File: | build/source/clang/lib/Sema/SemaOverload.cpp |
Warning: | line 14017, column 21 Although the value stored to 'RHS' is used in the enclosing expression, the value is never actually read from 'RHS' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides Sema routines for C++ overloading. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/CXXInheritance.h" |
15 | #include "clang/AST/DeclCXX.h" |
16 | #include "clang/AST/DeclObjC.h" |
17 | #include "clang/AST/DependenceFlags.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/AST/ExprObjC.h" |
21 | #include "clang/AST/Type.h" |
22 | #include "clang/AST/TypeOrdering.h" |
23 | #include "clang/Basic/Diagnostic.h" |
24 | #include "clang/Basic/DiagnosticOptions.h" |
25 | #include "clang/Basic/OperatorKinds.h" |
26 | #include "clang/Basic/PartialDiagnostic.h" |
27 | #include "clang/Basic/SourceManager.h" |
28 | #include "clang/Basic/TargetInfo.h" |
29 | #include "clang/Sema/Initialization.h" |
30 | #include "clang/Sema/Lookup.h" |
31 | #include "clang/Sema/Overload.h" |
32 | #include "clang/Sema/SemaInternal.h" |
33 | #include "clang/Sema/Template.h" |
34 | #include "clang/Sema/TemplateDeduction.h" |
35 | #include "llvm/ADT/DenseSet.h" |
36 | #include "llvm/ADT/STLExtras.h" |
37 | #include "llvm/ADT/SmallPtrSet.h" |
38 | #include "llvm/ADT/SmallString.h" |
39 | #include "llvm/Support/Casting.h" |
40 | #include <algorithm> |
41 | #include <cstdlib> |
42 | #include <optional> |
43 | |
44 | using namespace clang; |
45 | using namespace sema; |
46 | |
47 | using AllowedExplicit = Sema::AllowedExplicit; |
48 | |
49 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { |
50 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { |
51 | return P->hasAttr<PassObjectSizeAttr>(); |
52 | }); |
53 | } |
54 | |
55 | /// A convenience routine for creating a decayed reference to a function. |
56 | static ExprResult CreateFunctionRefExpr( |
57 | Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, |
58 | bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), |
59 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { |
60 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) |
61 | return ExprError(); |
62 | // If FoundDecl is different from Fn (such as if one is a template |
63 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
64 | // called on both. |
65 | // FIXME: This would be more comprehensively addressed by modifying |
66 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
67 | // being used. |
68 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) |
69 | return ExprError(); |
70 | DeclRefExpr *DRE = new (S.Context) |
71 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); |
72 | if (HadMultipleCandidates) |
73 | DRE->setHadMultipleCandidates(true); |
74 | |
75 | S.MarkDeclRefReferenced(DRE, Base); |
76 | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { |
77 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { |
78 | S.ResolveExceptionSpec(Loc, FPT); |
79 | DRE->setType(Fn->getType()); |
80 | } |
81 | } |
82 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), |
83 | CK_FunctionToPointerDecay); |
84 | } |
85 | |
86 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
87 | bool InOverloadResolution, |
88 | StandardConversionSequence &SCS, |
89 | bool CStyle, |
90 | bool AllowObjCWritebackConversion); |
91 | |
92 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
93 | QualType &ToType, |
94 | bool InOverloadResolution, |
95 | StandardConversionSequence &SCS, |
96 | bool CStyle); |
97 | static OverloadingResult |
98 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
99 | UserDefinedConversionSequence& User, |
100 | OverloadCandidateSet& Conversions, |
101 | AllowedExplicit AllowExplicit, |
102 | bool AllowObjCConversionOnExplicit); |
103 | |
104 | static ImplicitConversionSequence::CompareKind |
105 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
106 | const StandardConversionSequence& SCS1, |
107 | const StandardConversionSequence& SCS2); |
108 | |
109 | static ImplicitConversionSequence::CompareKind |
110 | CompareQualificationConversions(Sema &S, |
111 | const StandardConversionSequence& SCS1, |
112 | const StandardConversionSequence& SCS2); |
113 | |
114 | static ImplicitConversionSequence::CompareKind |
115 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
116 | const StandardConversionSequence& SCS1, |
117 | const StandardConversionSequence& SCS2); |
118 | |
119 | /// GetConversionRank - Retrieve the implicit conversion rank |
120 | /// corresponding to the given implicit conversion kind. |
121 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { |
122 | static const ImplicitConversionRank |
123 | Rank[] = { |
124 | ICR_Exact_Match, |
125 | ICR_Exact_Match, |
126 | ICR_Exact_Match, |
127 | ICR_Exact_Match, |
128 | ICR_Exact_Match, |
129 | ICR_Exact_Match, |
130 | ICR_Promotion, |
131 | ICR_Promotion, |
132 | ICR_Promotion, |
133 | ICR_Conversion, |
134 | ICR_Conversion, |
135 | ICR_Conversion, |
136 | ICR_Conversion, |
137 | ICR_Conversion, |
138 | ICR_Conversion, |
139 | ICR_Conversion, |
140 | ICR_Conversion, |
141 | ICR_Conversion, |
142 | ICR_Conversion, |
143 | ICR_Conversion, |
144 | ICR_OCL_Scalar_Widening, |
145 | ICR_Complex_Real_Conversion, |
146 | ICR_Conversion, |
147 | ICR_Conversion, |
148 | ICR_Writeback_Conversion, |
149 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- |
150 | // it was omitted by the patch that added |
151 | // ICK_Zero_Event_Conversion |
152 | ICR_Exact_Match, // NOTE(ctopper): This may not be completely right -- |
153 | // it was omitted by the patch that added |
154 | // ICK_Zero_Queue_Conversion |
155 | ICR_C_Conversion, |
156 | ICR_C_Conversion_Extension |
157 | }; |
158 | static_assert(std::size(Rank) == (int)ICK_Num_Conversion_Kinds); |
159 | return Rank[(int)Kind]; |
160 | } |
161 | |
162 | /// GetImplicitConversionName - Return the name of this kind of |
163 | /// implicit conversion. |
164 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { |
165 | static const char* const Name[] = { |
166 | "No conversion", |
167 | "Lvalue-to-rvalue", |
168 | "Array-to-pointer", |
169 | "Function-to-pointer", |
170 | "Function pointer conversion", |
171 | "Qualification", |
172 | "Integral promotion", |
173 | "Floating point promotion", |
174 | "Complex promotion", |
175 | "Integral conversion", |
176 | "Floating conversion", |
177 | "Complex conversion", |
178 | "Floating-integral conversion", |
179 | "Pointer conversion", |
180 | "Pointer-to-member conversion", |
181 | "Boolean conversion", |
182 | "Compatible-types conversion", |
183 | "Derived-to-base conversion", |
184 | "Vector conversion", |
185 | "SVE Vector conversion", |
186 | "Vector splat", |
187 | "Complex-real conversion", |
188 | "Block Pointer conversion", |
189 | "Transparent Union Conversion", |
190 | "Writeback conversion", |
191 | "OpenCL Zero Event Conversion", |
192 | "OpenCL Zero Queue Conversion", |
193 | "C specific type conversion", |
194 | "Incompatible pointer conversion" |
195 | }; |
196 | static_assert(std::size(Name) == (int)ICK_Num_Conversion_Kinds); |
197 | return Name[Kind]; |
198 | } |
199 | |
200 | /// StandardConversionSequence - Set the standard conversion |
201 | /// sequence to the identity conversion. |
202 | void StandardConversionSequence::setAsIdentityConversion() { |
203 | First = ICK_Identity; |
204 | Second = ICK_Identity; |
205 | Third = ICK_Identity; |
206 | DeprecatedStringLiteralToCharPtr = false; |
207 | QualificationIncludesObjCLifetime = false; |
208 | ReferenceBinding = false; |
209 | DirectBinding = false; |
210 | IsLvalueReference = true; |
211 | BindsToFunctionLvalue = false; |
212 | BindsToRvalue = false; |
213 | BindsImplicitObjectArgumentWithoutRefQualifier = false; |
214 | ObjCLifetimeConversionBinding = false; |
215 | CopyConstructor = nullptr; |
216 | } |
217 | |
218 | /// getRank - Retrieve the rank of this standard conversion sequence |
219 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
220 | /// implicit conversions. |
221 | ImplicitConversionRank StandardConversionSequence::getRank() const { |
222 | ImplicitConversionRank Rank = ICR_Exact_Match; |
223 | if (GetConversionRank(First) > Rank) |
224 | Rank = GetConversionRank(First); |
225 | if (GetConversionRank(Second) > Rank) |
226 | Rank = GetConversionRank(Second); |
227 | if (GetConversionRank(Third) > Rank) |
228 | Rank = GetConversionRank(Third); |
229 | return Rank; |
230 | } |
231 | |
232 | /// isPointerConversionToBool - Determines whether this conversion is |
233 | /// a conversion of a pointer or pointer-to-member to bool. This is |
234 | /// used as part of the ranking of standard conversion sequences |
235 | /// (C++ 13.3.3.2p4). |
236 | bool StandardConversionSequence::isPointerConversionToBool() const { |
237 | // Note that FromType has not necessarily been transformed by the |
238 | // array-to-pointer or function-to-pointer implicit conversions, so |
239 | // check for their presence as well as checking whether FromType is |
240 | // a pointer. |
241 | if (getToType(1)->isBooleanType() && |
242 | (getFromType()->isPointerType() || |
243 | getFromType()->isMemberPointerType() || |
244 | getFromType()->isObjCObjectPointerType() || |
245 | getFromType()->isBlockPointerType() || |
246 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
247 | return true; |
248 | |
249 | return false; |
250 | } |
251 | |
252 | /// isPointerConversionToVoidPointer - Determines whether this |
253 | /// conversion is a conversion of a pointer to a void pointer. This is |
254 | /// used as part of the ranking of standard conversion sequences (C++ |
255 | /// 13.3.3.2p4). |
256 | bool |
257 | StandardConversionSequence:: |
258 | isPointerConversionToVoidPointer(ASTContext& Context) const { |
259 | QualType FromType = getFromType(); |
260 | QualType ToType = getToType(1); |
261 | |
262 | // Note that FromType has not necessarily been transformed by the |
263 | // array-to-pointer implicit conversion, so check for its presence |
264 | // and redo the conversion to get a pointer. |
265 | if (First == ICK_Array_To_Pointer) |
266 | FromType = Context.getArrayDecayedType(FromType); |
267 | |
268 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) |
269 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
270 | return ToPtrType->getPointeeType()->isVoidType(); |
271 | |
272 | return false; |
273 | } |
274 | |
275 | /// Skip any implicit casts which could be either part of a narrowing conversion |
276 | /// or after one in an implicit conversion. |
277 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, |
278 | const Expr *Converted) { |
279 | // We can have cleanups wrapping the converted expression; these need to be |
280 | // preserved so that destructors run if necessary. |
281 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { |
282 | Expr *Inner = |
283 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); |
284 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), |
285 | EWC->getObjects()); |
286 | } |
287 | |
288 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { |
289 | switch (ICE->getCastKind()) { |
290 | case CK_NoOp: |
291 | case CK_IntegralCast: |
292 | case CK_IntegralToBoolean: |
293 | case CK_IntegralToFloating: |
294 | case CK_BooleanToSignedIntegral: |
295 | case CK_FloatingToIntegral: |
296 | case CK_FloatingToBoolean: |
297 | case CK_FloatingCast: |
298 | Converted = ICE->getSubExpr(); |
299 | continue; |
300 | |
301 | default: |
302 | return Converted; |
303 | } |
304 | } |
305 | |
306 | return Converted; |
307 | } |
308 | |
309 | /// Check if this standard conversion sequence represents a narrowing |
310 | /// conversion, according to C++11 [dcl.init.list]p7. |
311 | /// |
312 | /// \param Ctx The AST context. |
313 | /// \param Converted The result of applying this standard conversion sequence. |
314 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the |
315 | /// value of the expression prior to the narrowing conversion. |
316 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the |
317 | /// type of the expression prior to the narrowing conversion. |
318 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions |
319 | /// from floating point types to integral types should be ignored. |
320 | NarrowingKind StandardConversionSequence::getNarrowingKind( |
321 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, |
322 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { |
323 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")(static_cast <bool> (Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++") ? void (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\"" , "clang/lib/Sema/SemaOverload.cpp", 323, __extension__ __PRETTY_FUNCTION__ )); |
324 | |
325 | // C++11 [dcl.init.list]p7: |
326 | // A narrowing conversion is an implicit conversion ... |
327 | QualType FromType = getToType(0); |
328 | QualType ToType = getToType(1); |
329 | |
330 | // A conversion to an enumeration type is narrowing if the conversion to |
331 | // the underlying type is narrowing. This only arises for expressions of |
332 | // the form 'Enum{init}'. |
333 | if (auto *ET = ToType->getAs<EnumType>()) |
334 | ToType = ET->getDecl()->getIntegerType(); |
335 | |
336 | switch (Second) { |
337 | // 'bool' is an integral type; dispatch to the right place to handle it. |
338 | case ICK_Boolean_Conversion: |
339 | if (FromType->isRealFloatingType()) |
340 | goto FloatingIntegralConversion; |
341 | if (FromType->isIntegralOrUnscopedEnumerationType()) |
342 | goto IntegralConversion; |
343 | // -- from a pointer type or pointer-to-member type to bool, or |
344 | return NK_Type_Narrowing; |
345 | |
346 | // -- from a floating-point type to an integer type, or |
347 | // |
348 | // -- from an integer type or unscoped enumeration type to a floating-point |
349 | // type, except where the source is a constant expression and the actual |
350 | // value after conversion will fit into the target type and will produce |
351 | // the original value when converted back to the original type, or |
352 | case ICK_Floating_Integral: |
353 | FloatingIntegralConversion: |
354 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { |
355 | return NK_Type_Narrowing; |
356 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
357 | ToType->isRealFloatingType()) { |
358 | if (IgnoreFloatToIntegralConversion) |
359 | return NK_Not_Narrowing; |
360 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
361 | assert(Initializer && "Unknown conversion expression")(static_cast <bool> (Initializer && "Unknown conversion expression" ) ? void (0) : __assert_fail ("Initializer && \"Unknown conversion expression\"" , "clang/lib/Sema/SemaOverload.cpp", 361, __extension__ __PRETTY_FUNCTION__ )); |
362 | |
363 | // If it's value-dependent, we can't tell whether it's narrowing. |
364 | if (Initializer->isValueDependent()) |
365 | return NK_Dependent_Narrowing; |
366 | |
367 | if (std::optional<llvm::APSInt> IntConstantValue = |
368 | Initializer->getIntegerConstantExpr(Ctx)) { |
369 | // Convert the integer to the floating type. |
370 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); |
371 | Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), |
372 | llvm::APFloat::rmNearestTiesToEven); |
373 | // And back. |
374 | llvm::APSInt ConvertedValue = *IntConstantValue; |
375 | bool ignored; |
376 | Result.convertToInteger(ConvertedValue, |
377 | llvm::APFloat::rmTowardZero, &ignored); |
378 | // If the resulting value is different, this was a narrowing conversion. |
379 | if (*IntConstantValue != ConvertedValue) { |
380 | ConstantValue = APValue(*IntConstantValue); |
381 | ConstantType = Initializer->getType(); |
382 | return NK_Constant_Narrowing; |
383 | } |
384 | } else { |
385 | // Variables are always narrowings. |
386 | return NK_Variable_Narrowing; |
387 | } |
388 | } |
389 | return NK_Not_Narrowing; |
390 | |
391 | // -- from long double to double or float, or from double to float, except |
392 | // where the source is a constant expression and the actual value after |
393 | // conversion is within the range of values that can be represented (even |
394 | // if it cannot be represented exactly), or |
395 | case ICK_Floating_Conversion: |
396 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && |
397 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { |
398 | // FromType is larger than ToType. |
399 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
400 | |
401 | // If it's value-dependent, we can't tell whether it's narrowing. |
402 | if (Initializer->isValueDependent()) |
403 | return NK_Dependent_Narrowing; |
404 | |
405 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { |
406 | // Constant! |
407 | assert(ConstantValue.isFloat())(static_cast <bool> (ConstantValue.isFloat()) ? void (0 ) : __assert_fail ("ConstantValue.isFloat()", "clang/lib/Sema/SemaOverload.cpp" , 407, __extension__ __PRETTY_FUNCTION__)); |
408 | llvm::APFloat FloatVal = ConstantValue.getFloat(); |
409 | // Convert the source value into the target type. |
410 | bool ignored; |
411 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( |
412 | Ctx.getFloatTypeSemantics(ToType), |
413 | llvm::APFloat::rmNearestTiesToEven, &ignored); |
414 | // If there was no overflow, the source value is within the range of |
415 | // values that can be represented. |
416 | if (ConvertStatus & llvm::APFloat::opOverflow) { |
417 | ConstantType = Initializer->getType(); |
418 | return NK_Constant_Narrowing; |
419 | } |
420 | } else { |
421 | return NK_Variable_Narrowing; |
422 | } |
423 | } |
424 | return NK_Not_Narrowing; |
425 | |
426 | // -- from an integer type or unscoped enumeration type to an integer type |
427 | // that cannot represent all the values of the original type, except where |
428 | // the source is a constant expression and the actual value after |
429 | // conversion will fit into the target type and will produce the original |
430 | // value when converted back to the original type. |
431 | case ICK_Integral_Conversion: |
432 | IntegralConversion: { |
433 | assert(FromType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (FromType->isIntegralOrUnscopedEnumerationType ()) ? void (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()" , "clang/lib/Sema/SemaOverload.cpp", 433, __extension__ __PRETTY_FUNCTION__ )); |
434 | assert(ToType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (ToType->isIntegralOrUnscopedEnumerationType ()) ? void (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()" , "clang/lib/Sema/SemaOverload.cpp", 434, __extension__ __PRETTY_FUNCTION__ )); |
435 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); |
436 | const unsigned FromWidth = Ctx.getIntWidth(FromType); |
437 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); |
438 | const unsigned ToWidth = Ctx.getIntWidth(ToType); |
439 | |
440 | if (FromWidth > ToWidth || |
441 | (FromWidth == ToWidth && FromSigned != ToSigned) || |
442 | (FromSigned && !ToSigned)) { |
443 | // Not all values of FromType can be represented in ToType. |
444 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
445 | |
446 | // If it's value-dependent, we can't tell whether it's narrowing. |
447 | if (Initializer->isValueDependent()) |
448 | return NK_Dependent_Narrowing; |
449 | |
450 | std::optional<llvm::APSInt> OptInitializerValue; |
451 | if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { |
452 | // Such conversions on variables are always narrowing. |
453 | return NK_Variable_Narrowing; |
454 | } |
455 | llvm::APSInt &InitializerValue = *OptInitializerValue; |
456 | bool Narrowing = false; |
457 | if (FromWidth < ToWidth) { |
458 | // Negative -> unsigned is narrowing. Otherwise, more bits is never |
459 | // narrowing. |
460 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) |
461 | Narrowing = true; |
462 | } else { |
463 | // Add a bit to the InitializerValue so we don't have to worry about |
464 | // signed vs. unsigned comparisons. |
465 | InitializerValue = InitializerValue.extend( |
466 | InitializerValue.getBitWidth() + 1); |
467 | // Convert the initializer to and from the target width and signed-ness. |
468 | llvm::APSInt ConvertedValue = InitializerValue; |
469 | ConvertedValue = ConvertedValue.trunc(ToWidth); |
470 | ConvertedValue.setIsSigned(ToSigned); |
471 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); |
472 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); |
473 | // If the result is different, this was a narrowing conversion. |
474 | if (ConvertedValue != InitializerValue) |
475 | Narrowing = true; |
476 | } |
477 | if (Narrowing) { |
478 | ConstantType = Initializer->getType(); |
479 | ConstantValue = APValue(InitializerValue); |
480 | return NK_Constant_Narrowing; |
481 | } |
482 | } |
483 | return NK_Not_Narrowing; |
484 | } |
485 | |
486 | default: |
487 | // Other kinds of conversions are not narrowings. |
488 | return NK_Not_Narrowing; |
489 | } |
490 | } |
491 | |
492 | /// dump - Print this standard conversion sequence to standard |
493 | /// error. Useful for debugging overloading issues. |
494 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const { |
495 | raw_ostream &OS = llvm::errs(); |
496 | bool PrintedSomething = false; |
497 | if (First != ICK_Identity) { |
498 | OS << GetImplicitConversionName(First); |
499 | PrintedSomething = true; |
500 | } |
501 | |
502 | if (Second != ICK_Identity) { |
503 | if (PrintedSomething) { |
504 | OS << " -> "; |
505 | } |
506 | OS << GetImplicitConversionName(Second); |
507 | |
508 | if (CopyConstructor) { |
509 | OS << " (by copy constructor)"; |
510 | } else if (DirectBinding) { |
511 | OS << " (direct reference binding)"; |
512 | } else if (ReferenceBinding) { |
513 | OS << " (reference binding)"; |
514 | } |
515 | PrintedSomething = true; |
516 | } |
517 | |
518 | if (Third != ICK_Identity) { |
519 | if (PrintedSomething) { |
520 | OS << " -> "; |
521 | } |
522 | OS << GetImplicitConversionName(Third); |
523 | PrintedSomething = true; |
524 | } |
525 | |
526 | if (!PrintedSomething) { |
527 | OS << "No conversions required"; |
528 | } |
529 | } |
530 | |
531 | /// dump - Print this user-defined conversion sequence to standard |
532 | /// error. Useful for debugging overloading issues. |
533 | void UserDefinedConversionSequence::dump() const { |
534 | raw_ostream &OS = llvm::errs(); |
535 | if (Before.First || Before.Second || Before.Third) { |
536 | Before.dump(); |
537 | OS << " -> "; |
538 | } |
539 | if (ConversionFunction) |
540 | OS << '\'' << *ConversionFunction << '\''; |
541 | else |
542 | OS << "aggregate initialization"; |
543 | if (After.First || After.Second || After.Third) { |
544 | OS << " -> "; |
545 | After.dump(); |
546 | } |
547 | } |
548 | |
549 | /// dump - Print this implicit conversion sequence to standard |
550 | /// error. Useful for debugging overloading issues. |
551 | void ImplicitConversionSequence::dump() const { |
552 | raw_ostream &OS = llvm::errs(); |
553 | if (hasInitializerListContainerType()) |
554 | OS << "Worst list element conversion: "; |
555 | switch (ConversionKind) { |
556 | case StandardConversion: |
557 | OS << "Standard conversion: "; |
558 | Standard.dump(); |
559 | break; |
560 | case UserDefinedConversion: |
561 | OS << "User-defined conversion: "; |
562 | UserDefined.dump(); |
563 | break; |
564 | case EllipsisConversion: |
565 | OS << "Ellipsis conversion"; |
566 | break; |
567 | case AmbiguousConversion: |
568 | OS << "Ambiguous conversion"; |
569 | break; |
570 | case BadConversion: |
571 | OS << "Bad conversion"; |
572 | break; |
573 | } |
574 | |
575 | OS << "\n"; |
576 | } |
577 | |
578 | void AmbiguousConversionSequence::construct() { |
579 | new (&conversions()) ConversionSet(); |
580 | } |
581 | |
582 | void AmbiguousConversionSequence::destruct() { |
583 | conversions().~ConversionSet(); |
584 | } |
585 | |
586 | void |
587 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
588 | FromTypePtr = O.FromTypePtr; |
589 | ToTypePtr = O.ToTypePtr; |
590 | new (&conversions()) ConversionSet(O.conversions()); |
591 | } |
592 | |
593 | namespace { |
594 | // Structure used by DeductionFailureInfo to store |
595 | // template argument information. |
596 | struct DFIArguments { |
597 | TemplateArgument FirstArg; |
598 | TemplateArgument SecondArg; |
599 | }; |
600 | // Structure used by DeductionFailureInfo to store |
601 | // template parameter and template argument information. |
602 | struct DFIParamWithArguments : DFIArguments { |
603 | TemplateParameter Param; |
604 | }; |
605 | // Structure used by DeductionFailureInfo to store template argument |
606 | // information and the index of the problematic call argument. |
607 | struct DFIDeducedMismatchArgs : DFIArguments { |
608 | TemplateArgumentList *TemplateArgs; |
609 | unsigned CallArgIndex; |
610 | }; |
611 | // Structure used by DeductionFailureInfo to store information about |
612 | // unsatisfied constraints. |
613 | struct CNSInfo { |
614 | TemplateArgumentList *TemplateArgs; |
615 | ConstraintSatisfaction Satisfaction; |
616 | }; |
617 | } |
618 | |
619 | /// Convert from Sema's representation of template deduction information |
620 | /// to the form used in overload-candidate information. |
621 | DeductionFailureInfo |
622 | clang::MakeDeductionFailureInfo(ASTContext &Context, |
623 | Sema::TemplateDeductionResult TDK, |
624 | TemplateDeductionInfo &Info) { |
625 | DeductionFailureInfo Result; |
626 | Result.Result = static_cast<unsigned>(TDK); |
627 | Result.HasDiagnostic = false; |
628 | switch (TDK) { |
629 | case Sema::TDK_Invalid: |
630 | case Sema::TDK_InstantiationDepth: |
631 | case Sema::TDK_TooManyArguments: |
632 | case Sema::TDK_TooFewArguments: |
633 | case Sema::TDK_MiscellaneousDeductionFailure: |
634 | case Sema::TDK_CUDATargetMismatch: |
635 | Result.Data = nullptr; |
636 | break; |
637 | |
638 | case Sema::TDK_Incomplete: |
639 | case Sema::TDK_InvalidExplicitArguments: |
640 | Result.Data = Info.Param.getOpaqueValue(); |
641 | break; |
642 | |
643 | case Sema::TDK_DeducedMismatch: |
644 | case Sema::TDK_DeducedMismatchNested: { |
645 | // FIXME: Should allocate from normal heap so that we can free this later. |
646 | auto *Saved = new (Context) DFIDeducedMismatchArgs; |
647 | Saved->FirstArg = Info.FirstArg; |
648 | Saved->SecondArg = Info.SecondArg; |
649 | Saved->TemplateArgs = Info.takeSugared(); |
650 | Saved->CallArgIndex = Info.CallArgIndex; |
651 | Result.Data = Saved; |
652 | break; |
653 | } |
654 | |
655 | case Sema::TDK_NonDeducedMismatch: { |
656 | // FIXME: Should allocate from normal heap so that we can free this later. |
657 | DFIArguments *Saved = new (Context) DFIArguments; |
658 | Saved->FirstArg = Info.FirstArg; |
659 | Saved->SecondArg = Info.SecondArg; |
660 | Result.Data = Saved; |
661 | break; |
662 | } |
663 | |
664 | case Sema::TDK_IncompletePack: |
665 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. |
666 | case Sema::TDK_Inconsistent: |
667 | case Sema::TDK_Underqualified: { |
668 | // FIXME: Should allocate from normal heap so that we can free this later. |
669 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
670 | Saved->Param = Info.Param; |
671 | Saved->FirstArg = Info.FirstArg; |
672 | Saved->SecondArg = Info.SecondArg; |
673 | Result.Data = Saved; |
674 | break; |
675 | } |
676 | |
677 | case Sema::TDK_SubstitutionFailure: |
678 | Result.Data = Info.takeSugared(); |
679 | if (Info.hasSFINAEDiagnostic()) { |
680 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( |
681 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); |
682 | Info.takeSFINAEDiagnostic(*Diag); |
683 | Result.HasDiagnostic = true; |
684 | } |
685 | break; |
686 | |
687 | case Sema::TDK_ConstraintsNotSatisfied: { |
688 | CNSInfo *Saved = new (Context) CNSInfo; |
689 | Saved->TemplateArgs = Info.takeSugared(); |
690 | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; |
691 | Result.Data = Saved; |
692 | break; |
693 | } |
694 | |
695 | case Sema::TDK_Success: |
696 | case Sema::TDK_NonDependentConversionFailure: |
697 | case Sema::TDK_AlreadyDiagnosed: |
698 | llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "clang/lib/Sema/SemaOverload.cpp" , 698); |
699 | } |
700 | |
701 | return Result; |
702 | } |
703 | |
704 | void DeductionFailureInfo::Destroy() { |
705 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
706 | case Sema::TDK_Success: |
707 | case Sema::TDK_Invalid: |
708 | case Sema::TDK_InstantiationDepth: |
709 | case Sema::TDK_Incomplete: |
710 | case Sema::TDK_TooManyArguments: |
711 | case Sema::TDK_TooFewArguments: |
712 | case Sema::TDK_InvalidExplicitArguments: |
713 | case Sema::TDK_CUDATargetMismatch: |
714 | case Sema::TDK_NonDependentConversionFailure: |
715 | break; |
716 | |
717 | case Sema::TDK_IncompletePack: |
718 | case Sema::TDK_Inconsistent: |
719 | case Sema::TDK_Underqualified: |
720 | case Sema::TDK_DeducedMismatch: |
721 | case Sema::TDK_DeducedMismatchNested: |
722 | case Sema::TDK_NonDeducedMismatch: |
723 | // FIXME: Destroy the data? |
724 | Data = nullptr; |
725 | break; |
726 | |
727 | case Sema::TDK_SubstitutionFailure: |
728 | // FIXME: Destroy the template argument list? |
729 | Data = nullptr; |
730 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
731 | Diag->~PartialDiagnosticAt(); |
732 | HasDiagnostic = false; |
733 | } |
734 | break; |
735 | |
736 | case Sema::TDK_ConstraintsNotSatisfied: |
737 | // FIXME: Destroy the template argument list? |
738 | Data = nullptr; |
739 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
740 | Diag->~PartialDiagnosticAt(); |
741 | HasDiagnostic = false; |
742 | } |
743 | break; |
744 | |
745 | // Unhandled |
746 | case Sema::TDK_MiscellaneousDeductionFailure: |
747 | case Sema::TDK_AlreadyDiagnosed: |
748 | break; |
749 | } |
750 | } |
751 | |
752 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { |
753 | if (HasDiagnostic) |
754 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); |
755 | return nullptr; |
756 | } |
757 | |
758 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { |
759 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
760 | case Sema::TDK_Success: |
761 | case Sema::TDK_Invalid: |
762 | case Sema::TDK_InstantiationDepth: |
763 | case Sema::TDK_TooManyArguments: |
764 | case Sema::TDK_TooFewArguments: |
765 | case Sema::TDK_SubstitutionFailure: |
766 | case Sema::TDK_DeducedMismatch: |
767 | case Sema::TDK_DeducedMismatchNested: |
768 | case Sema::TDK_NonDeducedMismatch: |
769 | case Sema::TDK_CUDATargetMismatch: |
770 | case Sema::TDK_NonDependentConversionFailure: |
771 | case Sema::TDK_ConstraintsNotSatisfied: |
772 | return TemplateParameter(); |
773 | |
774 | case Sema::TDK_Incomplete: |
775 | case Sema::TDK_InvalidExplicitArguments: |
776 | return TemplateParameter::getFromOpaqueValue(Data); |
777 | |
778 | case Sema::TDK_IncompletePack: |
779 | case Sema::TDK_Inconsistent: |
780 | case Sema::TDK_Underqualified: |
781 | return static_cast<DFIParamWithArguments*>(Data)->Param; |
782 | |
783 | // Unhandled |
784 | case Sema::TDK_MiscellaneousDeductionFailure: |
785 | case Sema::TDK_AlreadyDiagnosed: |
786 | break; |
787 | } |
788 | |
789 | return TemplateParameter(); |
790 | } |
791 | |
792 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { |
793 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
794 | case Sema::TDK_Success: |
795 | case Sema::TDK_Invalid: |
796 | case Sema::TDK_InstantiationDepth: |
797 | case Sema::TDK_TooManyArguments: |
798 | case Sema::TDK_TooFewArguments: |
799 | case Sema::TDK_Incomplete: |
800 | case Sema::TDK_IncompletePack: |
801 | case Sema::TDK_InvalidExplicitArguments: |
802 | case Sema::TDK_Inconsistent: |
803 | case Sema::TDK_Underqualified: |
804 | case Sema::TDK_NonDeducedMismatch: |
805 | case Sema::TDK_CUDATargetMismatch: |
806 | case Sema::TDK_NonDependentConversionFailure: |
807 | return nullptr; |
808 | |
809 | case Sema::TDK_DeducedMismatch: |
810 | case Sema::TDK_DeducedMismatchNested: |
811 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; |
812 | |
813 | case Sema::TDK_SubstitutionFailure: |
814 | return static_cast<TemplateArgumentList*>(Data); |
815 | |
816 | case Sema::TDK_ConstraintsNotSatisfied: |
817 | return static_cast<CNSInfo*>(Data)->TemplateArgs; |
818 | |
819 | // Unhandled |
820 | case Sema::TDK_MiscellaneousDeductionFailure: |
821 | case Sema::TDK_AlreadyDiagnosed: |
822 | break; |
823 | } |
824 | |
825 | return nullptr; |
826 | } |
827 | |
828 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { |
829 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
830 | case Sema::TDK_Success: |
831 | case Sema::TDK_Invalid: |
832 | case Sema::TDK_InstantiationDepth: |
833 | case Sema::TDK_Incomplete: |
834 | case Sema::TDK_TooManyArguments: |
835 | case Sema::TDK_TooFewArguments: |
836 | case Sema::TDK_InvalidExplicitArguments: |
837 | case Sema::TDK_SubstitutionFailure: |
838 | case Sema::TDK_CUDATargetMismatch: |
839 | case Sema::TDK_NonDependentConversionFailure: |
840 | case Sema::TDK_ConstraintsNotSatisfied: |
841 | return nullptr; |
842 | |
843 | case Sema::TDK_IncompletePack: |
844 | case Sema::TDK_Inconsistent: |
845 | case Sema::TDK_Underqualified: |
846 | case Sema::TDK_DeducedMismatch: |
847 | case Sema::TDK_DeducedMismatchNested: |
848 | case Sema::TDK_NonDeducedMismatch: |
849 | return &static_cast<DFIArguments*>(Data)->FirstArg; |
850 | |
851 | // Unhandled |
852 | case Sema::TDK_MiscellaneousDeductionFailure: |
853 | case Sema::TDK_AlreadyDiagnosed: |
854 | break; |
855 | } |
856 | |
857 | return nullptr; |
858 | } |
859 | |
860 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { |
861 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
862 | case Sema::TDK_Success: |
863 | case Sema::TDK_Invalid: |
864 | case Sema::TDK_InstantiationDepth: |
865 | case Sema::TDK_Incomplete: |
866 | case Sema::TDK_IncompletePack: |
867 | case Sema::TDK_TooManyArguments: |
868 | case Sema::TDK_TooFewArguments: |
869 | case Sema::TDK_InvalidExplicitArguments: |
870 | case Sema::TDK_SubstitutionFailure: |
871 | case Sema::TDK_CUDATargetMismatch: |
872 | case Sema::TDK_NonDependentConversionFailure: |
873 | case Sema::TDK_ConstraintsNotSatisfied: |
874 | return nullptr; |
875 | |
876 | case Sema::TDK_Inconsistent: |
877 | case Sema::TDK_Underqualified: |
878 | case Sema::TDK_DeducedMismatch: |
879 | case Sema::TDK_DeducedMismatchNested: |
880 | case Sema::TDK_NonDeducedMismatch: |
881 | return &static_cast<DFIArguments*>(Data)->SecondArg; |
882 | |
883 | // Unhandled |
884 | case Sema::TDK_MiscellaneousDeductionFailure: |
885 | case Sema::TDK_AlreadyDiagnosed: |
886 | break; |
887 | } |
888 | |
889 | return nullptr; |
890 | } |
891 | |
892 | std::optional<unsigned> DeductionFailureInfo::getCallArgIndex() { |
893 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
894 | case Sema::TDK_DeducedMismatch: |
895 | case Sema::TDK_DeducedMismatchNested: |
896 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; |
897 | |
898 | default: |
899 | return std::nullopt; |
900 | } |
901 | } |
902 | |
903 | static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, |
904 | const FunctionDecl *Y) { |
905 | if (!X || !Y) |
906 | return false; |
907 | if (X->getNumParams() != Y->getNumParams()) |
908 | return false; |
909 | for (unsigned I = 0; I < X->getNumParams(); ++I) |
910 | if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(), |
911 | Y->getParamDecl(I)->getType())) |
912 | return false; |
913 | if (auto *FTX = X->getDescribedFunctionTemplate()) { |
914 | auto *FTY = Y->getDescribedFunctionTemplate(); |
915 | if (!FTY) |
916 | return false; |
917 | if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(), |
918 | FTY->getTemplateParameters())) |
919 | return false; |
920 | } |
921 | return true; |
922 | } |
923 | |
924 | static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, |
925 | Expr *FirstOperand, FunctionDecl *EqFD) { |
926 | assert(EqFD->getOverloadedOperator() ==(static_cast <bool> (EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail ("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual" , "clang/lib/Sema/SemaOverload.cpp", 927, __extension__ __PRETTY_FUNCTION__ )) |
927 | OverloadedOperatorKind::OO_EqualEqual)(static_cast <bool> (EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail ("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual" , "clang/lib/Sema/SemaOverload.cpp", 927, __extension__ __PRETTY_FUNCTION__ )); |
928 | // C++2a [over.match.oper]p4: |
929 | // A non-template function or function template F named operator== is a |
930 | // rewrite target with first operand o unless a search for the name operator!= |
931 | // in the scope S from the instantiation context of the operator expression |
932 | // finds a function or function template that would correspond |
933 | // ([basic.scope.scope]) to F if its name were operator==, where S is the |
934 | // scope of the class type of o if F is a class member, and the namespace |
935 | // scope of which F is a member otherwise. A function template specialization |
936 | // named operator== is a rewrite target if its function template is a rewrite |
937 | // target. |
938 | DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( |
939 | OverloadedOperatorKind::OO_ExclaimEqual); |
940 | if (isa<CXXMethodDecl>(EqFD)) { |
941 | // If F is a class member, search scope is class type of first operand. |
942 | QualType RHS = FirstOperand->getType(); |
943 | auto *RHSRec = RHS->getAs<RecordType>(); |
944 | if (!RHSRec) |
945 | return true; |
946 | LookupResult Members(S, NotEqOp, OpLoc, |
947 | Sema::LookupNameKind::LookupMemberName); |
948 | S.LookupQualifiedName(Members, RHSRec->getDecl()); |
949 | Members.suppressDiagnostics(); |
950 | for (NamedDecl *Op : Members) |
951 | if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction())) |
952 | return false; |
953 | return true; |
954 | } |
955 | // Otherwise the search scope is the namespace scope of which F is a member. |
956 | LookupResult NonMembers(S, NotEqOp, OpLoc, |
957 | Sema::LookupNameKind::LookupOperatorName); |
958 | S.LookupName(NonMembers, |
959 | S.getScopeForContext(EqFD->getEnclosingNamespaceContext())); |
960 | NonMembers.suppressDiagnostics(); |
961 | for (NamedDecl *Op : NonMembers) { |
962 | auto *FD = Op->getAsFunction(); |
963 | if(auto* UD = dyn_cast<UsingShadowDecl>(Op)) |
964 | FD = UD->getUnderlyingDecl()->getAsFunction(); |
965 | if (FunctionsCorrespond(S.Context, EqFD, FD) && |
966 | declaresSameEntity(cast<Decl>(EqFD->getDeclContext()), |
967 | cast<Decl>(Op->getDeclContext()))) |
968 | return false; |
969 | } |
970 | return true; |
971 | } |
972 | |
973 | bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( |
974 | OverloadedOperatorKind Op) { |
975 | if (!AllowRewrittenCandidates) |
976 | return false; |
977 | return Op == OO_EqualEqual || Op == OO_Spaceship; |
978 | } |
979 | |
980 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
981 | Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) { |
982 | auto Op = FD->getOverloadedOperator(); |
983 | if (!allowsReversed(Op)) |
984 | return false; |
985 | if (Op == OverloadedOperatorKind::OO_EqualEqual) { |
986 | assert(OriginalArgs.size() == 2)(static_cast <bool> (OriginalArgs.size() == 2) ? void ( 0) : __assert_fail ("OriginalArgs.size() == 2", "clang/lib/Sema/SemaOverload.cpp" , 986, __extension__ __PRETTY_FUNCTION__)); |
987 | if (!shouldAddReversedEqEq( |
988 | S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD)) |
989 | return false; |
990 | } |
991 | // Don't bother adding a reversed candidate that can never be a better |
992 | // match than the non-reversed version. |
993 | return FD->getNumParams() != 2 || |
994 | !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), |
995 | FD->getParamDecl(1)->getType()) || |
996 | FD->hasAttr<EnableIfAttr>(); |
997 | } |
998 | |
999 | void OverloadCandidateSet::destroyCandidates() { |
1000 | for (iterator i = begin(), e = end(); i != e; ++i) { |
1001 | for (auto &C : i->Conversions) |
1002 | C.~ImplicitConversionSequence(); |
1003 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) |
1004 | i->DeductionFailure.Destroy(); |
1005 | } |
1006 | } |
1007 | |
1008 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { |
1009 | destroyCandidates(); |
1010 | SlabAllocator.Reset(); |
1011 | NumInlineBytesUsed = 0; |
1012 | Candidates.clear(); |
1013 | Functions.clear(); |
1014 | Kind = CSK; |
1015 | } |
1016 | |
1017 | namespace { |
1018 | class UnbridgedCastsSet { |
1019 | struct Entry { |
1020 | Expr **Addr; |
1021 | Expr *Saved; |
1022 | }; |
1023 | SmallVector<Entry, 2> Entries; |
1024 | |
1025 | public: |
1026 | void save(Sema &S, Expr *&E) { |
1027 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))(static_cast <bool> (E->hasPlaceholderType(BuiltinType ::ARCUnbridgedCast)) ? void (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)" , "clang/lib/Sema/SemaOverload.cpp", 1027, __extension__ __PRETTY_FUNCTION__ )); |
1028 | Entry entry = { &E, E }; |
1029 | Entries.push_back(entry); |
1030 | E = S.stripARCUnbridgedCast(E); |
1031 | } |
1032 | |
1033 | void restore() { |
1034 | for (SmallVectorImpl<Entry>::iterator |
1035 | i = Entries.begin(), e = Entries.end(); i != e; ++i) |
1036 | *i->Addr = i->Saved; |
1037 | } |
1038 | }; |
1039 | } |
1040 | |
1041 | /// checkPlaceholderForOverload - Do any interesting placeholder-like |
1042 | /// preprocessing on the given expression. |
1043 | /// |
1044 | /// \param unbridgedCasts a collection to which to add unbridged casts; |
1045 | /// without this, they will be immediately diagnosed as errors |
1046 | /// |
1047 | /// Return true on unrecoverable error. |
1048 | static bool |
1049 | checkPlaceholderForOverload(Sema &S, Expr *&E, |
1050 | UnbridgedCastsSet *unbridgedCasts = nullptr) { |
1051 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { |
1052 | // We can't handle overloaded expressions here because overload |
1053 | // resolution might reasonably tweak them. |
1054 | if (placeholder->getKind() == BuiltinType::Overload) return false; |
1055 | |
1056 | // If the context potentially accepts unbridged ARC casts, strip |
1057 | // the unbridged cast and add it to the collection for later restoration. |
1058 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && |
1059 | unbridgedCasts) { |
1060 | unbridgedCasts->save(S, E); |
1061 | return false; |
1062 | } |
1063 | |
1064 | // Go ahead and check everything else. |
1065 | ExprResult result = S.CheckPlaceholderExpr(E); |
1066 | if (result.isInvalid()) |
1067 | return true; |
1068 | |
1069 | E = result.get(); |
1070 | return false; |
1071 | } |
1072 | |
1073 | // Nothing to do. |
1074 | return false; |
1075 | } |
1076 | |
1077 | /// checkArgPlaceholdersForOverload - Check a set of call operands for |
1078 | /// placeholders. |
1079 | static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, |
1080 | UnbridgedCastsSet &unbridged) { |
1081 | for (unsigned i = 0, e = Args.size(); i != e; ++i) |
1082 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) |
1083 | return true; |
1084 | |
1085 | return false; |
1086 | } |
1087 | |
1088 | /// Determine whether the given New declaration is an overload of the |
1089 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if |
1090 | /// New and Old cannot be overloaded, e.g., if New has the same signature as |
1091 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't |
1092 | /// functions (or function templates) at all. When it does return Ovl_Match or |
1093 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be |
1094 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying |
1095 | /// declaration. |
1096 | /// |
1097 | /// Example: Given the following input: |
1098 | /// |
1099 | /// void f(int, float); // #1 |
1100 | /// void f(int, int); // #2 |
1101 | /// int f(int, int); // #3 |
1102 | /// |
1103 | /// When we process #1, there is no previous declaration of "f", so IsOverload |
1104 | /// will not be used. |
1105 | /// |
1106 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing |
1107 | /// the parameter types, we see that #1 and #2 are overloaded (since they have |
1108 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is |
1109 | /// unchanged. |
1110 | /// |
1111 | /// When we process #3, Old is an overload set containing #1 and #2. We compare |
1112 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then |
1113 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of |
1114 | /// functions are not part of the signature), IsOverload returns Ovl_Match and |
1115 | /// MatchedDecl will be set to point to the FunctionDecl for #2. |
1116 | /// |
1117 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class |
1118 | /// by a using declaration. The rules for whether to hide shadow declarations |
1119 | /// ignore some properties which otherwise figure into a function template's |
1120 | /// signature. |
1121 | Sema::OverloadKind |
1122 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, |
1123 | NamedDecl *&Match, bool NewIsUsingDecl) { |
1124 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
1125 | I != E; ++I) { |
1126 | NamedDecl *OldD = *I; |
1127 | |
1128 | bool OldIsUsingDecl = false; |
1129 | if (isa<UsingShadowDecl>(OldD)) { |
1130 | OldIsUsingDecl = true; |
1131 | |
1132 | // We can always introduce two using declarations into the same |
1133 | // context, even if they have identical signatures. |
1134 | if (NewIsUsingDecl) continue; |
1135 | |
1136 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
1137 | } |
1138 | |
1139 | // A using-declaration does not conflict with another declaration |
1140 | // if one of them is hidden. |
1141 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) |
1142 | continue; |
1143 | |
1144 | // If either declaration was introduced by a using declaration, |
1145 | // we'll need to use slightly different rules for matching. |
1146 | // Essentially, these rules are the normal rules, except that |
1147 | // function templates hide function templates with different |
1148 | // return types or template parameter lists. |
1149 | bool UseMemberUsingDeclRules = |
1150 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && |
1151 | !New->getFriendObjectKind(); |
1152 | |
1153 | if (FunctionDecl *OldF = OldD->getAsFunction()) { |
1154 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { |
1155 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
1156 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
1157 | continue; |
1158 | } |
1159 | |
1160 | if (!isa<FunctionTemplateDecl>(OldD) && |
1161 | !shouldLinkPossiblyHiddenDecl(*I, New)) |
1162 | continue; |
1163 | |
1164 | // C++20 [temp.friend] p9: A non-template friend declaration with a |
1165 | // requires-clause shall be a definition. A friend function template |
1166 | // with a constraint that depends on a template parameter from an |
1167 | // enclosing template shall be a definition. Such a constrained friend |
1168 | // function or function template declaration does not declare the same |
1169 | // function or function template as a declaration in any other scope. |
1170 | if (Context.FriendsDifferByConstraints(OldF, New)) |
1171 | continue; |
1172 | |
1173 | Match = *I; |
1174 | return Ovl_Match; |
1175 | } |
1176 | |
1177 | // Builtins that have custom typechecking or have a reference should |
1178 | // not be overloadable or redeclarable. |
1179 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { |
1180 | Match = *I; |
1181 | return Ovl_NonFunction; |
1182 | } |
1183 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { |
1184 | // We can overload with these, which can show up when doing |
1185 | // redeclaration checks for UsingDecls. |
1186 | assert(Old.getLookupKind() == LookupUsingDeclName)(static_cast <bool> (Old.getLookupKind() == LookupUsingDeclName ) ? void (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName" , "clang/lib/Sema/SemaOverload.cpp", 1186, __extension__ __PRETTY_FUNCTION__ )); |
1187 | } else if (isa<TagDecl>(OldD)) { |
1188 | // We can always overload with tags by hiding them. |
1189 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { |
1190 | // Optimistically assume that an unresolved using decl will |
1191 | // overload; if it doesn't, we'll have to diagnose during |
1192 | // template instantiation. |
1193 | // |
1194 | // Exception: if the scope is dependent and this is not a class |
1195 | // member, the using declaration can only introduce an enumerator. |
1196 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { |
1197 | Match = *I; |
1198 | return Ovl_NonFunction; |
1199 | } |
1200 | } else { |
1201 | // (C++ 13p1): |
1202 | // Only function declarations can be overloaded; object and type |
1203 | // declarations cannot be overloaded. |
1204 | Match = *I; |
1205 | return Ovl_NonFunction; |
1206 | } |
1207 | } |
1208 | |
1209 | // C++ [temp.friend]p1: |
1210 | // For a friend function declaration that is not a template declaration: |
1211 | // -- if the name of the friend is a qualified or unqualified template-id, |
1212 | // [...], otherwise |
1213 | // -- if the name of the friend is a qualified-id and a matching |
1214 | // non-template function is found in the specified class or namespace, |
1215 | // the friend declaration refers to that function, otherwise, |
1216 | // -- if the name of the friend is a qualified-id and a matching function |
1217 | // template is found in the specified class or namespace, the friend |
1218 | // declaration refers to the deduced specialization of that function |
1219 | // template, otherwise |
1220 | // -- the name shall be an unqualified-id [...] |
1221 | // If we get here for a qualified friend declaration, we've just reached the |
1222 | // third bullet. If the type of the friend is dependent, skip this lookup |
1223 | // until instantiation. |
1224 | if (New->getFriendObjectKind() && New->getQualifier() && |
1225 | !New->getDescribedFunctionTemplate() && |
1226 | !New->getDependentSpecializationInfo() && |
1227 | !New->getType()->isDependentType()) { |
1228 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); |
1229 | TemplateSpecResult.addAllDecls(Old); |
1230 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, |
1231 | /*QualifiedFriend*/true)) { |
1232 | New->setInvalidDecl(); |
1233 | return Ovl_Overload; |
1234 | } |
1235 | |
1236 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); |
1237 | return Ovl_Match; |
1238 | } |
1239 | |
1240 | return Ovl_Overload; |
1241 | } |
1242 | |
1243 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
1244 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, |
1245 | bool ConsiderRequiresClauses) { |
1246 | // C++ [basic.start.main]p2: This function shall not be overloaded. |
1247 | if (New->isMain()) |
1248 | return false; |
1249 | |
1250 | // MSVCRT user defined entry points cannot be overloaded. |
1251 | if (New->isMSVCRTEntryPoint()) |
1252 | return false; |
1253 | |
1254 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
1255 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
1256 | |
1257 | // C++ [temp.fct]p2: |
1258 | // A function template can be overloaded with other function templates |
1259 | // and with normal (non-template) functions. |
1260 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) |
1261 | return true; |
1262 | |
1263 | // Is the function New an overload of the function Old? |
1264 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
1265 | QualType NewQType = Context.getCanonicalType(New->getType()); |
1266 | |
1267 | // Compare the signatures (C++ 1.3.10) of the two functions to |
1268 | // determine whether they are overloads. If we find any mismatch |
1269 | // in the signature, they are overloads. |
1270 | |
1271 | // If either of these functions is a K&R-style function (no |
1272 | // prototype), then we consider them to have matching signatures. |
1273 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || |
1274 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) |
1275 | return false; |
1276 | |
1277 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); |
1278 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); |
1279 | |
1280 | // The signature of a function includes the types of its |
1281 | // parameters (C++ 1.3.10), which includes the presence or absence |
1282 | // of the ellipsis; see C++ DR 357). |
1283 | if (OldQType != NewQType && |
1284 | (OldType->getNumParams() != NewType->getNumParams() || |
1285 | OldType->isVariadic() != NewType->isVariadic() || |
1286 | !FunctionParamTypesAreEqual(OldType, NewType))) |
1287 | return true; |
1288 | |
1289 | if (NewTemplate) { |
1290 | // C++ [temp.over.link]p4: |
1291 | // The signature of a function template consists of its function |
1292 | // signature, its return type and its template parameter list. The names |
1293 | // of the template parameters are significant only for establishing the |
1294 | // relationship between the template parameters and the rest of the |
1295 | // signature. |
1296 | // |
1297 | // We check the return type and template parameter lists for function |
1298 | // templates first; the remaining checks follow. |
1299 | bool SameTemplateParameterList = TemplateParameterListsAreEqual( |
1300 | NewTemplate->getTemplateParameters(), |
1301 | OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch); |
1302 | bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(), |
1303 | New->getDeclaredReturnType()); |
1304 | // FIXME(GH58571): Match template parameter list even for non-constrained |
1305 | // template heads. This currently ensures that the code prior to C++20 is |
1306 | // not newly broken. |
1307 | bool ConstraintsInTemplateHead = |
1308 | NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || |
1309 | OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); |
1310 | // C++ [namespace.udecl]p11: |
1311 | // The set of declarations named by a using-declarator that inhabits a |
1312 | // class C does not include member functions and member function |
1313 | // templates of a base class that "correspond" to (and thus would |
1314 | // conflict with) a declaration of a function or function template in |
1315 | // C. |
1316 | // Comparing return types is not required for the "correspond" check to |
1317 | // decide whether a member introduced by a shadow declaration is hidden. |
1318 | if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && |
1319 | !SameTemplateParameterList) |
1320 | return true; |
1321 | if (!UseMemberUsingDeclRules && |
1322 | (!SameTemplateParameterList || !SameReturnType)) |
1323 | return true; |
1324 | } |
1325 | |
1326 | if (ConsiderRequiresClauses) { |
1327 | Expr *NewRC = New->getTrailingRequiresClause(), |
1328 | *OldRC = Old->getTrailingRequiresClause(); |
1329 | if ((NewRC != nullptr) != (OldRC != nullptr)) |
1330 | return true; |
1331 | |
1332 | if (NewRC && !AreConstraintExpressionsEqual(Old, OldRC, New, NewRC)) |
1333 | return true; |
1334 | } |
1335 | |
1336 | // If the function is a class member, its signature includes the |
1337 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. |
1338 | // |
1339 | // As part of this, also check whether one of the member functions |
1340 | // is static, in which case they are not overloads (C++ |
1341 | // 13.1p2). While not part of the definition of the signature, |
1342 | // this check is important to determine whether these functions |
1343 | // can be overloaded. |
1344 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
1345 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
1346 | if (OldMethod && NewMethod && |
1347 | !OldMethod->isStatic() && !NewMethod->isStatic()) { |
1348 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { |
1349 | if (!UseMemberUsingDeclRules && |
1350 | (OldMethod->getRefQualifier() == RQ_None || |
1351 | NewMethod->getRefQualifier() == RQ_None)) { |
1352 | // C++20 [over.load]p2: |
1353 | // - Member function declarations with the same name, the same |
1354 | // parameter-type-list, and the same trailing requires-clause (if |
1355 | // any), as well as member function template declarations with the |
1356 | // same name, the same parameter-type-list, the same trailing |
1357 | // requires-clause (if any), and the same template-head, cannot be |
1358 | // overloaded if any of them, but not all, have a ref-qualifier. |
1359 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) |
1360 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); |
1361 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); |
1362 | } |
1363 | return true; |
1364 | } |
1365 | |
1366 | // We may not have applied the implicit const for a constexpr member |
1367 | // function yet (because we haven't yet resolved whether this is a static |
1368 | // or non-static member function). Add it now, on the assumption that this |
1369 | // is a redeclaration of OldMethod. |
1370 | auto OldQuals = OldMethod->getMethodQualifiers(); |
1371 | auto NewQuals = NewMethod->getMethodQualifiers(); |
1372 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && |
1373 | !isa<CXXConstructorDecl>(NewMethod)) |
1374 | NewQuals.addConst(); |
1375 | // We do not allow overloading based off of '__restrict'. |
1376 | OldQuals.removeRestrict(); |
1377 | NewQuals.removeRestrict(); |
1378 | if (OldQuals != NewQuals) |
1379 | return true; |
1380 | } |
1381 | |
1382 | // Though pass_object_size is placed on parameters and takes an argument, we |
1383 | // consider it to be a function-level modifier for the sake of function |
1384 | // identity. Either the function has one or more parameters with |
1385 | // pass_object_size or it doesn't. |
1386 | if (functionHasPassObjectSizeParams(New) != |
1387 | functionHasPassObjectSizeParams(Old)) |
1388 | return true; |
1389 | |
1390 | // enable_if attributes are an order-sensitive part of the signature. |
1391 | for (specific_attr_iterator<EnableIfAttr> |
1392 | NewI = New->specific_attr_begin<EnableIfAttr>(), |
1393 | NewE = New->specific_attr_end<EnableIfAttr>(), |
1394 | OldI = Old->specific_attr_begin<EnableIfAttr>(), |
1395 | OldE = Old->specific_attr_end<EnableIfAttr>(); |
1396 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { |
1397 | if (NewI == NewE || OldI == OldE) |
1398 | return true; |
1399 | llvm::FoldingSetNodeID NewID, OldID; |
1400 | NewI->getCond()->Profile(NewID, Context, true); |
1401 | OldI->getCond()->Profile(OldID, Context, true); |
1402 | if (NewID != OldID) |
1403 | return true; |
1404 | } |
1405 | |
1406 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { |
1407 | // Don't allow overloading of destructors. (In theory we could, but it |
1408 | // would be a giant change to clang.) |
1409 | if (!isa<CXXDestructorDecl>(New)) { |
1410 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), |
1411 | OldTarget = IdentifyCUDATarget(Old); |
1412 | if (NewTarget != CFT_InvalidTarget) { |
1413 | assert((OldTarget != CFT_InvalidTarget) &&(static_cast <bool> ((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "clang/lib/Sema/SemaOverload.cpp", 1414, __extension__ __PRETTY_FUNCTION__ )) |
1414 | "Unexpected invalid target.")(static_cast <bool> ((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "clang/lib/Sema/SemaOverload.cpp", 1414, __extension__ __PRETTY_FUNCTION__ )); |
1415 | |
1416 | // Allow overloading of functions with same signature and different CUDA |
1417 | // target attributes. |
1418 | if (NewTarget != OldTarget) |
1419 | return true; |
1420 | } |
1421 | } |
1422 | } |
1423 | |
1424 | // The signatures match; this is not an overload. |
1425 | return false; |
1426 | } |
1427 | |
1428 | /// Tries a user-defined conversion from From to ToType. |
1429 | /// |
1430 | /// Produces an implicit conversion sequence for when a standard conversion |
1431 | /// is not an option. See TryImplicitConversion for more information. |
1432 | static ImplicitConversionSequence |
1433 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
1434 | bool SuppressUserConversions, |
1435 | AllowedExplicit AllowExplicit, |
1436 | bool InOverloadResolution, |
1437 | bool CStyle, |
1438 | bool AllowObjCWritebackConversion, |
1439 | bool AllowObjCConversionOnExplicit) { |
1440 | ImplicitConversionSequence ICS; |
1441 | |
1442 | if (SuppressUserConversions) { |
1443 | // We're not in the case above, so there is no conversion that |
1444 | // we can perform. |
1445 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1446 | return ICS; |
1447 | } |
1448 | |
1449 | // Attempt user-defined conversion. |
1450 | OverloadCandidateSet Conversions(From->getExprLoc(), |
1451 | OverloadCandidateSet::CSK_Normal); |
1452 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, |
1453 | Conversions, AllowExplicit, |
1454 | AllowObjCConversionOnExplicit)) { |
1455 | case OR_Success: |
1456 | case OR_Deleted: |
1457 | ICS.setUserDefined(); |
1458 | // C++ [over.ics.user]p4: |
1459 | // A conversion of an expression of class type to the same class |
1460 | // type is given Exact Match rank, and a conversion of an |
1461 | // expression of class type to a base class of that type is |
1462 | // given Conversion rank, in spite of the fact that a copy |
1463 | // constructor (i.e., a user-defined conversion function) is |
1464 | // called for those cases. |
1465 | if (CXXConstructorDecl *Constructor |
1466 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { |
1467 | QualType FromCanon |
1468 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); |
1469 | QualType ToCanon |
1470 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); |
1471 | if (Constructor->isCopyConstructor() && |
1472 | (FromCanon == ToCanon || |
1473 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { |
1474 | // Turn this into a "standard" conversion sequence, so that it |
1475 | // gets ranked with standard conversion sequences. |
1476 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; |
1477 | ICS.setStandard(); |
1478 | ICS.Standard.setAsIdentityConversion(); |
1479 | ICS.Standard.setFromType(From->getType()); |
1480 | ICS.Standard.setAllToTypes(ToType); |
1481 | ICS.Standard.CopyConstructor = Constructor; |
1482 | ICS.Standard.FoundCopyConstructor = Found; |
1483 | if (ToCanon != FromCanon) |
1484 | ICS.Standard.Second = ICK_Derived_To_Base; |
1485 | } |
1486 | } |
1487 | break; |
1488 | |
1489 | case OR_Ambiguous: |
1490 | ICS.setAmbiguous(); |
1491 | ICS.Ambiguous.setFromType(From->getType()); |
1492 | ICS.Ambiguous.setToType(ToType); |
1493 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
1494 | Cand != Conversions.end(); ++Cand) |
1495 | if (Cand->Best) |
1496 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
1497 | break; |
1498 | |
1499 | // Fall through. |
1500 | case OR_No_Viable_Function: |
1501 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1502 | break; |
1503 | } |
1504 | |
1505 | return ICS; |
1506 | } |
1507 | |
1508 | /// TryImplicitConversion - Attempt to perform an implicit conversion |
1509 | /// from the given expression (Expr) to the given type (ToType). This |
1510 | /// function returns an implicit conversion sequence that can be used |
1511 | /// to perform the initialization. Given |
1512 | /// |
1513 | /// void f(float f); |
1514 | /// void g(int i) { f(i); } |
1515 | /// |
1516 | /// this routine would produce an implicit conversion sequence to |
1517 | /// describe the initialization of f from i, which will be a standard |
1518 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
1519 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
1520 | // |
1521 | /// Note that this routine only determines how the conversion can be |
1522 | /// performed; it does not actually perform the conversion. As such, |
1523 | /// it will not produce any diagnostics if no conversion is available, |
1524 | /// but will instead return an implicit conversion sequence of kind |
1525 | /// "BadConversion". |
1526 | /// |
1527 | /// If @p SuppressUserConversions, then user-defined conversions are |
1528 | /// not permitted. |
1529 | /// If @p AllowExplicit, then explicit user-defined conversions are |
1530 | /// permitted. |
1531 | /// |
1532 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C |
1533 | /// writeback conversion, which allows __autoreleasing id* parameters to |
1534 | /// be initialized with __strong id* or __weak id* arguments. |
1535 | static ImplicitConversionSequence |
1536 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, |
1537 | bool SuppressUserConversions, |
1538 | AllowedExplicit AllowExplicit, |
1539 | bool InOverloadResolution, |
1540 | bool CStyle, |
1541 | bool AllowObjCWritebackConversion, |
1542 | bool AllowObjCConversionOnExplicit) { |
1543 | ImplicitConversionSequence ICS; |
1544 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, |
1545 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ |
1546 | ICS.setStandard(); |
1547 | return ICS; |
1548 | } |
1549 | |
1550 | if (!S.getLangOpts().CPlusPlus) { |
1551 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1552 | return ICS; |
1553 | } |
1554 | |
1555 | // C++ [over.ics.user]p4: |
1556 | // A conversion of an expression of class type to the same class |
1557 | // type is given Exact Match rank, and a conversion of an |
1558 | // expression of class type to a base class of that type is |
1559 | // given Conversion rank, in spite of the fact that a copy/move |
1560 | // constructor (i.e., a user-defined conversion function) is |
1561 | // called for those cases. |
1562 | QualType FromType = From->getType(); |
1563 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && |
1564 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || |
1565 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { |
1566 | ICS.setStandard(); |
1567 | ICS.Standard.setAsIdentityConversion(); |
1568 | ICS.Standard.setFromType(FromType); |
1569 | ICS.Standard.setAllToTypes(ToType); |
1570 | |
1571 | // We don't actually check at this point whether there is a valid |
1572 | // copy/move constructor, since overloading just assumes that it |
1573 | // exists. When we actually perform initialization, we'll find the |
1574 | // appropriate constructor to copy the returned object, if needed. |
1575 | ICS.Standard.CopyConstructor = nullptr; |
1576 | |
1577 | // Determine whether this is considered a derived-to-base conversion. |
1578 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) |
1579 | ICS.Standard.Second = ICK_Derived_To_Base; |
1580 | |
1581 | return ICS; |
1582 | } |
1583 | |
1584 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
1585 | AllowExplicit, InOverloadResolution, CStyle, |
1586 | AllowObjCWritebackConversion, |
1587 | AllowObjCConversionOnExplicit); |
1588 | } |
1589 | |
1590 | ImplicitConversionSequence |
1591 | Sema::TryImplicitConversion(Expr *From, QualType ToType, |
1592 | bool SuppressUserConversions, |
1593 | AllowedExplicit AllowExplicit, |
1594 | bool InOverloadResolution, |
1595 | bool CStyle, |
1596 | bool AllowObjCWritebackConversion) { |
1597 | return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, |
1598 | AllowExplicit, InOverloadResolution, CStyle, |
1599 | AllowObjCWritebackConversion, |
1600 | /*AllowObjCConversionOnExplicit=*/false); |
1601 | } |
1602 | |
1603 | /// PerformImplicitConversion - Perform an implicit conversion of the |
1604 | /// expression From to the type ToType. Returns the |
1605 | /// converted expression. Flavor is the kind of conversion we're |
1606 | /// performing, used in the error message. If @p AllowExplicit, |
1607 | /// explicit user-defined conversions are permitted. |
1608 | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
1609 | AssignmentAction Action, |
1610 | bool AllowExplicit) { |
1611 | if (checkPlaceholderForOverload(*this, From)) |
1612 | return ExprError(); |
1613 | |
1614 | // Objective-C ARC: Determine whether we will allow the writeback conversion. |
1615 | bool AllowObjCWritebackConversion |
1616 | = getLangOpts().ObjCAutoRefCount && |
1617 | (Action == AA_Passing || Action == AA_Sending); |
1618 | if (getLangOpts().ObjC) |
1619 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, |
1620 | From->getType(), From); |
1621 | ImplicitConversionSequence ICS = ::TryImplicitConversion( |
1622 | *this, From, ToType, |
1623 | /*SuppressUserConversions=*/false, |
1624 | AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, |
1625 | /*InOverloadResolution=*/false, |
1626 | /*CStyle=*/false, AllowObjCWritebackConversion, |
1627 | /*AllowObjCConversionOnExplicit=*/false); |
1628 | return PerformImplicitConversion(From, ToType, ICS, Action); |
1629 | } |
1630 | |
1631 | /// Determine whether the conversion from FromType to ToType is a valid |
1632 | /// conversion that strips "noexcept" or "noreturn" off the nested function |
1633 | /// type. |
1634 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, |
1635 | QualType &ResultTy) { |
1636 | if (Context.hasSameUnqualifiedType(FromType, ToType)) |
1637 | return false; |
1638 | |
1639 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) |
1640 | // or F(t noexcept) -> F(t) |
1641 | // where F adds one of the following at most once: |
1642 | // - a pointer |
1643 | // - a member pointer |
1644 | // - a block pointer |
1645 | // Changes here need matching changes in FindCompositePointerType. |
1646 | CanQualType CanTo = Context.getCanonicalType(ToType); |
1647 | CanQualType CanFrom = Context.getCanonicalType(FromType); |
1648 | Type::TypeClass TyClass = CanTo->getTypeClass(); |
1649 | if (TyClass != CanFrom->getTypeClass()) return false; |
1650 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { |
1651 | if (TyClass == Type::Pointer) { |
1652 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); |
1653 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); |
1654 | } else if (TyClass == Type::BlockPointer) { |
1655 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); |
1656 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); |
1657 | } else if (TyClass == Type::MemberPointer) { |
1658 | auto ToMPT = CanTo.castAs<MemberPointerType>(); |
1659 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); |
1660 | // A function pointer conversion cannot change the class of the function. |
1661 | if (ToMPT->getClass() != FromMPT->getClass()) |
1662 | return false; |
1663 | CanTo = ToMPT->getPointeeType(); |
1664 | CanFrom = FromMPT->getPointeeType(); |
1665 | } else { |
1666 | return false; |
1667 | } |
1668 | |
1669 | TyClass = CanTo->getTypeClass(); |
1670 | if (TyClass != CanFrom->getTypeClass()) return false; |
1671 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) |
1672 | return false; |
1673 | } |
1674 | |
1675 | const auto *FromFn = cast<FunctionType>(CanFrom); |
1676 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); |
1677 | |
1678 | const auto *ToFn = cast<FunctionType>(CanTo); |
1679 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); |
1680 | |
1681 | bool Changed = false; |
1682 | |
1683 | // Drop 'noreturn' if not present in target type. |
1684 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { |
1685 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); |
1686 | Changed = true; |
1687 | } |
1688 | |
1689 | // Drop 'noexcept' if not present in target type. |
1690 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { |
1691 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); |
1692 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { |
1693 | FromFn = cast<FunctionType>( |
1694 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), |
1695 | EST_None) |
1696 | .getTypePtr()); |
1697 | Changed = true; |
1698 | } |
1699 | |
1700 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid |
1701 | // only if the ExtParameterInfo lists of the two function prototypes can be |
1702 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. |
1703 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
1704 | bool CanUseToFPT, CanUseFromFPT; |
1705 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, |
1706 | CanUseFromFPT, NewParamInfos) && |
1707 | CanUseToFPT && !CanUseFromFPT) { |
1708 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); |
1709 | ExtInfo.ExtParameterInfos = |
1710 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); |
1711 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), |
1712 | FromFPT->getParamTypes(), ExtInfo); |
1713 | FromFn = QT->getAs<FunctionType>(); |
1714 | Changed = true; |
1715 | } |
1716 | } |
1717 | |
1718 | if (!Changed) |
1719 | return false; |
1720 | |
1721 | assert(QualType(FromFn, 0).isCanonical())(static_cast <bool> (QualType(FromFn, 0).isCanonical()) ? void (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()" , "clang/lib/Sema/SemaOverload.cpp", 1721, __extension__ __PRETTY_FUNCTION__ )); |
1722 | if (QualType(FromFn, 0) != CanTo) return false; |
1723 | |
1724 | ResultTy = ToType; |
1725 | return true; |
1726 | } |
1727 | |
1728 | /// Determine whether the conversion from FromType to ToType is a valid |
1729 | /// vector conversion. |
1730 | /// |
1731 | /// \param ICK Will be set to the vector conversion kind, if this is a vector |
1732 | /// conversion. |
1733 | static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, |
1734 | ImplicitConversionKind &ICK, Expr *From, |
1735 | bool InOverloadResolution, bool CStyle) { |
1736 | // We need at least one of these types to be a vector type to have a vector |
1737 | // conversion. |
1738 | if (!ToType->isVectorType() && !FromType->isVectorType()) |
1739 | return false; |
1740 | |
1741 | // Identical types require no conversions. |
1742 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) |
1743 | return false; |
1744 | |
1745 | // There are no conversions between extended vector types, only identity. |
1746 | if (ToType->isExtVectorType()) { |
1747 | // There are no conversions between extended vector types other than the |
1748 | // identity conversion. |
1749 | if (FromType->isExtVectorType()) |
1750 | return false; |
1751 | |
1752 | // Vector splat from any arithmetic type to a vector. |
1753 | if (FromType->isArithmeticType()) { |
1754 | ICK = ICK_Vector_Splat; |
1755 | return true; |
1756 | } |
1757 | } |
1758 | |
1759 | if (ToType->isSVESizelessBuiltinType() || |
1760 | FromType->isSVESizelessBuiltinType()) |
1761 | if (S.Context.areCompatibleSveTypes(FromType, ToType) || |
1762 | S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { |
1763 | ICK = ICK_SVE_Vector_Conversion; |
1764 | return true; |
1765 | } |
1766 | |
1767 | // We can perform the conversion between vector types in the following cases: |
1768 | // 1)vector types are equivalent AltiVec and GCC vector types |
1769 | // 2)lax vector conversions are permitted and the vector types are of the |
1770 | // same size |
1771 | // 3)the destination type does not have the ARM MVE strict-polymorphism |
1772 | // attribute, which inhibits lax vector conversion for overload resolution |
1773 | // only |
1774 | if (ToType->isVectorType() && FromType->isVectorType()) { |
1775 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || |
1776 | (S.isLaxVectorConversion(FromType, ToType) && |
1777 | !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { |
1778 | if (S.getASTContext().getTargetInfo().getTriple().isPPC() && |
1779 | S.isLaxVectorConversion(FromType, ToType) && |
1780 | S.anyAltivecTypes(FromType, ToType) && |
1781 | !S.Context.areCompatibleVectorTypes(FromType, ToType) && |
1782 | !InOverloadResolution && !CStyle) { |
1783 | S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all) |
1784 | << FromType << ToType; |
1785 | } |
1786 | ICK = ICK_Vector_Conversion; |
1787 | return true; |
1788 | } |
1789 | } |
1790 | |
1791 | return false; |
1792 | } |
1793 | |
1794 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
1795 | bool InOverloadResolution, |
1796 | StandardConversionSequence &SCS, |
1797 | bool CStyle); |
1798 | |
1799 | /// IsStandardConversion - Determines whether there is a standard |
1800 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
1801 | /// expression From to the type ToType. Standard conversion sequences |
1802 | /// only consider non-class types; for conversions that involve class |
1803 | /// types, use TryImplicitConversion. If a conversion exists, SCS will |
1804 | /// contain the standard conversion sequence required to perform this |
1805 | /// conversion and this routine will return true. Otherwise, this |
1806 | /// routine will return false and the value of SCS is unspecified. |
1807 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
1808 | bool InOverloadResolution, |
1809 | StandardConversionSequence &SCS, |
1810 | bool CStyle, |
1811 | bool AllowObjCWritebackConversion) { |
1812 | QualType FromType = From->getType(); |
1813 | |
1814 | // Standard conversions (C++ [conv]) |
1815 | SCS.setAsIdentityConversion(); |
1816 | SCS.IncompatibleObjC = false; |
1817 | SCS.setFromType(FromType); |
1818 | SCS.CopyConstructor = nullptr; |
1819 | |
1820 | // There are no standard conversions for class types in C++, so |
1821 | // abort early. When overloading in C, however, we do permit them. |
1822 | if (S.getLangOpts().CPlusPlus && |
1823 | (FromType->isRecordType() || ToType->isRecordType())) |
1824 | return false; |
1825 | |
1826 | // The first conversion can be an lvalue-to-rvalue conversion, |
1827 | // array-to-pointer conversion, or function-to-pointer conversion |
1828 | // (C++ 4p1). |
1829 | |
1830 | if (FromType == S.Context.OverloadTy) { |
1831 | DeclAccessPair AccessPair; |
1832 | if (FunctionDecl *Fn |
1833 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, |
1834 | AccessPair)) { |
1835 | // We were able to resolve the address of the overloaded function, |
1836 | // so we can convert to the type of that function. |
1837 | FromType = Fn->getType(); |
1838 | SCS.setFromType(FromType); |
1839 | |
1840 | // we can sometimes resolve &foo<int> regardless of ToType, so check |
1841 | // if the type matches (identity) or we are converting to bool |
1842 | if (!S.Context.hasSameUnqualifiedType( |
1843 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { |
1844 | QualType resultTy; |
1845 | // if the function type matches except for [[noreturn]], it's ok |
1846 | if (!S.IsFunctionConversion(FromType, |
1847 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) |
1848 | // otherwise, only a boolean conversion is standard |
1849 | if (!ToType->isBooleanType()) |
1850 | return false; |
1851 | } |
1852 | |
1853 | // Check if the "from" expression is taking the address of an overloaded |
1854 | // function and recompute the FromType accordingly. Take advantage of the |
1855 | // fact that non-static member functions *must* have such an address-of |
1856 | // expression. |
1857 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); |
1858 | if (Method && !Method->isStatic()) { |
1859 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&(static_cast <bool> (isa<UnaryOperator>(From-> IgnoreParens()) && "Non-unary operator on non-static member address" ) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )) |
1860 | "Non-unary operator on non-static member address")(static_cast <bool> (isa<UnaryOperator>(From-> IgnoreParens()) && "Non-unary operator on non-static member address" ) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )); |
1861 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )) |
1862 | == UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )) |
1863 | "Non-address-of operator on non-static member address")(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )); |
1864 | const Type *ClassType |
1865 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
1866 | FromType = S.Context.getMemberPointerType(FromType, ClassType); |
1867 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { |
1868 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )) |
1869 | UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )) |
1870 | "Non-address-of operator for overloaded function expression")(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )); |
1871 | FromType = S.Context.getPointerType(FromType); |
1872 | } |
1873 | } else { |
1874 | return false; |
1875 | } |
1876 | } |
1877 | // Lvalue-to-rvalue conversion (C++11 4.1): |
1878 | // A glvalue (3.10) of a non-function, non-array type T can |
1879 | // be converted to a prvalue. |
1880 | bool argIsLValue = From->isGLValue(); |
1881 | if (argIsLValue && |
1882 | !FromType->isFunctionType() && !FromType->isArrayType() && |
1883 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { |
1884 | SCS.First = ICK_Lvalue_To_Rvalue; |
1885 | |
1886 | // C11 6.3.2.1p2: |
1887 | // ... if the lvalue has atomic type, the value has the non-atomic version |
1888 | // of the type of the lvalue ... |
1889 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) |
1890 | FromType = Atomic->getValueType(); |
1891 | |
1892 | // If T is a non-class type, the type of the rvalue is the |
1893 | // cv-unqualified version of T. Otherwise, the type of the rvalue |
1894 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
1895 | // just strip the qualifiers because they don't matter. |
1896 | FromType = FromType.getUnqualifiedType(); |
1897 | } else if (FromType->isArrayType()) { |
1898 | // Array-to-pointer conversion (C++ 4.2) |
1899 | SCS.First = ICK_Array_To_Pointer; |
1900 | |
1901 | // An lvalue or rvalue of type "array of N T" or "array of unknown |
1902 | // bound of T" can be converted to an rvalue of type "pointer to |
1903 | // T" (C++ 4.2p1). |
1904 | FromType = S.Context.getArrayDecayedType(FromType); |
1905 | |
1906 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
1907 | // This conversion is deprecated in C++03 (D.4) |
1908 | SCS.DeprecatedStringLiteralToCharPtr = true; |
1909 | |
1910 | // For the purpose of ranking in overload resolution |
1911 | // (13.3.3.1.1), this conversion is considered an |
1912 | // array-to-pointer conversion followed by a qualification |
1913 | // conversion (4.4). (C++ 4.2p2) |
1914 | SCS.Second = ICK_Identity; |
1915 | SCS.Third = ICK_Qualification; |
1916 | SCS.QualificationIncludesObjCLifetime = false; |
1917 | SCS.setAllToTypes(FromType); |
1918 | return true; |
1919 | } |
1920 | } else if (FromType->isFunctionType() && argIsLValue) { |
1921 | // Function-to-pointer conversion (C++ 4.3). |
1922 | SCS.First = ICK_Function_To_Pointer; |
1923 | |
1924 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) |
1925 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
1926 | if (!S.checkAddressOfFunctionIsAvailable(FD)) |
1927 | return false; |
1928 | |
1929 | // An lvalue of function type T can be converted to an rvalue of |
1930 | // type "pointer to T." The result is a pointer to the |
1931 | // function. (C++ 4.3p1). |
1932 | FromType = S.Context.getPointerType(FromType); |
1933 | } else { |
1934 | // We don't require any conversions for the first step. |
1935 | SCS.First = ICK_Identity; |
1936 | } |
1937 | SCS.setToType(0, FromType); |
1938 | |
1939 | // The second conversion can be an integral promotion, floating |
1940 | // point promotion, integral conversion, floating point conversion, |
1941 | // floating-integral conversion, pointer conversion, |
1942 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
1943 | // For overloading in C, this can also be a "compatible-type" |
1944 | // conversion. |
1945 | bool IncompatibleObjC = false; |
1946 | ImplicitConversionKind SecondICK = ICK_Identity; |
1947 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { |
1948 | // The unqualified versions of the types are the same: there's no |
1949 | // conversion to do. |
1950 | SCS.Second = ICK_Identity; |
1951 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { |
1952 | // Integral promotion (C++ 4.5). |
1953 | SCS.Second = ICK_Integral_Promotion; |
1954 | FromType = ToType.getUnqualifiedType(); |
1955 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { |
1956 | // Floating point promotion (C++ 4.6). |
1957 | SCS.Second = ICK_Floating_Promotion; |
1958 | FromType = ToType.getUnqualifiedType(); |
1959 | } else if (S.IsComplexPromotion(FromType, ToType)) { |
1960 | // Complex promotion (Clang extension) |
1961 | SCS.Second = ICK_Complex_Promotion; |
1962 | FromType = ToType.getUnqualifiedType(); |
1963 | } else if (ToType->isBooleanType() && |
1964 | (FromType->isArithmeticType() || |
1965 | FromType->isAnyPointerType() || |
1966 | FromType->isBlockPointerType() || |
1967 | FromType->isMemberPointerType())) { |
1968 | // Boolean conversions (C++ 4.12). |
1969 | SCS.Second = ICK_Boolean_Conversion; |
1970 | FromType = S.Context.BoolTy; |
1971 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
1972 | ToType->isIntegralType(S.Context)) { |
1973 | // Integral conversions (C++ 4.7). |
1974 | SCS.Second = ICK_Integral_Conversion; |
1975 | FromType = ToType.getUnqualifiedType(); |
1976 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { |
1977 | // Complex conversions (C99 6.3.1.6) |
1978 | SCS.Second = ICK_Complex_Conversion; |
1979 | FromType = ToType.getUnqualifiedType(); |
1980 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || |
1981 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { |
1982 | // Complex-real conversions (C99 6.3.1.7) |
1983 | SCS.Second = ICK_Complex_Real; |
1984 | FromType = ToType.getUnqualifiedType(); |
1985 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { |
1986 | // FIXME: disable conversions between long double, __ibm128 and __float128 |
1987 | // if their representation is different until there is back end support |
1988 | // We of course allow this conversion if long double is really double. |
1989 | |
1990 | // Conversions between bfloat and other floats are not permitted. |
1991 | if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) |
1992 | return false; |
1993 | |
1994 | // Conversions between IEEE-quad and IBM-extended semantics are not |
1995 | // permitted. |
1996 | const llvm::fltSemantics &FromSem = |
1997 | S.Context.getFloatTypeSemantics(FromType); |
1998 | const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); |
1999 | if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && |
2000 | &ToSem == &llvm::APFloat::IEEEquad()) || |
2001 | (&FromSem == &llvm::APFloat::IEEEquad() && |
2002 | &ToSem == &llvm::APFloat::PPCDoubleDouble())) |
2003 | return false; |
2004 | |
2005 | // Floating point conversions (C++ 4.8). |
2006 | SCS.Second = ICK_Floating_Conversion; |
2007 | FromType = ToType.getUnqualifiedType(); |
2008 | } else if ((FromType->isRealFloatingType() && |
2009 | ToType->isIntegralType(S.Context)) || |
2010 | (FromType->isIntegralOrUnscopedEnumerationType() && |
2011 | ToType->isRealFloatingType())) { |
2012 | // Conversions between bfloat and int are not permitted. |
2013 | if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) |
2014 | return false; |
2015 | |
2016 | // Floating-integral conversions (C++ 4.9). |
2017 | SCS.Second = ICK_Floating_Integral; |
2018 | FromType = ToType.getUnqualifiedType(); |
2019 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { |
2020 | SCS.Second = ICK_Block_Pointer_Conversion; |
2021 | } else if (AllowObjCWritebackConversion && |
2022 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { |
2023 | SCS.Second = ICK_Writeback_Conversion; |
2024 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
2025 | FromType, IncompatibleObjC)) { |
2026 | // Pointer conversions (C++ 4.10). |
2027 | SCS.Second = ICK_Pointer_Conversion; |
2028 | SCS.IncompatibleObjC = IncompatibleObjC; |
2029 | FromType = FromType.getUnqualifiedType(); |
2030 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, |
2031 | InOverloadResolution, FromType)) { |
2032 | // Pointer to member conversions (4.11). |
2033 | SCS.Second = ICK_Pointer_Member; |
2034 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From, |
2035 | InOverloadResolution, CStyle)) { |
2036 | SCS.Second = SecondICK; |
2037 | FromType = ToType.getUnqualifiedType(); |
2038 | } else if (!S.getLangOpts().CPlusPlus && |
2039 | S.Context.typesAreCompatible(ToType, FromType)) { |
2040 | // Compatible conversions (Clang extension for C function overloading) |
2041 | SCS.Second = ICK_Compatible_Conversion; |
2042 | FromType = ToType.getUnqualifiedType(); |
2043 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, |
2044 | InOverloadResolution, |
2045 | SCS, CStyle)) { |
2046 | SCS.Second = ICK_TransparentUnionConversion; |
2047 | FromType = ToType; |
2048 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, |
2049 | CStyle)) { |
2050 | // tryAtomicConversion has updated the standard conversion sequence |
2051 | // appropriately. |
2052 | return true; |
2053 | } else if (ToType->isEventT() && |
2054 | From->isIntegerConstantExpr(S.getASTContext()) && |
2055 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { |
2056 | SCS.Second = ICK_Zero_Event_Conversion; |
2057 | FromType = ToType; |
2058 | } else if (ToType->isQueueT() && |
2059 | From->isIntegerConstantExpr(S.getASTContext()) && |
2060 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { |
2061 | SCS.Second = ICK_Zero_Queue_Conversion; |
2062 | FromType = ToType; |
2063 | } else if (ToType->isSamplerT() && |
2064 | From->isIntegerConstantExpr(S.getASTContext())) { |
2065 | SCS.Second = ICK_Compatible_Conversion; |
2066 | FromType = ToType; |
2067 | } else { |
2068 | // No second conversion required. |
2069 | SCS.Second = ICK_Identity; |
2070 | } |
2071 | SCS.setToType(1, FromType); |
2072 | |
2073 | // The third conversion can be a function pointer conversion or a |
2074 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). |
2075 | bool ObjCLifetimeConversion; |
2076 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { |
2077 | // Function pointer conversions (removing 'noexcept') including removal of |
2078 | // 'noreturn' (Clang extension). |
2079 | SCS.Third = ICK_Function_Conversion; |
2080 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, |
2081 | ObjCLifetimeConversion)) { |
2082 | SCS.Third = ICK_Qualification; |
2083 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; |
2084 | FromType = ToType; |
2085 | } else { |
2086 | // No conversion required |
2087 | SCS.Third = ICK_Identity; |
2088 | } |
2089 | |
2090 | // C++ [over.best.ics]p6: |
2091 | // [...] Any difference in top-level cv-qualification is |
2092 | // subsumed by the initialization itself and does not constitute |
2093 | // a conversion. [...] |
2094 | QualType CanonFrom = S.Context.getCanonicalType(FromType); |
2095 | QualType CanonTo = S.Context.getCanonicalType(ToType); |
2096 | if (CanonFrom.getLocalUnqualifiedType() |
2097 | == CanonTo.getLocalUnqualifiedType() && |
2098 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { |
2099 | FromType = ToType; |
2100 | CanonFrom = CanonTo; |
2101 | } |
2102 | |
2103 | SCS.setToType(2, FromType); |
2104 | |
2105 | if (CanonFrom == CanonTo) |
2106 | return true; |
2107 | |
2108 | // If we have not converted the argument type to the parameter type, |
2109 | // this is a bad conversion sequence, unless we're resolving an overload in C. |
2110 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) |
2111 | return false; |
2112 | |
2113 | ExprResult ER = ExprResult{From}; |
2114 | Sema::AssignConvertType Conv = |
2115 | S.CheckSingleAssignmentConstraints(ToType, ER, |
2116 | /*Diagnose=*/false, |
2117 | /*DiagnoseCFAudited=*/false, |
2118 | /*ConvertRHS=*/false); |
2119 | ImplicitConversionKind SecondConv; |
2120 | switch (Conv) { |
2121 | case Sema::Compatible: |
2122 | SecondConv = ICK_C_Only_Conversion; |
2123 | break; |
2124 | // For our purposes, discarding qualifiers is just as bad as using an |
2125 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop |
2126 | // qualifiers, as well. |
2127 | case Sema::CompatiblePointerDiscardsQualifiers: |
2128 | case Sema::IncompatiblePointer: |
2129 | case Sema::IncompatiblePointerSign: |
2130 | SecondConv = ICK_Incompatible_Pointer_Conversion; |
2131 | break; |
2132 | default: |
2133 | return false; |
2134 | } |
2135 | |
2136 | // First can only be an lvalue conversion, so we pretend that this was the |
2137 | // second conversion. First should already be valid from earlier in the |
2138 | // function. |
2139 | SCS.Second = SecondConv; |
2140 | SCS.setToType(1, ToType); |
2141 | |
2142 | // Third is Identity, because Second should rank us worse than any other |
2143 | // conversion. This could also be ICK_Qualification, but it's simpler to just |
2144 | // lump everything in with the second conversion, and we don't gain anything |
2145 | // from making this ICK_Qualification. |
2146 | SCS.Third = ICK_Identity; |
2147 | SCS.setToType(2, ToType); |
2148 | return true; |
2149 | } |
2150 | |
2151 | static bool |
2152 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
2153 | QualType &ToType, |
2154 | bool InOverloadResolution, |
2155 | StandardConversionSequence &SCS, |
2156 | bool CStyle) { |
2157 | |
2158 | const RecordType *UT = ToType->getAsUnionType(); |
2159 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
2160 | return false; |
2161 | // The field to initialize within the transparent union. |
2162 | RecordDecl *UD = UT->getDecl(); |
2163 | // It's compatible if the expression matches any of the fields. |
2164 | for (const auto *it : UD->fields()) { |
2165 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, |
2166 | CStyle, /*AllowObjCWritebackConversion=*/false)) { |
2167 | ToType = it->getType(); |
2168 | return true; |
2169 | } |
2170 | } |
2171 | return false; |
2172 | } |
2173 | |
2174 | /// IsIntegralPromotion - Determines whether the conversion from the |
2175 | /// expression From (whose potentially-adjusted type is FromType) to |
2176 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and |
2177 | /// sets PromotedType to the promoted type. |
2178 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
2179 | const BuiltinType *To = ToType->getAs<BuiltinType>(); |
2180 | // All integers are built-in. |
2181 | if (!To) { |
2182 | return false; |
2183 | } |
2184 | |
2185 | // An rvalue of type char, signed char, unsigned char, short int, or |
2186 | // unsigned short int can be converted to an rvalue of type int if |
2187 | // int can represent all the values of the source type; otherwise, |
2188 | // the source rvalue can be converted to an rvalue of type unsigned |
2189 | // int (C++ 4.5p1). |
2190 | if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() && |
2191 | !FromType->isEnumeralType()) { |
2192 | if ( // We can promote any signed, promotable integer type to an int |
2193 | (FromType->isSignedIntegerType() || |
2194 | // We can promote any unsigned integer type whose size is |
2195 | // less than int to an int. |
2196 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { |
2197 | return To->getKind() == BuiltinType::Int; |
2198 | } |
2199 | |
2200 | return To->getKind() == BuiltinType::UInt; |
2201 | } |
2202 | |
2203 | // C++11 [conv.prom]p3: |
2204 | // A prvalue of an unscoped enumeration type whose underlying type is not |
2205 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the |
2206 | // following types that can represent all the values of the enumeration |
2207 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, |
2208 | // unsigned int, long int, unsigned long int, long long int, or unsigned |
2209 | // long long int. If none of the types in that list can represent all the |
2210 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration |
2211 | // type can be converted to an rvalue a prvalue of the extended integer type |
2212 | // with lowest integer conversion rank (4.13) greater than the rank of long |
2213 | // long in which all the values of the enumeration can be represented. If |
2214 | // there are two such extended types, the signed one is chosen. |
2215 | // C++11 [conv.prom]p4: |
2216 | // A prvalue of an unscoped enumeration type whose underlying type is fixed |
2217 | // can be converted to a prvalue of its underlying type. Moreover, if |
2218 | // integral promotion can be applied to its underlying type, a prvalue of an |
2219 | // unscoped enumeration type whose underlying type is fixed can also be |
2220 | // converted to a prvalue of the promoted underlying type. |
2221 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { |
2222 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not |
2223 | // provided for a scoped enumeration. |
2224 | if (FromEnumType->getDecl()->isScoped()) |
2225 | return false; |
2226 | |
2227 | // We can perform an integral promotion to the underlying type of the enum, |
2228 | // even if that's not the promoted type. Note that the check for promoting |
2229 | // the underlying type is based on the type alone, and does not consider |
2230 | // the bitfield-ness of the actual source expression. |
2231 | if (FromEnumType->getDecl()->isFixed()) { |
2232 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); |
2233 | return Context.hasSameUnqualifiedType(Underlying, ToType) || |
2234 | IsIntegralPromotion(nullptr, Underlying, ToType); |
2235 | } |
2236 | |
2237 | // We have already pre-calculated the promotion type, so this is trivial. |
2238 | if (ToType->isIntegerType() && |
2239 | isCompleteType(From->getBeginLoc(), FromType)) |
2240 | return Context.hasSameUnqualifiedType( |
2241 | ToType, FromEnumType->getDecl()->getPromotionType()); |
2242 | |
2243 | // C++ [conv.prom]p5: |
2244 | // If the bit-field has an enumerated type, it is treated as any other |
2245 | // value of that type for promotion purposes. |
2246 | // |
2247 | // ... so do not fall through into the bit-field checks below in C++. |
2248 | if (getLangOpts().CPlusPlus) |
2249 | return false; |
2250 | } |
2251 | |
2252 | // C++0x [conv.prom]p2: |
2253 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted |
2254 | // to an rvalue a prvalue of the first of the following types that can |
2255 | // represent all the values of its underlying type: int, unsigned int, |
2256 | // long int, unsigned long int, long long int, or unsigned long long int. |
2257 | // If none of the types in that list can represent all the values of its |
2258 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, |
2259 | // or wchar_t can be converted to an rvalue a prvalue of its underlying |
2260 | // type. |
2261 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && |
2262 | ToType->isIntegerType()) { |
2263 | // Determine whether the type we're converting from is signed or |
2264 | // unsigned. |
2265 | bool FromIsSigned = FromType->isSignedIntegerType(); |
2266 | uint64_t FromSize = Context.getTypeSize(FromType); |
2267 | |
2268 | // The types we'll try to promote to, in the appropriate |
2269 | // order. Try each of these types. |
2270 | QualType PromoteTypes[6] = { |
2271 | Context.IntTy, Context.UnsignedIntTy, |
2272 | Context.LongTy, Context.UnsignedLongTy , |
2273 | Context.LongLongTy, Context.UnsignedLongLongTy |
2274 | }; |
2275 | for (int Idx = 0; Idx < 6; ++Idx) { |
2276 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); |
2277 | if (FromSize < ToSize || |
2278 | (FromSize == ToSize && |
2279 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
2280 | // We found the type that we can promote to. If this is the |
2281 | // type we wanted, we have a promotion. Otherwise, no |
2282 | // promotion. |
2283 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); |
2284 | } |
2285 | } |
2286 | } |
2287 | |
2288 | // An rvalue for an integral bit-field (9.6) can be converted to an |
2289 | // rvalue of type int if int can represent all the values of the |
2290 | // bit-field; otherwise, it can be converted to unsigned int if |
2291 | // unsigned int can represent all the values of the bit-field. If |
2292 | // the bit-field is larger yet, no integral promotion applies to |
2293 | // it. If the bit-field has an enumerated type, it is treated as any |
2294 | // other value of that type for promotion purposes (C++ 4.5p3). |
2295 | // FIXME: We should delay checking of bit-fields until we actually perform the |
2296 | // conversion. |
2297 | // |
2298 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be |
2299 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum |
2300 | // bit-fields and those whose underlying type is larger than int) for GCC |
2301 | // compatibility. |
2302 | if (From) { |
2303 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { |
2304 | std::optional<llvm::APSInt> BitWidth; |
2305 | if (FromType->isIntegralType(Context) && |
2306 | (BitWidth = |
2307 | MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { |
2308 | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); |
2309 | ToSize = Context.getTypeSize(ToType); |
2310 | |
2311 | // Are we promoting to an int from a bitfield that fits in an int? |
2312 | if (*BitWidth < ToSize || |
2313 | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { |
2314 | return To->getKind() == BuiltinType::Int; |
2315 | } |
2316 | |
2317 | // Are we promoting to an unsigned int from an unsigned bitfield |
2318 | // that fits into an unsigned int? |
2319 | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { |
2320 | return To->getKind() == BuiltinType::UInt; |
2321 | } |
2322 | |
2323 | return false; |
2324 | } |
2325 | } |
2326 | } |
2327 | |
2328 | // An rvalue of type bool can be converted to an rvalue of type int, |
2329 | // with false becoming zero and true becoming one (C++ 4.5p4). |
2330 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
2331 | return true; |
2332 | } |
2333 | |
2334 | return false; |
2335 | } |
2336 | |
2337 | /// IsFloatingPointPromotion - Determines whether the conversion from |
2338 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, |
2339 | /// returns true and sets PromotedType to the promoted type. |
2340 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
2341 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
2342 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
2343 | /// An rvalue of type float can be converted to an rvalue of type |
2344 | /// double. (C++ 4.6p1). |
2345 | if (FromBuiltin->getKind() == BuiltinType::Float && |
2346 | ToBuiltin->getKind() == BuiltinType::Double) |
2347 | return true; |
2348 | |
2349 | // C99 6.3.1.5p1: |
2350 | // When a float is promoted to double or long double, or a |
2351 | // double is promoted to long double [...]. |
2352 | if (!getLangOpts().CPlusPlus && |
2353 | (FromBuiltin->getKind() == BuiltinType::Float || |
2354 | FromBuiltin->getKind() == BuiltinType::Double) && |
2355 | (ToBuiltin->getKind() == BuiltinType::LongDouble || |
2356 | ToBuiltin->getKind() == BuiltinType::Float128 || |
2357 | ToBuiltin->getKind() == BuiltinType::Ibm128)) |
2358 | return true; |
2359 | |
2360 | // Half can be promoted to float. |
2361 | if (!getLangOpts().NativeHalfType && |
2362 | FromBuiltin->getKind() == BuiltinType::Half && |
2363 | ToBuiltin->getKind() == BuiltinType::Float) |
2364 | return true; |
2365 | } |
2366 | |
2367 | return false; |
2368 | } |
2369 | |
2370 | /// Determine if a conversion is a complex promotion. |
2371 | /// |
2372 | /// A complex promotion is defined as a complex -> complex conversion |
2373 | /// where the conversion between the underlying real types is a |
2374 | /// floating-point or integral promotion. |
2375 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
2376 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
2377 | if (!FromComplex) |
2378 | return false; |
2379 | |
2380 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
2381 | if (!ToComplex) |
2382 | return false; |
2383 | |
2384 | return IsFloatingPointPromotion(FromComplex->getElementType(), |
2385 | ToComplex->getElementType()) || |
2386 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), |
2387 | ToComplex->getElementType()); |
2388 | } |
2389 | |
2390 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
2391 | /// the pointer type FromPtr to a pointer to type ToPointee, with the |
2392 | /// same type qualifiers as FromPtr has on its pointee type. ToType, |
2393 | /// if non-empty, will be a pointer to ToType that may or may not have |
2394 | /// the right set of qualifiers on its pointee. |
2395 | /// |
2396 | static QualType |
2397 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, |
2398 | QualType ToPointee, QualType ToType, |
2399 | ASTContext &Context, |
2400 | bool StripObjCLifetime = false) { |
2401 | assert((FromPtr->getTypeClass() == Type::Pointer ||(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )) |
2402 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )) |
2403 | "Invalid similarly-qualified pointer type")(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )); |
2404 | |
2405 | /// Conversions to 'id' subsume cv-qualifier conversions. |
2406 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) |
2407 | return ToType.getUnqualifiedType(); |
2408 | |
2409 | QualType CanonFromPointee |
2410 | = Context.getCanonicalType(FromPtr->getPointeeType()); |
2411 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); |
2412 | Qualifiers Quals = CanonFromPointee.getQualifiers(); |
2413 | |
2414 | if (StripObjCLifetime) |
2415 | Quals.removeObjCLifetime(); |
2416 | |
2417 | // Exact qualifier match -> return the pointer type we're converting to. |
2418 | if (CanonToPointee.getLocalQualifiers() == Quals) { |
2419 | // ToType is exactly what we need. Return it. |
2420 | if (!ToType.isNull()) |
2421 | return ToType.getUnqualifiedType(); |
2422 | |
2423 | // Build a pointer to ToPointee. It has the right qualifiers |
2424 | // already. |
2425 | if (isa<ObjCObjectPointerType>(ToType)) |
2426 | return Context.getObjCObjectPointerType(ToPointee); |
2427 | return Context.getPointerType(ToPointee); |
2428 | } |
2429 | |
2430 | // Just build a canonical type that has the right qualifiers. |
2431 | QualType QualifiedCanonToPointee |
2432 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); |
2433 | |
2434 | if (isa<ObjCObjectPointerType>(ToType)) |
2435 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); |
2436 | return Context.getPointerType(QualifiedCanonToPointee); |
2437 | } |
2438 | |
2439 | static bool isNullPointerConstantForConversion(Expr *Expr, |
2440 | bool InOverloadResolution, |
2441 | ASTContext &Context) { |
2442 | // Handle value-dependent integral null pointer constants correctly. |
2443 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
2444 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
2445 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
2446 | return !InOverloadResolution; |
2447 | |
2448 | return Expr->isNullPointerConstant(Context, |
2449 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
2450 | : Expr::NPC_ValueDependentIsNull); |
2451 | } |
2452 | |
2453 | /// IsPointerConversion - Determines whether the conversion of the |
2454 | /// expression From, which has the (possibly adjusted) type FromType, |
2455 | /// can be converted to the type ToType via a pointer conversion (C++ |
2456 | /// 4.10). If so, returns true and places the converted type (that |
2457 | /// might differ from ToType in its cv-qualifiers at some level) into |
2458 | /// ConvertedType. |
2459 | /// |
2460 | /// This routine also supports conversions to and from block pointers |
2461 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and |
2462 | /// pointers to interfaces. FIXME: Once we've determined the |
2463 | /// appropriate overloading rules for Objective-C, we may want to |
2464 | /// split the Objective-C checks into a different routine; however, |
2465 | /// GCC seems to consider all of these conversions to be pointer |
2466 | /// conversions, so for now they live here. IncompatibleObjC will be |
2467 | /// set if the conversion is an allowed Objective-C conversion that |
2468 | /// should result in a warning. |
2469 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
2470 | bool InOverloadResolution, |
2471 | QualType& ConvertedType, |
2472 | bool &IncompatibleObjC) { |
2473 | IncompatibleObjC = false; |
2474 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, |
2475 | IncompatibleObjC)) |
2476 | return true; |
2477 | |
2478 | // Conversion from a null pointer constant to any Objective-C pointer type. |
2479 | if (ToType->isObjCObjectPointerType() && |
2480 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2481 | ConvertedType = ToType; |
2482 | return true; |
2483 | } |
2484 | |
2485 | // Blocks: Block pointers can be converted to void*. |
2486 | if (FromType->isBlockPointerType() && ToType->isPointerType() && |
2487 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
2488 | ConvertedType = ToType; |
2489 | return true; |
2490 | } |
2491 | // Blocks: A null pointer constant can be converted to a block |
2492 | // pointer type. |
2493 | if (ToType->isBlockPointerType() && |
2494 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2495 | ConvertedType = ToType; |
2496 | return true; |
2497 | } |
2498 | |
2499 | // If the left-hand-side is nullptr_t, the right side can be a null |
2500 | // pointer constant. |
2501 | if (ToType->isNullPtrType() && |
2502 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2503 | ConvertedType = ToType; |
2504 | return true; |
2505 | } |
2506 | |
2507 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
2508 | if (!ToTypePtr) |
2509 | return false; |
2510 | |
2511 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
2512 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2513 | ConvertedType = ToType; |
2514 | return true; |
2515 | } |
2516 | |
2517 | // Beyond this point, both types need to be pointers |
2518 | // , including objective-c pointers. |
2519 | QualType ToPointeeType = ToTypePtr->getPointeeType(); |
2520 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && |
2521 | !getLangOpts().ObjCAutoRefCount) { |
2522 | ConvertedType = BuildSimilarlyQualifiedPointerType( |
2523 | FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType, |
2524 | Context); |
2525 | return true; |
2526 | } |
2527 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
2528 | if (!FromTypePtr) |
2529 | return false; |
2530 | |
2531 | QualType FromPointeeType = FromTypePtr->getPointeeType(); |
2532 | |
2533 | // If the unqualified pointee types are the same, this can't be a |
2534 | // pointer conversion, so don't do all of the work below. |
2535 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) |
2536 | return false; |
2537 | |
2538 | // An rvalue of type "pointer to cv T," where T is an object type, |
2539 | // can be converted to an rvalue of type "pointer to cv void" (C++ |
2540 | // 4.10p2). |
2541 | if (FromPointeeType->isIncompleteOrObjectType() && |
2542 | ToPointeeType->isVoidType()) { |
2543 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2544 | ToPointeeType, |
2545 | ToType, Context, |
2546 | /*StripObjCLifetime=*/true); |
2547 | return true; |
2548 | } |
2549 | |
2550 | // MSVC allows implicit function to void* type conversion. |
2551 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && |
2552 | ToPointeeType->isVoidType()) { |
2553 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2554 | ToPointeeType, |
2555 | ToType, Context); |
2556 | return true; |
2557 | } |
2558 | |
2559 | // When we're overloading in C, we allow a special kind of pointer |
2560 | // conversion for compatible-but-not-identical pointee types. |
2561 | if (!getLangOpts().CPlusPlus && |
2562 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { |
2563 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2564 | ToPointeeType, |
2565 | ToType, Context); |
2566 | return true; |
2567 | } |
2568 | |
2569 | // C++ [conv.ptr]p3: |
2570 | // |
2571 | // An rvalue of type "pointer to cv D," where D is a class type, |
2572 | // can be converted to an rvalue of type "pointer to cv B," where |
2573 | // B is a base class (clause 10) of D. If B is an inaccessible |
2574 | // (clause 11) or ambiguous (10.2) base class of D, a program that |
2575 | // necessitates this conversion is ill-formed. The result of the |
2576 | // conversion is a pointer to the base class sub-object of the |
2577 | // derived class object. The null pointer value is converted to |
2578 | // the null pointer value of the destination type. |
2579 | // |
2580 | // Note that we do not check for ambiguity or inaccessibility |
2581 | // here. That is handled by CheckPointerConversion. |
2582 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && |
2583 | ToPointeeType->isRecordType() && |
2584 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && |
2585 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { |
2586 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2587 | ToPointeeType, |
2588 | ToType, Context); |
2589 | return true; |
2590 | } |
2591 | |
2592 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && |
2593 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { |
2594 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2595 | ToPointeeType, |
2596 | ToType, Context); |
2597 | return true; |
2598 | } |
2599 | |
2600 | return false; |
2601 | } |
2602 | |
2603 | /// Adopt the given qualifiers for the given type. |
2604 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ |
2605 | Qualifiers TQs = T.getQualifiers(); |
2606 | |
2607 | // Check whether qualifiers already match. |
2608 | if (TQs == Qs) |
2609 | return T; |
2610 | |
2611 | if (Qs.compatiblyIncludes(TQs)) |
2612 | return Context.getQualifiedType(T, Qs); |
2613 | |
2614 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); |
2615 | } |
2616 | |
2617 | /// isObjCPointerConversion - Determines whether this is an |
2618 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, |
2619 | /// with the same arguments and return values. |
2620 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
2621 | QualType& ConvertedType, |
2622 | bool &IncompatibleObjC) { |
2623 | if (!getLangOpts().ObjC) |
2624 | return false; |
2625 | |
2626 | // The set of qualifiers on the type we're converting from. |
2627 | Qualifiers FromQualifiers = FromType.getQualifiers(); |
2628 | |
2629 | // First, we handle all conversions on ObjC object pointer types. |
2630 | const ObjCObjectPointerType* ToObjCPtr = |
2631 | ToType->getAs<ObjCObjectPointerType>(); |
2632 | const ObjCObjectPointerType *FromObjCPtr = |
2633 | FromType->getAs<ObjCObjectPointerType>(); |
2634 | |
2635 | if (ToObjCPtr && FromObjCPtr) { |
2636 | // If the pointee types are the same (ignoring qualifications), |
2637 | // then this is not a pointer conversion. |
2638 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), |
2639 | FromObjCPtr->getPointeeType())) |
2640 | return false; |
2641 | |
2642 | // Conversion between Objective-C pointers. |
2643 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { |
2644 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
2645 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
2646 | if (getLangOpts().CPlusPlus && LHS && RHS && |
2647 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
2648 | FromObjCPtr->getPointeeType())) |
2649 | return false; |
2650 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
2651 | ToObjCPtr->getPointeeType(), |
2652 | ToType, Context); |
2653 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2654 | return true; |
2655 | } |
2656 | |
2657 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { |
2658 | // Okay: this is some kind of implicit downcast of Objective-C |
2659 | // interfaces, which is permitted. However, we're going to |
2660 | // complain about it. |
2661 | IncompatibleObjC = true; |
2662 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
2663 | ToObjCPtr->getPointeeType(), |
2664 | ToType, Context); |
2665 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2666 | return true; |
2667 | } |
2668 | } |
2669 | // Beyond this point, both types need to be C pointers or block pointers. |
2670 | QualType ToPointeeType; |
2671 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
2672 | ToPointeeType = ToCPtr->getPointeeType(); |
2673 | else if (const BlockPointerType *ToBlockPtr = |
2674 | ToType->getAs<BlockPointerType>()) { |
2675 | // Objective C++: We're able to convert from a pointer to any object |
2676 | // to a block pointer type. |
2677 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
2678 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2679 | return true; |
2680 | } |
2681 | ToPointeeType = ToBlockPtr->getPointeeType(); |
2682 | } |
2683 | else if (FromType->getAs<BlockPointerType>() && |
2684 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
2685 | // Objective C++: We're able to convert from a block pointer type to a |
2686 | // pointer to any object. |
2687 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2688 | return true; |
2689 | } |
2690 | else |
2691 | return false; |
2692 | |
2693 | QualType FromPointeeType; |
2694 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
2695 | FromPointeeType = FromCPtr->getPointeeType(); |
2696 | else if (const BlockPointerType *FromBlockPtr = |
2697 | FromType->getAs<BlockPointerType>()) |
2698 | FromPointeeType = FromBlockPtr->getPointeeType(); |
2699 | else |
2700 | return false; |
2701 | |
2702 | // If we have pointers to pointers, recursively check whether this |
2703 | // is an Objective-C conversion. |
2704 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
2705 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
2706 | IncompatibleObjC)) { |
2707 | // We always complain about this conversion. |
2708 | IncompatibleObjC = true; |
2709 | ConvertedType = Context.getPointerType(ConvertedType); |
2710 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2711 | return true; |
2712 | } |
2713 | // Allow conversion of pointee being objective-c pointer to another one; |
2714 | // as in I* to id. |
2715 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
2716 | ToPointeeType->getAs<ObjCObjectPointerType>() && |
2717 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
2718 | IncompatibleObjC)) { |
2719 | |
2720 | ConvertedType = Context.getPointerType(ConvertedType); |
2721 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2722 | return true; |
2723 | } |
2724 | |
2725 | // If we have pointers to functions or blocks, check whether the only |
2726 | // differences in the argument and result types are in Objective-C |
2727 | // pointer conversions. If so, we permit the conversion (but |
2728 | // complain about it). |
2729 | const FunctionProtoType *FromFunctionType |
2730 | = FromPointeeType->getAs<FunctionProtoType>(); |
2731 | const FunctionProtoType *ToFunctionType |
2732 | = ToPointeeType->getAs<FunctionProtoType>(); |
2733 | if (FromFunctionType && ToFunctionType) { |
2734 | // If the function types are exactly the same, this isn't an |
2735 | // Objective-C pointer conversion. |
2736 | if (Context.getCanonicalType(FromPointeeType) |
2737 | == Context.getCanonicalType(ToPointeeType)) |
2738 | return false; |
2739 | |
2740 | // Perform the quick checks that will tell us whether these |
2741 | // function types are obviously different. |
2742 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
2743 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
2744 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) |
2745 | return false; |
2746 | |
2747 | bool HasObjCConversion = false; |
2748 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == |
2749 | Context.getCanonicalType(ToFunctionType->getReturnType())) { |
2750 | // Okay, the types match exactly. Nothing to do. |
2751 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), |
2752 | ToFunctionType->getReturnType(), |
2753 | ConvertedType, IncompatibleObjC)) { |
2754 | // Okay, we have an Objective-C pointer conversion. |
2755 | HasObjCConversion = true; |
2756 | } else { |
2757 | // Function types are too different. Abort. |
2758 | return false; |
2759 | } |
2760 | |
2761 | // Check argument types. |
2762 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
2763 | ArgIdx != NumArgs; ++ArgIdx) { |
2764 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
2765 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
2766 | if (Context.getCanonicalType(FromArgType) |
2767 | == Context.getCanonicalType(ToArgType)) { |
2768 | // Okay, the types match exactly. Nothing to do. |
2769 | } else if (isObjCPointerConversion(FromArgType, ToArgType, |
2770 | ConvertedType, IncompatibleObjC)) { |
2771 | // Okay, we have an Objective-C pointer conversion. |
2772 | HasObjCConversion = true; |
2773 | } else { |
2774 | // Argument types are too different. Abort. |
2775 | return false; |
2776 | } |
2777 | } |
2778 | |
2779 | if (HasObjCConversion) { |
2780 | // We had an Objective-C conversion. Allow this pointer |
2781 | // conversion, but complain about it. |
2782 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2783 | IncompatibleObjC = true; |
2784 | return true; |
2785 | } |
2786 | } |
2787 | |
2788 | return false; |
2789 | } |
2790 | |
2791 | /// Determine whether this is an Objective-C writeback conversion, |
2792 | /// used for parameter passing when performing automatic reference counting. |
2793 | /// |
2794 | /// \param FromType The type we're converting form. |
2795 | /// |
2796 | /// \param ToType The type we're converting to. |
2797 | /// |
2798 | /// \param ConvertedType The type that will be produced after applying |
2799 | /// this conversion. |
2800 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, |
2801 | QualType &ConvertedType) { |
2802 | if (!getLangOpts().ObjCAutoRefCount || |
2803 | Context.hasSameUnqualifiedType(FromType, ToType)) |
2804 | return false; |
2805 | |
2806 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). |
2807 | QualType ToPointee; |
2808 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) |
2809 | ToPointee = ToPointer->getPointeeType(); |
2810 | else |
2811 | return false; |
2812 | |
2813 | Qualifiers ToQuals = ToPointee.getQualifiers(); |
2814 | if (!ToPointee->isObjCLifetimeType() || |
2815 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || |
2816 | !ToQuals.withoutObjCLifetime().empty()) |
2817 | return false; |
2818 | |
2819 | // Argument must be a pointer to __strong to __weak. |
2820 | QualType FromPointee; |
2821 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) |
2822 | FromPointee = FromPointer->getPointeeType(); |
2823 | else |
2824 | return false; |
2825 | |
2826 | Qualifiers FromQuals = FromPointee.getQualifiers(); |
2827 | if (!FromPointee->isObjCLifetimeType() || |
2828 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && |
2829 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) |
2830 | return false; |
2831 | |
2832 | // Make sure that we have compatible qualifiers. |
2833 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); |
2834 | if (!ToQuals.compatiblyIncludes(FromQuals)) |
2835 | return false; |
2836 | |
2837 | // Remove qualifiers from the pointee type we're converting from; they |
2838 | // aren't used in the compatibility check belong, and we'll be adding back |
2839 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. |
2840 | FromPointee = FromPointee.getUnqualifiedType(); |
2841 | |
2842 | // The unqualified form of the pointee types must be compatible. |
2843 | ToPointee = ToPointee.getUnqualifiedType(); |
2844 | bool IncompatibleObjC; |
2845 | if (Context.typesAreCompatible(FromPointee, ToPointee)) |
2846 | FromPointee = ToPointee; |
2847 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, |
2848 | IncompatibleObjC)) |
2849 | return false; |
2850 | |
2851 | /// Construct the type we're converting to, which is a pointer to |
2852 | /// __autoreleasing pointee. |
2853 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); |
2854 | ConvertedType = Context.getPointerType(FromPointee); |
2855 | return true; |
2856 | } |
2857 | |
2858 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, |
2859 | QualType& ConvertedType) { |
2860 | QualType ToPointeeType; |
2861 | if (const BlockPointerType *ToBlockPtr = |
2862 | ToType->getAs<BlockPointerType>()) |
2863 | ToPointeeType = ToBlockPtr->getPointeeType(); |
2864 | else |
2865 | return false; |
2866 | |
2867 | QualType FromPointeeType; |
2868 | if (const BlockPointerType *FromBlockPtr = |
2869 | FromType->getAs<BlockPointerType>()) |
2870 | FromPointeeType = FromBlockPtr->getPointeeType(); |
2871 | else |
2872 | return false; |
2873 | // We have pointer to blocks, check whether the only |
2874 | // differences in the argument and result types are in Objective-C |
2875 | // pointer conversions. If so, we permit the conversion. |
2876 | |
2877 | const FunctionProtoType *FromFunctionType |
2878 | = FromPointeeType->getAs<FunctionProtoType>(); |
2879 | const FunctionProtoType *ToFunctionType |
2880 | = ToPointeeType->getAs<FunctionProtoType>(); |
2881 | |
2882 | if (!FromFunctionType || !ToFunctionType) |
2883 | return false; |
2884 | |
2885 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) |
2886 | return true; |
2887 | |
2888 | // Perform the quick checks that will tell us whether these |
2889 | // function types are obviously different. |
2890 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
2891 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) |
2892 | return false; |
2893 | |
2894 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); |
2895 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); |
2896 | if (FromEInfo != ToEInfo) |
2897 | return false; |
2898 | |
2899 | bool IncompatibleObjC = false; |
2900 | if (Context.hasSameType(FromFunctionType->getReturnType(), |
2901 | ToFunctionType->getReturnType())) { |
2902 | // Okay, the types match exactly. Nothing to do. |
2903 | } else { |
2904 | QualType RHS = FromFunctionType->getReturnType(); |
2905 | QualType LHS = ToFunctionType->getReturnType(); |
2906 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && |
2907 | !RHS.hasQualifiers() && LHS.hasQualifiers()) |
2908 | LHS = LHS.getUnqualifiedType(); |
2909 | |
2910 | if (Context.hasSameType(RHS,LHS)) { |
2911 | // OK exact match. |
2912 | } else if (isObjCPointerConversion(RHS, LHS, |
2913 | ConvertedType, IncompatibleObjC)) { |
2914 | if (IncompatibleObjC) |
2915 | return false; |
2916 | // Okay, we have an Objective-C pointer conversion. |
2917 | } |
2918 | else |
2919 | return false; |
2920 | } |
2921 | |
2922 | // Check argument types. |
2923 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
2924 | ArgIdx != NumArgs; ++ArgIdx) { |
2925 | IncompatibleObjC = false; |
2926 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
2927 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
2928 | if (Context.hasSameType(FromArgType, ToArgType)) { |
2929 | // Okay, the types match exactly. Nothing to do. |
2930 | } else if (isObjCPointerConversion(ToArgType, FromArgType, |
2931 | ConvertedType, IncompatibleObjC)) { |
2932 | if (IncompatibleObjC) |
2933 | return false; |
2934 | // Okay, we have an Objective-C pointer conversion. |
2935 | } else |
2936 | // Argument types are too different. Abort. |
2937 | return false; |
2938 | } |
2939 | |
2940 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
2941 | bool CanUseToFPT, CanUseFromFPT; |
2942 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, |
2943 | CanUseToFPT, CanUseFromFPT, |
2944 | NewParamInfos)) |
2945 | return false; |
2946 | |
2947 | ConvertedType = ToType; |
2948 | return true; |
2949 | } |
2950 | |
2951 | enum { |
2952 | ft_default, |
2953 | ft_different_class, |
2954 | ft_parameter_arity, |
2955 | ft_parameter_mismatch, |
2956 | ft_return_type, |
2957 | ft_qualifer_mismatch, |
2958 | ft_noexcept |
2959 | }; |
2960 | |
2961 | /// Attempts to get the FunctionProtoType from a Type. Handles |
2962 | /// MemberFunctionPointers properly. |
2963 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { |
2964 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) |
2965 | return FPT; |
2966 | |
2967 | if (auto *MPT = FromType->getAs<MemberPointerType>()) |
2968 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); |
2969 | |
2970 | return nullptr; |
2971 | } |
2972 | |
2973 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing |
2974 | /// function types. Catches different number of parameter, mismatch in |
2975 | /// parameter types, and different return types. |
2976 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, |
2977 | QualType FromType, QualType ToType) { |
2978 | // If either type is not valid, include no extra info. |
2979 | if (FromType.isNull() || ToType.isNull()) { |
2980 | PDiag << ft_default; |
2981 | return; |
2982 | } |
2983 | |
2984 | // Get the function type from the pointers. |
2985 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { |
2986 | const auto *FromMember = FromType->castAs<MemberPointerType>(), |
2987 | *ToMember = ToType->castAs<MemberPointerType>(); |
2988 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { |
2989 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) |
2990 | << QualType(FromMember->getClass(), 0); |
2991 | return; |
2992 | } |
2993 | FromType = FromMember->getPointeeType(); |
2994 | ToType = ToMember->getPointeeType(); |
2995 | } |
2996 | |
2997 | if (FromType->isPointerType()) |
2998 | FromType = FromType->getPointeeType(); |
2999 | if (ToType->isPointerType()) |
3000 | ToType = ToType->getPointeeType(); |
3001 | |
3002 | // Remove references. |
3003 | FromType = FromType.getNonReferenceType(); |
3004 | ToType = ToType.getNonReferenceType(); |
3005 | |
3006 | // Don't print extra info for non-specialized template functions. |
3007 | if (FromType->isInstantiationDependentType() && |
3008 | !FromType->getAs<TemplateSpecializationType>()) { |
3009 | PDiag << ft_default; |
3010 | return; |
3011 | } |
3012 | |
3013 | // No extra info for same types. |
3014 | if (Context.hasSameType(FromType, ToType)) { |
3015 | PDiag << ft_default; |
3016 | return; |
3017 | } |
3018 | |
3019 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), |
3020 | *ToFunction = tryGetFunctionProtoType(ToType); |
3021 | |
3022 | // Both types need to be function types. |
3023 | if (!FromFunction || !ToFunction) { |
3024 | PDiag << ft_default; |
3025 | return; |
3026 | } |
3027 | |
3028 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { |
3029 | PDiag << ft_parameter_arity << ToFunction->getNumParams() |
3030 | << FromFunction->getNumParams(); |
3031 | return; |
3032 | } |
3033 | |
3034 | // Handle different parameter types. |
3035 | unsigned ArgPos; |
3036 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { |
3037 | PDiag << ft_parameter_mismatch << ArgPos + 1 |
3038 | << ToFunction->getParamType(ArgPos) |
3039 | << FromFunction->getParamType(ArgPos); |
3040 | return; |
3041 | } |
3042 | |
3043 | // Handle different return type. |
3044 | if (!Context.hasSameType(FromFunction->getReturnType(), |
3045 | ToFunction->getReturnType())) { |
3046 | PDiag << ft_return_type << ToFunction->getReturnType() |
3047 | << FromFunction->getReturnType(); |
3048 | return; |
3049 | } |
3050 | |
3051 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { |
3052 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() |
3053 | << FromFunction->getMethodQuals(); |
3054 | return; |
3055 | } |
3056 | |
3057 | // Handle exception specification differences on canonical type (in C++17 |
3058 | // onwards). |
3059 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) |
3060 | ->isNothrow() != |
3061 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) |
3062 | ->isNothrow()) { |
3063 | PDiag << ft_noexcept; |
3064 | return; |
3065 | } |
3066 | |
3067 | // Unable to find a difference, so add no extra info. |
3068 | PDiag << ft_default; |
3069 | } |
3070 | |
3071 | /// FunctionParamTypesAreEqual - This routine checks two function proto types |
3072 | /// for equality of their parameter types. Caller has already checked that |
3073 | /// they have same number of parameters. If the parameters are different, |
3074 | /// ArgPos will have the parameter index of the first different parameter. |
3075 | /// If `Reversed` is true, the parameters of `NewType` will be compared in |
3076 | /// reverse order. That's useful if one of the functions is being used as a C++20 |
3077 | /// synthesized operator overload with a reversed parameter order. |
3078 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, |
3079 | const FunctionProtoType *NewType, |
3080 | unsigned *ArgPos, bool Reversed) { |
3081 | assert(OldType->getNumParams() == NewType->getNumParams() &&(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )) |
3082 | "Can't compare parameters of functions with different number of "(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )) |
3083 | "parameters!")(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )); |
3084 | for (size_t I = 0; I < OldType->getNumParams(); I++) { |
3085 | // Reverse iterate over the parameters of `OldType` if `Reversed` is true. |
3086 | size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I; |
3087 | |
3088 | // Ignore address spaces in pointee type. This is to disallow overloading |
3089 | // on __ptr32/__ptr64 address spaces. |
3090 | QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType()); |
3091 | QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType()); |
3092 | |
3093 | if (!Context.hasSameType(Old, New)) { |
3094 | if (ArgPos) |
3095 | *ArgPos = I; |
3096 | return false; |
3097 | } |
3098 | } |
3099 | return true; |
3100 | } |
3101 | |
3102 | /// CheckPointerConversion - Check the pointer conversion from the |
3103 | /// expression From to the type ToType. This routine checks for |
3104 | /// ambiguous or inaccessible derived-to-base pointer |
3105 | /// conversions for which IsPointerConversion has already returned |
3106 | /// true. It returns true and produces a diagnostic if there was an |
3107 | /// error, or returns false otherwise. |
3108 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
3109 | CastKind &Kind, |
3110 | CXXCastPath& BasePath, |
3111 | bool IgnoreBaseAccess, |
3112 | bool Diagnose) { |
3113 | QualType FromType = From->getType(); |
3114 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; |
3115 | |
3116 | Kind = CK_BitCast; |
3117 | |
3118 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && |
3119 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == |
3120 | Expr::NPCK_ZeroExpression) { |
3121 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) |
3122 | DiagRuntimeBehavior(From->getExprLoc(), From, |
3123 | PDiag(diag::warn_impcast_bool_to_null_pointer) |
3124 | << ToType << From->getSourceRange()); |
3125 | else if (!isUnevaluatedContext()) |
3126 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) |
3127 | << ToType << From->getSourceRange(); |
3128 | } |
3129 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
3130 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { |
3131 | QualType FromPointeeType = FromPtrType->getPointeeType(), |
3132 | ToPointeeType = ToPtrType->getPointeeType(); |
3133 | |
3134 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
3135 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { |
3136 | // We must have a derived-to-base conversion. Check an |
3137 | // ambiguous or inaccessible conversion. |
3138 | unsigned InaccessibleID = 0; |
3139 | unsigned AmbiguousID = 0; |
3140 | if (Diagnose) { |
3141 | InaccessibleID = diag::err_upcast_to_inaccessible_base; |
3142 | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; |
3143 | } |
3144 | if (CheckDerivedToBaseConversion( |
3145 | FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, |
3146 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), |
3147 | &BasePath, IgnoreBaseAccess)) |
3148 | return true; |
3149 | |
3150 | // The conversion was successful. |
3151 | Kind = CK_DerivedToBase; |
3152 | } |
3153 | |
3154 | if (Diagnose && !IsCStyleOrFunctionalCast && |
3155 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { |
3156 | assert(getLangOpts().MSVCCompat &&(static_cast <bool> (getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "clang/lib/Sema/SemaOverload.cpp", 3157, __extension__ __PRETTY_FUNCTION__ )) |
3157 | "this should only be possible with MSVCCompat!")(static_cast <bool> (getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "clang/lib/Sema/SemaOverload.cpp", 3157, __extension__ __PRETTY_FUNCTION__ )); |
3158 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) |
3159 | << From->getSourceRange(); |
3160 | } |
3161 | } |
3162 | } else if (const ObjCObjectPointerType *ToPtrType = |
3163 | ToType->getAs<ObjCObjectPointerType>()) { |
3164 | if (const ObjCObjectPointerType *FromPtrType = |
3165 | FromType->getAs<ObjCObjectPointerType>()) { |
3166 | // Objective-C++ conversions are always okay. |
3167 | // FIXME: We should have a different class of conversions for the |
3168 | // Objective-C++ implicit conversions. |
3169 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
3170 | return false; |
3171 | } else if (FromType->isBlockPointerType()) { |
3172 | Kind = CK_BlockPointerToObjCPointerCast; |
3173 | } else { |
3174 | Kind = CK_CPointerToObjCPointerCast; |
3175 | } |
3176 | } else if (ToType->isBlockPointerType()) { |
3177 | if (!FromType->isBlockPointerType()) |
3178 | Kind = CK_AnyPointerToBlockPointerCast; |
3179 | } |
3180 | |
3181 | // We shouldn't fall into this case unless it's valid for other |
3182 | // reasons. |
3183 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) |
3184 | Kind = CK_NullToPointer; |
3185 | |
3186 | return false; |
3187 | } |
3188 | |
3189 | /// IsMemberPointerConversion - Determines whether the conversion of the |
3190 | /// expression From, which has the (possibly adjusted) type FromType, can be |
3191 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). |
3192 | /// If so, returns true and places the converted type (that might differ from |
3193 | /// ToType in its cv-qualifiers at some level) into ConvertedType. |
3194 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
3195 | QualType ToType, |
3196 | bool InOverloadResolution, |
3197 | QualType &ConvertedType) { |
3198 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
3199 | if (!ToTypePtr) |
3200 | return false; |
3201 | |
3202 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
3203 | if (From->isNullPointerConstant(Context, |
3204 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
3205 | : Expr::NPC_ValueDependentIsNull)) { |
3206 | ConvertedType = ToType; |
3207 | return true; |
3208 | } |
3209 | |
3210 | // Otherwise, both types have to be member pointers. |
3211 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
3212 | if (!FromTypePtr) |
3213 | return false; |
3214 | |
3215 | // A pointer to member of B can be converted to a pointer to member of D, |
3216 | // where D is derived from B (C++ 4.11p2). |
3217 | QualType FromClass(FromTypePtr->getClass(), 0); |
3218 | QualType ToClass(ToTypePtr->getClass(), 0); |
3219 | |
3220 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && |
3221 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { |
3222 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), |
3223 | ToClass.getTypePtr()); |
3224 | return true; |
3225 | } |
3226 | |
3227 | return false; |
3228 | } |
3229 | |
3230 | /// CheckMemberPointerConversion - Check the member pointer conversion from the |
3231 | /// expression From to the type ToType. This routine checks for ambiguous or |
3232 | /// virtual or inaccessible base-to-derived member pointer conversions |
3233 | /// for which IsMemberPointerConversion has already returned true. It returns |
3234 | /// true and produces a diagnostic if there was an error, or returns false |
3235 | /// otherwise. |
3236 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, |
3237 | CastKind &Kind, |
3238 | CXXCastPath &BasePath, |
3239 | bool IgnoreBaseAccess) { |
3240 | QualType FromType = From->getType(); |
3241 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
3242 | if (!FromPtrType) { |
3243 | // This must be a null pointer to member pointer conversion |
3244 | assert(From->isNullPointerConstant(Context,(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )) |
3245 | Expr::NPC_ValueDependentIsNull) &&(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )) |
3246 | "Expr must be null pointer constant!")(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )); |
3247 | Kind = CK_NullToMemberPointer; |
3248 | return false; |
3249 | } |
3250 | |
3251 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); |
3252 | assert(ToPtrType && "No member pointer cast has a target type "(static_cast <bool> (ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? void (0) : __assert_fail ( "ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "clang/lib/Sema/SemaOverload.cpp", 3253, __extension__ __PRETTY_FUNCTION__ )) |
3253 | "that is not a member pointer.")(static_cast <bool> (ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? void (0) : __assert_fail ( "ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "clang/lib/Sema/SemaOverload.cpp", 3253, __extension__ __PRETTY_FUNCTION__ )); |
3254 | |
3255 | QualType FromClass = QualType(FromPtrType->getClass(), 0); |
3256 | QualType ToClass = QualType(ToPtrType->getClass(), 0); |
3257 | |
3258 | // FIXME: What about dependent types? |
3259 | assert(FromClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (FromClass->isRecordType() && "Pointer into non-class.") ? void (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\"" , "clang/lib/Sema/SemaOverload.cpp", 3259, __extension__ __PRETTY_FUNCTION__ )); |
3260 | assert(ToClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (ToClass->isRecordType() && "Pointer into non-class.") ? void (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\"" , "clang/lib/Sema/SemaOverload.cpp", 3260, __extension__ __PRETTY_FUNCTION__ )); |
3261 | |
3262 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3263 | /*DetectVirtual=*/true); |
3264 | bool DerivationOkay = |
3265 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); |
3266 | assert(DerivationOkay &&(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK." ) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "clang/lib/Sema/SemaOverload.cpp", 3267, __extension__ __PRETTY_FUNCTION__ )) |
3267 | "Should not have been called if derivation isn't OK.")(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK." ) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "clang/lib/Sema/SemaOverload.cpp", 3267, __extension__ __PRETTY_FUNCTION__ )); |
3268 | (void)DerivationOkay; |
3269 | |
3270 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). |
3271 | getUnqualifiedType())) { |
3272 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
3273 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) |
3274 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); |
3275 | return true; |
3276 | } |
3277 | |
3278 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
3279 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) |
3280 | << FromClass << ToClass << QualType(VBase, 0) |
3281 | << From->getSourceRange(); |
3282 | return true; |
3283 | } |
3284 | |
3285 | if (!IgnoreBaseAccess) |
3286 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, |
3287 | Paths.front(), |
3288 | diag::err_downcast_from_inaccessible_base); |
3289 | |
3290 | // Must be a base to derived member conversion. |
3291 | BuildBasePathArray(Paths, BasePath); |
3292 | Kind = CK_BaseToDerivedMemberPointer; |
3293 | return false; |
3294 | } |
3295 | |
3296 | /// Determine whether the lifetime conversion between the two given |
3297 | /// qualifiers sets is nontrivial. |
3298 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, |
3299 | Qualifiers ToQuals) { |
3300 | // Converting anything to const __unsafe_unretained is trivial. |
3301 | if (ToQuals.hasConst() && |
3302 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) |
3303 | return false; |
3304 | |
3305 | return true; |
3306 | } |
3307 | |
3308 | /// Perform a single iteration of the loop for checking if a qualification |
3309 | /// conversion is valid. |
3310 | /// |
3311 | /// Specifically, check whether any change between the qualifiers of \p |
3312 | /// FromType and \p ToType is permissible, given knowledge about whether every |
3313 | /// outer layer is const-qualified. |
3314 | static bool isQualificationConversionStep(QualType FromType, QualType ToType, |
3315 | bool CStyle, bool IsTopLevel, |
3316 | bool &PreviousToQualsIncludeConst, |
3317 | bool &ObjCLifetimeConversion) { |
3318 | Qualifiers FromQuals = FromType.getQualifiers(); |
3319 | Qualifiers ToQuals = ToType.getQualifiers(); |
3320 | |
3321 | // Ignore __unaligned qualifier. |
3322 | FromQuals.removeUnaligned(); |
3323 | |
3324 | // Objective-C ARC: |
3325 | // Check Objective-C lifetime conversions. |
3326 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { |
3327 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { |
3328 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) |
3329 | ObjCLifetimeConversion = true; |
3330 | FromQuals.removeObjCLifetime(); |
3331 | ToQuals.removeObjCLifetime(); |
3332 | } else { |
3333 | // Qualification conversions cannot cast between different |
3334 | // Objective-C lifetime qualifiers. |
3335 | return false; |
3336 | } |
3337 | } |
3338 | |
3339 | // Allow addition/removal of GC attributes but not changing GC attributes. |
3340 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && |
3341 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { |
3342 | FromQuals.removeObjCGCAttr(); |
3343 | ToQuals.removeObjCGCAttr(); |
3344 | } |
3345 | |
3346 | // -- for every j > 0, if const is in cv 1,j then const is in cv |
3347 | // 2,j, and similarly for volatile. |
3348 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) |
3349 | return false; |
3350 | |
3351 | // If address spaces mismatch: |
3352 | // - in top level it is only valid to convert to addr space that is a |
3353 | // superset in all cases apart from C-style casts where we allow |
3354 | // conversions between overlapping address spaces. |
3355 | // - in non-top levels it is not a valid conversion. |
3356 | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && |
3357 | (!IsTopLevel || |
3358 | !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || |
3359 | (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) |
3360 | return false; |
3361 | |
3362 | // -- if the cv 1,j and cv 2,j are different, then const is in |
3363 | // every cv for 0 < k < j. |
3364 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && |
3365 | !PreviousToQualsIncludeConst) |
3366 | return false; |
3367 | |
3368 | // The following wording is from C++20, where the result of the conversion |
3369 | // is T3, not T2. |
3370 | // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is |
3371 | // "array of unknown bound of" |
3372 | if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) |
3373 | return false; |
3374 | |
3375 | // -- if the resulting P3,i is different from P1,i [...], then const is |
3376 | // added to every cv 3_k for 0 < k < i. |
3377 | if (!CStyle && FromType->isConstantArrayType() && |
3378 | ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) |
3379 | return false; |
3380 | |
3381 | // Keep track of whether all prior cv-qualifiers in the "to" type |
3382 | // include const. |
3383 | PreviousToQualsIncludeConst = |
3384 | PreviousToQualsIncludeConst && ToQuals.hasConst(); |
3385 | return true; |
3386 | } |
3387 | |
3388 | /// IsQualificationConversion - Determines whether the conversion from |
3389 | /// an rvalue of type FromType to ToType is a qualification conversion |
3390 | /// (C++ 4.4). |
3391 | /// |
3392 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate |
3393 | /// when the qualification conversion involves a change in the Objective-C |
3394 | /// object lifetime. |
3395 | bool |
3396 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, |
3397 | bool CStyle, bool &ObjCLifetimeConversion) { |
3398 | FromType = Context.getCanonicalType(FromType); |
3399 | ToType = Context.getCanonicalType(ToType); |
3400 | ObjCLifetimeConversion = false; |
3401 | |
3402 | // If FromType and ToType are the same type, this is not a |
3403 | // qualification conversion. |
3404 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
3405 | return false; |
3406 | |
3407 | // (C++ 4.4p4): |
3408 | // A conversion can add cv-qualifiers at levels other than the first |
3409 | // in multi-level pointers, subject to the following rules: [...] |
3410 | bool PreviousToQualsIncludeConst = true; |
3411 | bool UnwrappedAnyPointer = false; |
3412 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { |
3413 | if (!isQualificationConversionStep( |
3414 | FromType, ToType, CStyle, !UnwrappedAnyPointer, |
3415 | PreviousToQualsIncludeConst, ObjCLifetimeConversion)) |
3416 | return false; |
3417 | UnwrappedAnyPointer = true; |
3418 | } |
3419 | |
3420 | // We are left with FromType and ToType being the pointee types |
3421 | // after unwrapping the original FromType and ToType the same number |
3422 | // of times. If we unwrapped any pointers, and if FromType and |
3423 | // ToType have the same unqualified type (since we checked |
3424 | // qualifiers above), then this is a qualification conversion. |
3425 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); |
3426 | } |
3427 | |
3428 | /// - Determine whether this is a conversion from a scalar type to an |
3429 | /// atomic type. |
3430 | /// |
3431 | /// If successful, updates \c SCS's second and third steps in the conversion |
3432 | /// sequence to finish the conversion. |
3433 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
3434 | bool InOverloadResolution, |
3435 | StandardConversionSequence &SCS, |
3436 | bool CStyle) { |
3437 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); |
3438 | if (!ToAtomic) |
3439 | return false; |
3440 | |
3441 | StandardConversionSequence InnerSCS; |
3442 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), |
3443 | InOverloadResolution, InnerSCS, |
3444 | CStyle, /*AllowObjCWritebackConversion=*/false)) |
3445 | return false; |
3446 | |
3447 | SCS.Second = InnerSCS.Second; |
3448 | SCS.setToType(1, InnerSCS.getToType(1)); |
3449 | SCS.Third = InnerSCS.Third; |
3450 | SCS.QualificationIncludesObjCLifetime |
3451 | = InnerSCS.QualificationIncludesObjCLifetime; |
3452 | SCS.setToType(2, InnerSCS.getToType(2)); |
3453 | return true; |
3454 | } |
3455 | |
3456 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, |
3457 | CXXConstructorDecl *Constructor, |
3458 | QualType Type) { |
3459 | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); |
3460 | if (CtorType->getNumParams() > 0) { |
3461 | QualType FirstArg = CtorType->getParamType(0); |
3462 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) |
3463 | return true; |
3464 | } |
3465 | return false; |
3466 | } |
3467 | |
3468 | static OverloadingResult |
3469 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, |
3470 | CXXRecordDecl *To, |
3471 | UserDefinedConversionSequence &User, |
3472 | OverloadCandidateSet &CandidateSet, |
3473 | bool AllowExplicit) { |
3474 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3475 | for (auto *D : S.LookupConstructors(To)) { |
3476 | auto Info = getConstructorInfo(D); |
3477 | if (!Info) |
3478 | continue; |
3479 | |
3480 | bool Usable = !Info.Constructor->isInvalidDecl() && |
3481 | S.isInitListConstructor(Info.Constructor); |
3482 | if (Usable) { |
3483 | bool SuppressUserConversions = false; |
3484 | if (Info.ConstructorTmpl) |
3485 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
3486 | /*ExplicitArgs*/ nullptr, From, |
3487 | CandidateSet, SuppressUserConversions, |
3488 | /*PartialOverloading*/ false, |
3489 | AllowExplicit); |
3490 | else |
3491 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, |
3492 | CandidateSet, SuppressUserConversions, |
3493 | /*PartialOverloading*/ false, AllowExplicit); |
3494 | } |
3495 | } |
3496 | |
3497 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
3498 | |
3499 | OverloadCandidateSet::iterator Best; |
3500 | switch (auto Result = |
3501 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
3502 | case OR_Deleted: |
3503 | case OR_Success: { |
3504 | // Record the standard conversion we used and the conversion function. |
3505 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
3506 | QualType ThisType = Constructor->getThisType(); |
3507 | // Initializer lists don't have conversions as such. |
3508 | User.Before.setAsIdentityConversion(); |
3509 | User.HadMultipleCandidates = HadMultipleCandidates; |
3510 | User.ConversionFunction = Constructor; |
3511 | User.FoundConversionFunction = Best->FoundDecl; |
3512 | User.After.setAsIdentityConversion(); |
3513 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
3514 | User.After.setAllToTypes(ToType); |
3515 | return Result; |
3516 | } |
3517 | |
3518 | case OR_No_Viable_Function: |
3519 | return OR_No_Viable_Function; |
3520 | case OR_Ambiguous: |
3521 | return OR_Ambiguous; |
3522 | } |
3523 | |
3524 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 3524); |
3525 | } |
3526 | |
3527 | /// Determines whether there is a user-defined conversion sequence |
3528 | /// (C++ [over.ics.user]) that converts expression From to the type |
3529 | /// ToType. If such a conversion exists, User will contain the |
3530 | /// user-defined conversion sequence that performs such a conversion |
3531 | /// and this routine will return true. Otherwise, this routine returns |
3532 | /// false and User is unspecified. |
3533 | /// |
3534 | /// \param AllowExplicit true if the conversion should consider C++0x |
3535 | /// "explicit" conversion functions as well as non-explicit conversion |
3536 | /// functions (C++0x [class.conv.fct]p2). |
3537 | /// |
3538 | /// \param AllowObjCConversionOnExplicit true if the conversion should |
3539 | /// allow an extra Objective-C pointer conversion on uses of explicit |
3540 | /// constructors. Requires \c AllowExplicit to also be set. |
3541 | static OverloadingResult |
3542 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
3543 | UserDefinedConversionSequence &User, |
3544 | OverloadCandidateSet &CandidateSet, |
3545 | AllowedExplicit AllowExplicit, |
3546 | bool AllowObjCConversionOnExplicit) { |
3547 | assert(AllowExplicit != AllowedExplicit::None ||(static_cast <bool> (AllowExplicit != AllowedExplicit:: None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit" , "clang/lib/Sema/SemaOverload.cpp", 3548, __extension__ __PRETTY_FUNCTION__ )) |
3548 | !AllowObjCConversionOnExplicit)(static_cast <bool> (AllowExplicit != AllowedExplicit:: None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit" , "clang/lib/Sema/SemaOverload.cpp", 3548, __extension__ __PRETTY_FUNCTION__ )); |
3549 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3550 | |
3551 | // Whether we will only visit constructors. |
3552 | bool ConstructorsOnly = false; |
3553 | |
3554 | // If the type we are conversion to is a class type, enumerate its |
3555 | // constructors. |
3556 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
3557 | // C++ [over.match.ctor]p1: |
3558 | // When objects of class type are direct-initialized (8.5), or |
3559 | // copy-initialized from an expression of the same or a |
3560 | // derived class type (8.5), overload resolution selects the |
3561 | // constructor. [...] For copy-initialization, the candidate |
3562 | // functions are all the converting constructors (12.3.1) of |
3563 | // that class. The argument list is the expression-list within |
3564 | // the parentheses of the initializer. |
3565 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || |
3566 | (From->getType()->getAs<RecordType>() && |
3567 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) |
3568 | ConstructorsOnly = true; |
3569 | |
3570 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { |
3571 | // We're not going to find any constructors. |
3572 | } else if (CXXRecordDecl *ToRecordDecl |
3573 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { |
3574 | |
3575 | Expr **Args = &From; |
3576 | unsigned NumArgs = 1; |
3577 | bool ListInitializing = false; |
3578 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { |
3579 | // But first, see if there is an init-list-constructor that will work. |
3580 | OverloadingResult Result = IsInitializerListConstructorConversion( |
3581 | S, From, ToType, ToRecordDecl, User, CandidateSet, |
3582 | AllowExplicit == AllowedExplicit::All); |
3583 | if (Result != OR_No_Viable_Function) |
3584 | return Result; |
3585 | // Never mind. |
3586 | CandidateSet.clear( |
3587 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3588 | |
3589 | // If we're list-initializing, we pass the individual elements as |
3590 | // arguments, not the entire list. |
3591 | Args = InitList->getInits(); |
3592 | NumArgs = InitList->getNumInits(); |
3593 | ListInitializing = true; |
3594 | } |
3595 | |
3596 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { |
3597 | auto Info = getConstructorInfo(D); |
3598 | if (!Info) |
3599 | continue; |
3600 | |
3601 | bool Usable = !Info.Constructor->isInvalidDecl(); |
3602 | if (!ListInitializing) |
3603 | Usable = Usable && Info.Constructor->isConvertingConstructor( |
3604 | /*AllowExplicit*/ true); |
3605 | if (Usable) { |
3606 | bool SuppressUserConversions = !ConstructorsOnly; |
3607 | // C++20 [over.best.ics.general]/4.5: |
3608 | // if the target is the first parameter of a constructor [of class |
3609 | // X] and the constructor [...] is a candidate by [...] the second |
3610 | // phase of [over.match.list] when the initializer list has exactly |
3611 | // one element that is itself an initializer list, [...] and the |
3612 | // conversion is to X or reference to cv X, user-defined conversion |
3613 | // sequences are not cnosidered. |
3614 | if (SuppressUserConversions && ListInitializing) { |
3615 | SuppressUserConversions = |
3616 | NumArgs == 1 && isa<InitListExpr>(Args[0]) && |
3617 | isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, |
3618 | ToType); |
3619 | } |
3620 | if (Info.ConstructorTmpl) |
3621 | S.AddTemplateOverloadCandidate( |
3622 | Info.ConstructorTmpl, Info.FoundDecl, |
3623 | /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs), |
3624 | CandidateSet, SuppressUserConversions, |
3625 | /*PartialOverloading*/ false, |
3626 | AllowExplicit == AllowedExplicit::All); |
3627 | else |
3628 | // Allow one user-defined conversion when user specifies a |
3629 | // From->ToType conversion via an static cast (c-style, etc). |
3630 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
3631 | llvm::ArrayRef(Args, NumArgs), CandidateSet, |
3632 | SuppressUserConversions, |
3633 | /*PartialOverloading*/ false, |
3634 | AllowExplicit == AllowedExplicit::All); |
3635 | } |
3636 | } |
3637 | } |
3638 | } |
3639 | |
3640 | // Enumerate conversion functions, if we're allowed to. |
3641 | if (ConstructorsOnly || isa<InitListExpr>(From)) { |
3642 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { |
3643 | // No conversion functions from incomplete types. |
3644 | } else if (const RecordType *FromRecordType = |
3645 | From->getType()->getAs<RecordType>()) { |
3646 | if (CXXRecordDecl *FromRecordDecl |
3647 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { |
3648 | // Add all of the conversion functions as candidates. |
3649 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); |
3650 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
3651 | DeclAccessPair FoundDecl = I.getPair(); |
3652 | NamedDecl *D = FoundDecl.getDecl(); |
3653 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
3654 | if (isa<UsingShadowDecl>(D)) |
3655 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
3656 | |
3657 | CXXConversionDecl *Conv; |
3658 | FunctionTemplateDecl *ConvTemplate; |
3659 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
3660 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
3661 | else |
3662 | Conv = cast<CXXConversionDecl>(D); |
3663 | |
3664 | if (ConvTemplate) |
3665 | S.AddTemplateConversionCandidate( |
3666 | ConvTemplate, FoundDecl, ActingContext, From, ToType, |
3667 | CandidateSet, AllowObjCConversionOnExplicit, |
3668 | AllowExplicit != AllowedExplicit::None); |
3669 | else |
3670 | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, |
3671 | CandidateSet, AllowObjCConversionOnExplicit, |
3672 | AllowExplicit != AllowedExplicit::None); |
3673 | } |
3674 | } |
3675 | } |
3676 | |
3677 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
3678 | |
3679 | OverloadCandidateSet::iterator Best; |
3680 | switch (auto Result = |
3681 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
3682 | case OR_Success: |
3683 | case OR_Deleted: |
3684 | // Record the standard conversion we used and the conversion function. |
3685 | if (CXXConstructorDecl *Constructor |
3686 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { |
3687 | // C++ [over.ics.user]p1: |
3688 | // If the user-defined conversion is specified by a |
3689 | // constructor (12.3.1), the initial standard conversion |
3690 | // sequence converts the source type to the type required by |
3691 | // the argument of the constructor. |
3692 | // |
3693 | QualType ThisType = Constructor->getThisType(); |
3694 | if (isa<InitListExpr>(From)) { |
3695 | // Initializer lists don't have conversions as such. |
3696 | User.Before.setAsIdentityConversion(); |
3697 | } else { |
3698 | if (Best->Conversions[0].isEllipsis()) |
3699 | User.EllipsisConversion = true; |
3700 | else { |
3701 | User.Before = Best->Conversions[0].Standard; |
3702 | User.EllipsisConversion = false; |
3703 | } |
3704 | } |
3705 | User.HadMultipleCandidates = HadMultipleCandidates; |
3706 | User.ConversionFunction = Constructor; |
3707 | User.FoundConversionFunction = Best->FoundDecl; |
3708 | User.After.setAsIdentityConversion(); |
3709 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
3710 | User.After.setAllToTypes(ToType); |
3711 | return Result; |
3712 | } |
3713 | if (CXXConversionDecl *Conversion |
3714 | = dyn_cast<CXXConversionDecl>(Best->Function)) { |
3715 | // C++ [over.ics.user]p1: |
3716 | // |
3717 | // [...] If the user-defined conversion is specified by a |
3718 | // conversion function (12.3.2), the initial standard |
3719 | // conversion sequence converts the source type to the |
3720 | // implicit object parameter of the conversion function. |
3721 | User.Before = Best->Conversions[0].Standard; |
3722 | User.HadMultipleCandidates = HadMultipleCandidates; |
3723 | User.ConversionFunction = Conversion; |
3724 | User.FoundConversionFunction = Best->FoundDecl; |
3725 | User.EllipsisConversion = false; |
3726 | |
3727 | // C++ [over.ics.user]p2: |
3728 | // The second standard conversion sequence converts the |
3729 | // result of the user-defined conversion to the target type |
3730 | // for the sequence. Since an implicit conversion sequence |
3731 | // is an initialization, the special rules for |
3732 | // initialization by user-defined conversion apply when |
3733 | // selecting the best user-defined conversion for a |
3734 | // user-defined conversion sequence (see 13.3.3 and |
3735 | // 13.3.3.1). |
3736 | User.After = Best->FinalConversion; |
3737 | return Result; |
3738 | } |
3739 | llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?" , "clang/lib/Sema/SemaOverload.cpp", 3739); |
3740 | |
3741 | case OR_No_Viable_Function: |
3742 | return OR_No_Viable_Function; |
3743 | |
3744 | case OR_Ambiguous: |
3745 | return OR_Ambiguous; |
3746 | } |
3747 | |
3748 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 3748); |
3749 | } |
3750 | |
3751 | bool |
3752 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
3753 | ImplicitConversionSequence ICS; |
3754 | OverloadCandidateSet CandidateSet(From->getExprLoc(), |
3755 | OverloadCandidateSet::CSK_Normal); |
3756 | OverloadingResult OvResult = |
3757 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, |
3758 | CandidateSet, AllowedExplicit::None, false); |
3759 | |
3760 | if (!(OvResult == OR_Ambiguous || |
3761 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) |
3762 | return false; |
3763 | |
3764 | auto Cands = CandidateSet.CompleteCandidates( |
3765 | *this, |
3766 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, |
3767 | From); |
3768 | if (OvResult == OR_Ambiguous) |
3769 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) |
3770 | << From->getType() << ToType << From->getSourceRange(); |
3771 | else { // OR_No_Viable_Function && !CandidateSet.empty() |
3772 | if (!RequireCompleteType(From->getBeginLoc(), ToType, |
3773 | diag::err_typecheck_nonviable_condition_incomplete, |
3774 | From->getType(), From->getSourceRange())) |
3775 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) |
3776 | << false << From->getType() << From->getSourceRange() << ToType; |
3777 | } |
3778 | |
3779 | CandidateSet.NoteCandidates( |
3780 | *this, From, Cands); |
3781 | return true; |
3782 | } |
3783 | |
3784 | // Helper for compareConversionFunctions that gets the FunctionType that the |
3785 | // conversion-operator return value 'points' to, or nullptr. |
3786 | static const FunctionType * |
3787 | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { |
3788 | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); |
3789 | const PointerType *RetPtrTy = |
3790 | ConvFuncTy->getReturnType()->getAs<PointerType>(); |
3791 | |
3792 | if (!RetPtrTy) |
3793 | return nullptr; |
3794 | |
3795 | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); |
3796 | } |
3797 | |
3798 | /// Compare the user-defined conversion functions or constructors |
3799 | /// of two user-defined conversion sequences to determine whether any ordering |
3800 | /// is possible. |
3801 | static ImplicitConversionSequence::CompareKind |
3802 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, |
3803 | FunctionDecl *Function2) { |
3804 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); |
3805 | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); |
3806 | if (!Conv1 || !Conv2) |
3807 | return ImplicitConversionSequence::Indistinguishable; |
3808 | |
3809 | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) |
3810 | return ImplicitConversionSequence::Indistinguishable; |
3811 | |
3812 | // Objective-C++: |
3813 | // If both conversion functions are implicitly-declared conversions from |
3814 | // a lambda closure type to a function pointer and a block pointer, |
3815 | // respectively, always prefer the conversion to a function pointer, |
3816 | // because the function pointer is more lightweight and is more likely |
3817 | // to keep code working. |
3818 | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { |
3819 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); |
3820 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); |
3821 | if (Block1 != Block2) |
3822 | return Block1 ? ImplicitConversionSequence::Worse |
3823 | : ImplicitConversionSequence::Better; |
3824 | } |
3825 | |
3826 | // In order to support multiple calling conventions for the lambda conversion |
3827 | // operator (such as when the free and member function calling convention is |
3828 | // different), prefer the 'free' mechanism, followed by the calling-convention |
3829 | // of operator(). The latter is in place to support the MSVC-like solution of |
3830 | // defining ALL of the possible conversions in regards to calling-convention. |
3831 | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); |
3832 | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); |
3833 | |
3834 | if (Conv1FuncRet && Conv2FuncRet && |
3835 | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { |
3836 | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); |
3837 | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); |
3838 | |
3839 | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); |
3840 | const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>(); |
3841 | |
3842 | CallingConv CallOpCC = |
3843 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
3844 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( |
3845 | CallOpProto->isVariadic(), /*IsCXXMethod=*/false); |
3846 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( |
3847 | CallOpProto->isVariadic(), /*IsCXXMethod=*/true); |
3848 | |
3849 | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; |
3850 | for (CallingConv CC : PrefOrder) { |
3851 | if (Conv1CC == CC) |
3852 | return ImplicitConversionSequence::Better; |
3853 | if (Conv2CC == CC) |
3854 | return ImplicitConversionSequence::Worse; |
3855 | } |
3856 | } |
3857 | |
3858 | return ImplicitConversionSequence::Indistinguishable; |
3859 | } |
3860 | |
3861 | static bool hasDeprecatedStringLiteralToCharPtrConversion( |
3862 | const ImplicitConversionSequence &ICS) { |
3863 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || |
3864 | (ICS.isUserDefined() && |
3865 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); |
3866 | } |
3867 | |
3868 | /// CompareImplicitConversionSequences - Compare two implicit |
3869 | /// conversion sequences to determine whether one is better than the |
3870 | /// other or if they are indistinguishable (C++ 13.3.3.2). |
3871 | static ImplicitConversionSequence::CompareKind |
3872 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, |
3873 | const ImplicitConversionSequence& ICS1, |
3874 | const ImplicitConversionSequence& ICS2) |
3875 | { |
3876 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
3877 | // conversion sequences (as defined in 13.3.3.1) |
3878 | // -- a standard conversion sequence (13.3.3.1.1) is a better |
3879 | // conversion sequence than a user-defined conversion sequence or |
3880 | // an ellipsis conversion sequence, and |
3881 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
3882 | // conversion sequence than an ellipsis conversion sequence |
3883 | // (13.3.3.1.3). |
3884 | // |
3885 | // C++0x [over.best.ics]p10: |
3886 | // For the purpose of ranking implicit conversion sequences as |
3887 | // described in 13.3.3.2, the ambiguous conversion sequence is |
3888 | // treated as a user-defined sequence that is indistinguishable |
3889 | // from any other user-defined conversion sequence. |
3890 | |
3891 | // String literal to 'char *' conversion has been deprecated in C++03. It has |
3892 | // been removed from C++11. We still accept this conversion, if it happens at |
3893 | // the best viable function. Otherwise, this conversion is considered worse |
3894 | // than ellipsis conversion. Consider this as an extension; this is not in the |
3895 | // standard. For example: |
3896 | // |
3897 | // int &f(...); // #1 |
3898 | // void f(char*); // #2 |
3899 | // void g() { int &r = f("foo"); } |
3900 | // |
3901 | // In C++03, we pick #2 as the best viable function. |
3902 | // In C++11, we pick #1 as the best viable function, because ellipsis |
3903 | // conversion is better than string-literal to char* conversion (since there |
3904 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't |
3905 | // convert arguments, #2 would be the best viable function in C++11. |
3906 | // If the best viable function has this conversion, a warning will be issued |
3907 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. |
3908 | |
3909 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
3910 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != |
3911 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && |
3912 | // Ill-formedness must not differ |
3913 | ICS1.isBad() == ICS2.isBad()) |
3914 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) |
3915 | ? ImplicitConversionSequence::Worse |
3916 | : ImplicitConversionSequence::Better; |
3917 | |
3918 | if (ICS1.getKindRank() < ICS2.getKindRank()) |
3919 | return ImplicitConversionSequence::Better; |
3920 | if (ICS2.getKindRank() < ICS1.getKindRank()) |
3921 | return ImplicitConversionSequence::Worse; |
3922 | |
3923 | // The following checks require both conversion sequences to be of |
3924 | // the same kind. |
3925 | if (ICS1.getKind() != ICS2.getKind()) |
3926 | return ImplicitConversionSequence::Indistinguishable; |
3927 | |
3928 | ImplicitConversionSequence::CompareKind Result = |
3929 | ImplicitConversionSequence::Indistinguishable; |
3930 | |
3931 | // Two implicit conversion sequences of the same form are |
3932 | // indistinguishable conversion sequences unless one of the |
3933 | // following rules apply: (C++ 13.3.3.2p3): |
3934 | |
3935 | // List-initialization sequence L1 is a better conversion sequence than |
3936 | // list-initialization sequence L2 if: |
3937 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, |
3938 | // if not that, |
3939 | // — L1 and L2 convert to arrays of the same element type, and either the |
3940 | // number of elements n_1 initialized by L1 is less than the number of |
3941 | // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to |
3942 | // an array of unknown bound and L1 does not, |
3943 | // even if one of the other rules in this paragraph would otherwise apply. |
3944 | if (!ICS1.isBad()) { |
3945 | bool StdInit1 = false, StdInit2 = false; |
3946 | if (ICS1.hasInitializerListContainerType()) |
3947 | StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), |
3948 | nullptr); |
3949 | if (ICS2.hasInitializerListContainerType()) |
3950 | StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), |
3951 | nullptr); |
3952 | if (StdInit1 != StdInit2) |
3953 | return StdInit1 ? ImplicitConversionSequence::Better |
3954 | : ImplicitConversionSequence::Worse; |
3955 | |
3956 | if (ICS1.hasInitializerListContainerType() && |
3957 | ICS2.hasInitializerListContainerType()) |
3958 | if (auto *CAT1 = S.Context.getAsConstantArrayType( |
3959 | ICS1.getInitializerListContainerType())) |
3960 | if (auto *CAT2 = S.Context.getAsConstantArrayType( |
3961 | ICS2.getInitializerListContainerType())) { |
3962 | if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), |
3963 | CAT2->getElementType())) { |
3964 | // Both to arrays of the same element type |
3965 | if (CAT1->getSize() != CAT2->getSize()) |
3966 | // Different sized, the smaller wins |
3967 | return CAT1->getSize().ult(CAT2->getSize()) |
3968 | ? ImplicitConversionSequence::Better |
3969 | : ImplicitConversionSequence::Worse; |
3970 | if (ICS1.isInitializerListOfIncompleteArray() != |
3971 | ICS2.isInitializerListOfIncompleteArray()) |
3972 | // One is incomplete, it loses |
3973 | return ICS2.isInitializerListOfIncompleteArray() |
3974 | ? ImplicitConversionSequence::Better |
3975 | : ImplicitConversionSequence::Worse; |
3976 | } |
3977 | } |
3978 | } |
3979 | |
3980 | if (ICS1.isStandard()) |
3981 | // Standard conversion sequence S1 is a better conversion sequence than |
3982 | // standard conversion sequence S2 if [...] |
3983 | Result = CompareStandardConversionSequences(S, Loc, |
3984 | ICS1.Standard, ICS2.Standard); |
3985 | else if (ICS1.isUserDefined()) { |
3986 | // User-defined conversion sequence U1 is a better conversion |
3987 | // sequence than another user-defined conversion sequence U2 if |
3988 | // they contain the same user-defined conversion function or |
3989 | // constructor and if the second standard conversion sequence of |
3990 | // U1 is better than the second standard conversion sequence of |
3991 | // U2 (C++ 13.3.3.2p3). |
3992 | if (ICS1.UserDefined.ConversionFunction == |
3993 | ICS2.UserDefined.ConversionFunction) |
3994 | Result = CompareStandardConversionSequences(S, Loc, |
3995 | ICS1.UserDefined.After, |
3996 | ICS2.UserDefined.After); |
3997 | else |
3998 | Result = compareConversionFunctions(S, |
3999 | ICS1.UserDefined.ConversionFunction, |
4000 | ICS2.UserDefined.ConversionFunction); |
4001 | } |
4002 | |
4003 | return Result; |
4004 | } |
4005 | |
4006 | // Per 13.3.3.2p3, compare the given standard conversion sequences to |
4007 | // determine if one is a proper subset of the other. |
4008 | static ImplicitConversionSequence::CompareKind |
4009 | compareStandardConversionSubsets(ASTContext &Context, |
4010 | const StandardConversionSequence& SCS1, |
4011 | const StandardConversionSequence& SCS2) { |
4012 | ImplicitConversionSequence::CompareKind Result |
4013 | = ImplicitConversionSequence::Indistinguishable; |
4014 | |
4015 | // the identity conversion sequence is considered to be a subsequence of |
4016 | // any non-identity conversion sequence |
4017 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
4018 | return ImplicitConversionSequence::Better; |
4019 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
4020 | return ImplicitConversionSequence::Worse; |
4021 | |
4022 | if (SCS1.Second != SCS2.Second) { |
4023 | if (SCS1.Second == ICK_Identity) |
4024 | Result = ImplicitConversionSequence::Better; |
4025 | else if (SCS2.Second == ICK_Identity) |
4026 | Result = ImplicitConversionSequence::Worse; |
4027 | else |
4028 | return ImplicitConversionSequence::Indistinguishable; |
4029 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) |
4030 | return ImplicitConversionSequence::Indistinguishable; |
4031 | |
4032 | if (SCS1.Third == SCS2.Third) { |
4033 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result |
4034 | : ImplicitConversionSequence::Indistinguishable; |
4035 | } |
4036 | |
4037 | if (SCS1.Third == ICK_Identity) |
4038 | return Result == ImplicitConversionSequence::Worse |
4039 | ? ImplicitConversionSequence::Indistinguishable |
4040 | : ImplicitConversionSequence::Better; |
4041 | |
4042 | if (SCS2.Third == ICK_Identity) |
4043 | return Result == ImplicitConversionSequence::Better |
4044 | ? ImplicitConversionSequence::Indistinguishable |
4045 | : ImplicitConversionSequence::Worse; |
4046 | |
4047 | return ImplicitConversionSequence::Indistinguishable; |
4048 | } |
4049 | |
4050 | /// Determine whether one of the given reference bindings is better |
4051 | /// than the other based on what kind of bindings they are. |
4052 | static bool |
4053 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, |
4054 | const StandardConversionSequence &SCS2) { |
4055 | // C++0x [over.ics.rank]p3b4: |
4056 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
4057 | // implicit object parameter of a non-static member function declared |
4058 | // without a ref-qualifier, and *either* S1 binds an rvalue reference |
4059 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an |
4060 | // lvalue reference to a function lvalue and S2 binds an rvalue |
4061 | // reference*. |
4062 | // |
4063 | // FIXME: Rvalue references. We're going rogue with the above edits, |
4064 | // because the semantics in the current C++0x working paper (N3225 at the |
4065 | // time of this writing) break the standard definition of std::forward |
4066 | // and std::reference_wrapper when dealing with references to functions. |
4067 | // Proposed wording changes submitted to CWG for consideration. |
4068 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || |
4069 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) |
4070 | return false; |
4071 | |
4072 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && |
4073 | SCS2.IsLvalueReference) || |
4074 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && |
4075 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); |
4076 | } |
4077 | |
4078 | enum class FixedEnumPromotion { |
4079 | None, |
4080 | ToUnderlyingType, |
4081 | ToPromotedUnderlyingType |
4082 | }; |
4083 | |
4084 | /// Returns kind of fixed enum promotion the \a SCS uses. |
4085 | static FixedEnumPromotion |
4086 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { |
4087 | |
4088 | if (SCS.Second != ICK_Integral_Promotion) |
4089 | return FixedEnumPromotion::None; |
4090 | |
4091 | QualType FromType = SCS.getFromType(); |
4092 | if (!FromType->isEnumeralType()) |
4093 | return FixedEnumPromotion::None; |
4094 | |
4095 | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); |
4096 | if (!Enum->isFixed()) |
4097 | return FixedEnumPromotion::None; |
4098 | |
4099 | QualType UnderlyingType = Enum->getIntegerType(); |
4100 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) |
4101 | return FixedEnumPromotion::ToUnderlyingType; |
4102 | |
4103 | return FixedEnumPromotion::ToPromotedUnderlyingType; |
4104 | } |
4105 | |
4106 | /// CompareStandardConversionSequences - Compare two standard |
4107 | /// conversion sequences to determine whether one is better than the |
4108 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
4109 | static ImplicitConversionSequence::CompareKind |
4110 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
4111 | const StandardConversionSequence& SCS1, |
4112 | const StandardConversionSequence& SCS2) |
4113 | { |
4114 | // Standard conversion sequence S1 is a better conversion sequence |
4115 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
4116 | |
4117 | // -- S1 is a proper subsequence of S2 (comparing the conversion |
4118 | // sequences in the canonical form defined by 13.3.3.1.1, |
4119 | // excluding any Lvalue Transformation; the identity conversion |
4120 | // sequence is considered to be a subsequence of any |
4121 | // non-identity conversion sequence) or, if not that, |
4122 | if (ImplicitConversionSequence::CompareKind CK |
4123 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) |
4124 | return CK; |
4125 | |
4126 | // -- the rank of S1 is better than the rank of S2 (by the rules |
4127 | // defined below), or, if not that, |
4128 | ImplicitConversionRank Rank1 = SCS1.getRank(); |
4129 | ImplicitConversionRank Rank2 = SCS2.getRank(); |
4130 | if (Rank1 < Rank2) |
4131 | return ImplicitConversionSequence::Better; |
4132 | else if (Rank2 < Rank1) |
4133 | return ImplicitConversionSequence::Worse; |
4134 | |
4135 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
4136 | // are indistinguishable unless one of the following rules |
4137 | // applies: |
4138 | |
4139 | // A conversion that is not a conversion of a pointer, or |
4140 | // pointer to member, to bool is better than another conversion |
4141 | // that is such a conversion. |
4142 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
4143 | return SCS2.isPointerConversionToBool() |
4144 | ? ImplicitConversionSequence::Better |
4145 | : ImplicitConversionSequence::Worse; |
4146 | |
4147 | // C++14 [over.ics.rank]p4b2: |
4148 | // This is retroactively applied to C++11 by CWG 1601. |
4149 | // |
4150 | // A conversion that promotes an enumeration whose underlying type is fixed |
4151 | // to its underlying type is better than one that promotes to the promoted |
4152 | // underlying type, if the two are different. |
4153 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); |
4154 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); |
4155 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && |
4156 | FEP1 != FEP2) |
4157 | return FEP1 == FixedEnumPromotion::ToUnderlyingType |
4158 | ? ImplicitConversionSequence::Better |
4159 | : ImplicitConversionSequence::Worse; |
4160 | |
4161 | // C++ [over.ics.rank]p4b2: |
4162 | // |
4163 | // If class B is derived directly or indirectly from class A, |
4164 | // conversion of B* to A* is better than conversion of B* to |
4165 | // void*, and conversion of A* to void* is better than conversion |
4166 | // of B* to void*. |
4167 | bool SCS1ConvertsToVoid |
4168 | = SCS1.isPointerConversionToVoidPointer(S.Context); |
4169 | bool SCS2ConvertsToVoid |
4170 | = SCS2.isPointerConversionToVoidPointer(S.Context); |
4171 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
4172 | // Exactly one of the conversion sequences is a conversion to |
4173 | // a void pointer; it's the worse conversion. |
4174 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
4175 | : ImplicitConversionSequence::Worse; |
4176 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
4177 | // Neither conversion sequence converts to a void pointer; compare |
4178 | // their derived-to-base conversions. |
4179 | if (ImplicitConversionSequence::CompareKind DerivedCK |
4180 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) |
4181 | return DerivedCK; |
4182 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && |
4183 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { |
4184 | // Both conversion sequences are conversions to void |
4185 | // pointers. Compare the source types to determine if there's an |
4186 | // inheritance relationship in their sources. |
4187 | QualType FromType1 = SCS1.getFromType(); |
4188 | QualType FromType2 = SCS2.getFromType(); |
4189 | |
4190 | // Adjust the types we're converting from via the array-to-pointer |
4191 | // conversion, if we need to. |
4192 | if (SCS1.First == ICK_Array_To_Pointer) |
4193 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
4194 | if (SCS2.First == ICK_Array_To_Pointer) |
4195 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
4196 | |
4197 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); |
4198 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); |
4199 | |
4200 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
4201 | return ImplicitConversionSequence::Better; |
4202 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
4203 | return ImplicitConversionSequence::Worse; |
4204 | |
4205 | // Objective-C++: If one interface is more specific than the |
4206 | // other, it is the better one. |
4207 | const ObjCObjectPointerType* FromObjCPtr1 |
4208 | = FromType1->getAs<ObjCObjectPointerType>(); |
4209 | const ObjCObjectPointerType* FromObjCPtr2 |
4210 | = FromType2->getAs<ObjCObjectPointerType>(); |
4211 | if (FromObjCPtr1 && FromObjCPtr2) { |
4212 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, |
4213 | FromObjCPtr2); |
4214 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, |
4215 | FromObjCPtr1); |
4216 | if (AssignLeft != AssignRight) { |
4217 | return AssignLeft? ImplicitConversionSequence::Better |
4218 | : ImplicitConversionSequence::Worse; |
4219 | } |
4220 | } |
4221 | } |
4222 | |
4223 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
4224 | // Check for a better reference binding based on the kind of bindings. |
4225 | if (isBetterReferenceBindingKind(SCS1, SCS2)) |
4226 | return ImplicitConversionSequence::Better; |
4227 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) |
4228 | return ImplicitConversionSequence::Worse; |
4229 | } |
4230 | |
4231 | // Compare based on qualification conversions (C++ 13.3.3.2p3, |
4232 | // bullet 3). |
4233 | if (ImplicitConversionSequence::CompareKind QualCK |
4234 | = CompareQualificationConversions(S, SCS1, SCS2)) |
4235 | return QualCK; |
4236 | |
4237 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
4238 | // C++ [over.ics.rank]p3b4: |
4239 | // -- S1 and S2 are reference bindings (8.5.3), and the types to |
4240 | // which the references refer are the same type except for |
4241 | // top-level cv-qualifiers, and the type to which the reference |
4242 | // initialized by S2 refers is more cv-qualified than the type |
4243 | // to which the reference initialized by S1 refers. |
4244 | QualType T1 = SCS1.getToType(2); |
4245 | QualType T2 = SCS2.getToType(2); |
4246 | T1 = S.Context.getCanonicalType(T1); |
4247 | T2 = S.Context.getCanonicalType(T2); |
4248 | Qualifiers T1Quals, T2Quals; |
4249 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
4250 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
4251 | if (UnqualT1 == UnqualT2) { |
4252 | // Objective-C++ ARC: If the references refer to objects with different |
4253 | // lifetimes, prefer bindings that don't change lifetime. |
4254 | if (SCS1.ObjCLifetimeConversionBinding != |
4255 | SCS2.ObjCLifetimeConversionBinding) { |
4256 | return SCS1.ObjCLifetimeConversionBinding |
4257 | ? ImplicitConversionSequence::Worse |
4258 | : ImplicitConversionSequence::Better; |
4259 | } |
4260 | |
4261 | // If the type is an array type, promote the element qualifiers to the |
4262 | // type for comparison. |
4263 | if (isa<ArrayType>(T1) && T1Quals) |
4264 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
4265 | if (isa<ArrayType>(T2) && T2Quals) |
4266 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
4267 | if (T2.isMoreQualifiedThan(T1)) |
4268 | return ImplicitConversionSequence::Better; |
4269 | if (T1.isMoreQualifiedThan(T2)) |
4270 | return ImplicitConversionSequence::Worse; |
4271 | } |
4272 | } |
4273 | |
4274 | // In Microsoft mode (below 19.28), prefer an integral conversion to a |
4275 | // floating-to-integral conversion if the integral conversion |
4276 | // is between types of the same size. |
4277 | // For example: |
4278 | // void f(float); |
4279 | // void f(int); |
4280 | // int main { |
4281 | // long a; |
4282 | // f(a); |
4283 | // } |
4284 | // Here, MSVC will call f(int) instead of generating a compile error |
4285 | // as clang will do in standard mode. |
4286 | if (S.getLangOpts().MSVCCompat && |
4287 | !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && |
4288 | SCS1.Second == ICK_Integral_Conversion && |
4289 | SCS2.Second == ICK_Floating_Integral && |
4290 | S.Context.getTypeSize(SCS1.getFromType()) == |
4291 | S.Context.getTypeSize(SCS1.getToType(2))) |
4292 | return ImplicitConversionSequence::Better; |
4293 | |
4294 | // Prefer a compatible vector conversion over a lax vector conversion |
4295 | // For example: |
4296 | // |
4297 | // typedef float __v4sf __attribute__((__vector_size__(16))); |
4298 | // void f(vector float); |
4299 | // void f(vector signed int); |
4300 | // int main() { |
4301 | // __v4sf a; |
4302 | // f(a); |
4303 | // } |
4304 | // Here, we'd like to choose f(vector float) and not |
4305 | // report an ambiguous call error |
4306 | if (SCS1.Second == ICK_Vector_Conversion && |
4307 | SCS2.Second == ICK_Vector_Conversion) { |
4308 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
4309 | SCS1.getFromType(), SCS1.getToType(2)); |
4310 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
4311 | SCS2.getFromType(), SCS2.getToType(2)); |
4312 | |
4313 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) |
4314 | return SCS1IsCompatibleVectorConversion |
4315 | ? ImplicitConversionSequence::Better |
4316 | : ImplicitConversionSequence::Worse; |
4317 | } |
4318 | |
4319 | if (SCS1.Second == ICK_SVE_Vector_Conversion && |
4320 | SCS2.Second == ICK_SVE_Vector_Conversion) { |
4321 | bool SCS1IsCompatibleSVEVectorConversion = |
4322 | S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); |
4323 | bool SCS2IsCompatibleSVEVectorConversion = |
4324 | S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); |
4325 | |
4326 | if (SCS1IsCompatibleSVEVectorConversion != |
4327 | SCS2IsCompatibleSVEVectorConversion) |
4328 | return SCS1IsCompatibleSVEVectorConversion |
4329 | ? ImplicitConversionSequence::Better |
4330 | : ImplicitConversionSequence::Worse; |
4331 | } |
4332 | |
4333 | return ImplicitConversionSequence::Indistinguishable; |
4334 | } |
4335 | |
4336 | /// CompareQualificationConversions - Compares two standard conversion |
4337 | /// sequences to determine whether they can be ranked based on their |
4338 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
4339 | static ImplicitConversionSequence::CompareKind |
4340 | CompareQualificationConversions(Sema &S, |
4341 | const StandardConversionSequence& SCS1, |
4342 | const StandardConversionSequence& SCS2) { |
4343 | // C++ [over.ics.rank]p3: |
4344 | // -- S1 and S2 differ only in their qualification conversion and |
4345 | // yield similar types T1 and T2 (C++ 4.4), respectively, [...] |
4346 | // [C++98] |
4347 | // [...] and the cv-qualification signature of type T1 is a proper subset |
4348 | // of the cv-qualification signature of type T2, and S1 is not the |
4349 | // deprecated string literal array-to-pointer conversion (4.2). |
4350 | // [C++2a] |
4351 | // [...] where T1 can be converted to T2 by a qualification conversion. |
4352 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
4353 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
4354 | return ImplicitConversionSequence::Indistinguishable; |
4355 | |
4356 | // FIXME: the example in the standard doesn't use a qualification |
4357 | // conversion (!) |
4358 | QualType T1 = SCS1.getToType(2); |
4359 | QualType T2 = SCS2.getToType(2); |
4360 | T1 = S.Context.getCanonicalType(T1); |
4361 | T2 = S.Context.getCanonicalType(T2); |
4362 | assert(!T1->isReferenceType() && !T2->isReferenceType())(static_cast <bool> (!T1->isReferenceType() && !T2->isReferenceType()) ? void (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()" , "clang/lib/Sema/SemaOverload.cpp", 4362, __extension__ __PRETTY_FUNCTION__ )); |
4363 | Qualifiers T1Quals, T2Quals; |
4364 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
4365 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
4366 | |
4367 | // If the types are the same, we won't learn anything by unwrapping |
4368 | // them. |
4369 | if (UnqualT1 == UnqualT2) |
4370 | return ImplicitConversionSequence::Indistinguishable; |
4371 | |
4372 | // Don't ever prefer a standard conversion sequence that uses the deprecated |
4373 | // string literal array to pointer conversion. |
4374 | bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; |
4375 | bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; |
4376 | |
4377 | // Objective-C++ ARC: |
4378 | // Prefer qualification conversions not involving a change in lifetime |
4379 | // to qualification conversions that do change lifetime. |
4380 | if (SCS1.QualificationIncludesObjCLifetime && |
4381 | !SCS2.QualificationIncludesObjCLifetime) |
4382 | CanPick1 = false; |
4383 | if (SCS2.QualificationIncludesObjCLifetime && |
4384 | !SCS1.QualificationIncludesObjCLifetime) |
4385 | CanPick2 = false; |
4386 | |
4387 | bool ObjCLifetimeConversion; |
4388 | if (CanPick1 && |
4389 | !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) |
4390 | CanPick1 = false; |
4391 | // FIXME: In Objective-C ARC, we can have qualification conversions in both |
4392 | // directions, so we can't short-cut this second check in general. |
4393 | if (CanPick2 && |
4394 | !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) |
4395 | CanPick2 = false; |
4396 | |
4397 | if (CanPick1 != CanPick2) |
4398 | return CanPick1 ? ImplicitConversionSequence::Better |
4399 | : ImplicitConversionSequence::Worse; |
4400 | return ImplicitConversionSequence::Indistinguishable; |
4401 | } |
4402 | |
4403 | /// CompareDerivedToBaseConversions - Compares two standard conversion |
4404 | /// sequences to determine whether they can be ranked based on their |
4405 | /// various kinds of derived-to-base conversions (C++ |
4406 | /// [over.ics.rank]p4b3). As part of these checks, we also look at |
4407 | /// conversions between Objective-C interface types. |
4408 | static ImplicitConversionSequence::CompareKind |
4409 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
4410 | const StandardConversionSequence& SCS1, |
4411 | const StandardConversionSequence& SCS2) { |
4412 | QualType FromType1 = SCS1.getFromType(); |
4413 | QualType ToType1 = SCS1.getToType(1); |
4414 | QualType FromType2 = SCS2.getFromType(); |
4415 | QualType ToType2 = SCS2.getToType(1); |
4416 | |
4417 | // Adjust the types we're converting from via the array-to-pointer |
4418 | // conversion, if we need to. |
4419 | if (SCS1.First == ICK_Array_To_Pointer) |
4420 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
4421 | if (SCS2.First == ICK_Array_To_Pointer) |
4422 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
4423 | |
4424 | // Canonicalize all of the types. |
4425 | FromType1 = S.Context.getCanonicalType(FromType1); |
4426 | ToType1 = S.Context.getCanonicalType(ToType1); |
4427 | FromType2 = S.Context.getCanonicalType(FromType2); |
4428 | ToType2 = S.Context.getCanonicalType(ToType2); |
4429 | |
4430 | // C++ [over.ics.rank]p4b3: |
4431 | // |
4432 | // If class B is derived directly or indirectly from class A and |
4433 | // class C is derived directly or indirectly from B, |
4434 | // |
4435 | // Compare based on pointer conversions. |
4436 | if (SCS1.Second == ICK_Pointer_Conversion && |
4437 | SCS2.Second == ICK_Pointer_Conversion && |
4438 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
4439 | FromType1->isPointerType() && FromType2->isPointerType() && |
4440 | ToType1->isPointerType() && ToType2->isPointerType()) { |
4441 | QualType FromPointee1 = |
4442 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4443 | QualType ToPointee1 = |
4444 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4445 | QualType FromPointee2 = |
4446 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4447 | QualType ToPointee2 = |
4448 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4449 | |
4450 | // -- conversion of C* to B* is better than conversion of C* to A*, |
4451 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
4452 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
4453 | return ImplicitConversionSequence::Better; |
4454 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
4455 | return ImplicitConversionSequence::Worse; |
4456 | } |
4457 | |
4458 | // -- conversion of B* to A* is better than conversion of C* to A*, |
4459 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
4460 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
4461 | return ImplicitConversionSequence::Better; |
4462 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
4463 | return ImplicitConversionSequence::Worse; |
4464 | } |
4465 | } else if (SCS1.Second == ICK_Pointer_Conversion && |
4466 | SCS2.Second == ICK_Pointer_Conversion) { |
4467 | const ObjCObjectPointerType *FromPtr1 |
4468 | = FromType1->getAs<ObjCObjectPointerType>(); |
4469 | const ObjCObjectPointerType *FromPtr2 |
4470 | = FromType2->getAs<ObjCObjectPointerType>(); |
4471 | const ObjCObjectPointerType *ToPtr1 |
4472 | = ToType1->getAs<ObjCObjectPointerType>(); |
4473 | const ObjCObjectPointerType *ToPtr2 |
4474 | = ToType2->getAs<ObjCObjectPointerType>(); |
4475 | |
4476 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { |
4477 | // Apply the same conversion ranking rules for Objective-C pointer types |
4478 | // that we do for C++ pointers to class types. However, we employ the |
4479 | // Objective-C pseudo-subtyping relationship used for assignment of |
4480 | // Objective-C pointer types. |
4481 | bool FromAssignLeft |
4482 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); |
4483 | bool FromAssignRight |
4484 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); |
4485 | bool ToAssignLeft |
4486 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); |
4487 | bool ToAssignRight |
4488 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); |
4489 | |
4490 | // A conversion to an a non-id object pointer type or qualified 'id' |
4491 | // type is better than a conversion to 'id'. |
4492 | if (ToPtr1->isObjCIdType() && |
4493 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) |
4494 | return ImplicitConversionSequence::Worse; |
4495 | if (ToPtr2->isObjCIdType() && |
4496 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) |
4497 | return ImplicitConversionSequence::Better; |
4498 | |
4499 | // A conversion to a non-id object pointer type is better than a |
4500 | // conversion to a qualified 'id' type |
4501 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) |
4502 | return ImplicitConversionSequence::Worse; |
4503 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) |
4504 | return ImplicitConversionSequence::Better; |
4505 | |
4506 | // A conversion to an a non-Class object pointer type or qualified 'Class' |
4507 | // type is better than a conversion to 'Class'. |
4508 | if (ToPtr1->isObjCClassType() && |
4509 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) |
4510 | return ImplicitConversionSequence::Worse; |
4511 | if (ToPtr2->isObjCClassType() && |
4512 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) |
4513 | return ImplicitConversionSequence::Better; |
4514 | |
4515 | // A conversion to a non-Class object pointer type is better than a |
4516 | // conversion to a qualified 'Class' type. |
4517 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) |
4518 | return ImplicitConversionSequence::Worse; |
4519 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) |
4520 | return ImplicitConversionSequence::Better; |
4521 | |
4522 | // -- "conversion of C* to B* is better than conversion of C* to A*," |
4523 | if (S.Context.hasSameType(FromType1, FromType2) && |
4524 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && |
4525 | (ToAssignLeft != ToAssignRight)) { |
4526 | if (FromPtr1->isSpecialized()) { |
4527 | // "conversion of B<A> * to B * is better than conversion of B * to |
4528 | // C *. |
4529 | bool IsFirstSame = |
4530 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); |
4531 | bool IsSecondSame = |
4532 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); |
4533 | if (IsFirstSame) { |
4534 | if (!IsSecondSame) |
4535 | return ImplicitConversionSequence::Better; |
4536 | } else if (IsSecondSame) |
4537 | return ImplicitConversionSequence::Worse; |
4538 | } |
4539 | return ToAssignLeft? ImplicitConversionSequence::Worse |
4540 | : ImplicitConversionSequence::Better; |
4541 | } |
4542 | |
4543 | // -- "conversion of B* to A* is better than conversion of C* to A*," |
4544 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && |
4545 | (FromAssignLeft != FromAssignRight)) |
4546 | return FromAssignLeft? ImplicitConversionSequence::Better |
4547 | : ImplicitConversionSequence::Worse; |
4548 | } |
4549 | } |
4550 | |
4551 | // Ranking of member-pointer types. |
4552 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
4553 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
4554 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
4555 | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); |
4556 | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); |
4557 | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); |
4558 | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); |
4559 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); |
4560 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); |
4561 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); |
4562 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); |
4563 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); |
4564 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); |
4565 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); |
4566 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); |
4567 | // conversion of A::* to B::* is better than conversion of A::* to C::*, |
4568 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
4569 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
4570 | return ImplicitConversionSequence::Worse; |
4571 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
4572 | return ImplicitConversionSequence::Better; |
4573 | } |
4574 | // conversion of B::* to C::* is better than conversion of A::* to C::* |
4575 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
4576 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
4577 | return ImplicitConversionSequence::Better; |
4578 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
4579 | return ImplicitConversionSequence::Worse; |
4580 | } |
4581 | } |
4582 | |
4583 | if (SCS1.Second == ICK_Derived_To_Base) { |
4584 | // -- conversion of C to B is better than conversion of C to A, |
4585 | // -- binding of an expression of type C to a reference of type |
4586 | // B& is better than binding an expression of type C to a |
4587 | // reference of type A&, |
4588 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
4589 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
4590 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) |
4591 | return ImplicitConversionSequence::Better; |
4592 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) |
4593 | return ImplicitConversionSequence::Worse; |
4594 | } |
4595 | |
4596 | // -- conversion of B to A is better than conversion of C to A. |
4597 | // -- binding of an expression of type B to a reference of type |
4598 | // A& is better than binding an expression of type C to a |
4599 | // reference of type A&, |
4600 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
4601 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
4602 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) |
4603 | return ImplicitConversionSequence::Better; |
4604 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) |
4605 | return ImplicitConversionSequence::Worse; |
4606 | } |
4607 | } |
4608 | |
4609 | return ImplicitConversionSequence::Indistinguishable; |
4610 | } |
4611 | |
4612 | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { |
4613 | if (!T.getQualifiers().hasUnaligned()) |
4614 | return T; |
4615 | |
4616 | Qualifiers Q; |
4617 | T = Ctx.getUnqualifiedArrayType(T, Q); |
4618 | Q.removeUnaligned(); |
4619 | return Ctx.getQualifiedType(T, Q); |
4620 | } |
4621 | |
4622 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
4623 | /// determine whether they are reference-compatible, |
4624 | /// reference-related, or incompatible, for use in C++ initialization by |
4625 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
4626 | /// type, and the first type (T1) is the pointee type of the reference |
4627 | /// type being initialized. |
4628 | Sema::ReferenceCompareResult |
4629 | Sema::CompareReferenceRelationship(SourceLocation Loc, |
4630 | QualType OrigT1, QualType OrigT2, |
4631 | ReferenceConversions *ConvOut) { |
4632 | assert(!OrigT1->isReferenceType() &&(static_cast <bool> (!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type") ? void ( 0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4633, __extension__ __PRETTY_FUNCTION__ )) |
4633 | "T1 must be the pointee type of the reference type")(static_cast <bool> (!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type") ? void ( 0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4633, __extension__ __PRETTY_FUNCTION__ )); |
4634 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")(static_cast <bool> (!OrigT2->isReferenceType() && "T2 cannot be a reference type") ? void (0) : __assert_fail ( "!OrigT2->isReferenceType() && \"T2 cannot be a reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4634, __extension__ __PRETTY_FUNCTION__ )); |
4635 | |
4636 | QualType T1 = Context.getCanonicalType(OrigT1); |
4637 | QualType T2 = Context.getCanonicalType(OrigT2); |
4638 | Qualifiers T1Quals, T2Quals; |
4639 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
4640 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
4641 | |
4642 | ReferenceConversions ConvTmp; |
4643 | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; |
4644 | Conv = ReferenceConversions(); |
4645 | |
4646 | // C++2a [dcl.init.ref]p4: |
4647 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
4648 | // reference-related to "cv2 T2" if T1 is similar to T2, or |
4649 | // T1 is a base class of T2. |
4650 | // "cv1 T1" is reference-compatible with "cv2 T2" if |
4651 | // a prvalue of type "pointer to cv2 T2" can be converted to the type |
4652 | // "pointer to cv1 T1" via a standard conversion sequence. |
4653 | |
4654 | // Check for standard conversions we can apply to pointers: derived-to-base |
4655 | // conversions, ObjC pointer conversions, and function pointer conversions. |
4656 | // (Qualification conversions are checked last.) |
4657 | QualType ConvertedT2; |
4658 | if (UnqualT1 == UnqualT2) { |
4659 | // Nothing to do. |
4660 | } else if (isCompleteType(Loc, OrigT2) && |
4661 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) |
4662 | Conv |= ReferenceConversions::DerivedToBase; |
4663 | else if (UnqualT1->isObjCObjectOrInterfaceType() && |
4664 | UnqualT2->isObjCObjectOrInterfaceType() && |
4665 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) |
4666 | Conv |= ReferenceConversions::ObjC; |
4667 | else if (UnqualT2->isFunctionType() && |
4668 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { |
4669 | Conv |= ReferenceConversions::Function; |
4670 | // No need to check qualifiers; function types don't have them. |
4671 | return Ref_Compatible; |
4672 | } |
4673 | bool ConvertedReferent = Conv != 0; |
4674 | |
4675 | // We can have a qualification conversion. Compute whether the types are |
4676 | // similar at the same time. |
4677 | bool PreviousToQualsIncludeConst = true; |
4678 | bool TopLevel = true; |
4679 | do { |
4680 | if (T1 == T2) |
4681 | break; |
4682 | |
4683 | // We will need a qualification conversion. |
4684 | Conv |= ReferenceConversions::Qualification; |
4685 | |
4686 | // Track whether we performed a qualification conversion anywhere other |
4687 | // than the top level. This matters for ranking reference bindings in |
4688 | // overload resolution. |
4689 | if (!TopLevel) |
4690 | Conv |= ReferenceConversions::NestedQualification; |
4691 | |
4692 | // MS compiler ignores __unaligned qualifier for references; do the same. |
4693 | T1 = withoutUnaligned(Context, T1); |
4694 | T2 = withoutUnaligned(Context, T2); |
4695 | |
4696 | // If we find a qualifier mismatch, the types are not reference-compatible, |
4697 | // but are still be reference-related if they're similar. |
4698 | bool ObjCLifetimeConversion = false; |
4699 | if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, |
4700 | PreviousToQualsIncludeConst, |
4701 | ObjCLifetimeConversion)) |
4702 | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) |
4703 | ? Ref_Related |
4704 | : Ref_Incompatible; |
4705 | |
4706 | // FIXME: Should we track this for any level other than the first? |
4707 | if (ObjCLifetimeConversion) |
4708 | Conv |= ReferenceConversions::ObjCLifetime; |
4709 | |
4710 | TopLevel = false; |
4711 | } while (Context.UnwrapSimilarTypes(T1, T2)); |
4712 | |
4713 | // At this point, if the types are reference-related, we must either have the |
4714 | // same inner type (ignoring qualifiers), or must have already worked out how |
4715 | // to convert the referent. |
4716 | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) |
4717 | ? Ref_Compatible |
4718 | : Ref_Incompatible; |
4719 | } |
4720 | |
4721 | /// Look for a user-defined conversion to a value reference-compatible |
4722 | /// with DeclType. Return true if something definite is found. |
4723 | static bool |
4724 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, |
4725 | QualType DeclType, SourceLocation DeclLoc, |
4726 | Expr *Init, QualType T2, bool AllowRvalues, |
4727 | bool AllowExplicit) { |
4728 | assert(T2->isRecordType() && "Can only find conversions of record types.")(static_cast <bool> (T2->isRecordType() && "Can only find conversions of record types." ) ? void (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\"" , "clang/lib/Sema/SemaOverload.cpp", 4728, __extension__ __PRETTY_FUNCTION__ )); |
4729 | auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); |
4730 | |
4731 | OverloadCandidateSet CandidateSet( |
4732 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4733 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4734 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4735 | NamedDecl *D = *I; |
4736 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4737 | if (isa<UsingShadowDecl>(D)) |
4738 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
4739 | |
4740 | FunctionTemplateDecl *ConvTemplate |
4741 | = dyn_cast<FunctionTemplateDecl>(D); |
4742 | CXXConversionDecl *Conv; |
4743 | if (ConvTemplate) |
4744 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4745 | else |
4746 | Conv = cast<CXXConversionDecl>(D); |
4747 | |
4748 | if (AllowRvalues) { |
4749 | // If we are initializing an rvalue reference, don't permit conversion |
4750 | // functions that return lvalues. |
4751 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { |
4752 | const ReferenceType *RefType |
4753 | = Conv->getConversionType()->getAs<LValueReferenceType>(); |
4754 | if (RefType && !RefType->getPointeeType()->isFunctionType()) |
4755 | continue; |
4756 | } |
4757 | |
4758 | if (!ConvTemplate && |
4759 | S.CompareReferenceRelationship( |
4760 | DeclLoc, |
4761 | Conv->getConversionType() |
4762 | .getNonReferenceType() |
4763 | .getUnqualifiedType(), |
4764 | DeclType.getNonReferenceType().getUnqualifiedType()) == |
4765 | Sema::Ref_Incompatible) |
4766 | continue; |
4767 | } else { |
4768 | // If the conversion function doesn't return a reference type, |
4769 | // it can't be considered for this conversion. An rvalue reference |
4770 | // is only acceptable if its referencee is a function type. |
4771 | |
4772 | const ReferenceType *RefType = |
4773 | Conv->getConversionType()->getAs<ReferenceType>(); |
4774 | if (!RefType || |
4775 | (!RefType->isLValueReferenceType() && |
4776 | !RefType->getPointeeType()->isFunctionType())) |
4777 | continue; |
4778 | } |
4779 | |
4780 | if (ConvTemplate) |
4781 | S.AddTemplateConversionCandidate( |
4782 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
4783 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
4784 | else |
4785 | S.AddConversionCandidate( |
4786 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
4787 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
4788 | } |
4789 | |
4790 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4791 | |
4792 | OverloadCandidateSet::iterator Best; |
4793 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
4794 | case OR_Success: |
4795 | // C++ [over.ics.ref]p1: |
4796 | // |
4797 | // [...] If the parameter binds directly to the result of |
4798 | // applying a conversion function to the argument |
4799 | // expression, the implicit conversion sequence is a |
4800 | // user-defined conversion sequence (13.3.3.1.2), with the |
4801 | // second standard conversion sequence either an identity |
4802 | // conversion or, if the conversion function returns an |
4803 | // entity of a type that is a derived class of the parameter |
4804 | // type, a derived-to-base Conversion. |
4805 | if (!Best->FinalConversion.DirectBinding) |
4806 | return false; |
4807 | |
4808 | ICS.setUserDefined(); |
4809 | ICS.UserDefined.Before = Best->Conversions[0].Standard; |
4810 | ICS.UserDefined.After = Best->FinalConversion; |
4811 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; |
4812 | ICS.UserDefined.ConversionFunction = Best->Function; |
4813 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; |
4814 | ICS.UserDefined.EllipsisConversion = false; |
4815 | assert(ICS.UserDefined.After.ReferenceBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )) |
4816 | ICS.UserDefined.After.DirectBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )) |
4817 | "Expected a direct reference binding!")(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )); |
4818 | return true; |
4819 | |
4820 | case OR_Ambiguous: |
4821 | ICS.setAmbiguous(); |
4822 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
4823 | Cand != CandidateSet.end(); ++Cand) |
4824 | if (Cand->Best) |
4825 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
4826 | return true; |
4827 | |
4828 | case OR_No_Viable_Function: |
4829 | case OR_Deleted: |
4830 | // There was no suitable conversion, or we found a deleted |
4831 | // conversion; continue with other checks. |
4832 | return false; |
4833 | } |
4834 | |
4835 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 4835); |
4836 | } |
4837 | |
4838 | /// Compute an implicit conversion sequence for reference |
4839 | /// initialization. |
4840 | static ImplicitConversionSequence |
4841 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, |
4842 | SourceLocation DeclLoc, |
4843 | bool SuppressUserConversions, |
4844 | bool AllowExplicit) { |
4845 | assert(DeclType->isReferenceType() && "Reference init needs a reference")(static_cast <bool> (DeclType->isReferenceType() && "Reference init needs a reference") ? void (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\"" , "clang/lib/Sema/SemaOverload.cpp", 4845, __extension__ __PRETTY_FUNCTION__ )); |
4846 | |
4847 | // Most paths end in a failed conversion. |
4848 | ImplicitConversionSequence ICS; |
4849 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
4850 | |
4851 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); |
4852 | QualType T2 = Init->getType(); |
4853 | |
4854 | // If the initializer is the address of an overloaded function, try |
4855 | // to resolve the overloaded function. If all goes well, T2 is the |
4856 | // type of the resulting function. |
4857 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
4858 | DeclAccessPair Found; |
4859 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, |
4860 | false, Found)) |
4861 | T2 = Fn->getType(); |
4862 | } |
4863 | |
4864 | // Compute some basic properties of the types and the initializer. |
4865 | bool isRValRef = DeclType->isRValueReferenceType(); |
4866 | Expr::Classification InitCategory = Init->Classify(S.Context); |
4867 | |
4868 | Sema::ReferenceConversions RefConv; |
4869 | Sema::ReferenceCompareResult RefRelationship = |
4870 | S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); |
4871 | |
4872 | auto SetAsReferenceBinding = [&](bool BindsDirectly) { |
4873 | ICS.setStandard(); |
4874 | ICS.Standard.First = ICK_Identity; |
4875 | // FIXME: A reference binding can be a function conversion too. We should |
4876 | // consider that when ordering reference-to-function bindings. |
4877 | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) |
4878 | ? ICK_Derived_To_Base |
4879 | : (RefConv & Sema::ReferenceConversions::ObjC) |
4880 | ? ICK_Compatible_Conversion |
4881 | : ICK_Identity; |
4882 | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank |
4883 | // a reference binding that performs a non-top-level qualification |
4884 | // conversion as a qualification conversion, not as an identity conversion. |
4885 | ICS.Standard.Third = (RefConv & |
4886 | Sema::ReferenceConversions::NestedQualification) |
4887 | ? ICK_Qualification |
4888 | : ICK_Identity; |
4889 | ICS.Standard.setFromType(T2); |
4890 | ICS.Standard.setToType(0, T2); |
4891 | ICS.Standard.setToType(1, T1); |
4892 | ICS.Standard.setToType(2, T1); |
4893 | ICS.Standard.ReferenceBinding = true; |
4894 | ICS.Standard.DirectBinding = BindsDirectly; |
4895 | ICS.Standard.IsLvalueReference = !isRValRef; |
4896 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
4897 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); |
4898 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
4899 | ICS.Standard.ObjCLifetimeConversionBinding = |
4900 | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; |
4901 | ICS.Standard.CopyConstructor = nullptr; |
4902 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; |
4903 | }; |
4904 | |
4905 | // C++0x [dcl.init.ref]p5: |
4906 | // A reference to type "cv1 T1" is initialized by an expression |
4907 | // of type "cv2 T2" as follows: |
4908 | |
4909 | // -- If reference is an lvalue reference and the initializer expression |
4910 | if (!isRValRef) { |
4911 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
4912 | // reference-compatible with "cv2 T2," or |
4913 | // |
4914 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
4915 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { |
4916 | // C++ [over.ics.ref]p1: |
4917 | // When a parameter of reference type binds directly (8.5.3) |
4918 | // to an argument expression, the implicit conversion sequence |
4919 | // is the identity conversion, unless the argument expression |
4920 | // has a type that is a derived class of the parameter type, |
4921 | // in which case the implicit conversion sequence is a |
4922 | // derived-to-base Conversion (13.3.3.1). |
4923 | SetAsReferenceBinding(/*BindsDirectly=*/true); |
4924 | |
4925 | // Nothing more to do: the inaccessibility/ambiguity check for |
4926 | // derived-to-base conversions is suppressed when we're |
4927 | // computing the implicit conversion sequence (C++ |
4928 | // [over.best.ics]p2). |
4929 | return ICS; |
4930 | } |
4931 | |
4932 | // -- has a class type (i.e., T2 is a class type), where T1 is |
4933 | // not reference-related to T2, and can be implicitly |
4934 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
4935 | // is reference-compatible with "cv3 T3" 92) (this |
4936 | // conversion is selected by enumerating the applicable |
4937 | // conversion functions (13.3.1.6) and choosing the best |
4938 | // one through overload resolution (13.3)), |
4939 | if (!SuppressUserConversions && T2->isRecordType() && |
4940 | S.isCompleteType(DeclLoc, T2) && |
4941 | RefRelationship == Sema::Ref_Incompatible) { |
4942 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
4943 | Init, T2, /*AllowRvalues=*/false, |
4944 | AllowExplicit)) |
4945 | return ICS; |
4946 | } |
4947 | } |
4948 | |
4949 | // -- Otherwise, the reference shall be an lvalue reference to a |
4950 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
4951 | // shall be an rvalue reference. |
4952 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { |
4953 | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) |
4954 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); |
4955 | return ICS; |
4956 | } |
4957 | |
4958 | // -- If the initializer expression |
4959 | // |
4960 | // -- is an xvalue, class prvalue, array prvalue or function |
4961 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or |
4962 | if (RefRelationship == Sema::Ref_Compatible && |
4963 | (InitCategory.isXValue() || |
4964 | (InitCategory.isPRValue() && |
4965 | (T2->isRecordType() || T2->isArrayType())) || |
4966 | (InitCategory.isLValue() && T2->isFunctionType()))) { |
4967 | // In C++11, this is always a direct binding. In C++98/03, it's a direct |
4968 | // binding unless we're binding to a class prvalue. |
4969 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we |
4970 | // allow the use of rvalue references in C++98/03 for the benefit of |
4971 | // standard library implementors; therefore, we need the xvalue check here. |
4972 | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || |
4973 | !(InitCategory.isPRValue() || T2->isRecordType())); |
4974 | return ICS; |
4975 | } |
4976 | |
4977 | // -- has a class type (i.e., T2 is a class type), where T1 is not |
4978 | // reference-related to T2, and can be implicitly converted to |
4979 | // an xvalue, class prvalue, or function lvalue of type |
4980 | // "cv3 T3", where "cv1 T1" is reference-compatible with |
4981 | // "cv3 T3", |
4982 | // |
4983 | // then the reference is bound to the value of the initializer |
4984 | // expression in the first case and to the result of the conversion |
4985 | // in the second case (or, in either case, to an appropriate base |
4986 | // class subobject). |
4987 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
4988 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && |
4989 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
4990 | Init, T2, /*AllowRvalues=*/true, |
4991 | AllowExplicit)) { |
4992 | // In the second case, if the reference is an rvalue reference |
4993 | // and the second standard conversion sequence of the |
4994 | // user-defined conversion sequence includes an lvalue-to-rvalue |
4995 | // conversion, the program is ill-formed. |
4996 | if (ICS.isUserDefined() && isRValRef && |
4997 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) |
4998 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
4999 | |
5000 | return ICS; |
5001 | } |
5002 | |
5003 | // A temporary of function type cannot be created; don't even try. |
5004 | if (T1->isFunctionType()) |
5005 | return ICS; |
5006 | |
5007 | // -- Otherwise, a temporary of type "cv1 T1" is created and |
5008 | // initialized from the initializer expression using the |
5009 | // rules for a non-reference copy initialization (8.5). The |
5010 | // reference is then bound to the temporary. If T1 is |
5011 | // reference-related to T2, cv1 must be the same |
5012 | // cv-qualification as, or greater cv-qualification than, |
5013 | // cv2; otherwise, the program is ill-formed. |
5014 | if (RefRelationship == Sema::Ref_Related) { |
5015 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
5016 | // we would be reference-compatible or reference-compatible with |
5017 | // added qualification. But that wasn't the case, so the reference |
5018 | // initialization fails. |
5019 | // |
5020 | // Note that we only want to check address spaces and cvr-qualifiers here. |
5021 | // ObjC GC, lifetime and unaligned qualifiers aren't important. |
5022 | Qualifiers T1Quals = T1.getQualifiers(); |
5023 | Qualifiers T2Quals = T2.getQualifiers(); |
5024 | T1Quals.removeObjCGCAttr(); |
5025 | T1Quals.removeObjCLifetime(); |
5026 | T2Quals.removeObjCGCAttr(); |
5027 | T2Quals.removeObjCLifetime(); |
5028 | // MS compiler ignores __unaligned qualifier for references; do the same. |
5029 | T1Quals.removeUnaligned(); |
5030 | T2Quals.removeUnaligned(); |
5031 | if (!T1Quals.compatiblyIncludes(T2Quals)) |
5032 | return ICS; |
5033 | } |
5034 | |
5035 | // If at least one of the types is a class type, the types are not |
5036 | // related, and we aren't allowed any user conversions, the |
5037 | // reference binding fails. This case is important for breaking |
5038 | // recursion, since TryImplicitConversion below will attempt to |
5039 | // create a temporary through the use of a copy constructor. |
5040 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
5041 | (T1->isRecordType() || T2->isRecordType())) |
5042 | return ICS; |
5043 | |
5044 | // If T1 is reference-related to T2 and the reference is an rvalue |
5045 | // reference, the initializer expression shall not be an lvalue. |
5046 | if (RefRelationship >= Sema::Ref_Related && isRValRef && |
5047 | Init->Classify(S.Context).isLValue()) { |
5048 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); |
5049 | return ICS; |
5050 | } |
5051 | |
5052 | // C++ [over.ics.ref]p2: |
5053 | // When a parameter of reference type is not bound directly to |
5054 | // an argument expression, the conversion sequence is the one |
5055 | // required to convert the argument expression to the |
5056 | // underlying type of the reference according to |
5057 | // 13.3.3.1. Conceptually, this conversion sequence corresponds |
5058 | // to copy-initializing a temporary of the underlying type with |
5059 | // the argument expression. Any difference in top-level |
5060 | // cv-qualification is subsumed by the initialization itself |
5061 | // and does not constitute a conversion. |
5062 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, |
5063 | AllowedExplicit::None, |
5064 | /*InOverloadResolution=*/false, |
5065 | /*CStyle=*/false, |
5066 | /*AllowObjCWritebackConversion=*/false, |
5067 | /*AllowObjCConversionOnExplicit=*/false); |
5068 | |
5069 | // Of course, that's still a reference binding. |
5070 | if (ICS.isStandard()) { |
5071 | ICS.Standard.ReferenceBinding = true; |
5072 | ICS.Standard.IsLvalueReference = !isRValRef; |
5073 | ICS.Standard.BindsToFunctionLvalue = false; |
5074 | ICS.Standard.BindsToRvalue = true; |
5075 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
5076 | ICS.Standard.ObjCLifetimeConversionBinding = false; |
5077 | } else if (ICS.isUserDefined()) { |
5078 | const ReferenceType *LValRefType = |
5079 | ICS.UserDefined.ConversionFunction->getReturnType() |
5080 | ->getAs<LValueReferenceType>(); |
5081 | |
5082 | // C++ [over.ics.ref]p3: |
5083 | // Except for an implicit object parameter, for which see 13.3.1, a |
5084 | // standard conversion sequence cannot be formed if it requires [...] |
5085 | // binding an rvalue reference to an lvalue other than a function |
5086 | // lvalue. |
5087 | // Note that the function case is not possible here. |
5088 | if (isRValRef && LValRefType) { |
5089 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
5090 | return ICS; |
5091 | } |
5092 | |
5093 | ICS.UserDefined.After.ReferenceBinding = true; |
5094 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; |
5095 | ICS.UserDefined.After.BindsToFunctionLvalue = false; |
5096 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; |
5097 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
5098 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; |
5099 | } |
5100 | |
5101 | return ICS; |
5102 | } |
5103 | |
5104 | static ImplicitConversionSequence |
5105 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
5106 | bool SuppressUserConversions, |
5107 | bool InOverloadResolution, |
5108 | bool AllowObjCWritebackConversion, |
5109 | bool AllowExplicit = false); |
5110 | |
5111 | /// TryListConversion - Try to copy-initialize a value of type ToType from the |
5112 | /// initializer list From. |
5113 | static ImplicitConversionSequence |
5114 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, |
5115 | bool SuppressUserConversions, |
5116 | bool InOverloadResolution, |
5117 | bool AllowObjCWritebackConversion) { |
5118 | // C++11 [over.ics.list]p1: |
5119 | // When an argument is an initializer list, it is not an expression and |
5120 | // special rules apply for converting it to a parameter type. |
5121 | |
5122 | ImplicitConversionSequence Result; |
5123 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); |
5124 | |
5125 | // We need a complete type for what follows. With one C++20 exception, |
5126 | // incomplete types can never be initialized from init lists. |
5127 | QualType InitTy = ToType; |
5128 | const ArrayType *AT = S.Context.getAsArrayType(ToType); |
5129 | if (AT && S.getLangOpts().CPlusPlus20) |
5130 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) |
5131 | // C++20 allows list initialization of an incomplete array type. |
5132 | InitTy = IAT->getElementType(); |
5133 | if (!S.isCompleteType(From->getBeginLoc(), InitTy)) |
5134 | return Result; |
5135 | |
5136 | // Per DR1467: |
5137 | // If the parameter type is a class X and the initializer list has a single |
5138 | // element of type cv U, where U is X or a class derived from X, the |
5139 | // implicit conversion sequence is the one required to convert the element |
5140 | // to the parameter type. |
5141 | // |
5142 | // Otherwise, if the parameter type is a character array [... ] |
5143 | // and the initializer list has a single element that is an |
5144 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the |
5145 | // implicit conversion sequence is the identity conversion. |
5146 | if (From->getNumInits() == 1) { |
5147 | if (ToType->isRecordType()) { |
5148 | QualType InitType = From->getInit(0)->getType(); |
5149 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || |
5150 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) |
5151 | return TryCopyInitialization(S, From->getInit(0), ToType, |
5152 | SuppressUserConversions, |
5153 | InOverloadResolution, |
5154 | AllowObjCWritebackConversion); |
5155 | } |
5156 | |
5157 | if (AT && S.IsStringInit(From->getInit(0), AT)) { |
5158 | InitializedEntity Entity = |
5159 | InitializedEntity::InitializeParameter(S.Context, ToType, |
5160 | /*Consumed=*/false); |
5161 | if (S.CanPerformCopyInitialization(Entity, From)) { |
5162 | Result.setStandard(); |
5163 | Result.Standard.setAsIdentityConversion(); |
5164 | Result.Standard.setFromType(ToType); |
5165 | Result.Standard.setAllToTypes(ToType); |
5166 | return Result; |
5167 | } |
5168 | } |
5169 | } |
5170 | |
5171 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). |
5172 | // C++11 [over.ics.list]p2: |
5173 | // If the parameter type is std::initializer_list<X> or "array of X" and |
5174 | // all the elements can be implicitly converted to X, the implicit |
5175 | // conversion sequence is the worst conversion necessary to convert an |
5176 | // element of the list to X. |
5177 | // |
5178 | // C++14 [over.ics.list]p3: |
5179 | // Otherwise, if the parameter type is "array of N X", if the initializer |
5180 | // list has exactly N elements or if it has fewer than N elements and X is |
5181 | // default-constructible, and if all the elements of the initializer list |
5182 | // can be implicitly converted to X, the implicit conversion sequence is |
5183 | // the worst conversion necessary to convert an element of the list to X. |
5184 | if (AT || S.isStdInitializerList(ToType, &InitTy)) { |
5185 | unsigned e = From->getNumInits(); |
5186 | ImplicitConversionSequence DfltElt; |
5187 | DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), |
5188 | QualType()); |
5189 | QualType ContTy = ToType; |
5190 | bool IsUnbounded = false; |
5191 | if (AT) { |
5192 | InitTy = AT->getElementType(); |
5193 | if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { |
5194 | if (CT->getSize().ult(e)) { |
5195 | // Too many inits, fatally bad |
5196 | Result.setBad(BadConversionSequence::too_many_initializers, From, |
5197 | ToType); |
5198 | Result.setInitializerListContainerType(ContTy, IsUnbounded); |
5199 | return Result; |
5200 | } |
5201 | if (CT->getSize().ugt(e)) { |
5202 | // Need an init from empty {}, is there one? |
5203 | InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt, |
5204 | From->getEndLoc()); |
5205 | EmptyList.setType(S.Context.VoidTy); |
5206 | DfltElt = TryListConversion( |
5207 | S, &EmptyList, InitTy, SuppressUserConversions, |
5208 | InOverloadResolution, AllowObjCWritebackConversion); |
5209 | if (DfltElt.isBad()) { |
5210 | // No {} init, fatally bad |
5211 | Result.setBad(BadConversionSequence::too_few_initializers, From, |
5212 | ToType); |
5213 | Result.setInitializerListContainerType(ContTy, IsUnbounded); |
5214 | return Result; |
5215 | } |
5216 | } |
5217 | } else { |
5218 | assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array")(static_cast <bool> (isa<IncompleteArrayType>(AT) && "Expected incomplete array") ? void (0) : __assert_fail ("isa<IncompleteArrayType>(AT) && \"Expected incomplete array\"" , "clang/lib/Sema/SemaOverload.cpp", 5218, __extension__ __PRETTY_FUNCTION__ )); |
5219 | IsUnbounded = true; |
5220 | if (!e) { |
5221 | // Cannot convert to zero-sized. |
5222 | Result.setBad(BadConversionSequence::too_few_initializers, From, |
5223 | ToType); |
5224 | Result.setInitializerListContainerType(ContTy, IsUnbounded); |
5225 | return Result; |
5226 | } |
5227 | llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); |
5228 | ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, |
5229 | ArrayType::Normal, 0); |
5230 | } |
5231 | } |
5232 | |
5233 | Result.setStandard(); |
5234 | Result.Standard.setAsIdentityConversion(); |
5235 | Result.Standard.setFromType(InitTy); |
5236 | Result.Standard.setAllToTypes(InitTy); |
5237 | for (unsigned i = 0; i < e; ++i) { |
5238 | Expr *Init = From->getInit(i); |
5239 | ImplicitConversionSequence ICS = TryCopyInitialization( |
5240 | S, Init, InitTy, SuppressUserConversions, InOverloadResolution, |
5241 | AllowObjCWritebackConversion); |
5242 | |
5243 | // Keep the worse conversion seen so far. |
5244 | // FIXME: Sequences are not totally ordered, so 'worse' can be |
5245 | // ambiguous. CWG has been informed. |
5246 | if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, |
5247 | Result) == |
5248 | ImplicitConversionSequence::Worse) { |
5249 | Result = ICS; |
5250 | // Bail as soon as we find something unconvertible. |
5251 | if (Result.isBad()) { |
5252 | Result.setInitializerListContainerType(ContTy, IsUnbounded); |
5253 | return Result; |
5254 | } |
5255 | } |
5256 | } |
5257 | |
5258 | // If we needed any implicit {} initialization, compare that now. |
5259 | // over.ics.list/6 indicates we should compare that conversion. Again CWG |
5260 | // has been informed that this might not be the best thing. |
5261 | if (!DfltElt.isBad() && CompareImplicitConversionSequences( |
5262 | S, From->getEndLoc(), DfltElt, Result) == |
5263 | ImplicitConversionSequence::Worse) |
5264 | Result = DfltElt; |
5265 | // Record the type being initialized so that we may compare sequences |
5266 | Result.setInitializerListContainerType(ContTy, IsUnbounded); |
5267 | return Result; |
5268 | } |
5269 | |
5270 | // C++14 [over.ics.list]p4: |
5271 | // C++11 [over.ics.list]p3: |
5272 | // Otherwise, if the parameter is a non-aggregate class X and overload |
5273 | // resolution chooses a single best constructor [...] the implicit |
5274 | // conversion sequence is a user-defined conversion sequence. If multiple |
5275 | // constructors are viable but none is better than the others, the |
5276 | // implicit conversion sequence is a user-defined conversion sequence. |
5277 | if (ToType->isRecordType() && !ToType->isAggregateType()) { |
5278 | // This function can deal with initializer lists. |
5279 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
5280 | AllowedExplicit::None, |
5281 | InOverloadResolution, /*CStyle=*/false, |
5282 | AllowObjCWritebackConversion, |
5283 | /*AllowObjCConversionOnExplicit=*/false); |
5284 | } |
5285 | |
5286 | // C++14 [over.ics.list]p5: |
5287 | // C++11 [over.ics.list]p4: |
5288 | // Otherwise, if the parameter has an aggregate type which can be |
5289 | // initialized from the initializer list [...] the implicit conversion |
5290 | // sequence is a user-defined conversion sequence. |
5291 | if (ToType->isAggregateType()) { |
5292 | // Type is an aggregate, argument is an init list. At this point it comes |
5293 | // down to checking whether the initialization works. |
5294 | // FIXME: Find out whether this parameter is consumed or not. |
5295 | InitializedEntity Entity = |
5296 | InitializedEntity::InitializeParameter(S.Context, ToType, |
5297 | /*Consumed=*/false); |
5298 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, |
5299 | From)) { |
5300 | Result.setUserDefined(); |
5301 | Result.UserDefined.Before.setAsIdentityConversion(); |
5302 | // Initializer lists don't have a type. |
5303 | Result.UserDefined.Before.setFromType(QualType()); |
5304 | Result.UserDefined.Before.setAllToTypes(QualType()); |
5305 | |
5306 | Result.UserDefined.After.setAsIdentityConversion(); |
5307 | Result.UserDefined.After.setFromType(ToType); |
5308 | Result.UserDefined.After.setAllToTypes(ToType); |
5309 | Result.UserDefined.ConversionFunction = nullptr; |
5310 | } |
5311 | return Result; |
5312 | } |
5313 | |
5314 | // C++14 [over.ics.list]p6: |
5315 | // C++11 [over.ics.list]p5: |
5316 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. |
5317 | if (ToType->isReferenceType()) { |
5318 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't |
5319 | // mention initializer lists in any way. So we go by what list- |
5320 | // initialization would do and try to extrapolate from that. |
5321 | |
5322 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); |
5323 | |
5324 | // If the initializer list has a single element that is reference-related |
5325 | // to the parameter type, we initialize the reference from that. |
5326 | if (From->getNumInits() == 1) { |
5327 | Expr *Init = From->getInit(0); |
5328 | |
5329 | QualType T2 = Init->getType(); |
5330 | |
5331 | // If the initializer is the address of an overloaded function, try |
5332 | // to resolve the overloaded function. If all goes well, T2 is the |
5333 | // type of the resulting function. |
5334 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
5335 | DeclAccessPair Found; |
5336 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( |
5337 | Init, ToType, false, Found)) |
5338 | T2 = Fn->getType(); |
5339 | } |
5340 | |
5341 | // Compute some basic properties of the types and the initializer. |
5342 | Sema::ReferenceCompareResult RefRelationship = |
5343 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); |
5344 | |
5345 | if (RefRelationship >= Sema::Ref_Related) { |
5346 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), |
5347 | SuppressUserConversions, |
5348 | /*AllowExplicit=*/false); |
5349 | } |
5350 | } |
5351 | |
5352 | // Otherwise, we bind the reference to a temporary created from the |
5353 | // initializer list. |
5354 | Result = TryListConversion(S, From, T1, SuppressUserConversions, |
5355 | InOverloadResolution, |
5356 | AllowObjCWritebackConversion); |
5357 | if (Result.isFailure()) |
5358 | return Result; |
5359 | assert(!Result.isEllipsis() &&(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "clang/lib/Sema/SemaOverload.cpp", 5360, __extension__ __PRETTY_FUNCTION__ )) |
5360 | "Sub-initialization cannot result in ellipsis conversion.")(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "clang/lib/Sema/SemaOverload.cpp", 5360, __extension__ __PRETTY_FUNCTION__ )); |
5361 | |
5362 | // Can we even bind to a temporary? |
5363 | if (ToType->isRValueReferenceType() || |
5364 | (T1.isConstQualified() && !T1.isVolatileQualified())) { |
5365 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : |
5366 | Result.UserDefined.After; |
5367 | SCS.ReferenceBinding = true; |
5368 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); |
5369 | SCS.BindsToRvalue = true; |
5370 | SCS.BindsToFunctionLvalue = false; |
5371 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
5372 | SCS.ObjCLifetimeConversionBinding = false; |
5373 | } else |
5374 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, |
5375 | From, ToType); |
5376 | return Result; |
5377 | } |
5378 | |
5379 | // C++14 [over.ics.list]p7: |
5380 | // C++11 [over.ics.list]p6: |
5381 | // Otherwise, if the parameter type is not a class: |
5382 | if (!ToType->isRecordType()) { |
5383 | // - if the initializer list has one element that is not itself an |
5384 | // initializer list, the implicit conversion sequence is the one |
5385 | // required to convert the element to the parameter type. |
5386 | unsigned NumInits = From->getNumInits(); |
5387 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) |
5388 | Result = TryCopyInitialization(S, From->getInit(0), ToType, |
5389 | SuppressUserConversions, |
5390 | InOverloadResolution, |
5391 | AllowObjCWritebackConversion); |
5392 | // - if the initializer list has no elements, the implicit conversion |
5393 | // sequence is the identity conversion. |
5394 | else if (NumInits == 0) { |
5395 | Result.setStandard(); |
5396 | Result.Standard.setAsIdentityConversion(); |
5397 | Result.Standard.setFromType(ToType); |
5398 | Result.Standard.setAllToTypes(ToType); |
5399 | } |
5400 | return Result; |
5401 | } |
5402 | |
5403 | // C++14 [over.ics.list]p8: |
5404 | // C++11 [over.ics.list]p7: |
5405 | // In all cases other than those enumerated above, no conversion is possible |
5406 | return Result; |
5407 | } |
5408 | |
5409 | /// TryCopyInitialization - Try to copy-initialize a value of type |
5410 | /// ToType from the expression From. Return the implicit conversion |
5411 | /// sequence required to pass this argument, which may be a bad |
5412 | /// conversion sequence (meaning that the argument cannot be passed to |
5413 | /// a parameter of this type). If @p SuppressUserConversions, then we |
5414 | /// do not permit any user-defined conversion sequences. |
5415 | static ImplicitConversionSequence |
5416 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
5417 | bool SuppressUserConversions, |
5418 | bool InOverloadResolution, |
5419 | bool AllowObjCWritebackConversion, |
5420 | bool AllowExplicit) { |
5421 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) |
5422 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, |
5423 | InOverloadResolution,AllowObjCWritebackConversion); |
5424 | |
5425 | if (ToType->isReferenceType()) |
5426 | return TryReferenceInit(S, From, ToType, |
5427 | /*FIXME:*/ From->getBeginLoc(), |
5428 | SuppressUserConversions, AllowExplicit); |
5429 | |
5430 | return TryImplicitConversion(S, From, ToType, |
5431 | SuppressUserConversions, |
5432 | AllowedExplicit::None, |
5433 | InOverloadResolution, |
5434 | /*CStyle=*/false, |
5435 | AllowObjCWritebackConversion, |
5436 | /*AllowObjCConversionOnExplicit=*/false); |
5437 | } |
5438 | |
5439 | static bool TryCopyInitialization(const CanQualType FromQTy, |
5440 | const CanQualType ToQTy, |
5441 | Sema &S, |
5442 | SourceLocation Loc, |
5443 | ExprValueKind FromVK) { |
5444 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); |
5445 | ImplicitConversionSequence ICS = |
5446 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); |
5447 | |
5448 | return !ICS.isBad(); |
5449 | } |
5450 | |
5451 | /// TryObjectArgumentInitialization - Try to initialize the object |
5452 | /// parameter of the given member function (@c Method) from the |
5453 | /// expression @p From. |
5454 | static ImplicitConversionSequence |
5455 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, |
5456 | Expr::Classification FromClassification, |
5457 | CXXMethodDecl *Method, |
5458 | CXXRecordDecl *ActingContext) { |
5459 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); |
5460 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or |
5461 | // const volatile object. |
5462 | Qualifiers Quals = Method->getMethodQualifiers(); |
5463 | if (isa<CXXDestructorDecl>(Method)) { |
5464 | Quals.addConst(); |
5465 | Quals.addVolatile(); |
5466 | } |
5467 | |
5468 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); |
5469 | |
5470 | // Set up the conversion sequence as a "bad" conversion, to allow us |
5471 | // to exit early. |
5472 | ImplicitConversionSequence ICS; |
5473 | |
5474 | // We need to have an object of class type. |
5475 | if (const PointerType *PT = FromType->getAs<PointerType>()) { |
5476 | FromType = PT->getPointeeType(); |
5477 | |
5478 | // When we had a pointer, it's implicitly dereferenced, so we |
5479 | // better have an lvalue. |
5480 | assert(FromClassification.isLValue())(static_cast <bool> (FromClassification.isLValue()) ? void (0) : __assert_fail ("FromClassification.isLValue()", "clang/lib/Sema/SemaOverload.cpp" , 5480, __extension__ __PRETTY_FUNCTION__)); |
5481 | } |
5482 | |
5483 | assert(FromType->isRecordType())(static_cast <bool> (FromType->isRecordType()) ? void (0) : __assert_fail ("FromType->isRecordType()", "clang/lib/Sema/SemaOverload.cpp" , 5483, __extension__ __PRETTY_FUNCTION__)); |
5484 | |
5485 | // C++0x [over.match.funcs]p4: |
5486 | // For non-static member functions, the type of the implicit object |
5487 | // parameter is |
5488 | // |
5489 | // - "lvalue reference to cv X" for functions declared without a |
5490 | // ref-qualifier or with the & ref-qualifier |
5491 | // - "rvalue reference to cv X" for functions declared with the && |
5492 | // ref-qualifier |
5493 | // |
5494 | // where X is the class of which the function is a member and cv is the |
5495 | // cv-qualification on the member function declaration. |
5496 | // |
5497 | // However, when finding an implicit conversion sequence for the argument, we |
5498 | // are not allowed to perform user-defined conversions |
5499 | // (C++ [over.match.funcs]p5). We perform a simplified version of |
5500 | // reference binding here, that allows class rvalues to bind to |
5501 | // non-constant references. |
5502 | |
5503 | // First check the qualifiers. |
5504 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); |
5505 | if (ImplicitParamType.getCVRQualifiers() |
5506 | != FromTypeCanon.getLocalCVRQualifiers() && |
5507 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { |
5508 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
5509 | FromType, ImplicitParamType); |
5510 | return ICS; |
5511 | } |
5512 | |
5513 | if (FromTypeCanon.hasAddressSpace()) { |
5514 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); |
5515 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); |
5516 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { |
5517 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
5518 | FromType, ImplicitParamType); |
5519 | return ICS; |
5520 | } |
5521 | } |
5522 | |
5523 | // Check that we have either the same type or a derived type. It |
5524 | // affects the conversion rank. |
5525 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); |
5526 | ImplicitConversionKind SecondKind; |
5527 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
5528 | SecondKind = ICK_Identity; |
5529 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) |
5530 | SecondKind = ICK_Derived_To_Base; |
5531 | else { |
5532 | ICS.setBad(BadConversionSequence::unrelated_class, |
5533 | FromType, ImplicitParamType); |
5534 | return ICS; |
5535 | } |
5536 | |
5537 | // Check the ref-qualifier. |
5538 | switch (Method->getRefQualifier()) { |
5539 | case RQ_None: |
5540 | // Do nothing; we don't care about lvalueness or rvalueness. |
5541 | break; |
5542 | |
5543 | case RQ_LValue: |
5544 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { |
5545 | // non-const lvalue reference cannot bind to an rvalue |
5546 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, |
5547 | ImplicitParamType); |
5548 | return ICS; |
5549 | } |
5550 | break; |
5551 | |
5552 | case RQ_RValue: |
5553 | if (!FromClassification.isRValue()) { |
5554 | // rvalue reference cannot bind to an lvalue |
5555 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, |
5556 | ImplicitParamType); |
5557 | return ICS; |
5558 | } |
5559 | break; |
5560 | } |
5561 | |
5562 | // Success. Mark this as a reference binding. |
5563 | ICS.setStandard(); |
5564 | ICS.Standard.setAsIdentityConversion(); |
5565 | ICS.Standard.Second = SecondKind; |
5566 | ICS.Standard.setFromType(FromType); |
5567 | ICS.Standard.setAllToTypes(ImplicitParamType); |
5568 | ICS.Standard.ReferenceBinding = true; |
5569 | ICS.Standard.DirectBinding = true; |
5570 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; |
5571 | ICS.Standard.BindsToFunctionLvalue = false; |
5572 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); |
5573 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier |
5574 | = (Method->getRefQualifier() == RQ_None); |
5575 | return ICS; |
5576 | } |
5577 | |
5578 | /// PerformObjectArgumentInitialization - Perform initialization of |
5579 | /// the implicit object parameter for the given Method with the given |
5580 | /// expression. |
5581 | ExprResult |
5582 | Sema::PerformObjectArgumentInitialization(Expr *From, |
5583 | NestedNameSpecifier *Qualifier, |
5584 | NamedDecl *FoundDecl, |
5585 | CXXMethodDecl *Method) { |
5586 | QualType FromRecordType, DestType; |
5587 | QualType ImplicitParamRecordType = |
5588 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); |
5589 | |
5590 | Expr::Classification FromClassification; |
5591 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
5592 | FromRecordType = PT->getPointeeType(); |
5593 | DestType = Method->getThisType(); |
5594 | FromClassification = Expr::Classification::makeSimpleLValue(); |
5595 | } else { |
5596 | FromRecordType = From->getType(); |
5597 | DestType = ImplicitParamRecordType; |
5598 | FromClassification = From->Classify(Context); |
5599 | |
5600 | // When performing member access on a prvalue, materialize a temporary. |
5601 | if (From->isPRValue()) { |
5602 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, |
5603 | Method->getRefQualifier() != |
5604 | RefQualifierKind::RQ_RValue); |
5605 | } |
5606 | } |
5607 | |
5608 | // Note that we always use the true parent context when performing |
5609 | // the actual argument initialization. |
5610 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( |
5611 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, |
5612 | Method->getParent()); |
5613 | if (ICS.isBad()) { |
5614 | switch (ICS.Bad.Kind) { |
5615 | case BadConversionSequence::bad_qualifiers: { |
5616 | Qualifiers FromQs = FromRecordType.getQualifiers(); |
5617 | Qualifiers ToQs = DestType.getQualifiers(); |
5618 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
5619 | if (CVR) { |
5620 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) |
5621 | << Method->getDeclName() << FromRecordType << (CVR - 1) |
5622 | << From->getSourceRange(); |
5623 | Diag(Method->getLocation(), diag::note_previous_decl) |
5624 | << Method->getDeclName(); |
5625 | return ExprError(); |
5626 | } |
5627 | break; |
5628 | } |
5629 | |
5630 | case BadConversionSequence::lvalue_ref_to_rvalue: |
5631 | case BadConversionSequence::rvalue_ref_to_lvalue: { |
5632 | bool IsRValueQualified = |
5633 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; |
5634 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) |
5635 | << Method->getDeclName() << FromClassification.isRValue() |
5636 | << IsRValueQualified; |
5637 | Diag(Method->getLocation(), diag::note_previous_decl) |
5638 | << Method->getDeclName(); |
5639 | return ExprError(); |
5640 | } |
5641 | |
5642 | case BadConversionSequence::no_conversion: |
5643 | case BadConversionSequence::unrelated_class: |
5644 | break; |
5645 | |
5646 | case BadConversionSequence::too_few_initializers: |
5647 | case BadConversionSequence::too_many_initializers: |
5648 | llvm_unreachable("Lists are not objects")::llvm::llvm_unreachable_internal("Lists are not objects", "clang/lib/Sema/SemaOverload.cpp" , 5648); |
5649 | } |
5650 | |
5651 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) |
5652 | << ImplicitParamRecordType << FromRecordType |
5653 | << From->getSourceRange(); |
5654 | } |
5655 | |
5656 | if (ICS.Standard.Second == ICK_Derived_To_Base) { |
5657 | ExprResult FromRes = |
5658 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); |
5659 | if (FromRes.isInvalid()) |
5660 | return ExprError(); |
5661 | From = FromRes.get(); |
5662 | } |
5663 | |
5664 | if (!Context.hasSameType(From->getType(), DestType)) { |
5665 | CastKind CK; |
5666 | QualType PteeTy = DestType->getPointeeType(); |
5667 | LangAS DestAS = |
5668 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); |
5669 | if (FromRecordType.getAddressSpace() != DestAS) |
5670 | CK = CK_AddressSpaceConversion; |
5671 | else |
5672 | CK = CK_NoOp; |
5673 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); |
5674 | } |
5675 | return From; |
5676 | } |
5677 | |
5678 | /// TryContextuallyConvertToBool - Attempt to contextually convert the |
5679 | /// expression From to bool (C++0x [conv]p3). |
5680 | static ImplicitConversionSequence |
5681 | TryContextuallyConvertToBool(Sema &S, Expr *From) { |
5682 | // C++ [dcl.init]/17.8: |
5683 | // - Otherwise, if the initialization is direct-initialization, the source |
5684 | // type is std::nullptr_t, and the destination type is bool, the initial |
5685 | // value of the object being initialized is false. |
5686 | if (From->getType()->isNullPtrType()) |
5687 | return ImplicitConversionSequence::getNullptrToBool(From->getType(), |
5688 | S.Context.BoolTy, |
5689 | From->isGLValue()); |
5690 | |
5691 | // All other direct-initialization of bool is equivalent to an implicit |
5692 | // conversion to bool in which explicit conversions are permitted. |
5693 | return TryImplicitConversion(S, From, S.Context.BoolTy, |
5694 | /*SuppressUserConversions=*/false, |
5695 | AllowedExplicit::Conversions, |
5696 | /*InOverloadResolution=*/false, |
5697 | /*CStyle=*/false, |
5698 | /*AllowObjCWritebackConversion=*/false, |
5699 | /*AllowObjCConversionOnExplicit=*/false); |
5700 | } |
5701 | |
5702 | /// PerformContextuallyConvertToBool - Perform a contextual conversion |
5703 | /// of the expression From to bool (C++0x [conv]p3). |
5704 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { |
5705 | if (checkPlaceholderForOverload(*this, From)) |
5706 | return ExprError(); |
5707 | |
5708 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); |
5709 | if (!ICS.isBad()) |
5710 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); |
5711 | |
5712 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) |
5713 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) |
5714 | << From->getType() << From->getSourceRange(); |
5715 | return ExprError(); |
5716 | } |
5717 | |
5718 | /// Check that the specified conversion is permitted in a converted constant |
5719 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion |
5720 | /// is acceptable. |
5721 | static bool CheckConvertedConstantConversions(Sema &S, |
5722 | StandardConversionSequence &SCS) { |
5723 | // Since we know that the target type is an integral or unscoped enumeration |
5724 | // type, most conversion kinds are impossible. All possible First and Third |
5725 | // conversions are fine. |
5726 | switch (SCS.Second) { |
5727 | case ICK_Identity: |
5728 | case ICK_Integral_Promotion: |
5729 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. |
5730 | case ICK_Zero_Queue_Conversion: |
5731 | return true; |
5732 | |
5733 | case ICK_Boolean_Conversion: |
5734 | // Conversion from an integral or unscoped enumeration type to bool is |
5735 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral |
5736 | // conversion, so we allow it in a converted constant expression. |
5737 | // |
5738 | // FIXME: Per core issue 1407, we should not allow this, but that breaks |
5739 | // a lot of popular code. We should at least add a warning for this |
5740 | // (non-conforming) extension. |
5741 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && |
5742 | SCS.getToType(2)->isBooleanType(); |
5743 | |
5744 | case ICK_Pointer_Conversion: |
5745 | case ICK_Pointer_Member: |
5746 | // C++1z: null pointer conversions and null member pointer conversions are |
5747 | // only permitted if the source type is std::nullptr_t. |
5748 | return SCS.getFromType()->isNullPtrType(); |
5749 | |
5750 | case ICK_Floating_Promotion: |
5751 | case ICK_Complex_Promotion: |
5752 | case ICK_Floating_Conversion: |
5753 | case ICK_Complex_Conversion: |
5754 | case ICK_Floating_Integral: |
5755 | case ICK_Compatible_Conversion: |
5756 | case ICK_Derived_To_Base: |
5757 | case ICK_Vector_Conversion: |
5758 | case ICK_SVE_Vector_Conversion: |
5759 | case ICK_Vector_Splat: |
5760 | case ICK_Complex_Real: |
5761 | case ICK_Block_Pointer_Conversion: |
5762 | case ICK_TransparentUnionConversion: |
5763 | case ICK_Writeback_Conversion: |
5764 | case ICK_Zero_Event_Conversion: |
5765 | case ICK_C_Only_Conversion: |
5766 | case ICK_Incompatible_Pointer_Conversion: |
5767 | return false; |
5768 | |
5769 | case ICK_Lvalue_To_Rvalue: |
5770 | case ICK_Array_To_Pointer: |
5771 | case ICK_Function_To_Pointer: |
5772 | llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second" , "clang/lib/Sema/SemaOverload.cpp", 5772); |
5773 | |
5774 | case ICK_Function_Conversion: |
5775 | case ICK_Qualification: |
5776 | llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second" , "clang/lib/Sema/SemaOverload.cpp", 5776); |
5777 | |
5778 | case ICK_Num_Conversion_Kinds: |
5779 | break; |
5780 | } |
5781 | |
5782 | llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "clang/lib/Sema/SemaOverload.cpp" , 5782); |
5783 | } |
5784 | |
5785 | /// CheckConvertedConstantExpression - Check that the expression From is a |
5786 | /// converted constant expression of type T, perform the conversion and produce |
5787 | /// the converted expression, per C++11 [expr.const]p3. |
5788 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, |
5789 | QualType T, APValue &Value, |
5790 | Sema::CCEKind CCE, |
5791 | bool RequireInt, |
5792 | NamedDecl *Dest) { |
5793 | assert(S.getLangOpts().CPlusPlus11 &&(static_cast <bool> (S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11") ? void (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "clang/lib/Sema/SemaOverload.cpp", 5794, __extension__ __PRETTY_FUNCTION__ )) |
5794 | "converted constant expression outside C++11")(static_cast <bool> (S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11") ? void (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "clang/lib/Sema/SemaOverload.cpp", 5794, __extension__ __PRETTY_FUNCTION__ )); |
5795 | |
5796 | if (checkPlaceholderForOverload(S, From)) |
5797 | return ExprError(); |
5798 | |
5799 | // C++1z [expr.const]p3: |
5800 | // A converted constant expression of type T is an expression, |
5801 | // implicitly converted to type T, where the converted |
5802 | // expression is a constant expression and the implicit conversion |
5803 | // sequence contains only [... list of conversions ...]. |
5804 | ImplicitConversionSequence ICS = |
5805 | (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) |
5806 | ? TryContextuallyConvertToBool(S, From) |
5807 | : TryCopyInitialization(S, From, T, |
5808 | /*SuppressUserConversions=*/false, |
5809 | /*InOverloadResolution=*/false, |
5810 | /*AllowObjCWritebackConversion=*/false, |
5811 | /*AllowExplicit=*/false); |
5812 | StandardConversionSequence *SCS = nullptr; |
5813 | switch (ICS.getKind()) { |
5814 | case ImplicitConversionSequence::StandardConversion: |
5815 | SCS = &ICS.Standard; |
5816 | break; |
5817 | case ImplicitConversionSequence::UserDefinedConversion: |
5818 | if (T->isRecordType()) |
5819 | SCS = &ICS.UserDefined.Before; |
5820 | else |
5821 | SCS = &ICS.UserDefined.After; |
5822 | break; |
5823 | case ImplicitConversionSequence::AmbiguousConversion: |
5824 | case ImplicitConversionSequence::BadConversion: |
5825 | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) |
5826 | return S.Diag(From->getBeginLoc(), |
5827 | diag::err_typecheck_converted_constant_expression) |
5828 | << From->getType() << From->getSourceRange() << T; |
5829 | return ExprError(); |
5830 | |
5831 | case ImplicitConversionSequence::EllipsisConversion: |
5832 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
5833 | llvm_unreachable("bad conversion in converted constant expression")::llvm::llvm_unreachable_internal("bad conversion in converted constant expression" , "clang/lib/Sema/SemaOverload.cpp", 5833); |
5834 | } |
5835 | |
5836 | // Check that we would only use permitted conversions. |
5837 | if (!CheckConvertedConstantConversions(S, *SCS)) { |
5838 | return S.Diag(From->getBeginLoc(), |
5839 | diag::err_typecheck_converted_constant_expression_disallowed) |
5840 | << From->getType() << From->getSourceRange() << T; |
5841 | } |
5842 | // [...] and where the reference binding (if any) binds directly. |
5843 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { |
5844 | return S.Diag(From->getBeginLoc(), |
5845 | diag::err_typecheck_converted_constant_expression_indirect) |
5846 | << From->getType() << From->getSourceRange() << T; |
5847 | } |
5848 | |
5849 | // Usually we can simply apply the ImplicitConversionSequence we formed |
5850 | // earlier, but that's not guaranteed to work when initializing an object of |
5851 | // class type. |
5852 | ExprResult Result; |
5853 | if (T->isRecordType()) { |
5854 | assert(CCE == Sema::CCEK_TemplateArg &&(static_cast <bool> (CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr") ? void (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\"" , "clang/lib/Sema/SemaOverload.cpp", 5855, __extension__ __PRETTY_FUNCTION__ )) |
5855 | "unexpected class type converted constant expr")(static_cast <bool> (CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr") ? void (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\"" , "clang/lib/Sema/SemaOverload.cpp", 5855, __extension__ __PRETTY_FUNCTION__ )); |
5856 | Result = S.PerformCopyInitialization( |
5857 | InitializedEntity::InitializeTemplateParameter( |
5858 | T, cast<NonTypeTemplateParmDecl>(Dest)), |
5859 | SourceLocation(), From); |
5860 | } else { |
5861 | Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); |
5862 | } |
5863 | if (Result.isInvalid()) |
5864 | return Result; |
5865 | |
5866 | // C++2a [intro.execution]p5: |
5867 | // A full-expression is [...] a constant-expression [...] |
5868 | Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), |
5869 | /*DiscardedValue=*/false, /*IsConstexpr=*/true, |
5870 | CCE == Sema::CCEKind::CCEK_TemplateArg); |
5871 | if (Result.isInvalid()) |
5872 | return Result; |
5873 | |
5874 | // Check for a narrowing implicit conversion. |
5875 | bool ReturnPreNarrowingValue = false; |
5876 | APValue PreNarrowingValue; |
5877 | QualType PreNarrowingType; |
5878 | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, |
5879 | PreNarrowingType)) { |
5880 | case NK_Dependent_Narrowing: |
5881 | // Implicit conversion to a narrower type, but the expression is |
5882 |