes, go ahead and implement the hiding.
2849 LookupResult::Filter F = Result.makeFilter();
2850 while (F.hasNext()) {
2851 if (TagDecls.count(F.next()))
2852 F.erase();
2853 }
2854 F.done();
2855 break;
2856 }
2857
2858 case LookupResult::AmbiguousReference: {
2859 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2860
2861 for (auto *D : Result)
2862 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2863 break;
2864 }
2865 }
2866}
2867
2868namespace {
2869 struct AssociatedLookup {
2870 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2871 Sema::AssociatedNamespaceSet &Namespaces,
2872 Sema::AssociatedClassSet &Classes)
2873 : S(S), Namespaces(Namespaces), Classes(Classes),
2874 InstantiationLoc(InstantiationLoc) {
2875 }
2876
2877 bool addClassTransitive(CXXRecordDecl *RD) {
2878 Classes.insert(RD);
2879 return ClassesTransitive.insert(RD);
2880 }
2881
2882 Sema &S;
2883 Sema::AssociatedNamespaceSet &Namespaces;
2884 Sema::AssociatedClassSet &Classes;
2885 SourceLocation InstantiationLoc;
2886
2887 private:
2888 Sema::AssociatedClassSet ClassesTransitive;
2889 };
2890} // end anonymous namespace
2891
2892static void
2893addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2894
2895// Given the declaration context \param Ctx of a class, class template or
2896// enumeration, add the associated namespaces to \param Namespaces as described
2897// in [basic.lookup.argdep]p2.
2898static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2899 DeclContext *Ctx) {
2900 // The exact wording has been changed in C++14 as a result of
2901 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2902 // to all language versions since it is possible to return a local type
2903 // from a lambda in C++11.
2904 //
2905 // C++14 [basic.lookup.argdep]p2:
2906 // If T is a class type [...]. Its associated namespaces are the innermost
2907 // enclosing namespaces of its associated classes. [...]
2908 //
2909 // If T is an enumeration type, its associated namespace is the innermost
2910 // enclosing namespace of its declaration. [...]
2911
2912 // We additionally skip inline namespaces. The innermost non-inline namespace
2913 // contains all names of all its nested inline namespaces anyway, so we can
2914 // replace the entire inline namespace tree with its root.
2915 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2916 Ctx = Ctx->getParent();
2917
2918 Namespaces.insert(Ctx->getPrimaryContext());
2919}
2920
2921// Add the associated classes and namespaces for argument-dependent
2922// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2923static void
2924addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2925 const TemplateArgument &Arg) {
2926 // C++ [basic.lookup.argdep]p2, last bullet:
2927 // -- [...] ;
2928 switch (Arg.getKind()) {
2929 case TemplateArgument::Null:
2930 break;
2931
2932 case TemplateArgument::Type:
2933 // [...] the namespaces and classes associated with the types of the
2934 // template arguments provided for template type parameters (excluding
2935 // template template parameters)
2936 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2937 break;
2938
2939 case TemplateArgument::Template:
2940 case TemplateArgument::TemplateExpansion: {
2941 // [...] the namespaces in which any template template arguments are
2942 // defined; and the classes in which any member templates used as
2943 // template template arguments are defined.
2944 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2945 if (ClassTemplateDecl *ClassTemplate
2946 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2947 DeclContext *Ctx = ClassTemplate->getDeclContext();
2948 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2949 Result.Classes.insert(EnclosingClass);
2950 // Add the associated namespace for this class.
2951 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2952 }
2953 break;
2954 }
2955
2956 case TemplateArgument::Declaration:
2957 case TemplateArgument::Integral:
2958 case TemplateArgument::Expression:
2959 case TemplateArgument::NullPtr:
2960 // [Note: non-type template arguments do not contribute to the set of
2961 // associated namespaces. ]
2962 break;
2963
2964 case TemplateArgument::Pack:
2965 for (const auto &P : Arg.pack_elements())
2966 addAssociatedClassesAndNamespaces(Result, P);
2967 break;
2968 }
2969}
2970
2971// Add the associated classes and namespaces for argument-dependent lookup
2972// with an argument of class type (C++ [basic.lookup.argdep]p2).
2973static void
2974addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2975 CXXRecordDecl *Class) {
2976
2977 // Just silently ignore anything whose name is __va_list_tag.
2978 if (Class->getDeclName() == Result.S.VAListTagName)
2979 return;
2980
2981 // C++ [basic.lookup.argdep]p2:
2982 // [...]
2983 // -- If T is a class type (including unions), its associated
2984 // classes are: the class itself; the class of which it is a
2985 // member, if any; and its direct and indirect base classes.
2986 // Its associated namespaces are the innermost enclosing
2987 // namespaces of its associated classes.
2988
2989 // Add the class of which it is a member, if any.
2990 DeclContext *Ctx = Class->getDeclContext();
2991 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2992 Result.Classes.insert(EnclosingClass);
2993
2994 // Add the associated namespace for this class.
2995 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2996
2997 // -- If T is a template-id, its associated namespaces and classes are
2998 // the namespace in which the template is defined; for member
2999 // templates, the member template's class; the namespaces and classes
3000 // associated with the types of the template arguments provided for
3001 // template type parameters (excluding template template parameters); the
3002 // namespaces in which any template template arguments are defined; and
3003 // the classes in which any member templates used as template template
3004 // arguments are defined. [Note: non-type template arguments do not
3005 // contribute to the set of associated namespaces. ]
3006 if (ClassTemplateSpecializationDecl *Spec
3007 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3008 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3009 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3010 Result.Classes.insert(EnclosingClass);
3011 // Add the associated namespace for this class.
3012 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3013
3014 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3015 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3016 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3017 }
3018
3019 // Add the class itself. If we've already transitively visited this class,
3020 // we don't need to visit base classes.
3021 if (!Result.addClassTransitive(Class))
3022 return;
3023
3024 // Only recurse into base classes for complete types.
3025 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3026 Result.S.Context.getRecordType(Class)))
3027 return;
3028
3029 // Add direct and indirect base classes along with their associated
3030 // namespaces.
3031 SmallVector<CXXRecordDecl *, 32> Bases;
3032 Bases.push_back(Class);
3033 while (!Bases.empty()) {
3034 // Pop this class off the stack.
3035 Class = Bases.pop_back_val();
3036
3037 // Visit the base classes.
3038 for (const auto &Base : Class->bases()) {
3039 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3040 // In dependent contexts, we do ADL twice, and the first time around,
3041 // the base type might be a dependent TemplateSpecializationType, or a
3042 // TemplateTypeParmType. If that happens, simply ignore it.
3043 // FIXME: If we want to support export, we probably need to add the
3044 // namespace of the template in a TemplateSpecializationType, or even
3045 // the classes and namespaces of known non-dependent arguments.
3046 if (!BaseType)
3047 continue;
3048 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3049 if (Result.addClassTransitive(BaseDecl)) {
3050 // Find the associated namespace for this base class.
3051 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3052 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3053
3054 // Make sure we visit the bases of this base class.
3055 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3056 Bases.push_back(BaseDecl);
3057 }
3058 }
3059 }
3060}
3061
3062// Add the associated classes and namespaces for
3063// argument-dependent lookup with an argument of type T
3064// (C++ [basic.lookup.koenig]p2).
3065static void
3066addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3067 // C++ [basic.lookup.koenig]p2:
3068 //
3069 // For each argument type T in the function call, there is a set
3070 // of zero or more associated namespaces and a set of zero or more
3071 // associated classes to be considered. The sets of namespaces and
3072 // classes is determined entirely by the types of the function
3073 // arguments (and the namespace of any template template
3074 // argument). Typedef names and using-declarations used to specify
3075 // the types do not contribute to this set. The sets of namespaces
3076 // and classes are determined in the following way:
3077
3078 SmallVector<const Type *, 16> Queue;
3079 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3080
3081 while (true) {
3082 switch (T->getTypeClass()) {
3083
3084#define TYPE(Class, Base)
3085#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3086#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3087#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3088#define ABSTRACT_TYPE(Class, Base)
3089#include "clang/AST/TypeNodes.inc"
3090 // T is canonical. We can also ignore dependent types because
3091 // we don't need to do ADL at the definition point, but if we
3092 // wanted to implement template export (or if we find some other
3093 // use for associated classes and namespaces...) this would be
3094 // wrong.
3095 break;
3096
3097 // -- If T is a pointer to U or an array of U, its associated
3098 // namespaces and classes are those associated with U.
3099 case Type::Pointer:
3100 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3101 continue;
3102 case Type::ConstantArray:
3103 case Type::IncompleteArray:
3104 case Type::VariableArray:
3105 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3106 continue;
3107
3108 // -- If T is a fundamental type, its associated sets of
3109 // namespaces and classes are both empty.
3110 case Type::Builtin:
3111 break;
3112
3113 // -- If T is a class type (including unions), its associated
3114 // classes are: the class itself; the class of which it is
3115 // a member, if any; and its direct and indirect base classes.
3116 // Its associated namespaces are the innermost enclosing
3117 // namespaces of its associated classes.
3118 case Type::Record: {
3119 CXXRecordDecl *Class =
3120 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3121 addAssociatedClassesAndNamespaces(Result, Class);
3122 break;
3123 }
3124
3125 // -- If T is an enumeration type, its associated namespace
3126 // is the innermost enclosing namespace of its declaration.
3127 // If it is a class member, its associated class is the
3128 // member’s class; else it has no associated class.
3129 case Type::Enum: {
3130 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3131
3132 DeclContext *Ctx = Enum->getDeclContext();
3133 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3134 Result.Classes.insert(EnclosingClass);
3135
3136 // Add the associated namespace for this enumeration.
3137 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3138
3139 break;
3140 }
3141
3142 // -- If T is a function type, its associated namespaces and
3143 // classes are those associated with the function parameter
3144 // types and those associated with the return type.
3145 case Type::FunctionProto: {
3146 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3147 for (const auto &Arg : Proto->param_types())
3148 Queue.push_back(Arg.getTypePtr());
3149 // fallthrough
3150 [[fallthrough]];
3151 }
3152 case Type::FunctionNoProto: {
3153 const FunctionType *FnType = cast<FunctionType>(T);
3154 T = FnType->getReturnType().getTypePtr();
3155 continue;
3156 }
3157
3158 // -- If T is a pointer to a member function of a class X, its
3159 // associated namespaces and classes are those associated
3160 // with the function parameter types and return type,
3161 // together with those associated with X.
3162 //
3163 // -- If T is a pointer to a data member of class X, its
3164 // associated namespaces and classes are those associated
3165 // with the member type together with those associated with
3166 // X.
3167 case Type::MemberPointer: {
3168 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3169
3170 // Queue up the class type into which this points.
3171 Queue.push_back(MemberPtr->getClass());
3172
3173 // And directly continue with the pointee type.
3174 T = MemberPtr->getPointeeType().getTypePtr();
3175 continue;
3176 }
3177
3178 // As an extension, treat this like a normal pointer.
3179 case Type::BlockPointer:
3180 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3181 continue;
3182
3183 // References aren't covered by the standard, but that's such an
3184 // obvious defect that we cover them anyway.
3185 case Type::LValueReference:
3186 case Type::RValueReference:
3187 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3188 continue;
3189
3190 // These are fundamental types.
3191 case Type::Vector:
3192 case Type::ExtVector:
3193 case Type::ConstantMatrix:
3194 case Type::Complex:
3195 case Type::BitInt:
3196 break;
3197
3198 // Non-deduced auto types only get here for error cases.
3199 case Type::Auto:
3200 case Type::DeducedTemplateSpecialization:
3201 break;
3202
3203 // If T is an Objective-C object or interface type, or a pointer to an
3204 // object or interface type, the associated namespace is the global
3205 // namespace.
3206 case Type::ObjCObject:
3207 case Type::ObjCInterface:
3208 case Type::ObjCObjectPointer:
3209 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3210 break;
3211
3212 // Atomic types are just wrappers; use the associations of the
3213 // contained type.
3214 case Type::Atomic:
3215 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3216 continue;
3217 case Type::Pipe:
3218 T = cast<PipeType>(T)->getElementType().getTypePtr();
3219 continue;
3220 }
3221
3222 if (Queue.empty())
3223 break;
3224 T = Queue.pop_back_val();
3225 }
3226}
3227
3228/// Find the associated classes and namespaces for
3229/// argument-dependent lookup for a call with the given set of
3230/// arguments.
3231///
3232/// This routine computes the sets of associated classes and associated
3233/// namespaces searched by argument-dependent lookup
3234/// (C++ [basic.lookup.argdep]) for a given set of arguments.
3235void Sema::FindAssociatedClassesAndNamespaces(
3236 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3237 AssociatedNamespaceSet &AssociatedNamespaces,
3238 AssociatedClassSet &AssociatedClasses) {
3239 AssociatedNamespaces.clear();
3240 AssociatedClasses.clear();
3241
3242 AssociatedLookup Result(*this, InstantiationLoc,
3243 AssociatedNamespaces, AssociatedClasses);
3244
3245 // C++ [basic.lookup.koenig]p2:
3246 // For each argument type T in the function call, there is a set
3247 // of zero or more associated namespaces and a set of zero or more
3248 // associated classes to be considered. The sets of namespaces and
3249 // classes is determined entirely by the types of the function
3250 // arguments (and the namespace of any template template
3251 // argument).
3252 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3253 Expr *Arg = Args[ArgIdx];
3254
3255 if (Arg->getType() != Context.OverloadTy) {
3256 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3257 continue;
3258 }
3259
3260 // [...] In addition, if the argument is the name or address of a
3261 // set of overloaded functions and/or function templates, its
3262 // associated classes and namespaces are the union of those
3263 // associated with each of the members of the set: the namespace
3264 // in which the function or function template is defined and the
3265 // classes and namespaces associated with its (non-dependent)
3266 // parameter types and return type.
3267 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3268
3269 for (const NamedDecl *D : OE->decls()) {
3270 // Look through any using declarations to find the underlying function.
3271 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3272
3273 // Add the classes and namespaces associated with the parameter
3274 // types and return type of this function.
3275 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3276 }
3277 }
3278}
3279
3280NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3281 SourceLocation Loc,
3282 LookupNameKind NameKind,
3283 RedeclarationKind Redecl) {
3284 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3285 LookupName(R, S);
3286 return R.getAsSingle<NamedDecl>();
3287}
3288
3289/// Find the protocol with the given name, if any.
3290ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3291 SourceLocation IdLoc,
3292 RedeclarationKind Redecl) {
3293 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3294 LookupObjCProtocolName, Redecl);
3295 return cast_or_null<ObjCProtocolDecl>(D);
3296}
3297
3298void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3299 UnresolvedSetImpl &Functions) {
3300 // C++ [over.match.oper]p3:
3301 // -- The set of non-member candidates is the result of the
3302 // unqualified lookup of operator@ in the context of the
3303 // expression according to the usual rules for name lookup in
3304 // unqualified function calls (3.4.2) except that all member
3305 // functions are ignored.
3306 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3307 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3308 LookupName(Operators, S);
3309
3310 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3310, __extension__ __PRETTY_FUNCTION__
))
;
3311 Functions.append(Operators.begin(), Operators.end());
3312}
3313
3314Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3315 CXXSpecialMember SM,
3316 bool ConstArg,
3317 bool VolatileArg,
3318 bool RValueThis,
3319 bool ConstThis,
3320 bool VolatileThis) {
3321 assert(CanDeclareSpecialMemberFunction(RD) &&(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "clang/lib/Sema/SemaLookup.cpp", 3322, __extension__ __PRETTY_FUNCTION__
))
3322 "doing special member lookup into record that isn't fully complete")(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "clang/lib/Sema/SemaLookup.cpp", 3322, __extension__ __PRETTY_FUNCTION__
))
;
3323 RD = RD->getDefinition();
3324 if (RValueThis || ConstThis || VolatileThis)
3325 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "clang/lib/Sema/SemaLookup.cpp", 3326, __extension__ __PRETTY_FUNCTION__
))
3326 "constructors and destructors always have unqualified lvalue this")(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "clang/lib/Sema/SemaLookup.cpp", 3326, __extension__ __PRETTY_FUNCTION__
))
;
3327 if (ConstArg || VolatileArg)
3328 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "clang/lib/Sema/SemaLookup.cpp", 3329, __extension__ __PRETTY_FUNCTION__
))
3329 "parameter-less special members can't have qualified arguments")(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "clang/lib/Sema/SemaLookup.cpp", 3329, __extension__ __PRETTY_FUNCTION__
))
;
3330
3331 // FIXME: Get the caller to pass in a location for the lookup.
3332 SourceLocation LookupLoc = RD->getLocation();
3333
3334 llvm::FoldingSetNodeID ID;
3335 ID.AddPointer(RD);
3336 ID.AddInteger(SM);
3337 ID.AddInteger(ConstArg);
3338 ID.AddInteger(VolatileArg);
3339 ID.AddInteger(RValueThis);
3340 ID.AddInteger(ConstThis);
3341 ID.AddInteger(VolatileThis);
3342
3343 void *InsertPoint;
3344 SpecialMemberOverloadResultEntry *Result =
3345 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3346
3347 // This was already cached
3348 if (Result)
3349 return *Result;
3350
3351 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3352 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3353 SpecialMemberCache.InsertNode(Result, InsertPoint);
3354
3355 if (SM == CXXDestructor) {
3356 if (RD->needsImplicitDestructor()) {
3357 runWithSufficientStackSpace(RD->getLocation(), [&] {
3358 DeclareImplicitDestructor(RD);
3359 });
3360 }
3361 CXXDestructorDecl *DD = RD->getDestructor();
3362 Result->setMethod(DD);
3363 Result->setKind(DD && !DD->isDeleted()
3364 ? SpecialMemberOverloadResult::Success
3365 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3366 return *Result;
3367 }
3368
3369 // Prepare for overload resolution. Here we construct a synthetic argument
3370 // if necessary and make sure that implicit functions are declared.
3371 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3372 DeclarationName Name;
3373 Expr *Arg = nullptr;
3374 unsigned NumArgs;
3375
3376 QualType ArgType = CanTy;
3377 ExprValueKind VK = VK_LValue;
3378
3379 if (SM == CXXDefaultConstructor) {
3380 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3381 NumArgs = 0;
3382 if (RD->needsImplicitDefaultConstructor()) {
3383 runWithSufficientStackSpace(RD->getLocation(), [&] {
3384 DeclareImplicitDefaultConstructor(RD);
3385 });
3386 }
3387 } else {
3388 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3389 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3390 if (RD->needsImplicitCopyConstructor()) {
3391 runWithSufficientStackSpace(RD->getLocation(), [&] {
3392 DeclareImplicitCopyConstructor(RD);
3393 });
3394 }
3395 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3396 runWithSufficientStackSpace(RD->getLocation(), [&] {
3397 DeclareImplicitMoveConstructor(RD);
3398 });
3399 }
3400 } else {
3401 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3402 if (RD->needsImplicitCopyAssignment()) {
3403 runWithSufficientStackSpace(RD->getLocation(), [&] {
3404 DeclareImplicitCopyAssignment(RD);
3405 });
3406 }
3407 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3408 runWithSufficientStackSpace(RD->getLocation(), [&] {
3409 DeclareImplicitMoveAssignment(RD);
3410 });
3411 }
3412 }
3413
3414 if (ConstArg)
3415 ArgType.addConst();
3416 if (VolatileArg)
3417 ArgType.addVolatile();
3418
3419 // This isn't /really/ specified by the standard, but it's implied
3420 // we should be working from a PRValue in the case of move to ensure
3421 // that we prefer to bind to rvalue references, and an LValue in the
3422 // case of copy to ensure we don't bind to rvalue references.
3423 // Possibly an XValue is actually correct in the case of move, but
3424 // there is no semantic difference for class types in this restricted
3425 // case.
3426 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3427 VK = VK_LValue;
3428 else
3429 VK = VK_PRValue;
3430 }
3431
3432 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3433
3434 if (SM != CXXDefaultConstructor) {
3435 NumArgs = 1;
3436 Arg = &FakeArg;
3437 }
3438
3439 // Create the object argument
3440 QualType ThisTy = CanTy;
3441 if (ConstThis)
3442 ThisTy.addConst();
3443 if (VolatileThis)
3444 ThisTy.addVolatile();
3445 Expr::Classification Classification =
3446 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3447 .Classify(Context);
3448
3449 // Now we perform lookup on the name we computed earlier and do overload
3450 // resolution. Lookup is only performed directly into the class since there
3451 // will always be a (possibly implicit) declaration to shadow any others.
3452 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3453 DeclContext::lookup_result R = RD->lookup(Name);
3454
3455 if (R.empty()) {
3456 // We might have no default constructor because we have a lambda's closure
3457 // type, rather than because there's some other declared constructor.
3458 // Every class has a copy/move constructor, copy/move assignment, and
3459 // destructor.
3460 assert(SM == CXXDefaultConstructor &&(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "clang/lib/Sema/SemaLookup.cpp", 3461, __extension__ __PRETTY_FUNCTION__
))
3461 "lookup for a constructor or assignment operator was empty")(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "clang/lib/Sema/SemaLookup.cpp", 3461, __extension__ __PRETTY_FUNCTION__
))
;
3462 Result->setMethod(nullptr);
3463 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3464 return *Result;
3465 }
3466
3467 // Copy the candidates as our processing of them may load new declarations
3468 // from an external source and invalidate lookup_result.
3469 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3470
3471 for (NamedDecl *CandDecl : Candidates) {
3472 if (CandDecl->isInvalidDecl())
3473 continue;
3474
3475 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3476 auto CtorInfo = getConstructorInfo(Cand);
3477 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3478 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3479 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3480 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3481 else if (CtorInfo)
3482 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3483 llvm::ArrayRef(&Arg, NumArgs), OCS,
3484 /*SuppressUserConversions*/ true);
3485 else
3486 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3487 /*SuppressUserConversions*/ true);
3488 } else if (FunctionTemplateDecl *Tmpl =
3489 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3490 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3491 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3492 Classification,
3493 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3494 else if (CtorInfo)
3495 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3496 CtorInfo.FoundDecl, nullptr,
3497 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3498 else
3499 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3500 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3501 } else {
3502 assert(isa<UsingDecl>(Cand.getDecl()) &&(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "clang/lib/Sema/SemaLookup.cpp", 3503, __extension__ __PRETTY_FUNCTION__
))
3503 "illegal Kind of operator = Decl")(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "clang/lib/Sema/SemaLookup.cpp", 3503, __extension__ __PRETTY_FUNCTION__
))
;
3504 }
3505 }
3506
3507 OverloadCandidateSet::iterator Best;
3508 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3509 case OR_Success:
3510 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3511 Result->setKind(SpecialMemberOverloadResult::Success);
3512 break;
3513
3514 case OR_Deleted:
3515 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3516 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3517 break;
3518
3519 case OR_Ambiguous:
3520 Result->setMethod(nullptr);
3521 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3522 break;
3523
3524 case OR_No_Viable_Function:
3525 Result->setMethod(nullptr);
3526 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3527 break;
3528 }
3529
3530 return *Result;
3531}
3532
3533/// Look up the default constructor for the given class.
3534CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3535 SpecialMemberOverloadResult Result =
3536 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3537 false, false);
3538
3539 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3540}
3541
3542/// Look up the copying constructor for the given class.
3543CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3544 unsigned Quals) {
3545 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3546, __extension__ __PRETTY_FUNCTION__
))
3546 "non-const, non-volatile qualifiers for copy ctor arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3546, __extension__ __PRETTY_FUNCTION__
))
;
3547 SpecialMemberOverloadResult Result =
3548 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3549 Quals & Qualifiers::Volatile, false, false, false);
3550
3551 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3552}
3553
3554/// Look up the moving constructor for the given class.
3555CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3556 unsigned Quals) {
3557 SpecialMemberOverloadResult Result =
3558 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3559 Quals & Qualifiers::Volatile, false, false, false);
3560
3561 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3562}
3563
3564/// Look up the constructors for the given class.
3565DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3566 // If the implicit constructors have not yet been declared, do so now.
3567 if (CanDeclareSpecialMemberFunction(Class)) {
3568 runWithSufficientStackSpace(Class->getLocation(), [&] {
3569 if (Class->needsImplicitDefaultConstructor())
3570 DeclareImplicitDefaultConstructor(Class);
3571 if (Class->needsImplicitCopyConstructor())
3572 DeclareImplicitCopyConstructor(Class);
3573 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3574 DeclareImplicitMoveConstructor(Class);
3575 });
3576 }
3577
3578 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3579 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3580 return Class->lookup(Name);
3581}
3582
3583/// Look up the copying assignment operator for the given class.
3584CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3585 unsigned Quals, bool RValueThis,
3586 unsigned ThisQuals) {
3587 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3588, __extension__ __PRETTY_FUNCTION__
))
3588 "non-const, non-volatile qualifiers for copy assignment arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "clang/lib/Sema/SemaLookup.cpp", 3588, __extension__ __PRETTY_FUNCTION__
))
;
3589 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3590, __extension__ __PRETTY_FUNCTION__
))
3590 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3590, __extension__ __PRETTY_FUNCTION__
))
;
3591 SpecialMemberOverloadResult Result =
3592 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3593 Quals & Qualifiers::Volatile, RValueThis,
3594 ThisQuals & Qualifiers::Const,
3595 ThisQuals & Qualifiers::Volatile);
3596
3597 return Result.getMethod();
3598}
3599
3600/// Look up the moving assignment operator for the given class.
3601CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3602 unsigned Quals,
3603 bool RValueThis,
3604 unsigned ThisQuals) {
3605 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3606, __extension__ __PRETTY_FUNCTION__
))
3606 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "clang/lib/Sema/SemaLookup.cpp", 3606, __extension__ __PRETTY_FUNCTION__
))
;
3607 SpecialMemberOverloadResult Result =
3608 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3609 Quals & Qualifiers::Volatile, RValueThis,
3610 ThisQuals & Qualifiers::Const,
3611 ThisQuals & Qualifiers::Volatile);
3612
3613 return Result.getMethod();
3614}
3615
3616/// Look for the destructor of the given class.
3617///
3618/// During semantic analysis, this routine should be used in lieu of
3619/// CXXRecordDecl::getDestructor().
3620///
3621/// \returns The destructor for this class.
3622CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3623 return cast_or_null<CXXDestructorDecl>(
3624 LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3625 false)
3626 .getMethod());
3627}
3628
3629/// LookupLiteralOperator - Determine which literal operator should be used for
3630/// a user-defined literal, per C++11 [lex.ext].
3631///
3632/// Normal overload resolution is not used to select which literal operator to
3633/// call for a user-defined literal. Look up the provided literal operator name,
3634/// and filter the results to the appropriate set for the given argument types.
3635Sema::LiteralOperatorLookupResult
3636Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3637 ArrayRef<QualType> ArgTys, bool AllowRaw,
3638 bool AllowTemplate, bool AllowStringTemplatePack,
3639 bool DiagnoseMissing, StringLiteral *StringLit) {
3640 LookupName(R, S);
3641 assert(R.getResultKind() != LookupResult::Ambiguous &&(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3642, __extension__ __PRETTY_FUNCTION__
))
3642 "literal operator lookup can't be ambiguous")(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "clang/lib/Sema/SemaLookup.cpp", 3642, __extension__ __PRETTY_FUNCTION__
))
;
3643
3644 // Filter the lookup results appropriately.
3645 LookupResult::Filter F = R.makeFilter();
3646
3647 bool AllowCooked = true;
3648 bool FoundRaw = false;
3649 bool FoundTemplate = false;
3650 bool FoundStringTemplatePack = false;
3651 bool FoundCooked = false;
3652
3653 while (F.hasNext()) {
3654 Decl *D = F.next();
3655 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3656 D = USD->getTargetDecl();
3657
3658 // If the declaration we found is invalid, skip it.
3659 if (D->isInvalidDecl()) {
3660 F.erase();
3661 continue;
3662 }
3663
3664 bool IsRaw = false;
3665 bool IsTemplate = false;
3666 bool IsStringTemplatePack = false;
3667 bool IsCooked = false;
3668
3669 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3670 if (FD->getNumParams() == 1 &&
3671 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3672 IsRaw = true;
3673 else if (FD->getNumParams() == ArgTys.size()) {
3674 IsCooked = true;
3675 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3676 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3677 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3678 IsCooked = false;
3679 break;
3680 }
3681 }
3682 }
3683 }
3684 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3685 TemplateParameterList *Params = FD->getTemplateParameters();
3686 if (Params->size() == 1) {
3687 IsTemplate = true;
3688 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3689 // Implied but not stated: user-defined integer and floating literals
3690 // only ever use numeric literal operator templates, not templates
3691 // taking a parameter of class type.
3692 F.erase();
3693 continue;
3694 }
3695
3696 // A string literal template is only considered if the string literal
3697 // is a well-formed template argument for the template parameter.
3698 if (StringLit) {
3699 SFINAETrap Trap(*this);
3700 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3701 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3702 if (CheckTemplateArgument(
3703 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3704 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3705 Trap.hasErrorOccurred())
3706 IsTemplate = false;
3707 }
3708 } else {
3709 IsStringTemplatePack = true;
3710 }
3711 }
3712
3713 if (AllowTemplate && StringLit && IsTemplate) {
3714 FoundTemplate = true;
3715 AllowRaw = false;
3716 AllowCooked = false;
3717 AllowStringTemplatePack = false;
3718 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3719 F.restart();
3720 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3721 }
3722 } else if (AllowCooked && IsCooked) {
3723 FoundCooked = true;
3724 AllowRaw = false;
3725 AllowTemplate = StringLit;
3726 AllowStringTemplatePack = false;
3727 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3728 // Go through again and remove the raw and template decls we've
3729 // already found.
3730 F.restart();
3731 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3732 }
3733 } else if (AllowRaw && IsRaw) {
3734 FoundRaw = true;
3735 } else if (AllowTemplate && IsTemplate) {
3736 FoundTemplate = true;
3737 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3738 FoundStringTemplatePack = true;
3739 } else {
3740 F.erase();
3741 }
3742 }
3743
3744 F.done();
3745
3746 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3747 // form for string literal operator templates.
3748 if (StringLit && FoundTemplate)
3749 return LOLR_Template;
3750
3751 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3752 // parameter type, that is used in preference to a raw literal operator
3753 // or literal operator template.
3754 if (FoundCooked)
3755 return LOLR_Cooked;
3756
3757 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3758 // operator template, but not both.
3759 if (FoundRaw && FoundTemplate) {
3760 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3761 for (const NamedDecl *D : R)
3762 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3763 return LOLR_Error;
3764 }
3765
3766 if (FoundRaw)
3767 return LOLR_Raw;
3768
3769 if (FoundTemplate)
3770 return LOLR_Template;
3771
3772 if (FoundStringTemplatePack)
3773 return LOLR_StringTemplatePack;
3774
3775 // Didn't find anything we could use.
3776 if (DiagnoseMissing) {
3777 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3778 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3779 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3780 << (AllowTemplate || AllowStringTemplatePack);
3781 return LOLR_Error;
3782 }
3783
3784 return LOLR_ErrorNoDiagnostic;
3785}
3786
3787void ADLResult::insert(NamedDecl *New) {
3788 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3789
3790 // If we haven't yet seen a decl for this key, or the last decl
3791 // was exactly this one, we're done.
3792 if (Old == nullptr || Old == New) {
3793 Old = New;
3794 return;
3795 }
3796
3797 // Otherwise, decide which is a more recent redeclaration.
3798 FunctionDecl *OldFD = Old->getAsFunction();
3799 FunctionDecl *NewFD = New->getAsFunction();
3800
3801 FunctionDecl *Cursor = NewFD;
3802 while (true) {
3803 Cursor = Cursor->getPreviousDecl();
3804
3805 // If we got to the end without finding OldFD, OldFD is the newer
3806 // declaration; leave things as they are.
3807 if (!Cursor) return;
3808
3809 // If we do find OldFD, then NewFD is newer.
3810 if (Cursor == OldFD) break;
3811
3812 // Otherwise, keep looking.
3813 }
3814
3815 Old = New;
3816}
3817
3818void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3819 ArrayRef<Expr *> Args, ADLResult &Result) {
3820 // Find all of the associated namespaces and classes based on the
3821 // arguments we have.
3822 AssociatedNamespaceSet AssociatedNamespaces;
3823 AssociatedClassSet AssociatedClasses;
3824 FindAssociatedClassesAndNamespaces(Loc, Args,
3825 AssociatedNamespaces,
3826 AssociatedClasses);
3827
3828 // C++ [basic.lookup.argdep]p3:
3829 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3830 // and let Y be the lookup set produced by argument dependent
3831 // lookup (defined as follows). If X contains [...] then Y is
3832 // empty. Otherwise Y is the set of declarations found in the
3833 // namespaces associated with the argument types as described
3834 // below. The set of declarations found by the lookup of the name
3835 // is the union of X and Y.
3836 //
3837 // Here, we compute Y and add its members to the overloaded
3838 // candidate set.
3839 for (auto *NS : AssociatedNamespaces) {
3840 // When considering an associated namespace, the lookup is the
3841 // same as the lookup performed when the associated namespace is
3842 // used as a qualifier (3.4.3.2) except that:
3843 //
3844 // -- Any using-directives in the associated namespace are
3845 // ignored.
3846 //
3847 // -- Any namespace-scope friend functions declared in
3848 // associated classes are visible within their respective
3849 // namespaces even if they are not visible during an ordinary
3850 // lookup (11.4).
3851 //
3852 // C++20 [basic.lookup.argdep] p4.3
3853 // -- are exported, are attached to a named module M, do not appear
3854 // in the translation unit containing the point of the lookup, and
3855 // have the same innermost enclosing non-inline namespace scope as
3856 // a declaration of an associated entity attached to M.
3857 DeclContext::lookup_result R = NS->lookup(Name);
3858 for (auto *D : R) {
3859 auto *Underlying = D;
3860 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3861 Underlying = USD->getTargetDecl();
3862
3863 if (!isa<FunctionDecl>(Underlying) &&
3864 !isa<FunctionTemplateDecl>(Underlying))
3865 continue;
3866
3867 // The declaration is visible to argument-dependent lookup if either
3868 // it's ordinarily visible or declared as a friend in an associated
3869 // class.
3870 bool Visible = false;
3871 for (D = D->getMostRecentDecl(); D;
3872 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3873 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3874 if (isVisible(D)) {
3875 Visible = true;
3876 break;
3877 }
3878
3879 if (!getLangOpts().CPlusPlusModules)
3880 continue;
3881
3882 if (D->isInExportDeclContext()) {
3883 Module *FM = D->getOwningModule();
3884 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3885 // exports are only valid in module purview and outside of any
3886 // PMF (although a PMF should not even be present in a module
3887 // with an import).
3888 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&(static_cast <bool> (FM && FM->isModulePurview
() && !FM->isPrivateModule() && "bad export context"
) ? void (0) : __assert_fail ("FM && FM->isModulePurview() && !FM->isPrivateModule() && \"bad export context\""
, "clang/lib/Sema/SemaLookup.cpp", 3889, __extension__ __PRETTY_FUNCTION__
))
3889 "bad export context")(static_cast <bool> (FM && FM->isModulePurview
() && !FM->isPrivateModule() && "bad export context"
) ? void (0) : __assert_fail ("FM && FM->isModulePurview() && !FM->isPrivateModule() && \"bad export context\""
, "clang/lib/Sema/SemaLookup.cpp", 3889, __extension__ __PRETTY_FUNCTION__
))
;
3890 // .. are attached to a named module M, do not appear in the
3891 // translation unit containing the point of the lookup..
3892 if (D->isInAnotherModuleUnit() &&
3893 llvm::any_of(AssociatedClasses, [&](auto *E) {
3894 // ... and have the same innermost enclosing non-inline
3895 // namespace scope as a declaration of an associated entity
3896 // attached to M
3897 if (E->getOwningModule() != FM)
3898 return false;
3899 // TODO: maybe this could be cached when generating the
3900 // associated namespaces / entities.
3901 DeclContext *Ctx = E->getDeclContext();
3902 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3903 Ctx = Ctx->getParent();
3904 return Ctx == NS;
3905 })) {
3906 Visible = true;
3907 break;
3908 }
3909 }
3910 } else if (D->getFriendObjectKind()) {
3911 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3912 // [basic.lookup.argdep]p4:
3913 // Argument-dependent lookup finds all declarations of functions and
3914 // function templates that
3915 // - ...
3916 // - are declared as a friend ([class.friend]) of any class with a
3917 // reachable definition in the set of associated entities,
3918 //
3919 // FIXME: If there's a merged definition of D that is reachable, then
3920 // the friend declaration should be considered.
3921 if (AssociatedClasses.count(RD) && isReachable(D)) {
3922 Visible = true;
3923 break;
3924 }
3925 }
3926 }
3927
3928 // FIXME: Preserve D as the FoundDecl.
3929 if (Visible)
3930 Result.insert(Underlying);
3931 }
3932 }
3933}
3934
3935//----------------------------------------------------------------------------
3936// Search for all visible declarations.
3937//----------------------------------------------------------------------------
3938VisibleDeclConsumer::~VisibleDeclConsumer() { }
3939
3940bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3941
3942namespace {
3943
3944class ShadowContextRAII;
3945
3946class VisibleDeclsRecord {
3947public:
3948 /// An entry in the shadow map, which is optimized to store a
3949 /// single declaration (the common case) but can also store a list
3950 /// of declarations.
3951 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3952
3953private:
3954 /// A mapping from declaration names to the declarations that have
3955 /// this name within a particular scope.
3956 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3957
3958 /// A list of shadow maps, which is used to model name hiding.
3959 std::list<ShadowMap> ShadowMaps;
3960
3961 /// The declaration contexts we have already visited.
3962 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3963
3964 friend class ShadowContextRAII;
3965
3966public:
3967 /// Determine whether we have already visited this context
3968 /// (and, if not, note that we are going to visit that context now).
3969 bool visitedContext(DeclContext *Ctx) {
3970 return !VisitedContexts.insert(Ctx).second;
3971 }
3972
3973 bool alreadyVisitedContext(DeclContext *Ctx) {
3974 return VisitedContexts.count(Ctx);
3975 }
3976
3977 /// Determine whether the given declaration is hidden in the
3978 /// current scope.
3979 ///
3980 /// \returns the declaration that hides the given declaration, or
3981 /// NULL if no such declaration exists.
3982 NamedDecl *checkHidden(NamedDecl *ND);
3983
3984 /// Add a declaration to the current shadow map.
3985 void add(NamedDecl *ND) {
3986 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3987 }
3988};
3989
3990/// RAII object that records when we've entered a shadow context.
3991class ShadowContextRAII {
3992 VisibleDeclsRecord &Visible;
3993
3994 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3995
3996public:
3997 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3998 Visible.ShadowMaps.emplace_back();
3999 }
4000
4001 ~ShadowContextRAII() {
4002 Visible.ShadowMaps.pop_back();
4003 }
4004};
4005
4006} // end anonymous namespace
4007
4008NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4009 unsigned IDNS = ND->getIdentifierNamespace();
4010 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4011 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4012 SM != SMEnd; ++SM) {
4013 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4014 if (Pos == SM->end())
4015 continue;
4016
4017 for (auto *D : Pos->second) {
4018 // A tag declaration does not hide a non-tag declaration.
4019 if (D->hasTagIdentifierNamespace() &&
4020 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4021 Decl::IDNS_ObjCProtocol)))
4022 continue;
4023
4024 // Protocols are in distinct namespaces from everything else.
4025 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4026 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4027 D->getIdentifierNamespace() != IDNS)
4028 continue;
4029
4030 // Functions and function templates in the same scope overload
4031 // rather than hide. FIXME: Look for hiding based on function
4032 // signatures!
4033 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4034 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4035 SM == ShadowMaps.rbegin())
4036 continue;
4037
4038 // A shadow declaration that's created by a resolved using declaration
4039 // is not hidden by the same using declaration.
4040 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4041 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4042 continue;
4043
4044 // We've found a declaration that hides this one.
4045 return D;
4046 }
4047 }
4048
4049 return nullptr;
4050}
4051
4052namespace {
4053class LookupVisibleHelper {
4054public:
4055 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4056 bool LoadExternal)
4057 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4058 LoadExternal(LoadExternal) {}
4059
4060 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4061 bool IncludeGlobalScope) {
4062 // Determine the set of using directives available during
4063 // unqualified name lookup.
4064 Scope *Initial = S;
4065 UnqualUsingDirectiveSet UDirs(SemaRef);
4066 if (SemaRef.getLangOpts().CPlusPlus) {
4067 // Find the first namespace or translation-unit scope.
4068 while (S && !isNamespaceOrTranslationUnitScope(S))
4069 S = S->getParent();
4070
4071 UDirs.visitScopeChain(Initial, S);
4072 }
4073 UDirs.done();
4074
4075 // Look for visible declarations.
4076 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4077 Result.setAllowHidden(Consumer.includeHiddenDecls());
4078 if (!IncludeGlobalScope)
4079 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4080 ShadowContextRAII Shadow(Visited);
4081 lookupInScope(Initial, Result, UDirs);
4082 }
4083
4084 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4085 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4086 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4087 Result.setAllowHidden(Consumer.includeHiddenDecls());
4088 if (!IncludeGlobalScope)
4089 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4090
4091 ShadowContextRAII Shadow(Visited);
4092 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4093 /*InBaseClass=*/false);
4094 }
4095
4096private:
4097 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4098 bool QualifiedNameLookup, bool InBaseClass) {
4099 if (!Ctx)
4100 return;
4101
4102 // Make sure we don't visit the same context twice.
4103 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4104 return;
4105
4106 Consumer.EnteredContext(Ctx);
4107
4108 // Outside C++, lookup results for the TU live on identifiers.
4109 if (isa<TranslationUnitDecl>(Ctx) &&
4110 !Result.getSema().getLangOpts().CPlusPlus) {
4111 auto &S = Result.getSema();
4112 auto &Idents = S.Context.Idents;
4113
4114 // Ensure all external identifiers are in the identifier table.
4115 if (LoadExternal)
4116 if (IdentifierInfoLookup *External =
4117 Idents.getExternalIdentifierLookup()) {
4118 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4119 for (StringRef Name = Iter->Next(); !Name.empty();
4120 Name = Iter->Next())
4121 Idents.get(Name);
4122 }
4123
4124 // Walk all lookup results in the TU for each identifier.
4125 for (const auto &Ident : Idents) {
4126 for (auto I = S.IdResolver.begin(Ident.getValue()),
4127 E = S.IdResolver.end();
4128 I != E; ++I) {
4129 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4130 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4131 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4132 Visited.add(ND);
4133 }
4134 }
4135 }
4136 }
4137
4138 return;
4139 }
4140
4141 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4142 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4143
4144 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4145 // We sometimes skip loading namespace-level results (they tend to be huge).
4146 bool Load = LoadExternal ||
4147 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4148 // Enumerate all of the results in this context.
4149 for (DeclContextLookupResult R :
4150 Load ? Ctx->lookups()
4151 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
4152 for (auto *D : R) {
4153 if (auto *ND = Result.getAcceptableDecl(D)) {
4154 // Rather than visit immediately, we put ND into a vector and visit
4155 // all decls, in order, outside of this loop. The reason is that
4156 // Consumer.FoundDecl() may invalidate the iterators used in the two
4157 // loops above.
4158 DeclsToVisit.push_back(ND);
4159 }
4160 }
4161 }
4162
4163 for (auto *ND : DeclsToVisit) {
4164 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4165 Visited.add(ND);
4166 }
4167 DeclsToVisit.clear();
4168
4169 // Traverse using directives for qualified name lookup.
4170 if (QualifiedNameLookup) {
4171 ShadowContextRAII Shadow(Visited);
4172 for (auto *I : Ctx->using_directives()) {
4173 if (!Result.getSema().isVisible(I))
4174 continue;
4175 lookupInDeclContext(I->getNominatedNamespace(), Result,
4176 QualifiedNameLookup, InBaseClass);
4177 }
4178 }
4179
4180 // Traverse the contexts of inherited C++ classes.
4181 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4182 if (!Record->hasDefinition())
4183 return;
4184
4185 for (const auto &B : Record->bases()) {
4186 QualType BaseType = B.getType();
4187
4188 RecordDecl *RD;
4189 if (BaseType->isDependentType()) {
4190 if (!IncludeDependentBases) {
4191 // Don't look into dependent bases, because name lookup can't look
4192 // there anyway.
4193 continue;
4194 }
4195 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4196 if (!TST)
4197 continue;
4198 TemplateName TN = TST->getTemplateName();
4199 const auto *TD =
4200 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4201 if (!TD)
4202 continue;
4203 RD = TD->getTemplatedDecl();
4204 } else {
4205 const auto *Record = BaseType->getAs<RecordType>();
4206 if (!Record)
4207 continue;
4208 RD = Record->getDecl();
4209 }
4210
4211 // FIXME: It would be nice to be able to determine whether referencing
4212 // a particular member would be ambiguous. For example, given
4213 //
4214 // struct A { int member; };
4215 // struct B { int member; };
4216 // struct C : A, B { };
4217 //
4218 // void f(C *c) { c->### }
4219 //
4220 // accessing 'member' would result in an ambiguity. However, we
4221 // could be smart enough to qualify the member with the base
4222 // class, e.g.,
4223 //
4224 // c->B::member
4225 //
4226 // or
4227 //
4228 // c->A::member
4229
4230 // Find results in this base class (and its bases).
4231 ShadowContextRAII Shadow(Visited);
4232 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4233 /*InBaseClass=*/true);
4234 }
4235 }
4236
4237 // Traverse the contexts of Objective-C classes.
4238 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4239 // Traverse categories.
4240 for (auto *Cat : IFace->visible_categories()) {
4241 ShadowContextRAII Shadow(Visited);
4242 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4243 /*InBaseClass=*/false);
4244 }
4245
4246 // Traverse protocols.
4247 for (auto *I : IFace->all_referenced_protocols()) {
4248 ShadowContextRAII Shadow(Visited);
4249 lookupInDeclContext(I, Result, QualifiedNameLookup,
4250 /*InBaseClass=*/false);
4251 }
4252
4253 // Traverse the superclass.
4254 if (IFace->getSuperClass()) {
4255 ShadowContextRAII Shadow(Visited);
4256 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4257 /*InBaseClass=*/true);
4258 }
4259
4260 // If there is an implementation, traverse it. We do this to find
4261 // synthesized ivars.
4262 if (IFace->getImplementation()) {
4263 ShadowContextRAII Shadow(Visited);
4264 lookupInDeclContext(IFace->getImplementation(), Result,
4265 QualifiedNameLookup, InBaseClass);
4266 }
4267 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4268 for (auto *I : Protocol->protocols()) {
4269 ShadowContextRAII Shadow(Visited);
4270 lookupInDeclContext(I, Result, QualifiedNameLookup,
4271 /*InBaseClass=*/false);
4272 }
4273 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4274 for (auto *I : Category->protocols()) {
4275 ShadowContextRAII Shadow(Visited);
4276 lookupInDeclContext(I, Result, QualifiedNameLookup,
4277 /*InBaseClass=*/false);
4278 }
4279
4280 // If there is an implementation, traverse it.
4281 if (Category->getImplementation()) {
4282 ShadowContextRAII Shadow(Visited);
4283 lookupInDeclContext(Category->getImplementation(), Result,
4284 QualifiedNameLookup, /*InBaseClass=*/true);
4285 }
4286 }
4287 }
4288
4289 void lookupInScope(Scope *S, LookupResult &Result,
4290 UnqualUsingDirectiveSet &UDirs) {
4291 // No clients run in this mode and it's not supported. Please add tests and
4292 // remove the assertion if you start relying on it.
4293 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")(static_cast <bool> (!IncludeDependentBases && "Unsupported flag for lookupInScope"
) ? void (0) : __assert_fail ("!IncludeDependentBases && \"Unsupported flag for lookupInScope\""
, "clang/lib/Sema/SemaLookup.cpp", 4293, __extension__ __PRETTY_FUNCTION__
))
;
4294
4295 if (!S)
4296 return;
4297
4298 if (!S->getEntity() ||
4299 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4300 (S->getEntity())->isFunctionOrMethod()) {
4301 FindLocalExternScope FindLocals(Result);
4302 // Walk through the declarations in this Scope. The consumer might add new
4303 // decls to the scope as part of deserialization, so make a copy first.
4304 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4305 for (Decl *D : ScopeDecls) {
4306 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4307 if ((ND = Result.getAcceptableDecl(ND))) {
4308 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4309 Visited.add(ND);
4310 }
4311 }
4312 }
4313
4314 DeclContext *Entity = S->getLookupEntity();
4315 if (Entity) {
4316 // Look into this scope's declaration context, along with any of its
4317 // parent lookup contexts (e.g., enclosing classes), up to the point
4318 // where we hit the context stored in the next outer scope.
4319 DeclContext *OuterCtx = findOuterContext(S);
4320
4321 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4322 Ctx = Ctx->getLookupParent()) {
4323 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4324 if (Method->isInstanceMethod()) {
4325 // For instance methods, look for ivars in the method's interface.
4326 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4327 Result.getNameLoc(),
4328 Sema::LookupMemberName);
4329 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4330 lookupInDeclContext(IFace, IvarResult,
4331 /*QualifiedNameLookup=*/false,
4332 /*InBaseClass=*/false);
4333 }
4334 }
4335
4336 // We've already performed all of the name lookup that we need
4337 // to for Objective-C methods; the next context will be the
4338 // outer scope.
4339 break;
4340 }
4341
4342 if (Ctx->isFunctionOrMethod())
4343 continue;
4344
4345 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4346 /*InBaseClass=*/false);
4347 }
4348 } else if (!S->getParent()) {
4349 // Look into the translation unit scope. We walk through the translation
4350 // unit's declaration context, because the Scope itself won't have all of
4351 // the declarations if we loaded a precompiled header.
4352 // FIXME: We would like the translation unit's Scope object to point to
4353 // the translation unit, so we don't need this special "if" branch.
4354 // However, doing so would force the normal C++ name-lookup code to look
4355 // into the translation unit decl when the IdentifierInfo chains would
4356 // suffice. Once we fix that problem (which is part of a more general
4357 // "don't look in DeclContexts unless we have to" optimization), we can
4358 // eliminate this.
4359 Entity = Result.getSema().Context.getTranslationUnitDecl();
4360 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4361 /*InBaseClass=*/false);
4362 }
4363
4364 if (Entity) {
4365 // Lookup visible declarations in any namespaces found by using
4366 // directives.
4367 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4368 lookupInDeclContext(
4369 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4370 /*QualifiedNameLookup=*/false,
4371 /*InBaseClass=*/false);
4372 }
4373
4374 // Lookup names in the parent scope.
4375 ShadowContextRAII Shadow(Visited);
4376 lookupInScope(S->getParent(), Result, UDirs);
4377 }
4378
4379private:
4380 VisibleDeclsRecord Visited;
4381 VisibleDeclConsumer &Consumer;
4382 bool IncludeDependentBases;
4383 bool LoadExternal;
4384};
4385} // namespace
4386
4387void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4388 VisibleDeclConsumer &Consumer,
4389 bool IncludeGlobalScope, bool LoadExternal) {
4390 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4391 LoadExternal);
4392 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4393}
4394
4395void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4396 VisibleDeclConsumer &Consumer,
4397 bool IncludeGlobalScope,
4398 bool IncludeDependentBases, bool LoadExternal) {
4399 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4400 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4401}
4402
4403/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4404/// If GnuLabelLoc is a valid source location, then this is a definition
4405/// of an __label__ label name, otherwise it is a normal label definition
4406/// or use.
4407LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4408 SourceLocation GnuLabelLoc) {
4409 // Do a lookup to see if we have a label with this name already.
4410 NamedDecl *Res = nullptr;
4411
4412 if (GnuLabelLoc.isValid()) {
4413 // Local label definitions always shadow existing labels.
4414 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4415 Scope *S = CurScope;
4416 PushOnScopeChains(Res, S, true);
4417 return cast<LabelDecl>(Res);
4418 }
4419
4420 // Not a GNU local label.
4421 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4422 // If we found a label, check to see if it is in the same context as us.
4423 // When in a Block, we don't want to reuse a label in an enclosing function.
4424 if (Res && Res->getDeclContext() != CurContext)
4425 Res = nullptr;
4426 if (!Res) {
4427 // If not forward referenced or defined already, create the backing decl.
4428 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4429 Scope *S = CurScope->getFnParent();
4430 assert(S && "Not in a function?")(static_cast <bool> (S && "Not in a function?")
? void (0) : __assert_fail ("S && \"Not in a function?\""
, "clang/lib/Sema/SemaLookup.cpp", 4430, __extension__ __PRETTY_FUNCTION__
))
;
4431 PushOnScopeChains(Res, S, true);
4432 }
4433 return cast<LabelDecl>(Res);
4434}
4435
4436//===----------------------------------------------------------------------===//
4437// Typo correction
4438//===----------------------------------------------------------------------===//
4439
4440static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4441 TypoCorrection &Candidate) {
4442 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4443 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4444}
4445
4446static void LookupPotentialTypoResult(Sema &SemaRef,
4447 LookupResult &Res,
4448 IdentifierInfo *Name,
4449 Scope *S, CXXScopeSpec *SS,
4450 DeclContext *MemberContext,
4451 bool EnteringContext,
4452 bool isObjCIvarLookup,
4453 bool FindHidden);
4454
4455/// Check whether the declarations found for a typo correction are
4456/// visible. Set the correction's RequiresImport flag to true if none of the
4457/// declarations are visible, false otherwise.
4458static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4459 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4460
4461 for (/**/; DI != DE; ++DI)
4462 if (!LookupResult::isVisible(SemaRef, *DI))
4463 break;
4464 // No filtering needed if all decls are visible.
4465 if (DI == DE) {
4466 TC.setRequiresImport(false);
4467 return;
4468 }
4469
4470 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4471 bool AnyVisibleDecls = !NewDecls.empty();
4472
4473 for (/**/; DI != DE; ++DI) {
4474 if (LookupResult::isVisible(SemaRef, *DI)) {
4475 if (!AnyVisibleDecls) {
4476 // Found a visible decl, discard all hidden ones.
4477 AnyVisibleDecls = true;
4478 NewDecls.clear();
4479 }
4480 NewDecls.push_back(*DI);
4481 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4482 NewDecls.push_back(*DI);
4483 }
4484
4485 if (NewDecls.empty())
4486 TC = TypoCorrection();
4487 else {
4488 TC.setCorrectionDecls(NewDecls);
4489 TC.setRequiresImport(!AnyVisibleDecls);
4490 }
4491}
4492
4493// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4494// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4495// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4496static void getNestedNameSpecifierIdentifiers(
4497 NestedNameSpecifier *NNS,
4498 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4499 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
12
Called C++ object pointer is null
4500 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4501 else
4502 Identifiers.clear();
4503
4504 const IdentifierInfo *II = nullptr;
4505
4506 switch (NNS->getKind()) {
4507 case NestedNameSpecifier::Identifier:
4508 II = NNS->getAsIdentifier();
4509 break;
4510
4511 case NestedNameSpecifier::Namespace:
4512 if (NNS->getAsNamespace()->isAnonymousNamespace())
4513 return;
4514 II = NNS->getAsNamespace()->getIdentifier();
4515 break;
4516
4517 case NestedNameSpecifier::NamespaceAlias:
4518 II = NNS->getAsNamespaceAlias()->getIdentifier();
4519 break;
4520
4521 case NestedNameSpecifier::TypeSpecWithTemplate:
4522 case NestedNameSpecifier::TypeSpec:
4523 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4524 break;
4525
4526 case NestedNameSpecifier::Global:
4527 case NestedNameSpecifier::Super:
4528 return;
4529 }
4530
4531 if (II)
4532 Identifiers.push_back(II);
4533}
4534
4535void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4536 DeclContext *Ctx, bool InBaseClass) {
4537 // Don't consider hidden names for typo correction.
4538 if (Hiding)
4539 return;
4540
4541 // Only consider entities with identifiers for names, ignoring
4542 // special names (constructors, overloaded operators, selectors,
4543 // etc.).
4544 IdentifierInfo *Name = ND->getIdentifier();
4545 if (!Name)
4546 return;
4547
4548 // Only consider visible declarations and declarations from modules with
4549 // names that exactly match.
4550 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4551 return;
4552
4553 FoundName(Name->getName());
4554}
4555
4556void TypoCorrectionConsumer::FoundName(StringRef Name) {
4557 // Compute the edit distance between the typo and the name of this
4558 // entity, and add the identifier to the list of results.
4559 addName(Name, nullptr);
4560}
4561
4562void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4563 // Compute the edit distance between the typo and this keyword,
4564 // and add the keyword to the list of results.
4565 addName(Keyword, nullptr, nullptr, true);
4566}
4567
4568void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4569 NestedNameSpecifier *NNS, bool isKeyword) {
4570 // Use a simple length-based heuristic to determine the minimum possible
4571 // edit distance. If the minimum isn't good enough, bail out early.
4572 StringRef TypoStr = Typo->getName();
4573 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4574 if (MinED && TypoStr.size() / MinED < 3)
4575 return;
4576
4577 // Compute an upper bound on the allowable edit distance, so that the
4578 // edit-distance algorithm can short-circuit.
4579 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4580 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4581 if (ED > UpperBound) return;
4582
4583 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4584 if (isKeyword) TC.makeKeyword();
4585 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4586 addCorrection(TC);
4587}
4588
4589static const unsigned MaxTypoDistanceResultSets = 5;
4590
4591void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4592 StringRef TypoStr = Typo->getName();
4593 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4594
4595 // For very short typos, ignore potential corrections that have a different
4596 // base identifier from the typo or which have a normalized edit distance
4597 // longer than the typo itself.
4598 if (TypoStr.size() < 3 &&
4599 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4600 return;
4601
4602 // If the correction is resolved but is not viable, ignore it.
4603 if (Correction.isResolved()) {
4604 checkCorrectionVisibility(SemaRef, Correction);
4605 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4606 return;
4607 }
4608
4609 TypoResultList &CList =
4610 CorrectionResults[Correction.getEditDistance(false)][Name];
4611
4612 if (!CList.empty() && !CList.back().isResolved())
4613 CList.pop_back();
4614 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4615 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4616 return TypoCorr.getCorrectionDecl() == NewND;
4617 });
4618 if (RI != CList.end()) {
4619 // The Correction refers to a decl already in the list. No insertion is
4620 // necessary and all further cases will return.
4621
4622 auto IsDeprecated = [](Decl *D) {
4623 while (D) {
4624 if (D->isDeprecated())
4625 return true;
4626 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4627 }
4628 return false;
4629 };
4630
4631 // Prefer non deprecated Corrections over deprecated and only then
4632 // sort using an alphabetical order.
4633 std::pair<bool, std::string> NewKey = {
4634 IsDeprecated(Correction.getFoundDecl()),
4635 Correction.getAsString(SemaRef.getLangOpts())};
4636
4637 std::pair<bool, std::string> PrevKey = {
4638 IsDeprecated(RI->getFoundDecl()),
4639 RI->getAsString(SemaRef.getLangOpts())};
4640
4641 if (NewKey < PrevKey)
4642 *RI = Correction;
4643 return;
4644 }
4645 }
4646 if (CList.empty() || Correction.isResolved())
4647 CList.push_back(Correction);
4648
4649 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4650 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4651}
4652
4653void TypoCorrectionConsumer::addNamespaces(
4654 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4655 SearchNamespaces = true;
4656
4657 for (auto KNPair : KnownNamespaces)
4658 Namespaces.addNameSpecifier(KNPair.first);
1
Calling 'NamespaceSpecifierSet::addNameSpecifier'
4659
4660 bool SSIsTemplate = false;
4661 if (NestedNameSpecifier *NNS =
4662 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4663 if (const Type *T = NNS->getAsType())
4664 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4665 }
4666 // Do not transform this into an iterator-based loop. The loop body can
4667 // trigger the creation of further types (through lazy deserialization) and
4668 // invalid iterators into this list.
4669 auto &Types = SemaRef.getASTContext().getTypes();
4670 for (unsigned I = 0; I != Types.size(); ++I) {
4671 const auto *TI = Types[I];
4672 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4673 CD = CD->getCanonicalDecl();
4674 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4675 !CD->isUnion() && CD->getIdentifier() &&
4676 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4677 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4678 Namespaces.addNameSpecifier(CD);
4679 }
4680 }
4681}
4682
4683const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4684 if (++CurrentTCIndex < ValidatedCorrections.size())
4685 return ValidatedCorrections[CurrentTCIndex];
4686
4687 CurrentTCIndex = ValidatedCorrections.size();
4688 while (!CorrectionResults.empty()) {
4689 auto DI = CorrectionResults.begin();
4690 if (DI->second.empty()) {
4691 CorrectionResults.erase(DI);
4692 continue;
4693 }
4694
4695 auto RI = DI->second.begin();
4696 if (RI->second.empty()) {
4697 DI->second.erase(RI);
4698 performQualifiedLookups();
4699 continue;
4700 }
4701
4702 TypoCorrection TC = RI->second.pop_back_val();
4703 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4704 ValidatedCorrections.push_back(TC);
4705 return ValidatedCorrections[CurrentTCIndex];
4706 }
4707 }
4708 return ValidatedCorrections[0]; // The empty correction.
4709}
4710
4711bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4712 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4713 DeclContext *TempMemberContext = MemberContext;
4714 CXXScopeSpec *TempSS = SS.get();
4715retry_lookup:
4716 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4717 EnteringContext,
4718 CorrectionValidator->IsObjCIvarLookup,
4719 Name == Typo && !Candidate.WillReplaceSpecifier());
4720 switch (Result.getResultKind()) {
4721 case LookupResult::NotFound:
4722 case LookupResult::NotFoundInCurrentInstantiation:
4723 case LookupResult::FoundUnresolvedValue:
4724 if (TempSS) {
4725 // Immediately retry the lookup without the given CXXScopeSpec
4726 TempSS = nullptr;
4727 Candidate.WillReplaceSpecifier(true);
4728 goto retry_lookup;
4729 }
4730 if (TempMemberContext) {
4731 if (SS && !TempSS)
4732 TempSS = SS.get();
4733 TempMemberContext = nullptr;
4734 goto retry_lookup;
4735 }
4736 if (SearchNamespaces)
4737 QualifiedResults.push_back(Candidate);
4738 break;
4739
4740 case LookupResult::Ambiguous:
4741 // We don't deal with ambiguities.
4742 break;
4743
4744 case LookupResult::Found:
4745 case LookupResult::FoundOverloaded:
4746 // Store all of the Decls for overloaded symbols
4747 for (auto *TRD : Result)
4748 Candidate.addCorrectionDecl(TRD);
4749 checkCorrectionVisibility(SemaRef, Candidate);
4750 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4751 if (SearchNamespaces)
4752 QualifiedResults.push_back(Candidate);
4753 break;
4754 }
4755 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4756 return true;
4757 }
4758 return false;
4759}
4760
4761void TypoCorrectionConsumer::performQualifiedLookups() {
4762 unsigned TypoLen = Typo->getName().size();
4763 for (const TypoCorrection &QR : QualifiedResults) {
4764 for (const auto &NSI : Namespaces) {
4765 DeclContext *Ctx = NSI.DeclCtx;
4766 const Type *NSType = NSI.NameSpecifier->getAsType();
4767
4768 // If the current NestedNameSpecifier refers to a class and the
4769 // current correction candidate is the name of that class, then skip
4770 // it as it is unlikely a qualified version of the class' constructor
4771 // is an appropriate correction.
4772 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4773 nullptr) {
4774 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4775 continue;
4776 }
4777
4778 TypoCorrection TC(QR);
4779 TC.ClearCorrectionDecls();
4780 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4781 TC.setQualifierDistance(NSI.EditDistance);
4782 TC.setCallbackDistance(0); // Reset the callback distance
4783
4784 // If the current correction candidate and namespace combination are
4785 // too far away from the original typo based on the normalized edit
4786 // distance, then skip performing a qualified name lookup.
4787 unsigned TmpED = TC.getEditDistance(true);
4788 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4789 TypoLen / TmpED < 3)
4790 continue;
4791
4792 Result.clear();
4793 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4794 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4795 continue;
4796
4797 // Any corrections added below will be validated in subsequent
4798 // iterations of the main while() loop over the Consumer's contents.
4799 switch (Result.getResultKind()) {
4800 case LookupResult::Found:
4801 case LookupResult::FoundOverloaded: {
4802 if (SS && SS->isValid()) {
4803 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4804 std::string OldQualified;
4805 llvm::raw_string_ostream OldOStream(OldQualified);
4806 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4807 OldOStream << Typo->getName();
4808 // If correction candidate would be an identical written qualified
4809 // identifier, then the existing CXXScopeSpec probably included a
4810 // typedef that didn't get accounted for properly.
4811 if (OldOStream.str() == NewQualified)
4812 break;
4813 }
4814 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4815 TRD != TRDEnd; ++TRD) {
4816 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4817 NSType ? NSType->getAsCXXRecordDecl()
4818 : nullptr,
4819 TRD.getPair()) == Sema::AR_accessible)
4820 TC.addCorrectionDecl(*TRD);
4821 }
4822 if (TC.isResolved()) {
4823 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4824 addCorrection(TC);
4825 }
4826 break;
4827 }
4828 case LookupResult::NotFound:
4829 case LookupResult::NotFoundInCurrentInstantiation:
4830 case LookupResult::Ambiguous:
4831 case LookupResult::FoundUnresolvedValue:
4832 break;
4833 }
4834 }
4835 }
4836 QualifiedResults.clear();
4837}
4838
4839TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4840 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4841 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4842 if (NestedNameSpecifier *NNS =
4843 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4844 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4845 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4846
4847 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4848 }
4849 // Build the list of identifiers that would be used for an absolute
4850 // (from the global context) NestedNameSpecifier referring to the current
4851 // context.
4852 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4853 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4854 CurContextIdentifiers.push_back(ND->getIdentifier());
4855 }
4856
4857 // Add the global context as a NestedNameSpecifier
4858 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4859 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4860 DistanceMap[1].push_back(SI);
4861}
4862
4863auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4864 DeclContext *Start) -> DeclContextList {
4865 assert(Start && "Building a context chain from a null context")(static_cast <bool> (Start && "Building a context chain from a null context"
) ? void (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "clang/lib/Sema/SemaLookup.cpp", 4865, __extension__ __PRETTY_FUNCTION__
))
;
4866 DeclContextList Chain;
4867 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4868 DC = DC->getLookupParent()) {
4869 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4870 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4871 !(ND && ND->isAnonymousNamespace()))
4872 Chain.push_back(DC->getPrimaryContext());
4873 }
4874 return Chain;
4875}
4876
4877unsigned
4878TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4879 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4880 unsigned NumSpecifiers = 0;
4881 for (DeclContext *C : llvm::reverse(DeclChain)) {
4882 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4883 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4884 ++NumSpecifiers;
4885 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4886 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4887 RD->getTypeForDecl());
4888 ++NumSpecifiers;
4889 }
4890 }
4891 return NumSpecifiers;
4
Returning without writing to 'NNS'
4892}
4893
4894void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4895 DeclContext *Ctx) {
4896 NestedNameSpecifier *NNS = nullptr;
2
'NNS' initialized to a null pointer value
4897 unsigned NumSpecifiers = 0;
4898 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4899 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4900
4901 // Eliminate common elements from the two DeclContext chains.
4902 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4903 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4904 break;
4905 NamespaceDeclChain.pop_back();
4906 }
4907
4908 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4909 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3
Calling 'NamespaceSpecifierSet::buildNestedNameSpecifier'
5
Returning from 'NamespaceSpecifierSet::buildNestedNameSpecifier'
4910
4911 // Add an explicit leading '::' specifier if needed.
4912 if (NamespaceDeclChain.empty()) {
6
Taking false branch
4913 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4914 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4915 NumSpecifiers =
4916 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4917 } else if (NamedDecl *ND
7.1
'ND' is non-null
=
8
Taking true branch
4918 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
7
Assuming the object is a 'CastReturnType'
4919 IdentifierInfo *Name = ND->getIdentifier();
4920 bool SameNameSpecifier = false;
4921 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
9
Taking true branch
4922 std::string NewNameSpecifier;
4923 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4924 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4925 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
10
Passing null pointer value via 1st parameter 'NNS'
11
Calling 'getNestedNameSpecifierIdentifiers'
4926 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4927 SpecifierOStream.flush();
4928 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4929 }
4930 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4931 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4932 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4933 NumSpecifiers =
4934 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4935 }
4936 }
4937
4938 // If the built NestedNameSpecifier would be replacing an existing
4939 // NestedNameSpecifier, use the number of component identifiers that
4940 // would need to be changed as the edit distance instead of the number
4941 // of components in the built NestedNameSpecifier.
4942 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4943 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4944 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4945 NumSpecifiers =
4946 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4947 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4948 }
4949
4950 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4951 DistanceMap[NumSpecifiers].push_back(SI);
4952}
4953
4954/// Perform name lookup for a possible result for typo correction.
4955static void LookupPotentialTypoResult(Sema &SemaRef,
4956 LookupResult &Res,
4957 IdentifierInfo *Name,
4958 Scope *S, CXXScopeSpec *SS,
4959 DeclContext *MemberContext,
4960 bool EnteringContext,
4961 bool isObjCIvarLookup,
4962 bool FindHidden) {
4963 Res.suppressDiagnostics();
4964 Res.clear();
4965 Res.setLookupName(Name);
4966 Res.setAllowHidden(FindHidden);
4967 if (MemberContext) {
4968 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4969 if (isObjCIvarLookup) {
4970 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4971 Res.addDecl(Ivar);
4972 Res.resolveKind();
4973 return;
4974 }
4975 }
4976
4977 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4978 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4979 Res.addDecl(Prop);
4980 Res.resolveKind();
4981 return;
4982 }
4983 }
4984
4985 SemaRef.LookupQualifiedName(Res, MemberContext);
4986 return;
4987 }
4988
4989 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4990 EnteringContext);
4991
4992 // Fake ivar lookup; this should really be part of
4993 // LookupParsedName.
4994 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4995 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4996 (Res.empty() ||
4997 (Res.isSingleResult() &&
4998 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4999 if (ObjCIvarDecl *IV
5000 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5001 Res.addDecl(IV);
5002 Res.resolveKind();
5003 }
5004 }
5005 }
5006}
5007
5008/// Add keywords to the consumer as possible typo corrections.
5009static void AddKeywordsToConsumer(Sema &SemaRef,
5010 TypoCorrectionConsumer &Consumer,
5011 Scope *S, CorrectionCandidateCallback &CCC,
5012 bool AfterNestedNameSpecifier) {
5013 if (AfterNestedNameSpecifier) {
5014 // For 'X::', we know exactly which keywords can appear next.
5015 Consumer.addKeywordResult("template");
5016 if (CCC.WantExpressionKeywords)
5017 Consumer.addKeywordResult("operator");
5018 return;
5019 }
5020
5021 if (CCC.WantObjCSuper)
5022 Consumer.addKeywordResult("super");
5023
5024 if (CCC.WantTypeSpecifiers) {
5025 // Add type-specifier keywords to the set of results.
5026 static const char *const CTypeSpecs[] = {
5027 "char", "const", "double", "enum", "float", "int", "long", "short",
5028 "signed", "struct", "union", "unsigned", "void", "volatile",
5029 "_Complex", "_Imaginary",
5030 // storage-specifiers as well
5031 "extern", "inline", "static", "typedef"
5032 };
5033
5034 for (const auto *CTS : CTypeSpecs)
5035 Consumer.addKeywordResult(CTS);
5036
5037 if (SemaRef.getLangOpts().C99)
5038 Consumer.addKeywordResult("restrict");
5039 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5040 Consumer.addKeywordResult("bool");
5041 else if (SemaRef.getLangOpts().C99)
5042 Consumer.addKeywordResult("_Bool");
5043
5044 if (SemaRef.getLangOpts().CPlusPlus) {
5045 Consumer.addKeywordResult("class");
5046 Consumer.addKeywordResult("typename");
5047 Consumer.addKeywordResult("wchar_t");
5048
5049 if (SemaRef.getLangOpts().CPlusPlus11) {
5050 Consumer.addKeywordResult("char16_t");
5051 Consumer.addKeywordResult("char32_t");
5052 Consumer.addKeywordResult("constexpr");
5053 Consumer.addKeywordResult("decltype");
5054 Consumer.addKeywordResult("thread_local");
5055 }
5056 }
5057
5058 if (SemaRef.getLangOpts().GNUKeywords)
5059 Consumer.addKeywordResult("typeof");
5060 } else if (CCC.WantFunctionLikeCasts) {
5061 static const char *const CastableTypeSpecs[] = {
5062 "char", "double", "float", "int", "long", "short",
5063 "signed", "unsigned", "void"
5064 };
5065 for (auto *kw : CastableTypeSpecs)
5066 Consumer.addKeywordResult(kw);
5067 }
5068
5069 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5070 Consumer.addKeywordResult("const_cast");
5071 Consumer.addKeywordResult("dynamic_cast");
5072 Consumer.addKeywordResult("reinterpret_cast");
5073 Consumer.addKeywordResult("static_cast");
5074 }
5075
5076 if (CCC.WantExpressionKeywords) {
5077 Consumer.addKeywordResult("sizeof");
5078 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5079 Consumer.addKeywordResult("false");
5080 Consumer.addKeywordResult("true");
5081 }
5082
5083 if (SemaRef.getLangOpts().CPlusPlus) {
5084 static const char *const CXXExprs[] = {
5085 "delete", "new", "operator", "throw", "typeid"
5086 };
5087 for (const auto *CE : CXXExprs)
5088 Consumer.addKeywordResult(CE);
5089
5090 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5091 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5092 Consumer.addKeywordResult("this");
5093
5094 if (SemaRef.getLangOpts().CPlusPlus11) {
5095 Consumer.addKeywordResult("alignof");
5096 Consumer.addKeywordResult("nullptr");
5097 }
5098 }
5099
5100 if (SemaRef.getLangOpts().C11) {
5101 // FIXME: We should not suggest _Alignof if the alignof macro
5102 // is present.
5103 Consumer.addKeywordResult("_Alignof");
5104 }
5105 }
5106
5107 if (CCC.WantRemainingKeywords) {
5108 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5109 // Statements.
5110 static const char *const CStmts[] = {
5111 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5112 for (const auto *CS : CStmts)
5113 Consumer.addKeywordResult(CS);
5114
5115 if (SemaRef.getLangOpts().CPlusPlus) {
5116 Consumer.addKeywordResult("catch");
5117 Consumer.addKeywordResult("try");
5118 }
5119
5120 if (S && S->getBreakParent())
5121 Consumer.addKeywordResult("break");
5122
5123 if (S && S->getContinueParent())
5124 Consumer.addKeywordResult("continue");
5125
5126 if (SemaRef.getCurFunction() &&
5127 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5128 Consumer.addKeywordResult("case");
5129 Consumer.addKeywordResult("default");
5130 }
5131 } else {
5132 if (SemaRef.getLangOpts().CPlusPlus) {
5133 Consumer.addKeywordResult("namespace");
5134 Consumer.addKeywordResult("template");
5135 }
5136
5137 if (S && S->isClassScope()) {
5138 Consumer.addKeywordResult("explicit");
5139 Consumer.addKeywordResult("friend");
5140 Consumer.addKeywordResult("mutable");
5141 Consumer.addKeywordResult("private");
5142 Consumer.addKeywordResult("protected");
5143 Consumer.addKeywordResult("public");
5144 Consumer.addKeywordResult("virtual");
5145 }
5146 }
5147
5148 if (SemaRef.getLangOpts().CPlusPlus) {
5149 Consumer.addKeywordResult("using");
5150
5151 if (SemaRef.getLangOpts().CPlusPlus11)
5152 Consumer.addKeywordResult("static_assert");
5153 }
5154 }
5155}
5156
5157std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5158 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5159 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5160 DeclContext *MemberContext, bool EnteringContext,
5161 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5162
5163 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5164 DisableTypoCorrection)
5165 return nullptr;
5166
5167 // In Microsoft mode, don't perform typo correction in a template member
5168 // function dependent context because it interferes with the "lookup into
5169 // dependent bases of class templates" feature.
5170 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5171 isa<CXXMethodDecl>(CurContext))
5172 return nullptr;
5173
5174 // We only attempt to correct typos for identifiers.
5175 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5176 if (!Typo)
5177 return nullptr;
5178
5179 // If the scope specifier itself was invalid, don't try to correct
5180 // typos.
5181 if (SS && SS->isInvalid())
5182 return nullptr;
5183
5184 // Never try to correct typos during any kind of code synthesis.
5185 if (!CodeSynthesisContexts.empty())
5186 return nullptr;
5187
5188 // Don't try to correct 'super'.
5189 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5190 return nullptr;
5191
5192 // Abort if typo correction already failed for this specific typo.
5193 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5194 if (locs != TypoCorrectionFailures.end() &&
5195 locs->second.count(TypoName.getLoc()))
5196 return nullptr;
5197
5198 // Don't try to correct the identifier "vector" when in AltiVec mode.
5199 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5200 // remove this workaround.
5201 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5202 return nullptr;
5203
5204 // Provide a stop gap for files that are just seriously broken. Trying
5205 // to correct all typos can turn into a HUGE performance penalty, causing
5206 // some files to take minutes to get rejected by the parser.
5207 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5208 if (Limit && TyposCorrected >= Limit)
5209 return nullptr;
5210 ++TyposCorrected;
5211
5212 // If we're handling a missing symbol error, using modules, and the
5213 // special search all modules option is used, look for a missing import.
5214 if (ErrorRecovery && getLangOpts().Modules &&
5215 getLangOpts().ModulesSearchAll) {
5216 // The following has the side effect of loading the missing module.
5217 getModuleLoader().lookupMissingImports(Typo->getName(),
5218 TypoName.getBeginLoc());
5219 }
5220
5221 // Extend the lifetime of the callback. We delayed this until here
5222 // to avoid allocations in the hot path (which is where no typo correction
5223 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5224 // initially stack-allocated.
5225 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5226 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5227 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5228 EnteringContext);
5229
5230 // Perform name lookup to find visible, similarly-named entities.
5231 bool IsUnqualifiedLookup = false;
5232 DeclContext *QualifiedDC = MemberContext;
5233 if (MemberContext) {
5234 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5235
5236 // Look in qualified interfaces.
5237 if (OPT) {
5238 for (auto *I : OPT->quals())
5239 LookupVisibleDecls(I, LookupKind, *Consumer);
5240 }
5241 } else if (SS && SS->isSet()) {
5242 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5243 if (!QualifiedDC)
5244 return nullptr;
5245
5246 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5247 } else {
5248 IsUnqualifiedLookup = true;
5249 }
5250
5251 // Determine whether we are going to search in the various namespaces for
5252 // corrections.
5253 bool SearchNamespaces
5254 = getLangOpts().CPlusPlus &&
5255 (IsUnqualifiedLookup || (SS && SS->isSet()));
5256
5257 if (IsUnqualifiedLookup || SearchNamespaces) {
5258 // For unqualified lookup, look through all of the names that we have
5259 // seen in this translation unit.
5260 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5261 for (const auto &I : Context.Idents)
5262 Consumer->FoundName(I.getKey());
5263
5264 // Walk through identifiers in external identifier sources.
5265 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5266 if (IdentifierInfoLookup *External
5267 = Context.Idents.getExternalIdentifierLookup()) {
5268 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5269 do {
5270 StringRef Name = Iter->Next();
5271 if (Name.empty())
5272 break;
5273
5274 Consumer->FoundName(Name);
5275 } while (true);
5276 }
5277 }
5278
5279 AddKeywordsToConsumer(*this, *Consumer, S,
5280 *Consumer->getCorrectionValidator(),
5281 SS && SS->isNotEmpty());
5282
5283 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5284 // to search those namespaces.
5285 if (SearchNamespaces) {
5286 // Load any externally-known namespaces.
5287 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5288 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5289 LoadedExternalKnownNamespaces = true;
5290 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5291 for (auto *N : ExternalKnownNamespaces)
5292 KnownNamespaces[N] = true;
5293 }
5294
5295 Consumer->addNamespaces(KnownNamespaces);
5296 }
5297
5298 return Consumer;
5299}
5300
5301/// Try to "correct" a typo in the source code by finding
5302/// visible declarations whose names are similar to the name that was
5303/// present in the source code.
5304///
5305/// \param TypoName the \c DeclarationNameInfo structure that contains
5306/// the name that was present in the source code along with its location.
5307///
5308/// \param LookupKind the name-lookup criteria used to search for the name.
5309///
5310/// \param S the scope in which name lookup occurs.
5311///
5312/// \param SS the nested-name-specifier that precedes the name we're
5313/// looking for, if present.
5314///
5315/// \param CCC A CorrectionCandidateCallback object that provides further
5316/// validation of typo correction candidates. It also provides flags for
5317/// determining the set of keywords permitted.
5318///
5319/// \param MemberContext if non-NULL, the context in which to look for
5320/// a member access expression.
5321///
5322/// \param EnteringContext whether we're entering the context described by
5323/// the nested-name-specifier SS.
5324///
5325/// \param OPT when non-NULL, the search for visible declarations will
5326/// also walk the protocols in the qualified interfaces of \p OPT.
5327///
5328/// \returns a \c TypoCorrection containing the corrected name if the typo
5329/// along with information such as the \c NamedDecl where the corrected name
5330/// was declared, and any additional \c NestedNameSpecifier needed to access
5331/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5332TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5333 Sema::LookupNameKind LookupKind,
5334 Scope *S, CXXScopeSpec *SS,
5335 CorrectionCandidateCallback &CCC,
5336 CorrectTypoKind Mode,
5337 DeclContext *MemberContext,
5338 bool EnteringContext,
5339 const ObjCObjectPointerType *OPT,
5340 bool RecordFailure) {
5341 // Always let the ExternalSource have the first chance at correction, even
5342 // if we would otherwise have given up.
5343 if (ExternalSource) {
5344 if (TypoCorrection Correction =
5345 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5346 MemberContext, EnteringContext, OPT))
5347 return Correction;
5348 }
5349
5350 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5351 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5352 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5353 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5354 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5355
5356 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5357 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5358 MemberContext, EnteringContext,
5359 OPT, Mode == CTK_ErrorRecovery);
5360
5361 if (!Consumer)
5362 return TypoCorrection();
5363
5364 // If we haven't found anything, we're done.
5365 if (Consumer->empty())
5366 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5367
5368 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5369 // is not more that about a third of the length of the typo's identifier.
5370 unsigned ED = Consumer->getBestEditDistance(true);
5371 unsigned TypoLen = Typo->getName().size();
5372 if (ED > 0 && TypoLen / ED < 3)
5373 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5374
5375 TypoCorrection BestTC = Consumer->getNextCorrection();
5376 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5377 if (!BestTC)
5378 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5379
5380 ED = BestTC.getEditDistance();
5381
5382 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5383 // If this was an unqualified lookup and we believe the callback
5384 // object wouldn't have filtered out possible corrections, note
5385 // that no correction was found.
5386 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5387 }
5388
5389 // If only a single name remains, return that result.
5390 if (!SecondBestTC ||
5391 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5392 const TypoCorrection &Result = BestTC;
5393
5394 // Don't correct to a keyword that's the same as the typo; the keyword
5395 // wasn't actually in scope.
5396 if (ED == 0 && Result.isKeyword())
5397 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5398
5399 TypoCorrection TC = Result;
5400 TC.setCorrectionRange(SS, TypoName);
5401 checkCorrectionVisibility(*this, TC);
5402 return TC;
5403 } else if (SecondBestTC && ObjCMessageReceiver) {
5404 // Prefer 'super' when we're completing in a message-receiver
5405 // context.
5406
5407 if (BestTC.getCorrection().getAsString() != "super") {
5408 if (SecondBestTC.getCorrection().getAsString() == "super")
5409 BestTC = SecondBestTC;
5410 else if ((*Consumer)["super"].front().isKeyword())
5411 BestTC = (*Consumer)["super"].front();
5412 }
5413 // Don't correct to a keyword that's the same as the typo; the keyword
5414 // wasn't actually in scope.
5415 if (BestTC.getEditDistance() == 0 ||
5416 BestTC.getCorrection().getAsString() != "super")
5417 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5418
5419 BestTC.setCorrectionRange(SS, TypoName);
5420 return BestTC;
5421 }
5422
5423 // Record the failure's location if needed and return an empty correction. If
5424 // this was an unqualified lookup and we believe the callback object did not
5425 // filter out possible corrections, also cache the failure for the typo.
5426 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5427}
5428
5429/// Try to "correct" a typo in the source code by finding
5430/// visible declarations whose names are similar to the name that was
5431/// present in the source code.
5432///
5433/// \param TypoName the \c DeclarationNameInfo structure that contains
5434/// the name that was present in the source code along with its location.
5435///
5436/// \param LookupKind the name-lookup criteria used to search for the name.
5437///
5438/// \param S the scope in which name lookup occurs.
5439///
5440/// \param SS the nested-name-specifier that precedes the name we're
5441/// looking for, if present.
5442///
5443/// \param CCC A CorrectionCandidateCallback object that provides further
5444/// validation of typo correction candidates. It also provides flags for
5445/// determining the set of keywords permitted.
5446///
5447/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5448/// diagnostics when the actual typo correction is attempted.
5449///
5450/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5451/// Expr from a typo correction candidate.
5452///
5453/// \param MemberContext if non-NULL, the context in which to look for
5454/// a member access expression.
5455///
5456/// \param EnteringContext whether we're entering the context described by
5457/// the nested-name-specifier SS.
5458///
5459/// \param OPT when non-NULL, the search for visible declarations will
5460/// also walk the protocols in the qualified interfaces of \p OPT.
5461///
5462/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5463/// Expr representing the result of performing typo correction, or nullptr if
5464/// typo correction is not possible. If nullptr is returned, no diagnostics will
5465/// be emitted and it is the responsibility of the caller to emit any that are
5466/// needed.
5467TypoExpr *Sema::CorrectTypoDelayed(
5468 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5469 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5470 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5471 DeclContext *MemberContext, bool EnteringContext,
5472 const ObjCObjectPointerType *OPT) {
5473 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5474 MemberContext, EnteringContext,
5475 OPT, Mode == CTK_ErrorRecovery);
5476
5477 // Give the external sema source a chance to correct the typo.
5478 TypoCorrection ExternalTypo;
5479 if (ExternalSource && Consumer) {
5480 ExternalTypo = ExternalSource->CorrectTypo(
5481 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5482 MemberContext, EnteringContext, OPT);
5483 if (ExternalTypo)
5484 Consumer->addCorrection(ExternalTypo);
5485 }
5486
5487 if (!Consumer || Consumer->empty())
5488 return nullptr;
5489
5490 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5491 // is not more that about a third of the length of the typo's identifier.
5492 unsigned ED = Consumer->getBestEditDistance(true);
5493 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5494 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5495 return nullptr;
5496 ExprEvalContexts.back().NumTypos++;
5497 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5498 TypoName.getLoc());
5499}
5500
5501void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5502 if (!CDecl) return;
5503
5504 if (isKeyword())
5505 CorrectionDecls.clear();
5506
5507 CorrectionDecls.push_back(CDecl);
5508
5509 if (!CorrectionName)
5510 CorrectionName = CDecl->getDeclName();
5511}
5512
5513std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5514 if (CorrectionNameSpec) {
5515 std::string tmpBuffer;
5516 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5517 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5518 PrefixOStream << CorrectionName;
5519 return PrefixOStream.str();
5520 }
5521
5522 return CorrectionName.getAsString();
5523}
5524
5525bool CorrectionCandidateCallback::ValidateCandidate(
5526 const TypoCorrection &candidate) {
5527 if (!candidate.isResolved())
5528 return true;
5529
5530 if (candidate.isKeyword())
5531 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5532 WantRemainingKeywords || WantObjCSuper;
5533
5534 bool HasNonType = false;
5535 bool HasStaticMethod = false;
5536 bool HasNonStaticMethod = false;
5537 for (Decl *D : candidate) {
5538 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5539 D = FTD->getTemplatedDecl();
5540 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5541 if (Method->isStatic())
5542 HasStaticMethod = true;
5543 else
5544 HasNonStaticMethod = true;
5545 }
5546 if (!isa<TypeDecl>(D))
5547 HasNonType = true;
5548 }
5549
5550 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5551 !candidate.getCorrectionSpecifier())
5552 return false;
5553
5554 return WantTypeSpecifiers || HasNonType;
5555}
5556
5557FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5558 bool HasExplicitTemplateArgs,
5559 MemberExpr *ME)
5560 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5561 CurContext(SemaRef.CurContext), MemberFn(ME) {
5562 WantTypeSpecifiers = false;
5563 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5564 !HasExplicitTemplateArgs && NumArgs == 1;
5565 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5566 WantRemainingKeywords = false;
5567}
5568
5569bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5570 if (!candidate.getCorrectionDecl())
5571 return candidate.isKeyword();
5572
5573 for (auto *C : candidate) {
5574 FunctionDecl *FD = nullptr;
5575 NamedDecl *ND = C->getUnderlyingDecl();
5576 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5577 FD = FTD->getTemplatedDecl();
5578 if (!HasExplicitTemplateArgs && !FD) {
5579 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5580 // If the Decl is neither a function nor a template function,
5581 // determine if it is a pointer or reference to a function. If so,
5582 // check against the number of arguments expected for the pointee.
5583 QualType ValType = cast<ValueDecl>(ND)->getType();
5584 if (ValType.isNull())
5585 continue;
5586 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5587 ValType = ValType->getPointeeType();
5588 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5589 if (FPT->getNumParams() == NumArgs)
5590 return true;
5591 }
5592 }
5593
5594 // A typo for a function-style cast can look like a function call in C++.
5595 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5596 : isa<TypeDecl>(ND)) &&
5597 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5598 // Only a class or class template can take two or more arguments.
5599 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5600
5601 // Skip the current candidate if it is not a FunctionDecl or does not accept
5602 // the current number of arguments.
5603 if (!FD || !(FD->getNumParams() >= NumArgs &&
5604 FD->getMinRequiredArguments() <= NumArgs))
5605 continue;
5606
5607 // If the current candidate is a non-static C++ method, skip the candidate
5608 // unless the method being corrected--or the current DeclContext, if the
5609 // function being corrected is not a method--is a method in the same class
5610 // or a descendent class of the candidate's parent class.
5611 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5612 if (MemberFn || !MD->isStatic()) {
5613 const auto *CurMD =
5614 MemberFn
5615 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5616 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5617 const CXXRecordDecl *CurRD =
5618 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5619 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5620 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5621 continue;
5622 }
5623 }
5624 return true;
5625 }
5626 return false;
5627}
5628
5629void Sema::diagnoseTypo(const TypoCorrection &Correction,
5630 const PartialDiagnostic &TypoDiag,
5631 bool ErrorRecovery) {
5632 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5633 ErrorRecovery);
5634}
5635
5636/// Find which declaration we should import to provide the definition of
5637/// the given declaration.
5638static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5639 if (const auto *VD = dyn_cast<VarDecl>(D))
5640 return VD->getDefinition();
5641 if (const auto *FD = dyn_cast<FunctionDecl>(D))
5642 return FD->getDefinition();
5643 if (const auto *TD = dyn_cast<TagDecl>(D))
5644 return TD->getDefinition();
5645 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5646 return ID->getDefinition();
5647 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5648 return PD->getDefinition();
5649 if (const auto *TD = dyn_cast<TemplateDecl>(D))
5650 if (const NamedDecl *TTD = TD->getTemplatedDecl())
5651 return getDefinitionToImport(TTD);
5652 return nullptr;
5653}
5654
5655void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5656 MissingImportKind MIK, bool Recover) {
5657 // Suggest importing a module providing the definition of this entity, if
5658 // possible.
5659 const NamedDecl *Def = getDefinitionToImport(Decl);
5660 if (!Def)
5661 Def = Decl;
5662
5663 Module *Owner = getOwningModule(Def);
5664 assert(Owner && "definition of hidden declaration is not in a module")(static_cast <bool> (Owner && "definition of hidden declaration is not in a module"
) ? void (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "clang/lib/Sema/SemaLookup.cpp", 5664, __extension__ __PRETTY_FUNCTION__
))
;
5665
5666 llvm::SmallVector<Module*, 8> OwningModules;
5667 OwningModules.push_back(Owner);
5668 auto Merged = Context.getModulesWithMergedDefinition(Def);
5669 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5670
5671 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5672 Recover);
5673}
5674
5675/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5676/// suggesting the addition of a #include of the specified file.
5677static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5678 llvm::StringRef IncludingFile) {
5679 bool IsSystem = false;
5680 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5681 E, IncludingFile, &IsSystem);
5682 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5683}
5684
5685void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5686 SourceLocation DeclLoc,
5687 ArrayRef<Module *> Modules,
5688 MissingImportKind MIK, bool Recover) {
5689 assert(!Modules.empty())(static_cast <bool> (!Modules.empty()) ? void (0) : __assert_fail
("!Modules.empty()", "clang/lib/Sema/SemaLookup.cpp", 5689, __extension__
__PRETTY_FUNCTION__))
;
5690
5691 auto NotePrevious = [&] {
5692 // FIXME: Suppress the note backtrace even under
5693 // -fdiagnostics-show-note-include-stack. We don't care how this
5694 // declaration was previously reached.
5695 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5696 };
5697
5698 // Weed out duplicates from module list.
5699 llvm::SmallVector<Module*, 8> UniqueModules;
5700 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5701 for (auto *M : Modules) {
5702 if (M->isGlobalModule() || M->isPrivateModule())
5703 continue;
5704 if (UniqueModuleSet.insert(M).second)
5705 UniqueModules.push_back(M);
5706 }
5707
5708 // Try to find a suitable header-name to #include.
5709 std::string HeaderName;
5710 if (const FileEntry *Header =
5711 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5712 if (const FileEntry *FE =
5713 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5714 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5715 }
5716
5717 // If we have a #include we should suggest, or if all definition locations
5718 // were in global module fragments, don't suggest an import.
5719 if (!HeaderName.empty() || UniqueModules.empty()) {
5720 // FIXME: Find a smart place to suggest inserting a #include, and add
5721 // a FixItHint there.
5722 Diag(UseLoc, diag::err_module_unimported_use_header)
5723 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5724 // Produce a note showing where the entity was declared.
5725 NotePrevious();
5726 if (Recover)
5727 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5728 return;
5729 }
5730
5731 Modules = UniqueModules;
5732
5733 if (Modules.size() > 1) {
5734 std::string ModuleList;
5735 unsigned N = 0;
5736 for (const auto *M : Modules) {
5737 ModuleList += "\n ";
5738 if (++N == 5 && N != Modules.size()) {
5739 ModuleList += "[...]";
5740 break;
5741 }
5742 ModuleList += M->getFullModuleName();
5743 }
5744
5745 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5746 << (int)MIK << Decl << ModuleList;
5747 } else {
5748 // FIXME: Add a FixItHint that imports the corresponding module.
5749 Diag(UseLoc, diag::err_module_unimported_use)
5750 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5751 }
5752
5753 NotePrevious();
5754
5755 // Try to recover by implicitly importing this module.
5756 if (Recover)
5757 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5758}
5759
5760/// Diagnose a successfully-corrected typo. Separated from the correction
5761/// itself to allow external validation of the result, etc.
5762///
5763/// \param Correction The result of performing typo correction.
5764/// \param TypoDiag The diagnostic to produce. This will have the corrected
5765/// string added to it (and usually also a fixit).
5766/// \param PrevNote A note to use when indicating the location of the entity to
5767/// which we are correcting. Will have the correction string added to it.
5768/// \param ErrorRecovery If \c true (the default), the caller is going to
5769/// recover from the typo as if the corrected string had been typed.
5770/// In this case, \c PDiag must be an error, and we will attach a fixit
5771/// to it.
5772void Sema::diagnoseTypo(const TypoCorrection &Correction,
5773 const PartialDiagnostic &TypoDiag,
5774 const PartialDiagnostic &PrevNote,
5775 bool ErrorRecovery) {
5776 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5777 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5778 FixItHint FixTypo = FixItHint::CreateReplacement(
5779 Correction.getCorrectionRange(), CorrectedStr);
5780
5781 // Maybe we're just missing a module import.
5782 if (Correction.requiresImport()) {
5783 NamedDecl *Decl = Correction.getFoundDecl();
5784 assert(Decl && "import required but no declaration to import")(static_cast <bool> (Decl && "import required but no declaration to import"
) ? void (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "clang/lib/Sema/SemaLookup.cpp", 5784, __extension__ __PRETTY_FUNCTION__
))
;
5785
5786 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5787 MissingImportKind::Declaration, ErrorRecovery);
5788 return;
5789 }
5790
5791 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5792 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5793
5794 NamedDecl *ChosenDecl =
5795 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5796 if (PrevNote.getDiagID() && ChosenDecl)
5797 Diag(ChosenDecl->getLocation(), PrevNote)
5798 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5799
5800 // Add any extra diagnostics.
5801 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5802 Diag(Correction.getCorrectionRange().getBegin(), PD);
5803}
5804
5805TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5806 TypoDiagnosticGenerator TDG,
5807 TypoRecoveryCallback TRC,
5808 SourceLocation TypoLoc) {
5809 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")(static_cast <bool> (TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? void (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "clang/lib/Sema/SemaLookup.cpp", 5809, __extension__ __PRETTY_FUNCTION__
))
;
5810 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5811 auto &State = DelayedTypos[TE];
5812 State.Consumer = std::move(TCC);
5813 State.DiagHandler = std::move(TDG);
5814 State.RecoveryHandler = std::move(TRC);
5815 if (TE)
5816 TypoExprs.push_back(TE);
5817 return TE;
5818}
5819
5820const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5821 auto Entry = DelayedTypos.find(TE);
5822 assert(Entry != DelayedTypos.end() &&(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "clang/lib/Sema/SemaLookup.cpp", 5823, __extension__ __PRETTY_FUNCTION__
))
5823 "Failed to get the state for a TypoExpr!")(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "clang/lib/Sema/SemaLookup.cpp", 5823, __extension__ __PRETTY_FUNCTION__
))
;
5824 return Entry->second;
5825}
5826
5827void Sema::clearDelayedTypo(TypoExpr *TE) {
5828 DelayedTypos.erase(TE);
5829}
5830
5831void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5832 DeclarationNameInfo Name(II, IILoc);
5833 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5834 R.suppressDiagnostics();
5835 R.setHideTags(false);
5836 LookupName(R, S);
5837 R.dump();
5838}
5839
5840void Sema::ActOnPragmaDump(Expr *E) {
5841 E->dump();
5842}