Bug Summary

File:tools/clang/lib/Sema/SemaOverload.cpp
Warning:line 13319, column 26
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64 S.ResolveExceptionSpec(Loc, FPT);
65 DeclRefExpr *DRE = new (S.Context)
66 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67 if (HadMultipleCandidates)
68 DRE->setHadMultipleCandidates(true);
69
70 S.MarkDeclRefReferenced(DRE, Base);
71 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72 CK_FunctionToPointerDecay);
73}
74
75static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76 bool InOverloadResolution,
77 StandardConversionSequence &SCS,
78 bool CStyle,
79 bool AllowObjCWritebackConversion);
80
81static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82 QualType &ToType,
83 bool InOverloadResolution,
84 StandardConversionSequence &SCS,
85 bool CStyle);
86static OverloadingResult
87IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88 UserDefinedConversionSequence& User,
89 OverloadCandidateSet& Conversions,
90 bool AllowExplicit,
91 bool AllowObjCConversionOnExplicit);
92
93
94static ImplicitConversionSequence::CompareKind
95CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96 const StandardConversionSequence& SCS1,
97 const StandardConversionSequence& SCS2);
98
99static ImplicitConversionSequence::CompareKind
100CompareQualificationConversions(Sema &S,
101 const StandardConversionSequence& SCS1,
102 const StandardConversionSequence& SCS2);
103
104static ImplicitConversionSequence::CompareKind
105CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109/// GetConversionRank - Retrieve the implicit conversion rank
110/// corresponding to the given implicit conversion kind.
111ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112 static const ImplicitConversionRank
113 Rank[(int)ICK_Num_Conversion_Kinds] = {
114 ICR_Exact_Match,
115 ICR_Exact_Match,
116 ICR_Exact_Match,
117 ICR_Exact_Match,
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Promotion,
121 ICR_Promotion,
122 ICR_Promotion,
123 ICR_Conversion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_OCL_Scalar_Widening,
134 ICR_Complex_Real_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Writeback_Conversion,
138 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139 // it was omitted by the patch that added
140 // ICK_Zero_Event_Conversion
141 ICR_C_Conversion,
142 ICR_C_Conversion_Extension
143 };
144 return Rank[(int)Kind];
145}
146
147/// GetImplicitConversionName - Return the name of this kind of
148/// implicit conversion.
149static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151 "No conversion",
152 "Lvalue-to-rvalue",
153 "Array-to-pointer",
154 "Function-to-pointer",
155 "Function pointer conversion",
156 "Qualification",
157 "Integral promotion",
158 "Floating point promotion",
159 "Complex promotion",
160 "Integral conversion",
161 "Floating conversion",
162 "Complex conversion",
163 "Floating-integral conversion",
164 "Pointer conversion",
165 "Pointer-to-member conversion",
166 "Boolean conversion",
167 "Compatible-types conversion",
168 "Derived-to-base conversion",
169 "Vector conversion",
170 "Vector splat",
171 "Complex-real conversion",
172 "Block Pointer conversion",
173 "Transparent Union Conversion",
174 "Writeback conversion",
175 "OpenCL Zero Event Conversion",
176 "C specific type conversion",
177 "Incompatible pointer conversion"
178 };
179 return Name[Kind];
180}
181
182/// StandardConversionSequence - Set the standard conversion
183/// sequence to the identity conversion.
184void StandardConversionSequence::setAsIdentityConversion() {
185 First = ICK_Identity;
186 Second = ICK_Identity;
187 Third = ICK_Identity;
188 DeprecatedStringLiteralToCharPtr = false;
189 QualificationIncludesObjCLifetime = false;
190 ReferenceBinding = false;
191 DirectBinding = false;
192 IsLvalueReference = true;
193 BindsToFunctionLvalue = false;
194 BindsToRvalue = false;
195 BindsImplicitObjectArgumentWithoutRefQualifier = false;
196 ObjCLifetimeConversionBinding = false;
197 CopyConstructor = nullptr;
198}
199
200/// getRank - Retrieve the rank of this standard conversion sequence
201/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202/// implicit conversions.
203ImplicitConversionRank StandardConversionSequence::getRank() const {
204 ImplicitConversionRank Rank = ICR_Exact_Match;
205 if (GetConversionRank(First) > Rank)
206 Rank = GetConversionRank(First);
207 if (GetConversionRank(Second) > Rank)
208 Rank = GetConversionRank(Second);
209 if (GetConversionRank(Third) > Rank)
210 Rank = GetConversionRank(Third);
211 return Rank;
212}
213
214/// isPointerConversionToBool - Determines whether this conversion is
215/// a conversion of a pointer or pointer-to-member to bool. This is
216/// used as part of the ranking of standard conversion sequences
217/// (C++ 13.3.3.2p4).
218bool StandardConversionSequence::isPointerConversionToBool() const {
219 // Note that FromType has not necessarily been transformed by the
220 // array-to-pointer or function-to-pointer implicit conversions, so
221 // check for their presence as well as checking whether FromType is
222 // a pointer.
223 if (getToType(1)->isBooleanType() &&
224 (getFromType()->isPointerType() ||
225 getFromType()->isMemberPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256}
257
258/// Skip any implicit casts which could be either part of a narrowing conversion
259/// or after one in an implicit conversion.
260static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
261 const Expr *Converted) {
262 // We can have cleanups wrapping the converted expression; these need to be
263 // preserved so that destructors run if necessary.
264 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
265 Expr *Inner =
266 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
267 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
268 EWC->getObjects());
269 }
270
271 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
272 switch (ICE->getCastKind()) {
273 case CK_NoOp:
274 case CK_IntegralCast:
275 case CK_IntegralToBoolean:
276 case CK_IntegralToFloating:
277 case CK_BooleanToSignedIntegral:
278 case CK_FloatingToIntegral:
279 case CK_FloatingToBoolean:
280 case CK_FloatingCast:
281 Converted = ICE->getSubExpr();
282 continue;
283
284 default:
285 return Converted;
286 }
287 }
288
289 return Converted;
290}
291
292/// Check if this standard conversion sequence represents a narrowing
293/// conversion, according to C++11 [dcl.init.list]p7.
294///
295/// \param Ctx The AST context.
296/// \param Converted The result of applying this standard conversion sequence.
297/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
298/// value of the expression prior to the narrowing conversion.
299/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
300/// type of the expression prior to the narrowing conversion.
301/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
302/// from floating point types to integral types should be ignored.
303NarrowingKind StandardConversionSequence::getNarrowingKind(
304 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
305 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
306 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 306, __PRETTY_FUNCTION__))
;
307
308 // C++11 [dcl.init.list]p7:
309 // A narrowing conversion is an implicit conversion ...
310 QualType FromType = getToType(0);
311 QualType ToType = getToType(1);
312
313 // A conversion to an enumeration type is narrowing if the conversion to
314 // the underlying type is narrowing. This only arises for expressions of
315 // the form 'Enum{init}'.
316 if (auto *ET = ToType->getAs<EnumType>())
317 ToType = ET->getDecl()->getIntegerType();
318
319 switch (Second) {
320 // 'bool' is an integral type; dispatch to the right place to handle it.
321 case ICK_Boolean_Conversion:
322 if (FromType->isRealFloatingType())
323 goto FloatingIntegralConversion;
324 if (FromType->isIntegralOrUnscopedEnumerationType())
325 goto IntegralConversion;
326 // Boolean conversions can be from pointers and pointers to members
327 // [conv.bool], and those aren't considered narrowing conversions.
328 return NK_Not_Narrowing;
329
330 // -- from a floating-point type to an integer type, or
331 //
332 // -- from an integer type or unscoped enumeration type to a floating-point
333 // type, except where the source is a constant expression and the actual
334 // value after conversion will fit into the target type and will produce
335 // the original value when converted back to the original type, or
336 case ICK_Floating_Integral:
337 FloatingIntegralConversion:
338 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
339 return NK_Type_Narrowing;
340 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
341 ToType->isRealFloatingType()) {
342 if (IgnoreFloatToIntegralConversion)
343 return NK_Not_Narrowing;
344 llvm::APSInt IntConstantValue;
345 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
346 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 346, __PRETTY_FUNCTION__))
;
347
348 // If it's value-dependent, we can't tell whether it's narrowing.
349 if (Initializer->isValueDependent())
350 return NK_Dependent_Narrowing;
351
352 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
353 // Convert the integer to the floating type.
354 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
355 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
356 llvm::APFloat::rmNearestTiesToEven);
357 // And back.
358 llvm::APSInt ConvertedValue = IntConstantValue;
359 bool ignored;
360 Result.convertToInteger(ConvertedValue,
361 llvm::APFloat::rmTowardZero, &ignored);
362 // If the resulting value is different, this was a narrowing conversion.
363 if (IntConstantValue != ConvertedValue) {
364 ConstantValue = APValue(IntConstantValue);
365 ConstantType = Initializer->getType();
366 return NK_Constant_Narrowing;
367 }
368 } else {
369 // Variables are always narrowings.
370 return NK_Variable_Narrowing;
371 }
372 }
373 return NK_Not_Narrowing;
374
375 // -- from long double to double or float, or from double to float, except
376 // where the source is a constant expression and the actual value after
377 // conversion is within the range of values that can be represented (even
378 // if it cannot be represented exactly), or
379 case ICK_Floating_Conversion:
380 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
381 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
382 // FromType is larger than ToType.
383 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
384
385 // If it's value-dependent, we can't tell whether it's narrowing.
386 if (Initializer->isValueDependent())
387 return NK_Dependent_Narrowing;
388
389 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
390 // Constant!
391 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 391, __PRETTY_FUNCTION__))
;
392 llvm::APFloat FloatVal = ConstantValue.getFloat();
393 // Convert the source value into the target type.
394 bool ignored;
395 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
396 Ctx.getFloatTypeSemantics(ToType),
397 llvm::APFloat::rmNearestTiesToEven, &ignored);
398 // If there was no overflow, the source value is within the range of
399 // values that can be represented.
400 if (ConvertStatus & llvm::APFloat::opOverflow) {
401 ConstantType = Initializer->getType();
402 return NK_Constant_Narrowing;
403 }
404 } else {
405 return NK_Variable_Narrowing;
406 }
407 }
408 return NK_Not_Narrowing;
409
410 // -- from an integer type or unscoped enumeration type to an integer type
411 // that cannot represent all the values of the original type, except where
412 // the source is a constant expression and the actual value after
413 // conversion will fit into the target type and will produce the original
414 // value when converted back to the original type.
415 case ICK_Integral_Conversion:
416 IntegralConversion: {
417 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 417, __PRETTY_FUNCTION__))
;
418 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 418, __PRETTY_FUNCTION__))
;
419 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
420 const unsigned FromWidth = Ctx.getIntWidth(FromType);
421 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
422 const unsigned ToWidth = Ctx.getIntWidth(ToType);
423
424 if (FromWidth > ToWidth ||
425 (FromWidth == ToWidth && FromSigned != ToSigned) ||
426 (FromSigned && !ToSigned)) {
427 // Not all values of FromType can be represented in ToType.
428 llvm::APSInt InitializerValue;
429 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
430
431 // If it's value-dependent, we can't tell whether it's narrowing.
432 if (Initializer->isValueDependent())
433 return NK_Dependent_Narrowing;
434
435 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
436 // Such conversions on variables are always narrowing.
437 return NK_Variable_Narrowing;
438 }
439 bool Narrowing = false;
440 if (FromWidth < ToWidth) {
441 // Negative -> unsigned is narrowing. Otherwise, more bits is never
442 // narrowing.
443 if (InitializerValue.isSigned() && InitializerValue.isNegative())
444 Narrowing = true;
445 } else {
446 // Add a bit to the InitializerValue so we don't have to worry about
447 // signed vs. unsigned comparisons.
448 InitializerValue = InitializerValue.extend(
449 InitializerValue.getBitWidth() + 1);
450 // Convert the initializer to and from the target width and signed-ness.
451 llvm::APSInt ConvertedValue = InitializerValue;
452 ConvertedValue = ConvertedValue.trunc(ToWidth);
453 ConvertedValue.setIsSigned(ToSigned);
454 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
455 ConvertedValue.setIsSigned(InitializerValue.isSigned());
456 // If the result is different, this was a narrowing conversion.
457 if (ConvertedValue != InitializerValue)
458 Narrowing = true;
459 }
460 if (Narrowing) {
461 ConstantType = Initializer->getType();
462 ConstantValue = APValue(InitializerValue);
463 return NK_Constant_Narrowing;
464 }
465 }
466 return NK_Not_Narrowing;
467 }
468
469 default:
470 // Other kinds of conversions are not narrowings.
471 return NK_Not_Narrowing;
472 }
473}
474
475/// dump - Print this standard conversion sequence to standard
476/// error. Useful for debugging overloading issues.
477LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
478 raw_ostream &OS = llvm::errs();
479 bool PrintedSomething = false;
480 if (First != ICK_Identity) {
481 OS << GetImplicitConversionName(First);
482 PrintedSomething = true;
483 }
484
485 if (Second != ICK_Identity) {
486 if (PrintedSomething) {
487 OS << " -> ";
488 }
489 OS << GetImplicitConversionName(Second);
490
491 if (CopyConstructor) {
492 OS << " (by copy constructor)";
493 } else if (DirectBinding) {
494 OS << " (direct reference binding)";
495 } else if (ReferenceBinding) {
496 OS << " (reference binding)";
497 }
498 PrintedSomething = true;
499 }
500
501 if (Third != ICK_Identity) {
502 if (PrintedSomething) {
503 OS << " -> ";
504 }
505 OS << GetImplicitConversionName(Third);
506 PrintedSomething = true;
507 }
508
509 if (!PrintedSomething) {
510 OS << "No conversions required";
511 }
512}
513
514/// dump - Print this user-defined conversion sequence to standard
515/// error. Useful for debugging overloading issues.
516void UserDefinedConversionSequence::dump() const {
517 raw_ostream &OS = llvm::errs();
518 if (Before.First || Before.Second || Before.Third) {
519 Before.dump();
520 OS << " -> ";
521 }
522 if (ConversionFunction)
523 OS << '\'' << *ConversionFunction << '\'';
524 else
525 OS << "aggregate initialization";
526 if (After.First || After.Second || After.Third) {
527 OS << " -> ";
528 After.dump();
529 }
530}
531
532/// dump - Print this implicit conversion sequence to standard
533/// error. Useful for debugging overloading issues.
534void ImplicitConversionSequence::dump() const {
535 raw_ostream &OS = llvm::errs();
536 if (isStdInitializerListElement())
537 OS << "Worst std::initializer_list element conversion: ";
538 switch (ConversionKind) {
539 case StandardConversion:
540 OS << "Standard conversion: ";
541 Standard.dump();
542 break;
543 case UserDefinedConversion:
544 OS << "User-defined conversion: ";
545 UserDefined.dump();
546 break;
547 case EllipsisConversion:
548 OS << "Ellipsis conversion";
549 break;
550 case AmbiguousConversion:
551 OS << "Ambiguous conversion";
552 break;
553 case BadConversion:
554 OS << "Bad conversion";
555 break;
556 }
557
558 OS << "\n";
559}
560
561void AmbiguousConversionSequence::construct() {
562 new (&conversions()) ConversionSet();
563}
564
565void AmbiguousConversionSequence::destruct() {
566 conversions().~ConversionSet();
567}
568
569void
570AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
571 FromTypePtr = O.FromTypePtr;
572 ToTypePtr = O.ToTypePtr;
573 new (&conversions()) ConversionSet(O.conversions());
574}
575
576namespace {
577 // Structure used by DeductionFailureInfo to store
578 // template argument information.
579 struct DFIArguments {
580 TemplateArgument FirstArg;
581 TemplateArgument SecondArg;
582 };
583 // Structure used by DeductionFailureInfo to store
584 // template parameter and template argument information.
585 struct DFIParamWithArguments : DFIArguments {
586 TemplateParameter Param;
587 };
588 // Structure used by DeductionFailureInfo to store template argument
589 // information and the index of the problematic call argument.
590 struct DFIDeducedMismatchArgs : DFIArguments {
591 TemplateArgumentList *TemplateArgs;
592 unsigned CallArgIndex;
593 };
594}
595
596/// Convert from Sema's representation of template deduction information
597/// to the form used in overload-candidate information.
598DeductionFailureInfo
599clang::MakeDeductionFailureInfo(ASTContext &Context,
600 Sema::TemplateDeductionResult TDK,
601 TemplateDeductionInfo &Info) {
602 DeductionFailureInfo Result;
603 Result.Result = static_cast<unsigned>(TDK);
604 Result.HasDiagnostic = false;
605 switch (TDK) {
606 case Sema::TDK_Invalid:
607 case Sema::TDK_InstantiationDepth:
608 case Sema::TDK_TooManyArguments:
609 case Sema::TDK_TooFewArguments:
610 case Sema::TDK_MiscellaneousDeductionFailure:
611 case Sema::TDK_CUDATargetMismatch:
612 Result.Data = nullptr;
613 break;
614
615 case Sema::TDK_Incomplete:
616 case Sema::TDK_InvalidExplicitArguments:
617 Result.Data = Info.Param.getOpaqueValue();
618 break;
619
620 case Sema::TDK_DeducedMismatch:
621 case Sema::TDK_DeducedMismatchNested: {
622 // FIXME: Should allocate from normal heap so that we can free this later.
623 auto *Saved = new (Context) DFIDeducedMismatchArgs;
624 Saved->FirstArg = Info.FirstArg;
625 Saved->SecondArg = Info.SecondArg;
626 Saved->TemplateArgs = Info.take();
627 Saved->CallArgIndex = Info.CallArgIndex;
628 Result.Data = Saved;
629 break;
630 }
631
632 case Sema::TDK_NonDeducedMismatch: {
633 // FIXME: Should allocate from normal heap so that we can free this later.
634 DFIArguments *Saved = new (Context) DFIArguments;
635 Saved->FirstArg = Info.FirstArg;
636 Saved->SecondArg = Info.SecondArg;
637 Result.Data = Saved;
638 break;
639 }
640
641 case Sema::TDK_IncompletePack:
642 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
643 case Sema::TDK_Inconsistent:
644 case Sema::TDK_Underqualified: {
645 // FIXME: Should allocate from normal heap so that we can free this later.
646 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
647 Saved->Param = Info.Param;
648 Saved->FirstArg = Info.FirstArg;
649 Saved->SecondArg = Info.SecondArg;
650 Result.Data = Saved;
651 break;
652 }
653
654 case Sema::TDK_SubstitutionFailure:
655 Result.Data = Info.take();
656 if (Info.hasSFINAEDiagnostic()) {
657 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
658 SourceLocation(), PartialDiagnostic::NullDiagnostic());
659 Info.takeSFINAEDiagnostic(*Diag);
660 Result.HasDiagnostic = true;
661 }
662 break;
663
664 case Sema::TDK_Success:
665 case Sema::TDK_NonDependentConversionFailure:
666 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 666)
;
667 }
668
669 return Result;
670}
671
672void DeductionFailureInfo::Destroy() {
673 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
674 case Sema::TDK_Success:
675 case Sema::TDK_Invalid:
676 case Sema::TDK_InstantiationDepth:
677 case Sema::TDK_Incomplete:
678 case Sema::TDK_TooManyArguments:
679 case Sema::TDK_TooFewArguments:
680 case Sema::TDK_InvalidExplicitArguments:
681 case Sema::TDK_CUDATargetMismatch:
682 case Sema::TDK_NonDependentConversionFailure:
683 break;
684
685 case Sema::TDK_IncompletePack:
686 case Sema::TDK_Inconsistent:
687 case Sema::TDK_Underqualified:
688 case Sema::TDK_DeducedMismatch:
689 case Sema::TDK_DeducedMismatchNested:
690 case Sema::TDK_NonDeducedMismatch:
691 // FIXME: Destroy the data?
692 Data = nullptr;
693 break;
694
695 case Sema::TDK_SubstitutionFailure:
696 // FIXME: Destroy the template argument list?
697 Data = nullptr;
698 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
699 Diag->~PartialDiagnosticAt();
700 HasDiagnostic = false;
701 }
702 break;
703
704 // Unhandled
705 case Sema::TDK_MiscellaneousDeductionFailure:
706 break;
707 }
708}
709
710PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
711 if (HasDiagnostic)
712 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
713 return nullptr;
714}
715
716TemplateParameter DeductionFailureInfo::getTemplateParameter() {
717 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
718 case Sema::TDK_Success:
719 case Sema::TDK_Invalid:
720 case Sema::TDK_InstantiationDepth:
721 case Sema::TDK_TooManyArguments:
722 case Sema::TDK_TooFewArguments:
723 case Sema::TDK_SubstitutionFailure:
724 case Sema::TDK_DeducedMismatch:
725 case Sema::TDK_DeducedMismatchNested:
726 case Sema::TDK_NonDeducedMismatch:
727 case Sema::TDK_CUDATargetMismatch:
728 case Sema::TDK_NonDependentConversionFailure:
729 return TemplateParameter();
730
731 case Sema::TDK_Incomplete:
732 case Sema::TDK_InvalidExplicitArguments:
733 return TemplateParameter::getFromOpaqueValue(Data);
734
735 case Sema::TDK_IncompletePack:
736 case Sema::TDK_Inconsistent:
737 case Sema::TDK_Underqualified:
738 return static_cast<DFIParamWithArguments*>(Data)->Param;
739
740 // Unhandled
741 case Sema::TDK_MiscellaneousDeductionFailure:
742 break;
743 }
744
745 return TemplateParameter();
746}
747
748TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
749 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
750 case Sema::TDK_Success:
751 case Sema::TDK_Invalid:
752 case Sema::TDK_InstantiationDepth:
753 case Sema::TDK_TooManyArguments:
754 case Sema::TDK_TooFewArguments:
755 case Sema::TDK_Incomplete:
756 case Sema::TDK_IncompletePack:
757 case Sema::TDK_InvalidExplicitArguments:
758 case Sema::TDK_Inconsistent:
759 case Sema::TDK_Underqualified:
760 case Sema::TDK_NonDeducedMismatch:
761 case Sema::TDK_CUDATargetMismatch:
762 case Sema::TDK_NonDependentConversionFailure:
763 return nullptr;
764
765 case Sema::TDK_DeducedMismatch:
766 case Sema::TDK_DeducedMismatchNested:
767 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
768
769 case Sema::TDK_SubstitutionFailure:
770 return static_cast<TemplateArgumentList*>(Data);
771
772 // Unhandled
773 case Sema::TDK_MiscellaneousDeductionFailure:
774 break;
775 }
776
777 return nullptr;
778}
779
780const TemplateArgument *DeductionFailureInfo::getFirstArg() {
781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782 case Sema::TDK_Success:
783 case Sema::TDK_Invalid:
784 case Sema::TDK_InstantiationDepth:
785 case Sema::TDK_Incomplete:
786 case Sema::TDK_TooManyArguments:
787 case Sema::TDK_TooFewArguments:
788 case Sema::TDK_InvalidExplicitArguments:
789 case Sema::TDK_SubstitutionFailure:
790 case Sema::TDK_CUDATargetMismatch:
791 case Sema::TDK_NonDependentConversionFailure:
792 return nullptr;
793
794 case Sema::TDK_IncompletePack:
795 case Sema::TDK_Inconsistent:
796 case Sema::TDK_Underqualified:
797 case Sema::TDK_DeducedMismatch:
798 case Sema::TDK_DeducedMismatchNested:
799 case Sema::TDK_NonDeducedMismatch:
800 return &static_cast<DFIArguments*>(Data)->FirstArg;
801
802 // Unhandled
803 case Sema::TDK_MiscellaneousDeductionFailure:
804 break;
805 }
806
807 return nullptr;
808}
809
810const TemplateArgument *DeductionFailureInfo::getSecondArg() {
811 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
812 case Sema::TDK_Success:
813 case Sema::TDK_Invalid:
814 case Sema::TDK_InstantiationDepth:
815 case Sema::TDK_Incomplete:
816 case Sema::TDK_IncompletePack:
817 case Sema::TDK_TooManyArguments:
818 case Sema::TDK_TooFewArguments:
819 case Sema::TDK_InvalidExplicitArguments:
820 case Sema::TDK_SubstitutionFailure:
821 case Sema::TDK_CUDATargetMismatch:
822 case Sema::TDK_NonDependentConversionFailure:
823 return nullptr;
824
825 case Sema::TDK_Inconsistent:
826 case Sema::TDK_Underqualified:
827 case Sema::TDK_DeducedMismatch:
828 case Sema::TDK_DeducedMismatchNested:
829 case Sema::TDK_NonDeducedMismatch:
830 return &static_cast<DFIArguments*>(Data)->SecondArg;
831
832 // Unhandled
833 case Sema::TDK_MiscellaneousDeductionFailure:
834 break;
835 }
836
837 return nullptr;
838}
839
840llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
841 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
842 case Sema::TDK_DeducedMismatch:
843 case Sema::TDK_DeducedMismatchNested:
844 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
845
846 default:
847 return llvm::None;
848 }
849}
850
851void OverloadCandidateSet::destroyCandidates() {
852 for (iterator i = begin(), e = end(); i != e; ++i) {
853 for (auto &C : i->Conversions)
854 C.~ImplicitConversionSequence();
855 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
856 i->DeductionFailure.Destroy();
857 }
858}
859
860void OverloadCandidateSet::clear(CandidateSetKind CSK) {
861 destroyCandidates();
862 SlabAllocator.Reset();
863 NumInlineBytesUsed = 0;
864 Candidates.clear();
865 Functions.clear();
866 Kind = CSK;
867}
868
869namespace {
870 class UnbridgedCastsSet {
871 struct Entry {
872 Expr **Addr;
873 Expr *Saved;
874 };
875 SmallVector<Entry, 2> Entries;
876
877 public:
878 void save(Sema &S, Expr *&E) {
879 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 879, __PRETTY_FUNCTION__))
;
880 Entry entry = { &E, E };
881 Entries.push_back(entry);
882 E = S.stripARCUnbridgedCast(E);
883 }
884
885 void restore() {
886 for (SmallVectorImpl<Entry>::iterator
887 i = Entries.begin(), e = Entries.end(); i != e; ++i)
888 *i->Addr = i->Saved;
889 }
890 };
891}
892
893/// checkPlaceholderForOverload - Do any interesting placeholder-like
894/// preprocessing on the given expression.
895///
896/// \param unbridgedCasts a collection to which to add unbridged casts;
897/// without this, they will be immediately diagnosed as errors
898///
899/// Return true on unrecoverable error.
900static bool
901checkPlaceholderForOverload(Sema &S, Expr *&E,
902 UnbridgedCastsSet *unbridgedCasts = nullptr) {
903 if (const BuiltinType *placeholder
6.1
'placeholder' is null
6.1
'placeholder' is null
= E->getType()->getAsPlaceholderType()) {
2
Calling 'Type::getAsPlaceholderType'
6
Returning from 'Type::getAsPlaceholderType'
7
Taking false branch
904 // We can't handle overloaded expressions here because overload
905 // resolution might reasonably tweak them.
906 if (placeholder->getKind() == BuiltinType::Overload) return false;
907
908 // If the context potentially accepts unbridged ARC casts, strip
909 // the unbridged cast and add it to the collection for later restoration.
910 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
911 unbridgedCasts) {
912 unbridgedCasts->save(S, E);
913 return false;
914 }
915
916 // Go ahead and check everything else.
917 ExprResult result = S.CheckPlaceholderExpr(E);
918 if (result.isInvalid())
919 return true;
920
921 E = result.get();
922 return false;
923 }
924
925 // Nothing to do.
926 return false;
8
Returning zero, which participates in a condition later
927}
928
929/// checkArgPlaceholdersForOverload - Check a set of call operands for
930/// placeholders.
931static bool checkArgPlaceholdersForOverload(Sema &S,
932 MultiExprArg Args,
933 UnbridgedCastsSet &unbridged) {
934 for (unsigned i = 0, e = Args.size(); i != e; ++i)
12
Assuming 'i' is equal to 'e'
13
Loop condition is false. Execution continues on line 938
935 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
936 return true;
937
938 return false;
14
Returning zero, which participates in a condition later
939}
940
941/// Determine whether the given New declaration is an overload of the
942/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
943/// New and Old cannot be overloaded, e.g., if New has the same signature as
944/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
945/// functions (or function templates) at all. When it does return Ovl_Match or
946/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
947/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
948/// declaration.
949///
950/// Example: Given the following input:
951///
952/// void f(int, float); // #1
953/// void f(int, int); // #2
954/// int f(int, int); // #3
955///
956/// When we process #1, there is no previous declaration of "f", so IsOverload
957/// will not be used.
958///
959/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
960/// the parameter types, we see that #1 and #2 are overloaded (since they have
961/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
962/// unchanged.
963///
964/// When we process #3, Old is an overload set containing #1 and #2. We compare
965/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
966/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
967/// functions are not part of the signature), IsOverload returns Ovl_Match and
968/// MatchedDecl will be set to point to the FunctionDecl for #2.
969///
970/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
971/// by a using declaration. The rules for whether to hide shadow declarations
972/// ignore some properties which otherwise figure into a function template's
973/// signature.
974Sema::OverloadKind
975Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
976 NamedDecl *&Match, bool NewIsUsingDecl) {
977 for (LookupResult::iterator I = Old.begin(), E = Old.end();
978 I != E; ++I) {
979 NamedDecl *OldD = *I;
980
981 bool OldIsUsingDecl = false;
982 if (isa<UsingShadowDecl>(OldD)) {
983 OldIsUsingDecl = true;
984
985 // We can always introduce two using declarations into the same
986 // context, even if they have identical signatures.
987 if (NewIsUsingDecl) continue;
988
989 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
990 }
991
992 // A using-declaration does not conflict with another declaration
993 // if one of them is hidden.
994 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
995 continue;
996
997 // If either declaration was introduced by a using declaration,
998 // we'll need to use slightly different rules for matching.
999 // Essentially, these rules are the normal rules, except that
1000 // function templates hide function templates with different
1001 // return types or template parameter lists.
1002 bool UseMemberUsingDeclRules =
1003 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1004 !New->getFriendObjectKind();
1005
1006 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1007 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1008 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1009 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1010 continue;
1011 }
1012
1013 if (!isa<FunctionTemplateDecl>(OldD) &&
1014 !shouldLinkPossiblyHiddenDecl(*I, New))
1015 continue;
1016
1017 Match = *I;
1018 return Ovl_Match;
1019 }
1020
1021 // Builtins that have custom typechecking or have a reference should
1022 // not be overloadable or redeclarable.
1023 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1024 Match = *I;
1025 return Ovl_NonFunction;
1026 }
1027 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1028 // We can overload with these, which can show up when doing
1029 // redeclaration checks for UsingDecls.
1030 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1030, __PRETTY_FUNCTION__))
;
1031 } else if (isa<TagDecl>(OldD)) {
1032 // We can always overload with tags by hiding them.
1033 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1034 // Optimistically assume that an unresolved using decl will
1035 // overload; if it doesn't, we'll have to diagnose during
1036 // template instantiation.
1037 //
1038 // Exception: if the scope is dependent and this is not a class
1039 // member, the using declaration can only introduce an enumerator.
1040 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1041 Match = *I;
1042 return Ovl_NonFunction;
1043 }
1044 } else {
1045 // (C++ 13p1):
1046 // Only function declarations can be overloaded; object and type
1047 // declarations cannot be overloaded.
1048 Match = *I;
1049 return Ovl_NonFunction;
1050 }
1051 }
1052
1053 // C++ [temp.friend]p1:
1054 // For a friend function declaration that is not a template declaration:
1055 // -- if the name of the friend is a qualified or unqualified template-id,
1056 // [...], otherwise
1057 // -- if the name of the friend is a qualified-id and a matching
1058 // non-template function is found in the specified class or namespace,
1059 // the friend declaration refers to that function, otherwise,
1060 // -- if the name of the friend is a qualified-id and a matching function
1061 // template is found in the specified class or namespace, the friend
1062 // declaration refers to the deduced specialization of that function
1063 // template, otherwise
1064 // -- the name shall be an unqualified-id [...]
1065 // If we get here for a qualified friend declaration, we've just reached the
1066 // third bullet. If the type of the friend is dependent, skip this lookup
1067 // until instantiation.
1068 if (New->getFriendObjectKind() && New->getQualifier() &&
1069 !New->getDescribedFunctionTemplate() &&
1070 !New->getDependentSpecializationInfo() &&
1071 !New->getType()->isDependentType()) {
1072 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1073 TemplateSpecResult.addAllDecls(Old);
1074 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1075 /*QualifiedFriend*/true)) {
1076 New->setInvalidDecl();
1077 return Ovl_Overload;
1078 }
1079
1080 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1081 return Ovl_Match;
1082 }
1083
1084 return Ovl_Overload;
1085}
1086
1087bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1088 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1089 // C++ [basic.start.main]p2: This function shall not be overloaded.
1090 if (New->isMain())
1091 return false;
1092
1093 // MSVCRT user defined entry points cannot be overloaded.
1094 if (New->isMSVCRTEntryPoint())
1095 return false;
1096
1097 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1098 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1099
1100 // C++ [temp.fct]p2:
1101 // A function template can be overloaded with other function templates
1102 // and with normal (non-template) functions.
1103 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1104 return true;
1105
1106 // Is the function New an overload of the function Old?
1107 QualType OldQType = Context.getCanonicalType(Old->getType());
1108 QualType NewQType = Context.getCanonicalType(New->getType());
1109
1110 // Compare the signatures (C++ 1.3.10) of the two functions to
1111 // determine whether they are overloads. If we find any mismatch
1112 // in the signature, they are overloads.
1113
1114 // If either of these functions is a K&R-style function (no
1115 // prototype), then we consider them to have matching signatures.
1116 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1117 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1118 return false;
1119
1120 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1121 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1122
1123 // The signature of a function includes the types of its
1124 // parameters (C++ 1.3.10), which includes the presence or absence
1125 // of the ellipsis; see C++ DR 357).
1126 if (OldQType != NewQType &&
1127 (OldType->getNumParams() != NewType->getNumParams() ||
1128 OldType->isVariadic() != NewType->isVariadic() ||
1129 !FunctionParamTypesAreEqual(OldType, NewType)))
1130 return true;
1131
1132 // C++ [temp.over.link]p4:
1133 // The signature of a function template consists of its function
1134 // signature, its return type and its template parameter list. The names
1135 // of the template parameters are significant only for establishing the
1136 // relationship between the template parameters and the rest of the
1137 // signature.
1138 //
1139 // We check the return type and template parameter lists for function
1140 // templates first; the remaining checks follow.
1141 //
1142 // However, we don't consider either of these when deciding whether
1143 // a member introduced by a shadow declaration is hidden.
1144 if (!UseMemberUsingDeclRules && NewTemplate &&
1145 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1146 OldTemplate->getTemplateParameters(),
1147 false, TPL_TemplateMatch) ||
1148 !Context.hasSameType(Old->getDeclaredReturnType(),
1149 New->getDeclaredReturnType())))
1150 return true;
1151
1152 // If the function is a class member, its signature includes the
1153 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1154 //
1155 // As part of this, also check whether one of the member functions
1156 // is static, in which case they are not overloads (C++
1157 // 13.1p2). While not part of the definition of the signature,
1158 // this check is important to determine whether these functions
1159 // can be overloaded.
1160 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1161 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1162 if (OldMethod && NewMethod &&
1163 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1164 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1165 if (!UseMemberUsingDeclRules &&
1166 (OldMethod->getRefQualifier() == RQ_None ||
1167 NewMethod->getRefQualifier() == RQ_None)) {
1168 // C++0x [over.load]p2:
1169 // - Member function declarations with the same name and the same
1170 // parameter-type-list as well as member function template
1171 // declarations with the same name, the same parameter-type-list, and
1172 // the same template parameter lists cannot be overloaded if any of
1173 // them, but not all, have a ref-qualifier (8.3.5).
1174 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1175 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1176 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1177 }
1178 return true;
1179 }
1180
1181 // We may not have applied the implicit const for a constexpr member
1182 // function yet (because we haven't yet resolved whether this is a static
1183 // or non-static member function). Add it now, on the assumption that this
1184 // is a redeclaration of OldMethod.
1185 auto OldQuals = OldMethod->getMethodQualifiers();
1186 auto NewQuals = NewMethod->getMethodQualifiers();
1187 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1188 !isa<CXXConstructorDecl>(NewMethod))
1189 NewQuals.addConst();
1190 // We do not allow overloading based off of '__restrict'.
1191 OldQuals.removeRestrict();
1192 NewQuals.removeRestrict();
1193 if (OldQuals != NewQuals)
1194 return true;
1195 }
1196
1197 // Though pass_object_size is placed on parameters and takes an argument, we
1198 // consider it to be a function-level modifier for the sake of function
1199 // identity. Either the function has one or more parameters with
1200 // pass_object_size or it doesn't.
1201 if (functionHasPassObjectSizeParams(New) !=
1202 functionHasPassObjectSizeParams(Old))
1203 return true;
1204
1205 // enable_if attributes are an order-sensitive part of the signature.
1206 for (specific_attr_iterator<EnableIfAttr>
1207 NewI = New->specific_attr_begin<EnableIfAttr>(),
1208 NewE = New->specific_attr_end<EnableIfAttr>(),
1209 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1210 OldE = Old->specific_attr_end<EnableIfAttr>();
1211 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1212 if (NewI == NewE || OldI == OldE)
1213 return true;
1214 llvm::FoldingSetNodeID NewID, OldID;
1215 NewI->getCond()->Profile(NewID, Context, true);
1216 OldI->getCond()->Profile(OldID, Context, true);
1217 if (NewID != OldID)
1218 return true;
1219 }
1220
1221 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1222 // Don't allow overloading of destructors. (In theory we could, but it
1223 // would be a giant change to clang.)
1224 if (isa<CXXDestructorDecl>(New))
1225 return false;
1226
1227 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1228 OldTarget = IdentifyCUDATarget(Old);
1229 if (NewTarget == CFT_InvalidTarget)
1230 return false;
1231
1232 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1232, __PRETTY_FUNCTION__))
;
1233
1234 // Allow overloading of functions with same signature and different CUDA
1235 // target attributes.
1236 return NewTarget != OldTarget;
1237 }
1238
1239 // The signatures match; this is not an overload.
1240 return false;
1241}
1242
1243/// Tries a user-defined conversion from From to ToType.
1244///
1245/// Produces an implicit conversion sequence for when a standard conversion
1246/// is not an option. See TryImplicitConversion for more information.
1247static ImplicitConversionSequence
1248TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1249 bool SuppressUserConversions,
1250 bool AllowExplicit,
1251 bool InOverloadResolution,
1252 bool CStyle,
1253 bool AllowObjCWritebackConversion,
1254 bool AllowObjCConversionOnExplicit) {
1255 ImplicitConversionSequence ICS;
1256
1257 if (SuppressUserConversions) {
1258 // We're not in the case above, so there is no conversion that
1259 // we can perform.
1260 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1261 return ICS;
1262 }
1263
1264 // Attempt user-defined conversion.
1265 OverloadCandidateSet Conversions(From->getExprLoc(),
1266 OverloadCandidateSet::CSK_Normal);
1267 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1268 Conversions, AllowExplicit,
1269 AllowObjCConversionOnExplicit)) {
1270 case OR_Success:
1271 case OR_Deleted:
1272 ICS.setUserDefined();
1273 // C++ [over.ics.user]p4:
1274 // A conversion of an expression of class type to the same class
1275 // type is given Exact Match rank, and a conversion of an
1276 // expression of class type to a base class of that type is
1277 // given Conversion rank, in spite of the fact that a copy
1278 // constructor (i.e., a user-defined conversion function) is
1279 // called for those cases.
1280 if (CXXConstructorDecl *Constructor
1281 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1282 QualType FromCanon
1283 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1284 QualType ToCanon
1285 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1286 if (Constructor->isCopyConstructor() &&
1287 (FromCanon == ToCanon ||
1288 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1289 // Turn this into a "standard" conversion sequence, so that it
1290 // gets ranked with standard conversion sequences.
1291 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1292 ICS.setStandard();
1293 ICS.Standard.setAsIdentityConversion();
1294 ICS.Standard.setFromType(From->getType());
1295 ICS.Standard.setAllToTypes(ToType);
1296 ICS.Standard.CopyConstructor = Constructor;
1297 ICS.Standard.FoundCopyConstructor = Found;
1298 if (ToCanon != FromCanon)
1299 ICS.Standard.Second = ICK_Derived_To_Base;
1300 }
1301 }
1302 break;
1303
1304 case OR_Ambiguous:
1305 ICS.setAmbiguous();
1306 ICS.Ambiguous.setFromType(From->getType());
1307 ICS.Ambiguous.setToType(ToType);
1308 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1309 Cand != Conversions.end(); ++Cand)
1310 if (Cand->Viable)
1311 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1312 break;
1313
1314 // Fall through.
1315 case OR_No_Viable_Function:
1316 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1317 break;
1318 }
1319
1320 return ICS;
1321}
1322
1323/// TryImplicitConversion - Attempt to perform an implicit conversion
1324/// from the given expression (Expr) to the given type (ToType). This
1325/// function returns an implicit conversion sequence that can be used
1326/// to perform the initialization. Given
1327///
1328/// void f(float f);
1329/// void g(int i) { f(i); }
1330///
1331/// this routine would produce an implicit conversion sequence to
1332/// describe the initialization of f from i, which will be a standard
1333/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1334/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1335//
1336/// Note that this routine only determines how the conversion can be
1337/// performed; it does not actually perform the conversion. As such,
1338/// it will not produce any diagnostics if no conversion is available,
1339/// but will instead return an implicit conversion sequence of kind
1340/// "BadConversion".
1341///
1342/// If @p SuppressUserConversions, then user-defined conversions are
1343/// not permitted.
1344/// If @p AllowExplicit, then explicit user-defined conversions are
1345/// permitted.
1346///
1347/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1348/// writeback conversion, which allows __autoreleasing id* parameters to
1349/// be initialized with __strong id* or __weak id* arguments.
1350static ImplicitConversionSequence
1351TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1352 bool SuppressUserConversions,
1353 bool AllowExplicit,
1354 bool InOverloadResolution,
1355 bool CStyle,
1356 bool AllowObjCWritebackConversion,
1357 bool AllowObjCConversionOnExplicit) {
1358 ImplicitConversionSequence ICS;
1359 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1360 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1361 ICS.setStandard();
1362 return ICS;
1363 }
1364
1365 if (!S.getLangOpts().CPlusPlus) {
1366 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1367 return ICS;
1368 }
1369
1370 // C++ [over.ics.user]p4:
1371 // A conversion of an expression of class type to the same class
1372 // type is given Exact Match rank, and a conversion of an
1373 // expression of class type to a base class of that type is
1374 // given Conversion rank, in spite of the fact that a copy/move
1375 // constructor (i.e., a user-defined conversion function) is
1376 // called for those cases.
1377 QualType FromType = From->getType();
1378 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1379 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1380 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1381 ICS.setStandard();
1382 ICS.Standard.setAsIdentityConversion();
1383 ICS.Standard.setFromType(FromType);
1384 ICS.Standard.setAllToTypes(ToType);
1385
1386 // We don't actually check at this point whether there is a valid
1387 // copy/move constructor, since overloading just assumes that it
1388 // exists. When we actually perform initialization, we'll find the
1389 // appropriate constructor to copy the returned object, if needed.
1390 ICS.Standard.CopyConstructor = nullptr;
1391
1392 // Determine whether this is considered a derived-to-base conversion.
1393 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1394 ICS.Standard.Second = ICK_Derived_To_Base;
1395
1396 return ICS;
1397 }
1398
1399 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1400 AllowExplicit, InOverloadResolution, CStyle,
1401 AllowObjCWritebackConversion,
1402 AllowObjCConversionOnExplicit);
1403}
1404
1405ImplicitConversionSequence
1406Sema::TryImplicitConversion(Expr *From, QualType ToType,
1407 bool SuppressUserConversions,
1408 bool AllowExplicit,
1409 bool InOverloadResolution,
1410 bool CStyle,
1411 bool AllowObjCWritebackConversion) {
1412 return ::TryImplicitConversion(*this, From, ToType,
1413 SuppressUserConversions, AllowExplicit,
1414 InOverloadResolution, CStyle,
1415 AllowObjCWritebackConversion,
1416 /*AllowObjCConversionOnExplicit=*/false);
1417}
1418
1419/// PerformImplicitConversion - Perform an implicit conversion of the
1420/// expression From to the type ToType. Returns the
1421/// converted expression. Flavor is the kind of conversion we're
1422/// performing, used in the error message. If @p AllowExplicit,
1423/// explicit user-defined conversions are permitted.
1424ExprResult
1425Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1426 AssignmentAction Action, bool AllowExplicit) {
1427 ImplicitConversionSequence ICS;
1428 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1429}
1430
1431ExprResult
1432Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1433 AssignmentAction Action, bool AllowExplicit,
1434 ImplicitConversionSequence& ICS) {
1435 if (checkPlaceholderForOverload(*this, From))
1436 return ExprError();
1437
1438 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1439 bool AllowObjCWritebackConversion
1440 = getLangOpts().ObjCAutoRefCount &&
1441 (Action == AA_Passing || Action == AA_Sending);
1442 if (getLangOpts().ObjC)
1443 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1444 From->getType(), From);
1445 ICS = ::TryImplicitConversion(*this, From, ToType,
1446 /*SuppressUserConversions=*/false,
1447 AllowExplicit,
1448 /*InOverloadResolution=*/false,
1449 /*CStyle=*/false,
1450 AllowObjCWritebackConversion,
1451 /*AllowObjCConversionOnExplicit=*/false);
1452 return PerformImplicitConversion(From, ToType, ICS, Action);
1453}
1454
1455/// Determine whether the conversion from FromType to ToType is a valid
1456/// conversion that strips "noexcept" or "noreturn" off the nested function
1457/// type.
1458bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1459 QualType &ResultTy) {
1460 if (Context.hasSameUnqualifiedType(FromType, ToType))
1461 return false;
1462
1463 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1464 // or F(t noexcept) -> F(t)
1465 // where F adds one of the following at most once:
1466 // - a pointer
1467 // - a member pointer
1468 // - a block pointer
1469 // Changes here need matching changes in FindCompositePointerType.
1470 CanQualType CanTo = Context.getCanonicalType(ToType);
1471 CanQualType CanFrom = Context.getCanonicalType(FromType);
1472 Type::TypeClass TyClass = CanTo->getTypeClass();
1473 if (TyClass != CanFrom->getTypeClass()) return false;
1474 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1475 if (TyClass == Type::Pointer) {
1476 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1477 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1478 } else if (TyClass == Type::BlockPointer) {
1479 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1480 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1481 } else if (TyClass == Type::MemberPointer) {
1482 auto ToMPT = CanTo.castAs<MemberPointerType>();
1483 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1484 // A function pointer conversion cannot change the class of the function.
1485 if (ToMPT->getClass() != FromMPT->getClass())
1486 return false;
1487 CanTo = ToMPT->getPointeeType();
1488 CanFrom = FromMPT->getPointeeType();
1489 } else {
1490 return false;
1491 }
1492
1493 TyClass = CanTo->getTypeClass();
1494 if (TyClass != CanFrom->getTypeClass()) return false;
1495 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1496 return false;
1497 }
1498
1499 const auto *FromFn = cast<FunctionType>(CanFrom);
1500 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1501
1502 const auto *ToFn = cast<FunctionType>(CanTo);
1503 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1504
1505 bool Changed = false;
1506
1507 // Drop 'noreturn' if not present in target type.
1508 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1509 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1510 Changed = true;
1511 }
1512
1513 // Drop 'noexcept' if not present in target type.
1514 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1515 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1516 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1517 FromFn = cast<FunctionType>(
1518 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1519 EST_None)
1520 .getTypePtr());
1521 Changed = true;
1522 }
1523
1524 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1525 // only if the ExtParameterInfo lists of the two function prototypes can be
1526 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1527 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1528 bool CanUseToFPT, CanUseFromFPT;
1529 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1530 CanUseFromFPT, NewParamInfos) &&
1531 CanUseToFPT && !CanUseFromFPT) {
1532 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1533 ExtInfo.ExtParameterInfos =
1534 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1535 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1536 FromFPT->getParamTypes(), ExtInfo);
1537 FromFn = QT->getAs<FunctionType>();
1538 Changed = true;
1539 }
1540 }
1541
1542 if (!Changed)
1543 return false;
1544
1545 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1545, __PRETTY_FUNCTION__))
;
1546 if (QualType(FromFn, 0) != CanTo) return false;
1547
1548 ResultTy = ToType;
1549 return true;
1550}
1551
1552/// Determine whether the conversion from FromType to ToType is a valid
1553/// vector conversion.
1554///
1555/// \param ICK Will be set to the vector conversion kind, if this is a vector
1556/// conversion.
1557static bool IsVectorConversion(Sema &S, QualType FromType,
1558 QualType ToType, ImplicitConversionKind &ICK) {
1559 // We need at least one of these types to be a vector type to have a vector
1560 // conversion.
1561 if (!ToType->isVectorType() && !FromType->isVectorType())
1562 return false;
1563
1564 // Identical types require no conversions.
1565 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1566 return false;
1567
1568 // There are no conversions between extended vector types, only identity.
1569 if (ToType->isExtVectorType()) {
1570 // There are no conversions between extended vector types other than the
1571 // identity conversion.
1572 if (FromType->isExtVectorType())
1573 return false;
1574
1575 // Vector splat from any arithmetic type to a vector.
1576 if (FromType->isArithmeticType()) {
1577 ICK = ICK_Vector_Splat;
1578 return true;
1579 }
1580 }
1581
1582 // We can perform the conversion between vector types in the following cases:
1583 // 1)vector types are equivalent AltiVec and GCC vector types
1584 // 2)lax vector conversions are permitted and the vector types are of the
1585 // same size
1586 if (ToType->isVectorType() && FromType->isVectorType()) {
1587 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1588 S.isLaxVectorConversion(FromType, ToType)) {
1589 ICK = ICK_Vector_Conversion;
1590 return true;
1591 }
1592 }
1593
1594 return false;
1595}
1596
1597static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1598 bool InOverloadResolution,
1599 StandardConversionSequence &SCS,
1600 bool CStyle);
1601
1602/// IsStandardConversion - Determines whether there is a standard
1603/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1604/// expression From to the type ToType. Standard conversion sequences
1605/// only consider non-class types; for conversions that involve class
1606/// types, use TryImplicitConversion. If a conversion exists, SCS will
1607/// contain the standard conversion sequence required to perform this
1608/// conversion and this routine will return true. Otherwise, this
1609/// routine will return false and the value of SCS is unspecified.
1610static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1611 bool InOverloadResolution,
1612 StandardConversionSequence &SCS,
1613 bool CStyle,
1614 bool AllowObjCWritebackConversion) {
1615 QualType FromType = From->getType();
1616
1617 // Standard conversions (C++ [conv])
1618 SCS.setAsIdentityConversion();
1619 SCS.IncompatibleObjC = false;
1620 SCS.setFromType(FromType);
1621 SCS.CopyConstructor = nullptr;
1622
1623 // There are no standard conversions for class types in C++, so
1624 // abort early. When overloading in C, however, we do permit them.
1625 if (S.getLangOpts().CPlusPlus &&
1626 (FromType->isRecordType() || ToType->isRecordType()))
1627 return false;
1628
1629 // The first conversion can be an lvalue-to-rvalue conversion,
1630 // array-to-pointer conversion, or function-to-pointer conversion
1631 // (C++ 4p1).
1632
1633 if (FromType == S.Context.OverloadTy) {
1634 DeclAccessPair AccessPair;
1635 if (FunctionDecl *Fn
1636 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1637 AccessPair)) {
1638 // We were able to resolve the address of the overloaded function,
1639 // so we can convert to the type of that function.
1640 FromType = Fn->getType();
1641 SCS.setFromType(FromType);
1642
1643 // we can sometimes resolve &foo<int> regardless of ToType, so check
1644 // if the type matches (identity) or we are converting to bool
1645 if (!S.Context.hasSameUnqualifiedType(
1646 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1647 QualType resultTy;
1648 // if the function type matches except for [[noreturn]], it's ok
1649 if (!S.IsFunctionConversion(FromType,
1650 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1651 // otherwise, only a boolean conversion is standard
1652 if (!ToType->isBooleanType())
1653 return false;
1654 }
1655
1656 // Check if the "from" expression is taking the address of an overloaded
1657 // function and recompute the FromType accordingly. Take advantage of the
1658 // fact that non-static member functions *must* have such an address-of
1659 // expression.
1660 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1661 if (Method && !Method->isStatic()) {
1662 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
1663 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
1665 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
1666 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
;
1667 const Type *ClassType
1668 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1669 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1670 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1671 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
1672 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
1673 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
;
1674 FromType = S.Context.getPointerType(FromType);
1675 }
1676
1677 // Check that we've computed the proper type after overload resolution.
1678 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1679 // be calling it from within an NDEBUG block.
1680 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
1681 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
1682 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
;
1683 } else {
1684 return false;
1685 }
1686 }
1687 // Lvalue-to-rvalue conversion (C++11 4.1):
1688 // A glvalue (3.10) of a non-function, non-array type T can
1689 // be converted to a prvalue.
1690 bool argIsLValue = From->isGLValue();
1691 if (argIsLValue &&
1692 !FromType->isFunctionType() && !FromType->isArrayType() &&
1693 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1694 SCS.First = ICK_Lvalue_To_Rvalue;
1695
1696 // C11 6.3.2.1p2:
1697 // ... if the lvalue has atomic type, the value has the non-atomic version
1698 // of the type of the lvalue ...
1699 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1700 FromType = Atomic->getValueType();
1701
1702 // If T is a non-class type, the type of the rvalue is the
1703 // cv-unqualified version of T. Otherwise, the type of the rvalue
1704 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1705 // just strip the qualifiers because they don't matter.
1706 FromType = FromType.getUnqualifiedType();
1707 } else if (FromType->isArrayType()) {
1708 // Array-to-pointer conversion (C++ 4.2)
1709 SCS.First = ICK_Array_To_Pointer;
1710
1711 // An lvalue or rvalue of type "array of N T" or "array of unknown
1712 // bound of T" can be converted to an rvalue of type "pointer to
1713 // T" (C++ 4.2p1).
1714 FromType = S.Context.getArrayDecayedType(FromType);
1715
1716 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1717 // This conversion is deprecated in C++03 (D.4)
1718 SCS.DeprecatedStringLiteralToCharPtr = true;
1719
1720 // For the purpose of ranking in overload resolution
1721 // (13.3.3.1.1), this conversion is considered an
1722 // array-to-pointer conversion followed by a qualification
1723 // conversion (4.4). (C++ 4.2p2)
1724 SCS.Second = ICK_Identity;
1725 SCS.Third = ICK_Qualification;
1726 SCS.QualificationIncludesObjCLifetime = false;
1727 SCS.setAllToTypes(FromType);
1728 return true;
1729 }
1730 } else if (FromType->isFunctionType() && argIsLValue) {
1731 // Function-to-pointer conversion (C++ 4.3).
1732 SCS.First = ICK_Function_To_Pointer;
1733
1734 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1735 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1736 if (!S.checkAddressOfFunctionIsAvailable(FD))
1737 return false;
1738
1739 // An lvalue of function type T can be converted to an rvalue of
1740 // type "pointer to T." The result is a pointer to the
1741 // function. (C++ 4.3p1).
1742 FromType = S.Context.getPointerType(FromType);
1743 } else {
1744 // We don't require any conversions for the first step.
1745 SCS.First = ICK_Identity;
1746 }
1747 SCS.setToType(0, FromType);
1748
1749 // The second conversion can be an integral promotion, floating
1750 // point promotion, integral conversion, floating point conversion,
1751 // floating-integral conversion, pointer conversion,
1752 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1753 // For overloading in C, this can also be a "compatible-type"
1754 // conversion.
1755 bool IncompatibleObjC = false;
1756 ImplicitConversionKind SecondICK = ICK_Identity;
1757 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1758 // The unqualified versions of the types are the same: there's no
1759 // conversion to do.
1760 SCS.Second = ICK_Identity;
1761 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1762 // Integral promotion (C++ 4.5).
1763 SCS.Second = ICK_Integral_Promotion;
1764 FromType = ToType.getUnqualifiedType();
1765 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1766 // Floating point promotion (C++ 4.6).
1767 SCS.Second = ICK_Floating_Promotion;
1768 FromType = ToType.getUnqualifiedType();
1769 } else if (S.IsComplexPromotion(FromType, ToType)) {
1770 // Complex promotion (Clang extension)
1771 SCS.Second = ICK_Complex_Promotion;
1772 FromType = ToType.getUnqualifiedType();
1773 } else if (ToType->isBooleanType() &&
1774 (FromType->isArithmeticType() ||
1775 FromType->isAnyPointerType() ||
1776 FromType->isBlockPointerType() ||
1777 FromType->isMemberPointerType() ||
1778 FromType->isNullPtrType())) {
1779 // Boolean conversions (C++ 4.12).
1780 SCS.Second = ICK_Boolean_Conversion;
1781 FromType = S.Context.BoolTy;
1782 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1783 ToType->isIntegralType(S.Context)) {
1784 // Integral conversions (C++ 4.7).
1785 SCS.Second = ICK_Integral_Conversion;
1786 FromType = ToType.getUnqualifiedType();
1787 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1788 // Complex conversions (C99 6.3.1.6)
1789 SCS.Second = ICK_Complex_Conversion;
1790 FromType = ToType.getUnqualifiedType();
1791 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1792 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1793 // Complex-real conversions (C99 6.3.1.7)
1794 SCS.Second = ICK_Complex_Real;
1795 FromType = ToType.getUnqualifiedType();
1796 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1797 // FIXME: disable conversions between long double and __float128 if
1798 // their representation is different until there is back end support
1799 // We of course allow this conversion if long double is really double.
1800 if (&S.Context.getFloatTypeSemantics(FromType) !=
1801 &S.Context.getFloatTypeSemantics(ToType)) {
1802 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1803 ToType == S.Context.LongDoubleTy) ||
1804 (FromType == S.Context.LongDoubleTy &&
1805 ToType == S.Context.Float128Ty));
1806 if (Float128AndLongDouble &&
1807 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1808 &llvm::APFloat::PPCDoubleDouble()))
1809 return false;
1810 }
1811 // Floating point conversions (C++ 4.8).
1812 SCS.Second = ICK_Floating_Conversion;
1813 FromType = ToType.getUnqualifiedType();
1814 } else if ((FromType->isRealFloatingType() &&
1815 ToType->isIntegralType(S.Context)) ||
1816 (FromType->isIntegralOrUnscopedEnumerationType() &&
1817 ToType->isRealFloatingType())) {
1818 // Floating-integral conversions (C++ 4.9).
1819 SCS.Second = ICK_Floating_Integral;
1820 FromType = ToType.getUnqualifiedType();
1821 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1822 SCS.Second = ICK_Block_Pointer_Conversion;
1823 } else if (AllowObjCWritebackConversion &&
1824 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1825 SCS.Second = ICK_Writeback_Conversion;
1826 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1827 FromType, IncompatibleObjC)) {
1828 // Pointer conversions (C++ 4.10).
1829 SCS.Second = ICK_Pointer_Conversion;
1830 SCS.IncompatibleObjC = IncompatibleObjC;
1831 FromType = FromType.getUnqualifiedType();
1832 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1833 InOverloadResolution, FromType)) {
1834 // Pointer to member conversions (4.11).
1835 SCS.Second = ICK_Pointer_Member;
1836 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1837 SCS.Second = SecondICK;
1838 FromType = ToType.getUnqualifiedType();
1839 } else if (!S.getLangOpts().CPlusPlus &&
1840 S.Context.typesAreCompatible(ToType, FromType)) {
1841 // Compatible conversions (Clang extension for C function overloading)
1842 SCS.Second = ICK_Compatible_Conversion;
1843 FromType = ToType.getUnqualifiedType();
1844 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1845 InOverloadResolution,
1846 SCS, CStyle)) {
1847 SCS.Second = ICK_TransparentUnionConversion;
1848 FromType = ToType;
1849 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1850 CStyle)) {
1851 // tryAtomicConversion has updated the standard conversion sequence
1852 // appropriately.
1853 return true;
1854 } else if (ToType->isEventT() &&
1855 From->isIntegerConstantExpr(S.getASTContext()) &&
1856 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1857 SCS.Second = ICK_Zero_Event_Conversion;
1858 FromType = ToType;
1859 } else if (ToType->isQueueT() &&
1860 From->isIntegerConstantExpr(S.getASTContext()) &&
1861 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1862 SCS.Second = ICK_Zero_Queue_Conversion;
1863 FromType = ToType;
1864 } else if (ToType->isSamplerT() &&
1865 From->isIntegerConstantExpr(S.getASTContext())) {
1866 SCS.Second = ICK_Compatible_Conversion;
1867 FromType = ToType;
1868 } else {
1869 // No second conversion required.
1870 SCS.Second = ICK_Identity;
1871 }
1872 SCS.setToType(1, FromType);
1873
1874 // The third conversion can be a function pointer conversion or a
1875 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1876 bool ObjCLifetimeConversion;
1877 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1878 // Function pointer conversions (removing 'noexcept') including removal of
1879 // 'noreturn' (Clang extension).
1880 SCS.Third = ICK_Function_Conversion;
1881 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1882 ObjCLifetimeConversion)) {
1883 SCS.Third = ICK_Qualification;
1884 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1885 FromType = ToType;
1886 } else {
1887 // No conversion required
1888 SCS.Third = ICK_Identity;
1889 }
1890
1891 // C++ [over.best.ics]p6:
1892 // [...] Any difference in top-level cv-qualification is
1893 // subsumed by the initialization itself and does not constitute
1894 // a conversion. [...]
1895 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1896 QualType CanonTo = S.Context.getCanonicalType(ToType);
1897 if (CanonFrom.getLocalUnqualifiedType()
1898 == CanonTo.getLocalUnqualifiedType() &&
1899 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1900 FromType = ToType;
1901 CanonFrom = CanonTo;
1902 }
1903
1904 SCS.setToType(2, FromType);
1905
1906 if (CanonFrom == CanonTo)
1907 return true;
1908
1909 // If we have not converted the argument type to the parameter type,
1910 // this is a bad conversion sequence, unless we're resolving an overload in C.
1911 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1912 return false;
1913
1914 ExprResult ER = ExprResult{From};
1915 Sema::AssignConvertType Conv =
1916 S.CheckSingleAssignmentConstraints(ToType, ER,
1917 /*Diagnose=*/false,
1918 /*DiagnoseCFAudited=*/false,
1919 /*ConvertRHS=*/false);
1920 ImplicitConversionKind SecondConv;
1921 switch (Conv) {
1922 case Sema::Compatible:
1923 SecondConv = ICK_C_Only_Conversion;
1924 break;
1925 // For our purposes, discarding qualifiers is just as bad as using an
1926 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1927 // qualifiers, as well.
1928 case Sema::CompatiblePointerDiscardsQualifiers:
1929 case Sema::IncompatiblePointer:
1930 case Sema::IncompatiblePointerSign:
1931 SecondConv = ICK_Incompatible_Pointer_Conversion;
1932 break;
1933 default:
1934 return false;
1935 }
1936
1937 // First can only be an lvalue conversion, so we pretend that this was the
1938 // second conversion. First should already be valid from earlier in the
1939 // function.
1940 SCS.Second = SecondConv;
1941 SCS.setToType(1, ToType);
1942
1943 // Third is Identity, because Second should rank us worse than any other
1944 // conversion. This could also be ICK_Qualification, but it's simpler to just
1945 // lump everything in with the second conversion, and we don't gain anything
1946 // from making this ICK_Qualification.
1947 SCS.Third = ICK_Identity;
1948 SCS.setToType(2, ToType);
1949 return true;
1950}
1951
1952static bool
1953IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1954 QualType &ToType,
1955 bool InOverloadResolution,
1956 StandardConversionSequence &SCS,
1957 bool CStyle) {
1958
1959 const RecordType *UT = ToType->getAsUnionType();
1960 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1961 return false;
1962 // The field to initialize within the transparent union.
1963 RecordDecl *UD = UT->getDecl();
1964 // It's compatible if the expression matches any of the fields.
1965 for (const auto *it : UD->fields()) {
1966 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1967 CStyle, /*AllowObjCWritebackConversion=*/false)) {
1968 ToType = it->getType();
1969 return true;
1970 }
1971 }
1972 return false;
1973}
1974
1975/// IsIntegralPromotion - Determines whether the conversion from the
1976/// expression From (whose potentially-adjusted type is FromType) to
1977/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1978/// sets PromotedType to the promoted type.
1979bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1980 const BuiltinType *To = ToType->getAs<BuiltinType>();
1981 // All integers are built-in.
1982 if (!To) {
1983 return false;
1984 }
1985
1986 // An rvalue of type char, signed char, unsigned char, short int, or
1987 // unsigned short int can be converted to an rvalue of type int if
1988 // int can represent all the values of the source type; otherwise,
1989 // the source rvalue can be converted to an rvalue of type unsigned
1990 // int (C++ 4.5p1).
1991 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1992 !FromType->isEnumeralType()) {
1993 if (// We can promote any signed, promotable integer type to an int
1994 (FromType->isSignedIntegerType() ||
1995 // We can promote any unsigned integer type whose size is
1996 // less than int to an int.
1997 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1998 return To->getKind() == BuiltinType::Int;
1999 }
2000
2001 return To->getKind() == BuiltinType::UInt;
2002 }
2003
2004 // C++11 [conv.prom]p3:
2005 // A prvalue of an unscoped enumeration type whose underlying type is not
2006 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2007 // following types that can represent all the values of the enumeration
2008 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2009 // unsigned int, long int, unsigned long int, long long int, or unsigned
2010 // long long int. If none of the types in that list can represent all the
2011 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2012 // type can be converted to an rvalue a prvalue of the extended integer type
2013 // with lowest integer conversion rank (4.13) greater than the rank of long
2014 // long in which all the values of the enumeration can be represented. If
2015 // there are two such extended types, the signed one is chosen.
2016 // C++11 [conv.prom]p4:
2017 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2018 // can be converted to a prvalue of its underlying type. Moreover, if
2019 // integral promotion can be applied to its underlying type, a prvalue of an
2020 // unscoped enumeration type whose underlying type is fixed can also be
2021 // converted to a prvalue of the promoted underlying type.
2022 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2023 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2024 // provided for a scoped enumeration.
2025 if (FromEnumType->getDecl()->isScoped())
2026 return false;
2027
2028 // We can perform an integral promotion to the underlying type of the enum,
2029 // even if that's not the promoted type. Note that the check for promoting
2030 // the underlying type is based on the type alone, and does not consider
2031 // the bitfield-ness of the actual source expression.
2032 if (FromEnumType->getDecl()->isFixed()) {
2033 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2034 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2035 IsIntegralPromotion(nullptr, Underlying, ToType);
2036 }
2037
2038 // We have already pre-calculated the promotion type, so this is trivial.
2039 if (ToType->isIntegerType() &&
2040 isCompleteType(From->getBeginLoc(), FromType))
2041 return Context.hasSameUnqualifiedType(
2042 ToType, FromEnumType->getDecl()->getPromotionType());
2043
2044 // C++ [conv.prom]p5:
2045 // If the bit-field has an enumerated type, it is treated as any other
2046 // value of that type for promotion purposes.
2047 //
2048 // ... so do not fall through into the bit-field checks below in C++.
2049 if (getLangOpts().CPlusPlus)
2050 return false;
2051 }
2052
2053 // C++0x [conv.prom]p2:
2054 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2055 // to an rvalue a prvalue of the first of the following types that can
2056 // represent all the values of its underlying type: int, unsigned int,
2057 // long int, unsigned long int, long long int, or unsigned long long int.
2058 // If none of the types in that list can represent all the values of its
2059 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2060 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2061 // type.
2062 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2063 ToType->isIntegerType()) {
2064 // Determine whether the type we're converting from is signed or
2065 // unsigned.
2066 bool FromIsSigned = FromType->isSignedIntegerType();
2067 uint64_t FromSize = Context.getTypeSize(FromType);
2068
2069 // The types we'll try to promote to, in the appropriate
2070 // order. Try each of these types.
2071 QualType PromoteTypes[6] = {
2072 Context.IntTy, Context.UnsignedIntTy,
2073 Context.LongTy, Context.UnsignedLongTy ,
2074 Context.LongLongTy, Context.UnsignedLongLongTy
2075 };
2076 for (int Idx = 0; Idx < 6; ++Idx) {
2077 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2078 if (FromSize < ToSize ||
2079 (FromSize == ToSize &&
2080 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2081 // We found the type that we can promote to. If this is the
2082 // type we wanted, we have a promotion. Otherwise, no
2083 // promotion.
2084 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2085 }
2086 }
2087 }
2088
2089 // An rvalue for an integral bit-field (9.6) can be converted to an
2090 // rvalue of type int if int can represent all the values of the
2091 // bit-field; otherwise, it can be converted to unsigned int if
2092 // unsigned int can represent all the values of the bit-field. If
2093 // the bit-field is larger yet, no integral promotion applies to
2094 // it. If the bit-field has an enumerated type, it is treated as any
2095 // other value of that type for promotion purposes (C++ 4.5p3).
2096 // FIXME: We should delay checking of bit-fields until we actually perform the
2097 // conversion.
2098 //
2099 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2100 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2101 // bit-fields and those whose underlying type is larger than int) for GCC
2102 // compatibility.
2103 if (From) {
2104 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2105 llvm::APSInt BitWidth;
2106 if (FromType->isIntegralType(Context) &&
2107 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2108 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2109 ToSize = Context.getTypeSize(ToType);
2110
2111 // Are we promoting to an int from a bitfield that fits in an int?
2112 if (BitWidth < ToSize ||
2113 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2114 return To->getKind() == BuiltinType::Int;
2115 }
2116
2117 // Are we promoting to an unsigned int from an unsigned bitfield
2118 // that fits into an unsigned int?
2119 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2120 return To->getKind() == BuiltinType::UInt;
2121 }
2122
2123 return false;
2124 }
2125 }
2126 }
2127
2128 // An rvalue of type bool can be converted to an rvalue of type int,
2129 // with false becoming zero and true becoming one (C++ 4.5p4).
2130 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2131 return true;
2132 }
2133
2134 return false;
2135}
2136
2137/// IsFloatingPointPromotion - Determines whether the conversion from
2138/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2139/// returns true and sets PromotedType to the promoted type.
2140bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2141 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2142 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2143 /// An rvalue of type float can be converted to an rvalue of type
2144 /// double. (C++ 4.6p1).
2145 if (FromBuiltin->getKind() == BuiltinType::Float &&
2146 ToBuiltin->getKind() == BuiltinType::Double)
2147 return true;
2148
2149 // C99 6.3.1.5p1:
2150 // When a float is promoted to double or long double, or a
2151 // double is promoted to long double [...].
2152 if (!getLangOpts().CPlusPlus &&
2153 (FromBuiltin->getKind() == BuiltinType::Float ||
2154 FromBuiltin->getKind() == BuiltinType::Double) &&
2155 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2156 ToBuiltin->getKind() == BuiltinType::Float128))
2157 return true;
2158
2159 // Half can be promoted to float.
2160 if (!getLangOpts().NativeHalfType &&
2161 FromBuiltin->getKind() == BuiltinType::Half &&
2162 ToBuiltin->getKind() == BuiltinType::Float)
2163 return true;
2164 }
2165
2166 return false;
2167}
2168
2169/// Determine if a conversion is a complex promotion.
2170///
2171/// A complex promotion is defined as a complex -> complex conversion
2172/// where the conversion between the underlying real types is a
2173/// floating-point or integral promotion.
2174bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2175 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2176 if (!FromComplex)
2177 return false;
2178
2179 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2180 if (!ToComplex)
2181 return false;
2182
2183 return IsFloatingPointPromotion(FromComplex->getElementType(),
2184 ToComplex->getElementType()) ||
2185 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2186 ToComplex->getElementType());
2187}
2188
2189/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2190/// the pointer type FromPtr to a pointer to type ToPointee, with the
2191/// same type qualifiers as FromPtr has on its pointee type. ToType,
2192/// if non-empty, will be a pointer to ToType that may or may not have
2193/// the right set of qualifiers on its pointee.
2194///
2195static QualType
2196BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2197 QualType ToPointee, QualType ToType,
2198 ASTContext &Context,
2199 bool StripObjCLifetime = false) {
2200 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
2201 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
2202 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
;
2203
2204 /// Conversions to 'id' subsume cv-qualifier conversions.
2205 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2206 return ToType.getUnqualifiedType();
2207
2208 QualType CanonFromPointee
2209 = Context.getCanonicalType(FromPtr->getPointeeType());
2210 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2211 Qualifiers Quals = CanonFromPointee.getQualifiers();
2212
2213 if (StripObjCLifetime)
2214 Quals.removeObjCLifetime();
2215
2216 // Exact qualifier match -> return the pointer type we're converting to.
2217 if (CanonToPointee.getLocalQualifiers() == Quals) {
2218 // ToType is exactly what we need. Return it.
2219 if (!ToType.isNull())
2220 return ToType.getUnqualifiedType();
2221
2222 // Build a pointer to ToPointee. It has the right qualifiers
2223 // already.
2224 if (isa<ObjCObjectPointerType>(ToType))
2225 return Context.getObjCObjectPointerType(ToPointee);
2226 return Context.getPointerType(ToPointee);
2227 }
2228
2229 // Just build a canonical type that has the right qualifiers.
2230 QualType QualifiedCanonToPointee
2231 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2232
2233 if (isa<ObjCObjectPointerType>(ToType))
2234 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2235 return Context.getPointerType(QualifiedCanonToPointee);
2236}
2237
2238static bool isNullPointerConstantForConversion(Expr *Expr,
2239 bool InOverloadResolution,
2240 ASTContext &Context) {
2241 // Handle value-dependent integral null pointer constants correctly.
2242 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2243 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2244 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2245 return !InOverloadResolution;
2246
2247 return Expr->isNullPointerConstant(Context,
2248 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2249 : Expr::NPC_ValueDependentIsNull);
2250}
2251
2252/// IsPointerConversion - Determines whether the conversion of the
2253/// expression From, which has the (possibly adjusted) type FromType,
2254/// can be converted to the type ToType via a pointer conversion (C++
2255/// 4.10). If so, returns true and places the converted type (that
2256/// might differ from ToType in its cv-qualifiers at some level) into
2257/// ConvertedType.
2258///
2259/// This routine also supports conversions to and from block pointers
2260/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2261/// pointers to interfaces. FIXME: Once we've determined the
2262/// appropriate overloading rules for Objective-C, we may want to
2263/// split the Objective-C checks into a different routine; however,
2264/// GCC seems to consider all of these conversions to be pointer
2265/// conversions, so for now they live here. IncompatibleObjC will be
2266/// set if the conversion is an allowed Objective-C conversion that
2267/// should result in a warning.
2268bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2269 bool InOverloadResolution,
2270 QualType& ConvertedType,
2271 bool &IncompatibleObjC) {
2272 IncompatibleObjC = false;
2273 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2274 IncompatibleObjC))
2275 return true;
2276
2277 // Conversion from a null pointer constant to any Objective-C pointer type.
2278 if (ToType->isObjCObjectPointerType() &&
2279 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2280 ConvertedType = ToType;
2281 return true;
2282 }
2283
2284 // Blocks: Block pointers can be converted to void*.
2285 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2286 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2287 ConvertedType = ToType;
2288 return true;
2289 }
2290 // Blocks: A null pointer constant can be converted to a block
2291 // pointer type.
2292 if (ToType->isBlockPointerType() &&
2293 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2294 ConvertedType = ToType;
2295 return true;
2296 }
2297
2298 // If the left-hand-side is nullptr_t, the right side can be a null
2299 // pointer constant.
2300 if (ToType->isNullPtrType() &&
2301 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2302 ConvertedType = ToType;
2303 return true;
2304 }
2305
2306 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2307 if (!ToTypePtr)
2308 return false;
2309
2310 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2311 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2312 ConvertedType = ToType;
2313 return true;
2314 }
2315
2316 // Beyond this point, both types need to be pointers
2317 // , including objective-c pointers.
2318 QualType ToPointeeType = ToTypePtr->getPointeeType();
2319 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2320 !getLangOpts().ObjCAutoRefCount) {
2321 ConvertedType = BuildSimilarlyQualifiedPointerType(
2322 FromType->getAs<ObjCObjectPointerType>(),
2323 ToPointeeType,
2324 ToType, Context);
2325 return true;
2326 }
2327 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2328 if (!FromTypePtr)
2329 return false;
2330
2331 QualType FromPointeeType = FromTypePtr->getPointeeType();
2332
2333 // If the unqualified pointee types are the same, this can't be a
2334 // pointer conversion, so don't do all of the work below.
2335 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2336 return false;
2337
2338 // An rvalue of type "pointer to cv T," where T is an object type,
2339 // can be converted to an rvalue of type "pointer to cv void" (C++
2340 // 4.10p2).
2341 if (FromPointeeType->isIncompleteOrObjectType() &&
2342 ToPointeeType->isVoidType()) {
2343 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2344 ToPointeeType,
2345 ToType, Context,
2346 /*StripObjCLifetime=*/true);
2347 return true;
2348 }
2349
2350 // MSVC allows implicit function to void* type conversion.
2351 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2352 ToPointeeType->isVoidType()) {
2353 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2354 ToPointeeType,
2355 ToType, Context);
2356 return true;
2357 }
2358
2359 // When we're overloading in C, we allow a special kind of pointer
2360 // conversion for compatible-but-not-identical pointee types.
2361 if (!getLangOpts().CPlusPlus &&
2362 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2363 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2364 ToPointeeType,
2365 ToType, Context);
2366 return true;
2367 }
2368
2369 // C++ [conv.ptr]p3:
2370 //
2371 // An rvalue of type "pointer to cv D," where D is a class type,
2372 // can be converted to an rvalue of type "pointer to cv B," where
2373 // B is a base class (clause 10) of D. If B is an inaccessible
2374 // (clause 11) or ambiguous (10.2) base class of D, a program that
2375 // necessitates this conversion is ill-formed. The result of the
2376 // conversion is a pointer to the base class sub-object of the
2377 // derived class object. The null pointer value is converted to
2378 // the null pointer value of the destination type.
2379 //
2380 // Note that we do not check for ambiguity or inaccessibility
2381 // here. That is handled by CheckPointerConversion.
2382 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2383 ToPointeeType->isRecordType() &&
2384 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2385 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2386 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2387 ToPointeeType,
2388 ToType, Context);
2389 return true;
2390 }
2391
2392 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2393 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2394 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2395 ToPointeeType,
2396 ToType, Context);
2397 return true;
2398 }
2399
2400 return false;
2401}
2402
2403/// Adopt the given qualifiers for the given type.
2404static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2405 Qualifiers TQs = T.getQualifiers();
2406
2407 // Check whether qualifiers already match.
2408 if (TQs == Qs)
2409 return T;
2410
2411 if (Qs.compatiblyIncludes(TQs))
2412 return Context.getQualifiedType(T, Qs);
2413
2414 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2415}
2416
2417/// isObjCPointerConversion - Determines whether this is an
2418/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2419/// with the same arguments and return values.
2420bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2421 QualType& ConvertedType,
2422 bool &IncompatibleObjC) {
2423 if (!getLangOpts().ObjC)
2424 return false;
2425
2426 // The set of qualifiers on the type we're converting from.
2427 Qualifiers FromQualifiers = FromType.getQualifiers();
2428
2429 // First, we handle all conversions on ObjC object pointer types.
2430 const ObjCObjectPointerType* ToObjCPtr =
2431 ToType->getAs<ObjCObjectPointerType>();
2432 const ObjCObjectPointerType *FromObjCPtr =
2433 FromType->getAs<ObjCObjectPointerType>();
2434
2435 if (ToObjCPtr && FromObjCPtr) {
2436 // If the pointee types are the same (ignoring qualifications),
2437 // then this is not a pointer conversion.
2438 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2439 FromObjCPtr->getPointeeType()))
2440 return false;
2441
2442 // Conversion between Objective-C pointers.
2443 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2444 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2445 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2446 if (getLangOpts().CPlusPlus && LHS && RHS &&
2447 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2448 FromObjCPtr->getPointeeType()))
2449 return false;
2450 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2451 ToObjCPtr->getPointeeType(),
2452 ToType, Context);
2453 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2454 return true;
2455 }
2456
2457 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2458 // Okay: this is some kind of implicit downcast of Objective-C
2459 // interfaces, which is permitted. However, we're going to
2460 // complain about it.
2461 IncompatibleObjC = true;
2462 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2463 ToObjCPtr->getPointeeType(),
2464 ToType, Context);
2465 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2466 return true;
2467 }
2468 }
2469 // Beyond this point, both types need to be C pointers or block pointers.
2470 QualType ToPointeeType;
2471 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2472 ToPointeeType = ToCPtr->getPointeeType();
2473 else if (const BlockPointerType *ToBlockPtr =
2474 ToType->getAs<BlockPointerType>()) {
2475 // Objective C++: We're able to convert from a pointer to any object
2476 // to a block pointer type.
2477 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2478 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2479 return true;
2480 }
2481 ToPointeeType = ToBlockPtr->getPointeeType();
2482 }
2483 else if (FromType->getAs<BlockPointerType>() &&
2484 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2485 // Objective C++: We're able to convert from a block pointer type to a
2486 // pointer to any object.
2487 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2488 return true;
2489 }
2490 else
2491 return false;
2492
2493 QualType FromPointeeType;
2494 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2495 FromPointeeType = FromCPtr->getPointeeType();
2496 else if (const BlockPointerType *FromBlockPtr =
2497 FromType->getAs<BlockPointerType>())
2498 FromPointeeType = FromBlockPtr->getPointeeType();
2499 else
2500 return false;
2501
2502 // If we have pointers to pointers, recursively check whether this
2503 // is an Objective-C conversion.
2504 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2505 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2506 IncompatibleObjC)) {
2507 // We always complain about this conversion.
2508 IncompatibleObjC = true;
2509 ConvertedType = Context.getPointerType(ConvertedType);
2510 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2511 return true;
2512 }
2513 // Allow conversion of pointee being objective-c pointer to another one;
2514 // as in I* to id.
2515 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2516 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2517 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2518 IncompatibleObjC)) {
2519
2520 ConvertedType = Context.getPointerType(ConvertedType);
2521 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2522 return true;
2523 }
2524
2525 // If we have pointers to functions or blocks, check whether the only
2526 // differences in the argument and result types are in Objective-C
2527 // pointer conversions. If so, we permit the conversion (but
2528 // complain about it).
2529 const FunctionProtoType *FromFunctionType
2530 = FromPointeeType->getAs<FunctionProtoType>();
2531 const FunctionProtoType *ToFunctionType
2532 = ToPointeeType->getAs<FunctionProtoType>();
2533 if (FromFunctionType && ToFunctionType) {
2534 // If the function types are exactly the same, this isn't an
2535 // Objective-C pointer conversion.
2536 if (Context.getCanonicalType(FromPointeeType)
2537 == Context.getCanonicalType(ToPointeeType))
2538 return false;
2539
2540 // Perform the quick checks that will tell us whether these
2541 // function types are obviously different.
2542 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2543 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2544 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2545 return false;
2546
2547 bool HasObjCConversion = false;
2548 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2549 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2550 // Okay, the types match exactly. Nothing to do.
2551 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2552 ToFunctionType->getReturnType(),
2553 ConvertedType, IncompatibleObjC)) {
2554 // Okay, we have an Objective-C pointer conversion.
2555 HasObjCConversion = true;
2556 } else {
2557 // Function types are too different. Abort.
2558 return false;
2559 }
2560
2561 // Check argument types.
2562 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2563 ArgIdx != NumArgs; ++ArgIdx) {
2564 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2565 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2566 if (Context.getCanonicalType(FromArgType)
2567 == Context.getCanonicalType(ToArgType)) {
2568 // Okay, the types match exactly. Nothing to do.
2569 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2570 ConvertedType, IncompatibleObjC)) {
2571 // Okay, we have an Objective-C pointer conversion.
2572 HasObjCConversion = true;
2573 } else {
2574 // Argument types are too different. Abort.
2575 return false;
2576 }
2577 }
2578
2579 if (HasObjCConversion) {
2580 // We had an Objective-C conversion. Allow this pointer
2581 // conversion, but complain about it.
2582 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2583 IncompatibleObjC = true;
2584 return true;
2585 }
2586 }
2587
2588 return false;
2589}
2590
2591/// Determine whether this is an Objective-C writeback conversion,
2592/// used for parameter passing when performing automatic reference counting.
2593///
2594/// \param FromType The type we're converting form.
2595///
2596/// \param ToType The type we're converting to.
2597///
2598/// \param ConvertedType The type that will be produced after applying
2599/// this conversion.
2600bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2601 QualType &ConvertedType) {
2602 if (!getLangOpts().ObjCAutoRefCount ||
2603 Context.hasSameUnqualifiedType(FromType, ToType))
2604 return false;
2605
2606 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2607 QualType ToPointee;
2608 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2609 ToPointee = ToPointer->getPointeeType();
2610 else
2611 return false;
2612
2613 Qualifiers ToQuals = ToPointee.getQualifiers();
2614 if (!ToPointee->isObjCLifetimeType() ||
2615 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2616 !ToQuals.withoutObjCLifetime().empty())
2617 return false;
2618
2619 // Argument must be a pointer to __strong to __weak.
2620 QualType FromPointee;
2621 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2622 FromPointee = FromPointer->getPointeeType();
2623 else
2624 return false;
2625
2626 Qualifiers FromQuals = FromPointee.getQualifiers();
2627 if (!FromPointee->isObjCLifetimeType() ||
2628 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2629 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2630 return false;
2631
2632 // Make sure that we have compatible qualifiers.
2633 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2634 if (!ToQuals.compatiblyIncludes(FromQuals))
2635 return false;
2636
2637 // Remove qualifiers from the pointee type we're converting from; they
2638 // aren't used in the compatibility check belong, and we'll be adding back
2639 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2640 FromPointee = FromPointee.getUnqualifiedType();
2641
2642 // The unqualified form of the pointee types must be compatible.
2643 ToPointee = ToPointee.getUnqualifiedType();
2644 bool IncompatibleObjC;
2645 if (Context.typesAreCompatible(FromPointee, ToPointee))
2646 FromPointee = ToPointee;
2647 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2648 IncompatibleObjC))
2649 return false;
2650
2651 /// Construct the type we're converting to, which is a pointer to
2652 /// __autoreleasing pointee.
2653 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2654 ConvertedType = Context.getPointerType(FromPointee);
2655 return true;
2656}
2657
2658bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2659 QualType& ConvertedType) {
2660 QualType ToPointeeType;
2661 if (const BlockPointerType *ToBlockPtr =
2662 ToType->getAs<BlockPointerType>())
2663 ToPointeeType = ToBlockPtr->getPointeeType();
2664 else
2665 return false;
2666
2667 QualType FromPointeeType;
2668 if (const BlockPointerType *FromBlockPtr =
2669 FromType->getAs<BlockPointerType>())
2670 FromPointeeType = FromBlockPtr->getPointeeType();
2671 else
2672 return false;
2673 // We have pointer to blocks, check whether the only
2674 // differences in the argument and result types are in Objective-C
2675 // pointer conversions. If so, we permit the conversion.
2676
2677 const FunctionProtoType *FromFunctionType
2678 = FromPointeeType->getAs<FunctionProtoType>();
2679 const FunctionProtoType *ToFunctionType
2680 = ToPointeeType->getAs<FunctionProtoType>();
2681
2682 if (!FromFunctionType || !ToFunctionType)
2683 return false;
2684
2685 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2686 return true;
2687
2688 // Perform the quick checks that will tell us whether these
2689 // function types are obviously different.
2690 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2691 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2692 return false;
2693
2694 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2695 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2696 if (FromEInfo != ToEInfo)
2697 return false;
2698
2699 bool IncompatibleObjC = false;
2700 if (Context.hasSameType(FromFunctionType->getReturnType(),
2701 ToFunctionType->getReturnType())) {
2702 // Okay, the types match exactly. Nothing to do.
2703 } else {
2704 QualType RHS = FromFunctionType->getReturnType();
2705 QualType LHS = ToFunctionType->getReturnType();
2706 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2707 !RHS.hasQualifiers() && LHS.hasQualifiers())
2708 LHS = LHS.getUnqualifiedType();
2709
2710 if (Context.hasSameType(RHS,LHS)) {
2711 // OK exact match.
2712 } else if (isObjCPointerConversion(RHS, LHS,
2713 ConvertedType, IncompatibleObjC)) {
2714 if (IncompatibleObjC)
2715 return false;
2716 // Okay, we have an Objective-C pointer conversion.
2717 }
2718 else
2719 return false;
2720 }
2721
2722 // Check argument types.
2723 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2724 ArgIdx != NumArgs; ++ArgIdx) {
2725 IncompatibleObjC = false;
2726 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2727 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2728 if (Context.hasSameType(FromArgType, ToArgType)) {
2729 // Okay, the types match exactly. Nothing to do.
2730 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2731 ConvertedType, IncompatibleObjC)) {
2732 if (IncompatibleObjC)
2733 return false;
2734 // Okay, we have an Objective-C pointer conversion.
2735 } else
2736 // Argument types are too different. Abort.
2737 return false;
2738 }
2739
2740 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2741 bool CanUseToFPT, CanUseFromFPT;
2742 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2743 CanUseToFPT, CanUseFromFPT,
2744 NewParamInfos))
2745 return false;
2746
2747 ConvertedType = ToType;
2748 return true;
2749}
2750
2751enum {
2752 ft_default,
2753 ft_different_class,
2754 ft_parameter_arity,
2755 ft_parameter_mismatch,
2756 ft_return_type,
2757 ft_qualifer_mismatch,
2758 ft_noexcept
2759};
2760
2761/// Attempts to get the FunctionProtoType from a Type. Handles
2762/// MemberFunctionPointers properly.
2763static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2764 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2765 return FPT;
2766
2767 if (auto *MPT = FromType->getAs<MemberPointerType>())
2768 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2769
2770 return nullptr;
2771}
2772
2773/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2774/// function types. Catches different number of parameter, mismatch in
2775/// parameter types, and different return types.
2776void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2777 QualType FromType, QualType ToType) {
2778 // If either type is not valid, include no extra info.
2779 if (FromType.isNull() || ToType.isNull()) {
2780 PDiag << ft_default;
2781 return;
2782 }
2783
2784 // Get the function type from the pointers.
2785 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2786 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2787 *ToMember = ToType->getAs<MemberPointerType>();
2788 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2789 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2790 << QualType(FromMember->getClass(), 0);
2791 return;
2792 }
2793 FromType = FromMember->getPointeeType();
2794 ToType = ToMember->getPointeeType();
2795 }
2796
2797 if (FromType->isPointerType())
2798 FromType = FromType->getPointeeType();
2799 if (ToType->isPointerType())
2800 ToType = ToType->getPointeeType();
2801
2802 // Remove references.
2803 FromType = FromType.getNonReferenceType();
2804 ToType = ToType.getNonReferenceType();
2805
2806 // Don't print extra info for non-specialized template functions.
2807 if (FromType->isInstantiationDependentType() &&
2808 !FromType->getAs<TemplateSpecializationType>()) {
2809 PDiag << ft_default;
2810 return;
2811 }
2812
2813 // No extra info for same types.
2814 if (Context.hasSameType(FromType, ToType)) {
2815 PDiag << ft_default;
2816 return;
2817 }
2818
2819 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2820 *ToFunction = tryGetFunctionProtoType(ToType);
2821
2822 // Both types need to be function types.
2823 if (!FromFunction || !ToFunction) {
2824 PDiag << ft_default;
2825 return;
2826 }
2827
2828 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2829 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2830 << FromFunction->getNumParams();
2831 return;
2832 }
2833
2834 // Handle different parameter types.
2835 unsigned ArgPos;
2836 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2837 PDiag << ft_parameter_mismatch << ArgPos + 1
2838 << ToFunction->getParamType(ArgPos)
2839 << FromFunction->getParamType(ArgPos);
2840 return;
2841 }
2842
2843 // Handle different return type.
2844 if (!Context.hasSameType(FromFunction->getReturnType(),
2845 ToFunction->getReturnType())) {
2846 PDiag << ft_return_type << ToFunction->getReturnType()
2847 << FromFunction->getReturnType();
2848 return;
2849 }
2850
2851 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2852 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2853 << FromFunction->getMethodQuals();
2854 return;
2855 }
2856
2857 // Handle exception specification differences on canonical type (in C++17
2858 // onwards).
2859 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2860 ->isNothrow() !=
2861 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2862 ->isNothrow()) {
2863 PDiag << ft_noexcept;
2864 return;
2865 }
2866
2867 // Unable to find a difference, so add no extra info.
2868 PDiag << ft_default;
2869}
2870
2871/// FunctionParamTypesAreEqual - This routine checks two function proto types
2872/// for equality of their argument types. Caller has already checked that
2873/// they have same number of arguments. If the parameters are different,
2874/// ArgPos will have the parameter index of the first different parameter.
2875bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2876 const FunctionProtoType *NewType,
2877 unsigned *ArgPos) {
2878 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2879 N = NewType->param_type_begin(),
2880 E = OldType->param_type_end();
2881 O && (O != E); ++O, ++N) {
2882 if (!Context.hasSameType(O->getUnqualifiedType(),
2883 N->getUnqualifiedType())) {
2884 if (ArgPos)
2885 *ArgPos = O - OldType->param_type_begin();
2886 return false;
2887 }
2888 }
2889 return true;
2890}
2891
2892/// CheckPointerConversion - Check the pointer conversion from the
2893/// expression From to the type ToType. This routine checks for
2894/// ambiguous or inaccessible derived-to-base pointer
2895/// conversions for which IsPointerConversion has already returned
2896/// true. It returns true and produces a diagnostic if there was an
2897/// error, or returns false otherwise.
2898bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2899 CastKind &Kind,
2900 CXXCastPath& BasePath,
2901 bool IgnoreBaseAccess,
2902 bool Diagnose) {
2903 QualType FromType = From->getType();
2904 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2905
2906 Kind = CK_BitCast;
2907
2908 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2909 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2910 Expr::NPCK_ZeroExpression) {
2911 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2912 DiagRuntimeBehavior(From->getExprLoc(), From,
2913 PDiag(diag::warn_impcast_bool_to_null_pointer)
2914 << ToType << From->getSourceRange());
2915 else if (!isUnevaluatedContext())
2916 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2917 << ToType << From->getSourceRange();
2918 }
2919 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2920 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2921 QualType FromPointeeType = FromPtrType->getPointeeType(),
2922 ToPointeeType = ToPtrType->getPointeeType();
2923
2924 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2925 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2926 // We must have a derived-to-base conversion. Check an
2927 // ambiguous or inaccessible conversion.
2928 unsigned InaccessibleID = 0;
2929 unsigned AmbigiousID = 0;
2930 if (Diagnose) {
2931 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2932 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2933 }
2934 if (CheckDerivedToBaseConversion(
2935 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2936 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2937 &BasePath, IgnoreBaseAccess))
2938 return true;
2939
2940 // The conversion was successful.
2941 Kind = CK_DerivedToBase;
2942 }
2943
2944 if (Diagnose && !IsCStyleOrFunctionalCast &&
2945 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2946 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 2947, __PRETTY_FUNCTION__))
2947 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 2947, __PRETTY_FUNCTION__))
;
2948 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2949 << From->getSourceRange();
2950 }
2951 }
2952 } else if (const ObjCObjectPointerType *ToPtrType =
2953 ToType->getAs<ObjCObjectPointerType>()) {
2954 if (const ObjCObjectPointerType *FromPtrType =
2955 FromType->getAs<ObjCObjectPointerType>()) {
2956 // Objective-C++ conversions are always okay.
2957 // FIXME: We should have a different class of conversions for the
2958 // Objective-C++ implicit conversions.
2959 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2960 return false;
2961 } else if (FromType->isBlockPointerType()) {
2962 Kind = CK_BlockPointerToObjCPointerCast;
2963 } else {
2964 Kind = CK_CPointerToObjCPointerCast;
2965 }
2966 } else if (ToType->isBlockPointerType()) {
2967 if (!FromType->isBlockPointerType())
2968 Kind = CK_AnyPointerToBlockPointerCast;
2969 }
2970
2971 // We shouldn't fall into this case unless it's valid for other
2972 // reasons.
2973 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2974 Kind = CK_NullToPointer;
2975
2976 return false;
2977}
2978
2979/// IsMemberPointerConversion - Determines whether the conversion of the
2980/// expression From, which has the (possibly adjusted) type FromType, can be
2981/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2982/// If so, returns true and places the converted type (that might differ from
2983/// ToType in its cv-qualifiers at some level) into ConvertedType.
2984bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2985 QualType ToType,
2986 bool InOverloadResolution,
2987 QualType &ConvertedType) {
2988 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2989 if (!ToTypePtr)
2990 return false;
2991
2992 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2993 if (From->isNullPointerConstant(Context,
2994 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2995 : Expr::NPC_ValueDependentIsNull)) {
2996 ConvertedType = ToType;
2997 return true;
2998 }
2999
3000 // Otherwise, both types have to be member pointers.
3001 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3002 if (!FromTypePtr)
3003 return false;
3004
3005 // A pointer to member of B can be converted to a pointer to member of D,
3006 // where D is derived from B (C++ 4.11p2).
3007 QualType FromClass(FromTypePtr->getClass(), 0);
3008 QualType ToClass(ToTypePtr->getClass(), 0);
3009
3010 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3011 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3012 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3013 ToClass.getTypePtr());
3014 return true;
3015 }
3016
3017 return false;
3018}
3019
3020/// CheckMemberPointerConversion - Check the member pointer conversion from the
3021/// expression From to the type ToType. This routine checks for ambiguous or
3022/// virtual or inaccessible base-to-derived member pointer conversions
3023/// for which IsMemberPointerConversion has already returned true. It returns
3024/// true and produces a diagnostic if there was an error, or returns false
3025/// otherwise.
3026bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3027 CastKind &Kind,
3028 CXXCastPath &BasePath,
3029 bool IgnoreBaseAccess) {
3030 QualType FromType = From->getType();
3031 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3032 if (!FromPtrType) {
3033 // This must be a null pointer to member pointer conversion
3034 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
3035 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
3036 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
;
3037 Kind = CK_NullToMemberPointer;
3038 return false;
3039 }
3040
3041 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3042 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
3043 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
;
3044
3045 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3046 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3047
3048 // FIXME: What about dependent types?
3049 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3049, __PRETTY_FUNCTION__))
;
3050 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3050, __PRETTY_FUNCTION__))
;
3051
3052 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3053 /*DetectVirtual=*/true);
3054 bool DerivationOkay =
3055 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3056 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3057, __PRETTY_FUNCTION__))
3057 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3057, __PRETTY_FUNCTION__))
;
3058 (void)DerivationOkay;
3059
3060 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3061 getUnqualifiedType())) {
3062 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3063 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3064 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3065 return true;
3066 }
3067
3068 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3069 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3070 << FromClass << ToClass << QualType(VBase, 0)
3071 << From->getSourceRange();
3072 return true;
3073 }
3074
3075 if (!IgnoreBaseAccess)
3076 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3077 Paths.front(),
3078 diag::err_downcast_from_inaccessible_base);
3079
3080 // Must be a base to derived member conversion.
3081 BuildBasePathArray(Paths, BasePath);
3082 Kind = CK_BaseToDerivedMemberPointer;
3083 return false;
3084}
3085
3086/// Determine whether the lifetime conversion between the two given
3087/// qualifiers sets is nontrivial.
3088static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3089 Qualifiers ToQuals) {
3090 // Converting anything to const __unsafe_unretained is trivial.
3091 if (ToQuals.hasConst() &&
3092 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3093 return false;
3094
3095 return true;
3096}
3097
3098/// IsQualificationConversion - Determines whether the conversion from
3099/// an rvalue of type FromType to ToType is a qualification conversion
3100/// (C++ 4.4).
3101///
3102/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3103/// when the qualification conversion involves a change in the Objective-C
3104/// object lifetime.
3105bool
3106Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3107 bool CStyle, bool &ObjCLifetimeConversion) {
3108 FromType = Context.getCanonicalType(FromType);
3109 ToType = Context.getCanonicalType(ToType);
3110 ObjCLifetimeConversion = false;
3111
3112 // If FromType and ToType are the same type, this is not a
3113 // qualification conversion.
3114 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3115 return false;
3116
3117 // (C++ 4.4p4):
3118 // A conversion can add cv-qualifiers at levels other than the first
3119 // in multi-level pointers, subject to the following rules: [...]
3120 bool PreviousToQualsIncludeConst = true;
3121 bool UnwrappedAnyPointer = false;
3122 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3123 // Within each iteration of the loop, we check the qualifiers to
3124 // determine if this still looks like a qualification
3125 // conversion. Then, if all is well, we unwrap one more level of
3126 // pointers or pointers-to-members and do it all again
3127 // until there are no more pointers or pointers-to-members left to
3128 // unwrap.
3129 UnwrappedAnyPointer = true;
3130
3131 Qualifiers FromQuals = FromType.getQualifiers();
3132 Qualifiers ToQuals = ToType.getQualifiers();
3133
3134 // Ignore __unaligned qualifier if this type is void.
3135 if (ToType.getUnqualifiedType()->isVoidType())
3136 FromQuals.removeUnaligned();
3137
3138 // Objective-C ARC:
3139 // Check Objective-C lifetime conversions.
3140 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3141 UnwrappedAnyPointer) {
3142 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3143 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3144 ObjCLifetimeConversion = true;
3145 FromQuals.removeObjCLifetime();
3146 ToQuals.removeObjCLifetime();
3147 } else {
3148 // Qualification conversions cannot cast between different
3149 // Objective-C lifetime qualifiers.
3150 return false;
3151 }
3152 }
3153
3154 // Allow addition/removal of GC attributes but not changing GC attributes.
3155 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3156 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3157 FromQuals.removeObjCGCAttr();
3158 ToQuals.removeObjCGCAttr();
3159 }
3160
3161 // -- for every j > 0, if const is in cv 1,j then const is in cv
3162 // 2,j, and similarly for volatile.
3163 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3164 return false;
3165
3166 // -- if the cv 1,j and cv 2,j are different, then const is in
3167 // every cv for 0 < k < j.
3168 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3169 && !PreviousToQualsIncludeConst)
3170 return false;
3171
3172 // Keep track of whether all prior cv-qualifiers in the "to" type
3173 // include const.
3174 PreviousToQualsIncludeConst
3175 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3176 }
3177
3178 // Allows address space promotion by language rules implemented in
3179 // Type::Qualifiers::isAddressSpaceSupersetOf.
3180 Qualifiers FromQuals = FromType.getQualifiers();
3181 Qualifiers ToQuals = ToType.getQualifiers();
3182 if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3183 !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3184 return false;
3185 }
3186
3187 // We are left with FromType and ToType being the pointee types
3188 // after unwrapping the original FromType and ToType the same number
3189 // of types. If we unwrapped any pointers, and if FromType and
3190 // ToType have the same unqualified type (since we checked
3191 // qualifiers above), then this is a qualification conversion.
3192 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3193}
3194
3195/// - Determine whether this is a conversion from a scalar type to an
3196/// atomic type.
3197///
3198/// If successful, updates \c SCS's second and third steps in the conversion
3199/// sequence to finish the conversion.
3200static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3201 bool InOverloadResolution,
3202 StandardConversionSequence &SCS,
3203 bool CStyle) {
3204 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3205 if (!ToAtomic)
3206 return false;
3207
3208 StandardConversionSequence InnerSCS;
3209 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3210 InOverloadResolution, InnerSCS,
3211 CStyle, /*AllowObjCWritebackConversion=*/false))
3212 return false;
3213
3214 SCS.Second = InnerSCS.Second;
3215 SCS.setToType(1, InnerSCS.getToType(1));
3216 SCS.Third = InnerSCS.Third;
3217 SCS.QualificationIncludesObjCLifetime
3218 = InnerSCS.QualificationIncludesObjCLifetime;
3219 SCS.setToType(2, InnerSCS.getToType(2));
3220 return true;
3221}
3222
3223static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3224 CXXConstructorDecl *Constructor,
3225 QualType Type) {
3226 const FunctionProtoType *CtorType =
3227 Constructor->getType()->getAs<FunctionProtoType>();
3228 if (CtorType->getNumParams() > 0) {
3229 QualType FirstArg = CtorType->getParamType(0);
3230 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3231 return true;
3232 }
3233 return false;
3234}
3235
3236static OverloadingResult
3237IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3238 CXXRecordDecl *To,
3239 UserDefinedConversionSequence &User,
3240 OverloadCandidateSet &CandidateSet,
3241 bool AllowExplicit) {
3242 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3243 for (auto *D : S.LookupConstructors(To)) {
3244 auto Info = getConstructorInfo(D);
3245 if (!Info)
3246 continue;
3247
3248 bool Usable = !Info.Constructor->isInvalidDecl() &&
3249 S.isInitListConstructor(Info.Constructor) &&
3250 (AllowExplicit || !Info.Constructor->isExplicit());
3251 if (Usable) {
3252 // If the first argument is (a reference to) the target type,
3253 // suppress conversions.
3254 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3255 S.Context, Info.Constructor, ToType);
3256 if (Info.ConstructorTmpl)
3257 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3258 /*ExplicitArgs*/ nullptr, From,
3259 CandidateSet, SuppressUserConversions,
3260 /*PartialOverloading*/ false,
3261 AllowExplicit);
3262 else
3263 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3264 CandidateSet, SuppressUserConversions,
3265 /*PartialOverloading*/ false, AllowExplicit);
3266 }
3267 }
3268
3269 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3270
3271 OverloadCandidateSet::iterator Best;
3272 switch (auto Result =
3273 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3274 case OR_Deleted:
3275 case OR_Success: {
3276 // Record the standard conversion we used and the conversion function.
3277 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3278 QualType ThisType = Constructor->getThisType();
3279 // Initializer lists don't have conversions as such.
3280 User.Before.setAsIdentityConversion();
3281 User.HadMultipleCandidates = HadMultipleCandidates;
3282 User.ConversionFunction = Constructor;
3283 User.FoundConversionFunction = Best->FoundDecl;
3284 User.After.setAsIdentityConversion();
3285 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3286 User.After.setAllToTypes(ToType);
3287 return Result;
3288 }
3289
3290 case OR_No_Viable_Function:
3291 return OR_No_Viable_Function;
3292 case OR_Ambiguous:
3293 return OR_Ambiguous;
3294 }
3295
3296 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3296)
;
3297}
3298
3299/// Determines whether there is a user-defined conversion sequence
3300/// (C++ [over.ics.user]) that converts expression From to the type
3301/// ToType. If such a conversion exists, User will contain the
3302/// user-defined conversion sequence that performs such a conversion
3303/// and this routine will return true. Otherwise, this routine returns
3304/// false and User is unspecified.
3305///
3306/// \param AllowExplicit true if the conversion should consider C++0x
3307/// "explicit" conversion functions as well as non-explicit conversion
3308/// functions (C++0x [class.conv.fct]p2).
3309///
3310/// \param AllowObjCConversionOnExplicit true if the conversion should
3311/// allow an extra Objective-C pointer conversion on uses of explicit
3312/// constructors. Requires \c AllowExplicit to also be set.
3313static OverloadingResult
3314IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3315 UserDefinedConversionSequence &User,
3316 OverloadCandidateSet &CandidateSet,
3317 bool AllowExplicit,
3318 bool AllowObjCConversionOnExplicit) {
3319 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3319, __PRETTY_FUNCTION__))
;
3320 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3321
3322 // Whether we will only visit constructors.
3323 bool ConstructorsOnly = false;
3324
3325 // If the type we are conversion to is a class type, enumerate its
3326 // constructors.
3327 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3328 // C++ [over.match.ctor]p1:
3329 // When objects of class type are direct-initialized (8.5), or
3330 // copy-initialized from an expression of the same or a
3331 // derived class type (8.5), overload resolution selects the
3332 // constructor. [...] For copy-initialization, the candidate
3333 // functions are all the converting constructors (12.3.1) of
3334 // that class. The argument list is the expression-list within
3335 // the parentheses of the initializer.
3336 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3337 (From->getType()->getAs<RecordType>() &&
3338 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3339 ConstructorsOnly = true;
3340
3341 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3342 // We're not going to find any constructors.
3343 } else if (CXXRecordDecl *ToRecordDecl
3344 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3345
3346 Expr **Args = &From;
3347 unsigned NumArgs = 1;
3348 bool ListInitializing = false;
3349 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3350 // But first, see if there is an init-list-constructor that will work.
3351 OverloadingResult Result = IsInitializerListConstructorConversion(
3352 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3353 if (Result != OR_No_Viable_Function)
3354 return Result;
3355 // Never mind.
3356 CandidateSet.clear(
3357 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3358
3359 // If we're list-initializing, we pass the individual elements as
3360 // arguments, not the entire list.
3361 Args = InitList->getInits();
3362 NumArgs = InitList->getNumInits();
3363 ListInitializing = true;
3364 }
3365
3366 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3367 auto Info = getConstructorInfo(D);
3368 if (!Info)
3369 continue;
3370
3371 bool Usable = !Info.Constructor->isInvalidDecl();
3372 if (ListInitializing)
3373 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3374 else
3375 Usable = Usable &&
3376 Info.Constructor->isConvertingConstructor(AllowExplicit);
3377 if (Usable) {
3378 bool SuppressUserConversions = !ConstructorsOnly;
3379 if (SuppressUserConversions && ListInitializing) {
3380 SuppressUserConversions = false;
3381 if (NumArgs == 1) {
3382 // If the first argument is (a reference to) the target type,
3383 // suppress conversions.
3384 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3385 S.Context, Info.Constructor, ToType);
3386 }
3387 }
3388 if (Info.ConstructorTmpl)
3389 S.AddTemplateOverloadCandidate(
3390 Info.ConstructorTmpl, Info.FoundDecl,
3391 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3392 CandidateSet, SuppressUserConversions,
3393 /*PartialOverloading*/ false, AllowExplicit);
3394 else
3395 // Allow one user-defined conversion when user specifies a
3396 // From->ToType conversion via an static cast (c-style, etc).
3397 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3398 llvm::makeArrayRef(Args, NumArgs),
3399 CandidateSet, SuppressUserConversions,
3400 /*PartialOverloading*/ false, AllowExplicit);
3401 }
3402 }
3403 }
3404 }
3405
3406 // Enumerate conversion functions, if we're allowed to.
3407 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3408 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3409 // No conversion functions from incomplete types.
3410 } else if (const RecordType *FromRecordType =
3411 From->getType()->getAs<RecordType>()) {
3412 if (CXXRecordDecl *FromRecordDecl
3413 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3414 // Add all of the conversion functions as candidates.
3415 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3416 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3417 DeclAccessPair FoundDecl = I.getPair();
3418 NamedDecl *D = FoundDecl.getDecl();
3419 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3420 if (isa<UsingShadowDecl>(D))
3421 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3422
3423 CXXConversionDecl *Conv;
3424 FunctionTemplateDecl *ConvTemplate;
3425 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3426 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3427 else
3428 Conv = cast<CXXConversionDecl>(D);
3429
3430 if (AllowExplicit || !Conv->isExplicit()) {
3431 if (ConvTemplate)
3432 S.AddTemplateConversionCandidate(
3433 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3434 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3435 else
3436 S.AddConversionCandidate(
3437 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3438 AllowObjCConversionOnExplicit, AllowExplicit);
3439 }
3440 }
3441 }
3442 }
3443
3444 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3445
3446 OverloadCandidateSet::iterator Best;
3447 switch (auto Result =
3448 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3449 case OR_Success:
3450 case OR_Deleted:
3451 // Record the standard conversion we used and the conversion function.
3452 if (CXXConstructorDecl *Constructor
3453 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3454 // C++ [over.ics.user]p1:
3455 // If the user-defined conversion is specified by a
3456 // constructor (12.3.1), the initial standard conversion
3457 // sequence converts the source type to the type required by
3458 // the argument of the constructor.
3459 //
3460 QualType ThisType = Constructor->getThisType();
3461 if (isa<InitListExpr>(From)) {
3462 // Initializer lists don't have conversions as such.
3463 User.Before.setAsIdentityConversion();
3464 } else {
3465 if (Best->Conversions[0].isEllipsis())
3466 User.EllipsisConversion = true;
3467 else {
3468 User.Before = Best->Conversions[0].Standard;
3469 User.EllipsisConversion = false;
3470 }
3471 }
3472 User.HadMultipleCandidates = HadMultipleCandidates;
3473 User.ConversionFunction = Constructor;
3474 User.FoundConversionFunction = Best->FoundDecl;
3475 User.After.setAsIdentityConversion();
3476 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3477 User.After.setAllToTypes(ToType);
3478 return Result;
3479 }
3480 if (CXXConversionDecl *Conversion
3481 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3482 // C++ [over.ics.user]p1:
3483 //
3484 // [...] If the user-defined conversion is specified by a
3485 // conversion function (12.3.2), the initial standard
3486 // conversion sequence converts the source type to the
3487 // implicit object parameter of the conversion function.
3488 User.Before = Best->Conversions[0].Standard;
3489 User.HadMultipleCandidates = HadMultipleCandidates;
3490 User.ConversionFunction = Conversion;
3491 User.FoundConversionFunction = Best->FoundDecl;
3492 User.EllipsisConversion = false;
3493
3494 // C++ [over.ics.user]p2:
3495 // The second standard conversion sequence converts the
3496 // result of the user-defined conversion to the target type
3497 // for the sequence. Since an implicit conversion sequence
3498 // is an initialization, the special rules for
3499 // initialization by user-defined conversion apply when
3500 // selecting the best user-defined conversion for a
3501 // user-defined conversion sequence (see 13.3.3 and
3502 // 13.3.3.1).
3503 User.After = Best->FinalConversion;
3504 return Result;
3505 }
3506 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3506)
;
3507
3508 case OR_No_Viable_Function:
3509 return OR_No_Viable_Function;
3510
3511 case OR_Ambiguous:
3512 return OR_Ambiguous;
3513 }
3514
3515 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 3515)
;
3516}
3517
3518bool
3519Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3520 ImplicitConversionSequence ICS;
3521 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3522 OverloadCandidateSet::CSK_Normal);
3523 OverloadingResult OvResult =
3524 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3525 CandidateSet, false, false);
3526
3527 if (!(OvResult == OR_Ambiguous ||
3528 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3529 return false;
3530
3531 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
3532 if (OvResult == OR_Ambiguous)
3533 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3534 << From->getType() << ToType << From->getSourceRange();
3535 else { // OR_No_Viable_Function && !CandidateSet.empty()
3536 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3537 diag::err_typecheck_nonviable_condition_incomplete,
3538 From->getType(), From->getSourceRange()))
3539 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3540 << false << From->getType() << From->getSourceRange() << ToType;
3541 }
3542
3543 CandidateSet.NoteCandidates(
3544 *this, From, Cands);
3545 return true;
3546}
3547
3548/// Compare the user-defined conversion functions or constructors
3549/// of two user-defined conversion sequences to determine whether any ordering
3550/// is possible.
3551static ImplicitConversionSequence::CompareKind
3552compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3553 FunctionDecl *Function2) {
3554 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3555 return ImplicitConversionSequence::Indistinguishable;
3556
3557 // Objective-C++:
3558 // If both conversion functions are implicitly-declared conversions from
3559 // a lambda closure type to a function pointer and a block pointer,
3560 // respectively, always prefer the conversion to a function pointer,
3561 // because the function pointer is more lightweight and is more likely
3562 // to keep code working.
3563 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3564 if (!Conv1)
3565 return ImplicitConversionSequence::Indistinguishable;
3566
3567 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3568 if (!Conv2)
3569 return ImplicitConversionSequence::Indistinguishable;
3570
3571 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3572 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3573 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3574 if (Block1 != Block2)
3575 return Block1 ? ImplicitConversionSequence::Worse
3576 : ImplicitConversionSequence::Better;
3577 }
3578
3579 return ImplicitConversionSequence::Indistinguishable;
3580}
3581
3582static bool hasDeprecatedStringLiteralToCharPtrConversion(
3583 const ImplicitConversionSequence &ICS) {
3584 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3585 (ICS.isUserDefined() &&
3586 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3587}
3588
3589/// CompareImplicitConversionSequences - Compare two implicit
3590/// conversion sequences to determine whether one is better than the
3591/// other or if they are indistinguishable (C++ 13.3.3.2).
3592static ImplicitConversionSequence::CompareKind
3593CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3594 const ImplicitConversionSequence& ICS1,
3595 const ImplicitConversionSequence& ICS2)
3596{
3597 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3598 // conversion sequences (as defined in 13.3.3.1)
3599 // -- a standard conversion sequence (13.3.3.1.1) is a better
3600 // conversion sequence than a user-defined conversion sequence or
3601 // an ellipsis conversion sequence, and
3602 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3603 // conversion sequence than an ellipsis conversion sequence
3604 // (13.3.3.1.3).
3605 //
3606 // C++0x [over.best.ics]p10:
3607 // For the purpose of ranking implicit conversion sequences as
3608 // described in 13.3.3.2, the ambiguous conversion sequence is
3609 // treated as a user-defined sequence that is indistinguishable
3610 // from any other user-defined conversion sequence.
3611
3612 // String literal to 'char *' conversion has been deprecated in C++03. It has
3613 // been removed from C++11. We still accept this conversion, if it happens at
3614 // the best viable function. Otherwise, this conversion is considered worse
3615 // than ellipsis conversion. Consider this as an extension; this is not in the
3616 // standard. For example:
3617 //
3618 // int &f(...); // #1
3619 // void f(char*); // #2
3620 // void g() { int &r = f("foo"); }
3621 //
3622 // In C++03, we pick #2 as the best viable function.
3623 // In C++11, we pick #1 as the best viable function, because ellipsis
3624 // conversion is better than string-literal to char* conversion (since there
3625 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3626 // convert arguments, #2 would be the best viable function in C++11.
3627 // If the best viable function has this conversion, a warning will be issued
3628 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3629
3630 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3631 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3632 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3633 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3634 ? ImplicitConversionSequence::Worse
3635 : ImplicitConversionSequence::Better;
3636
3637 if (ICS1.getKindRank() < ICS2.getKindRank())
3638 return ImplicitConversionSequence::Better;
3639 if (ICS2.getKindRank() < ICS1.getKindRank())
3640 return ImplicitConversionSequence::Worse;
3641
3642 // The following checks require both conversion sequences to be of
3643 // the same kind.
3644 if (ICS1.getKind() != ICS2.getKind())
3645 return ImplicitConversionSequence::Indistinguishable;
3646
3647 ImplicitConversionSequence::CompareKind Result =
3648 ImplicitConversionSequence::Indistinguishable;
3649
3650 // Two implicit conversion sequences of the same form are
3651 // indistinguishable conversion sequences unless one of the
3652 // following rules apply: (C++ 13.3.3.2p3):
3653
3654 // List-initialization sequence L1 is a better conversion sequence than
3655 // list-initialization sequence L2 if:
3656 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3657 // if not that,
3658 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3659 // and N1 is smaller than N2.,
3660 // even if one of the other rules in this paragraph would otherwise apply.
3661 if (!ICS1.isBad()) {
3662 if (ICS1.isStdInitializerListElement() &&
3663 !ICS2.isStdInitializerListElement())
3664 return ImplicitConversionSequence::Better;
3665 if (!ICS1.isStdInitializerListElement() &&
3666 ICS2.isStdInitializerListElement())
3667 return ImplicitConversionSequence::Worse;
3668 }
3669
3670 if (ICS1.isStandard())
3671 // Standard conversion sequence S1 is a better conversion sequence than
3672 // standard conversion sequence S2 if [...]
3673 Result = CompareStandardConversionSequences(S, Loc,
3674 ICS1.Standard, ICS2.Standard);
3675 else if (ICS1.isUserDefined()) {
3676 // User-defined conversion sequence U1 is a better conversion
3677 // sequence than another user-defined conversion sequence U2 if
3678 // they contain the same user-defined conversion function or
3679 // constructor and if the second standard conversion sequence of
3680 // U1 is better than the second standard conversion sequence of
3681 // U2 (C++ 13.3.3.2p3).
3682 if (ICS1.UserDefined.ConversionFunction ==
3683 ICS2.UserDefined.ConversionFunction)
3684 Result = CompareStandardConversionSequences(S, Loc,
3685 ICS1.UserDefined.After,
3686 ICS2.UserDefined.After);
3687 else
3688 Result = compareConversionFunctions(S,
3689 ICS1.UserDefined.ConversionFunction,
3690 ICS2.UserDefined.ConversionFunction);
3691 }
3692
3693 return Result;
3694}
3695
3696// Per 13.3.3.2p3, compare the given standard conversion sequences to
3697// determine if one is a proper subset of the other.
3698static ImplicitConversionSequence::CompareKind
3699compareStandardConversionSubsets(ASTContext &Context,
3700 const StandardConversionSequence& SCS1,
3701 const StandardConversionSequence& SCS2) {
3702 ImplicitConversionSequence::CompareKind Result
3703 = ImplicitConversionSequence::Indistinguishable;
3704
3705 // the identity conversion sequence is considered to be a subsequence of
3706 // any non-identity conversion sequence
3707 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3708 return ImplicitConversionSequence::Better;
3709 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3710 return ImplicitConversionSequence::Worse;
3711
3712 if (SCS1.Second != SCS2.Second) {
3713 if (SCS1.Second == ICK_Identity)
3714 Result = ImplicitConversionSequence::Better;
3715 else if (SCS2.Second == ICK_Identity)
3716 Result = ImplicitConversionSequence::Worse;
3717 else
3718 return ImplicitConversionSequence::Indistinguishable;
3719 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3720 return ImplicitConversionSequence::Indistinguishable;
3721
3722 if (SCS1.Third == SCS2.Third) {
3723 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3724 : ImplicitConversionSequence::Indistinguishable;
3725 }
3726
3727 if (SCS1.Third == ICK_Identity)
3728 return Result == ImplicitConversionSequence::Worse
3729 ? ImplicitConversionSequence::Indistinguishable
3730 : ImplicitConversionSequence::Better;
3731
3732 if (SCS2.Third == ICK_Identity)
3733 return Result == ImplicitConversionSequence::Better
3734 ? ImplicitConversionSequence::Indistinguishable
3735 : ImplicitConversionSequence::Worse;
3736
3737 return ImplicitConversionSequence::Indistinguishable;
3738}
3739
3740/// Determine whether one of the given reference bindings is better
3741/// than the other based on what kind of bindings they are.
3742static bool
3743isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3744 const StandardConversionSequence &SCS2) {
3745 // C++0x [over.ics.rank]p3b4:
3746 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3747 // implicit object parameter of a non-static member function declared
3748 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3749 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3750 // lvalue reference to a function lvalue and S2 binds an rvalue
3751 // reference*.
3752 //
3753 // FIXME: Rvalue references. We're going rogue with the above edits,
3754 // because the semantics in the current C++0x working paper (N3225 at the
3755 // time of this writing) break the standard definition of std::forward
3756 // and std::reference_wrapper when dealing with references to functions.
3757 // Proposed wording changes submitted to CWG for consideration.
3758 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3759 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3760 return false;
3761
3762 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3763 SCS2.IsLvalueReference) ||
3764 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3765 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3766}
3767
3768enum class FixedEnumPromotion {
3769 None,
3770 ToUnderlyingType,
3771 ToPromotedUnderlyingType
3772};
3773
3774/// Returns kind of fixed enum promotion the \a SCS uses.
3775static FixedEnumPromotion
3776getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3777
3778 if (SCS.Second != ICK_Integral_Promotion)
3779 return FixedEnumPromotion::None;
3780
3781 QualType FromType = SCS.getFromType();
3782 if (!FromType->isEnumeralType())
3783 return FixedEnumPromotion::None;
3784
3785 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3786 if (!Enum->isFixed())
3787 return FixedEnumPromotion::None;
3788
3789 QualType UnderlyingType = Enum->getIntegerType();
3790 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3791 return FixedEnumPromotion::ToUnderlyingType;
3792
3793 return FixedEnumPromotion::ToPromotedUnderlyingType;
3794}
3795
3796/// CompareStandardConversionSequences - Compare two standard
3797/// conversion sequences to determine whether one is better than the
3798/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3799static ImplicitConversionSequence::CompareKind
3800CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3801 const StandardConversionSequence& SCS1,
3802 const StandardConversionSequence& SCS2)
3803{
3804 // Standard conversion sequence S1 is a better conversion sequence
3805 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3806
3807 // -- S1 is a proper subsequence of S2 (comparing the conversion
3808 // sequences in the canonical form defined by 13.3.3.1.1,
3809 // excluding any Lvalue Transformation; the identity conversion
3810 // sequence is considered to be a subsequence of any
3811 // non-identity conversion sequence) or, if not that,
3812 if (ImplicitConversionSequence::CompareKind CK
3813 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3814 return CK;
3815
3816 // -- the rank of S1 is better than the rank of S2 (by the rules
3817 // defined below), or, if not that,
3818 ImplicitConversionRank Rank1 = SCS1.getRank();
3819 ImplicitConversionRank Rank2 = SCS2.getRank();
3820 if (Rank1 < Rank2)
3821 return ImplicitConversionSequence::Better;
3822 else if (Rank2 < Rank1)
3823 return ImplicitConversionSequence::Worse;
3824
3825 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3826 // are indistinguishable unless one of the following rules
3827 // applies:
3828
3829 // A conversion that is not a conversion of a pointer, or
3830 // pointer to member, to bool is better than another conversion
3831 // that is such a conversion.
3832 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3833 return SCS2.isPointerConversionToBool()
3834 ? ImplicitConversionSequence::Better
3835 : ImplicitConversionSequence::Worse;
3836
3837 // C++14 [over.ics.rank]p4b2:
3838 // This is retroactively applied to C++11 by CWG 1601.
3839 //
3840 // A conversion that promotes an enumeration whose underlying type is fixed
3841 // to its underlying type is better than one that promotes to the promoted
3842 // underlying type, if the two are different.
3843 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3844 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3845 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3846 FEP1 != FEP2)
3847 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3848 ? ImplicitConversionSequence::Better
3849 : ImplicitConversionSequence::Worse;
3850
3851 // C++ [over.ics.rank]p4b2:
3852 //
3853 // If class B is derived directly or indirectly from class A,
3854 // conversion of B* to A* is better than conversion of B* to
3855 // void*, and conversion of A* to void* is better than conversion
3856 // of B* to void*.
3857 bool SCS1ConvertsToVoid
3858 = SCS1.isPointerConversionToVoidPointer(S.Context);
3859 bool SCS2ConvertsToVoid
3860 = SCS2.isPointerConversionToVoidPointer(S.Context);
3861 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3862 // Exactly one of the conversion sequences is a conversion to
3863 // a void pointer; it's the worse conversion.
3864 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3865 : ImplicitConversionSequence::Worse;
3866 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3867 // Neither conversion sequence converts to a void pointer; compare
3868 // their derived-to-base conversions.
3869 if (ImplicitConversionSequence::CompareKind DerivedCK
3870 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3871 return DerivedCK;
3872 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3873 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3874 // Both conversion sequences are conversions to void
3875 // pointers. Compare the source types to determine if there's an
3876 // inheritance relationship in their sources.
3877 QualType FromType1 = SCS1.getFromType();
3878 QualType FromType2 = SCS2.getFromType();
3879
3880 // Adjust the types we're converting from via the array-to-pointer
3881 // conversion, if we need to.
3882 if (SCS1.First == ICK_Array_To_Pointer)
3883 FromType1 = S.Context.getArrayDecayedType(FromType1);
3884 if (SCS2.First == ICK_Array_To_Pointer)
3885 FromType2 = S.Context.getArrayDecayedType(FromType2);
3886
3887 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3888 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3889
3890 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3891 return ImplicitConversionSequence::Better;
3892 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3893 return ImplicitConversionSequence::Worse;
3894
3895 // Objective-C++: If one interface is more specific than the
3896 // other, it is the better one.
3897 const ObjCObjectPointerType* FromObjCPtr1
3898 = FromType1->getAs<ObjCObjectPointerType>();
3899 const ObjCObjectPointerType* FromObjCPtr2
3900 = FromType2->getAs<ObjCObjectPointerType>();
3901 if (FromObjCPtr1 && FromObjCPtr2) {
3902 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3903 FromObjCPtr2);
3904 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3905 FromObjCPtr1);
3906 if (AssignLeft != AssignRight) {
3907 return AssignLeft? ImplicitConversionSequence::Better
3908 : ImplicitConversionSequence::Worse;
3909 }
3910 }
3911 }
3912
3913 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3914 // bullet 3).
3915 if (ImplicitConversionSequence::CompareKind QualCK
3916 = CompareQualificationConversions(S, SCS1, SCS2))
3917 return QualCK;
3918
3919 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3920 // Check for a better reference binding based on the kind of bindings.
3921 if (isBetterReferenceBindingKind(SCS1, SCS2))
3922 return ImplicitConversionSequence::Better;
3923 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3924 return ImplicitConversionSequence::Worse;
3925
3926 // C++ [over.ics.rank]p3b4:
3927 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3928 // which the references refer are the same type except for
3929 // top-level cv-qualifiers, and the type to which the reference
3930 // initialized by S2 refers is more cv-qualified than the type
3931 // to which the reference initialized by S1 refers.
3932 QualType T1 = SCS1.getToType(2);
3933 QualType T2 = SCS2.getToType(2);
3934 T1 = S.Context.getCanonicalType(T1);
3935 T2 = S.Context.getCanonicalType(T2);
3936 Qualifiers T1Quals, T2Quals;
3937 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3938 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3939 if (UnqualT1 == UnqualT2) {
3940 // Objective-C++ ARC: If the references refer to objects with different
3941 // lifetimes, prefer bindings that don't change lifetime.
3942 if (SCS1.ObjCLifetimeConversionBinding !=
3943 SCS2.ObjCLifetimeConversionBinding) {
3944 return SCS1.ObjCLifetimeConversionBinding
3945 ? ImplicitConversionSequence::Worse
3946 : ImplicitConversionSequence::Better;
3947 }
3948
3949 // If the type is an array type, promote the element qualifiers to the
3950 // type for comparison.
3951 if (isa<ArrayType>(T1) && T1Quals)
3952 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3953 if (isa<ArrayType>(T2) && T2Quals)
3954 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3955 if (T2.isMoreQualifiedThan(T1))
3956 return ImplicitConversionSequence::Better;
3957 else if (T1.isMoreQualifiedThan(T2))
3958 return ImplicitConversionSequence::Worse;
3959 }
3960 }
3961
3962 // In Microsoft mode, prefer an integral conversion to a
3963 // floating-to-integral conversion if the integral conversion
3964 // is between types of the same size.
3965 // For example:
3966 // void f(float);
3967 // void f(int);
3968 // int main {
3969 // long a;
3970 // f(a);
3971 // }
3972 // Here, MSVC will call f(int) instead of generating a compile error
3973 // as clang will do in standard mode.
3974 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3975 SCS2.Second == ICK_Floating_Integral &&
3976 S.Context.getTypeSize(SCS1.getFromType()) ==
3977 S.Context.getTypeSize(SCS1.getToType(2)))
3978 return ImplicitConversionSequence::Better;
3979
3980 // Prefer a compatible vector conversion over a lax vector conversion
3981 // For example:
3982 //
3983 // typedef float __v4sf __attribute__((__vector_size__(16)));
3984 // void f(vector float);
3985 // void f(vector signed int);
3986 // int main() {
3987 // __v4sf a;
3988 // f(a);
3989 // }
3990 // Here, we'd like to choose f(vector float) and not
3991 // report an ambiguous call error
3992 if (SCS1.Second == ICK_Vector_Conversion &&
3993 SCS2.Second == ICK_Vector_Conversion) {
3994 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3995 SCS1.getFromType(), SCS1.getToType(2));
3996 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3997 SCS2.getFromType(), SCS2.getToType(2));
3998
3999 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4000 return SCS1IsCompatibleVectorConversion
4001 ? ImplicitConversionSequence::Better
4002 : ImplicitConversionSequence::Worse;
4003 }
4004
4005 return ImplicitConversionSequence::Indistinguishable;
4006}
4007
4008/// CompareQualificationConversions - Compares two standard conversion
4009/// sequences to determine whether they can be ranked based on their
4010/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4011static ImplicitConversionSequence::CompareKind
4012CompareQualificationConversions(Sema &S,
4013 const StandardConversionSequence& SCS1,
4014 const StandardConversionSequence& SCS2) {
4015 // C++ 13.3.3.2p3:
4016 // -- S1 and S2 differ only in their qualification conversion and
4017 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4018 // cv-qualification signature of type T1 is a proper subset of
4019 // the cv-qualification signature of type T2, and S1 is not the
4020 // deprecated string literal array-to-pointer conversion (4.2).
4021 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4022 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4023 return ImplicitConversionSequence::Indistinguishable;
4024
4025 // FIXME: the example in the standard doesn't use a qualification
4026 // conversion (!)
4027 QualType T1 = SCS1.getToType(2);
4028 QualType T2 = SCS2.getToType(2);
4029 T1 = S.Context.getCanonicalType(T1);
4030 T2 = S.Context.getCanonicalType(T2);
4031 Qualifiers T1Quals, T2Quals;
4032 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4033 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4034
4035 // If the types are the same, we won't learn anything by unwrapped
4036 // them.
4037 if (UnqualT1 == UnqualT2)
4038 return ImplicitConversionSequence::Indistinguishable;
4039
4040 // If the type is an array type, promote the element qualifiers to the type
4041 // for comparison.
4042 if (isa<ArrayType>(T1) && T1Quals)
4043 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4044 if (isa<ArrayType>(T2) && T2Quals)
4045 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4046
4047 ImplicitConversionSequence::CompareKind Result
4048 = ImplicitConversionSequence::Indistinguishable;
4049
4050 // Objective-C++ ARC:
4051 // Prefer qualification conversions not involving a change in lifetime
4052 // to qualification conversions that do not change lifetime.
4053 if (SCS1.QualificationIncludesObjCLifetime !=
4054 SCS2.QualificationIncludesObjCLifetime) {
4055 Result = SCS1.QualificationIncludesObjCLifetime
4056 ? ImplicitConversionSequence::Worse
4057 : ImplicitConversionSequence::Better;
4058 }
4059
4060 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4061 // Within each iteration of the loop, we check the qualifiers to
4062 // determine if this still looks like a qualification
4063 // conversion. Then, if all is well, we unwrap one more level of
4064 // pointers or pointers-to-members and do it all again
4065 // until there are no more pointers or pointers-to-members left
4066 // to unwrap. This essentially mimics what
4067 // IsQualificationConversion does, but here we're checking for a
4068 // strict subset of qualifiers.
4069 if (T1.getQualifiers().withoutObjCLifetime() ==
4070 T2.getQualifiers().withoutObjCLifetime())
4071 // The qualifiers are the same, so this doesn't tell us anything
4072 // about how the sequences rank.
4073 // ObjC ownership quals are omitted above as they interfere with
4074 // the ARC overload rule.
4075 ;
4076 else if (T2.isMoreQualifiedThan(T1)) {
4077 // T1 has fewer qualifiers, so it could be the better sequence.
4078 if (Result == ImplicitConversionSequence::Worse)
4079 // Neither has qualifiers that are a subset of the other's
4080 // qualifiers.
4081 return ImplicitConversionSequence::Indistinguishable;
4082
4083 Result = ImplicitConversionSequence::Better;
4084 } else if (T1.isMoreQualifiedThan(T2)) {
4085 // T2 has fewer qualifiers, so it could be the better sequence.
4086 if (Result == ImplicitConversionSequence::Better)
4087 // Neither has qualifiers that are a subset of the other's
4088 // qualifiers.
4089 return ImplicitConversionSequence::Indistinguishable;
4090
4091 Result = ImplicitConversionSequence::Worse;
4092 } else {
4093 // Qualifiers are disjoint.
4094 return ImplicitConversionSequence::Indistinguishable;
4095 }
4096
4097 // If the types after this point are equivalent, we're done.
4098 if (S.Context.hasSameUnqualifiedType(T1, T2))
4099 break;
4100 }
4101
4102 // Check that the winning standard conversion sequence isn't using
4103 // the deprecated string literal array to pointer conversion.
4104 switch (Result) {
4105 case ImplicitConversionSequence::Better:
4106 if (SCS1.DeprecatedStringLiteralToCharPtr)
4107 Result = ImplicitConversionSequence::Indistinguishable;
4108 break;
4109
4110 case ImplicitConversionSequence::Indistinguishable:
4111 break;
4112
4113 case ImplicitConversionSequence::Worse:
4114 if (SCS2.DeprecatedStringLiteralToCharPtr)
4115 Result = ImplicitConversionSequence::Indistinguishable;
4116 break;
4117 }
4118
4119 return Result;
4120}
4121
4122/// CompareDerivedToBaseConversions - Compares two standard conversion
4123/// sequences to determine whether they can be ranked based on their
4124/// various kinds of derived-to-base conversions (C++
4125/// [over.ics.rank]p4b3). As part of these checks, we also look at
4126/// conversions between Objective-C interface types.
4127static ImplicitConversionSequence::CompareKind
4128CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4129 const StandardConversionSequence& SCS1,
4130 const StandardConversionSequence& SCS2) {
4131 QualType FromType1 = SCS1.getFromType();
4132 QualType ToType1 = SCS1.getToType(1);
4133 QualType FromType2 = SCS2.getFromType();
4134 QualType ToType2 = SCS2.getToType(1);
4135
4136 // Adjust the types we're converting from via the array-to-pointer
4137 // conversion, if we need to.
4138 if (SCS1.First == ICK_Array_To_Pointer)
4139 FromType1 = S.Context.getArrayDecayedType(FromType1);
4140 if (SCS2.First == ICK_Array_To_Pointer)
4141 FromType2 = S.Context.getArrayDecayedType(FromType2);
4142
4143 // Canonicalize all of the types.
4144 FromType1 = S.Context.getCanonicalType(FromType1);
4145 ToType1 = S.Context.getCanonicalType(ToType1);
4146 FromType2 = S.Context.getCanonicalType(FromType2);
4147 ToType2 = S.Context.getCanonicalType(ToType2);
4148
4149 // C++ [over.ics.rank]p4b3:
4150 //
4151 // If class B is derived directly or indirectly from class A and
4152 // class C is derived directly or indirectly from B,
4153 //
4154 // Compare based on pointer conversions.
4155 if (SCS1.Second == ICK_Pointer_Conversion &&
4156 SCS2.Second == ICK_Pointer_Conversion &&
4157 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4158 FromType1->isPointerType() && FromType2->isPointerType() &&
4159 ToType1->isPointerType() && ToType2->isPointerType()) {
4160 QualType FromPointee1 =
4161 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4162 QualType ToPointee1 =
4163 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4164 QualType FromPointee2 =
4165 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4166 QualType ToPointee2 =
4167 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4168
4169 // -- conversion of C* to B* is better than conversion of C* to A*,
4170 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4171 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4172 return ImplicitConversionSequence::Better;
4173 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4174 return ImplicitConversionSequence::Worse;
4175 }
4176
4177 // -- conversion of B* to A* is better than conversion of C* to A*,
4178 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4179 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4180 return ImplicitConversionSequence::Better;
4181 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4182 return ImplicitConversionSequence::Worse;
4183 }
4184 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4185 SCS2.Second == ICK_Pointer_Conversion) {
4186 const ObjCObjectPointerType *FromPtr1
4187 = FromType1->getAs<ObjCObjectPointerType>();
4188 const ObjCObjectPointerType *FromPtr2
4189 = FromType2->getAs<ObjCObjectPointerType>();
4190 const ObjCObjectPointerType *ToPtr1
4191 = ToType1->getAs<ObjCObjectPointerType>();
4192 const ObjCObjectPointerType *ToPtr2
4193 = ToType2->getAs<ObjCObjectPointerType>();
4194
4195 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4196 // Apply the same conversion ranking rules for Objective-C pointer types
4197 // that we do for C++ pointers to class types. However, we employ the
4198 // Objective-C pseudo-subtyping relationship used for assignment of
4199 // Objective-C pointer types.
4200 bool FromAssignLeft
4201 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4202 bool FromAssignRight
4203 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4204 bool ToAssignLeft
4205 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4206 bool ToAssignRight
4207 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4208
4209 // A conversion to an a non-id object pointer type or qualified 'id'
4210 // type is better than a conversion to 'id'.
4211 if (ToPtr1->isObjCIdType() &&
4212 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4213 return ImplicitConversionSequence::Worse;
4214 if (ToPtr2->isObjCIdType() &&
4215 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4216 return ImplicitConversionSequence::Better;
4217
4218 // A conversion to a non-id object pointer type is better than a
4219 // conversion to a qualified 'id' type
4220 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4221 return ImplicitConversionSequence::Worse;
4222 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4223 return ImplicitConversionSequence::Better;
4224
4225 // A conversion to an a non-Class object pointer type or qualified 'Class'
4226 // type is better than a conversion to 'Class'.
4227 if (ToPtr1->isObjCClassType() &&
4228 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4229 return ImplicitConversionSequence::Worse;
4230 if (ToPtr2->isObjCClassType() &&
4231 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4232 return ImplicitConversionSequence::Better;
4233
4234 // A conversion to a non-Class object pointer type is better than a
4235 // conversion to a qualified 'Class' type.
4236 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4237 return ImplicitConversionSequence::Worse;
4238 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4239 return ImplicitConversionSequence::Better;
4240
4241 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4242 if (S.Context.hasSameType(FromType1, FromType2) &&
4243 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4244 (ToAssignLeft != ToAssignRight)) {
4245 if (FromPtr1->isSpecialized()) {
4246 // "conversion of B<A> * to B * is better than conversion of B * to
4247 // C *.
4248 bool IsFirstSame =
4249 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4250 bool IsSecondSame =
4251 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4252 if (IsFirstSame) {
4253 if (!IsSecondSame)
4254 return ImplicitConversionSequence::Better;
4255 } else if (IsSecondSame)
4256 return ImplicitConversionSequence::Worse;
4257 }
4258 return ToAssignLeft? ImplicitConversionSequence::Worse
4259 : ImplicitConversionSequence::Better;
4260 }
4261
4262 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4263 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4264 (FromAssignLeft != FromAssignRight))
4265 return FromAssignLeft? ImplicitConversionSequence::Better
4266 : ImplicitConversionSequence::Worse;
4267 }
4268 }
4269
4270 // Ranking of member-pointer types.
4271 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4272 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4273 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4274 const MemberPointerType * FromMemPointer1 =
4275 FromType1->getAs<MemberPointerType>();
4276 const MemberPointerType * ToMemPointer1 =
4277 ToType1->getAs<MemberPointerType>();
4278 const MemberPointerType * FromMemPointer2 =
4279 FromType2->getAs<MemberPointerType>();
4280 const MemberPointerType * ToMemPointer2 =
4281 ToType2->getAs<MemberPointerType>();
4282 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4283 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4284 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4285 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4286 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4287 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4288 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4289 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4290 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4291 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4292 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4293 return ImplicitConversionSequence::Worse;
4294 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4295 return ImplicitConversionSequence::Better;
4296 }
4297 // conversion of B::* to C::* is better than conversion of A::* to C::*
4298 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4299 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4300 return ImplicitConversionSequence::Better;
4301 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4302 return ImplicitConversionSequence::Worse;
4303 }
4304 }
4305
4306 if (SCS1.Second == ICK_Derived_To_Base) {
4307 // -- conversion of C to B is better than conversion of C to A,
4308 // -- binding of an expression of type C to a reference of type
4309 // B& is better than binding an expression of type C to a
4310 // reference of type A&,
4311 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4312 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4313 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4314 return ImplicitConversionSequence::Better;
4315 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4316 return ImplicitConversionSequence::Worse;
4317 }
4318
4319 // -- conversion of B to A is better than conversion of C to A.
4320 // -- binding of an expression of type B to a reference of type
4321 // A& is better than binding an expression of type C to a
4322 // reference of type A&,
4323 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4324 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4325 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4326 return ImplicitConversionSequence::Better;
4327 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4328 return ImplicitConversionSequence::Worse;
4329 }
4330 }
4331
4332 return ImplicitConversionSequence::Indistinguishable;
4333}
4334
4335/// Determine whether the given type is valid, e.g., it is not an invalid
4336/// C++ class.
4337static bool isTypeValid(QualType T) {
4338 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4339 return !Record->isInvalidDecl();
4340
4341 return true;
4342}
4343
4344/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4345/// determine whether they are reference-related,
4346/// reference-compatible, reference-compatible with added
4347/// qualification, or incompatible, for use in C++ initialization by
4348/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4349/// type, and the first type (T1) is the pointee type of the reference
4350/// type being initialized.
4351Sema::ReferenceCompareResult
4352Sema::CompareReferenceRelationship(SourceLocation Loc,
4353 QualType OrigT1, QualType OrigT2,
4354 bool &DerivedToBase,
4355 bool &ObjCConversion,
4356 bool &ObjCLifetimeConversion) {
4357 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4358, __PRETTY_FUNCTION__))
4358 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4358, __PRETTY_FUNCTION__))
;
4359 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4359, __PRETTY_FUNCTION__))
;
4360
4361 QualType T1 = Context.getCanonicalType(OrigT1);
4362 QualType T2 = Context.getCanonicalType(OrigT2);
4363 Qualifiers T1Quals, T2Quals;
4364 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4365 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4366
4367 // C++ [dcl.init.ref]p4:
4368 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4369 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4370 // T1 is a base class of T2.
4371 DerivedToBase = false;
4372 ObjCConversion = false;
4373 ObjCLifetimeConversion = false;
4374 QualType ConvertedT2;
4375 if (UnqualT1 == UnqualT2) {
4376 // Nothing to do.
4377 } else if (isCompleteType(Loc, OrigT2) &&
4378 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4379 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4380 DerivedToBase = true;
4381 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4382 UnqualT2->isObjCObjectOrInterfaceType() &&
4383 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4384 ObjCConversion = true;
4385 else if (UnqualT2->isFunctionType() &&
4386 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4387 // C++1z [dcl.init.ref]p4:
4388 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4389 // function" and T1 is "function"
4390 //
4391 // We extend this to also apply to 'noreturn', so allow any function
4392 // conversion between function types.
4393 return Ref_Compatible;
4394 else
4395 return Ref_Incompatible;
4396
4397 // At this point, we know that T1 and T2 are reference-related (at
4398 // least).
4399
4400 // If the type is an array type, promote the element qualifiers to the type
4401 // for comparison.
4402 if (isa<ArrayType>(T1) && T1Quals)
4403 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4404 if (isa<ArrayType>(T2) && T2Quals)
4405 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4406
4407 // C++ [dcl.init.ref]p4:
4408 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4409 // reference-related to T2 and cv1 is the same cv-qualification
4410 // as, or greater cv-qualification than, cv2. For purposes of
4411 // overload resolution, cases for which cv1 is greater
4412 // cv-qualification than cv2 are identified as
4413 // reference-compatible with added qualification (see 13.3.3.2).
4414 //
4415 // Note that we also require equivalence of Objective-C GC and address-space
4416 // qualifiers when performing these computations, so that e.g., an int in
4417 // address space 1 is not reference-compatible with an int in address
4418 // space 2.
4419 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4420 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4421 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4422 ObjCLifetimeConversion = true;
4423
4424 T1Quals.removeObjCLifetime();
4425 T2Quals.removeObjCLifetime();
4426 }
4427
4428 // MS compiler ignores __unaligned qualifier for references; do the same.
4429 T1Quals.removeUnaligned();
4430 T2Quals.removeUnaligned();
4431
4432 if (T1Quals.compatiblyIncludes(T2Quals))
4433 return Ref_Compatible;
4434 else
4435 return Ref_Related;
4436}
4437
4438/// Look for a user-defined conversion to a value reference-compatible
4439/// with DeclType. Return true if something definite is found.
4440static bool
4441FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4442 QualType DeclType, SourceLocation DeclLoc,
4443 Expr *Init, QualType T2, bool AllowRvalues,
4444 bool AllowExplicit) {
4445 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4445, __PRETTY_FUNCTION__))
;
4446 CXXRecordDecl *T2RecordDecl
4447 = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4448
4449 OverloadCandidateSet CandidateSet(
4450 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4451 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4452 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4453 NamedDecl *D = *I;
4454 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4455 if (isa<UsingShadowDecl>(D))
4456 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4457
4458 FunctionTemplateDecl *ConvTemplate
4459 = dyn_cast<FunctionTemplateDecl>(D);
4460 CXXConversionDecl *Conv;
4461 if (ConvTemplate)
4462 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4463 else
4464 Conv = cast<CXXConversionDecl>(D);
4465
4466 // If this is an explicit conversion, and we're not allowed to consider
4467 // explicit conversions, skip it.
4468 if (!AllowExplicit && Conv->isExplicit())
4469 continue;
4470
4471 if (AllowRvalues) {
4472 bool DerivedToBase = false;
4473 bool ObjCConversion = false;
4474 bool ObjCLifetimeConversion = false;
4475
4476 // If we are initializing an rvalue reference, don't permit conversion
4477 // functions that return lvalues.
4478 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4479 const ReferenceType *RefType
4480 = Conv->getConversionType()->getAs<LValueReferenceType>();
4481 if (RefType && !RefType->getPointeeType()->isFunctionType())
4482 continue;
4483 }
4484
4485 if (!ConvTemplate &&
4486 S.CompareReferenceRelationship(
4487 DeclLoc,
4488 Conv->getConversionType().getNonReferenceType()
4489 .getUnqualifiedType(),
4490 DeclType.getNonReferenceType().getUnqualifiedType(),
4491 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4492 Sema::Ref_Incompatible)
4493 continue;
4494 } else {
4495 // If the conversion function doesn't return a reference type,
4496 // it can't be considered for this conversion. An rvalue reference
4497 // is only acceptable if its referencee is a function type.
4498
4499 const ReferenceType *RefType =
4500 Conv->getConversionType()->getAs<ReferenceType>();
4501 if (!RefType ||
4502 (!RefType->isLValueReferenceType() &&
4503 !RefType->getPointeeType()->isFunctionType()))
4504 continue;
4505 }
4506
4507 if (ConvTemplate)
4508 S.AddTemplateConversionCandidate(
4509 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4510 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4511 else
4512 S.AddConversionCandidate(
4513 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4514 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4515 }
4516
4517 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4518
4519 OverloadCandidateSet::iterator Best;
4520 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4521 case OR_Success:
4522 // C++ [over.ics.ref]p1:
4523 //
4524 // [...] If the parameter binds directly to the result of
4525 // applying a conversion function to the argument
4526 // expression, the implicit conversion sequence is a
4527 // user-defined conversion sequence (13.3.3.1.2), with the
4528 // second standard conversion sequence either an identity
4529 // conversion or, if the conversion function returns an
4530 // entity of a type that is a derived class of the parameter
4531 // type, a derived-to-base Conversion.
4532 if (!Best->FinalConversion.DirectBinding)
4533 return false;
4534
4535 ICS.setUserDefined();
4536 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4537 ICS.UserDefined.After = Best->FinalConversion;
4538 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4539 ICS.UserDefined.ConversionFunction = Best->Function;
4540 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4541 ICS.UserDefined.EllipsisConversion = false;
4542 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4544, __PRETTY_FUNCTION__))
4543 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4544, __PRETTY_FUNCTION__))
4544 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4544, __PRETTY_FUNCTION__))
;
4545 return true;
4546
4547 case OR_Ambiguous:
4548 ICS.setAmbiguous();
4549 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4550 Cand != CandidateSet.end(); ++Cand)
4551 if (Cand->Viable)
4552 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4553 return true;
4554
4555 case OR_No_Viable_Function:
4556 case OR_Deleted:
4557 // There was no suitable conversion, or we found a deleted
4558 // conversion; continue with other checks.
4559 return false;
4560 }
4561
4562 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4562)
;
4563}
4564
4565/// Compute an implicit conversion sequence for reference
4566/// initialization.
4567static ImplicitConversionSequence
4568TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4569 SourceLocation DeclLoc,
4570 bool SuppressUserConversions,
4571 bool AllowExplicit) {
4572 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 4572, __PRETTY_FUNCTION__))
;
4573
4574 // Most paths end in a failed conversion.
4575 ImplicitConversionSequence ICS;
4576 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4577
4578 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4579 QualType T2 = Init->getType();
4580
4581 // If the initializer is the address of an overloaded function, try
4582 // to resolve the overloaded function. If all goes well, T2 is the
4583 // type of the resulting function.
4584 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4585 DeclAccessPair Found;
4586 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4587 false, Found))
4588 T2 = Fn->getType();
4589 }
4590
4591 // Compute some basic properties of the types and the initializer.
4592 bool isRValRef = DeclType->isRValueReferenceType();
4593 bool DerivedToBase = false;
4594 bool ObjCConversion = false;
4595 bool ObjCLifetimeConversion = false;
4596 Expr::Classification InitCategory = Init->Classify(S.Context);
4597 Sema::ReferenceCompareResult RefRelationship
4598 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4599 ObjCConversion, ObjCLifetimeConversion);
4600
4601
4602 // C++0x [dcl.init.ref]p5:
4603 // A reference to type "cv1 T1" is initialized by an expression
4604 // of type "cv2 T2" as follows:
4605
4606 // -- If reference is an lvalue reference and the initializer expression
4607 if (!isRValRef) {
4608 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4609 // reference-compatible with "cv2 T2," or
4610 //
4611 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4612 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4613 // C++ [over.ics.ref]p1:
4614 // When a parameter of reference type binds directly (8.5.3)
4615 // to an argument expression, the implicit conversion sequence
4616 // is the identity conversion, unless the argument expression
4617 // has a type that is a derived class of the parameter type,
4618 // in which case the implicit conversion sequence is a
4619 // derived-to-base Conversion (13.3.3.1).
4620 ICS.setStandard();
4621 ICS.Standard.First = ICK_Identity;
4622 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4623 : ObjCConversion? ICK_Compatible_Conversion
4624 : ICK_Identity;
4625 ICS.Standard.Third = ICK_Identity;
4626 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4627 ICS.Standard.setToType(0, T2);
4628 ICS.Standard.setToType(1, T1);
4629 ICS.Standard.setToType(2, T1);
4630 ICS.Standard.ReferenceBinding = true;
4631 ICS.Standard.DirectBinding = true;
4632 ICS.Standard.IsLvalueReference = !isRValRef;
4633 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4634 ICS.Standard.BindsToRvalue = false;
4635 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4636 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4637 ICS.Standard.CopyConstructor = nullptr;
4638 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4639
4640 // Nothing more to do: the inaccessibility/ambiguity check for
4641 // derived-to-base conversions is suppressed when we're
4642 // computing the implicit conversion sequence (C++
4643 // [over.best.ics]p2).
4644 return ICS;
4645 }
4646
4647 // -- has a class type (i.e., T2 is a class type), where T1 is
4648 // not reference-related to T2, and can be implicitly
4649 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4650 // is reference-compatible with "cv3 T3" 92) (this
4651 // conversion is selected by enumerating the applicable
4652 // conversion functions (13.3.1.6) and choosing the best
4653 // one through overload resolution (13.3)),
4654 if (!SuppressUserConversions && T2->isRecordType() &&
4655 S.isCompleteType(DeclLoc, T2) &&
4656 RefRelationship == Sema::Ref_Incompatible) {
4657 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4658 Init, T2, /*AllowRvalues=*/false,
4659 AllowExplicit))
4660 return ICS;
4661 }
4662 }
4663
4664 // -- Otherwise, the reference shall be an lvalue reference to a
4665 // non-volatile const type (i.e., cv1 shall be const), or the reference
4666 // shall be an rvalue reference.
4667 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4668 return ICS;
4669
4670 // -- If the initializer expression
4671 //
4672 // -- is an xvalue, class prvalue, array prvalue or function
4673 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4674 if (RefRelationship == Sema::Ref_Compatible &&
4675 (InitCategory.isXValue() ||
4676 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4677 (InitCategory.isLValue() && T2->isFunctionType()))) {
4678 ICS.setStandard();
4679 ICS.Standard.First = ICK_Identity;
4680 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4681 : ObjCConversion? ICK_Compatible_Conversion
4682 : ICK_Identity;
4683 ICS.Standard.Third = ICK_Identity;
4684 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4685 ICS.Standard.setToType(0, T2);
4686 ICS.Standard.setToType(1, T1);
4687 ICS.Standard.setToType(2, T1);
4688 ICS.Standard.ReferenceBinding = true;
4689 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4690 // binding unless we're binding to a class prvalue.
4691 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4692 // allow the use of rvalue references in C++98/03 for the benefit of
4693 // standard library implementors; therefore, we need the xvalue check here.
4694 ICS.Standard.DirectBinding =
4695 S.getLangOpts().CPlusPlus11 ||
4696 !(InitCategory.isPRValue() || T2->isRecordType());
4697 ICS.Standard.IsLvalueReference = !isRValRef;
4698 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4699 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4700 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4701 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4702 ICS.Standard.CopyConstructor = nullptr;
4703 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4704 return ICS;
4705 }
4706
4707 // -- has a class type (i.e., T2 is a class type), where T1 is not
4708 // reference-related to T2, and can be implicitly converted to
4709 // an xvalue, class prvalue, or function lvalue of type
4710 // "cv3 T3", where "cv1 T1" is reference-compatible with
4711 // "cv3 T3",
4712 //
4713 // then the reference is bound to the value of the initializer
4714 // expression in the first case and to the result of the conversion
4715 // in the second case (or, in either case, to an appropriate base
4716 // class subobject).
4717 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4718 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4719 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4720 Init, T2, /*AllowRvalues=*/true,
4721 AllowExplicit)) {
4722 // In the second case, if the reference is an rvalue reference
4723 // and the second standard conversion sequence of the
4724 // user-defined conversion sequence includes an lvalue-to-rvalue
4725 // conversion, the program is ill-formed.
4726 if (ICS.isUserDefined() && isRValRef &&
4727 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4728 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4729
4730 return ICS;
4731 }
4732
4733 // A temporary of function type cannot be created; don't even try.
4734 if (T1->isFunctionType())
4735 return ICS;
4736
4737 // -- Otherwise, a temporary of type "cv1 T1" is created and
4738 // initialized from the initializer expression using the
4739 // rules for a non-reference copy initialization (8.5). The
4740 // reference is then bound to the temporary. If T1 is
4741 // reference-related to T2, cv1 must be the same
4742 // cv-qualification as, or greater cv-qualification than,
4743 // cv2; otherwise, the program is ill-formed.
4744 if (RefRelationship == Sema::Ref_Related) {
4745 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4746 // we would be reference-compatible or reference-compatible with
4747 // added qualification. But that wasn't the case, so the reference
4748 // initialization fails.
4749 //
4750 // Note that we only want to check address spaces and cvr-qualifiers here.
4751 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4752 Qualifiers T1Quals = T1.getQualifiers();
4753 Qualifiers T2Quals = T2.getQualifiers();
4754 T1Quals.removeObjCGCAttr();
4755 T1Quals.removeObjCLifetime();
4756 T2Quals.removeObjCGCAttr();
4757 T2Quals.removeObjCLifetime();
4758 // MS compiler ignores __unaligned qualifier for references; do the same.
4759 T1Quals.removeUnaligned();
4760 T2Quals.removeUnaligned();
4761 if (!T1Quals.compatiblyIncludes(T2Quals))
4762 return ICS;
4763 }
4764
4765 // If at least one of the types is a class type, the types are not
4766 // related, and we aren't allowed any user conversions, the
4767 // reference binding fails. This case is important for breaking
4768 // recursion, since TryImplicitConversion below will attempt to
4769 // create a temporary through the use of a copy constructor.
4770 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4771 (T1->isRecordType() || T2->isRecordType()))
4772 return ICS;
4773
4774 // If T1 is reference-related to T2 and the reference is an rvalue
4775 // reference, the initializer expression shall not be an lvalue.
4776 if (RefRelationship >= Sema::Ref_Related &&
4777 isRValRef && Init->Classify(S.Context).isLValue())
4778 return ICS;
4779
4780 // C++ [over.ics.ref]p2:
4781 // When a parameter of reference type is not bound directly to
4782 // an argument expression, the conversion sequence is the one
4783 // required to convert the argument expression to the
4784 // underlying type of the reference according to
4785 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4786 // to copy-initializing a temporary of the underlying type with
4787 // the argument expression. Any difference in top-level
4788 // cv-qualification is subsumed by the initialization itself
4789 // and does not constitute a conversion.
4790 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4791 /*AllowExplicit=*/false,
4792 /*InOverloadResolution=*/false,
4793 /*CStyle=*/false,
4794 /*AllowObjCWritebackConversion=*/false,
4795 /*AllowObjCConversionOnExplicit=*/false);
4796
4797 // Of course, that's still a reference binding.
4798 if (ICS.isStandard()) {
4799 ICS.Standard.ReferenceBinding = true;
4800 ICS.Standard.IsLvalueReference = !isRValRef;
4801 ICS.Standard.BindsToFunctionLvalue = false;
4802 ICS.Standard.BindsToRvalue = true;
4803 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4804 ICS.Standard.ObjCLifetimeConversionBinding = false;
4805 } else if (ICS.isUserDefined()) {
4806 const ReferenceType *LValRefType =
4807 ICS.UserDefined.ConversionFunction->getReturnType()
4808 ->getAs<LValueReferenceType>();
4809
4810 // C++ [over.ics.ref]p3:
4811 // Except for an implicit object parameter, for which see 13.3.1, a
4812 // standard conversion sequence cannot be formed if it requires [...]
4813 // binding an rvalue reference to an lvalue other than a function
4814 // lvalue.
4815 // Note that the function case is not possible here.
4816 if (DeclType->isRValueReferenceType() && LValRefType) {
4817 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4818 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4819 // reference to an rvalue!
4820 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4821 return ICS;
4822 }
4823
4824 ICS.UserDefined.After.ReferenceBinding = true;
4825 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4826 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4827 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4828 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4829 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4830 }
4831
4832 return ICS;
4833}
4834
4835static ImplicitConversionSequence
4836TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4837 bool SuppressUserConversions,
4838 bool InOverloadResolution,
4839 bool AllowObjCWritebackConversion,
4840 bool AllowExplicit = false);
4841
4842/// TryListConversion - Try to copy-initialize a value of type ToType from the
4843/// initializer list From.
4844static ImplicitConversionSequence
4845TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4846 bool SuppressUserConversions,
4847 bool InOverloadResolution,
4848 bool AllowObjCWritebackConversion) {
4849 // C++11 [over.ics.list]p1:
4850 // When an argument is an initializer list, it is not an expression and
4851 // special rules apply for converting it to a parameter type.
4852
4853 ImplicitConversionSequence Result;
4854 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4855
4856 // We need a complete type for what follows. Incomplete types can never be
4857 // initialized from init lists.
4858 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4859 return Result;
4860
4861 // Per DR1467:
4862 // If the parameter type is a class X and the initializer list has a single
4863 // element of type cv U, where U is X or a class derived from X, the
4864 // implicit conversion sequence is the one required to convert the element
4865 // to the parameter type.
4866 //
4867 // Otherwise, if the parameter type is a character array [... ]
4868 // and the initializer list has a single element that is an
4869 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4870 // implicit conversion sequence is the identity conversion.
4871 if (From->getNumInits() == 1) {
4872 if (ToType->isRecordType()) {
4873 QualType InitType = From->getInit(0)->getType();
4874 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4875 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4876 return TryCopyInitialization(S, From->getInit(0), ToType,
4877 SuppressUserConversions,
4878 InOverloadResolution,
4879 AllowObjCWritebackConversion);
4880 }
4881 // FIXME: Check the other conditions here: array of character type,
4882 // initializer is a string literal.
4883 if (ToType->isArrayType()) {
4884 InitializedEntity Entity =
4885 InitializedEntity::InitializeParameter(S.Context, ToType,
4886 /*Consumed=*/false);
4887 if (S.CanPerformCopyInitialization(Entity, From)) {
4888 Result.setStandard();
4889 Result.Standard.setAsIdentityConversion();
4890 Result.Standard.setFromType(ToType);
4891 Result.Standard.setAllToTypes(ToType);
4892 return Result;
4893 }
4894 }
4895 }
4896
4897 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4898 // C++11 [over.ics.list]p2:
4899 // If the parameter type is std::initializer_list<X> or "array of X" and
4900 // all the elements can be implicitly converted to X, the implicit
4901 // conversion sequence is the worst conversion necessary to convert an
4902 // element of the list to X.
4903 //
4904 // C++14 [over.ics.list]p3:
4905 // Otherwise, if the parameter type is "array of N X", if the initializer
4906 // list has exactly N elements or if it has fewer than N elements and X is
4907 // default-constructible, and if all the elements of the initializer list
4908 // can be implicitly converted to X, the implicit conversion sequence is
4909 // the worst conversion necessary to convert an element of the list to X.
4910 //
4911 // FIXME: We're missing a lot of these checks.
4912 bool toStdInitializerList = false;
4913 QualType X;
4914 if (ToType->isArrayType())
4915 X = S.Context.getAsArrayType(ToType)->getElementType();
4916 else
4917 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4918 if (!X.isNull()) {
4919 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4920 Expr *Init = From->getInit(i);
4921 ImplicitConversionSequence ICS =
4922 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4923 InOverloadResolution,
4924 AllowObjCWritebackConversion);
4925 // If a single element isn't convertible, fail.
4926 if (ICS.isBad()) {
4927 Result = ICS;
4928 break;
4929 }
4930 // Otherwise, look for the worst conversion.
4931 if (Result.isBad() || CompareImplicitConversionSequences(
4932 S, From->getBeginLoc(), ICS, Result) ==
4933 ImplicitConversionSequence::Worse)
4934 Result = ICS;
4935 }
4936
4937 // For an empty list, we won't have computed any conversion sequence.
4938 // Introduce the identity conversion sequence.
4939 if (From->getNumInits() == 0) {
4940 Result.setStandard();
4941 Result.Standard.setAsIdentityConversion();
4942 Result.Standard.setFromType(ToType);
4943 Result.Standard.setAllToTypes(ToType);
4944 }
4945
4946 Result.setStdInitializerListElement(toStdInitializerList);
4947 return Result;
4948 }
4949
4950 // C++14 [over.ics.list]p4:
4951 // C++11 [over.ics.list]p3:
4952 // Otherwise, if the parameter is a non-aggregate class X and overload
4953 // resolution chooses a single best constructor [...] the implicit
4954 // conversion sequence is a user-defined conversion sequence. If multiple
4955 // constructors are viable but none is better than the others, the
4956 // implicit conversion sequence is a user-defined conversion sequence.
4957 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4958 // This function can deal with initializer lists.
4959 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4960 /*AllowExplicit=*/false,
4961 InOverloadResolution, /*CStyle=*/false,
4962 AllowObjCWritebackConversion,
4963 /*AllowObjCConversionOnExplicit=*/false);
4964 }
4965
4966 // C++14 [over.ics.list]p5:
4967 // C++11 [over.ics.list]p4:
4968 // Otherwise, if the parameter has an aggregate type which can be
4969 // initialized from the initializer list [...] the implicit conversion
4970 // sequence is a user-defined conversion sequence.
4971 if (ToType->isAggregateType()) {
4972 // Type is an aggregate, argument is an init list. At this point it comes
4973 // down to checking whether the initialization works.
4974 // FIXME: Find out whether this parameter is consumed or not.
4975 InitializedEntity Entity =
4976 InitializedEntity::InitializeParameter(S.Context, ToType,
4977 /*Consumed=*/false);
4978 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
4979 From)) {
4980 Result.setUserDefined();
4981 Result.UserDefined.Before.setAsIdentityConversion();
4982 // Initializer lists don't have a type.
4983 Result.UserDefined.Before.setFromType(QualType());
4984 Result.UserDefined.Before.setAllToTypes(QualType());
4985
4986 Result.UserDefined.After.setAsIdentityConversion();
4987 Result.UserDefined.After.setFromType(ToType);
4988 Result.UserDefined.After.setAllToTypes(ToType);
4989 Result.UserDefined.ConversionFunction = nullptr;
4990 }
4991 return Result;
4992 }
4993
4994 // C++14 [over.ics.list]p6:
4995 // C++11 [over.ics.list]p5:
4996 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4997 if (ToType->isReferenceType()) {
4998 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4999 // mention initializer lists in any way. So we go by what list-
5000 // initialization would do and try to extrapolate from that.
5001
5002 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5003
5004 // If the initializer list has a single element that is reference-related
5005 // to the parameter type, we initialize the reference from that.
5006 if (From->getNumInits() == 1) {
5007 Expr *Init = From->getInit(0);
5008
5009 QualType T2 = Init->getType();
5010
5011 // If the initializer is the address of an overloaded function, try
5012 // to resolve the overloaded function. If all goes well, T2 is the
5013 // type of the resulting function.
5014 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5015 DeclAccessPair Found;
5016 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5017 Init, ToType, false, Found))
5018 T2 = Fn->getType();
5019 }
5020
5021 // Compute some basic properties of the types and the initializer.
5022 bool dummy1 = false;
5023 bool dummy2 = false;
5024 bool dummy3 = false;
5025 Sema::ReferenceCompareResult RefRelationship =
5026 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
5027 dummy2, dummy3);
5028
5029 if (RefRelationship >= Sema::Ref_Related) {
5030 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5031 SuppressUserConversions,
5032 /*AllowExplicit=*/false);
5033 }
5034 }
5035
5036 // Otherwise, we bind the reference to a temporary created from the
5037 // initializer list.
5038 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5039 InOverloadResolution,
5040 AllowObjCWritebackConversion);
5041 if (Result.isFailure())
5042 return Result;
5043 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5044, __PRETTY_FUNCTION__))
5044 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5044, __PRETTY_FUNCTION__))
;
5045
5046 // Can we even bind to a temporary?
5047 if (ToType->isRValueReferenceType() ||
5048 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5049 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5050 Result.UserDefined.After;
5051 SCS.ReferenceBinding = true;
5052 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5053 SCS.BindsToRvalue = true;
5054 SCS.BindsToFunctionLvalue = false;
5055 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5056 SCS.ObjCLifetimeConversionBinding = false;
5057 } else
5058 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5059 From, ToType);
5060 return Result;
5061 }
5062
5063 // C++14 [over.ics.list]p7:
5064 // C++11 [over.ics.list]p6:
5065 // Otherwise, if the parameter type is not a class:
5066 if (!ToType->isRecordType()) {
5067 // - if the initializer list has one element that is not itself an
5068 // initializer list, the implicit conversion sequence is the one
5069 // required to convert the element to the parameter type.
5070 unsigned NumInits = From->getNumInits();
5071 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5072 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5073 SuppressUserConversions,
5074 InOverloadResolution,
5075 AllowObjCWritebackConversion);
5076 // - if the initializer list has no elements, the implicit conversion
5077 // sequence is the identity conversion.
5078 else if (NumInits == 0) {
5079 Result.setStandard();
5080 Result.Standard.setAsIdentityConversion();
5081 Result.Standard.setFromType(ToType);
5082 Result.Standard.setAllToTypes(ToType);
5083 }
5084 return Result;
5085 }
5086
5087 // C++14 [over.ics.list]p8:
5088 // C++11 [over.ics.list]p7:
5089 // In all cases other than those enumerated above, no conversion is possible
5090 return Result;
5091}
5092
5093/// TryCopyInitialization - Try to copy-initialize a value of type
5094/// ToType from the expression From. Return the implicit conversion
5095/// sequence required to pass this argument, which may be a bad
5096/// conversion sequence (meaning that the argument cannot be passed to
5097/// a parameter of this type). If @p SuppressUserConversions, then we
5098/// do not permit any user-defined conversion sequences.
5099static ImplicitConversionSequence
5100TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5101 bool SuppressUserConversions,
5102 bool InOverloadResolution,
5103 bool AllowObjCWritebackConversion,
5104 bool AllowExplicit) {
5105 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5106 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5107 InOverloadResolution,AllowObjCWritebackConversion);
5108
5109 if (ToType->isReferenceType())
5110 return TryReferenceInit(S, From, ToType,
5111 /*FIXME:*/ From->getBeginLoc(),
5112 SuppressUserConversions, AllowExplicit);
5113
5114 return TryImplicitConversion(S, From, ToType,
5115 SuppressUserConversions,
5116 /*AllowExplicit=*/false,
5117 InOverloadResolution,
5118 /*CStyle=*/false,
5119 AllowObjCWritebackConversion,
5120 /*AllowObjCConversionOnExplicit=*/false);
5121}
5122
5123static bool TryCopyInitialization(const CanQualType FromQTy,
5124 const CanQualType ToQTy,
5125 Sema &S,
5126 SourceLocation Loc,
5127 ExprValueKind FromVK) {
5128 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5129 ImplicitConversionSequence ICS =
5130 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5131
5132 return !ICS.isBad();
5133}
5134
5135/// TryObjectArgumentInitialization - Try to initialize the object
5136/// parameter of the given member function (@c Method) from the
5137/// expression @p From.
5138static ImplicitConversionSequence
5139TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5140 Expr::Classification FromClassification,
5141 CXXMethodDecl *Method,
5142 CXXRecordDecl *ActingContext) {
5143 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5144 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5145 // const volatile object.
5146 Qualifiers Quals = Method->getMethodQualifiers();
5147 if (isa<CXXDestructorDecl>(Method)) {
5148 Quals.addConst();
5149 Quals.addVolatile();
5150 }
5151
5152 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5153
5154 // Set up the conversion sequence as a "bad" conversion, to allow us
5155 // to exit early.
5156 ImplicitConversionSequence ICS;
5157
5158 // We need to have an object of class type.
5159 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5160 FromType = PT->getPointeeType();
5161
5162 // When we had a pointer, it's implicitly dereferenced, so we
5163 // better have an lvalue.
5164 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5164, __PRETTY_FUNCTION__))
;
5165 }
5166
5167 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5167, __PRETTY_FUNCTION__))
;
5168
5169 // C++0x [over.match.funcs]p4:
5170 // For non-static member functions, the type of the implicit object
5171 // parameter is
5172 //
5173 // - "lvalue reference to cv X" for functions declared without a
5174 // ref-qualifier or with the & ref-qualifier
5175 // - "rvalue reference to cv X" for functions declared with the &&
5176 // ref-qualifier
5177 //
5178 // where X is the class of which the function is a member and cv is the
5179 // cv-qualification on the member function declaration.
5180 //
5181 // However, when finding an implicit conversion sequence for the argument, we
5182 // are not allowed to perform user-defined conversions
5183 // (C++ [over.match.funcs]p5). We perform a simplified version of
5184 // reference binding here, that allows class rvalues to bind to
5185 // non-constant references.
5186
5187 // First check the qualifiers.
5188 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5189 if (ImplicitParamType.getCVRQualifiers()
5190 != FromTypeCanon.getLocalCVRQualifiers() &&
5191 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5192 ICS.setBad(BadConversionSequence::bad_qualifiers,
5193 FromType, ImplicitParamType);
5194 return ICS;
5195 }
5196
5197 if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5198 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5199 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5200 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5201 ICS.setBad(BadConversionSequence::bad_qualifiers,
5202 FromType, ImplicitParamType);
5203 return ICS;
5204 }
5205 }
5206
5207 // Check that we have either the same type or a derived type. It
5208 // affects the conversion rank.
5209 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5210 ImplicitConversionKind SecondKind;
5211 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5212 SecondKind = ICK_Identity;
5213 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5214 SecondKind = ICK_Derived_To_Base;
5215 else {
5216 ICS.setBad(BadConversionSequence::unrelated_class,
5217 FromType, ImplicitParamType);
5218 return ICS;
5219 }
5220
5221 // Check the ref-qualifier.
5222 switch (Method->getRefQualifier()) {
5223 case RQ_None:
5224 // Do nothing; we don't care about lvalueness or rvalueness.
5225 break;
5226
5227 case RQ_LValue:
5228 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5229 // non-const lvalue reference cannot bind to an rvalue
5230 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5231 ImplicitParamType);
5232 return ICS;
5233 }
5234 break;
5235
5236 case RQ_RValue:
5237 if (!FromClassification.isRValue()) {
5238 // rvalue reference cannot bind to an lvalue
5239 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5240 ImplicitParamType);
5241 return ICS;
5242 }
5243 break;
5244 }
5245
5246 // Success. Mark this as a reference binding.
5247 ICS.setStandard();
5248 ICS.Standard.setAsIdentityConversion();
5249 ICS.Standard.Second = SecondKind;
5250 ICS.Standard.setFromType(FromType);
5251 ICS.Standard.setAllToTypes(ImplicitParamType);
5252 ICS.Standard.ReferenceBinding = true;
5253 ICS.Standard.DirectBinding = true;
5254 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5255 ICS.Standard.BindsToFunctionLvalue = false;
5256 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5257 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5258 = (Method->getRefQualifier() == RQ_None);
5259 return ICS;
5260}
5261
5262/// PerformObjectArgumentInitialization - Perform initialization of
5263/// the implicit object parameter for the given Method with the given
5264/// expression.
5265ExprResult
5266Sema::PerformObjectArgumentInitialization(Expr *From,
5267 NestedNameSpecifier *Qualifier,
5268 NamedDecl *FoundDecl,
5269 CXXMethodDecl *Method) {
5270 QualType FromRecordType, DestType;
5271 QualType ImplicitParamRecordType =
5272 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5273
5274 Expr::Classification FromClassification;
5275 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5276 FromRecordType = PT->getPointeeType();
5277 DestType = Method->getThisType();
5278 FromClassification = Expr::Classification::makeSimpleLValue();
5279 } else {
5280 FromRecordType = From->getType();
5281 DestType = ImplicitParamRecordType;
5282 FromClassification = From->Classify(Context);
5283
5284 // When performing member access on an rvalue, materialize a temporary.
5285 if (From->isRValue()) {
5286 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5287 Method->getRefQualifier() !=
5288 RefQualifierKind::RQ_RValue);
5289 }
5290 }
5291
5292 // Note that we always use the true parent context when performing
5293 // the actual argument initialization.
5294 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5295 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5296 Method->getParent());
5297 if (ICS.isBad()) {
5298 switch (ICS.Bad.Kind) {
5299 case BadConversionSequence::bad_qualifiers: {
5300 Qualifiers FromQs = FromRecordType.getQualifiers();
5301 Qualifiers ToQs = DestType.getQualifiers();
5302 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5303 if (CVR) {
5304 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5305 << Method->getDeclName() << FromRecordType << (CVR - 1)
5306 << From->getSourceRange();
5307 Diag(Method->getLocation(), diag::note_previous_decl)
5308 << Method->getDeclName();
5309 return ExprError();
5310 }
5311 break;
5312 }
5313
5314 case BadConversionSequence::lvalue_ref_to_rvalue:
5315 case BadConversionSequence::rvalue_ref_to_lvalue: {
5316 bool IsRValueQualified =
5317 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5318 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5319 << Method->getDeclName() << FromClassification.isRValue()
5320 << IsRValueQualified;
5321 Diag(Method->getLocation(), diag::note_previous_decl)
5322 << Method->getDeclName();
5323 return ExprError();
5324 }
5325
5326 case BadConversionSequence::no_conversion:
5327 case BadConversionSequence::unrelated_class:
5328 break;
5329 }
5330
5331 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5332 << ImplicitParamRecordType << FromRecordType
5333 << From->getSourceRange();
5334 }
5335
5336 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5337 ExprResult FromRes =
5338 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5339 if (FromRes.isInvalid())
5340 return ExprError();
5341 From = FromRes.get();
5342 }
5343
5344 if (!Context.hasSameType(From->getType(), DestType)) {
5345 CastKind CK;
5346 if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5347 CK = CK_AddressSpaceConversion;
5348 else
5349 CK = CK_NoOp;
5350 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5351 }
5352 return From;
5353}
5354
5355/// TryContextuallyConvertToBool - Attempt to contextually convert the
5356/// expression From to bool (C++0x [conv]p3).
5357static ImplicitConversionSequence
5358TryContextuallyConvertToBool(Sema &S, Expr *From) {
5359 return TryImplicitConversion(S, From, S.Context.BoolTy,
5360 /*SuppressUserConversions=*/false,
5361 /*AllowExplicit=*/true,
5362 /*InOverloadResolution=*/false,
5363 /*CStyle=*/false,
5364 /*AllowObjCWritebackConversion=*/false,
5365 /*AllowObjCConversionOnExplicit=*/false);
5366}
5367
5368/// PerformContextuallyConvertToBool - Perform a contextual conversion
5369/// of the expression From to bool (C++0x [conv]p3).
5370ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5371 if (checkPlaceholderForOverload(*this, From))
5372 return ExprError();
5373
5374 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5375 if (!ICS.isBad())
5376 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5377
5378 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5379 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5380 << From->getType() << From->getSourceRange();
5381 return ExprError();
5382}
5383
5384/// Check that the specified conversion is permitted in a converted constant
5385/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5386/// is acceptable.
5387static bool CheckConvertedConstantConversions(Sema &S,
5388 StandardConversionSequence &SCS) {
5389 // Since we know that the target type is an integral or unscoped enumeration
5390 // type, most conversion kinds are impossible. All possible First and Third
5391 // conversions are fine.
5392 switch (SCS.Second) {
5393 case ICK_Identity:
5394 case ICK_Function_Conversion:
5395 case ICK_Integral_Promotion:
5396 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5397 case ICK_Zero_Queue_Conversion:
5398 return true;
5399
5400 case ICK_Boolean_Conversion:
5401 // Conversion from an integral or unscoped enumeration type to bool is
5402 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5403 // conversion, so we allow it in a converted constant expression.
5404 //
5405 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5406 // a lot of popular code. We should at least add a warning for this
5407 // (non-conforming) extension.
5408 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5409 SCS.getToType(2)->isBooleanType();
5410
5411 case ICK_Pointer_Conversion:
5412 case ICK_Pointer_Member:
5413 // C++1z: null pointer conversions and null member pointer conversions are
5414 // only permitted if the source type is std::nullptr_t.
5415 return SCS.getFromType()->isNullPtrType();
5416
5417 case ICK_Floating_Promotion:
5418 case ICK_Complex_Promotion:
5419 case ICK_Floating_Conversion:
5420 case ICK_Complex_Conversion:
5421 case ICK_Floating_Integral:
5422 case ICK_Compatible_Conversion:
5423 case ICK_Derived_To_Base:
5424 case ICK_Vector_Conversion:
5425 case ICK_Vector_Splat:
5426 case ICK_Complex_Real:
5427 case ICK_Block_Pointer_Conversion:
5428 case ICK_TransparentUnionConversion:
5429 case ICK_Writeback_Conversion:
5430 case ICK_Zero_Event_Conversion:
5431 case ICK_C_Only_Conversion:
5432 case ICK_Incompatible_Pointer_Conversion:
5433 return false;
5434
5435 case ICK_Lvalue_To_Rvalue:
5436 case ICK_Array_To_Pointer:
5437 case ICK_Function_To_Pointer:
5438 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5438)
;
5439
5440 case ICK_Qualification:
5441 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5441)
;
5442
5443 case ICK_Num_Conversion_Kinds:
5444 break;
5445 }
5446
5447 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5447)
;
5448}
5449
5450/// CheckConvertedConstantExpression - Check that the expression From is a
5451/// converted constant expression of type T, perform the conversion and produce
5452/// the converted expression, per C++11 [expr.const]p3.
5453static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5454 QualType T, APValue &Value,
5455 Sema::CCEKind CCE,
5456 bool RequireInt) {
5457 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5458, __PRETTY_FUNCTION__))
5458 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5458, __PRETTY_FUNCTION__))
;
5459
5460 if (checkPlaceholderForOverload(S, From))
5461 return ExprError();
5462
5463 // C++1z [expr.const]p3:
5464 // A converted constant expression of type T is an expression,
5465 // implicitly converted to type T, where the converted
5466 // expression is a constant expression and the implicit conversion
5467 // sequence contains only [... list of conversions ...].
5468 // C++1z [stmt.if]p2:
5469 // If the if statement is of the form if constexpr, the value of the
5470 // condition shall be a contextually converted constant expression of type
5471 // bool.
5472 ImplicitConversionSequence ICS =
5473 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5474 ? TryContextuallyConvertToBool(S, From)
5475 : TryCopyInitialization(S, From, T,
5476 /*SuppressUserConversions=*/false,
5477 /*InOverloadResolution=*/false,
5478 /*AllowObjCWritebackConversion=*/false,
5479 /*AllowExplicit=*/false);
5480 StandardConversionSequence *SCS = nullptr;
5481 switch (ICS.getKind()) {
5482 case ImplicitConversionSequence::StandardConversion:
5483 SCS = &ICS.Standard;
5484 break;
5485 case ImplicitConversionSequence::UserDefinedConversion:
5486 // We are converting to a non-class type, so the Before sequence
5487 // must be trivial.
5488 SCS = &ICS.UserDefined.After;
5489 break;
5490 case ImplicitConversionSequence::AmbiguousConversion:
5491 case ImplicitConversionSequence::BadConversion:
5492 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5493 return S.Diag(From->getBeginLoc(),
5494 diag::err_typecheck_converted_constant_expression)
5495 << From->getType() << From->getSourceRange() << T;
5496 return ExprError();
5497
5498 case ImplicitConversionSequence::EllipsisConversion:
5499 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5499)
;
5500 }
5501
5502 // Check that we would only use permitted conversions.
5503 if (!CheckConvertedConstantConversions(S, *SCS)) {
5504 return S.Diag(From->getBeginLoc(),
5505 diag::err_typecheck_converted_constant_expression_disallowed)
5506 << From->getType() << From->getSourceRange() << T;
5507 }
5508 // [...] and where the reference binding (if any) binds directly.
5509 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5510 return S.Diag(From->getBeginLoc(),
5511 diag::err_typecheck_converted_constant_expression_indirect)
5512 << From->getType() << From->getSourceRange() << T;
5513 }
5514
5515 ExprResult Result =
5516 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5517 if (Result.isInvalid())
5518 return Result;
5519
5520 // C++2a [intro.execution]p5:
5521 // A full-expression is [...] a constant-expression [...]
5522 Result =
5523 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5524 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5525 if (Result.isInvalid())
5526 return Result;
5527
5528 // Check for a narrowing implicit conversion.
5529 APValue PreNarrowingValue;
5530 QualType PreNarrowingType;
5531 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5532 PreNarrowingType)) {
5533 case NK_Dependent_Narrowing:
5534 // Implicit conversion to a narrower type, but the expression is
5535 // value-dependent so we can't tell whether it's actually narrowing.
5536 case NK_Variable_Narrowing:
5537 // Implicit conversion to a narrower type, and the value is not a constant
5538 // expression. We'll diagnose this in a moment.
5539 case NK_Not_Narrowing:
5540 break;
5541
5542 case NK_Constant_Narrowing:
5543 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5544 << CCE << /*Constant*/ 1
5545 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5546 break;
5547
5548 case NK_Type_Narrowing:
5549 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5550 << CCE << /*Constant*/ 0 << From->getType() << T;
5551 break;
5552 }
5553
5554 if (Result.get()->isValueDependent()) {
5555 Value = APValue();
5556 return Result;
5557 }
5558
5559 // Check the expression is a constant expression.
5560 SmallVector<PartialDiagnosticAt, 8> Notes;
5561 Expr::EvalResult Eval;
5562 Eval.Diag = &Notes;
5563 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5564 ? Expr::EvaluateForMangling
5565 : Expr::EvaluateForCodeGen;
5566
5567 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5568 (RequireInt && !Eval.Val.isInt())) {
5569 // The expression can't be folded, so we can't keep it at this position in
5570 // the AST.
5571 Result = ExprError();
5572 } else {
5573 Value = Eval.Val;
5574
5575 if (Notes.empty()) {
5576 // It's a constant expression.
5577 return ConstantExpr::Create(S.Context, Result.get(), Value);
5578 }
5579 }
5580
5581 // It's not a constant expression. Produce an appropriate diagnostic.
5582 if (Notes.size() == 1 &&
5583 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5584 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5585 else {
5586 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5587 << CCE << From->getSourceRange();
5588 for (unsigned I = 0; I < Notes.size(); ++I)
5589 S.Diag(Notes[I].first, Notes[I].second);
5590 }
5591 return ExprError();
5592}
5593
5594ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5595 APValue &Value, CCEKind CCE) {
5596 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5597}
5598
5599ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5600 llvm::APSInt &Value,
5601 CCEKind CCE) {
5602 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5602, __PRETTY_FUNCTION__))
;
5603
5604 APValue V;
5605 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5606 if (!R.isInvalid() && !R.get()->isValueDependent())
5607 Value = V.getInt();
5608 return R;
5609}
5610
5611
5612/// dropPointerConversions - If the given standard conversion sequence
5613/// involves any pointer conversions, remove them. This may change
5614/// the result type of the conversion sequence.
5615static void dropPointerConversion(StandardConversionSequence &SCS) {
5616 if (SCS.Second == ICK_Pointer_Conversion) {
5617 SCS.Second = ICK_Identity;
5618 SCS.Third = ICK_Identity;
5619 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5620 }
5621}
5622
5623/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5624/// convert the expression From to an Objective-C pointer type.
5625static ImplicitConversionSequence
5626TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5627 // Do an implicit conversion to 'id'.
5628 QualType Ty = S.Context.getObjCIdType();
5629 ImplicitConversionSequence ICS
5630 = TryImplicitConversion(S, From, Ty,
5631 // FIXME: Are these flags correct?
5632 /*SuppressUserConversions=*/false,
5633 /*AllowExplicit=*/true,
5634 /*InOverloadResolution=*/false,
5635 /*CStyle=*/false,
5636 /*AllowObjCWritebackConversion=*/false,
5637 /*AllowObjCConversionOnExplicit=*/true);
5638
5639 // Strip off any final conversions to 'id'.
5640 switch (ICS.getKind()) {
5641 case ImplicitConversionSequence::BadConversion:
5642 case ImplicitConversionSequence::AmbiguousConversion:
5643 case ImplicitConversionSequence::EllipsisConversion:
5644 break;
5645
5646 case ImplicitConversionSequence::UserDefinedConversion:
5647 dropPointerConversion(ICS.UserDefined.After);
5648 break;
5649
5650 case ImplicitConversionSequence::StandardConversion:
5651 dropPointerConversion(ICS.Standard);
5652 break;
5653 }
5654
5655 return ICS;
5656}
5657
5658/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5659/// conversion of the expression From to an Objective-C pointer type.
5660/// Returns a valid but null ExprResult if no conversion sequence exists.
5661ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5662 if (checkPlaceholderForOverload(*this, From))
5663 return ExprError();
5664
5665 QualType Ty = Context.getObjCIdType();
5666 ImplicitConversionSequence ICS =
5667 TryContextuallyConvertToObjCPointer(*this, From);
5668 if (!ICS.isBad())
5669 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5670 return ExprResult();
5671}
5672
5673/// Determine whether the provided type is an integral type, or an enumeration
5674/// type of a permitted flavor.
5675bool Sema::ICEConvertDiagnoser::match(QualType T) {
5676 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5677 : T->isIntegralOrUnscopedEnumerationType();
5678}
5679
5680static ExprResult
5681diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5682 Sema::ContextualImplicitConverter &Converter,
5683 QualType T, UnresolvedSetImpl &ViableConversions) {
5684
5685 if (Converter.Suppress)
5686 return ExprError();
5687
5688 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5689 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5690 CXXConversionDecl *Conv =
5691 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5692 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5693 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5694 }
5695 return From;
5696}
5697
5698static bool
5699diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5700 Sema::ContextualImplicitConverter &Converter,
5701 QualType T, bool HadMultipleCandidates,
5702 UnresolvedSetImpl &ExplicitConversions) {
5703 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5704 DeclAccessPair Found = ExplicitConversions[0];
5705 CXXConversionDecl *Conversion =
5706 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5707
5708 // The user probably meant to invoke the given explicit
5709 // conversion; use it.
5710 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5711 std::string TypeStr;
5712 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5713
5714 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5715 << FixItHint::CreateInsertion(From->getBeginLoc(),
5716 "static_cast<" + TypeStr + ">(")
5717 << FixItHint::CreateInsertion(
5718 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5719 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5720
5721 // If we aren't in a SFINAE context, build a call to the
5722 // explicit conversion function.
5723 if (SemaRef.isSFINAEContext())
5724 return true;
5725
5726 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5727 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5728 HadMultipleCandidates);
5729 if (Result.isInvalid())
5730 return true;
5731 // Record usage of conversion in an implicit cast.
5732 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5733 CK_UserDefinedConversion, Result.get(),
5734 nullptr, Result.get()->getValueKind());
5735 }
5736 return false;
5737}
5738
5739static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5740 Sema::ContextualImplicitConverter &Converter,
5741 QualType T, bool HadMultipleCandidates,
5742 DeclAccessPair &Found) {
5743 CXXConversionDecl *Conversion =
5744 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5745 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5746
5747 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5748 if (!Converter.SuppressConversion) {
5749 if (SemaRef.isSFINAEContext())
5750 return true;
5751
5752 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5753 << From->getSourceRange();
5754 }
5755
5756 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5757 HadMultipleCandidates);
5758 if (Result.isInvalid())
5759 return true;
5760 // Record usage of conversion in an implicit cast.
5761 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5762 CK_UserDefinedConversion, Result.get(),
5763 nullptr, Result.get()->getValueKind());
5764 return false;
5765}
5766
5767static ExprResult finishContextualImplicitConversion(
5768 Sema &SemaRef, SourceLocation Loc, Expr *From,
5769 Sema::ContextualImplicitConverter &Converter) {
5770 if (!Converter.match(From->getType()) && !Converter.Suppress)
5771 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5772 << From->getSourceRange();
5773
5774 return SemaRef.DefaultLvalueConversion(From);
5775}
5776
5777static void
5778collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5779 UnresolvedSetImpl &ViableConversions,
5780 OverloadCandidateSet &CandidateSet) {
5781 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5782 DeclAccessPair FoundDecl = ViableConversions[I];
5783 NamedDecl *D = FoundDecl.getDecl();
5784 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5785 if (isa<UsingShadowDecl>(D))
5786 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5787
5788 CXXConversionDecl *Conv;
5789 FunctionTemplateDecl *ConvTemplate;
5790 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5791 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5792 else
5793 Conv = cast<CXXConversionDecl>(D);
5794
5795 if (ConvTemplate)
5796 SemaRef.AddTemplateConversionCandidate(
5797 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5798 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5799 else
5800 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5801 ToType, CandidateSet,
5802 /*AllowObjCConversionOnExplicit=*/false,
5803 /*AllowExplicit*/ true);
5804 }
5805}
5806
5807/// Attempt to convert the given expression to a type which is accepted
5808/// by the given converter.
5809///
5810/// This routine will attempt to convert an expression of class type to a
5811/// type accepted by the specified converter. In C++11 and before, the class
5812/// must have a single non-explicit conversion function converting to a matching
5813/// type. In C++1y, there can be multiple such conversion functions, but only
5814/// one target type.
5815///
5816/// \param Loc The source location of the construct that requires the
5817/// conversion.
5818///
5819/// \param From The expression we're converting from.
5820///
5821/// \param Converter Used to control and diagnose the conversion process.
5822///
5823/// \returns The expression, converted to an integral or enumeration type if
5824/// successful.
5825ExprResult Sema::PerformContextualImplicitConversion(
5826 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5827 // We can't perform any more checking for type-dependent expressions.
5828 if (From->isTypeDependent())
5829 return From;
5830
5831 // Process placeholders immediately.
5832 if (From->hasPlaceholderType()) {
5833 ExprResult result = CheckPlaceholderExpr(From);
5834 if (result.isInvalid())
5835 return result;
5836 From = result.get();
5837 }
5838
5839 // If the expression already has a matching type, we're golden.
5840 QualType T = From->getType();
5841 if (Converter.match(T))
5842 return DefaultLvalueConversion(From);
5843
5844 // FIXME: Check for missing '()' if T is a function type?
5845
5846 // We can only perform contextual implicit conversions on objects of class
5847 // type.
5848 const RecordType *RecordTy = T->getAs<RecordType>();
5849 if (!RecordTy || !getLangOpts().CPlusPlus) {
5850 if (!Converter.Suppress)
5851 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5852 return From;
5853 }
5854
5855 // We must have a complete class type.
5856 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5857 ContextualImplicitConverter &Converter;
5858 Expr *From;
5859
5860 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5861 : Converter(Converter), From(From) {}
5862
5863 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5864 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5865 }
5866 } IncompleteDiagnoser(Converter, From);
5867
5868 if (Converter.Suppress ? !isCompleteType(Loc, T)
5869 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5870 return From;
5871
5872 // Look for a conversion to an integral or enumeration type.
5873 UnresolvedSet<4>
5874 ViableConversions; // These are *potentially* viable in C++1y.
5875 UnresolvedSet<4> ExplicitConversions;
5876 const auto &Conversions =
5877 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5878
5879 bool HadMultipleCandidates =
5880 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5881
5882 // To check that there is only one target type, in C++1y:
5883 QualType ToType;
5884 bool HasUniqueTargetType = true;
5885
5886 // Collect explicit or viable (potentially in C++1y) conversions.
5887 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5888 NamedDecl *D = (*I)->getUnderlyingDecl();
5889 CXXConversionDecl *Conversion;
5890 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5891 if (ConvTemplate) {
5892 if (getLangOpts().CPlusPlus14)
5893 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5894 else
5895 continue; // C++11 does not consider conversion operator templates(?).
5896 } else
5897 Conversion = cast<CXXConversionDecl>(D);
5898
5899 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5901, __PRETTY_FUNCTION__))
5900 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5901, __PRETTY_FUNCTION__))
5901 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaOverload.cpp"
, 5901, __PRETTY_FUNCTION__))
;
5902
5903 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5904 if (Converter.match(CurToType) || ConvTemplate) {
5905
5906 if (Conversion->isExplicit()) {
5907 // FIXME: For C++1y, do we need this restriction?
5908 // cf. diagnoseNoViableConversion()
5909 if (!ConvTemplate)
5910 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5911 } else {
5912 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5913 if (ToType.isNull())
5914 ToType = CurToType.getUnqualifiedType();
5915 else if (HasUniqueTargetType &&
5916 (CurToType.getUnqualifiedType() != ToType))
5917 HasUniqueTargetType = false;
5918 }
5919 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5920 }
5921 }
5922 }
5923
5924 if (getLangOpts().CPlusPlus14) {
5925 // C++1y [conv]p6:
5926 // ... An expression e of class type E appearing in such a context
5927 // is said to be contextually implicitly converted to a specified
5928 // type T and is well-formed if and only if e can be implicitly
5929 // converted to a type T that is determined as follows: E is searched
5930 // for conversion functions whose return type is cv T or reference to
5931 // cv T such that T is allowed by the context. There shall be
5932 // exactly one such T.
5933
5934 // If no unique T is found:
5935