Bug Summary

File:clang/lib/Sema/SemaLookup.cpp
Warning:line 108, column 38
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50#include "OpenCLBuiltins.inc"
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 Sema &SemaRef;
94
95 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97 ListTy list;
98 llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100 public:
101 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
103 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104 // C++ [namespace.udir]p1:
105 // During unqualified name lookup, the names appear as if they
106 // were declared in the nearest enclosing namespace which contains
107 // both the using-directive and the nominated namespace.
108 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
8
Called C++ object pointer is null
109 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 109, __PRETTY_FUNCTION__))
;
110
111 for (; S; S = S->getParent()) {
112 // C++ [namespace.udir]p1:
113 // A using-directive shall not appear in class scope, but may
114 // appear in namespace scope or in block scope.
115 DeclContext *Ctx = S->getEntity();
116 if (Ctx && Ctx->isFileContext()) {
117 visit(Ctx, Ctx);
118 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119 for (auto *I : S->using_directives())
120 if (SemaRef.isVisible(I))
121 visit(I, InnermostFileDC);
122 }
123 }
124 }
125
126 // Visits a context and collect all of its using directives
127 // recursively. Treats all using directives as if they were
128 // declared in the context.
129 //
130 // A given context is only every visited once, so it is important
131 // that contexts be visited from the inside out in order to get
132 // the effective DCs right.
133 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134 if (!visited.insert(DC).second)
135 return;
136
137 addUsingDirectives(DC, EffectiveDC);
138 }
139
140 // Visits a using directive and collects all of its using
141 // directives recursively. Treats all using directives as if they
142 // were declared in the effective DC.
143 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144 DeclContext *NS = UD->getNominatedNamespace();
145 if (!visited.insert(NS).second)
146 return;
147
148 addUsingDirective(UD, EffectiveDC);
149 addUsingDirectives(NS, EffectiveDC);
150 }
151
152 // Adds all the using directives in a context (and those nominated
153 // by its using directives, transitively) as if they appeared in
154 // the given effective context.
155 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156 SmallVector<DeclContext*, 4> queue;
157 while (true) {
158 for (auto UD : DC->using_directives()) {
159 DeclContext *NS = UD->getNominatedNamespace();
160 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161 addUsingDirective(UD, EffectiveDC);
162 queue.push_back(NS);
163 }
164 }
165
166 if (queue.empty())
167 return;
168
169 DC = queue.pop_back_val();
170 }
171 }
172
173 // Add a using directive as if it had been declared in the given
174 // context. This helps implement C++ [namespace.udir]p3:
175 // The using-directive is transitive: if a scope contains a
176 // using-directive that nominates a second namespace that itself
177 // contains using-directives, the effect is as if the
178 // using-directives from the second namespace also appeared in
179 // the first.
180 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181 // Find the common ancestor between the effective context and
182 // the nominated namespace.
183 DeclContext *Common = UD->getNominatedNamespace();
184 while (!Common->Encloses(EffectiveDC))
185 Common = Common->getParent();
186 Common = Common->getPrimaryContext();
187
188 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189 }
190
191 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193 typedef ListTy::const_iterator const_iterator;
194
195 const_iterator begin() const { return list.begin(); }
196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 case Sema::LookupDestructorName:
219 IDNS = Decl::IDNS_Ordinary;
220 if (CPlusPlus) {
221 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222 if (Redeclaration)
223 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224 }
225 if (Redeclaration)
226 IDNS |= Decl::IDNS_LocalExtern;
227 break;
228
229 case Sema::LookupOperatorName:
230 // Operator lookup is its own crazy thing; it is not the same
231 // as (e.g.) looking up an operator name for redeclaration.
232 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 232, __PRETTY_FUNCTION__))
;
233 IDNS = Decl::IDNS_NonMemberOperator;
234 break;
235
236 case Sema::LookupTagName:
237 if (CPlusPlus) {
238 IDNS = Decl::IDNS_Type;
239
240 // When looking for a redeclaration of a tag name, we add:
241 // 1) TagFriend to find undeclared friend decls
242 // 2) Namespace because they can't "overload" with tag decls.
243 // 3) Tag because it includes class templates, which can't
244 // "overload" with tag decls.
245 if (Redeclaration)
246 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247 } else {
248 IDNS = Decl::IDNS_Tag;
249 }
250 break;
251
252 case Sema::LookupLabel:
253 IDNS = Decl::IDNS_Label;
254 break;
255
256 case Sema::LookupMemberName:
257 IDNS = Decl::IDNS_Member;
258 if (CPlusPlus)
259 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260 break;
261
262 case Sema::LookupNestedNameSpecifierName:
263 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264 break;
265
266 case Sema::LookupNamespaceName:
267 IDNS = Decl::IDNS_Namespace;
268 break;
269
270 case Sema::LookupUsingDeclName:
271 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274 Decl::IDNS_LocalExtern;
275 break;
276
277 case Sema::LookupObjCProtocolName:
278 IDNS = Decl::IDNS_ObjCProtocol;
279 break;
280
281 case Sema::LookupOMPReductionName:
282 IDNS = Decl::IDNS_OMPReduction;
283 break;
284
285 case Sema::LookupOMPMapperName:
286 IDNS = Decl::IDNS_OMPMapper;
287 break;
288
289 case Sema::LookupAnyName:
290 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292 | Decl::IDNS_Type;
293 break;
294 }
295 return IDNS;
296}
297
298void LookupResult::configure() {
299 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300 isForRedeclaration());
301
302 // If we're looking for one of the allocation or deallocation
303 // operators, make sure that the implicitly-declared new and delete
304 // operators can be found.
305 switch (NameInfo.getName().getCXXOverloadedOperator()) {
306 case OO_New:
307 case OO_Delete:
308 case OO_Array_New:
309 case OO_Array_Delete:
310 getSema().DeclareGlobalNewDelete();
311 break;
312
313 default:
314 break;
315 }
316
317 // Compiler builtins are always visible, regardless of where they end
318 // up being declared.
319 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320 if (unsigned BuiltinID = Id->getBuiltinID()) {
321 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322 AllowHidden = true;
323 }
324 }
325}
326
327bool LookupResult::sanity() const {
328 // This function is never called by NDEBUG builds.
329 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
;
330 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 330, __PRETTY_FUNCTION__))
;
331 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
332 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
333 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
;
334 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 334, __PRETTY_FUNCTION__))
;
335 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 337, __PRETTY_FUNCTION__))
336 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 337, __PRETTY_FUNCTION__))
337 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 337, __PRETTY_FUNCTION__))
;
338 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 340, __PRETTY_FUNCTION__))
339 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 340, __PRETTY_FUNCTION__))
340 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 340, __PRETTY_FUNCTION__))
;
341 return true;
342}
343
344// Necessary because CXXBasePaths is not complete in Sema.h
345void LookupResult::deletePaths(CXXBasePaths *Paths) {
346 delete Paths;
347}
348
349/// Get a representative context for a declaration such that two declarations
350/// will have the same context if they were found within the same scope.
351static DeclContext *getContextForScopeMatching(Decl *D) {
352 // For function-local declarations, use that function as the context. This
353 // doesn't account for scopes within the function; the caller must deal with
354 // those.
355 DeclContext *DC = D->getLexicalDeclContext();
356 if (DC->isFunctionOrMethod())
357 return DC;
358
359 // Otherwise, look at the semantic context of the declaration. The
360 // declaration must have been found there.
361 return D->getDeclContext()->getRedeclContext();
362}
363
364/// Determine whether \p D is a better lookup result than \p Existing,
365/// given that they declare the same entity.
366static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367 NamedDecl *D, NamedDecl *Existing) {
368 // When looking up redeclarations of a using declaration, prefer a using
369 // shadow declaration over any other declaration of the same entity.
370 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371 !isa<UsingShadowDecl>(Existing))
372 return true;
373
374 auto *DUnderlying = D->getUnderlyingDecl();
375 auto *EUnderlying = Existing->getUnderlyingDecl();
376
377 // If they have different underlying declarations, prefer a typedef over the
378 // original type (this happens when two type declarations denote the same
379 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380 // might carry additional semantic information, such as an alignment override.
381 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382 // declaration over a typedef. Also prefer a tag over a typedef for
383 // destructor name lookup because in some contexts we only accept a
384 // class-name in a destructor declaration.
385 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 386, __PRETTY_FUNCTION__))
;
387 bool HaveTag = isa<TagDecl>(EUnderlying);
388 bool WantTag =
389 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390 return HaveTag != WantTag;
391 }
392
393 // Pick the function with more default arguments.
394 // FIXME: In the presence of ambiguous default arguments, we should keep both,
395 // so we can diagnose the ambiguity if the default argument is needed.
396 // See C++ [over.match.best]p3.
397 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398 auto *EFD = cast<FunctionDecl>(EUnderlying);
399 unsigned DMin = DFD->getMinRequiredArguments();
400 unsigned EMin = EFD->getMinRequiredArguments();
401 // If D has more default arguments, it is preferred.
402 if (DMin != EMin)
403 return DMin < EMin;
404 // FIXME: When we track visibility for default function arguments, check
405 // that we pick the declaration with more visible default arguments.
406 }
407
408 // Pick the template with more default template arguments.
409 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410 auto *ETD = cast<TemplateDecl>(EUnderlying);
411 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413 // If D has more default arguments, it is preferred. Note that default
414 // arguments (and their visibility) is monotonically increasing across the
415 // redeclaration chain, so this is a quick proxy for "is more recent".
416 if (DMin != EMin)
417 return DMin < EMin;
418 // If D has more *visible* default arguments, it is preferred. Note, an
419 // earlier default argument being visible does not imply that a later
420 // default argument is visible, so we can't just check the first one.
421 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422 I != N; ++I) {
423 if (!S.hasVisibleDefaultArgument(
424 ETD->getTemplateParameters()->getParam(I)) &&
425 S.hasVisibleDefaultArgument(
426 DTD->getTemplateParameters()->getParam(I)))
427 return true;
428 }
429 }
430
431 // VarDecl can have incomplete array types, prefer the one with more complete
432 // array type.
433 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434 VarDecl *EVD = cast<VarDecl>(EUnderlying);
435 if (EVD->getType()->isIncompleteType() &&
436 !DVD->getType()->isIncompleteType()) {
437 // Prefer the decl with a more complete type if visible.
438 return S.isVisible(DVD);
439 }
440 return false; // Avoid picking up a newer decl, just because it was newer.
441 }
442
443 // For most kinds of declaration, it doesn't really matter which one we pick.
444 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445 // If the existing declaration is hidden, prefer the new one. Otherwise,
446 // keep what we've got.
447 return !S.isVisible(Existing);
448 }
449
450 // Pick the newer declaration; it might have a more precise type.
451 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452 Prev = Prev->getPreviousDecl())
453 if (Prev == EUnderlying)
454 return true;
455 return false;
456}
457
458/// Determine whether \p D can hide a tag declaration.
459static bool canHideTag(NamedDecl *D) {
460 // C++ [basic.scope.declarative]p4:
461 // Given a set of declarations in a single declarative region [...]
462 // exactly one declaration shall declare a class name or enumeration name
463 // that is not a typedef name and the other declarations shall all refer to
464 // the same variable, non-static data member, or enumerator, or all refer
465 // to functions and function templates; in this case the class name or
466 // enumeration name is hidden.
467 // C++ [basic.scope.hiding]p2:
468 // A class name or enumeration name can be hidden by the name of a
469 // variable, data member, function, or enumerator declared in the same
470 // scope.
471 // An UnresolvedUsingValueDecl always instantiates to one of these.
472 D = D->getUnderlyingDecl();
473 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475 isa<UnresolvedUsingValueDecl>(D);
476}
477
478/// Resolves the result kind of this lookup.
479void LookupResult::resolveKind() {
480 unsigned N = Decls.size();
481
482 // Fast case: no possible ambiguity.
483 if (N == 0) {
484 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 485, __PRETTY_FUNCTION__))
485 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 485, __PRETTY_FUNCTION__))
;
486 return;
487 }
488
489 // If there's a single decl, we need to examine it to decide what
490 // kind of lookup this is.
491 if (N == 1) {
492 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493 if (isa<FunctionTemplateDecl>(D))
494 ResultKind = FoundOverloaded;
495 else if (isa<UnresolvedUsingValueDecl>(D))
496 ResultKind = FoundUnresolvedValue;
497 return;
498 }
499
500 // Don't do any extra resolution if we've already resolved as ambiguous.
501 if (ResultKind == Ambiguous) return;
502
503 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505
506 bool Ambiguous = false;
507 bool HasTag = false, HasFunction = false;
508 bool HasFunctionTemplate = false, HasUnresolved = false;
509 NamedDecl *HasNonFunction = nullptr;
510
511 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512
513 unsigned UniqueTagIndex = 0;
514
515 unsigned I = 0;
516 while (I < N) {
517 NamedDecl *D = Decls[I]->getUnderlyingDecl();
518 D = cast<NamedDecl>(D->getCanonicalDecl());
519
520 // Ignore an invalid declaration unless it's the only one left.
521 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522 Decls[I] = Decls[--N];
523 continue;
524 }
525
526 llvm::Optional<unsigned> ExistingI;
527
528 // Redeclarations of types via typedef can occur both within a scope
529 // and, through using declarations and directives, across scopes. There is
530 // no ambiguity if they all refer to the same type, so unique based on the
531 // canonical type.
532 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533 QualType T = getSema().Context.getTypeDeclType(TD);
534 auto UniqueResult = UniqueTypes.insert(
535 std::make_pair(getSema().Context.getCanonicalType(T), I));
536 if (!UniqueResult.second) {
537 // The type is not unique.
538 ExistingI = UniqueResult.first->second;
539 }
540 }
541
542 // For non-type declarations, check for a prior lookup result naming this
543 // canonical declaration.
544 if (!ExistingI) {
545 auto UniqueResult = Unique.insert(std::make_pair(D, I));
546 if (!UniqueResult.second) {
547 // We've seen this entity before.
548 ExistingI = UniqueResult.first->second;
549 }
550 }
551
552 if (ExistingI) {
553 // This is not a unique lookup result. Pick one of the results and
554 // discard the other.
555 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556 Decls[*ExistingI]))
557 Decls[*ExistingI] = Decls[I];
558 Decls[I] = Decls[--N];
559 continue;
560 }
561
562 // Otherwise, do some decl type analysis and then continue.
563
564 if (isa<UnresolvedUsingValueDecl>(D)) {
565 HasUnresolved = true;
566 } else if (isa<TagDecl>(D)) {
567 if (HasTag)
568 Ambiguous = true;
569 UniqueTagIndex = I;
570 HasTag = true;
571 } else if (isa<FunctionTemplateDecl>(D)) {
572 HasFunction = true;
573 HasFunctionTemplate = true;
574 } else if (isa<FunctionDecl>(D)) {
575 HasFunction = true;
576 } else {
577 if (HasNonFunction) {
578 // If we're about to create an ambiguity between two declarations that
579 // are equivalent, but one is an internal linkage declaration from one
580 // module and the other is an internal linkage declaration from another
581 // module, just skip it.
582 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583 D)) {
584 EquivalentNonFunctions.push_back(D);
585 Decls[I] = Decls[--N];
586 continue;
587 }
588
589 Ambiguous = true;
590 }
591 HasNonFunction = D;
592 }
593 I++;
594 }
595
596 // C++ [basic.scope.hiding]p2:
597 // A class name or enumeration name can be hidden by the name of
598 // an object, function, or enumerator declared in the same
599 // scope. If a class or enumeration name and an object, function,
600 // or enumerator are declared in the same scope (in any order)
601 // with the same name, the class or enumeration name is hidden
602 // wherever the object, function, or enumerator name is visible.
603 // But it's still an error if there are distinct tag types found,
604 // even if they're not visible. (ref?)
605 if (N > 1 && HideTags && HasTag && !Ambiguous &&
606 (HasFunction || HasNonFunction || HasUnresolved)) {
607 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610 getContextForScopeMatching(OtherDecl)) &&
611 canHideTag(OtherDecl))
612 Decls[UniqueTagIndex] = Decls[--N];
613 else
614 Ambiguous = true;
615 }
616
617 // FIXME: This diagnostic should really be delayed until we're done with
618 // the lookup result, in case the ambiguity is resolved by the caller.
619 if (!EquivalentNonFunctions.empty() && !Ambiguous)
620 getSema().diagnoseEquivalentInternalLinkageDeclarations(
621 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622
623 Decls.set_size(N);
624
625 if (HasNonFunction && (HasFunction || HasUnresolved))
626 Ambiguous = true;
627
628 if (Ambiguous)
629 setAmbiguous(LookupResult::AmbiguousReference);
630 else if (HasUnresolved)
631 ResultKind = LookupResult::FoundUnresolvedValue;
632 else if (N > 1 || HasFunctionTemplate)
633 ResultKind = LookupResult::FoundOverloaded;
634 else
635 ResultKind = LookupResult::Found;
636}
637
638void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639 CXXBasePaths::const_paths_iterator I, E;
640 for (I = P.begin(), E = P.end(); I != E; ++I)
641 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
642 DE = I->Decls.end(); DI != DE; ++DI)
643 addDecl(*DI);
644}
645
646void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647 Paths = new CXXBasePaths;
648 Paths->swap(P);
649 addDeclsFromBasePaths(*Paths);
650 resolveKind();
651 setAmbiguous(AmbiguousBaseSubobjects);
652}
653
654void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655 Paths = new CXXBasePaths;
656 Paths->swap(P);
657 addDeclsFromBasePaths(*Paths);
658 resolveKind();
659 setAmbiguous(AmbiguousBaseSubobjectTypes);
660}
661
662void LookupResult::print(raw_ostream &Out) {
663 Out << Decls.size() << " result(s)";
664 if (isAmbiguous()) Out << ", ambiguous";
665 if (Paths) Out << ", base paths present";
666
667 for (iterator I = begin(), E = end(); I != E; ++I) {
668 Out << "\n";
669 (*I)->print(Out, 2);
670 }
671}
672
673LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
674 llvm::errs() << "lookup results for " << getLookupName().getAsString()
675 << ":\n";
676 for (NamedDecl *D : *this)
677 D->dump();
678}
679
680/// Get the QualType instances of the return type and arguments for an OpenCL
681/// builtin function signature.
682/// \param Context (in) The Context instance.
683/// \param OpenCLBuiltin (in) The signature currently handled.
684/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
685/// type used as return type or as argument.
686/// Only meaningful for generic types, otherwise equals 1.
687/// \param RetTypes (out) List of the possible return types.
688/// \param ArgTypes (out) List of the possible argument types. For each
689/// argument, ArgTypes contains QualTypes for the Cartesian product
690/// of (vector sizes) x (types) .
691static void GetQualTypesForOpenCLBuiltin(
692 ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
693 unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
694 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
695 // Get the QualType instances of the return types.
696 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
697 OCL2Qual(Context, TypeTable[Sig], RetTypes);
698 GenTypeMaxCnt = RetTypes.size();
699
700 // Get the QualType instances of the arguments.
701 // First type is the return type, skip it.
702 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
703 SmallVector<QualType, 1> Ty;
704 OCL2Qual(Context,
705 TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
706 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
707 ArgTypes.push_back(std::move(Ty));
708 }
709}
710
711/// Create a list of the candidate function overloads for an OpenCL builtin
712/// function.
713/// \param Context (in) The ASTContext instance.
714/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
715/// type used as return type or as argument.
716/// Only meaningful for generic types, otherwise equals 1.
717/// \param FunctionList (out) List of FunctionTypes.
718/// \param RetTypes (in) List of the possible return types.
719/// \param ArgTypes (in) List of the possible types for the arguments.
720static void GetOpenCLBuiltinFctOverloads(
721 ASTContext &Context, unsigned GenTypeMaxCnt,
722 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
723 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
724 FunctionProtoType::ExtProtoInfo PI;
725 PI.Variadic = false;
726
727 // Create FunctionTypes for each (gen)type.
728 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
729 SmallVector<QualType, 5> ArgList;
730
731 for (unsigned A = 0; A < ArgTypes.size(); A++) {
732 // Builtins such as "max" have an "sgentype" argument that represents
733 // the corresponding scalar type of a gentype. The number of gentypes
734 // must be a multiple of the number of sgentypes.
735 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&((GenTypeMaxCnt % ArgTypes[A].size() == 0 && "argument type count not compatible with gentype type count"
) ? static_cast<void> (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 736, __PRETTY_FUNCTION__))
736 "argument type count not compatible with gentype type count")((GenTypeMaxCnt % ArgTypes[A].size() == 0 && "argument type count not compatible with gentype type count"
) ? static_cast<void> (0) : __assert_fail ("GenTypeMaxCnt % ArgTypes[A].size() == 0 && \"argument type count not compatible with gentype type count\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 736, __PRETTY_FUNCTION__))
;
737 unsigned Idx = IGenType % ArgTypes[A].size();
738 ArgList.push_back(ArgTypes[A][Idx]);
739 }
740
741 FunctionList.push_back(Context.getFunctionType(
742 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
743 }
744}
745
746/// Add extensions to the function declaration.
747/// \param S (in/out) The Sema instance.
748/// \param BIDecl (in) Description of the builtin.
749/// \param FDecl (in/out) FunctionDecl instance.
750static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
751 FunctionDecl *FDecl) {
752 // Fetch extension associated with a function prototype.
753 StringRef E = FunctionExtensionTable[BIDecl.Extension];
754 if (E != "")
755 S.setOpenCLExtensionForDecl(FDecl, E);
756}
757
758/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
759/// non-null <Index, Len> pair, then the name is referencing an OpenCL
760/// builtin function. Add all candidate signatures to the LookUpResult.
761///
762/// \param S (in) The Sema instance.
763/// \param LR (inout) The LookupResult instance.
764/// \param II (in) The identifier being resolved.
765/// \param FctIndex (in) Starting index in the BuiltinTable.
766/// \param Len (in) The signature list has Len elements.
767static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
768 IdentifierInfo *II,
769 const unsigned FctIndex,
770 const unsigned Len) {
771 // The builtin function declaration uses generic types (gentype).
772 bool HasGenType = false;
773
774 // Maximum number of types contained in a generic type used as return type or
775 // as argument. Only meaningful for generic types, otherwise equals 1.
776 unsigned GenTypeMaxCnt;
777
778 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
779 const OpenCLBuiltinStruct &OpenCLBuiltin =
780 BuiltinTable[FctIndex + SignatureIndex];
781 ASTContext &Context = S.Context;
782
783 // Ignore this BIF if its version does not match the language options.
784 unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
785 if (Context.getLangOpts().OpenCLCPlusPlus)
786 OpenCLVersion = 200;
787 if (OpenCLVersion < OpenCLBuiltin.MinVersion)
788 continue;
789 if ((OpenCLBuiltin.MaxVersion != 0) &&
790 (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
791 continue;
792
793 SmallVector<QualType, 1> RetTypes;
794 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
795
796 // Obtain QualType lists for the function signature.
797 GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
798 RetTypes, ArgTypes);
799 if (GenTypeMaxCnt > 1) {
800 HasGenType = true;
801 }
802
803 // Create function overload for each type combination.
804 std::vector<QualType> FunctionList;
805 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
806 ArgTypes);
807
808 SourceLocation Loc = LR.getNameLoc();
809 DeclContext *Parent = Context.getTranslationUnitDecl();
810 FunctionDecl *NewOpenCLBuiltin;
811
812 for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
813 NewOpenCLBuiltin = FunctionDecl::Create(
814 Context, Parent, Loc, Loc, II, FunctionList[Index],
815 /*TInfo=*/nullptr, SC_Extern, false,
816 FunctionList[Index]->isFunctionProtoType());
817 NewOpenCLBuiltin->setImplicit();
818
819 // Create Decl objects for each parameter, adding them to the
820 // FunctionDecl.
821 if (const FunctionProtoType *FP =
822 dyn_cast<FunctionProtoType>(FunctionList[Index])) {
823 SmallVector<ParmVarDecl *, 16> ParmList;
824 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
825 ParmVarDecl *Parm = ParmVarDecl::Create(
826 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
827 nullptr, FP->getParamType(IParm),
828 /*TInfo=*/nullptr, SC_None, nullptr);
829 Parm->setScopeInfo(0, IParm);
830 ParmList.push_back(Parm);
831 }
832 NewOpenCLBuiltin->setParams(ParmList);
833 }
834
835 // Add function attributes.
836 if (OpenCLBuiltin.IsPure)
837 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
838 if (OpenCLBuiltin.IsConst)
839 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
840 if (OpenCLBuiltin.IsConv)
841 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
842
843 if (!S.getLangOpts().OpenCLCPlusPlus)
844 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
845
846 AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
847
848 LR.addDecl(NewOpenCLBuiltin);
849 }
850 }
851
852 // If we added overloads, need to resolve the lookup result.
853 if (Len > 1 || HasGenType)
854 LR.resolveKind();
855}
856
857/// Lookup a builtin function, when name lookup would otherwise
858/// fail.
859bool Sema::LookupBuiltin(LookupResult &R) {
860 Sema::LookupNameKind NameKind = R.getLookupKind();
861
862 // If we didn't find a use of this identifier, and if the identifier
863 // corresponds to a compiler builtin, create the decl object for the builtin
864 // now, injecting it into translation unit scope, and return it.
865 if (NameKind == Sema::LookupOrdinaryName ||
866 NameKind == Sema::LookupRedeclarationWithLinkage) {
867 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
868 if (II) {
869 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
870 if (II == getASTContext().getMakeIntegerSeqName()) {
871 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
872 return true;
873 } else if (II == getASTContext().getTypePackElementName()) {
874 R.addDecl(getASTContext().getTypePackElementDecl());
875 return true;
876 }
877 }
878
879 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
880 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
881 auto Index = isOpenCLBuiltin(II->getName());
882 if (Index.first) {
883 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
884 Index.second);
885 return true;
886 }
887 }
888
889 // If this is a builtin on this (or all) targets, create the decl.
890 if (unsigned BuiltinID = II->getBuiltinID()) {
891 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
892 // library functions like 'malloc'. Instead, we'll just error.
893 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
894 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
895 return false;
896
897 if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
898 BuiltinID, TUScope,
899 R.isForRedeclaration(),
900 R.getNameLoc())) {
901 R.addDecl(D);
902 return true;
903 }
904 }
905 }
906 }
907
908 return false;
909}
910
911/// Determine whether we can declare a special member function within
912/// the class at this point.
913static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
914 // We need to have a definition for the class.
915 if (!Class->getDefinition() || Class->isDependentContext())
916 return false;
917
918 // We can't be in the middle of defining the class.
919 return !Class->isBeingDefined();
920}
921
922void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
923 if (!CanDeclareSpecialMemberFunction(Class))
924 return;
925
926 // If the default constructor has not yet been declared, do so now.
927 if (Class->needsImplicitDefaultConstructor())
928 DeclareImplicitDefaultConstructor(Class);
929
930 // If the copy constructor has not yet been declared, do so now.
931 if (Class->needsImplicitCopyConstructor())
932 DeclareImplicitCopyConstructor(Class);
933
934 // If the copy assignment operator has not yet been declared, do so now.
935 if (Class->needsImplicitCopyAssignment())
936 DeclareImplicitCopyAssignment(Class);
937
938 if (getLangOpts().CPlusPlus11) {
939 // If the move constructor has not yet been declared, do so now.
940 if (Class->needsImplicitMoveConstructor())
941 DeclareImplicitMoveConstructor(Class);
942
943 // If the move assignment operator has not yet been declared, do so now.
944 if (Class->needsImplicitMoveAssignment())
945 DeclareImplicitMoveAssignment(Class);
946 }
947
948 // If the destructor has not yet been declared, do so now.
949 if (Class->needsImplicitDestructor())
950 DeclareImplicitDestructor(Class);
951}
952
953/// Determine whether this is the name of an implicitly-declared
954/// special member function.
955static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
956 switch (Name.getNameKind()) {
957 case DeclarationName::CXXConstructorName:
958 case DeclarationName::CXXDestructorName:
959 return true;
960
961 case DeclarationName::CXXOperatorName:
962 return Name.getCXXOverloadedOperator() == OO_Equal;
963
964 default:
965 break;
966 }
967
968 return false;
969}
970
971/// If there are any implicit member functions with the given name
972/// that need to be declared in the given declaration context, do so.
973static void DeclareImplicitMemberFunctionsWithName(Sema &S,
974 DeclarationName Name,
975 SourceLocation Loc,
976 const DeclContext *DC) {
977 if (!DC)
978 return;
979
980 switch (Name.getNameKind()) {
981 case DeclarationName::CXXConstructorName:
982 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
983 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
984 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
985 if (Record->needsImplicitDefaultConstructor())
986 S.DeclareImplicitDefaultConstructor(Class);
987 if (Record->needsImplicitCopyConstructor())
988 S.DeclareImplicitCopyConstructor(Class);
989 if (S.getLangOpts().CPlusPlus11 &&
990 Record->needsImplicitMoveConstructor())
991 S.DeclareImplicitMoveConstructor(Class);
992 }
993 break;
994
995 case DeclarationName::CXXDestructorName:
996 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
997 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
998 CanDeclareSpecialMemberFunction(Record))
999 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1000 break;
1001
1002 case DeclarationName::CXXOperatorName:
1003 if (Name.getCXXOverloadedOperator() != OO_Equal)
1004 break;
1005
1006 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1007 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1008 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1009 if (Record->needsImplicitCopyAssignment())
1010 S.DeclareImplicitCopyAssignment(Class);
1011 if (S.getLangOpts().CPlusPlus11 &&
1012 Record->needsImplicitMoveAssignment())
1013 S.DeclareImplicitMoveAssignment(Class);
1014 }
1015 }
1016 break;
1017
1018 case DeclarationName::CXXDeductionGuideName:
1019 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1020 break;
1021
1022 default:
1023 break;
1024 }
1025}
1026
1027// Adds all qualifying matches for a name within a decl context to the
1028// given lookup result. Returns true if any matches were found.
1029static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1030 bool Found = false;
1031
1032 // Lazily declare C++ special member functions.
1033 if (S.getLangOpts().CPlusPlus)
1034 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1035 DC);
1036
1037 // Perform lookup into this declaration context.
1038 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1039 for (NamedDecl *D : DR) {
1040 if ((D = R.getAcceptableDecl(D))) {
1041 R.addDecl(D);
1042 Found = true;
1043 }
1044 }
1045
1046 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1047 return true;
1048
1049 if (R.getLookupName().getNameKind()
1050 != DeclarationName::CXXConversionFunctionName ||
1051 R.getLookupName().getCXXNameType()->isDependentType() ||
1052 !isa<CXXRecordDecl>(DC))
1053 return Found;
1054
1055 // C++ [temp.mem]p6:
1056 // A specialization of a conversion function template is not found by
1057 // name lookup. Instead, any conversion function templates visible in the
1058 // context of the use are considered. [...]
1059 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1060 if (!Record->isCompleteDefinition())
1061 return Found;
1062
1063 // For conversion operators, 'operator auto' should only match
1064 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1065 // as a candidate for template substitution.
1066 auto *ContainedDeducedType =
1067 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1068 if (R.getLookupName().getNameKind() ==
1069 DeclarationName::CXXConversionFunctionName &&
1070 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1071 return Found;
1072
1073 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1074 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1075 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1076 if (!ConvTemplate)
1077 continue;
1078
1079 // When we're performing lookup for the purposes of redeclaration, just
1080 // add the conversion function template. When we deduce template
1081 // arguments for specializations, we'll end up unifying the return
1082 // type of the new declaration with the type of the function template.
1083 if (R.isForRedeclaration()) {
1084 R.addDecl(ConvTemplate);
1085 Found = true;
1086 continue;
1087 }
1088
1089 // C++ [temp.mem]p6:
1090 // [...] For each such operator, if argument deduction succeeds
1091 // (14.9.2.3), the resulting specialization is used as if found by
1092 // name lookup.
1093 //
1094 // When referencing a conversion function for any purpose other than
1095 // a redeclaration (such that we'll be building an expression with the
1096 // result), perform template argument deduction and place the
1097 // specialization into the result set. We do this to avoid forcing all
1098 // callers to perform special deduction for conversion functions.
1099 TemplateDeductionInfo Info(R.getNameLoc());
1100 FunctionDecl *Specialization = nullptr;
1101
1102 const FunctionProtoType *ConvProto
1103 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1104 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1104, __PRETTY_FUNCTION__))
;
1105
1106 // Compute the type of the function that we would expect the conversion
1107 // function to have, if it were to match the name given.
1108 // FIXME: Calling convention!
1109 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1110 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1111 EPI.ExceptionSpec = EST_None;
1112 QualType ExpectedType
1113 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1114 None, EPI);
1115
1116 // Perform template argument deduction against the type that we would
1117 // expect the function to have.
1118 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1119 Specialization, Info)
1120 == Sema::TDK_Success) {
1121 R.addDecl(Specialization);
1122 Found = true;
1123 }
1124 }
1125
1126 return Found;
1127}
1128
1129// Performs C++ unqualified lookup into the given file context.
1130static bool
1131CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1132 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1133
1134 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1134, __PRETTY_FUNCTION__))
;
1135
1136 // Perform direct name lookup into the LookupCtx.
1137 bool Found = LookupDirect(S, R, NS);
1138
1139 // Perform direct name lookup into the namespaces nominated by the
1140 // using directives whose common ancestor is this namespace.
1141 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1142 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1143 Found = true;
1144
1145 R.resolveKind();
1146
1147 return Found;
1148}
1149
1150static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1151 if (DeclContext *Ctx = S->getEntity())
1152 return Ctx->isFileContext();
1153 return false;
1154}
1155
1156// Find the next outer declaration context from this scope. This
1157// routine actually returns the semantic outer context, which may
1158// differ from the lexical context (encoded directly in the Scope
1159// stack) when we are parsing a member of a class template. In this
1160// case, the second element of the pair will be true, to indicate that
1161// name lookup should continue searching in this semantic context when
1162// it leaves the current template parameter scope.
1163static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1164 DeclContext *DC = S->getEntity();
1165 DeclContext *Lexical = nullptr;
1166 for (Scope *OuterS = S->getParent(); OuterS;
1167 OuterS = OuterS->getParent()) {
1168 if (OuterS->getEntity()) {
1169 Lexical = OuterS->getEntity();
1170 break;
1171 }
1172 }
1173
1174 // C++ [temp.local]p8:
1175 // In the definition of a member of a class template that appears
1176 // outside of the namespace containing the class template
1177 // definition, the name of a template-parameter hides the name of
1178 // a member of this namespace.
1179 //
1180 // Example:
1181 //
1182 // namespace N {
1183 // class C { };
1184 //
1185 // template<class T> class B {
1186 // void f(T);
1187 // };
1188 // }
1189 //
1190 // template<class C> void N::B<C>::f(C) {
1191 // C b; // C is the template parameter, not N::C
1192 // }
1193 //
1194 // In this example, the lexical context we return is the
1195 // TranslationUnit, while the semantic context is the namespace N.
1196 if (!Lexical || !DC || !S->getParent() ||
1197 !S->getParent()->isTemplateParamScope())
1198 return std::make_pair(Lexical, false);
1199
1200 // Find the outermost template parameter scope.
1201 // For the example, this is the scope for the template parameters of
1202 // template<class C>.
1203 Scope *OutermostTemplateScope = S->getParent();
1204 while (OutermostTemplateScope->getParent() &&
1205 OutermostTemplateScope->getParent()->isTemplateParamScope())
1206 OutermostTemplateScope = OutermostTemplateScope->getParent();
1207
1208 // Find the namespace context in which the original scope occurs. In
1209 // the example, this is namespace N.
1210 DeclContext *Semantic = DC;
1211 while (!Semantic->isFileContext())
1212 Semantic = Semantic->getParent();
1213
1214 // Find the declaration context just outside of the template
1215 // parameter scope. This is the context in which the template is
1216 // being lexically declaration (a namespace context). In the
1217 // example, this is the global scope.
1218 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1219 Lexical->Encloses(Semantic))
1220 return std::make_pair(Semantic, true);
1221
1222 return std::make_pair(Lexical, false);
1223}
1224
1225namespace {
1226/// An RAII object to specify that we want to find block scope extern
1227/// declarations.
1228struct FindLocalExternScope {
1229 FindLocalExternScope(LookupResult &R)
1230 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1231 Decl::IDNS_LocalExtern) {
1232 R.setFindLocalExtern(R.getIdentifierNamespace() &
1233 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1234 }
1235 void restore() {
1236 R.setFindLocalExtern(OldFindLocalExtern);
1237 }
1238 ~FindLocalExternScope() {
1239 restore();
1240 }
1241 LookupResult &R;
1242 bool OldFindLocalExtern;
1243};
1244} // end anonymous namespace
1245
1246bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1247 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1247, __PRETTY_FUNCTION__))
;
1248
1249 DeclarationName Name = R.getLookupName();
1250 Sema::LookupNameKind NameKind = R.getLookupKind();
1251
1252 // If this is the name of an implicitly-declared special member function,
1253 // go through the scope stack to implicitly declare
1254 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1255 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1256 if (DeclContext *DC = PreS->getEntity())
1257 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1258 }
1259
1260 // Implicitly declare member functions with the name we're looking for, if in
1261 // fact we are in a scope where it matters.
1262
1263 Scope *Initial = S;
1264 IdentifierResolver::iterator
1265 I = IdResolver.begin(Name),
1266 IEnd = IdResolver.end();
1267
1268 // First we lookup local scope.
1269 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1270 // ...During unqualified name lookup (3.4.1), the names appear as if
1271 // they were declared in the nearest enclosing namespace which contains
1272 // both the using-directive and the nominated namespace.
1273 // [Note: in this context, "contains" means "contains directly or
1274 // indirectly".
1275 //
1276 // For example:
1277 // namespace A { int i; }
1278 // void foo() {
1279 // int i;
1280 // {
1281 // using namespace A;
1282 // ++i; // finds local 'i', A::i appears at global scope
1283 // }
1284 // }
1285 //
1286 UnqualUsingDirectiveSet UDirs(*this);
1287 bool VisitedUsingDirectives = false;
1288 bool LeftStartingScope = false;
1289 DeclContext *OutsideOfTemplateParamDC = nullptr;
1290
1291 // When performing a scope lookup, we want to find local extern decls.
1292 FindLocalExternScope FindLocals(R);
1293
1294 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1295 DeclContext *Ctx = S->getEntity();
1296 bool SearchNamespaceScope = true;
1297 // Check whether the IdResolver has anything in this scope.
1298 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1299 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1300 if (NameKind == LookupRedeclarationWithLinkage &&
1301 !(*I)->isTemplateParameter()) {
1302 // If it's a template parameter, we still find it, so we can diagnose
1303 // the invalid redeclaration.
1304
1305 // Determine whether this (or a previous) declaration is
1306 // out-of-scope.
1307 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1308 LeftStartingScope = true;
1309
1310 // If we found something outside of our starting scope that
1311 // does not have linkage, skip it.
1312 if (LeftStartingScope && !((*I)->hasLinkage())) {
1313 R.setShadowed();
1314 continue;
1315 }
1316 } else {
1317 // We found something in this scope, we should not look at the
1318 // namespace scope
1319 SearchNamespaceScope = false;
1320 }
1321 R.addDecl(ND);
1322 }
1323 }
1324 if (!SearchNamespaceScope) {
1325 R.resolveKind();
1326 if (S->isClassScope())
1327 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1328 R.setNamingClass(Record);
1329 return true;
1330 }
1331
1332 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1333 // C++11 [class.friend]p11:
1334 // If a friend declaration appears in a local class and the name
1335 // specified is an unqualified name, a prior declaration is
1336 // looked up without considering scopes that are outside the
1337 // innermost enclosing non-class scope.
1338 return false;
1339 }
1340
1341 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1342 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1343 // We've just searched the last template parameter scope and
1344 // found nothing, so look into the contexts between the
1345 // lexical and semantic declaration contexts returned by
1346 // findOuterContext(). This implements the name lookup behavior
1347 // of C++ [temp.local]p8.
1348 Ctx = OutsideOfTemplateParamDC;
1349 OutsideOfTemplateParamDC = nullptr;
1350 }
1351
1352 if (Ctx) {
1353 DeclContext *OuterCtx;
1354 bool SearchAfterTemplateScope;
1355 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1356 if (SearchAfterTemplateScope)
1357 OutsideOfTemplateParamDC = OuterCtx;
1358
1359 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1360 // We do not directly look into transparent contexts, since
1361 // those entities will be found in the nearest enclosing
1362 // non-transparent context.
1363 if (Ctx->isTransparentContext())
1364 continue;
1365
1366 // We do not look directly into function or method contexts,
1367 // since all of the local variables and parameters of the
1368 // function/method are present within the Scope.
1369 if (Ctx->isFunctionOrMethod()) {
1370 // If we have an Objective-C instance method, look for ivars
1371 // in the corresponding interface.
1372 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1373 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1374 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1375 ObjCInterfaceDecl *ClassDeclared;
1376 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1377 Name.getAsIdentifierInfo(),
1378 ClassDeclared)) {
1379 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1380 R.addDecl(ND);
1381 R.resolveKind();
1382 return true;
1383 }
1384 }
1385 }
1386 }
1387
1388 continue;
1389 }
1390
1391 // If this is a file context, we need to perform unqualified name
1392 // lookup considering using directives.
1393 if (Ctx->isFileContext()) {
1394 // If we haven't handled using directives yet, do so now.
1395 if (!VisitedUsingDirectives) {
1396 // Add using directives from this context up to the top level.
1397 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1398 if (UCtx->isTransparentContext())
1399 continue;
1400
1401 UDirs.visit(UCtx, UCtx);
1402 }
1403
1404 // Find the innermost file scope, so we can add using directives
1405 // from local scopes.
1406 Scope *InnermostFileScope = S;
1407 while (InnermostFileScope &&
1408 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1409 InnermostFileScope = InnermostFileScope->getParent();
1410 UDirs.visitScopeChain(Initial, InnermostFileScope);
1411
1412 UDirs.done();
1413
1414 VisitedUsingDirectives = true;
1415 }
1416
1417 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1418 R.resolveKind();
1419 return true;
1420 }
1421
1422 continue;
1423 }
1424
1425 // Perform qualified name lookup into this context.
1426 // FIXME: In some cases, we know that every name that could be found by
1427 // this qualified name lookup will also be on the identifier chain. For
1428 // example, inside a class without any base classes, we never need to
1429 // perform qualified lookup because all of the members are on top of the
1430 // identifier chain.
1431 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1432 return true;
1433 }
1434 }
1435 }
1436
1437 // Stop if we ran out of scopes.
1438 // FIXME: This really, really shouldn't be happening.
1439 if (!S) return false;
1440
1441 // If we are looking for members, no need to look into global/namespace scope.
1442 if (NameKind == LookupMemberName)
1443 return false;
1444
1445 // Collect UsingDirectiveDecls in all scopes, and recursively all
1446 // nominated namespaces by those using-directives.
1447 //
1448 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1449 // don't build it for each lookup!
1450 if (!VisitedUsingDirectives) {
1451 UDirs.visitScopeChain(Initial, S);
1452 UDirs.done();
1453 }
1454
1455 // If we're not performing redeclaration lookup, do not look for local
1456 // extern declarations outside of a function scope.
1457 if (!R.isForRedeclaration())
1458 FindLocals.restore();
1459
1460 // Lookup namespace scope, and global scope.
1461 // Unqualified name lookup in C++ requires looking into scopes
1462 // that aren't strictly lexical, and therefore we walk through the
1463 // context as well as walking through the scopes.
1464 for (; S; S = S->getParent()) {
1465 // Check whether the IdResolver has anything in this scope.
1466 bool Found = false;
1467 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1468 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1469 // We found something. Look for anything else in our scope
1470 // with this same name and in an acceptable identifier
1471 // namespace, so that we can construct an overload set if we
1472 // need to.
1473 Found = true;
1474 R.addDecl(ND);
1475 }
1476 }
1477
1478 if (Found && S->isTemplateParamScope()) {
1479 R.resolveKind();
1480 return true;
1481 }
1482
1483 DeclContext *Ctx = S->getEntity();
1484 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1485 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1486 // We've just searched the last template parameter scope and
1487 // found nothing, so look into the contexts between the
1488 // lexical and semantic declaration contexts returned by
1489 // findOuterContext(). This implements the name lookup behavior
1490 // of C++ [temp.local]p8.
1491 Ctx = OutsideOfTemplateParamDC;
1492 OutsideOfTemplateParamDC = nullptr;
1493 }
1494
1495 if (Ctx) {
1496 DeclContext *OuterCtx;
1497 bool SearchAfterTemplateScope;
1498 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1499 if (SearchAfterTemplateScope)
1500 OutsideOfTemplateParamDC = OuterCtx;
1501
1502 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1503 // We do not directly look into transparent contexts, since
1504 // those entities will be found in the nearest enclosing
1505 // non-transparent context.
1506 if (Ctx->isTransparentContext())
1507 continue;
1508
1509 // If we have a context, and it's not a context stashed in the
1510 // template parameter scope for an out-of-line definition, also
1511 // look into that context.
1512 if (!(Found && S->isTemplateParamScope())) {
1513 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1514, __PRETTY_FUNCTION__))
1514 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1514, __PRETTY_FUNCTION__))
;
1515
1516 // Look into context considering using-directives.
1517 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1518 Found = true;
1519 }
1520
1521 if (Found) {
1522 R.resolveKind();
1523 return true;
1524 }
1525
1526 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1527 return false;
1528 }
1529 }
1530
1531 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1532 return false;
1533 }
1534
1535 return !R.empty();
1536}
1537
1538void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1539 if (auto *M = getCurrentModule())
1540 Context.mergeDefinitionIntoModule(ND, M);
1541 else
1542 // We're not building a module; just make the definition visible.
1543 ND->setVisibleDespiteOwningModule();
1544
1545 // If ND is a template declaration, make the template parameters
1546 // visible too. They're not (necessarily) within a mergeable DeclContext.
1547 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1548 for (auto *Param : *TD->getTemplateParameters())
1549 makeMergedDefinitionVisible(Param);
1550}
1551
1552/// Find the module in which the given declaration was defined.
1553static Module *getDefiningModule(Sema &S, Decl *Entity) {
1554 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1555 // If this function was instantiated from a template, the defining module is
1556 // the module containing the pattern.
1557 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1558 Entity = Pattern;
1559 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1560 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1561 Entity = Pattern;
1562 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1563 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1564 Entity = Pattern;
1565 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1566 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1567 Entity = Pattern;
1568 }
1569
1570 // Walk up to the containing context. That might also have been instantiated
1571 // from a template.
1572 DeclContext *Context = Entity->getLexicalDeclContext();
1573 if (Context->isFileContext())
1574 return S.getOwningModule(Entity);
1575 return getDefiningModule(S, cast<Decl>(Context));
1576}
1577
1578llvm::DenseSet<Module*> &Sema::getLookupModules() {
1579 unsigned N = CodeSynthesisContexts.size();
1580 for (unsigned I = CodeSynthesisContextLookupModules.size();
1581 I != N; ++I) {
1582 Module *M = CodeSynthesisContexts[I].Entity ?
1583 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1584 nullptr;
1585 if (M && !LookupModulesCache.insert(M).second)
1586 M = nullptr;
1587 CodeSynthesisContextLookupModules.push_back(M);
1588 }
1589 return LookupModulesCache;
1590}
1591
1592/// Determine whether the module M is part of the current module from the
1593/// perspective of a module-private visibility check.
1594static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1595 // If M is the global module fragment of a module that we've not yet finished
1596 // parsing, then it must be part of the current module.
1597 return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1598 (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1599}
1600
1601bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1602 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1603 if (isModuleVisible(Merged))
1604 return true;
1605 return false;
1606}
1607
1608bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1609 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1610 if (isInCurrentModule(Merged, getLangOpts()))
1611 return true;
1612 return false;
1613}
1614
1615template<typename ParmDecl>
1616static bool
1617hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1618 llvm::SmallVectorImpl<Module *> *Modules) {
1619 if (!D->hasDefaultArgument())
1620 return false;
1621
1622 while (D) {
1623 auto &DefaultArg = D->getDefaultArgStorage();
1624 if (!DefaultArg.isInherited() && S.isVisible(D))
1625 return true;
1626
1627 if (!DefaultArg.isInherited() && Modules) {
1628 auto *NonConstD = const_cast<ParmDecl*>(D);
1629 Modules->push_back(S.getOwningModule(NonConstD));
1630 }
1631
1632 // If there was a previous default argument, maybe its parameter is visible.
1633 D = DefaultArg.getInheritedFrom();
1634 }
1635 return false;
1636}
1637
1638bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1639 llvm::SmallVectorImpl<Module *> *Modules) {
1640 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1641 return ::hasVisibleDefaultArgument(*this, P, Modules);
1642 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1643 return ::hasVisibleDefaultArgument(*this, P, Modules);
1644 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1645 Modules);
1646}
1647
1648template<typename Filter>
1649static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1650 llvm::SmallVectorImpl<Module *> *Modules,
1651 Filter F) {
1652 bool HasFilteredRedecls = false;
1653
1654 for (auto *Redecl : D->redecls()) {
1655 auto *R = cast<NamedDecl>(Redecl);
1656 if (!F(R))
1657 continue;
1658
1659 if (S.isVisible(R))
1660 return true;
1661
1662 HasFilteredRedecls = true;
1663
1664 if (Modules)
1665 Modules->push_back(R->getOwningModule());
1666 }
1667
1668 // Only return false if there is at least one redecl that is not filtered out.
1669 if (HasFilteredRedecls)
1670 return false;
1671
1672 return true;
1673}
1674
1675bool Sema::hasVisibleExplicitSpecialization(
1676 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1677 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1678 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1679 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1680 if (auto *FD = dyn_cast<FunctionDecl>(D))
1681 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1682 if (auto *VD = dyn_cast<VarDecl>(D))
1683 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1684 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1684)
;
1685 });
1686}
1687
1688bool Sema::hasVisibleMemberSpecialization(
1689 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1690 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1691, __PRETTY_FUNCTION__))
1691 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1691, __PRETTY_FUNCTION__))
;
1692 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1693 // If the specialization is declared at namespace scope, then it's a member
1694 // specialization declaration. If it's lexically inside the class
1695 // definition then it was instantiated.
1696 //
1697 // FIXME: This is a hack. There should be a better way to determine this.
1698 // FIXME: What about MS-style explicit specializations declared within a
1699 // class definition?
1700 return D->getLexicalDeclContext()->isFileContext();
1701 });
1702}
1703
1704/// Determine whether a declaration is visible to name lookup.
1705///
1706/// This routine determines whether the declaration D is visible in the current
1707/// lookup context, taking into account the current template instantiation
1708/// stack. During template instantiation, a declaration is visible if it is
1709/// visible from a module containing any entity on the template instantiation
1710/// path (by instantiating a template, you allow it to see the declarations that
1711/// your module can see, including those later on in your module).
1712bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1713 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1713, __PRETTY_FUNCTION__))
;
1714
1715 Module *DeclModule = SemaRef.getOwningModule(D);
1716 assert(DeclModule && "hidden decl has no owning module")((DeclModule && "hidden decl has no owning module") ?
static_cast<void> (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1716, __PRETTY_FUNCTION__))
;
1717
1718 // If the owning module is visible, the decl is visible.
1719 if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1720 return true;
1721
1722 // Determine whether a decl context is a file context for the purpose of
1723 // visibility. This looks through some (export and linkage spec) transparent
1724 // contexts, but not others (enums).
1725 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1726 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1727 isa<ExportDecl>(DC);
1728 };
1729
1730 // If this declaration is not at namespace scope
1731 // then it is visible if its lexical parent has a visible definition.
1732 DeclContext *DC = D->getLexicalDeclContext();
1733 if (DC && !IsEffectivelyFileContext(DC)) {
1734 // For a parameter, check whether our current template declaration's
1735 // lexical context is visible, not whether there's some other visible
1736 // definition of it, because parameters aren't "within" the definition.
1737 //
1738 // In C++ we need to check for a visible definition due to ODR merging,
1739 // and in C we must not because each declaration of a function gets its own
1740 // set of declarations for tags in prototype scope.
1741 bool VisibleWithinParent;
1742 if (D->isTemplateParameter()) {
1743 bool SearchDefinitions = true;
1744 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1745 if (const auto *TD = DCD->getDescribedTemplate()) {
1746 TemplateParameterList *TPL = TD->getTemplateParameters();
1747 auto Index = getDepthAndIndex(D).second;
1748 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1749 }
1750 }
1751 if (SearchDefinitions)
1752 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1753 else
1754 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1755 } else if (isa<ParmVarDecl>(D) ||
1756 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1757 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1758 else if (D->isModulePrivate()) {
1759 // A module-private declaration is only visible if an enclosing lexical
1760 // parent was merged with another definition in the current module.
1761 VisibleWithinParent = false;
1762 do {
1763 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1764 VisibleWithinParent = true;
1765 break;
1766 }
1767 DC = DC->getLexicalParent();
1768 } while (!IsEffectivelyFileContext(DC));
1769 } else {
1770 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1771 }
1772
1773 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1774 // FIXME: Do something better in this case.
1775 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1776 // Cache the fact that this declaration is implicitly visible because
1777 // its parent has a visible definition.
1778 D->setVisibleDespiteOwningModule();
1779 }
1780 return VisibleWithinParent;
1781 }
1782
1783 return false;
1784}
1785
1786bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1787 // The module might be ordinarily visible. For a module-private query, that
1788 // means it is part of the current module. For any other query, that means it
1789 // is in our visible module set.
1790 if (ModulePrivate) {
1791 if (isInCurrentModule(M, getLangOpts()))
1792 return true;
1793 } else {
1794 if (VisibleModules.isVisible(M))
1795 return true;
1796 }
1797
1798 // Otherwise, it might be visible by virtue of the query being within a
1799 // template instantiation or similar that is permitted to look inside M.
1800
1801 // Find the extra places where we need to look.
1802 const auto &LookupModules = getLookupModules();
1803 if (LookupModules.empty())
1804 return false;
1805
1806 // If our lookup set contains the module, it's visible.
1807 if (LookupModules.count(M))
1808 return true;
1809
1810 // For a module-private query, that's everywhere we get to look.
1811 if (ModulePrivate)
1812 return false;
1813
1814 // Check whether M is transitively exported to an import of the lookup set.
1815 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1816 return LookupM->isModuleVisible(M);
1817 });
1818}
1819
1820bool Sema::isVisibleSlow(const NamedDecl *D) {
1821 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1822}
1823
1824bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1825 // FIXME: If there are both visible and hidden declarations, we need to take
1826 // into account whether redeclaration is possible. Example:
1827 //
1828 // Non-imported module:
1829 // int f(T); // #1
1830 // Some TU:
1831 // static int f(U); // #2, not a redeclaration of #1
1832 // int f(T); // #3, finds both, should link with #1 if T != U, but
1833 // // with #2 if T == U; neither should be ambiguous.
1834 for (auto *D : R) {
1835 if (isVisible(D))
1836 return true;
1837 assert(D->isExternallyDeclarable() &&((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1838, __PRETTY_FUNCTION__))
1838 "should not have hidden, non-externally-declarable result here")((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1838, __PRETTY_FUNCTION__))
;
1839 }
1840
1841 // This function is called once "New" is essentially complete, but before a
1842 // previous declaration is attached. We can't query the linkage of "New" in
1843 // general, because attaching the previous declaration can change the
1844 // linkage of New to match the previous declaration.
1845 //
1846 // However, because we've just determined that there is no *visible* prior
1847 // declaration, we can compute the linkage here. There are two possibilities:
1848 //
1849 // * This is not a redeclaration; it's safe to compute the linkage now.
1850 //
1851 // * This is a redeclaration of a prior declaration that is externally
1852 // redeclarable. In that case, the linkage of the declaration is not
1853 // changed by attaching the prior declaration, because both are externally
1854 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1855 //
1856 // FIXME: This is subtle and fragile.
1857 return New->isExternallyDeclarable();
1858}
1859
1860/// Retrieve the visible declaration corresponding to D, if any.
1861///
1862/// This routine determines whether the declaration D is visible in the current
1863/// module, with the current imports. If not, it checks whether any
1864/// redeclaration of D is visible, and if so, returns that declaration.
1865///
1866/// \returns D, or a visible previous declaration of D, whichever is more recent
1867/// and visible. If no declaration of D is visible, returns null.
1868static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1869 unsigned IDNS) {
1870 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1870, __PRETTY_FUNCTION__))
;
1871
1872 for (auto RD : D->redecls()) {
1873 // Don't bother with extra checks if we already know this one isn't visible.
1874 if (RD == D)
1875 continue;
1876
1877 auto ND = cast<NamedDecl>(RD);
1878 // FIXME: This is wrong in the case where the previous declaration is not
1879 // visible in the same scope as D. This needs to be done much more
1880 // carefully.
1881 if (ND->isInIdentifierNamespace(IDNS) &&
1882 LookupResult::isVisible(SemaRef, ND))
1883 return ND;
1884 }
1885
1886 return nullptr;
1887}
1888
1889bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1890 llvm::SmallVectorImpl<Module *> *Modules) {
1891 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 1891, __PRETTY_FUNCTION__))
;
1892 return hasVisibleDeclarationImpl(*this, D, Modules,
1893 [](const NamedDecl *) { return true; });
1894}
1895
1896NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1897 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1898 // Namespaces are a bit of a special case: we expect there to be a lot of
1899 // redeclarations of some namespaces, all declarations of a namespace are
1900 // essentially interchangeable, all declarations are found by name lookup
1901 // if any is, and namespaces are never looked up during template
1902 // instantiation. So we benefit from caching the check in this case, and
1903 // it is correct to do so.
1904 auto *Key = ND->getCanonicalDecl();
1905 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1906 return Acceptable;
1907 auto *Acceptable = isVisible(getSema(), Key)
1908 ? Key
1909 : findAcceptableDecl(getSema(), Key, IDNS);
1910 if (Acceptable)
1911 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1912 return Acceptable;
1913 }
1914
1915 return findAcceptableDecl(getSema(), D, IDNS);
1916}
1917
1918/// Perform unqualified name lookup starting from a given
1919/// scope.
1920///
1921/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1922/// used to find names within the current scope. For example, 'x' in
1923/// @code
1924/// int x;
1925/// int f() {
1926/// return x; // unqualified name look finds 'x' in the global scope
1927/// }
1928/// @endcode
1929///
1930/// Different lookup criteria can find different names. For example, a
1931/// particular scope can have both a struct and a function of the same
1932/// name, and each can be found by certain lookup criteria. For more
1933/// information about lookup criteria, see the documentation for the
1934/// class LookupCriteria.
1935///
1936/// @param S The scope from which unqualified name lookup will
1937/// begin. If the lookup criteria permits, name lookup may also search
1938/// in the parent scopes.
1939///
1940/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1941/// look up and the lookup kind), and is updated with the results of lookup
1942/// including zero or more declarations and possibly additional information
1943/// used to diagnose ambiguities.
1944///
1945/// @returns \c true if lookup succeeded and false otherwise.
1946bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1947 DeclarationName Name = R.getLookupName();
1948 if (!Name) return false;
1949
1950 LookupNameKind NameKind = R.getLookupKind();
1951
1952 if (!getLangOpts().CPlusPlus) {
1953 // Unqualified name lookup in C/Objective-C is purely lexical, so
1954 // search in the declarations attached to the name.
1955 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1956 // Find the nearest non-transparent declaration scope.
1957 while (!(S->getFlags() & Scope::DeclScope) ||
1958 (S->getEntity() && S->getEntity()->isTransparentContext()))
1959 S = S->getParent();
1960 }
1961
1962 // When performing a scope lookup, we want to find local extern decls.
1963 FindLocalExternScope FindLocals(R);
1964
1965 // Scan up the scope chain looking for a decl that matches this
1966 // identifier that is in the appropriate namespace. This search
1967 // should not take long, as shadowing of names is uncommon, and
1968 // deep shadowing is extremely uncommon.
1969 bool LeftStartingScope = false;
1970
1971 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1972 IEnd = IdResolver.end();
1973 I != IEnd; ++I)
1974 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1975 if (NameKind == LookupRedeclarationWithLinkage) {
1976 // Determine whether this (or a previous) declaration is
1977 // out-of-scope.
1978 if (!LeftStartingScope && !S->isDeclScope(*I))
1979 LeftStartingScope = true;
1980
1981 // If we found something outside of our starting scope that
1982 // does not have linkage, skip it.
1983 if (LeftStartingScope && !((*I)->hasLinkage())) {
1984 R.setShadowed();
1985 continue;
1986 }
1987 }
1988 else if (NameKind == LookupObjCImplicitSelfParam &&
1989 !isa<ImplicitParamDecl>(*I))
1990 continue;
1991
1992 R.addDecl(D);
1993
1994 // Check whether there are any other declarations with the same name
1995 // and in the same scope.
1996 if (I != IEnd) {
1997 // Find the scope in which this declaration was declared (if it
1998 // actually exists in a Scope).
1999 while (S && !S->isDeclScope(D))
2000 S = S->getParent();
2001
2002 // If the scope containing the declaration is the translation unit,
2003 // then we'll need to perform our checks based on the matching
2004 // DeclContexts rather than matching scopes.
2005 if (S && isNamespaceOrTranslationUnitScope(S))
2006 S = nullptr;
2007
2008 // Compute the DeclContext, if we need it.
2009 DeclContext *DC = nullptr;
2010 if (!S)
2011 DC = (*I)->getDeclContext()->getRedeclContext();
2012
2013 IdentifierResolver::iterator LastI = I;
2014 for (++LastI; LastI != IEnd; ++LastI) {
2015 if (S) {
2016 // Match based on scope.
2017 if (!S->isDeclScope(*LastI))
2018 break;
2019 } else {
2020 // Match based on DeclContext.
2021 DeclContext *LastDC
2022 = (*LastI)->getDeclContext()->getRedeclContext();
2023 if (!LastDC->Equals(DC))
2024 break;
2025 }
2026
2027 // If the declaration is in the right namespace and visible, add it.
2028 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2029 R.addDecl(LastD);
2030 }
2031
2032 R.resolveKind();
2033 }
2034
2035 return true;
2036 }
2037 } else {
2038 // Perform C++ unqualified name lookup.
2039 if (CppLookupName(R, S))
2040 return true;
2041 }
2042
2043 // If we didn't find a use of this identifier, and if the identifier
2044 // corresponds to a compiler builtin, create the decl object for the builtin
2045 // now, injecting it into translation unit scope, and return it.
2046 if (AllowBuiltinCreation && LookupBuiltin(R))
2047 return true;
2048
2049 // If we didn't find a use of this identifier, the ExternalSource
2050 // may be able to handle the situation.
2051 // Note: some lookup failures are expected!
2052 // See e.g. R.isForRedeclaration().
2053 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2054}
2055
2056/// Perform qualified name lookup in the namespaces nominated by
2057/// using directives by the given context.
2058///
2059/// C++98 [namespace.qual]p2:
2060/// Given X::m (where X is a user-declared namespace), or given \::m
2061/// (where X is the global namespace), let S be the set of all
2062/// declarations of m in X and in the transitive closure of all
2063/// namespaces nominated by using-directives in X and its used
2064/// namespaces, except that using-directives are ignored in any
2065/// namespace, including X, directly containing one or more
2066/// declarations of m. No namespace is searched more than once in
2067/// the lookup of a name. If S is the empty set, the program is
2068/// ill-formed. Otherwise, if S has exactly one member, or if the
2069/// context of the reference is a using-declaration
2070/// (namespace.udecl), S is the required set of declarations of
2071/// m. Otherwise if the use of m is not one that allows a unique
2072/// declaration to be chosen from S, the program is ill-formed.
2073///
2074/// C++98 [namespace.qual]p5:
2075/// During the lookup of a qualified namespace member name, if the
2076/// lookup finds more than one declaration of the member, and if one
2077/// declaration introduces a class name or enumeration name and the
2078/// other declarations either introduce the same object, the same
2079/// enumerator or a set of functions, the non-type name hides the
2080/// class or enumeration name if and only if the declarations are
2081/// from the same namespace; otherwise (the declarations are from
2082/// different namespaces), the program is ill-formed.
2083static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2084 DeclContext *StartDC) {
2085 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2085, __PRETTY_FUNCTION__))
;
2086
2087 // We have not yet looked into these namespaces, much less added
2088 // their "using-children" to the queue.
2089 SmallVector<NamespaceDecl*, 8> Queue;
2090
2091 // We have at least added all these contexts to the queue.
2092 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2093 Visited.insert(StartDC);
2094
2095 // We have already looked into the initial namespace; seed the queue
2096 // with its using-children.
2097 for (auto *I : StartDC->using_directives()) {
2098 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2099 if (S.isVisible(I) && Visited.insert(ND).second)
2100 Queue.push_back(ND);
2101 }
2102
2103 // The easiest way to implement the restriction in [namespace.qual]p5
2104 // is to check whether any of the individual results found a tag
2105 // and, if so, to declare an ambiguity if the final result is not
2106 // a tag.
2107 bool FoundTag = false;
2108 bool FoundNonTag = false;
2109
2110 LookupResult LocalR(LookupResult::Temporary, R);
2111
2112 bool Found = false;
2113 while (!Queue.empty()) {
2114 NamespaceDecl *ND = Queue.pop_back_val();
2115
2116 // We go through some convolutions here to avoid copying results
2117 // between LookupResults.
2118 bool UseLocal = !R.empty();
2119 LookupResult &DirectR = UseLocal ? LocalR : R;
2120 bool FoundDirect = LookupDirect(S, DirectR, ND);
2121
2122 if (FoundDirect) {
2123 // First do any local hiding.
2124 DirectR.resolveKind();
2125
2126 // If the local result is a tag, remember that.
2127 if (DirectR.isSingleTagDecl())
2128 FoundTag = true;
2129 else
2130 FoundNonTag = true;
2131
2132 // Append the local results to the total results if necessary.
2133 if (UseLocal) {
2134 R.addAllDecls(LocalR);
2135 LocalR.clear();
2136 }
2137 }
2138
2139 // If we find names in this namespace, ignore its using directives.
2140 if (FoundDirect) {
2141 Found = true;
2142 continue;
2143 }
2144
2145 for (auto I : ND->using_directives()) {
2146 NamespaceDecl *Nom = I->getNominatedNamespace();
2147 if (S.isVisible(I) && Visited.insert(Nom).second)
2148 Queue.push_back(Nom);
2149 }
2150 }
2151
2152 if (Found) {
2153 if (FoundTag && FoundNonTag)
2154 R.setAmbiguousQualifiedTagHiding();
2155 else
2156 R.resolveKind();
2157 }
2158
2159 return Found;
2160}
2161
2162/// Callback that looks for any member of a class with the given name.
2163static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2164 CXXBasePath &Path, DeclarationName Name) {
2165 RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2166
2167 Path.Decls = BaseRecord->lookup(Name);
2168 return !Path.Decls.empty();
2169}
2170
2171/// Determine whether the given set of member declarations contains only
2172/// static members, nested types, and enumerators.
2173template<typename InputIterator>
2174static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2175 Decl *D = (*First)->getUnderlyingDecl();
2176 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2177 return true;
2178
2179 if (isa<CXXMethodDecl>(D)) {
2180 // Determine whether all of the methods are static.
2181 bool AllMethodsAreStatic = true;
2182 for(; First != Last; ++First) {
2183 D = (*First)->getUnderlyingDecl();
2184
2185 if (!isa<CXXMethodDecl>(D)) {
2186 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2186, __PRETTY_FUNCTION__))
;
2187 break;
2188 }
2189
2190 if (!cast<CXXMethodDecl>(D)->isStatic()) {
2191 AllMethodsAreStatic = false;
2192 break;
2193 }
2194 }
2195
2196 if (AllMethodsAreStatic)
2197 return true;
2198 }
2199
2200 return false;
2201}
2202
2203/// Perform qualified name lookup into a given context.
2204///
2205/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2206/// names when the context of those names is explicit specified, e.g.,
2207/// "std::vector" or "x->member", or as part of unqualified name lookup.
2208///
2209/// Different lookup criteria can find different names. For example, a
2210/// particular scope can have both a struct and a function of the same
2211/// name, and each can be found by certain lookup criteria. For more
2212/// information about lookup criteria, see the documentation for the
2213/// class LookupCriteria.
2214///
2215/// \param R captures both the lookup criteria and any lookup results found.
2216///
2217/// \param LookupCtx The context in which qualified name lookup will
2218/// search. If the lookup criteria permits, name lookup may also search
2219/// in the parent contexts or (for C++ classes) base classes.
2220///
2221/// \param InUnqualifiedLookup true if this is qualified name lookup that
2222/// occurs as part of unqualified name lookup.
2223///
2224/// \returns true if lookup succeeded, false if it failed.
2225bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2226 bool InUnqualifiedLookup) {
2227 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2227, __PRETTY_FUNCTION__))
;
2228
2229 if (!R.getLookupName())
2230 return false;
2231
2232 // Make sure that the declaration context is complete.
2233 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2237, __PRETTY_FUNCTION__))
2234 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2237, __PRETTY_FUNCTION__))
2235 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2237, __PRETTY_FUNCTION__))
2236 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2237, __PRETTY_FUNCTION__))
2237 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2237, __PRETTY_FUNCTION__))
;
2238
2239 struct QualifiedLookupInScope {
2240 bool oldVal;
2241 DeclContext *Context;
2242 // Set flag in DeclContext informing debugger that we're looking for qualified name
2243 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2244 oldVal = ctx->setUseQualifiedLookup();
2245 }
2246 ~QualifiedLookupInScope() {
2247 Context->setUseQualifiedLookup(oldVal);
2248 }
2249 } QL(LookupCtx);
2250
2251 if (LookupDirect(*this, R, LookupCtx)) {
2252 R.resolveKind();
2253 if (isa<CXXRecordDecl>(LookupCtx))
2254 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2255 return true;
2256 }
2257
2258 // Don't descend into implied contexts for redeclarations.
2259 // C++98 [namespace.qual]p6:
2260 // In a declaration for a namespace member in which the
2261 // declarator-id is a qualified-id, given that the qualified-id
2262 // for the namespace member has the form
2263 // nested-name-specifier unqualified-id
2264 // the unqualified-id shall name a member of the namespace
2265 // designated by the nested-name-specifier.
2266 // See also [class.mfct]p5 and [class.static.data]p2.
2267 if (R.isForRedeclaration())
2268 return false;
2269
2270 // If this is a namespace, look it up in the implied namespaces.
2271 if (LookupCtx->isFileContext())
2272 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2273
2274 // If this isn't a C++ class, we aren't allowed to look into base
2275 // classes, we're done.
2276 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2277 if (!LookupRec || !LookupRec->getDefinition())
2278 return false;
2279
2280 // If we're performing qualified name lookup into a dependent class,
2281 // then we are actually looking into a current instantiation. If we have any
2282 // dependent base classes, then we either have to delay lookup until
2283 // template instantiation time (at which point all bases will be available)
2284 // or we have to fail.
2285 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2286 LookupRec->hasAnyDependentBases()) {
2287 R.setNotFoundInCurrentInstantiation();
2288 return false;
2289 }
2290
2291 // Perform lookup into our base classes.
2292 CXXBasePaths Paths;
2293 Paths.setOrigin(LookupRec);
2294
2295 // Look for this member in our base classes
2296 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2297 DeclarationName Name) = nullptr;
2298 switch (R.getLookupKind()) {
2299 case LookupObjCImplicitSelfParam:
2300 case LookupOrdinaryName:
2301 case LookupMemberName:
2302 case LookupRedeclarationWithLinkage:
2303 case LookupLocalFriendName:
2304 case LookupDestructorName:
2305 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2306 break;
2307
2308 case LookupTagName:
2309 BaseCallback = &CXXRecordDecl::FindTagMember;
2310 break;
2311
2312 case LookupAnyName:
2313 BaseCallback = &LookupAnyMember;
2314 break;
2315
2316 case LookupOMPReductionName:
2317 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2318 break;
2319
2320 case LookupOMPMapperName:
2321 BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2322 break;
2323
2324 case LookupUsingDeclName:
2325 // This lookup is for redeclarations only.
2326
2327 case LookupOperatorName:
2328 case LookupNamespaceName:
2329 case LookupObjCProtocolName:
2330 case LookupLabel:
2331 // These lookups will never find a member in a C++ class (or base class).
2332 return false;
2333
2334 case LookupNestedNameSpecifierName:
2335 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2336 break;
2337 }
2338
2339 DeclarationName Name = R.getLookupName();
2340 if (!LookupRec->lookupInBases(
2341 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2342 return BaseCallback(Specifier, Path, Name);
2343 },
2344 Paths))
2345 return false;
2346
2347 R.setNamingClass(LookupRec);
2348
2349 // C++ [class.member.lookup]p2:
2350 // [...] If the resulting set of declarations are not all from
2351 // sub-objects of the same type, or the set has a nonstatic member
2352 // and includes members from distinct sub-objects, there is an
2353 // ambiguity and the program is ill-formed. Otherwise that set is
2354 // the result of the lookup.
2355 QualType SubobjectType;
2356 int SubobjectNumber = 0;
2357 AccessSpecifier SubobjectAccess = AS_none;
2358
2359 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2360 Path != PathEnd; ++Path) {
2361 const CXXBasePathElement &PathElement = Path->back();
2362
2363 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2364 // across all paths.
2365 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2366
2367 // Determine whether we're looking at a distinct sub-object or not.
2368 if (SubobjectType.isNull()) {
2369 // This is the first subobject we've looked at. Record its type.
2370 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2371 SubobjectNumber = PathElement.SubobjectNumber;
2372 continue;
2373 }
2374
2375 if (SubobjectType
2376 != Context.getCanonicalType(PathElement.Base->getType())) {
2377 // We found members of the given name in two subobjects of
2378 // different types. If the declaration sets aren't the same, this
2379 // lookup is ambiguous.
2380 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2381 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2382 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2383 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2384
2385 // Get the decl that we should use for deduplicating this lookup.
2386 auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2387 // C++ [temp.local]p3:
2388 // A lookup that finds an injected-class-name (10.2) can result in
2389 // an ambiguity in certain cases (for example, if it is found in
2390 // more than one base class). If all of the injected-class-names
2391 // that are found refer to specializations of the same class
2392 // template, and if the name is used as a template-name, the
2393 // reference refers to the class template itself and not a
2394 // specialization thereof, and is not ambiguous.
2395 if (R.isTemplateNameLookup())
2396 if (auto *TD = getAsTemplateNameDecl(D))
2397 D = TD;
2398 return D->getUnderlyingDecl()->getCanonicalDecl();
2399 };
2400
2401 while (FirstD != FirstPath->Decls.end() &&
2402 CurrentD != Path->Decls.end()) {
2403 if (GetRepresentativeDecl(*FirstD) !=
2404 GetRepresentativeDecl(*CurrentD))
2405 break;
2406
2407 ++FirstD;
2408 ++CurrentD;
2409 }
2410
2411 if (FirstD == FirstPath->Decls.end() &&
2412 CurrentD == Path->Decls.end())
2413 continue;
2414 }
2415
2416 R.setAmbiguousBaseSubobjectTypes(Paths);
2417 return true;
2418 }
2419
2420 if (SubobjectNumber != PathElement.SubobjectNumber) {
2421 // We have a different subobject of the same type.
2422
2423 // C++ [class.member.lookup]p5:
2424 // A static member, a nested type or an enumerator defined in
2425 // a base class T can unambiguously be found even if an object
2426 // has more than one base class subobject of type T.
2427 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2428 continue;
2429
2430 // We have found a nonstatic member name in multiple, distinct
2431 // subobjects. Name lookup is ambiguous.
2432 R.setAmbiguousBaseSubobjects(Paths);
2433 return true;
2434 }
2435 }
2436
2437 // Lookup in a base class succeeded; return these results.
2438
2439 for (auto *D : Paths.front().Decls) {
2440 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2441 D->getAccess());
2442 R.addDecl(D, AS);
2443 }
2444 R.resolveKind();
2445 return true;
2446}
2447
2448/// Performs qualified name lookup or special type of lookup for
2449/// "__super::" scope specifier.
2450///
2451/// This routine is a convenience overload meant to be called from contexts
2452/// that need to perform a qualified name lookup with an optional C++ scope
2453/// specifier that might require special kind of lookup.
2454///
2455/// \param R captures both the lookup criteria and any lookup results found.
2456///
2457/// \param LookupCtx The context in which qualified name lookup will
2458/// search.
2459///
2460/// \param SS An optional C++ scope-specifier.
2461///
2462/// \returns true if lookup succeeded, false if it failed.
2463bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2464 CXXScopeSpec &SS) {
2465 auto *NNS = SS.getScopeRep();
2466 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2467 return LookupInSuper(R, NNS->getAsRecordDecl());
2468 else
2469
2470 return LookupQualifiedName(R, LookupCtx);
2471}
2472
2473/// Performs name lookup for a name that was parsed in the
2474/// source code, and may contain a C++ scope specifier.
2475///
2476/// This routine is a convenience routine meant to be called from
2477/// contexts that receive a name and an optional C++ scope specifier
2478/// (e.g., "N::M::x"). It will then perform either qualified or
2479/// unqualified name lookup (with LookupQualifiedName or LookupName,
2480/// respectively) on the given name and return those results. It will
2481/// perform a special type of lookup for "__super::" scope specifier.
2482///
2483/// @param S The scope from which unqualified name lookup will
2484/// begin.
2485///
2486/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2487///
2488/// @param EnteringContext Indicates whether we are going to enter the
2489/// context of the scope-specifier SS (if present).
2490///
2491/// @returns True if any decls were found (but possibly ambiguous)
2492bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2493 bool AllowBuiltinCreation, bool EnteringContext) {
2494 if (SS && SS->isInvalid()) {
2495 // When the scope specifier is invalid, don't even look for
2496 // anything.
2497 return false;
2498 }
2499
2500 if (SS && SS->isSet()) {
2501 NestedNameSpecifier *NNS = SS->getScopeRep();
2502 if (NNS->getKind() == NestedNameSpecifier::Super)
2503 return LookupInSuper(R, NNS->getAsRecordDecl());
2504
2505 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2506 // We have resolved the scope specifier to a particular declaration
2507 // contex, and will perform name lookup in that context.
2508 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2509 return false;
2510
2511 R.setContextRange(SS->getRange());
2512 return LookupQualifiedName(R, DC);
2513 }
2514
2515 // We could not resolve the scope specified to a specific declaration
2516 // context, which means that SS refers to an unknown specialization.
2517 // Name lookup can't find anything in this case.
2518 R.setNotFoundInCurrentInstantiation();
2519 R.setContextRange(SS->getRange());
2520 return false;
2521 }
2522
2523 // Perform unqualified name lookup starting in the given scope.
2524 return LookupName(R, S, AllowBuiltinCreation);
2525}
2526
2527/// Perform qualified name lookup into all base classes of the given
2528/// class.
2529///
2530/// \param R captures both the lookup criteria and any lookup results found.
2531///
2532/// \param Class The context in which qualified name lookup will
2533/// search. Name lookup will search in all base classes merging the results.
2534///
2535/// @returns True if any decls were found (but possibly ambiguous)
2536bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2537 // The access-control rules we use here are essentially the rules for
2538 // doing a lookup in Class that just magically skipped the direct
2539 // members of Class itself. That is, the naming class is Class, and the
2540 // access includes the access of the base.
2541 for (const auto &BaseSpec : Class->bases()) {
2542 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2543 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2544 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2545 Result.setBaseObjectType(Context.getRecordType(Class));
2546 LookupQualifiedName(Result, RD);
2547
2548 // Copy the lookup results into the target, merging the base's access into
2549 // the path access.
2550 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2551 R.addDecl(I.getDecl(),
2552 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2553 I.getAccess()));
2554 }
2555
2556 Result.suppressDiagnostics();
2557 }
2558
2559 R.resolveKind();
2560 R.setNamingClass(Class);
2561
2562 return !R.empty();
2563}
2564
2565/// Produce a diagnostic describing the ambiguity that resulted
2566/// from name lookup.
2567///
2568/// \param Result The result of the ambiguous lookup to be diagnosed.
2569void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2570 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 2570, __PRETTY_FUNCTION__))
;
2571
2572 DeclarationName Name = Result.getLookupName();
2573 SourceLocation NameLoc = Result.getNameLoc();
2574 SourceRange LookupRange = Result.getContextRange();
2575
2576 switch (Result.getAmbiguityKind()) {
2577 case LookupResult::AmbiguousBaseSubobjects: {
2578 CXXBasePaths *Paths = Result.getBasePaths();
2579 QualType SubobjectType = Paths->front().back().Base->getType();
2580 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2581 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2582 << LookupRange;
2583
2584 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2585 while (isa<CXXMethodDecl>(*Found) &&
2586 cast<CXXMethodDecl>(*Found)->isStatic())
2587 ++Found;
2588
2589 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2590 break;
2591 }
2592
2593 case LookupResult::AmbiguousBaseSubobjectTypes: {
2594 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2595 << Name << LookupRange;
2596
2597 CXXBasePaths *Paths = Result.getBasePaths();
2598 std::set<Decl *> DeclsPrinted;
2599 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2600 PathEnd = Paths->end();
2601 Path != PathEnd; ++Path) {
2602 Decl *D = Path->Decls.front();
2603 if (DeclsPrinted.insert(D).second)
2604 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2605 }
2606 break;
2607 }
2608
2609 case LookupResult::AmbiguousTagHiding: {
2610 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2611
2612 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2613
2614 for (auto *D : Result)
2615 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2616 TagDecls.insert(TD);
2617 Diag(TD->getLocation(), diag::note_hidden_tag);
2618 }
2619
2620 for (auto *D : Result)
2621 if (!isa<TagDecl>(D))
2622 Diag(D->getLocation(), diag::note_hiding_object);
2623
2624 // For recovery purposes, go ahead and implement the hiding.
2625 LookupResult::Filter F = Result.makeFilter();
2626 while (F.hasNext()) {
2627 if (TagDecls.count(F.next()))
2628 F.erase();
2629 }
2630 F.done();
2631 break;
2632 }
2633
2634 case LookupResult::AmbiguousReference: {
2635 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2636
2637 for (auto *D : Result)
2638 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2639 break;
2640 }
2641 }
2642}
2643
2644namespace {
2645 struct AssociatedLookup {
2646 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2647 Sema::AssociatedNamespaceSet &Namespaces,
2648 Sema::AssociatedClassSet &Classes)
2649 : S(S), Namespaces(Namespaces), Classes(Classes),
2650 InstantiationLoc(InstantiationLoc) {
2651 }
2652
2653 bool addClassTransitive(CXXRecordDecl *RD) {
2654 Classes.insert(RD);
2655 return ClassesTransitive.insert(RD);
2656 }
2657
2658 Sema &S;
2659 Sema::AssociatedNamespaceSet &Namespaces;
2660 Sema::AssociatedClassSet &Classes;
2661 SourceLocation InstantiationLoc;
2662
2663 private:
2664 Sema::AssociatedClassSet ClassesTransitive;
2665 };
2666} // end anonymous namespace
2667
2668static void
2669addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2670
2671// Given the declaration context \param Ctx of a class, class template or
2672// enumeration, add the associated namespaces to \param Namespaces as described
2673// in [basic.lookup.argdep]p2.
2674static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2675 DeclContext *Ctx) {
2676 // The exact wording has been changed in C++14 as a result of
2677 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2678 // to all language versions since it is possible to return a local type
2679 // from a lambda in C++11.
2680 //
2681 // C++14 [basic.lookup.argdep]p2:
2682 // If T is a class type [...]. Its associated namespaces are the innermost
2683 // enclosing namespaces of its associated classes. [...]
2684 //
2685 // If T is an enumeration type, its associated namespace is the innermost
2686 // enclosing namespace of its declaration. [...]
2687
2688 // We additionally skip inline namespaces. The innermost non-inline namespace
2689 // contains all names of all its nested inline namespaces anyway, so we can
2690 // replace the entire inline namespace tree with its root.
2691 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2692 Ctx = Ctx->getParent();
2693
2694 Namespaces.insert(Ctx->getPrimaryContext());
2695}
2696
2697// Add the associated classes and namespaces for argument-dependent
2698// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2699static void
2700addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2701 const TemplateArgument &Arg) {
2702 // C++ [basic.lookup.argdep]p2, last bullet:
2703 // -- [...] ;
2704 switch (Arg.getKind()) {
2705 case TemplateArgument::Null:
2706 break;
2707
2708 case TemplateArgument::Type:
2709 // [...] the namespaces and classes associated with the types of the
2710 // template arguments provided for template type parameters (excluding
2711 // template template parameters)
2712 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2713 break;
2714
2715 case TemplateArgument::Template:
2716 case TemplateArgument::TemplateExpansion: {
2717 // [...] the namespaces in which any template template arguments are
2718 // defined; and the classes in which any member templates used as
2719 // template template arguments are defined.
2720 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2721 if (ClassTemplateDecl *ClassTemplate
2722 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2723 DeclContext *Ctx = ClassTemplate->getDeclContext();
2724 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2725 Result.Classes.insert(EnclosingClass);
2726 // Add the associated namespace for this class.
2727 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2728 }
2729 break;
2730 }
2731
2732 case TemplateArgument::Declaration:
2733 case TemplateArgument::Integral:
2734 case TemplateArgument::Expression:
2735 case TemplateArgument::NullPtr:
2736 // [Note: non-type template arguments do not contribute to the set of
2737 // associated namespaces. ]
2738 break;
2739
2740 case TemplateArgument::Pack:
2741 for (const auto &P : Arg.pack_elements())
2742 addAssociatedClassesAndNamespaces(Result, P);
2743 break;
2744 }
2745}
2746
2747// Add the associated classes and namespaces for argument-dependent lookup
2748// with an argument of class type (C++ [basic.lookup.argdep]p2).
2749static void
2750addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2751 CXXRecordDecl *Class) {
2752
2753 // Just silently ignore anything whose name is __va_list_tag.
2754 if (Class->getDeclName() == Result.S.VAListTagName)
2755 return;
2756
2757 // C++ [basic.lookup.argdep]p2:
2758 // [...]
2759 // -- If T is a class type (including unions), its associated
2760 // classes are: the class itself; the class of which it is a
2761 // member, if any; and its direct and indirect base classes.
2762 // Its associated namespaces are the innermost enclosing
2763 // namespaces of its associated classes.
2764
2765 // Add the class of which it is a member, if any.
2766 DeclContext *Ctx = Class->getDeclContext();
2767 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2768 Result.Classes.insert(EnclosingClass);
2769
2770 // Add the associated namespace for this class.
2771 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2772
2773 // -- If T is a template-id, its associated namespaces and classes are
2774 // the namespace in which the template is defined; for member
2775 // templates, the member template's class; the namespaces and classes
2776 // associated with the types of the template arguments provided for
2777 // template type parameters (excluding template template parameters); the
2778 // namespaces in which any template template arguments are defined; and
2779 // the classes in which any member templates used as template template
2780 // arguments are defined. [Note: non-type template arguments do not
2781 // contribute to the set of associated namespaces. ]
2782 if (ClassTemplateSpecializationDecl *Spec
2783 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2784 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2785 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2786 Result.Classes.insert(EnclosingClass);
2787 // Add the associated namespace for this class.
2788 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2789
2790 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2791 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2792 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2793 }
2794
2795 // Add the class itself. If we've already transitively visited this class,
2796 // we don't need to visit base classes.
2797 if (!Result.addClassTransitive(Class))
2798 return;
2799
2800 // Only recurse into base classes for complete types.
2801 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2802 Result.S.Context.getRecordType(Class)))
2803 return;
2804
2805 // Add direct and indirect base classes along with their associated
2806 // namespaces.
2807 SmallVector<CXXRecordDecl *, 32> Bases;
2808 Bases.push_back(Class);
2809 while (!Bases.empty()) {
2810 // Pop this class off the stack.
2811 Class = Bases.pop_back_val();
2812
2813 // Visit the base classes.
2814 for (const auto &Base : Class->bases()) {
2815 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2816 // In dependent contexts, we do ADL twice, and the first time around,
2817 // the base type might be a dependent TemplateSpecializationType, or a
2818 // TemplateTypeParmType. If that happens, simply ignore it.
2819 // FIXME: If we want to support export, we probably need to add the
2820 // namespace of the template in a TemplateSpecializationType, or even
2821 // the classes and namespaces of known non-dependent arguments.
2822 if (!BaseType)
2823 continue;
2824 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2825 if (Result.addClassTransitive(BaseDecl)) {
2826 // Find the associated namespace for this base class.
2827 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2828 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2829
2830 // Make sure we visit the bases of this base class.
2831 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2832 Bases.push_back(BaseDecl);
2833 }
2834 }
2835 }
2836}
2837
2838// Add the associated classes and namespaces for
2839// argument-dependent lookup with an argument of type T
2840// (C++ [basic.lookup.koenig]p2).
2841static void
2842addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2843 // C++ [basic.lookup.koenig]p2:
2844 //
2845 // For each argument type T in the function call, there is a set
2846 // of zero or more associated namespaces and a set of zero or more
2847 // associated classes to be considered. The sets of namespaces and
2848 // classes is determined entirely by the types of the function
2849 // arguments (and the namespace of any template template
2850 // argument). Typedef names and using-declarations used to specify
2851 // the types do not contribute to this set. The sets of namespaces
2852 // and classes are determined in the following way:
2853
2854 SmallVector<const Type *, 16> Queue;
2855 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2856
2857 while (true) {
2858 switch (T->getTypeClass()) {
2859
2860#define TYPE(Class, Base)
2861#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2862#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2863#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2864#define ABSTRACT_TYPE(Class, Base)
2865#include "clang/AST/TypeNodes.inc"
2866 // T is canonical. We can also ignore dependent types because
2867 // we don't need to do ADL at the definition point, but if we
2868 // wanted to implement template export (or if we find some other
2869 // use for associated classes and namespaces...) this would be
2870 // wrong.
2871 break;
2872
2873 // -- If T is a pointer to U or an array of U, its associated
2874 // namespaces and classes are those associated with U.
2875 case Type::Pointer:
2876 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2877 continue;
2878 case Type::ConstantArray:
2879 case Type::IncompleteArray:
2880 case Type::VariableArray:
2881 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2882 continue;
2883
2884 // -- If T is a fundamental type, its associated sets of
2885 // namespaces and classes are both empty.
2886 case Type::Builtin:
2887 break;
2888
2889 // -- If T is a class type (including unions), its associated
2890 // classes are: the class itself; the class of which it is
2891 // a member, if any; and its direct and indirect base classes.
2892 // Its associated namespaces are the innermost enclosing
2893 // namespaces of its associated classes.
2894 case Type::Record: {
2895 CXXRecordDecl *Class =
2896 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2897 addAssociatedClassesAndNamespaces(Result, Class);
2898 break;
2899 }
2900
2901 // -- If T is an enumeration type, its associated namespace
2902 // is the innermost enclosing namespace of its declaration.
2903 // If it is a class member, its associated class is the
2904 // member’s class; else it has no associated class.
2905 case Type::Enum: {
2906 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2907
2908 DeclContext *Ctx = Enum->getDeclContext();
2909 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2910 Result.Classes.insert(EnclosingClass);
2911
2912 // Add the associated namespace for this enumeration.
2913 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2914
2915 break;
2916 }
2917
2918 // -- If T is a function type, its associated namespaces and
2919 // classes are those associated with the function parameter
2920 // types and those associated with the return type.
2921 case Type::FunctionProto: {
2922 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2923 for (const auto &Arg : Proto->param_types())
2924 Queue.push_back(Arg.getTypePtr());
2925 // fallthrough
2926 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2927 }
2928 case Type::FunctionNoProto: {
2929 const FunctionType *FnType = cast<FunctionType>(T);
2930 T = FnType->getReturnType().getTypePtr();
2931 continue;
2932 }
2933
2934 // -- If T is a pointer to a member function of a class X, its
2935 // associated namespaces and classes are those associated
2936 // with the function parameter types and return type,
2937 // together with those associated with X.
2938 //
2939 // -- If T is a pointer to a data member of class X, its
2940 // associated namespaces and classes are those associated
2941 // with the member type together with those associated with
2942 // X.
2943 case Type::MemberPointer: {
2944 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2945
2946 // Queue up the class type into which this points.
2947 Queue.push_back(MemberPtr->getClass());
2948
2949 // And directly continue with the pointee type.
2950 T = MemberPtr->getPointeeType().getTypePtr();
2951 continue;
2952 }
2953
2954 // As an extension, treat this like a normal pointer.
2955 case Type::BlockPointer:
2956 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2957 continue;
2958
2959 // References aren't covered by the standard, but that's such an
2960 // obvious defect that we cover them anyway.
2961 case Type::LValueReference:
2962 case Type::RValueReference:
2963 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2964 continue;
2965
2966 // These are fundamental types.
2967 case Type::Vector:
2968 case Type::ExtVector:
2969 case Type::Complex:
2970 break;
2971
2972 // Non-deduced auto types only get here for error cases.
2973 case Type::Auto:
2974 case Type::DeducedTemplateSpecialization:
2975 break;
2976
2977 // If T is an Objective-C object or interface type, or a pointer to an
2978 // object or interface type, the associated namespace is the global
2979 // namespace.
2980 case Type::ObjCObject:
2981 case Type::ObjCInterface:
2982 case Type::ObjCObjectPointer:
2983 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2984 break;
2985
2986 // Atomic types are just wrappers; use the associations of the
2987 // contained type.
2988 case Type::Atomic:
2989 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2990 continue;
2991 case Type::Pipe:
2992 T = cast<PipeType>(T)->getElementType().getTypePtr();
2993 continue;
2994 }
2995
2996 if (Queue.empty())
2997 break;
2998 T = Queue.pop_back_val();
2999 }
3000}
3001
3002/// Find the associated classes and namespaces for
3003/// argument-dependent lookup for a call with the given set of
3004/// arguments.
3005///
3006/// This routine computes the sets of associated classes and associated
3007/// namespaces searched by argument-dependent lookup
3008/// (C++ [basic.lookup.argdep]) for a given set of arguments.
3009void Sema::FindAssociatedClassesAndNamespaces(
3010 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3011 AssociatedNamespaceSet &AssociatedNamespaces,
3012 AssociatedClassSet &AssociatedClasses) {
3013 AssociatedNamespaces.clear();
3014 AssociatedClasses.clear();
3015
3016 AssociatedLookup Result(*this, InstantiationLoc,
3017 AssociatedNamespaces, AssociatedClasses);
3018
3019 // C++ [basic.lookup.koenig]p2:
3020 // For each argument type T in the function call, there is a set
3021 // of zero or more associated namespaces and a set of zero or more
3022 // associated classes to be considered. The sets of namespaces and
3023 // classes is determined entirely by the types of the function
3024 // arguments (and the namespace of any template template
3025 // argument).
3026 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3027 Expr *Arg = Args[ArgIdx];
3028
3029 if (Arg->getType() != Context.OverloadTy) {
3030 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3031 continue;
3032 }
3033
3034 // [...] In addition, if the argument is the name or address of a
3035 // set of overloaded functions and/or function templates, its
3036 // associated classes and namespaces are the union of those
3037 // associated with each of the members of the set: the namespace
3038 // in which the function or function template is defined and the
3039 // classes and namespaces associated with its (non-dependent)
3040 // parameter types and return type.
3041 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3042
3043 for (const NamedDecl *D : OE->decls()) {
3044 // Look through any using declarations to find the underlying function.
3045 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3046
3047 // Add the classes and namespaces associated with the parameter
3048 // types and return type of this function.
3049 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3050 }
3051 }
3052}
3053
3054NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3055 SourceLocation Loc,
3056 LookupNameKind NameKind,
3057 RedeclarationKind Redecl) {
3058 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3059 LookupName(R, S);
3060 return R.getAsSingle<NamedDecl>();
3061}
3062
3063/// Find the protocol with the given name, if any.
3064ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3065 SourceLocation IdLoc,
3066 RedeclarationKind Redecl) {
3067 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3068 LookupObjCProtocolName, Redecl);
3069 return cast_or_null<ObjCProtocolDecl>(D);
3070}
3071
3072void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3073 QualType T1, QualType T2,
3074 UnresolvedSetImpl &Functions) {
3075 // C++ [over.match.oper]p3:
3076 // -- The set of non-member candidates is the result of the
3077 // unqualified lookup of operator@ in the context of the
3078 // expression according to the usual rules for name lookup in
3079 // unqualified function calls (3.4.2) except that all member
3080 // functions are ignored.
3081 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3082 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3083 LookupName(Operators, S);
3084
3085 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3085, __PRETTY_FUNCTION__))
;
3086 Functions.append(Operators.begin(), Operators.end());
3087}
3088
3089Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3090 CXXSpecialMember SM,
3091 bool ConstArg,
3092 bool VolatileArg,
3093 bool RValueThis,
3094 bool ConstThis,
3095 bool VolatileThis) {
3096 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3097, __PRETTY_FUNCTION__))
3097 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3097, __PRETTY_FUNCTION__))
;
3098 RD = RD->getDefinition();
3099 if (RValueThis || ConstThis || VolatileThis)
3100 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3101, __PRETTY_FUNCTION__))
3101 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3101, __PRETTY_FUNCTION__))
;
3102 if (ConstArg || VolatileArg)
3103 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3104, __PRETTY_FUNCTION__))
3104 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3104, __PRETTY_FUNCTION__))
;
3105
3106 // FIXME: Get the caller to pass in a location for the lookup.
3107 SourceLocation LookupLoc = RD->getLocation();
3108
3109 llvm::FoldingSetNodeID ID;
3110 ID.AddPointer(RD);
3111 ID.AddInteger(SM);
3112 ID.AddInteger(ConstArg);
3113 ID.AddInteger(VolatileArg);
3114 ID.AddInteger(RValueThis);
3115 ID.AddInteger(ConstThis);
3116 ID.AddInteger(VolatileThis);
3117
3118 void *InsertPoint;
3119 SpecialMemberOverloadResultEntry *Result =
3120 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3121
3122 // This was already cached
3123 if (Result)
3124 return *Result;
3125
3126 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3127 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3128 SpecialMemberCache.InsertNode(Result, InsertPoint);
3129
3130 if (SM == CXXDestructor) {
3131 if (RD->needsImplicitDestructor()) {
3132 runWithSufficientStackSpace(RD->getLocation(), [&] {
3133 DeclareImplicitDestructor(RD);
3134 });
3135 }
3136 CXXDestructorDecl *DD = RD->getDestructor();
3137 Result->setMethod(DD);
3138 Result->setKind(DD && !DD->isDeleted()
3139 ? SpecialMemberOverloadResult::Success
3140 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3141 return *Result;
3142 }
3143
3144 // Prepare for overload resolution. Here we construct a synthetic argument
3145 // if necessary and make sure that implicit functions are declared.
3146 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3147 DeclarationName Name;
3148 Expr *Arg = nullptr;
3149 unsigned NumArgs;
3150
3151 QualType ArgType = CanTy;
3152 ExprValueKind VK = VK_LValue;
3153
3154 if (SM == CXXDefaultConstructor) {
3155 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3156 NumArgs = 0;
3157 if (RD->needsImplicitDefaultConstructor()) {
3158 runWithSufficientStackSpace(RD->getLocation(), [&] {
3159 DeclareImplicitDefaultConstructor(RD);
3160 });
3161 }
3162 } else {
3163 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3164 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3165 if (RD->needsImplicitCopyConstructor()) {
3166 runWithSufficientStackSpace(RD->getLocation(), [&] {
3167 DeclareImplicitCopyConstructor(RD);
3168 });
3169 }
3170 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3171 runWithSufficientStackSpace(RD->getLocation(), [&] {
3172 DeclareImplicitMoveConstructor(RD);
3173 });
3174 }
3175 } else {
3176 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3177 if (RD->needsImplicitCopyAssignment()) {
3178 runWithSufficientStackSpace(RD->getLocation(), [&] {
3179 DeclareImplicitCopyAssignment(RD);
3180 });
3181 }
3182 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3183 runWithSufficientStackSpace(RD->getLocation(), [&] {
3184 DeclareImplicitMoveAssignment(RD);
3185 });
3186 }
3187 }
3188
3189 if (ConstArg)
3190 ArgType.addConst();
3191 if (VolatileArg)
3192 ArgType.addVolatile();
3193
3194 // This isn't /really/ specified by the standard, but it's implied
3195 // we should be working from an RValue in the case of move to ensure
3196 // that we prefer to bind to rvalue references, and an LValue in the
3197 // case of copy to ensure we don't bind to rvalue references.
3198 // Possibly an XValue is actually correct in the case of move, but
3199 // there is no semantic difference for class types in this restricted
3200 // case.
3201 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3202 VK = VK_LValue;
3203 else
3204 VK = VK_RValue;
3205 }
3206
3207 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3208
3209 if (SM != CXXDefaultConstructor) {
3210 NumArgs = 1;
3211 Arg = &FakeArg;
3212 }
3213
3214 // Create the object argument
3215 QualType ThisTy = CanTy;
3216 if (ConstThis)
3217 ThisTy.addConst();
3218 if (VolatileThis)
3219 ThisTy.addVolatile();
3220 Expr::Classification Classification =
3221 OpaqueValueExpr(LookupLoc, ThisTy,
3222 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3223
3224 // Now we perform lookup on the name we computed earlier and do overload
3225 // resolution. Lookup is only performed directly into the class since there
3226 // will always be a (possibly implicit) declaration to shadow any others.
3227 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3228 DeclContext::lookup_result R = RD->lookup(Name);
3229
3230 if (R.empty()) {
3231 // We might have no default constructor because we have a lambda's closure
3232 // type, rather than because there's some other declared constructor.
3233 // Every class has a copy/move constructor, copy/move assignment, and
3234 // destructor.
3235 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3236, __PRETTY_FUNCTION__))
3236 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3236, __PRETTY_FUNCTION__))
;
3237 Result->setMethod(nullptr);
3238 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3239 return *Result;
3240 }
3241
3242 // Copy the candidates as our processing of them may load new declarations
3243 // from an external source and invalidate lookup_result.
3244 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3245
3246 for (NamedDecl *CandDecl : Candidates) {
3247 if (CandDecl->isInvalidDecl())
3248 continue;
3249
3250 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3251 auto CtorInfo = getConstructorInfo(Cand);
3252 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3253 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3254 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3255 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3256 else if (CtorInfo)
3257 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3258 llvm::makeArrayRef(&Arg, NumArgs), OCS,
3259 /*SuppressUserConversions*/ true);
3260 else
3261 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3262 /*SuppressUserConversions*/ true);
3263 } else if (FunctionTemplateDecl *Tmpl =
3264 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3265 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3266 AddMethodTemplateCandidate(
3267 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3268 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3269 else if (CtorInfo)
3270 AddTemplateOverloadCandidate(
3271 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3272 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3273 else
3274 AddTemplateOverloadCandidate(
3275 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3276 } else {
3277 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3278, __PRETTY_FUNCTION__))
3278 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3278, __PRETTY_FUNCTION__))
;
3279 }
3280 }
3281
3282 OverloadCandidateSet::iterator Best;
3283 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3284 case OR_Success:
3285 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3286 Result->setKind(SpecialMemberOverloadResult::Success);
3287 break;
3288
3289 case OR_Deleted:
3290 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3291 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3292 break;
3293
3294 case OR_Ambiguous:
3295 Result->setMethod(nullptr);
3296 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3297 break;
3298
3299 case OR_No_Viable_Function:
3300 Result->setMethod(nullptr);
3301 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3302 break;
3303 }
3304
3305 return *Result;
3306}
3307
3308/// Look up the default constructor for the given class.
3309CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3310 SpecialMemberOverloadResult Result =
3311 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3312 false, false);
3313
3314 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3315}
3316
3317/// Look up the copying constructor for the given class.
3318CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3319 unsigned Quals) {
3320 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3321, __PRETTY_FUNCTION__))
3321 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3321, __PRETTY_FUNCTION__))
;
3322 SpecialMemberOverloadResult Result =
3323 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3324 Quals & Qualifiers::Volatile, false, false, false);
3325
3326 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3327}
3328
3329/// Look up the moving constructor for the given class.
3330CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3331 unsigned Quals) {
3332 SpecialMemberOverloadResult Result =
3333 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3334 Quals & Qualifiers::Volatile, false, false, false);
3335
3336 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3337}
3338
3339/// Look up the constructors for the given class.
3340DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3341 // If the implicit constructors have not yet been declared, do so now.
3342 if (CanDeclareSpecialMemberFunction(Class)) {
3343 runWithSufficientStackSpace(Class->getLocation(), [&] {
3344 if (Class->needsImplicitDefaultConstructor())
3345 DeclareImplicitDefaultConstructor(Class);
3346 if (Class->needsImplicitCopyConstructor())
3347 DeclareImplicitCopyConstructor(Class);
3348 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3349 DeclareImplicitMoveConstructor(Class);
3350 });
3351 }
3352
3353 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3354 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3355 return Class->lookup(Name);
3356}
3357
3358/// Look up the copying assignment operator for the given class.
3359CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3360 unsigned Quals, bool RValueThis,
3361 unsigned ThisQuals) {
3362 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3363, __PRETTY_FUNCTION__))
3363 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3363, __PRETTY_FUNCTION__))
;
3364 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3365, __PRETTY_FUNCTION__))
3365 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3365, __PRETTY_FUNCTION__))
;
3366 SpecialMemberOverloadResult Result =
3367 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3368 Quals & Qualifiers::Volatile, RValueThis,
3369 ThisQuals & Qualifiers::Const,
3370 ThisQuals & Qualifiers::Volatile);
3371
3372 return Result.getMethod();
3373}
3374
3375/// Look up the moving assignment operator for the given class.
3376CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3377 unsigned Quals,
3378 bool RValueThis,
3379 unsigned ThisQuals) {
3380 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3381, __PRETTY_FUNCTION__))
3381 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3381, __PRETTY_FUNCTION__))
;
3382 SpecialMemberOverloadResult Result =
3383 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3384 Quals & Qualifiers::Volatile, RValueThis,
3385 ThisQuals & Qualifiers::Const,
3386 ThisQuals & Qualifiers::Volatile);
3387
3388 return Result.getMethod();
3389}
3390
3391/// Look for the destructor of the given class.
3392///
3393/// During semantic analysis, this routine should be used in lieu of
3394/// CXXRecordDecl::getDestructor().
3395///
3396/// \returns The destructor for this class.
3397CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3398 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3399 false, false, false,
3400 false, false).getMethod());
3401}
3402
3403/// LookupLiteralOperator - Determine which literal operator should be used for
3404/// a user-defined literal, per C++11 [lex.ext].
3405///
3406/// Normal overload resolution is not used to select which literal operator to
3407/// call for a user-defined literal. Look up the provided literal operator name,
3408/// and filter the results to the appropriate set for the given argument types.
3409Sema::LiteralOperatorLookupResult
3410Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3411 ArrayRef<QualType> ArgTys,
3412 bool AllowRaw, bool AllowTemplate,
3413 bool AllowStringTemplate, bool DiagnoseMissing) {
3414 LookupName(R, S);
3415 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3416, __PRETTY_FUNCTION__))
3416 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3416, __PRETTY_FUNCTION__))
;
3417
3418 // Filter the lookup results appropriately.
3419 LookupResult::Filter F = R.makeFilter();
3420
3421 bool FoundRaw = false;
3422 bool FoundTemplate = false;
3423 bool FoundStringTemplate = false;
3424 bool FoundExactMatch = false;
3425
3426 while (F.hasNext()) {
3427 Decl *D = F.next();
3428 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3429 D = USD->getTargetDecl();
3430
3431 // If the declaration we found is invalid, skip it.
3432 if (D->isInvalidDecl()) {
3433 F.erase();
3434 continue;
3435 }
3436
3437 bool IsRaw = false;
3438 bool IsTemplate = false;
3439 bool IsStringTemplate = false;
3440 bool IsExactMatch = false;
3441
3442 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3443 if (FD->getNumParams() == 1 &&
3444 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3445 IsRaw = true;
3446 else if (FD->getNumParams() == ArgTys.size()) {
3447 IsExactMatch = true;
3448 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3449 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3450 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3451 IsExactMatch = false;
3452 break;
3453 }
3454 }
3455 }
3456 }
3457 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3458 TemplateParameterList *Params = FD->getTemplateParameters();
3459 if (Params->size() == 1)
3460 IsTemplate = true;
3461 else
3462 IsStringTemplate = true;
3463 }
3464
3465 if (IsExactMatch) {
3466 FoundExactMatch = true;
3467 AllowRaw = false;
3468 AllowTemplate = false;
3469 AllowStringTemplate = false;
3470 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3471 // Go through again and remove the raw and template decls we've
3472 // already found.
3473 F.restart();
3474 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3475 }
3476 } else if (AllowRaw && IsRaw) {
3477 FoundRaw = true;
3478 } else if (AllowTemplate && IsTemplate) {
3479 FoundTemplate = true;
3480 } else if (AllowStringTemplate && IsStringTemplate) {
3481 FoundStringTemplate = true;
3482 } else {
3483 F.erase();
3484 }
3485 }
3486
3487 F.done();
3488
3489 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3490 // parameter type, that is used in preference to a raw literal operator
3491 // or literal operator template.
3492 if (FoundExactMatch)
3493 return LOLR_Cooked;
3494
3495 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3496 // operator template, but not both.
3497 if (FoundRaw && FoundTemplate) {
3498 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3499 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3500 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3501 return LOLR_Error;
3502 }
3503
3504 if (FoundRaw)
3505 return LOLR_Raw;
3506
3507 if (FoundTemplate)
3508 return LOLR_Template;
3509
3510 if (FoundStringTemplate)
3511 return LOLR_StringTemplate;
3512
3513 // Didn't find anything we could use.
3514 if (DiagnoseMissing) {
3515 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3516 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3517 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3518 << (AllowTemplate || AllowStringTemplate);
3519 return LOLR_Error;
3520 }
3521
3522 return LOLR_ErrorNoDiagnostic;
3523}
3524
3525void ADLResult::insert(NamedDecl *New) {
3526 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3527
3528 // If we haven't yet seen a decl for this key, or the last decl
3529 // was exactly this one, we're done.
3530 if (Old == nullptr || Old == New) {
3531 Old = New;
3532 return;
3533 }
3534
3535 // Otherwise, decide which is a more recent redeclaration.
3536 FunctionDecl *OldFD = Old->getAsFunction();
3537 FunctionDecl *NewFD = New->getAsFunction();
3538
3539 FunctionDecl *Cursor = NewFD;
3540 while (true) {
3541 Cursor = Cursor->getPreviousDecl();
3542
3543 // If we got to the end without finding OldFD, OldFD is the newer
3544 // declaration; leave things as they are.
3545 if (!Cursor) return;
3546
3547 // If we do find OldFD, then NewFD is newer.
3548 if (Cursor == OldFD) break;
3549
3550 // Otherwise, keep looking.
3551 }
3552
3553 Old = New;
3554}
3555
3556void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3557 ArrayRef<Expr *> Args, ADLResult &Result) {
3558 // Find all of the associated namespaces and classes based on the
3559 // arguments we have.
3560 AssociatedNamespaceSet AssociatedNamespaces;
3561 AssociatedClassSet AssociatedClasses;
3562 FindAssociatedClassesAndNamespaces(Loc, Args,
3563 AssociatedNamespaces,
3564 AssociatedClasses);
3565
3566 // C++ [basic.lookup.argdep]p3:
3567 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3568 // and let Y be the lookup set produced by argument dependent
3569 // lookup (defined as follows). If X contains [...] then Y is
3570 // empty. Otherwise Y is the set of declarations found in the
3571 // namespaces associated with the argument types as described
3572 // below. The set of declarations found by the lookup of the name
3573 // is the union of X and Y.
3574 //
3575 // Here, we compute Y and add its members to the overloaded
3576 // candidate set.
3577 for (auto *NS : AssociatedNamespaces) {
3578 // When considering an associated namespace, the lookup is the
3579 // same as the lookup performed when the associated namespace is
3580 // used as a qualifier (3.4.3.2) except that:
3581 //
3582 // -- Any using-directives in the associated namespace are
3583 // ignored.
3584 //
3585 // -- Any namespace-scope friend functions declared in
3586 // associated classes are visible within their respective
3587 // namespaces even if they are not visible during an ordinary
3588 // lookup (11.4).
3589 DeclContext::lookup_result R = NS->lookup(Name);
3590 for (auto *D : R) {
3591 auto *Underlying = D;
3592 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3593 Underlying = USD->getTargetDecl();
3594
3595 if (!isa<FunctionDecl>(Underlying) &&
3596 !isa<FunctionTemplateDecl>(Underlying))
3597 continue;
3598
3599 // The declaration is visible to argument-dependent lookup if either
3600 // it's ordinarily visible or declared as a friend in an associated
3601 // class.
3602 bool Visible = false;
3603 for (D = D->getMostRecentDecl(); D;
3604 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3605 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3606 if (isVisible(D)) {
3607 Visible = true;
3608 break;
3609 }
3610 } else if (D->getFriendObjectKind()) {
3611 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3612 if (AssociatedClasses.count(RD) && isVisible(D)) {
3613 Visible = true;
3614 break;
3615 }
3616 }
3617 }
3618
3619 // FIXME: Preserve D as the FoundDecl.
3620 if (Visible)
3621 Result.insert(Underlying);
3622 }
3623 }
3624}
3625
3626//----------------------------------------------------------------------------
3627// Search for all visible declarations.
3628//----------------------------------------------------------------------------
3629VisibleDeclConsumer::~VisibleDeclConsumer() { }
3630
3631bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3632
3633namespace {
3634
3635class ShadowContextRAII;
3636
3637class VisibleDeclsRecord {
3638public:
3639 /// An entry in the shadow map, which is optimized to store a
3640 /// single declaration (the common case) but can also store a list
3641 /// of declarations.
3642 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3643
3644private:
3645 /// A mapping from declaration names to the declarations that have
3646 /// this name within a particular scope.
3647 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3648
3649 /// A list of shadow maps, which is used to model name hiding.
3650 std::list<ShadowMap> ShadowMaps;
3651
3652 /// The declaration contexts we have already visited.
3653 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3654
3655 friend class ShadowContextRAII;
3656
3657public:
3658 /// Determine whether we have already visited this context
3659 /// (and, if not, note that we are going to visit that context now).
3660 bool visitedContext(DeclContext *Ctx) {
3661 return !VisitedContexts.insert(Ctx).second;
3662 }
3663
3664 bool alreadyVisitedContext(DeclContext *Ctx) {
3665 return VisitedContexts.count(Ctx);
3666 }
3667
3668 /// Determine whether the given declaration is hidden in the
3669 /// current scope.
3670 ///
3671 /// \returns the declaration that hides the given declaration, or
3672 /// NULL if no such declaration exists.
3673 NamedDecl *checkHidden(NamedDecl *ND);
3674
3675 /// Add a declaration to the current shadow map.
3676 void add(NamedDecl *ND) {
3677 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3678 }
3679};
3680
3681/// RAII object that records when we've entered a shadow context.
3682class ShadowContextRAII {
3683 VisibleDeclsRecord &Visible;
3684
3685 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3686
3687public:
3688 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3689 Visible.ShadowMaps.emplace_back();
3690 }
3691
3692 ~ShadowContextRAII() {
3693 Visible.ShadowMaps.pop_back();
3694 }
3695};
3696
3697} // end anonymous namespace
3698
3699NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3700 unsigned IDNS = ND->getIdentifierNamespace();
3701 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3702 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3703 SM != SMEnd; ++SM) {
3704 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3705 if (Pos == SM->end())
3706 continue;
3707
3708 for (auto *D : Pos->second) {
3709 // A tag declaration does not hide a non-tag declaration.
3710 if (D->hasTagIdentifierNamespace() &&
3711 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3712 Decl::IDNS_ObjCProtocol)))
3713 continue;
3714
3715 // Protocols are in distinct namespaces from everything else.
3716 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3717 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3718 D->getIdentifierNamespace() != IDNS)
3719 continue;
3720
3721 // Functions and function templates in the same scope overload
3722 // rather than hide. FIXME: Look for hiding based on function
3723 // signatures!
3724 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3725 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3726 SM == ShadowMaps.rbegin())
3727 continue;
3728
3729 // A shadow declaration that's created by a resolved using declaration
3730 // is not hidden by the same using declaration.
3731 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3732 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3733 continue;
3734
3735 // We've found a declaration that hides this one.
3736 return D;
3737 }
3738 }
3739
3740 return nullptr;
3741}
3742
3743namespace {
3744class LookupVisibleHelper {
3745public:
3746 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3747 bool LoadExternal)
3748 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3749 LoadExternal(LoadExternal) {}
3750
3751 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3752 bool IncludeGlobalScope) {
3753 // Determine the set of using directives available during
3754 // unqualified name lookup.
3755 Scope *Initial = S;
3756 UnqualUsingDirectiveSet UDirs(SemaRef);
3757 if (SemaRef.getLangOpts().CPlusPlus) {
3
Assuming field 'CPlusPlus' is not equal to 0
4
Taking true branch
3758 // Find the first namespace or translation-unit scope.
3759 while (S && !isNamespaceOrTranslationUnitScope(S))
5
Assuming 'S' is null
3760 S = S->getParent();
3761
3762 UDirs.visitScopeChain(Initial, S);
6
Passing null pointer value via 2nd parameter 'InnermostFileScope'
7
Calling 'UnqualUsingDirectiveSet::visitScopeChain'
3763 }
3764 UDirs.done();
3765
3766 // Look for visible declarations.
3767 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3768 Result.setAllowHidden(Consumer.includeHiddenDecls());
3769 if (!IncludeGlobalScope)
3770 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3771 ShadowContextRAII Shadow(Visited);
3772 lookupInScope(Initial, Result, UDirs);
3773 }
3774
3775 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3776 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3777 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3778 Result.setAllowHidden(Consumer.includeHiddenDecls());
3779 if (!IncludeGlobalScope)
3780 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3781
3782 ShadowContextRAII Shadow(Visited);
3783 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3784 /*InBaseClass=*/false);
3785 }
3786
3787private:
3788 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3789 bool QualifiedNameLookup, bool InBaseClass) {
3790 if (!Ctx)
3791 return;
3792
3793 // Make sure we don't visit the same context twice.
3794 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3795 return;
3796
3797 Consumer.EnteredContext(Ctx);
3798
3799 // Outside C++, lookup results for the TU live on identifiers.
3800 if (isa<TranslationUnitDecl>(Ctx) &&
3801 !Result.getSema().getLangOpts().CPlusPlus) {
3802 auto &S = Result.getSema();
3803 auto &Idents = S.Context.Idents;
3804
3805 // Ensure all external identifiers are in the identifier table.
3806 if (LoadExternal)
3807 if (IdentifierInfoLookup *External =
3808 Idents.getExternalIdentifierLookup()) {
3809 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3810 for (StringRef Name = Iter->Next(); !Name.empty();
3811 Name = Iter->Next())
3812 Idents.get(Name);
3813 }
3814
3815 // Walk all lookup results in the TU for each identifier.
3816 for (const auto &Ident : Idents) {
3817 for (auto I = S.IdResolver.begin(Ident.getValue()),
3818 E = S.IdResolver.end();
3819 I != E; ++I) {
3820 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3821 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3822 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3823 Visited.add(ND);
3824 }
3825 }
3826 }
3827 }
3828
3829 return;
3830 }
3831
3832 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3833 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3834
3835 // We sometimes skip loading namespace-level results (they tend to be huge).
3836 bool Load = LoadExternal ||
3837 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3838 // Enumerate all of the results in this context.
3839 for (DeclContextLookupResult R :
3840 Load ? Ctx->lookups()
3841 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3842 for (auto *D : R) {
3843 if (auto *ND = Result.getAcceptableDecl(D)) {
3844 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3845 Visited.add(ND);
3846 }
3847 }
3848 }
3849
3850 // Traverse using directives for qualified name lookup.
3851 if (QualifiedNameLookup) {
3852 ShadowContextRAII Shadow(Visited);
3853 for (auto I : Ctx->using_directives()) {
3854 if (!Result.getSema().isVisible(I))
3855 continue;
3856 lookupInDeclContext(I->getNominatedNamespace(), Result,
3857 QualifiedNameLookup, InBaseClass);
3858 }
3859 }
3860
3861 // Traverse the contexts of inherited C++ classes.
3862 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3863 if (!Record->hasDefinition())
3864 return;
3865
3866 for (const auto &B : Record->bases()) {
3867 QualType BaseType = B.getType();
3868
3869 RecordDecl *RD;
3870 if (BaseType->isDependentType()) {
3871 if (!IncludeDependentBases) {
3872 // Don't look into dependent bases, because name lookup can't look
3873 // there anyway.
3874 continue;
3875 }
3876 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3877 if (!TST)
3878 continue;
3879 TemplateName TN = TST->getTemplateName();
3880 const auto *TD =
3881 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3882 if (!TD)
3883 continue;
3884 RD = TD->getTemplatedDecl();
3885 } else {
3886 const auto *Record = BaseType->getAs<RecordType>();
3887 if (!Record)
3888 continue;
3889 RD = Record->getDecl();
3890 }
3891
3892 // FIXME: It would be nice to be able to determine whether referencing
3893 // a particular member would be ambiguous. For example, given
3894 //
3895 // struct A { int member; };
3896 // struct B { int member; };
3897 // struct C : A, B { };
3898 //
3899 // void f(C *c) { c->### }
3900 //
3901 // accessing 'member' would result in an ambiguity. However, we
3902 // could be smart enough to qualify the member with the base
3903 // class, e.g.,
3904 //
3905 // c->B::member
3906 //
3907 // or
3908 //
3909 // c->A::member
3910
3911 // Find results in this base class (and its bases).
3912 ShadowContextRAII Shadow(Visited);
3913 lookupInDeclContext(RD, Result, QualifiedNameLookup,
3914 /*InBaseClass=*/true);
3915 }
3916 }
3917
3918 // Traverse the contexts of Objective-C classes.
3919 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3920 // Traverse categories.
3921 for (auto *Cat : IFace->visible_categories()) {
3922 ShadowContextRAII Shadow(Visited);
3923 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3924 /*InBaseClass=*/false);
3925 }
3926
3927 // Traverse protocols.
3928 for (auto *I : IFace->all_referenced_protocols()) {
3929 ShadowContextRAII Shadow(Visited);
3930 lookupInDeclContext(I, Result, QualifiedNameLookup,
3931 /*InBaseClass=*/false);
3932 }
3933
3934 // Traverse the superclass.
3935 if (IFace->getSuperClass()) {
3936 ShadowContextRAII Shadow(Visited);
3937 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3938 /*InBaseClass=*/true);
3939 }
3940
3941 // If there is an implementation, traverse it. We do this to find
3942 // synthesized ivars.
3943 if (IFace->getImplementation()) {
3944 ShadowContextRAII Shadow(Visited);
3945 lookupInDeclContext(IFace->getImplementation(), Result,
3946 QualifiedNameLookup, InBaseClass);
3947 }
3948 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3949 for (auto *I : Protocol->protocols()) {
3950 ShadowContextRAII Shadow(Visited);
3951 lookupInDeclContext(I, Result, QualifiedNameLookup,
3952 /*InBaseClass=*/false);
3953 }
3954 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3955 for (auto *I : Category->protocols()) {
3956 ShadowContextRAII Shadow(Visited);
3957 lookupInDeclContext(I, Result, QualifiedNameLookup,
3958 /*InBaseClass=*/false);
3959 }
3960
3961 // If there is an implementation, traverse it.
3962 if (Category->getImplementation()) {
3963 ShadowContextRAII Shadow(Visited);
3964 lookupInDeclContext(Category->getImplementation(), Result,
3965 QualifiedNameLookup, /*InBaseClass=*/true);
3966 }
3967 }
3968 }
3969
3970 void lookupInScope(Scope *S, LookupResult &Result,
3971 UnqualUsingDirectiveSet &UDirs) {
3972 // No clients run in this mode and it's not supported. Please add tests and
3973 // remove the assertion if you start relying on it.
3974 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")((!IncludeDependentBases && "Unsupported flag for lookupInScope"
) ? static_cast<void> (0) : __assert_fail ("!IncludeDependentBases && \"Unsupported flag for lookupInScope\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 3974, __PRETTY_FUNCTION__))
;
3975
3976 if (!S)
3977 return;
3978
3979 if (!S->getEntity() ||
3980 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3981 (S->getEntity())->isFunctionOrMethod()) {
3982 FindLocalExternScope FindLocals(Result);
3983 // Walk through the declarations in this Scope. The consumer might add new
3984 // decls to the scope as part of deserialization, so make a copy first.
3985 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3986 for (Decl *D : ScopeDecls) {
3987 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3988 if ((ND = Result.getAcceptableDecl(ND))) {
3989 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3990 Visited.add(ND);
3991 }
3992 }
3993 }
3994
3995 // FIXME: C++ [temp.local]p8
3996 DeclContext *Entity = nullptr;
3997 if (S->getEntity()) {
3998 // Look into this scope's declaration context, along with any of its
3999 // parent lookup contexts (e.g., enclosing classes), up to the point
4000 // where we hit the context stored in the next outer scope.
4001 Entity = S->getEntity();
4002 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
4003
4004 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4005 Ctx = Ctx->getLookupParent()) {
4006 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4007 if (Method->isInstanceMethod()) {
4008 // For instance methods, look for ivars in the method's interface.
4009 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4010 Result.getNameLoc(),
4011 Sema::LookupMemberName);
4012 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4013 lookupInDeclContext(IFace, IvarResult,
4014 /*QualifiedNameLookup=*/false,
4015 /*InBaseClass=*/false);
4016 }
4017 }
4018
4019 // We've already performed all of the name lookup that we need
4020 // to for Objective-C methods; the next context will be the
4021 // outer scope.
4022 break;
4023 }
4024
4025 if (Ctx->isFunctionOrMethod())
4026 continue;
4027
4028 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4029 /*InBaseClass=*/false);
4030 }
4031 } else if (!S->getParent()) {
4032 // Look into the translation unit scope. We walk through the translation
4033 // unit's declaration context, because the Scope itself won't have all of
4034 // the declarations if we loaded a precompiled header.
4035 // FIXME: We would like the translation unit's Scope object to point to
4036 // the translation unit, so we don't need this special "if" branch.
4037 // However, doing so would force the normal C++ name-lookup code to look
4038 // into the translation unit decl when the IdentifierInfo chains would
4039 // suffice. Once we fix that problem (which is part of a more general
4040 // "don't look in DeclContexts unless we have to" optimization), we can
4041 // eliminate this.
4042 Entity = Result.getSema().Context.getTranslationUnitDecl();
4043 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4044 /*InBaseClass=*/false);
4045 }
4046
4047 if (Entity) {
4048 // Lookup visible declarations in any namespaces found by using
4049 // directives.
4050 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4051 lookupInDeclContext(
4052 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4053 /*QualifiedNameLookup=*/false,
4054 /*InBaseClass=*/false);
4055 }
4056
4057 // Lookup names in the parent scope.
4058 ShadowContextRAII Shadow(Visited);
4059 lookupInScope(S->getParent(), Result, UDirs);
4060 }
4061
4062private:
4063 VisibleDeclsRecord Visited;
4064 VisibleDeclConsumer &Consumer;
4065 bool IncludeDependentBases;
4066 bool LoadExternal;
4067};
4068} // namespace
4069
4070void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4071 VisibleDeclConsumer &Consumer,
4072 bool IncludeGlobalScope, bool LoadExternal) {
4073 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4074 LoadExternal);
4075 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
1
Passing value via 2nd parameter 'S'
2
Calling 'LookupVisibleHelper::lookupVisibleDecls'
4076}
4077
4078void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4079 VisibleDeclConsumer &Consumer,
4080 bool IncludeGlobalScope,
4081 bool IncludeDependentBases, bool LoadExternal) {
4082 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4083 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4084}
4085
4086/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4087/// If GnuLabelLoc is a valid source location, then this is a definition
4088/// of an __label__ label name, otherwise it is a normal label definition
4089/// or use.
4090LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4091 SourceLocation GnuLabelLoc) {
4092 // Do a lookup to see if we have a label with this name already.
4093 NamedDecl *Res = nullptr;
4094
4095 if (GnuLabelLoc.isValid()) {
4096 // Local label definitions always shadow existing labels.
4097 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4098 Scope *S = CurScope;
4099 PushOnScopeChains(Res, S, true);
4100 return cast<LabelDecl>(Res);
4101 }
4102
4103 // Not a GNU local label.
4104 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4105 // If we found a label, check to see if it is in the same context as us.
4106 // When in a Block, we don't want to reuse a label in an enclosing function.
4107 if (Res && Res->getDeclContext() != CurContext)
4108 Res = nullptr;
4109 if (!Res) {
4110 // If not forward referenced or defined already, create the backing decl.
4111 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4112 Scope *S = CurScope->getFnParent();
4113 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 4113, __PRETTY_FUNCTION__))
;
4114 PushOnScopeChains(Res, S, true);
4115 }
4116 return cast<LabelDecl>(Res);
4117}
4118
4119//===----------------------------------------------------------------------===//
4120// Typo correction
4121//===----------------------------------------------------------------------===//
4122
4123static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4124 TypoCorrection &Candidate) {
4125 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4126 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4127}
4128
4129static void LookupPotentialTypoResult(Sema &SemaRef,
4130 LookupResult &Res,
4131 IdentifierInfo *Name,
4132 Scope *S, CXXScopeSpec *SS,
4133 DeclContext *MemberContext,
4134 bool EnteringContext,
4135 bool isObjCIvarLookup,
4136 bool FindHidden);
4137
4138/// Check whether the declarations found for a typo correction are
4139/// visible. Set the correction's RequiresImport flag to true if none of the
4140/// declarations are visible, false otherwise.
4141static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4142 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4143
4144 for (/**/; DI != DE; ++DI)
4145 if (!LookupResult::isVisible(SemaRef, *DI))
4146 break;
4147 // No filtering needed if all decls are visible.
4148 if (DI == DE) {
4149 TC.setRequiresImport(false);
4150 return;
4151 }
4152
4153 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4154 bool AnyVisibleDecls = !NewDecls.empty();
4155
4156 for (/**/; DI != DE; ++DI) {
4157 if (LookupResult::isVisible(SemaRef, *DI)) {
4158 if (!AnyVisibleDecls) {
4159 // Found a visible decl, discard all hidden ones.
4160 AnyVisibleDecls = true;
4161 NewDecls.clear();
4162 }
4163 NewDecls.push_back(*DI);
4164 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4165 NewDecls.push_back(*DI);
4166 }
4167
4168 if (NewDecls.empty())
4169 TC = TypoCorrection();
4170 else {
4171 TC.setCorrectionDecls(NewDecls);
4172 TC.setRequiresImport(!AnyVisibleDecls);
4173 }
4174}
4175
4176// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4177// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4178// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4179static void getNestedNameSpecifierIdentifiers(
4180 NestedNameSpecifier *NNS,
4181 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4182 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4183 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4184 else
4185 Identifiers.clear();
4186
4187 const IdentifierInfo *II = nullptr;
4188
4189 switch (NNS->getKind()) {
4190 case NestedNameSpecifier::Identifier:
4191 II = NNS->getAsIdentifier();
4192 break;
4193
4194 case NestedNameSpecifier::Namespace:
4195 if (NNS->getAsNamespace()->isAnonymousNamespace())
4196 return;
4197 II = NNS->getAsNamespace()->getIdentifier();
4198 break;
4199
4200 case NestedNameSpecifier::NamespaceAlias:
4201 II = NNS->getAsNamespaceAlias()->getIdentifier();
4202 break;
4203
4204 case NestedNameSpecifier::TypeSpecWithTemplate:
4205 case NestedNameSpecifier::TypeSpec:
4206 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4207 break;
4208
4209 case NestedNameSpecifier::Global:
4210 case NestedNameSpecifier::Super:
4211 return;
4212 }
4213
4214 if (II)
4215 Identifiers.push_back(II);
4216}
4217
4218void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4219 DeclContext *Ctx, bool InBaseClass) {
4220 // Don't consider hidden names for typo correction.
4221 if (Hiding)
4222 return;
4223
4224 // Only consider entities with identifiers for names, ignoring
4225 // special names (constructors, overloaded operators, selectors,
4226 // etc.).
4227 IdentifierInfo *Name = ND->getIdentifier();
4228 if (!Name)
4229 return;
4230
4231 // Only consider visible declarations and declarations from modules with
4232 // names that exactly match.
4233 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4234 return;
4235
4236 FoundName(Name->getName());
4237}
4238
4239void TypoCorrectionConsumer::FoundName(StringRef Name) {
4240 // Compute the edit distance between the typo and the name of this
4241 // entity, and add the identifier to the list of results.
4242 addName(Name, nullptr);
4243}
4244
4245void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4246 // Compute the edit distance between the typo and this keyword,
4247 // and add the keyword to the list of results.
4248 addName(Keyword, nullptr, nullptr, true);
4249}
4250
4251void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4252 NestedNameSpecifier *NNS, bool isKeyword) {
4253 // Use a simple length-based heuristic to determine the minimum possible
4254 // edit distance. If the minimum isn't good enough, bail out early.
4255 StringRef TypoStr = Typo->getName();
4256 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4257 if (MinED && TypoStr.size() / MinED < 3)
4258 return;
4259
4260 // Compute an upper bound on the allowable edit distance, so that the
4261 // edit-distance algorithm can short-circuit.
4262 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4263 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4264 if (ED > UpperBound) return;
4265
4266 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4267 if (isKeyword) TC.makeKeyword();
4268 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4269 addCorrection(TC);
4270}
4271
4272static const unsigned MaxTypoDistanceResultSets = 5;
4273
4274void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4275 StringRef TypoStr = Typo->getName();
4276 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4277
4278 // For very short typos, ignore potential corrections that have a different
4279 // base identifier from the typo or which have a normalized edit distance
4280 // longer than the typo itself.
4281 if (TypoStr.size() < 3 &&
4282 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4283 return;
4284
4285 // If the correction is resolved but is not viable, ignore it.
4286 if (Correction.isResolved()) {
4287 checkCorrectionVisibility(SemaRef, Correction);
4288 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4289 return;
4290 }
4291
4292 TypoResultList &CList =
4293 CorrectionResults[Correction.getEditDistance(false)][Name];
4294
4295 if (!CList.empty() && !CList.back().isResolved())
4296 CList.pop_back();
4297 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4298 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4299 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4300 RI != RIEnd; ++RI) {
4301 // If the Correction refers to a decl already in the result list,
4302 // replace the existing result if the string representation of Correction
4303 // comes before the current result alphabetically, then stop as there is
4304 // nothing more to be done to add Correction to the candidate set.
4305 if (RI->getCorrectionDecl() == NewND) {
4306 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4307 *RI = Correction;
4308 return;
4309 }
4310 }
4311 }
4312 if (CList.empty() || Correction.isResolved())
4313 CList.push_back(Correction);
4314
4315 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4316 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4317}
4318
4319void TypoCorrectionConsumer::addNamespaces(
4320 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4321 SearchNamespaces = true;
4322
4323 for (auto KNPair : KnownNamespaces)
4324 Namespaces.addNameSpecifier(KNPair.first);
4325
4326 bool SSIsTemplate = false;
4327 if (NestedNameSpecifier *NNS =
4328 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4329 if (const Type *T = NNS->getAsType())
4330 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4331 }
4332 // Do not transform this into an iterator-based loop. The loop body can
4333 // trigger the creation of further types (through lazy deserialization) and
4334 // invalid iterators into this list.
4335 auto &Types = SemaRef.getASTContext().getTypes();
4336 for (unsigned I = 0; I != Types.size(); ++I) {
4337 const auto *TI = Types[I];
4338 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4339 CD = CD->getCanonicalDecl();
4340 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4341 !CD->isUnion() && CD->getIdentifier() &&
4342 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4343 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4344 Namespaces.addNameSpecifier(CD);
4345 }
4346 }
4347}
4348
4349const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4350 if (++CurrentTCIndex < ValidatedCorrections.size())
4351 return ValidatedCorrections[CurrentTCIndex];
4352
4353 CurrentTCIndex = ValidatedCorrections.size();
4354 while (!CorrectionResults.empty()) {
4355 auto DI = CorrectionResults.begin();
4356 if (DI->second.empty()) {
4357 CorrectionResults.erase(DI);
4358 continue;
4359 }
4360
4361 auto RI = DI->second.begin();
4362 if (RI->second.empty()) {
4363 DI->second.erase(RI);
4364 performQualifiedLookups();
4365 continue;
4366 }
4367
4368 TypoCorrection TC = RI->second.pop_back_val();
4369 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4370 ValidatedCorrections.push_back(TC);
4371 return ValidatedCorrections[CurrentTCIndex];
4372 }
4373 }
4374 return ValidatedCorrections[0]; // The empty correction.
4375}
4376
4377bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4378 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4379 DeclContext *TempMemberContext = MemberContext;
4380 CXXScopeSpec *TempSS = SS.get();
4381retry_lookup:
4382 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4383 EnteringContext,
4384 CorrectionValidator->IsObjCIvarLookup,
4385 Name == Typo && !Candidate.WillReplaceSpecifier());
4386 switch (Result.getResultKind()) {
4387 case LookupResult::NotFound:
4388 case LookupResult::NotFoundInCurrentInstantiation:
4389 case LookupResult::FoundUnresolvedValue:
4390 if (TempSS) {
4391 // Immediately retry the lookup without the given CXXScopeSpec
4392 TempSS = nullptr;
4393 Candidate.WillReplaceSpecifier(true);
4394 goto retry_lookup;
4395 }
4396 if (TempMemberContext) {
4397 if (SS && !TempSS)
4398 TempSS = SS.get();
4399 TempMemberContext = nullptr;
4400 goto retry_lookup;
4401 }
4402 if (SearchNamespaces)
4403 QualifiedResults.push_back(Candidate);
4404 break;
4405
4406 case LookupResult::Ambiguous:
4407 // We don't deal with ambiguities.
4408 break;
4409
4410 case LookupResult::Found:
4411 case LookupResult::FoundOverloaded:
4412 // Store all of the Decls for overloaded symbols
4413 for (auto *TRD : Result)
4414 Candidate.addCorrectionDecl(TRD);
4415 checkCorrectionVisibility(SemaRef, Candidate);
4416 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4417 if (SearchNamespaces)
4418 QualifiedResults.push_back(Candidate);
4419 break;
4420 }
4421 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4422 return true;
4423 }
4424 return false;
4425}
4426
4427void TypoCorrectionConsumer::performQualifiedLookups() {
4428 unsigned TypoLen = Typo->getName().size();
4429 for (const TypoCorrection &QR : QualifiedResults) {
4430 for (const auto &NSI : Namespaces) {
4431 DeclContext *Ctx = NSI.DeclCtx;
4432 const Type *NSType = NSI.NameSpecifier->getAsType();
4433
4434 // If the current NestedNameSpecifier refers to a class and the
4435 // current correction candidate is the name of that class, then skip
4436 // it as it is unlikely a qualified version of the class' constructor
4437 // is an appropriate correction.
4438 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4439 nullptr) {
4440 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4441 continue;
4442 }
4443
4444 TypoCorrection TC(QR);
4445 TC.ClearCorrectionDecls();
4446 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4447 TC.setQualifierDistance(NSI.EditDistance);
4448 TC.setCallbackDistance(0); // Reset the callback distance
4449
4450 // If the current correction candidate and namespace combination are
4451 // too far away from the original typo based on the normalized edit
4452 // distance, then skip performing a qualified name lookup.
4453 unsigned TmpED = TC.getEditDistance(true);
4454 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4455 TypoLen / TmpED < 3)
4456 continue;
4457
4458 Result.clear();
4459 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4460 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4461 continue;
4462
4463 // Any corrections added below will be validated in subsequent
4464 // iterations of the main while() loop over the Consumer's contents.
4465 switch (Result.getResultKind()) {
4466 case LookupResult::Found:
4467 case LookupResult::FoundOverloaded: {
4468 if (SS && SS->isValid()) {
4469 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4470 std::string OldQualified;
4471 llvm::raw_string_ostream OldOStream(OldQualified);
4472 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4473 OldOStream << Typo->getName();
4474 // If correction candidate would be an identical written qualified
4475 // identifier, then the existing CXXScopeSpec probably included a
4476 // typedef that didn't get accounted for properly.
4477 if (OldOStream.str() == NewQualified)
4478 break;
4479 }
4480 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4481 TRD != TRDEnd; ++TRD) {
4482 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4483 NSType ? NSType->getAsCXXRecordDecl()
4484 : nullptr,
4485 TRD.getPair()) == Sema::AR_accessible)
4486 TC.addCorrectionDecl(*TRD);
4487 }
4488 if (TC.isResolved()) {
4489 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4490 addCorrection(TC);
4491 }
4492 break;
4493 }
4494 case LookupResult::NotFound:
4495 case LookupResult::NotFoundInCurrentInstantiation:
4496 case LookupResult::Ambiguous:
4497 case LookupResult::FoundUnresolvedValue:
4498 break;
4499 }
4500 }
4501 }
4502 QualifiedResults.clear();
4503}
4504
4505TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4506 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4507 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4508 if (NestedNameSpecifier *NNS =
4509 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4510 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4511 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4512
4513 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4514 }
4515 // Build the list of identifiers that would be used for an absolute
4516 // (from the global context) NestedNameSpecifier referring to the current
4517 // context.
4518 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4519 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4520 CurContextIdentifiers.push_back(ND->getIdentifier());
4521 }
4522
4523 // Add the global context as a NestedNameSpecifier
4524 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4525 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4526 DistanceMap[1].push_back(SI);
4527}
4528
4529auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4530 DeclContext *Start) -> DeclContextList {
4531 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 4531, __PRETTY_FUNCTION__))
;
4532 DeclContextList Chain;
4533 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4534 DC = DC->getLookupParent()) {
4535 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4536 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4537 !(ND && ND->isAnonymousNamespace()))
4538 Chain.push_back(DC->getPrimaryContext());
4539 }
4540 return Chain;
4541}
4542
4543unsigned
4544TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4545 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4546 unsigned NumSpecifiers = 0;
4547 for (DeclContext *C : llvm::reverse(DeclChain)) {
4548 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4549 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4550 ++NumSpecifiers;
4551 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4552 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4553 RD->getTypeForDecl());
4554 ++NumSpecifiers;
4555 }
4556 }
4557 return NumSpecifiers;
4558}
4559
4560void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4561 DeclContext *Ctx) {
4562 NestedNameSpecifier *NNS = nullptr;
4563 unsigned NumSpecifiers = 0;
4564 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4565 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4566
4567 // Eliminate common elements from the two DeclContext chains.
4568 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4569 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4570 break;
4571 NamespaceDeclChain.pop_back();
4572 }
4573
4574 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4575 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4576
4577 // Add an explicit leading '::' specifier if needed.
4578 if (NamespaceDeclChain.empty()) {
4579 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4580 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4581 NumSpecifiers =
4582 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4583 } else if (NamedDecl *ND =
4584 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4585 IdentifierInfo *Name = ND->getIdentifier();
4586 bool SameNameSpecifier = false;
4587 if (std::find(CurNameSpecifierIdentifiers.begin(),
4588 CurNameSpecifierIdentifiers.end(),
4589 Name) != CurNameSpecifierIdentifiers.end()) {
4590 std::string NewNameSpecifier;
4591 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4592 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4593 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4594 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4595 SpecifierOStream.flush();
4596 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4597 }
4598 if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4599 CurContextIdentifiers.end()) {
4600 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4601 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4602 NumSpecifiers =
4603 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4604 }
4605 }
4606
4607 // If the built NestedNameSpecifier would be replacing an existing
4608 // NestedNameSpecifier, use the number of component identifiers that
4609 // would need to be changed as the edit distance instead of the number
4610 // of components in the built NestedNameSpecifier.
4611 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4612 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4613 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4614 NumSpecifiers = llvm::ComputeEditDistance(
4615 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4616 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4617 }
4618
4619 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4620 DistanceMap[NumSpecifiers].push_back(SI);
4621}
4622
4623/// Perform name lookup for a possible result for typo correction.
4624static void LookupPotentialTypoResult(Sema &SemaRef,
4625 LookupResult &Res,
4626 IdentifierInfo *Name,
4627 Scope *S, CXXScopeSpec *SS,
4628 DeclContext *MemberContext,
4629 bool EnteringContext,
4630 bool isObjCIvarLookup,
4631 bool FindHidden) {
4632 Res.suppressDiagnostics();
4633 Res.clear();
4634 Res.setLookupName(Name);
4635 Res.setAllowHidden(FindHidden);
4636 if (MemberContext) {
4637 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4638 if (isObjCIvarLookup) {
4639 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4640 Res.addDecl(Ivar);
4641 Res.resolveKind();
4642 return;
4643 }
4644 }
4645
4646 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4647 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4648 Res.addDecl(Prop);
4649 Res.resolveKind();
4650 return;
4651 }
4652 }
4653
4654 SemaRef.LookupQualifiedName(Res, MemberContext);
4655 return;
4656 }
4657
4658 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4659 EnteringContext);
4660
4661 // Fake ivar lookup; this should really be part of
4662 // LookupParsedName.
4663 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4664 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4665 (Res.empty() ||
4666 (Res.isSingleResult() &&
4667 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4668 if (ObjCIvarDecl *IV
4669 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4670 Res.addDecl(IV);
4671 Res.resolveKind();
4672 }
4673 }
4674 }
4675}
4676
4677/// Add keywords to the consumer as possible typo corrections.
4678static void AddKeywordsToConsumer(Sema &SemaRef,
4679 TypoCorrectionConsumer &Consumer,
4680 Scope *S, CorrectionCandidateCallback &CCC,
4681 bool AfterNestedNameSpecifier) {
4682 if (AfterNestedNameSpecifier) {
4683 // For 'X::', we know exactly which keywords can appear next.
4684 Consumer.addKeywordResult("template");
4685 if (CCC.WantExpressionKeywords)
4686 Consumer.addKeywordResult("operator");
4687 return;
4688 }
4689
4690 if (CCC.WantObjCSuper)
4691 Consumer.addKeywordResult("super");
4692
4693 if (CCC.WantTypeSpecifiers) {
4694 // Add type-specifier keywords to the set of results.
4695 static const char *const CTypeSpecs[] = {
4696 "char", "const", "double", "enum", "float", "int", "long", "short",
4697 "signed", "struct", "union", "unsigned", "void", "volatile",
4698 "_Complex", "_Imaginary",
4699 // storage-specifiers as well
4700 "extern", "inline", "static", "typedef"
4701 };
4702
4703 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4704 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4705 Consumer.addKeywordResult(CTypeSpecs[I]);
4706
4707 if (SemaRef.getLangOpts().C99)
4708 Consumer.addKeywordResult("restrict");
4709 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4710 Consumer.addKeywordResult("bool");
4711 else if (SemaRef.getLangOpts().C99)
4712 Consumer.addKeywordResult("_Bool");
4713
4714 if (SemaRef.getLangOpts().CPlusPlus) {
4715 Consumer.addKeywordResult("class");
4716 Consumer.addKeywordResult("typename");
4717 Consumer.addKeywordResult("wchar_t");
4718
4719 if (SemaRef.getLangOpts().CPlusPlus11) {
4720 Consumer.addKeywordResult("char16_t");
4721 Consumer.addKeywordResult("char32_t");
4722 Consumer.addKeywordResult("constexpr");
4723 Consumer.addKeywordResult("decltype");
4724 Consumer.addKeywordResult("thread_local");
4725 }
4726 }
4727
4728 if (SemaRef.getLangOpts().GNUKeywords)
4729 Consumer.addKeywordResult("typeof");
4730 } else if (CCC.WantFunctionLikeCasts) {
4731 static const char *const CastableTypeSpecs[] = {
4732 "char", "double", "float", "int", "long", "short",
4733 "signed", "unsigned", "void"
4734 };
4735 for (auto *kw : CastableTypeSpecs)
4736 Consumer.addKeywordResult(kw);
4737 }
4738
4739 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4740 Consumer.addKeywordResult("const_cast");
4741 Consumer.addKeywordResult("dynamic_cast");
4742 Consumer.addKeywordResult("reinterpret_cast");
4743 Consumer.addKeywordResult("static_cast");
4744 }
4745
4746 if (CCC.WantExpressionKeywords) {
4747 Consumer.addKeywordResult("sizeof");
4748 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4749 Consumer.addKeywordResult("false");
4750 Consumer.addKeywordResult("true");
4751 }
4752
4753 if (SemaRef.getLangOpts().CPlusPlus) {
4754 static const char *const CXXExprs[] = {
4755 "delete", "new", "operator", "throw", "typeid"
4756 };
4757 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4758 for (unsigned I = 0; I != NumCXXExprs; ++I)
4759 Consumer.addKeywordResult(CXXExprs[I]);
4760
4761 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4762 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4763 Consumer.addKeywordResult("this");
4764
4765 if (SemaRef.getLangOpts().CPlusPlus11) {
4766 Consumer.addKeywordResult("alignof");
4767 Consumer.addKeywordResult("nullptr");
4768 }
4769 }
4770
4771 if (SemaRef.getLangOpts().C11) {
4772 // FIXME: We should not suggest _Alignof if the alignof macro
4773 // is present.
4774 Consumer.addKeywordResult("_Alignof");
4775 }
4776 }
4777
4778 if (CCC.WantRemainingKeywords) {
4779 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4780 // Statements.
4781 static const char *const CStmts[] = {
4782 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4783 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4784 for (unsigned I = 0; I != NumCStmts; ++I)
4785 Consumer.addKeywordResult(CStmts[I]);
4786
4787 if (SemaRef.getLangOpts().CPlusPlus) {
4788 Consumer.addKeywordResult("catch");
4789 Consumer.addKeywordResult("try");
4790 }
4791
4792 if (S && S->getBreakParent())
4793 Consumer.addKeywordResult("break");
4794
4795 if (S && S->getContinueParent())
4796 Consumer.addKeywordResult("continue");
4797
4798 if (SemaRef.getCurFunction() &&
4799 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4800 Consumer.addKeywordResult("case");
4801 Consumer.addKeywordResult("default");
4802 }
4803 } else {
4804 if (SemaRef.getLangOpts().CPlusPlus) {
4805 Consumer.addKeywordResult("namespace");
4806 Consumer.addKeywordResult("template");
4807 }
4808
4809 if (S && S->isClassScope()) {
4810 Consumer.addKeywordResult("explicit");
4811 Consumer.addKeywordResult("friend");
4812 Consumer.addKeywordResult("mutable");
4813 Consumer.addKeywordResult("private");
4814 Consumer.addKeywordResult("protected");
4815 Consumer.addKeywordResult("public");
4816 Consumer.addKeywordResult("virtual");
4817 }
4818 }
4819
4820 if (SemaRef.getLangOpts().CPlusPlus) {
4821 Consumer.addKeywordResult("using");
4822
4823 if (SemaRef.getLangOpts().CPlusPlus11)
4824 Consumer.addKeywordResult("static_assert");
4825 }
4826 }
4827}
4828
4829std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4830 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4831 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4832 DeclContext *MemberContext, bool EnteringContext,
4833 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4834
4835 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4836 DisableTypoCorrection)
4837 return nullptr;
4838
4839 // In Microsoft mode, don't perform typo correction in a template member
4840 // function dependent context because it interferes with the "lookup into
4841 // dependent bases of class templates" feature.
4842 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4843 isa<CXXMethodDecl>(CurContext))
4844 return nullptr;
4845
4846 // We only attempt to correct typos for identifiers.
4847 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4848 if (!Typo)
4849 return nullptr;
4850
4851 // If the scope specifier itself was invalid, don't try to correct
4852 // typos.
4853 if (SS && SS->isInvalid())
4854 return nullptr;
4855
4856 // Never try to correct typos during any kind of code synthesis.
4857 if (!CodeSynthesisContexts.empty())
4858 return nullptr;
4859
4860 // Don't try to correct 'super'.
4861 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4862 return nullptr;
4863
4864 // Abort if typo correction already failed for this specific typo.
4865 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4866 if (locs != TypoCorrectionFailures.end() &&
4867 locs->second.count(TypoName.getLoc()))
4868 return nullptr;
4869
4870 // Don't try to correct the identifier "vector" when in AltiVec mode.
4871 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4872 // remove this workaround.
4873 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4874 return nullptr;
4875
4876 // Provide a stop gap for files that are just seriously broken. Trying
4877 // to correct all typos can turn into a HUGE performance penalty, causing
4878 // some files to take minutes to get rejected by the parser.
4879 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4880 if (Limit && TyposCorrected >= Limit)
4881 return nullptr;
4882 ++TyposCorrected;
4883
4884 // If we're handling a missing symbol error, using modules, and the
4885 // special search all modules option is used, look for a missing import.
4886 if (ErrorRecovery && getLangOpts().Modules &&
4887 getLangOpts().ModulesSearchAll) {
4888 // The following has the side effect of loading the missing module.
4889 getModuleLoader().lookupMissingImports(Typo->getName(),
4890 TypoName.getBeginLoc());
4891 }
4892
4893 // Extend the lifetime of the callback. We delayed this until here
4894 // to avoid allocations in the hot path (which is where no typo correction
4895 // occurs). Note that CorrectionCandidateCallback is polymorphic and
4896 // initially stack-allocated.
4897 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4898 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4899 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4900 EnteringContext);
4901
4902 // Perform name lookup to find visible, similarly-named entities.
4903 bool IsUnqualifiedLookup = false;
4904 DeclContext *QualifiedDC = MemberContext;
4905 if (MemberContext) {
4906 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4907
4908 // Look in qualified interfaces.
4909 if (OPT) {
4910 for (auto *I : OPT->quals())
4911 LookupVisibleDecls(I, LookupKind, *Consumer);
4912 }
4913 } else if (SS && SS->isSet()) {
4914 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4915 if (!QualifiedDC)
4916 return nullptr;
4917
4918 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4919 } else {
4920 IsUnqualifiedLookup = true;
4921 }
4922
4923 // Determine whether we are going to search in the various namespaces for
4924 // corrections.
4925 bool SearchNamespaces
4926 = getLangOpts().CPlusPlus &&
4927 (IsUnqualifiedLookup || (SS && SS->isSet()));
4928
4929 if (IsUnqualifiedLookup || SearchNamespaces) {
4930 // For unqualified lookup, look through all of the names that we have
4931 // seen in this translation unit.
4932 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4933 for (const auto &I : Context.Idents)
4934 Consumer->FoundName(I.getKey());
4935
4936 // Walk through identifiers in external identifier sources.
4937 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4938 if (IdentifierInfoLookup *External
4939 = Context.Idents.getExternalIdentifierLookup()) {
4940 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4941 do {
4942 StringRef Name = Iter->Next();
4943 if (Name.empty())
4944 break;
4945
4946 Consumer->FoundName(Name);
4947 } while (true);
4948 }
4949 }
4950
4951 AddKeywordsToConsumer(*this, *Consumer, S,
4952 *Consumer->getCorrectionValidator(),
4953 SS && SS->isNotEmpty());
4954
4955 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4956 // to search those namespaces.
4957 if (SearchNamespaces) {
4958 // Load any externally-known namespaces.
4959 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4960 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4961 LoadedExternalKnownNamespaces = true;
4962 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4963 for (auto *N : ExternalKnownNamespaces)
4964 KnownNamespaces[N] = true;
4965 }
4966
4967 Consumer->addNamespaces(KnownNamespaces);
4968 }
4969
4970 return Consumer;
4971}
4972
4973/// Try to "correct" a typo in the source code by finding
4974/// visible declarations whose names are similar to the name that was
4975/// present in the source code.
4976///
4977/// \param TypoName the \c DeclarationNameInfo structure that contains
4978/// the name that was present in the source code along with its location.
4979///
4980/// \param LookupKind the name-lookup criteria used to search for the name.
4981///
4982/// \param S the scope in which name lookup occurs.
4983///
4984/// \param SS the nested-name-specifier that precedes the name we're
4985/// looking for, if present.
4986///
4987/// \param CCC A CorrectionCandidateCallback object that provides further
4988/// validation of typo correction candidates. It also provides flags for
4989/// determining the set of keywords permitted.
4990///
4991/// \param MemberContext if non-NULL, the context in which to look for
4992/// a member access expression.
4993///
4994/// \param EnteringContext whether we're entering the context described by
4995/// the nested-name-specifier SS.
4996///
4997/// \param OPT when non-NULL, the search for visible declarations will
4998/// also walk the protocols in the qualified interfaces of \p OPT.
4999///
5000/// \returns a \c TypoCorrection containing the corrected name if the typo
5001/// along with information such as the \c NamedDecl where the corrected name
5002/// was declared, and any additional \c NestedNameSpecifier needed to access
5003/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5004TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5005 Sema::LookupNameKind LookupKind,
5006 Scope *S, CXXScopeSpec *SS,
5007 CorrectionCandidateCallback &CCC,
5008 CorrectTypoKind Mode,
5009 DeclContext *MemberContext,
5010 bool EnteringContext,
5011 const ObjCObjectPointerType *OPT,
5012 bool RecordFailure) {
5013 // Always let the ExternalSource have the first chance at correction, even
5014 // if we would otherwise have given up.
5015 if (ExternalSource) {
5016 if (TypoCorrection Correction =
5017 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5018 MemberContext, EnteringContext, OPT))
5019 return Correction;
5020 }
5021
5022 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5023 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5024 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5025 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5026 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5027
5028 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5029 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5030 MemberContext, EnteringContext,
5031 OPT, Mode == CTK_ErrorRecovery);
5032
5033 if (!Consumer)
5034 return TypoCorrection();
5035
5036 // If we haven't found anything, we're done.
5037 if (Consumer->empty())
5038 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5039
5040 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5041 // is not more that about a third of the length of the typo's identifier.
5042 unsigned ED = Consumer->getBestEditDistance(true);
5043 unsigned TypoLen = Typo->getName().size();
5044 if (ED > 0 && TypoLen / ED < 3)
5045 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5046
5047 TypoCorrection BestTC = Consumer->getNextCorrection();
5048 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5049 if (!BestTC)
5050 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5051
5052 ED = BestTC.getEditDistance();
5053
5054 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5055 // If this was an unqualified lookup and we believe the callback
5056 // object wouldn't have filtered out possible corrections, note
5057 // that no correction was found.
5058 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5059 }
5060
5061 // If only a single name remains, return that result.
5062 if (!SecondBestTC ||
5063 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5064 const TypoCorrection &Result = BestTC;
5065
5066 // Don't correct to a keyword that's the same as the typo; the keyword
5067 // wasn't actually in scope.
5068 if (ED == 0 && Result.isKeyword())
5069 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5070
5071 TypoCorrection TC = Result;
5072 TC.setCorrectionRange(SS, TypoName);
5073 checkCorrectionVisibility(*this, TC);
5074 return TC;
5075 } else if (SecondBestTC && ObjCMessageReceiver) {
5076 // Prefer 'super' when we're completing in a message-receiver
5077 // context.
5078
5079 if (BestTC.getCorrection().getAsString() != "super") {
5080 if (SecondBestTC.getCorrection().getAsString() == "super")
5081 BestTC = SecondBestTC;
5082 else if ((*Consumer)["super"].front().isKeyword())
5083 BestTC = (*Consumer)["super"].front();
5084 }
5085 // Don't correct to a keyword that's the same as the typo; the keyword
5086 // wasn't actually in scope.
5087 if (BestTC.getEditDistance() == 0 ||
5088 BestTC.getCorrection().getAsString() != "super")
5089 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5090
5091 BestTC.setCorrectionRange(SS, TypoName);
5092 return BestTC;
5093 }
5094
5095 // Record the failure's location if needed and return an empty correction. If
5096 // this was an unqualified lookup and we believe the callback object did not
5097 // filter out possible corrections, also cache the failure for the typo.
5098 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5099}
5100
5101/// Try to "correct" a typo in the source code by finding
5102/// visible declarations whose names are similar to the name that was
5103/// present in the source code.
5104///
5105/// \param TypoName the \c DeclarationNameInfo structure that contains
5106/// the name that was present in the source code along with its location.
5107///
5108/// \param LookupKind the name-lookup criteria used to search for the name.
5109///
5110/// \param S the scope in which name lookup occurs.
5111///
5112/// \param SS the nested-name-specifier that precedes the name we're
5113/// looking for, if present.
5114///
5115/// \param CCC A CorrectionCandidateCallback object that provides further
5116/// validation of typo correction candidates. It also provides flags for
5117/// determining the set of keywords permitted.
5118///
5119/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5120/// diagnostics when the actual typo correction is attempted.
5121///
5122/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5123/// Expr from a typo correction candidate.
5124///
5125/// \param MemberContext if non-NULL, the context in which to look for
5126/// a member access expression.
5127///
5128/// \param EnteringContext whether we're entering the context described by
5129/// the nested-name-specifier SS.
5130///
5131/// \param OPT when non-NULL, the search for visible declarations will
5132/// also walk the protocols in the qualified interfaces of \p OPT.
5133///
5134/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5135/// Expr representing the result of performing typo correction, or nullptr if
5136/// typo correction is not possible. If nullptr is returned, no diagnostics will
5137/// be emitted and it is the responsibility of the caller to emit any that are
5138/// needed.
5139TypoExpr *Sema::CorrectTypoDelayed(
5140 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5141 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5142 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5143 DeclContext *MemberContext, bool EnteringContext,
5144 const ObjCObjectPointerType *OPT) {
5145 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5146 MemberContext, EnteringContext,
5147 OPT, Mode == CTK_ErrorRecovery);
5148
5149 // Give the external sema source a chance to correct the typo.
5150 TypoCorrection ExternalTypo;
5151 if (ExternalSource && Consumer) {
5152 ExternalTypo = ExternalSource->CorrectTypo(
5153 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5154 MemberContext, EnteringContext, OPT);
5155 if (ExternalTypo)
5156 Consumer->addCorrection(ExternalTypo);
5157 }
5158
5159 if (!Consumer || Consumer->empty())
5160 return nullptr;
5161
5162 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5163 // is not more that about a third of the length of the typo's identifier.
5164 unsigned ED = Consumer->getBestEditDistance(true);
5165 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5166 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5167 return nullptr;
5168
5169 ExprEvalContexts.back().NumTypos++;
5170 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5171}
5172
5173void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5174 if (!CDecl) return;
5175
5176 if (isKeyword())
5177 CorrectionDecls.clear();
5178
5179 CorrectionDecls.push_back(CDecl);
5180
5181 if (!CorrectionName)
5182 CorrectionName = CDecl->getDeclName();
5183}
5184
5185std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5186 if (CorrectionNameSpec) {
5187 std::string tmpBuffer;
5188 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5189 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5190 PrefixOStream << CorrectionName;
5191 return PrefixOStream.str();
5192 }
5193
5194 return CorrectionName.getAsString();
5195}
5196
5197bool CorrectionCandidateCallback::ValidateCandidate(
5198 const TypoCorrection &candidate) {
5199 if (!candidate.isResolved())
5200 return true;
5201
5202 if (candidate.isKeyword())
5203 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5204 WantRemainingKeywords || WantObjCSuper;
5205
5206 bool HasNonType = false;
5207 bool HasStaticMethod = false;
5208 bool HasNonStaticMethod = false;
5209 for (Decl *D : candidate) {
5210 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5211 D = FTD->getTemplatedDecl();
5212 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5213 if (Method->isStatic())
5214 HasStaticMethod = true;
5215 else
5216 HasNonStaticMethod = true;
5217 }
5218 if (!isa<TypeDecl>(D))
5219 HasNonType = true;
5220 }
5221
5222 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5223 !candidate.getCorrectionSpecifier())
5224 return false;
5225
5226 return WantTypeSpecifiers || HasNonType;
5227}
5228
5229FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5230 bool HasExplicitTemplateArgs,
5231 MemberExpr *ME)
5232 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5233 CurContext(SemaRef.CurContext), MemberFn(ME) {
5234 WantTypeSpecifiers = false;
5235 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5236 !HasExplicitTemplateArgs && NumArgs == 1;
5237 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5238 WantRemainingKeywords = false;
5239}
5240
5241bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5242 if (!candidate.getCorrectionDecl())
5243 return candidate.isKeyword();
5244
5245 for (auto *C : candidate) {
5246 FunctionDecl *FD = nullptr;
5247 NamedDecl *ND = C->getUnderlyingDecl();
5248 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5249 FD = FTD->getTemplatedDecl();
5250 if (!HasExplicitTemplateArgs && !FD) {
5251 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5252 // If the Decl is neither a function nor a template function,
5253 // determine if it is a pointer or reference to a function. If so,
5254 // check against the number of arguments expected for the pointee.
5255 QualType ValType = cast<ValueDecl>(ND)->getType();
5256 if (ValType.isNull())
5257 continue;
5258 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5259 ValType = ValType->getPointeeType();
5260 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5261 if (FPT->getNumParams() == NumArgs)
5262 return true;
5263 }
5264 }
5265
5266 // A typo for a function-style cast can look like a function call in C++.
5267 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5268 : isa<TypeDecl>(ND)) &&
5269 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5270 // Only a class or class template can take two or more arguments.
5271 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5272
5273 // Skip the current candidate if it is not a FunctionDecl or does not accept
5274 // the current number of arguments.
5275 if (!FD || !(FD->getNumParams() >= NumArgs &&
5276 FD->getMinRequiredArguments() <= NumArgs))
5277 continue;
5278
5279 // If the current candidate is a non-static C++ method, skip the candidate
5280 // unless the method being corrected--or the current DeclContext, if the
5281 // function being corrected is not a method--is a method in the same class
5282 // or a descendent class of the candidate's parent class.
5283 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5284 if (MemberFn || !MD->isStatic()) {
5285 CXXMethodDecl *CurMD =
5286 MemberFn
5287 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5288 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5289 CXXRecordDecl *CurRD =
5290 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5291 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5292 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5293 continue;
5294 }
5295 }
5296 return true;
5297 }
5298 return false;
5299}
5300
5301void Sema::diagnoseTypo(const TypoCorrection &Correction,
5302 const PartialDiagnostic &TypoDiag,
5303 bool ErrorRecovery) {
5304 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5305 ErrorRecovery);
5306}
5307
5308/// Find which declaration we should import to provide the definition of
5309/// the given declaration.
5310static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5311 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5312 return VD->getDefinition();
5313 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5314 return FD->getDefinition();
5315 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5316 return TD->getDefinition();
5317 // The first definition for this ObjCInterfaceDecl might be in the TU
5318 // and not associated with any module. Use the one we know to be complete
5319 // and have just seen in a module.
5320 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5321 return ID;
5322 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5323 return PD->getDefinition();
5324 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5325 if (NamedDecl *TTD = TD->getTemplatedDecl())
5326 return getDefinitionToImport(TTD);
5327 return nullptr;
5328}
5329
5330void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5331 MissingImportKind MIK, bool Recover) {
5332 // Suggest importing a module providing the definition of this entity, if
5333 // possible.
5334 NamedDecl *Def = getDefinitionToImport(Decl);
5335 if (!Def)
5336 Def = Decl;
5337
5338 Module *Owner = getOwningModule(Def);
5339 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5339, __PRETTY_FUNCTION__))
;
5340
5341 llvm::SmallVector<Module*, 8> OwningModules;
5342 OwningModules.push_back(Owner);
5343 auto Merged = Context.getModulesWithMergedDefinition(Def);
5344 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5345
5346 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5347 Recover);
5348}
5349
5350/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5351/// suggesting the addition of a #include of the specified file.
5352static std::string getIncludeStringForHeader(Preprocessor &PP,
5353 const FileEntry *E,
5354 llvm::StringRef IncludingFile) {
5355 bool IsSystem = false;
5356 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5357 E, IncludingFile, &IsSystem);
5358 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5359}
5360
5361void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5362 SourceLocation DeclLoc,
5363 ArrayRef<Module *> Modules,
5364 MissingImportKind MIK, bool Recover) {
5365 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5365, __PRETTY_FUNCTION__))
;
5366
5367 auto NotePrevious = [&] {
5368 unsigned DiagID;
5369 switch (MIK) {
5370 case MissingImportKind::Declaration:
5371 DiagID = diag::note_previous_declaration;
5372 break;
5373 case MissingImportKind::Definition:
5374 DiagID = diag::note_previous_definition;
5375 break;
5376 case MissingImportKind::DefaultArgument:
5377 DiagID = diag::note_default_argument_declared_here;
5378 break;
5379 case MissingImportKind::ExplicitSpecialization:
5380 DiagID = diag::note_explicit_specialization_declared_here;
5381 break;
5382 case MissingImportKind::PartialSpecialization:
5383 DiagID = diag::note_partial_specialization_declared_here;
5384 break;
5385 }
5386 Diag(DeclLoc, DiagID);
5387 };
5388
5389 // Weed out duplicates from module list.
5390 llvm::SmallVector<Module*, 8> UniqueModules;
5391 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5392 for (auto *M : Modules) {
5393 if (M->Kind == Module::GlobalModuleFragment)
5394 continue;
5395 if (UniqueModuleSet.insert(M).second)
5396 UniqueModules.push_back(M);
5397 }
5398
5399 llvm::StringRef IncludingFile;
5400 if (const FileEntry *FE =
5401 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5402 IncludingFile = FE->tryGetRealPathName();
5403
5404 if (UniqueModules.empty()) {
5405 // All candidates were global module fragments. Try to suggest a #include.
5406 const FileEntry *E =
5407 PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5408 // FIXME: Find a smart place to suggest inserting a #include, and add
5409 // a FixItHint there.
5410 Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5411 << (int)MIK << Decl << !!E
5412 << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5413 // Produce a "previous" note if it will point to a header rather than some
5414 // random global module fragment.
5415 // FIXME: Suppress the note backtrace even under
5416 // -fdiagnostics-show-note-include-stack.
5417 if (E)
5418 NotePrevious();
5419 if (Recover)
5420 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5421 return;
5422 }
5423
5424 Modules = UniqueModules;
5425
5426 if (Modules.size() > 1) {
5427 std::string ModuleList;
5428 unsigned N = 0;
5429 for (Module *M : Modules) {
5430 ModuleList += "\n ";
5431 if (++N == 5 && N != Modules.size()) {
5432 ModuleList += "[...]";
5433 break;
5434 }
5435 ModuleList += M->getFullModuleName();
5436 }
5437
5438 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5439 << (int)MIK << Decl << ModuleList;
5440 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5441 UseLoc, Modules[0], DeclLoc)) {
5442 // The right way to make the declaration visible is to include a header;
5443 // suggest doing so.
5444 //
5445 // FIXME: Find a smart place to suggest inserting a #include, and add
5446 // a FixItHint there.
5447 Diag(UseLoc, diag::err_module_unimported_use_header)
5448 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5449 << getIncludeStringForHeader(PP, E, IncludingFile);
5450 } else {
5451 // FIXME: Add a FixItHint that imports the corresponding module.
5452 Diag(UseLoc, diag::err_module_unimported_use)
5453 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5454 }
5455
5456 NotePrevious();
5457
5458 // Try to recover by implicitly importing this module.
5459 if (Recover)
5460 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5461}
5462
5463/// Diagnose a successfully-corrected typo. Separated from the correction
5464/// itself to allow external validation of the result, etc.
5465///
5466/// \param Correction The result of performing typo correction.
5467/// \param TypoDiag The diagnostic to produce. This will have the corrected
5468/// string added to it (and usually also a fixit).
5469/// \param PrevNote A note to use when indicating the location of the entity to
5470/// which we are correcting. Will have the correction string added to it.
5471/// \param ErrorRecovery If \c true (the default), the caller is going to
5472/// recover from the typo as if the corrected string had been typed.
5473/// In this case, \c PDiag must be an error, and we will attach a fixit
5474/// to it.
5475void Sema::diagnoseTypo(const TypoCorrection &Correction,
5476 const PartialDiagnostic &TypoDiag,
5477 const PartialDiagnostic &PrevNote,
5478 bool ErrorRecovery) {
5479 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5480 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5481 FixItHint FixTypo = FixItHint::CreateReplacement(
5482 Correction.getCorrectionRange(), CorrectedStr);
5483
5484 // Maybe we're just missing a module import.
5485 if (Correction.requiresImport()) {
5486 NamedDecl *Decl = Correction.getFoundDecl();
5487 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5487, __PRETTY_FUNCTION__))
;
5488
5489 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5490 MissingImportKind::Declaration, ErrorRecovery);
5491 return;
5492 }
5493
5494 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5495 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5496
5497 NamedDecl *ChosenDecl =
5498 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5499 if (PrevNote.getDiagID() && ChosenDecl)
5500 Diag(ChosenDecl->getLocation(), PrevNote)
5501 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5502
5503 // Add any extra diagnostics.
5504 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5505 Diag(Correction.getCorrectionRange().getBegin(), PD);
5506}
5507
5508TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5509 TypoDiagnosticGenerator TDG,
5510 TypoRecoveryCallback TRC) {
5511 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5511, __PRETTY_FUNCTION__))
;
5512 auto TE = new (Context) TypoExpr(Context.DependentTy);
5513 auto &State = DelayedTypos[TE];
5514 State.Consumer = std::move(TCC);
5515 State.DiagHandler = std::move(TDG);
5516 State.RecoveryHandler = std::move(TRC);
5517 if (TE)
5518 TypoExprs.push_back(TE);
5519 return TE;
5520}
5521
5522const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5523 auto Entry = DelayedTypos.find(TE);
5524 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5525, __PRETTY_FUNCTION__))
5525 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaLookup.cpp"
, 5525, __PRETTY_FUNCTION__))
;
5526 return Entry->second;
5527}
5528
5529void Sema::clearDelayedTypo(TypoExpr *TE) {
5530 DelayedTypos.erase(TE);
5531}
5532
5533void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5534 DeclarationNameInfo Name(II, IILoc);
5535 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5536 R.suppressDiagnostics();
5537 R.setHideTags(false);
5538 LookupName(R, S);
5539 R.dump();
5540}