File: | build/source/clang/lib/Sema/SemaOverload.cpp |
Warning: | line 2239, column 24 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file provides Sema routines for C++ overloading. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "clang/AST/ASTContext.h" | |||
14 | #include "clang/AST/CXXInheritance.h" | |||
15 | #include "clang/AST/DeclCXX.h" | |||
16 | #include "clang/AST/DeclObjC.h" | |||
17 | #include "clang/AST/DependenceFlags.h" | |||
18 | #include "clang/AST/Expr.h" | |||
19 | #include "clang/AST/ExprCXX.h" | |||
20 | #include "clang/AST/ExprObjC.h" | |||
21 | #include "clang/AST/Type.h" | |||
22 | #include "clang/AST/TypeOrdering.h" | |||
23 | #include "clang/Basic/Diagnostic.h" | |||
24 | #include "clang/Basic/DiagnosticOptions.h" | |||
25 | #include "clang/Basic/OperatorKinds.h" | |||
26 | #include "clang/Basic/PartialDiagnostic.h" | |||
27 | #include "clang/Basic/SourceManager.h" | |||
28 | #include "clang/Basic/TargetInfo.h" | |||
29 | #include "clang/Sema/Initialization.h" | |||
30 | #include "clang/Sema/Lookup.h" | |||
31 | #include "clang/Sema/Overload.h" | |||
32 | #include "clang/Sema/SemaInternal.h" | |||
33 | #include "clang/Sema/Template.h" | |||
34 | #include "clang/Sema/TemplateDeduction.h" | |||
35 | #include "llvm/ADT/DenseSet.h" | |||
36 | #include "llvm/ADT/STLExtras.h" | |||
37 | #include "llvm/ADT/SmallPtrSet.h" | |||
38 | #include "llvm/ADT/SmallString.h" | |||
39 | #include "llvm/Support/Casting.h" | |||
40 | #include <algorithm> | |||
41 | #include <cstdlib> | |||
42 | #include <optional> | |||
43 | ||||
44 | using namespace clang; | |||
45 | using namespace sema; | |||
46 | ||||
47 | using AllowedExplicit = Sema::AllowedExplicit; | |||
48 | ||||
49 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { | |||
50 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { | |||
51 | return P->hasAttr<PassObjectSizeAttr>(); | |||
52 | }); | |||
53 | } | |||
54 | ||||
55 | /// A convenience routine for creating a decayed reference to a function. | |||
56 | static ExprResult CreateFunctionRefExpr( | |||
57 | Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, | |||
58 | bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), | |||
59 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { | |||
60 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) | |||
61 | return ExprError(); | |||
62 | // If FoundDecl is different from Fn (such as if one is a template | |||
63 | // and the other a specialization), make sure DiagnoseUseOfDecl is | |||
64 | // called on both. | |||
65 | // FIXME: This would be more comprehensively addressed by modifying | |||
66 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | |||
67 | // being used. | |||
68 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) | |||
69 | return ExprError(); | |||
70 | DeclRefExpr *DRE = new (S.Context) | |||
71 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); | |||
72 | if (HadMultipleCandidates) | |||
73 | DRE->setHadMultipleCandidates(true); | |||
74 | ||||
75 | S.MarkDeclRefReferenced(DRE, Base); | |||
76 | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { | |||
77 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | |||
78 | S.ResolveExceptionSpec(Loc, FPT); | |||
79 | DRE->setType(Fn->getType()); | |||
80 | } | |||
81 | } | |||
82 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), | |||
83 | CK_FunctionToPointerDecay); | |||
84 | } | |||
85 | ||||
86 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | |||
87 | bool InOverloadResolution, | |||
88 | StandardConversionSequence &SCS, | |||
89 | bool CStyle, | |||
90 | bool AllowObjCWritebackConversion); | |||
91 | ||||
92 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, | |||
93 | QualType &ToType, | |||
94 | bool InOverloadResolution, | |||
95 | StandardConversionSequence &SCS, | |||
96 | bool CStyle); | |||
97 | static OverloadingResult | |||
98 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
99 | UserDefinedConversionSequence& User, | |||
100 | OverloadCandidateSet& Conversions, | |||
101 | AllowedExplicit AllowExplicit, | |||
102 | bool AllowObjCConversionOnExplicit); | |||
103 | ||||
104 | static ImplicitConversionSequence::CompareKind | |||
105 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | |||
106 | const StandardConversionSequence& SCS1, | |||
107 | const StandardConversionSequence& SCS2); | |||
108 | ||||
109 | static ImplicitConversionSequence::CompareKind | |||
110 | CompareQualificationConversions(Sema &S, | |||
111 | const StandardConversionSequence& SCS1, | |||
112 | const StandardConversionSequence& SCS2); | |||
113 | ||||
114 | static ImplicitConversionSequence::CompareKind | |||
115 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | |||
116 | const StandardConversionSequence& SCS1, | |||
117 | const StandardConversionSequence& SCS2); | |||
118 | ||||
119 | /// GetConversionRank - Retrieve the implicit conversion rank | |||
120 | /// corresponding to the given implicit conversion kind. | |||
121 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { | |||
122 | static const ImplicitConversionRank | |||
123 | Rank[] = { | |||
124 | ICR_Exact_Match, | |||
125 | ICR_Exact_Match, | |||
126 | ICR_Exact_Match, | |||
127 | ICR_Exact_Match, | |||
128 | ICR_Exact_Match, | |||
129 | ICR_Exact_Match, | |||
130 | ICR_Promotion, | |||
131 | ICR_Promotion, | |||
132 | ICR_Promotion, | |||
133 | ICR_Conversion, | |||
134 | ICR_Conversion, | |||
135 | ICR_Conversion, | |||
136 | ICR_Conversion, | |||
137 | ICR_Conversion, | |||
138 | ICR_Conversion, | |||
139 | ICR_Conversion, | |||
140 | ICR_Conversion, | |||
141 | ICR_Conversion, | |||
142 | ICR_Conversion, | |||
143 | ICR_Conversion, | |||
144 | ICR_OCL_Scalar_Widening, | |||
145 | ICR_Complex_Real_Conversion, | |||
146 | ICR_Conversion, | |||
147 | ICR_Conversion, | |||
148 | ICR_Writeback_Conversion, | |||
149 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- | |||
150 | // it was omitted by the patch that added | |||
151 | // ICK_Zero_Event_Conversion | |||
152 | ICR_Exact_Match, // NOTE(ctopper): This may not be completely right -- | |||
153 | // it was omitted by the patch that added | |||
154 | // ICK_Zero_Queue_Conversion | |||
155 | ICR_C_Conversion, | |||
156 | ICR_C_Conversion_Extension | |||
157 | }; | |||
158 | static_assert(std::size(Rank) == (int)ICK_Num_Conversion_Kinds); | |||
159 | return Rank[(int)Kind]; | |||
160 | } | |||
161 | ||||
162 | /// GetImplicitConversionName - Return the name of this kind of | |||
163 | /// implicit conversion. | |||
164 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { | |||
165 | static const char* const Name[] = { | |||
166 | "No conversion", | |||
167 | "Lvalue-to-rvalue", | |||
168 | "Array-to-pointer", | |||
169 | "Function-to-pointer", | |||
170 | "Function pointer conversion", | |||
171 | "Qualification", | |||
172 | "Integral promotion", | |||
173 | "Floating point promotion", | |||
174 | "Complex promotion", | |||
175 | "Integral conversion", | |||
176 | "Floating conversion", | |||
177 | "Complex conversion", | |||
178 | "Floating-integral conversion", | |||
179 | "Pointer conversion", | |||
180 | "Pointer-to-member conversion", | |||
181 | "Boolean conversion", | |||
182 | "Compatible-types conversion", | |||
183 | "Derived-to-base conversion", | |||
184 | "Vector conversion", | |||
185 | "SVE Vector conversion", | |||
186 | "Vector splat", | |||
187 | "Complex-real conversion", | |||
188 | "Block Pointer conversion", | |||
189 | "Transparent Union Conversion", | |||
190 | "Writeback conversion", | |||
191 | "OpenCL Zero Event Conversion", | |||
192 | "OpenCL Zero Queue Conversion", | |||
193 | "C specific type conversion", | |||
194 | "Incompatible pointer conversion" | |||
195 | }; | |||
196 | static_assert(std::size(Name) == (int)ICK_Num_Conversion_Kinds); | |||
197 | return Name[Kind]; | |||
198 | } | |||
199 | ||||
200 | /// StandardConversionSequence - Set the standard conversion | |||
201 | /// sequence to the identity conversion. | |||
202 | void StandardConversionSequence::setAsIdentityConversion() { | |||
203 | First = ICK_Identity; | |||
204 | Second = ICK_Identity; | |||
205 | Third = ICK_Identity; | |||
206 | DeprecatedStringLiteralToCharPtr = false; | |||
207 | QualificationIncludesObjCLifetime = false; | |||
208 | ReferenceBinding = false; | |||
209 | DirectBinding = false; | |||
210 | IsLvalueReference = true; | |||
211 | BindsToFunctionLvalue = false; | |||
212 | BindsToRvalue = false; | |||
213 | BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
214 | ObjCLifetimeConversionBinding = false; | |||
215 | CopyConstructor = nullptr; | |||
216 | } | |||
217 | ||||
218 | /// getRank - Retrieve the rank of this standard conversion sequence | |||
219 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | |||
220 | /// implicit conversions. | |||
221 | ImplicitConversionRank StandardConversionSequence::getRank() const { | |||
222 | ImplicitConversionRank Rank = ICR_Exact_Match; | |||
223 | if (GetConversionRank(First) > Rank) | |||
224 | Rank = GetConversionRank(First); | |||
225 | if (GetConversionRank(Second) > Rank) | |||
226 | Rank = GetConversionRank(Second); | |||
227 | if (GetConversionRank(Third) > Rank) | |||
228 | Rank = GetConversionRank(Third); | |||
229 | return Rank; | |||
230 | } | |||
231 | ||||
232 | /// isPointerConversionToBool - Determines whether this conversion is | |||
233 | /// a conversion of a pointer or pointer-to-member to bool. This is | |||
234 | /// used as part of the ranking of standard conversion sequences | |||
235 | /// (C++ 13.3.3.2p4). | |||
236 | bool StandardConversionSequence::isPointerConversionToBool() const { | |||
237 | // Note that FromType has not necessarily been transformed by the | |||
238 | // array-to-pointer or function-to-pointer implicit conversions, so | |||
239 | // check for their presence as well as checking whether FromType is | |||
240 | // a pointer. | |||
241 | if (getToType(1)->isBooleanType() && | |||
242 | (getFromType()->isPointerType() || | |||
243 | getFromType()->isMemberPointerType() || | |||
244 | getFromType()->isObjCObjectPointerType() || | |||
245 | getFromType()->isBlockPointerType() || | |||
246 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | |||
247 | return true; | |||
248 | ||||
249 | return false; | |||
250 | } | |||
251 | ||||
252 | /// isPointerConversionToVoidPointer - Determines whether this | |||
253 | /// conversion is a conversion of a pointer to a void pointer. This is | |||
254 | /// used as part of the ranking of standard conversion sequences (C++ | |||
255 | /// 13.3.3.2p4). | |||
256 | bool | |||
257 | StandardConversionSequence:: | |||
258 | isPointerConversionToVoidPointer(ASTContext& Context) const { | |||
259 | QualType FromType = getFromType(); | |||
260 | QualType ToType = getToType(1); | |||
261 | ||||
262 | // Note that FromType has not necessarily been transformed by the | |||
263 | // array-to-pointer implicit conversion, so check for its presence | |||
264 | // and redo the conversion to get a pointer. | |||
265 | if (First == ICK_Array_To_Pointer) | |||
266 | FromType = Context.getArrayDecayedType(FromType); | |||
267 | ||||
268 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) | |||
269 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | |||
270 | return ToPtrType->getPointeeType()->isVoidType(); | |||
271 | ||||
272 | return false; | |||
273 | } | |||
274 | ||||
275 | /// Skip any implicit casts which could be either part of a narrowing conversion | |||
276 | /// or after one in an implicit conversion. | |||
277 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, | |||
278 | const Expr *Converted) { | |||
279 | // We can have cleanups wrapping the converted expression; these need to be | |||
280 | // preserved so that destructors run if necessary. | |||
281 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { | |||
282 | Expr *Inner = | |||
283 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); | |||
284 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), | |||
285 | EWC->getObjects()); | |||
286 | } | |||
287 | ||||
288 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { | |||
289 | switch (ICE->getCastKind()) { | |||
290 | case CK_NoOp: | |||
291 | case CK_IntegralCast: | |||
292 | case CK_IntegralToBoolean: | |||
293 | case CK_IntegralToFloating: | |||
294 | case CK_BooleanToSignedIntegral: | |||
295 | case CK_FloatingToIntegral: | |||
296 | case CK_FloatingToBoolean: | |||
297 | case CK_FloatingCast: | |||
298 | Converted = ICE->getSubExpr(); | |||
299 | continue; | |||
300 | ||||
301 | default: | |||
302 | return Converted; | |||
303 | } | |||
304 | } | |||
305 | ||||
306 | return Converted; | |||
307 | } | |||
308 | ||||
309 | /// Check if this standard conversion sequence represents a narrowing | |||
310 | /// conversion, according to C++11 [dcl.init.list]p7. | |||
311 | /// | |||
312 | /// \param Ctx The AST context. | |||
313 | /// \param Converted The result of applying this standard conversion sequence. | |||
314 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the | |||
315 | /// value of the expression prior to the narrowing conversion. | |||
316 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the | |||
317 | /// type of the expression prior to the narrowing conversion. | |||
318 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions | |||
319 | /// from floating point types to integral types should be ignored. | |||
320 | NarrowingKind StandardConversionSequence::getNarrowingKind( | |||
321 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, | |||
322 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { | |||
323 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")(static_cast <bool> (Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++") ? void (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\"" , "clang/lib/Sema/SemaOverload.cpp", 323, __extension__ __PRETTY_FUNCTION__ )); | |||
324 | ||||
325 | // C++11 [dcl.init.list]p7: | |||
326 | // A narrowing conversion is an implicit conversion ... | |||
327 | QualType FromType = getToType(0); | |||
328 | QualType ToType = getToType(1); | |||
329 | ||||
330 | // A conversion to an enumeration type is narrowing if the conversion to | |||
331 | // the underlying type is narrowing. This only arises for expressions of | |||
332 | // the form 'Enum{init}'. | |||
333 | if (auto *ET = ToType->getAs<EnumType>()) | |||
334 | ToType = ET->getDecl()->getIntegerType(); | |||
335 | ||||
336 | switch (Second) { | |||
337 | // 'bool' is an integral type; dispatch to the right place to handle it. | |||
338 | case ICK_Boolean_Conversion: | |||
339 | if (FromType->isRealFloatingType()) | |||
340 | goto FloatingIntegralConversion; | |||
341 | if (FromType->isIntegralOrUnscopedEnumerationType()) | |||
342 | goto IntegralConversion; | |||
343 | // -- from a pointer type or pointer-to-member type to bool, or | |||
344 | return NK_Type_Narrowing; | |||
345 | ||||
346 | // -- from a floating-point type to an integer type, or | |||
347 | // | |||
348 | // -- from an integer type or unscoped enumeration type to a floating-point | |||
349 | // type, except where the source is a constant expression and the actual | |||
350 | // value after conversion will fit into the target type and will produce | |||
351 | // the original value when converted back to the original type, or | |||
352 | case ICK_Floating_Integral: | |||
353 | FloatingIntegralConversion: | |||
354 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { | |||
355 | return NK_Type_Narrowing; | |||
356 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | |||
357 | ToType->isRealFloatingType()) { | |||
358 | if (IgnoreFloatToIntegralConversion) | |||
359 | return NK_Not_Narrowing; | |||
360 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
361 | assert(Initializer && "Unknown conversion expression")(static_cast <bool> (Initializer && "Unknown conversion expression" ) ? void (0) : __assert_fail ("Initializer && \"Unknown conversion expression\"" , "clang/lib/Sema/SemaOverload.cpp", 361, __extension__ __PRETTY_FUNCTION__ )); | |||
362 | ||||
363 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
364 | if (Initializer->isValueDependent()) | |||
365 | return NK_Dependent_Narrowing; | |||
366 | ||||
367 | if (std::optional<llvm::APSInt> IntConstantValue = | |||
368 | Initializer->getIntegerConstantExpr(Ctx)) { | |||
369 | // Convert the integer to the floating type. | |||
370 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); | |||
371 | Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), | |||
372 | llvm::APFloat::rmNearestTiesToEven); | |||
373 | // And back. | |||
374 | llvm::APSInt ConvertedValue = *IntConstantValue; | |||
375 | bool ignored; | |||
376 | Result.convertToInteger(ConvertedValue, | |||
377 | llvm::APFloat::rmTowardZero, &ignored); | |||
378 | // If the resulting value is different, this was a narrowing conversion. | |||
379 | if (*IntConstantValue != ConvertedValue) { | |||
380 | ConstantValue = APValue(*IntConstantValue); | |||
381 | ConstantType = Initializer->getType(); | |||
382 | return NK_Constant_Narrowing; | |||
383 | } | |||
384 | } else { | |||
385 | // Variables are always narrowings. | |||
386 | return NK_Variable_Narrowing; | |||
387 | } | |||
388 | } | |||
389 | return NK_Not_Narrowing; | |||
390 | ||||
391 | // -- from long double to double or float, or from double to float, except | |||
392 | // where the source is a constant expression and the actual value after | |||
393 | // conversion is within the range of values that can be represented (even | |||
394 | // if it cannot be represented exactly), or | |||
395 | case ICK_Floating_Conversion: | |||
396 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && | |||
397 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { | |||
398 | // FromType is larger than ToType. | |||
399 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
400 | ||||
401 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
402 | if (Initializer->isValueDependent()) | |||
403 | return NK_Dependent_Narrowing; | |||
404 | ||||
405 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { | |||
406 | // Constant! | |||
407 | assert(ConstantValue.isFloat())(static_cast <bool> (ConstantValue.isFloat()) ? void (0 ) : __assert_fail ("ConstantValue.isFloat()", "clang/lib/Sema/SemaOverload.cpp" , 407, __extension__ __PRETTY_FUNCTION__)); | |||
408 | llvm::APFloat FloatVal = ConstantValue.getFloat(); | |||
409 | // Convert the source value into the target type. | |||
410 | bool ignored; | |||
411 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( | |||
412 | Ctx.getFloatTypeSemantics(ToType), | |||
413 | llvm::APFloat::rmNearestTiesToEven, &ignored); | |||
414 | // If there was no overflow, the source value is within the range of | |||
415 | // values that can be represented. | |||
416 | if (ConvertStatus & llvm::APFloat::opOverflow) { | |||
417 | ConstantType = Initializer->getType(); | |||
418 | return NK_Constant_Narrowing; | |||
419 | } | |||
420 | } else { | |||
421 | return NK_Variable_Narrowing; | |||
422 | } | |||
423 | } | |||
424 | return NK_Not_Narrowing; | |||
425 | ||||
426 | // -- from an integer type or unscoped enumeration type to an integer type | |||
427 | // that cannot represent all the values of the original type, except where | |||
428 | // the source is a constant expression and the actual value after | |||
429 | // conversion will fit into the target type and will produce the original | |||
430 | // value when converted back to the original type. | |||
431 | case ICK_Integral_Conversion: | |||
432 | IntegralConversion: { | |||
433 | assert(FromType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (FromType->isIntegralOrUnscopedEnumerationType ()) ? void (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()" , "clang/lib/Sema/SemaOverload.cpp", 433, __extension__ __PRETTY_FUNCTION__ )); | |||
434 | assert(ToType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (ToType->isIntegralOrUnscopedEnumerationType ()) ? void (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()" , "clang/lib/Sema/SemaOverload.cpp", 434, __extension__ __PRETTY_FUNCTION__ )); | |||
435 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); | |||
436 | const unsigned FromWidth = Ctx.getIntWidth(FromType); | |||
437 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); | |||
438 | const unsigned ToWidth = Ctx.getIntWidth(ToType); | |||
439 | ||||
440 | if (FromWidth > ToWidth || | |||
441 | (FromWidth == ToWidth && FromSigned != ToSigned) || | |||
442 | (FromSigned && !ToSigned)) { | |||
443 | // Not all values of FromType can be represented in ToType. | |||
444 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
445 | ||||
446 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
447 | if (Initializer->isValueDependent()) | |||
448 | return NK_Dependent_Narrowing; | |||
449 | ||||
450 | std::optional<llvm::APSInt> OptInitializerValue; | |||
451 | if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { | |||
452 | // Such conversions on variables are always narrowing. | |||
453 | return NK_Variable_Narrowing; | |||
454 | } | |||
455 | llvm::APSInt &InitializerValue = *OptInitializerValue; | |||
456 | bool Narrowing = false; | |||
457 | if (FromWidth < ToWidth) { | |||
458 | // Negative -> unsigned is narrowing. Otherwise, more bits is never | |||
459 | // narrowing. | |||
460 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) | |||
461 | Narrowing = true; | |||
462 | } else { | |||
463 | // Add a bit to the InitializerValue so we don't have to worry about | |||
464 | // signed vs. unsigned comparisons. | |||
465 | InitializerValue = InitializerValue.extend( | |||
466 | InitializerValue.getBitWidth() + 1); | |||
467 | // Convert the initializer to and from the target width and signed-ness. | |||
468 | llvm::APSInt ConvertedValue = InitializerValue; | |||
469 | ConvertedValue = ConvertedValue.trunc(ToWidth); | |||
470 | ConvertedValue.setIsSigned(ToSigned); | |||
471 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); | |||
472 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); | |||
473 | // If the result is different, this was a narrowing conversion. | |||
474 | if (ConvertedValue != InitializerValue) | |||
475 | Narrowing = true; | |||
476 | } | |||
477 | if (Narrowing) { | |||
478 | ConstantType = Initializer->getType(); | |||
479 | ConstantValue = APValue(InitializerValue); | |||
480 | return NK_Constant_Narrowing; | |||
481 | } | |||
482 | } | |||
483 | return NK_Not_Narrowing; | |||
484 | } | |||
485 | ||||
486 | default: | |||
487 | // Other kinds of conversions are not narrowings. | |||
488 | return NK_Not_Narrowing; | |||
489 | } | |||
490 | } | |||
491 | ||||
492 | /// dump - Print this standard conversion sequence to standard | |||
493 | /// error. Useful for debugging overloading issues. | |||
494 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const { | |||
495 | raw_ostream &OS = llvm::errs(); | |||
496 | bool PrintedSomething = false; | |||
497 | if (First != ICK_Identity) { | |||
498 | OS << GetImplicitConversionName(First); | |||
499 | PrintedSomething = true; | |||
500 | } | |||
501 | ||||
502 | if (Second != ICK_Identity) { | |||
503 | if (PrintedSomething) { | |||
504 | OS << " -> "; | |||
505 | } | |||
506 | OS << GetImplicitConversionName(Second); | |||
507 | ||||
508 | if (CopyConstructor) { | |||
509 | OS << " (by copy constructor)"; | |||
510 | } else if (DirectBinding) { | |||
511 | OS << " (direct reference binding)"; | |||
512 | } else if (ReferenceBinding) { | |||
513 | OS << " (reference binding)"; | |||
514 | } | |||
515 | PrintedSomething = true; | |||
516 | } | |||
517 | ||||
518 | if (Third != ICK_Identity) { | |||
519 | if (PrintedSomething) { | |||
520 | OS << " -> "; | |||
521 | } | |||
522 | OS << GetImplicitConversionName(Third); | |||
523 | PrintedSomething = true; | |||
524 | } | |||
525 | ||||
526 | if (!PrintedSomething) { | |||
527 | OS << "No conversions required"; | |||
528 | } | |||
529 | } | |||
530 | ||||
531 | /// dump - Print this user-defined conversion sequence to standard | |||
532 | /// error. Useful for debugging overloading issues. | |||
533 | void UserDefinedConversionSequence::dump() const { | |||
534 | raw_ostream &OS = llvm::errs(); | |||
535 | if (Before.First || Before.Second || Before.Third) { | |||
536 | Before.dump(); | |||
537 | OS << " -> "; | |||
538 | } | |||
539 | if (ConversionFunction) | |||
540 | OS << '\'' << *ConversionFunction << '\''; | |||
541 | else | |||
542 | OS << "aggregate initialization"; | |||
543 | if (After.First || After.Second || After.Third) { | |||
544 | OS << " -> "; | |||
545 | After.dump(); | |||
546 | } | |||
547 | } | |||
548 | ||||
549 | /// dump - Print this implicit conversion sequence to standard | |||
550 | /// error. Useful for debugging overloading issues. | |||
551 | void ImplicitConversionSequence::dump() const { | |||
552 | raw_ostream &OS = llvm::errs(); | |||
553 | if (hasInitializerListContainerType()) | |||
554 | OS << "Worst list element conversion: "; | |||
555 | switch (ConversionKind) { | |||
556 | case StandardConversion: | |||
557 | OS << "Standard conversion: "; | |||
558 | Standard.dump(); | |||
559 | break; | |||
560 | case UserDefinedConversion: | |||
561 | OS << "User-defined conversion: "; | |||
562 | UserDefined.dump(); | |||
563 | break; | |||
564 | case EllipsisConversion: | |||
565 | OS << "Ellipsis conversion"; | |||
566 | break; | |||
567 | case AmbiguousConversion: | |||
568 | OS << "Ambiguous conversion"; | |||
569 | break; | |||
570 | case BadConversion: | |||
571 | OS << "Bad conversion"; | |||
572 | break; | |||
573 | } | |||
574 | ||||
575 | OS << "\n"; | |||
576 | } | |||
577 | ||||
578 | void AmbiguousConversionSequence::construct() { | |||
579 | new (&conversions()) ConversionSet(); | |||
580 | } | |||
581 | ||||
582 | void AmbiguousConversionSequence::destruct() { | |||
583 | conversions().~ConversionSet(); | |||
584 | } | |||
585 | ||||
586 | void | |||
587 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | |||
588 | FromTypePtr = O.FromTypePtr; | |||
589 | ToTypePtr = O.ToTypePtr; | |||
590 | new (&conversions()) ConversionSet(O.conversions()); | |||
591 | } | |||
592 | ||||
593 | namespace { | |||
594 | // Structure used by DeductionFailureInfo to store | |||
595 | // template argument information. | |||
596 | struct DFIArguments { | |||
597 | TemplateArgument FirstArg; | |||
598 | TemplateArgument SecondArg; | |||
599 | }; | |||
600 | // Structure used by DeductionFailureInfo to store | |||
601 | // template parameter and template argument information. | |||
602 | struct DFIParamWithArguments : DFIArguments { | |||
603 | TemplateParameter Param; | |||
604 | }; | |||
605 | // Structure used by DeductionFailureInfo to store template argument | |||
606 | // information and the index of the problematic call argument. | |||
607 | struct DFIDeducedMismatchArgs : DFIArguments { | |||
608 | TemplateArgumentList *TemplateArgs; | |||
609 | unsigned CallArgIndex; | |||
610 | }; | |||
611 | // Structure used by DeductionFailureInfo to store information about | |||
612 | // unsatisfied constraints. | |||
613 | struct CNSInfo { | |||
614 | TemplateArgumentList *TemplateArgs; | |||
615 | ConstraintSatisfaction Satisfaction; | |||
616 | }; | |||
617 | } | |||
618 | ||||
619 | /// Convert from Sema's representation of template deduction information | |||
620 | /// to the form used in overload-candidate information. | |||
621 | DeductionFailureInfo | |||
622 | clang::MakeDeductionFailureInfo(ASTContext &Context, | |||
623 | Sema::TemplateDeductionResult TDK, | |||
624 | TemplateDeductionInfo &Info) { | |||
625 | DeductionFailureInfo Result; | |||
626 | Result.Result = static_cast<unsigned>(TDK); | |||
627 | Result.HasDiagnostic = false; | |||
628 | switch (TDK) { | |||
629 | case Sema::TDK_Invalid: | |||
630 | case Sema::TDK_InstantiationDepth: | |||
631 | case Sema::TDK_TooManyArguments: | |||
632 | case Sema::TDK_TooFewArguments: | |||
633 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
634 | case Sema::TDK_CUDATargetMismatch: | |||
635 | Result.Data = nullptr; | |||
636 | break; | |||
637 | ||||
638 | case Sema::TDK_Incomplete: | |||
639 | case Sema::TDK_InvalidExplicitArguments: | |||
640 | Result.Data = Info.Param.getOpaqueValue(); | |||
641 | break; | |||
642 | ||||
643 | case Sema::TDK_DeducedMismatch: | |||
644 | case Sema::TDK_DeducedMismatchNested: { | |||
645 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
646 | auto *Saved = new (Context) DFIDeducedMismatchArgs; | |||
647 | Saved->FirstArg = Info.FirstArg; | |||
648 | Saved->SecondArg = Info.SecondArg; | |||
649 | Saved->TemplateArgs = Info.takeSugared(); | |||
650 | Saved->CallArgIndex = Info.CallArgIndex; | |||
651 | Result.Data = Saved; | |||
652 | break; | |||
653 | } | |||
654 | ||||
655 | case Sema::TDK_NonDeducedMismatch: { | |||
656 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
657 | DFIArguments *Saved = new (Context) DFIArguments; | |||
658 | Saved->FirstArg = Info.FirstArg; | |||
659 | Saved->SecondArg = Info.SecondArg; | |||
660 | Result.Data = Saved; | |||
661 | break; | |||
662 | } | |||
663 | ||||
664 | case Sema::TDK_IncompletePack: | |||
665 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. | |||
666 | case Sema::TDK_Inconsistent: | |||
667 | case Sema::TDK_Underqualified: { | |||
668 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
669 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; | |||
670 | Saved->Param = Info.Param; | |||
671 | Saved->FirstArg = Info.FirstArg; | |||
672 | Saved->SecondArg = Info.SecondArg; | |||
673 | Result.Data = Saved; | |||
674 | break; | |||
675 | } | |||
676 | ||||
677 | case Sema::TDK_SubstitutionFailure: | |||
678 | Result.Data = Info.takeSugared(); | |||
679 | if (Info.hasSFINAEDiagnostic()) { | |||
680 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( | |||
681 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); | |||
682 | Info.takeSFINAEDiagnostic(*Diag); | |||
683 | Result.HasDiagnostic = true; | |||
684 | } | |||
685 | break; | |||
686 | ||||
687 | case Sema::TDK_ConstraintsNotSatisfied: { | |||
688 | CNSInfo *Saved = new (Context) CNSInfo; | |||
689 | Saved->TemplateArgs = Info.takeSugared(); | |||
690 | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; | |||
691 | Result.Data = Saved; | |||
692 | break; | |||
693 | } | |||
694 | ||||
695 | case Sema::TDK_Success: | |||
696 | case Sema::TDK_NonDependentConversionFailure: | |||
697 | case Sema::TDK_AlreadyDiagnosed: | |||
698 | llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "clang/lib/Sema/SemaOverload.cpp" , 698); | |||
699 | } | |||
700 | ||||
701 | return Result; | |||
702 | } | |||
703 | ||||
704 | void DeductionFailureInfo::Destroy() { | |||
705 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
706 | case Sema::TDK_Success: | |||
707 | case Sema::TDK_Invalid: | |||
708 | case Sema::TDK_InstantiationDepth: | |||
709 | case Sema::TDK_Incomplete: | |||
710 | case Sema::TDK_TooManyArguments: | |||
711 | case Sema::TDK_TooFewArguments: | |||
712 | case Sema::TDK_InvalidExplicitArguments: | |||
713 | case Sema::TDK_CUDATargetMismatch: | |||
714 | case Sema::TDK_NonDependentConversionFailure: | |||
715 | break; | |||
716 | ||||
717 | case Sema::TDK_IncompletePack: | |||
718 | case Sema::TDK_Inconsistent: | |||
719 | case Sema::TDK_Underqualified: | |||
720 | case Sema::TDK_DeducedMismatch: | |||
721 | case Sema::TDK_DeducedMismatchNested: | |||
722 | case Sema::TDK_NonDeducedMismatch: | |||
723 | // FIXME: Destroy the data? | |||
724 | Data = nullptr; | |||
725 | break; | |||
726 | ||||
727 | case Sema::TDK_SubstitutionFailure: | |||
728 | // FIXME: Destroy the template argument list? | |||
729 | Data = nullptr; | |||
730 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | |||
731 | Diag->~PartialDiagnosticAt(); | |||
732 | HasDiagnostic = false; | |||
733 | } | |||
734 | break; | |||
735 | ||||
736 | case Sema::TDK_ConstraintsNotSatisfied: | |||
737 | // FIXME: Destroy the template argument list? | |||
738 | Data = nullptr; | |||
739 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | |||
740 | Diag->~PartialDiagnosticAt(); | |||
741 | HasDiagnostic = false; | |||
742 | } | |||
743 | break; | |||
744 | ||||
745 | // Unhandled | |||
746 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
747 | case Sema::TDK_AlreadyDiagnosed: | |||
748 | break; | |||
749 | } | |||
750 | } | |||
751 | ||||
752 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { | |||
753 | if (HasDiagnostic) | |||
754 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); | |||
755 | return nullptr; | |||
756 | } | |||
757 | ||||
758 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { | |||
759 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
760 | case Sema::TDK_Success: | |||
761 | case Sema::TDK_Invalid: | |||
762 | case Sema::TDK_InstantiationDepth: | |||
763 | case Sema::TDK_TooManyArguments: | |||
764 | case Sema::TDK_TooFewArguments: | |||
765 | case Sema::TDK_SubstitutionFailure: | |||
766 | case Sema::TDK_DeducedMismatch: | |||
767 | case Sema::TDK_DeducedMismatchNested: | |||
768 | case Sema::TDK_NonDeducedMismatch: | |||
769 | case Sema::TDK_CUDATargetMismatch: | |||
770 | case Sema::TDK_NonDependentConversionFailure: | |||
771 | case Sema::TDK_ConstraintsNotSatisfied: | |||
772 | return TemplateParameter(); | |||
773 | ||||
774 | case Sema::TDK_Incomplete: | |||
775 | case Sema::TDK_InvalidExplicitArguments: | |||
776 | return TemplateParameter::getFromOpaqueValue(Data); | |||
777 | ||||
778 | case Sema::TDK_IncompletePack: | |||
779 | case Sema::TDK_Inconsistent: | |||
780 | case Sema::TDK_Underqualified: | |||
781 | return static_cast<DFIParamWithArguments*>(Data)->Param; | |||
782 | ||||
783 | // Unhandled | |||
784 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
785 | case Sema::TDK_AlreadyDiagnosed: | |||
786 | break; | |||
787 | } | |||
788 | ||||
789 | return TemplateParameter(); | |||
790 | } | |||
791 | ||||
792 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { | |||
793 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
794 | case Sema::TDK_Success: | |||
795 | case Sema::TDK_Invalid: | |||
796 | case Sema::TDK_InstantiationDepth: | |||
797 | case Sema::TDK_TooManyArguments: | |||
798 | case Sema::TDK_TooFewArguments: | |||
799 | case Sema::TDK_Incomplete: | |||
800 | case Sema::TDK_IncompletePack: | |||
801 | case Sema::TDK_InvalidExplicitArguments: | |||
802 | case Sema::TDK_Inconsistent: | |||
803 | case Sema::TDK_Underqualified: | |||
804 | case Sema::TDK_NonDeducedMismatch: | |||
805 | case Sema::TDK_CUDATargetMismatch: | |||
806 | case Sema::TDK_NonDependentConversionFailure: | |||
807 | return nullptr; | |||
808 | ||||
809 | case Sema::TDK_DeducedMismatch: | |||
810 | case Sema::TDK_DeducedMismatchNested: | |||
811 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; | |||
812 | ||||
813 | case Sema::TDK_SubstitutionFailure: | |||
814 | return static_cast<TemplateArgumentList*>(Data); | |||
815 | ||||
816 | case Sema::TDK_ConstraintsNotSatisfied: | |||
817 | return static_cast<CNSInfo*>(Data)->TemplateArgs; | |||
818 | ||||
819 | // Unhandled | |||
820 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
821 | case Sema::TDK_AlreadyDiagnosed: | |||
822 | break; | |||
823 | } | |||
824 | ||||
825 | return nullptr; | |||
826 | } | |||
827 | ||||
828 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { | |||
829 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
830 | case Sema::TDK_Success: | |||
831 | case Sema::TDK_Invalid: | |||
832 | case Sema::TDK_InstantiationDepth: | |||
833 | case Sema::TDK_Incomplete: | |||
834 | case Sema::TDK_TooManyArguments: | |||
835 | case Sema::TDK_TooFewArguments: | |||
836 | case Sema::TDK_InvalidExplicitArguments: | |||
837 | case Sema::TDK_SubstitutionFailure: | |||
838 | case Sema::TDK_CUDATargetMismatch: | |||
839 | case Sema::TDK_NonDependentConversionFailure: | |||
840 | case Sema::TDK_ConstraintsNotSatisfied: | |||
841 | return nullptr; | |||
842 | ||||
843 | case Sema::TDK_IncompletePack: | |||
844 | case Sema::TDK_Inconsistent: | |||
845 | case Sema::TDK_Underqualified: | |||
846 | case Sema::TDK_DeducedMismatch: | |||
847 | case Sema::TDK_DeducedMismatchNested: | |||
848 | case Sema::TDK_NonDeducedMismatch: | |||
849 | return &static_cast<DFIArguments*>(Data)->FirstArg; | |||
850 | ||||
851 | // Unhandled | |||
852 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
853 | case Sema::TDK_AlreadyDiagnosed: | |||
854 | break; | |||
855 | } | |||
856 | ||||
857 | return nullptr; | |||
858 | } | |||
859 | ||||
860 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { | |||
861 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
862 | case Sema::TDK_Success: | |||
863 | case Sema::TDK_Invalid: | |||
864 | case Sema::TDK_InstantiationDepth: | |||
865 | case Sema::TDK_Incomplete: | |||
866 | case Sema::TDK_IncompletePack: | |||
867 | case Sema::TDK_TooManyArguments: | |||
868 | case Sema::TDK_TooFewArguments: | |||
869 | case Sema::TDK_InvalidExplicitArguments: | |||
870 | case Sema::TDK_SubstitutionFailure: | |||
871 | case Sema::TDK_CUDATargetMismatch: | |||
872 | case Sema::TDK_NonDependentConversionFailure: | |||
873 | case Sema::TDK_ConstraintsNotSatisfied: | |||
874 | return nullptr; | |||
875 | ||||
876 | case Sema::TDK_Inconsistent: | |||
877 | case Sema::TDK_Underqualified: | |||
878 | case Sema::TDK_DeducedMismatch: | |||
879 | case Sema::TDK_DeducedMismatchNested: | |||
880 | case Sema::TDK_NonDeducedMismatch: | |||
881 | return &static_cast<DFIArguments*>(Data)->SecondArg; | |||
882 | ||||
883 | // Unhandled | |||
884 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
885 | case Sema::TDK_AlreadyDiagnosed: | |||
886 | break; | |||
887 | } | |||
888 | ||||
889 | return nullptr; | |||
890 | } | |||
891 | ||||
892 | std::optional<unsigned> DeductionFailureInfo::getCallArgIndex() { | |||
893 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
894 | case Sema::TDK_DeducedMismatch: | |||
895 | case Sema::TDK_DeducedMismatchNested: | |||
896 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; | |||
897 | ||||
898 | default: | |||
899 | return std::nullopt; | |||
900 | } | |||
901 | } | |||
902 | ||||
903 | static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, | |||
904 | const FunctionDecl *Y) { | |||
905 | if (!X || !Y) | |||
906 | return false; | |||
907 | if (X->getNumParams() != Y->getNumParams()) | |||
908 | return false; | |||
909 | for (unsigned I = 0; I < X->getNumParams(); ++I) | |||
910 | if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(), | |||
911 | Y->getParamDecl(I)->getType())) | |||
912 | return false; | |||
913 | if (auto *FTX = X->getDescribedFunctionTemplate()) { | |||
914 | auto *FTY = Y->getDescribedFunctionTemplate(); | |||
915 | if (!FTY) | |||
916 | return false; | |||
917 | if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(), | |||
918 | FTY->getTemplateParameters())) | |||
919 | return false; | |||
920 | } | |||
921 | return true; | |||
922 | } | |||
923 | ||||
924 | static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, | |||
925 | Expr *FirstOperand, FunctionDecl *EqFD) { | |||
926 | assert(EqFD->getOverloadedOperator() ==(static_cast <bool> (EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail ("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual" , "clang/lib/Sema/SemaOverload.cpp", 927, __extension__ __PRETTY_FUNCTION__ )) | |||
927 | OverloadedOperatorKind::OO_EqualEqual)(static_cast <bool> (EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail ("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual" , "clang/lib/Sema/SemaOverload.cpp", 927, __extension__ __PRETTY_FUNCTION__ )); | |||
928 | // C++2a [over.match.oper]p4: | |||
929 | // A non-template function or function template F named operator== is a | |||
930 | // rewrite target with first operand o unless a search for the name operator!= | |||
931 | // in the scope S from the instantiation context of the operator expression | |||
932 | // finds a function or function template that would correspond | |||
933 | // ([basic.scope.scope]) to F if its name were operator==, where S is the | |||
934 | // scope of the class type of o if F is a class member, and the namespace | |||
935 | // scope of which F is a member otherwise. A function template specialization | |||
936 | // named operator== is a rewrite target if its function template is a rewrite | |||
937 | // target. | |||
938 | DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( | |||
939 | OverloadedOperatorKind::OO_ExclaimEqual); | |||
940 | if (isa<CXXMethodDecl>(EqFD)) { | |||
941 | // If F is a class member, search scope is class type of first operand. | |||
942 | QualType RHS = FirstOperand->getType(); | |||
943 | auto *RHSRec = RHS->getAs<RecordType>(); | |||
944 | if (!RHSRec) | |||
945 | return true; | |||
946 | LookupResult Members(S, NotEqOp, OpLoc, | |||
947 | Sema::LookupNameKind::LookupMemberName); | |||
948 | S.LookupQualifiedName(Members, RHSRec->getDecl()); | |||
949 | Members.suppressDiagnostics(); | |||
950 | for (NamedDecl *Op : Members) | |||
951 | if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction())) | |||
952 | return false; | |||
953 | return true; | |||
954 | } | |||
955 | // Otherwise the search scope is the namespace scope of which F is a member. | |||
956 | LookupResult NonMembers(S, NotEqOp, OpLoc, | |||
957 | Sema::LookupNameKind::LookupOperatorName); | |||
958 | S.LookupName(NonMembers, | |||
959 | S.getScopeForContext(EqFD->getEnclosingNamespaceContext())); | |||
960 | NonMembers.suppressDiagnostics(); | |||
961 | for (NamedDecl *Op : NonMembers) { | |||
962 | auto *FD = Op->getAsFunction(); | |||
963 | if(auto* UD = dyn_cast<UsingShadowDecl>(Op)) | |||
964 | FD = UD->getUnderlyingDecl()->getAsFunction(); | |||
965 | if (FunctionsCorrespond(S.Context, EqFD, FD) && | |||
966 | declaresSameEntity(cast<Decl>(EqFD->getDeclContext()), | |||
967 | cast<Decl>(Op->getDeclContext()))) | |||
968 | return false; | |||
969 | } | |||
970 | return true; | |||
971 | } | |||
972 | ||||
973 | bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( | |||
974 | OverloadedOperatorKind Op) { | |||
975 | if (!AllowRewrittenCandidates) | |||
976 | return false; | |||
977 | return Op == OO_EqualEqual || Op == OO_Spaceship; | |||
978 | } | |||
979 | ||||
980 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | |||
981 | Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) { | |||
982 | auto Op = FD->getOverloadedOperator(); | |||
983 | if (!allowsReversed(Op)) | |||
984 | return false; | |||
985 | if (Op == OverloadedOperatorKind::OO_EqualEqual) { | |||
986 | assert(OriginalArgs.size() == 2)(static_cast <bool> (OriginalArgs.size() == 2) ? void ( 0) : __assert_fail ("OriginalArgs.size() == 2", "clang/lib/Sema/SemaOverload.cpp" , 986, __extension__ __PRETTY_FUNCTION__)); | |||
987 | if (!shouldAddReversedEqEq( | |||
988 | S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD)) | |||
989 | return false; | |||
990 | } | |||
991 | // Don't bother adding a reversed candidate that can never be a better | |||
992 | // match than the non-reversed version. | |||
993 | return FD->getNumParams() != 2 || | |||
994 | !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), | |||
995 | FD->getParamDecl(1)->getType()) || | |||
996 | FD->hasAttr<EnableIfAttr>(); | |||
997 | } | |||
998 | ||||
999 | void OverloadCandidateSet::destroyCandidates() { | |||
1000 | for (iterator i = begin(), e = end(); i != e; ++i) { | |||
1001 | for (auto &C : i->Conversions) | |||
1002 | C.~ImplicitConversionSequence(); | |||
1003 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) | |||
1004 | i->DeductionFailure.Destroy(); | |||
1005 | } | |||
1006 | } | |||
1007 | ||||
1008 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { | |||
1009 | destroyCandidates(); | |||
1010 | SlabAllocator.Reset(); | |||
1011 | NumInlineBytesUsed = 0; | |||
1012 | Candidates.clear(); | |||
1013 | Functions.clear(); | |||
1014 | Kind = CSK; | |||
1015 | } | |||
1016 | ||||
1017 | namespace { | |||
1018 | class UnbridgedCastsSet { | |||
1019 | struct Entry { | |||
1020 | Expr **Addr; | |||
1021 | Expr *Saved; | |||
1022 | }; | |||
1023 | SmallVector<Entry, 2> Entries; | |||
1024 | ||||
1025 | public: | |||
1026 | void save(Sema &S, Expr *&E) { | |||
1027 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))(static_cast <bool> (E->hasPlaceholderType(BuiltinType ::ARCUnbridgedCast)) ? void (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)" , "clang/lib/Sema/SemaOverload.cpp", 1027, __extension__ __PRETTY_FUNCTION__ )); | |||
1028 | Entry entry = { &E, E }; | |||
1029 | Entries.push_back(entry); | |||
1030 | E = S.stripARCUnbridgedCast(E); | |||
1031 | } | |||
1032 | ||||
1033 | void restore() { | |||
1034 | for (SmallVectorImpl<Entry>::iterator | |||
1035 | i = Entries.begin(), e = Entries.end(); i != e; ++i) | |||
1036 | *i->Addr = i->Saved; | |||
1037 | } | |||
1038 | }; | |||
1039 | } | |||
1040 | ||||
1041 | /// checkPlaceholderForOverload - Do any interesting placeholder-like | |||
1042 | /// preprocessing on the given expression. | |||
1043 | /// | |||
1044 | /// \param unbridgedCasts a collection to which to add unbridged casts; | |||
1045 | /// without this, they will be immediately diagnosed as errors | |||
1046 | /// | |||
1047 | /// Return true on unrecoverable error. | |||
1048 | static bool | |||
1049 | checkPlaceholderForOverload(Sema &S, Expr *&E, | |||
1050 | UnbridgedCastsSet *unbridgedCasts = nullptr) { | |||
1051 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { | |||
1052 | // We can't handle overloaded expressions here because overload | |||
1053 | // resolution might reasonably tweak them. | |||
1054 | if (placeholder->getKind() == BuiltinType::Overload) return false; | |||
1055 | ||||
1056 | // If the context potentially accepts unbridged ARC casts, strip | |||
1057 | // the unbridged cast and add it to the collection for later restoration. | |||
1058 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && | |||
1059 | unbridgedCasts) { | |||
1060 | unbridgedCasts->save(S, E); | |||
1061 | return false; | |||
1062 | } | |||
1063 | ||||
1064 | // Go ahead and check everything else. | |||
1065 | ExprResult result = S.CheckPlaceholderExpr(E); | |||
1066 | if (result.isInvalid()) | |||
1067 | return true; | |||
1068 | ||||
1069 | E = result.get(); | |||
1070 | return false; | |||
1071 | } | |||
1072 | ||||
1073 | // Nothing to do. | |||
1074 | return false; | |||
1075 | } | |||
1076 | ||||
1077 | /// checkArgPlaceholdersForOverload - Check a set of call operands for | |||
1078 | /// placeholders. | |||
1079 | static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, | |||
1080 | UnbridgedCastsSet &unbridged) { | |||
1081 | for (unsigned i = 0, e = Args.size(); i != e; ++i) | |||
1082 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) | |||
1083 | return true; | |||
1084 | ||||
1085 | return false; | |||
1086 | } | |||
1087 | ||||
1088 | /// Determine whether the given New declaration is an overload of the | |||
1089 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if | |||
1090 | /// New and Old cannot be overloaded, e.g., if New has the same signature as | |||
1091 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't | |||
1092 | /// functions (or function templates) at all. When it does return Ovl_Match or | |||
1093 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be | |||
1094 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying | |||
1095 | /// declaration. | |||
1096 | /// | |||
1097 | /// Example: Given the following input: | |||
1098 | /// | |||
1099 | /// void f(int, float); // #1 | |||
1100 | /// void f(int, int); // #2 | |||
1101 | /// int f(int, int); // #3 | |||
1102 | /// | |||
1103 | /// When we process #1, there is no previous declaration of "f", so IsOverload | |||
1104 | /// will not be used. | |||
1105 | /// | |||
1106 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing | |||
1107 | /// the parameter types, we see that #1 and #2 are overloaded (since they have | |||
1108 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is | |||
1109 | /// unchanged. | |||
1110 | /// | |||
1111 | /// When we process #3, Old is an overload set containing #1 and #2. We compare | |||
1112 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then | |||
1113 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of | |||
1114 | /// functions are not part of the signature), IsOverload returns Ovl_Match and | |||
1115 | /// MatchedDecl will be set to point to the FunctionDecl for #2. | |||
1116 | /// | |||
1117 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class | |||
1118 | /// by a using declaration. The rules for whether to hide shadow declarations | |||
1119 | /// ignore some properties which otherwise figure into a function template's | |||
1120 | /// signature. | |||
1121 | Sema::OverloadKind | |||
1122 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, | |||
1123 | NamedDecl *&Match, bool NewIsUsingDecl) { | |||
1124 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); | |||
1125 | I != E; ++I) { | |||
1126 | NamedDecl *OldD = *I; | |||
1127 | ||||
1128 | bool OldIsUsingDecl = false; | |||
1129 | if (isa<UsingShadowDecl>(OldD)) { | |||
1130 | OldIsUsingDecl = true; | |||
1131 | ||||
1132 | // We can always introduce two using declarations into the same | |||
1133 | // context, even if they have identical signatures. | |||
1134 | if (NewIsUsingDecl) continue; | |||
1135 | ||||
1136 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); | |||
1137 | } | |||
1138 | ||||
1139 | // A using-declaration does not conflict with another declaration | |||
1140 | // if one of them is hidden. | |||
1141 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) | |||
1142 | continue; | |||
1143 | ||||
1144 | // If either declaration was introduced by a using declaration, | |||
1145 | // we'll need to use slightly different rules for matching. | |||
1146 | // Essentially, these rules are the normal rules, except that | |||
1147 | // function templates hide function templates with different | |||
1148 | // return types or template parameter lists. | |||
1149 | bool UseMemberUsingDeclRules = | |||
1150 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && | |||
1151 | !New->getFriendObjectKind(); | |||
1152 | ||||
1153 | if (FunctionDecl *OldF = OldD->getAsFunction()) { | |||
1154 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { | |||
1155 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { | |||
1156 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); | |||
1157 | continue; | |||
1158 | } | |||
1159 | ||||
1160 | if (!isa<FunctionTemplateDecl>(OldD) && | |||
1161 | !shouldLinkPossiblyHiddenDecl(*I, New)) | |||
1162 | continue; | |||
1163 | ||||
1164 | // C++20 [temp.friend] p9: A non-template friend declaration with a | |||
1165 | // requires-clause shall be a definition. A friend function template | |||
1166 | // with a constraint that depends on a template parameter from an | |||
1167 | // enclosing template shall be a definition. Such a constrained friend | |||
1168 | // function or function template declaration does not declare the same | |||
1169 | // function or function template as a declaration in any other scope. | |||
1170 | if (Context.FriendsDifferByConstraints(OldF, New)) | |||
1171 | continue; | |||
1172 | ||||
1173 | Match = *I; | |||
1174 | return Ovl_Match; | |||
1175 | } | |||
1176 | ||||
1177 | // Builtins that have custom typechecking or have a reference should | |||
1178 | // not be overloadable or redeclarable. | |||
1179 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { | |||
1180 | Match = *I; | |||
1181 | return Ovl_NonFunction; | |||
1182 | } | |||
1183 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { | |||
1184 | // We can overload with these, which can show up when doing | |||
1185 | // redeclaration checks for UsingDecls. | |||
1186 | assert(Old.getLookupKind() == LookupUsingDeclName)(static_cast <bool> (Old.getLookupKind() == LookupUsingDeclName ) ? void (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName" , "clang/lib/Sema/SemaOverload.cpp", 1186, __extension__ __PRETTY_FUNCTION__ )); | |||
1187 | } else if (isa<TagDecl>(OldD)) { | |||
1188 | // We can always overload with tags by hiding them. | |||
1189 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { | |||
1190 | // Optimistically assume that an unresolved using decl will | |||
1191 | // overload; if it doesn't, we'll have to diagnose during | |||
1192 | // template instantiation. | |||
1193 | // | |||
1194 | // Exception: if the scope is dependent and this is not a class | |||
1195 | // member, the using declaration can only introduce an enumerator. | |||
1196 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { | |||
1197 | Match = *I; | |||
1198 | return Ovl_NonFunction; | |||
1199 | } | |||
1200 | } else { | |||
1201 | // (C++ 13p1): | |||
1202 | // Only function declarations can be overloaded; object and type | |||
1203 | // declarations cannot be overloaded. | |||
1204 | Match = *I; | |||
1205 | return Ovl_NonFunction; | |||
1206 | } | |||
1207 | } | |||
1208 | ||||
1209 | // C++ [temp.friend]p1: | |||
1210 | // For a friend function declaration that is not a template declaration: | |||
1211 | // -- if the name of the friend is a qualified or unqualified template-id, | |||
1212 | // [...], otherwise | |||
1213 | // -- if the name of the friend is a qualified-id and a matching | |||
1214 | // non-template function is found in the specified class or namespace, | |||
1215 | // the friend declaration refers to that function, otherwise, | |||
1216 | // -- if the name of the friend is a qualified-id and a matching function | |||
1217 | // template is found in the specified class or namespace, the friend | |||
1218 | // declaration refers to the deduced specialization of that function | |||
1219 | // template, otherwise | |||
1220 | // -- the name shall be an unqualified-id [...] | |||
1221 | // If we get here for a qualified friend declaration, we've just reached the | |||
1222 | // third bullet. If the type of the friend is dependent, skip this lookup | |||
1223 | // until instantiation. | |||
1224 | if (New->getFriendObjectKind() && New->getQualifier() && | |||
1225 | !New->getDescribedFunctionTemplate() && | |||
1226 | !New->getDependentSpecializationInfo() && | |||
1227 | !New->getType()->isDependentType()) { | |||
1228 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); | |||
1229 | TemplateSpecResult.addAllDecls(Old); | |||
1230 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, | |||
1231 | /*QualifiedFriend*/true)) { | |||
1232 | New->setInvalidDecl(); | |||
1233 | return Ovl_Overload; | |||
1234 | } | |||
1235 | ||||
1236 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); | |||
1237 | return Ovl_Match; | |||
1238 | } | |||
1239 | ||||
1240 | return Ovl_Overload; | |||
1241 | } | |||
1242 | ||||
1243 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, | |||
1244 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, | |||
1245 | bool ConsiderRequiresClauses) { | |||
1246 | // C++ [basic.start.main]p2: This function shall not be overloaded. | |||
1247 | if (New->isMain()) | |||
1248 | return false; | |||
1249 | ||||
1250 | // MSVCRT user defined entry points cannot be overloaded. | |||
1251 | if (New->isMSVCRTEntryPoint()) | |||
1252 | return false; | |||
1253 | ||||
1254 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | |||
1255 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | |||
1256 | ||||
1257 | // C++ [temp.fct]p2: | |||
1258 | // A function template can be overloaded with other function templates | |||
1259 | // and with normal (non-template) functions. | |||
1260 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) | |||
1261 | return true; | |||
1262 | ||||
1263 | // Is the function New an overload of the function Old? | |||
1264 | QualType OldQType = Context.getCanonicalType(Old->getType()); | |||
1265 | QualType NewQType = Context.getCanonicalType(New->getType()); | |||
1266 | ||||
1267 | // Compare the signatures (C++ 1.3.10) of the two functions to | |||
1268 | // determine whether they are overloads. If we find any mismatch | |||
1269 | // in the signature, they are overloads. | |||
1270 | ||||
1271 | // If either of these functions is a K&R-style function (no | |||
1272 | // prototype), then we consider them to have matching signatures. | |||
1273 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | |||
1274 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) | |||
1275 | return false; | |||
1276 | ||||
1277 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); | |||
1278 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); | |||
1279 | ||||
1280 | // The signature of a function includes the types of its | |||
1281 | // parameters (C++ 1.3.10), which includes the presence or absence | |||
1282 | // of the ellipsis; see C++ DR 357). | |||
1283 | if (OldQType != NewQType && | |||
1284 | (OldType->getNumParams() != NewType->getNumParams() || | |||
1285 | OldType->isVariadic() != NewType->isVariadic() || | |||
1286 | !FunctionParamTypesAreEqual(OldType, NewType))) | |||
1287 | return true; | |||
1288 | ||||
1289 | if (NewTemplate) { | |||
1290 | // C++ [temp.over.link]p4: | |||
1291 | // The signature of a function template consists of its function | |||
1292 | // signature, its return type and its template parameter list. The names | |||
1293 | // of the template parameters are significant only for establishing the | |||
1294 | // relationship between the template parameters and the rest of the | |||
1295 | // signature. | |||
1296 | // | |||
1297 | // We check the return type and template parameter lists for function | |||
1298 | // templates first; the remaining checks follow. | |||
1299 | bool SameTemplateParameterList = TemplateParameterListsAreEqual( | |||
1300 | NewTemplate->getTemplateParameters(), | |||
1301 | OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch); | |||
1302 | bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(), | |||
1303 | New->getDeclaredReturnType()); | |||
1304 | // FIXME(GH58571): Match template parameter list even for non-constrained | |||
1305 | // template heads. This currently ensures that the code prior to C++20 is | |||
1306 | // not newly broken. | |||
1307 | bool ConstraintsInTemplateHead = | |||
1308 | NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || | |||
1309 | OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); | |||
1310 | // C++ [namespace.udecl]p11: | |||
1311 | // The set of declarations named by a using-declarator that inhabits a | |||
1312 | // class C does not include member functions and member function | |||
1313 | // templates of a base class that "correspond" to (and thus would | |||
1314 | // conflict with) a declaration of a function or function template in | |||
1315 | // C. | |||
1316 | // Comparing return types is not required for the "correspond" check to | |||
1317 | // decide whether a member introduced by a shadow declaration is hidden. | |||
1318 | if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && | |||
1319 | !SameTemplateParameterList) | |||
1320 | return true; | |||
1321 | if (!UseMemberUsingDeclRules && | |||
1322 | (!SameTemplateParameterList || !SameReturnType)) | |||
1323 | return true; | |||
1324 | } | |||
1325 | ||||
1326 | if (ConsiderRequiresClauses) { | |||
1327 | Expr *NewRC = New->getTrailingRequiresClause(), | |||
1328 | *OldRC = Old->getTrailingRequiresClause(); | |||
1329 | if ((NewRC != nullptr) != (OldRC != nullptr)) | |||
1330 | return true; | |||
1331 | ||||
1332 | if (NewRC && !AreConstraintExpressionsEqual(Old, OldRC, New, NewRC)) | |||
1333 | return true; | |||
1334 | } | |||
1335 | ||||
1336 | // If the function is a class member, its signature includes the | |||
1337 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. | |||
1338 | // | |||
1339 | // As part of this, also check whether one of the member functions | |||
1340 | // is static, in which case they are not overloads (C++ | |||
1341 | // 13.1p2). While not part of the definition of the signature, | |||
1342 | // this check is important to determine whether these functions | |||
1343 | // can be overloaded. | |||
1344 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | |||
1345 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | |||
1346 | if (OldMethod && NewMethod && | |||
1347 | !OldMethod->isStatic() && !NewMethod->isStatic()) { | |||
1348 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { | |||
1349 | if (!UseMemberUsingDeclRules && | |||
1350 | (OldMethod->getRefQualifier() == RQ_None || | |||
1351 | NewMethod->getRefQualifier() == RQ_None)) { | |||
1352 | // C++20 [over.load]p2: | |||
1353 | // - Member function declarations with the same name, the same | |||
1354 | // parameter-type-list, and the same trailing requires-clause (if | |||
1355 | // any), as well as member function template declarations with the | |||
1356 | // same name, the same parameter-type-list, the same trailing | |||
1357 | // requires-clause (if any), and the same template-head, cannot be | |||
1358 | // overloaded if any of them, but not all, have a ref-qualifier. | |||
1359 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) | |||
1360 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); | |||
1361 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); | |||
1362 | } | |||
1363 | return true; | |||
1364 | } | |||
1365 | ||||
1366 | // We may not have applied the implicit const for a constexpr member | |||
1367 | // function yet (because we haven't yet resolved whether this is a static | |||
1368 | // or non-static member function). Add it now, on the assumption that this | |||
1369 | // is a redeclaration of OldMethod. | |||
1370 | auto OldQuals = OldMethod->getMethodQualifiers(); | |||
1371 | auto NewQuals = NewMethod->getMethodQualifiers(); | |||
1372 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && | |||
1373 | !isa<CXXConstructorDecl>(NewMethod)) | |||
1374 | NewQuals.addConst(); | |||
1375 | // We do not allow overloading based off of '__restrict'. | |||
1376 | OldQuals.removeRestrict(); | |||
1377 | NewQuals.removeRestrict(); | |||
1378 | if (OldQuals != NewQuals) | |||
1379 | return true; | |||
1380 | } | |||
1381 | ||||
1382 | // Though pass_object_size is placed on parameters and takes an argument, we | |||
1383 | // consider it to be a function-level modifier for the sake of function | |||
1384 | // identity. Either the function has one or more parameters with | |||
1385 | // pass_object_size or it doesn't. | |||
1386 | if (functionHasPassObjectSizeParams(New) != | |||
1387 | functionHasPassObjectSizeParams(Old)) | |||
1388 | return true; | |||
1389 | ||||
1390 | // enable_if attributes are an order-sensitive part of the signature. | |||
1391 | for (specific_attr_iterator<EnableIfAttr> | |||
1392 | NewI = New->specific_attr_begin<EnableIfAttr>(), | |||
1393 | NewE = New->specific_attr_end<EnableIfAttr>(), | |||
1394 | OldI = Old->specific_attr_begin<EnableIfAttr>(), | |||
1395 | OldE = Old->specific_attr_end<EnableIfAttr>(); | |||
1396 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { | |||
1397 | if (NewI == NewE || OldI == OldE) | |||
1398 | return true; | |||
1399 | llvm::FoldingSetNodeID NewID, OldID; | |||
1400 | NewI->getCond()->Profile(NewID, Context, true); | |||
1401 | OldI->getCond()->Profile(OldID, Context, true); | |||
1402 | if (NewID != OldID) | |||
1403 | return true; | |||
1404 | } | |||
1405 | ||||
1406 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { | |||
1407 | // Don't allow overloading of destructors. (In theory we could, but it | |||
1408 | // would be a giant change to clang.) | |||
1409 | if (!isa<CXXDestructorDecl>(New)) { | |||
1410 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), | |||
1411 | OldTarget = IdentifyCUDATarget(Old); | |||
1412 | if (NewTarget != CFT_InvalidTarget) { | |||
1413 | assert((OldTarget != CFT_InvalidTarget) &&(static_cast <bool> ((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "clang/lib/Sema/SemaOverload.cpp", 1414, __extension__ __PRETTY_FUNCTION__ )) | |||
1414 | "Unexpected invalid target.")(static_cast <bool> ((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "clang/lib/Sema/SemaOverload.cpp", 1414, __extension__ __PRETTY_FUNCTION__ )); | |||
1415 | ||||
1416 | // Allow overloading of functions with same signature and different CUDA | |||
1417 | // target attributes. | |||
1418 | if (NewTarget != OldTarget) | |||
1419 | return true; | |||
1420 | } | |||
1421 | } | |||
1422 | } | |||
1423 | ||||
1424 | // The signatures match; this is not an overload. | |||
1425 | return false; | |||
1426 | } | |||
1427 | ||||
1428 | /// Tries a user-defined conversion from From to ToType. | |||
1429 | /// | |||
1430 | /// Produces an implicit conversion sequence for when a standard conversion | |||
1431 | /// is not an option. See TryImplicitConversion for more information. | |||
1432 | static ImplicitConversionSequence | |||
1433 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
1434 | bool SuppressUserConversions, | |||
1435 | AllowedExplicit AllowExplicit, | |||
1436 | bool InOverloadResolution, | |||
1437 | bool CStyle, | |||
1438 | bool AllowObjCWritebackConversion, | |||
1439 | bool AllowObjCConversionOnExplicit) { | |||
1440 | ImplicitConversionSequence ICS; | |||
1441 | ||||
1442 | if (SuppressUserConversions) { | |||
1443 | // We're not in the case above, so there is no conversion that | |||
1444 | // we can perform. | |||
1445 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1446 | return ICS; | |||
1447 | } | |||
1448 | ||||
1449 | // Attempt user-defined conversion. | |||
1450 | OverloadCandidateSet Conversions(From->getExprLoc(), | |||
1451 | OverloadCandidateSet::CSK_Normal); | |||
1452 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, | |||
1453 | Conversions, AllowExplicit, | |||
1454 | AllowObjCConversionOnExplicit)) { | |||
1455 | case OR_Success: | |||
1456 | case OR_Deleted: | |||
1457 | ICS.setUserDefined(); | |||
1458 | // C++ [over.ics.user]p4: | |||
1459 | // A conversion of an expression of class type to the same class | |||
1460 | // type is given Exact Match rank, and a conversion of an | |||
1461 | // expression of class type to a base class of that type is | |||
1462 | // given Conversion rank, in spite of the fact that a copy | |||
1463 | // constructor (i.e., a user-defined conversion function) is | |||
1464 | // called for those cases. | |||
1465 | if (CXXConstructorDecl *Constructor | |||
1466 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | |||
1467 | QualType FromCanon | |||
1468 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); | |||
1469 | QualType ToCanon | |||
1470 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); | |||
1471 | if (Constructor->isCopyConstructor() && | |||
1472 | (FromCanon == ToCanon || | |||
1473 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { | |||
1474 | // Turn this into a "standard" conversion sequence, so that it | |||
1475 | // gets ranked with standard conversion sequences. | |||
1476 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; | |||
1477 | ICS.setStandard(); | |||
1478 | ICS.Standard.setAsIdentityConversion(); | |||
1479 | ICS.Standard.setFromType(From->getType()); | |||
1480 | ICS.Standard.setAllToTypes(ToType); | |||
1481 | ICS.Standard.CopyConstructor = Constructor; | |||
1482 | ICS.Standard.FoundCopyConstructor = Found; | |||
1483 | if (ToCanon != FromCanon) | |||
1484 | ICS.Standard.Second = ICK_Derived_To_Base; | |||
1485 | } | |||
1486 | } | |||
1487 | break; | |||
1488 | ||||
1489 | case OR_Ambiguous: | |||
1490 | ICS.setAmbiguous(); | |||
1491 | ICS.Ambiguous.setFromType(From->getType()); | |||
1492 | ICS.Ambiguous.setToType(ToType); | |||
1493 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | |||
1494 | Cand != Conversions.end(); ++Cand) | |||
1495 | if (Cand->Best) | |||
1496 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | |||
1497 | break; | |||
1498 | ||||
1499 | // Fall through. | |||
1500 | case OR_No_Viable_Function: | |||
1501 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1502 | break; | |||
1503 | } | |||
1504 | ||||
1505 | return ICS; | |||
1506 | } | |||
1507 | ||||
1508 | /// TryImplicitConversion - Attempt to perform an implicit conversion | |||
1509 | /// from the given expression (Expr) to the given type (ToType). This | |||
1510 | /// function returns an implicit conversion sequence that can be used | |||
1511 | /// to perform the initialization. Given | |||
1512 | /// | |||
1513 | /// void f(float f); | |||
1514 | /// void g(int i) { f(i); } | |||
1515 | /// | |||
1516 | /// this routine would produce an implicit conversion sequence to | |||
1517 | /// describe the initialization of f from i, which will be a standard | |||
1518 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | |||
1519 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | |||
1520 | // | |||
1521 | /// Note that this routine only determines how the conversion can be | |||
1522 | /// performed; it does not actually perform the conversion. As such, | |||
1523 | /// it will not produce any diagnostics if no conversion is available, | |||
1524 | /// but will instead return an implicit conversion sequence of kind | |||
1525 | /// "BadConversion". | |||
1526 | /// | |||
1527 | /// If @p SuppressUserConversions, then user-defined conversions are | |||
1528 | /// not permitted. | |||
1529 | /// If @p AllowExplicit, then explicit user-defined conversions are | |||
1530 | /// permitted. | |||
1531 | /// | |||
1532 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C | |||
1533 | /// writeback conversion, which allows __autoreleasing id* parameters to | |||
1534 | /// be initialized with __strong id* or __weak id* arguments. | |||
1535 | static ImplicitConversionSequence | |||
1536 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, | |||
1537 | bool SuppressUserConversions, | |||
1538 | AllowedExplicit AllowExplicit, | |||
1539 | bool InOverloadResolution, | |||
1540 | bool CStyle, | |||
1541 | bool AllowObjCWritebackConversion, | |||
1542 | bool AllowObjCConversionOnExplicit) { | |||
1543 | ImplicitConversionSequence ICS; | |||
1544 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, | |||
1545 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ | |||
1546 | ICS.setStandard(); | |||
1547 | return ICS; | |||
1548 | } | |||
1549 | ||||
1550 | if (!S.getLangOpts().CPlusPlus) { | |||
1551 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1552 | return ICS; | |||
1553 | } | |||
1554 | ||||
1555 | // C++ [over.ics.user]p4: | |||
1556 | // A conversion of an expression of class type to the same class | |||
1557 | // type is given Exact Match rank, and a conversion of an | |||
1558 | // expression of class type to a base class of that type is | |||
1559 | // given Conversion rank, in spite of the fact that a copy/move | |||
1560 | // constructor (i.e., a user-defined conversion function) is | |||
1561 | // called for those cases. | |||
1562 | QualType FromType = From->getType(); | |||
1563 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && | |||
1564 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || | |||
1565 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { | |||
1566 | ICS.setStandard(); | |||
1567 | ICS.Standard.setAsIdentityConversion(); | |||
1568 | ICS.Standard.setFromType(FromType); | |||
1569 | ICS.Standard.setAllToTypes(ToType); | |||
1570 | ||||
1571 | // We don't actually check at this point whether there is a valid | |||
1572 | // copy/move constructor, since overloading just assumes that it | |||
1573 | // exists. When we actually perform initialization, we'll find the | |||
1574 | // appropriate constructor to copy the returned object, if needed. | |||
1575 | ICS.Standard.CopyConstructor = nullptr; | |||
1576 | ||||
1577 | // Determine whether this is considered a derived-to-base conversion. | |||
1578 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1579 | ICS.Standard.Second = ICK_Derived_To_Base; | |||
1580 | ||||
1581 | return ICS; | |||
1582 | } | |||
1583 | ||||
1584 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | |||
1585 | AllowExplicit, InOverloadResolution, CStyle, | |||
1586 | AllowObjCWritebackConversion, | |||
1587 | AllowObjCConversionOnExplicit); | |||
1588 | } | |||
1589 | ||||
1590 | ImplicitConversionSequence | |||
1591 | Sema::TryImplicitConversion(Expr *From, QualType ToType, | |||
1592 | bool SuppressUserConversions, | |||
1593 | AllowedExplicit AllowExplicit, | |||
1594 | bool InOverloadResolution, | |||
1595 | bool CStyle, | |||
1596 | bool AllowObjCWritebackConversion) { | |||
1597 | return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, | |||
1598 | AllowExplicit, InOverloadResolution, CStyle, | |||
1599 | AllowObjCWritebackConversion, | |||
1600 | /*AllowObjCConversionOnExplicit=*/false); | |||
1601 | } | |||
1602 | ||||
1603 | /// PerformImplicitConversion - Perform an implicit conversion of the | |||
1604 | /// expression From to the type ToType. Returns the | |||
1605 | /// converted expression. Flavor is the kind of conversion we're | |||
1606 | /// performing, used in the error message. If @p AllowExplicit, | |||
1607 | /// explicit user-defined conversions are permitted. | |||
1608 | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, | |||
1609 | AssignmentAction Action, | |||
1610 | bool AllowExplicit) { | |||
1611 | if (checkPlaceholderForOverload(*this, From)) | |||
1612 | return ExprError(); | |||
1613 | ||||
1614 | // Objective-C ARC: Determine whether we will allow the writeback conversion. | |||
1615 | bool AllowObjCWritebackConversion | |||
1616 | = getLangOpts().ObjCAutoRefCount && | |||
1617 | (Action == AA_Passing || Action == AA_Sending); | |||
1618 | if (getLangOpts().ObjC) | |||
1619 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, | |||
1620 | From->getType(), From); | |||
1621 | ImplicitConversionSequence ICS = ::TryImplicitConversion( | |||
1622 | *this, From, ToType, | |||
1623 | /*SuppressUserConversions=*/false, | |||
1624 | AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, | |||
1625 | /*InOverloadResolution=*/false, | |||
1626 | /*CStyle=*/false, AllowObjCWritebackConversion, | |||
1627 | /*AllowObjCConversionOnExplicit=*/false); | |||
1628 | return PerformImplicitConversion(From, ToType, ICS, Action); | |||
1629 | } | |||
1630 | ||||
1631 | /// Determine whether the conversion from FromType to ToType is a valid | |||
1632 | /// conversion that strips "noexcept" or "noreturn" off the nested function | |||
1633 | /// type. | |||
1634 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, | |||
1635 | QualType &ResultTy) { | |||
1636 | if (Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1637 | return false; | |||
1638 | ||||
1639 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) | |||
1640 | // or F(t noexcept) -> F(t) | |||
1641 | // where F adds one of the following at most once: | |||
1642 | // - a pointer | |||
1643 | // - a member pointer | |||
1644 | // - a block pointer | |||
1645 | // Changes here need matching changes in FindCompositePointerType. | |||
1646 | CanQualType CanTo = Context.getCanonicalType(ToType); | |||
1647 | CanQualType CanFrom = Context.getCanonicalType(FromType); | |||
1648 | Type::TypeClass TyClass = CanTo->getTypeClass(); | |||
1649 | if (TyClass != CanFrom->getTypeClass()) return false; | |||
1650 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { | |||
1651 | if (TyClass == Type::Pointer) { | |||
1652 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); | |||
1653 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); | |||
1654 | } else if (TyClass == Type::BlockPointer) { | |||
1655 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); | |||
1656 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); | |||
1657 | } else if (TyClass == Type::MemberPointer) { | |||
1658 | auto ToMPT = CanTo.castAs<MemberPointerType>(); | |||
1659 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); | |||
1660 | // A function pointer conversion cannot change the class of the function. | |||
1661 | if (ToMPT->getClass() != FromMPT->getClass()) | |||
1662 | return false; | |||
1663 | CanTo = ToMPT->getPointeeType(); | |||
1664 | CanFrom = FromMPT->getPointeeType(); | |||
1665 | } else { | |||
1666 | return false; | |||
1667 | } | |||
1668 | ||||
1669 | TyClass = CanTo->getTypeClass(); | |||
1670 | if (TyClass != CanFrom->getTypeClass()) return false; | |||
1671 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) | |||
1672 | return false; | |||
1673 | } | |||
1674 | ||||
1675 | const auto *FromFn = cast<FunctionType>(CanFrom); | |||
1676 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | |||
1677 | ||||
1678 | const auto *ToFn = cast<FunctionType>(CanTo); | |||
1679 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | |||
1680 | ||||
1681 | bool Changed = false; | |||
1682 | ||||
1683 | // Drop 'noreturn' if not present in target type. | |||
1684 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { | |||
1685 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); | |||
1686 | Changed = true; | |||
1687 | } | |||
1688 | ||||
1689 | // Drop 'noexcept' if not present in target type. | |||
1690 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { | |||
1691 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); | |||
1692 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { | |||
1693 | FromFn = cast<FunctionType>( | |||
1694 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), | |||
1695 | EST_None) | |||
1696 | .getTypePtr()); | |||
1697 | Changed = true; | |||
1698 | } | |||
1699 | ||||
1700 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid | |||
1701 | // only if the ExtParameterInfo lists of the two function prototypes can be | |||
1702 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. | |||
1703 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | |||
1704 | bool CanUseToFPT, CanUseFromFPT; | |||
1705 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, | |||
1706 | CanUseFromFPT, NewParamInfos) && | |||
1707 | CanUseToFPT && !CanUseFromFPT) { | |||
1708 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); | |||
1709 | ExtInfo.ExtParameterInfos = | |||
1710 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); | |||
1711 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), | |||
1712 | FromFPT->getParamTypes(), ExtInfo); | |||
1713 | FromFn = QT->getAs<FunctionType>(); | |||
1714 | Changed = true; | |||
1715 | } | |||
1716 | } | |||
1717 | ||||
1718 | if (!Changed) | |||
1719 | return false; | |||
1720 | ||||
1721 | assert(QualType(FromFn, 0).isCanonical())(static_cast <bool> (QualType(FromFn, 0).isCanonical()) ? void (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()" , "clang/lib/Sema/SemaOverload.cpp", 1721, __extension__ __PRETTY_FUNCTION__ )); | |||
1722 | if (QualType(FromFn, 0) != CanTo) return false; | |||
1723 | ||||
1724 | ResultTy = ToType; | |||
1725 | return true; | |||
1726 | } | |||
1727 | ||||
1728 | /// Determine whether the conversion from FromType to ToType is a valid | |||
1729 | /// vector conversion. | |||
1730 | /// | |||
1731 | /// \param ICK Will be set to the vector conversion kind, if this is a vector | |||
1732 | /// conversion. | |||
1733 | static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, | |||
1734 | ImplicitConversionKind &ICK, Expr *From, | |||
1735 | bool InOverloadResolution, bool CStyle) { | |||
1736 | // We need at least one of these types to be a vector type to have a vector | |||
1737 | // conversion. | |||
1738 | if (!ToType->isVectorType() && !FromType->isVectorType()) | |||
1739 | return false; | |||
1740 | ||||
1741 | // Identical types require no conversions. | |||
1742 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1743 | return false; | |||
1744 | ||||
1745 | // There are no conversions between extended vector types, only identity. | |||
1746 | if (ToType->isExtVectorType()) { | |||
1747 | // There are no conversions between extended vector types other than the | |||
1748 | // identity conversion. | |||
1749 | if (FromType->isExtVectorType()) | |||
1750 | return false; | |||
1751 | ||||
1752 | // Vector splat from any arithmetic type to a vector. | |||
1753 | if (FromType->isArithmeticType()) { | |||
1754 | ICK = ICK_Vector_Splat; | |||
1755 | return true; | |||
1756 | } | |||
1757 | } | |||
1758 | ||||
1759 | if (ToType->isSVESizelessBuiltinType() || | |||
1760 | FromType->isSVESizelessBuiltinType()) | |||
1761 | if (S.Context.areCompatibleSveTypes(FromType, ToType) || | |||
1762 | S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { | |||
1763 | ICK = ICK_SVE_Vector_Conversion; | |||
1764 | return true; | |||
1765 | } | |||
1766 | ||||
1767 | // We can perform the conversion between vector types in the following cases: | |||
1768 | // 1)vector types are equivalent AltiVec and GCC vector types | |||
1769 | // 2)lax vector conversions are permitted and the vector types are of the | |||
1770 | // same size | |||
1771 | // 3)the destination type does not have the ARM MVE strict-polymorphism | |||
1772 | // attribute, which inhibits lax vector conversion for overload resolution | |||
1773 | // only | |||
1774 | if (ToType->isVectorType() && FromType->isVectorType()) { | |||
1775 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || | |||
1776 | (S.isLaxVectorConversion(FromType, ToType) && | |||
1777 | !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { | |||
1778 | if (S.getASTContext().getTargetInfo().getTriple().isPPC() && | |||
1779 | S.isLaxVectorConversion(FromType, ToType) && | |||
1780 | S.anyAltivecTypes(FromType, ToType) && | |||
1781 | !S.Context.areCompatibleVectorTypes(FromType, ToType) && | |||
1782 | !InOverloadResolution && !CStyle) { | |||
1783 | S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all) | |||
1784 | << FromType << ToType; | |||
1785 | } | |||
1786 | ICK = ICK_Vector_Conversion; | |||
1787 | return true; | |||
1788 | } | |||
1789 | } | |||
1790 | ||||
1791 | return false; | |||
1792 | } | |||
1793 | ||||
1794 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | |||
1795 | bool InOverloadResolution, | |||
1796 | StandardConversionSequence &SCS, | |||
1797 | bool CStyle); | |||
1798 | ||||
1799 | /// IsStandardConversion - Determines whether there is a standard | |||
1800 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | |||
1801 | /// expression From to the type ToType. Standard conversion sequences | |||
1802 | /// only consider non-class types; for conversions that involve class | |||
1803 | /// types, use TryImplicitConversion. If a conversion exists, SCS will | |||
1804 | /// contain the standard conversion sequence required to perform this | |||
1805 | /// conversion and this routine will return true. Otherwise, this | |||
1806 | /// routine will return false and the value of SCS is unspecified. | |||
1807 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | |||
1808 | bool InOverloadResolution, | |||
1809 | StandardConversionSequence &SCS, | |||
1810 | bool CStyle, | |||
1811 | bool AllowObjCWritebackConversion) { | |||
1812 | QualType FromType = From->getType(); | |||
1813 | ||||
1814 | // Standard conversions (C++ [conv]) | |||
1815 | SCS.setAsIdentityConversion(); | |||
1816 | SCS.IncompatibleObjC = false; | |||
1817 | SCS.setFromType(FromType); | |||
1818 | SCS.CopyConstructor = nullptr; | |||
1819 | ||||
1820 | // There are no standard conversions for class types in C++, so | |||
1821 | // abort early. When overloading in C, however, we do permit them. | |||
1822 | if (S.getLangOpts().CPlusPlus && | |||
| ||||
1823 | (FromType->isRecordType() || ToType->isRecordType())) | |||
1824 | return false; | |||
1825 | ||||
1826 | // The first conversion can be an lvalue-to-rvalue conversion, | |||
1827 | // array-to-pointer conversion, or function-to-pointer conversion | |||
1828 | // (C++ 4p1). | |||
1829 | ||||
1830 | if (FromType == S.Context.OverloadTy) { | |||
1831 | DeclAccessPair AccessPair; | |||
1832 | if (FunctionDecl *Fn | |||
1833 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, | |||
1834 | AccessPair)) { | |||
1835 | // We were able to resolve the address of the overloaded function, | |||
1836 | // so we can convert to the type of that function. | |||
1837 | FromType = Fn->getType(); | |||
1838 | SCS.setFromType(FromType); | |||
1839 | ||||
1840 | // we can sometimes resolve &foo<int> regardless of ToType, so check | |||
1841 | // if the type matches (identity) or we are converting to bool | |||
1842 | if (!S.Context.hasSameUnqualifiedType( | |||
1843 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { | |||
1844 | QualType resultTy; | |||
1845 | // if the function type matches except for [[noreturn]], it's ok | |||
1846 | if (!S.IsFunctionConversion(FromType, | |||
1847 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) | |||
1848 | // otherwise, only a boolean conversion is standard | |||
1849 | if (!ToType->isBooleanType()) | |||
1850 | return false; | |||
1851 | } | |||
1852 | ||||
1853 | // Check if the "from" expression is taking the address of an overloaded | |||
1854 | // function and recompute the FromType accordingly. Take advantage of the | |||
1855 | // fact that non-static member functions *must* have such an address-of | |||
1856 | // expression. | |||
1857 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); | |||
1858 | if (Method && !Method->isStatic()) { | |||
1859 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&(static_cast <bool> (isa<UnaryOperator>(From-> IgnoreParens()) && "Non-unary operator on non-static member address" ) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )) | |||
1860 | "Non-unary operator on non-static member address")(static_cast <bool> (isa<UnaryOperator>(From-> IgnoreParens()) && "Non-unary operator on non-static member address" ) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )); | |||
1861 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )) | |||
1862 | == UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )) | |||
1863 | "Non-address-of operator on non-static member address")(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "clang/lib/Sema/SemaOverload.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )); | |||
1864 | const Type *ClassType | |||
1865 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); | |||
1866 | FromType = S.Context.getMemberPointerType(FromType, ClassType); | |||
1867 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { | |||
1868 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )) | |||
1869 | UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )) | |||
1870 | "Non-address-of operator for overloaded function expression")(static_cast <bool> (cast<UnaryOperator>(From-> IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "clang/lib/Sema/SemaOverload.cpp", 1870, __extension__ __PRETTY_FUNCTION__ )); | |||
1871 | FromType = S.Context.getPointerType(FromType); | |||
1872 | } | |||
1873 | } else { | |||
1874 | return false; | |||
1875 | } | |||
1876 | } | |||
1877 | // Lvalue-to-rvalue conversion (C++11 4.1): | |||
1878 | // A glvalue (3.10) of a non-function, non-array type T can | |||
1879 | // be converted to a prvalue. | |||
1880 | bool argIsLValue = From->isGLValue(); | |||
1881 | if (argIsLValue
| |||
1882 | !FromType->isFunctionType() && !FromType->isArrayType() && | |||
1883 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { | |||
1884 | SCS.First = ICK_Lvalue_To_Rvalue; | |||
1885 | ||||
1886 | // C11 6.3.2.1p2: | |||
1887 | // ... if the lvalue has atomic type, the value has the non-atomic version | |||
1888 | // of the type of the lvalue ... | |||
1889 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) | |||
1890 | FromType = Atomic->getValueType(); | |||
1891 | ||||
1892 | // If T is a non-class type, the type of the rvalue is the | |||
1893 | // cv-unqualified version of T. Otherwise, the type of the rvalue | |||
1894 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | |||
1895 | // just strip the qualifiers because they don't matter. | |||
1896 | FromType = FromType.getUnqualifiedType(); | |||
1897 | } else if (FromType->isArrayType()) { | |||
1898 | // Array-to-pointer conversion (C++ 4.2) | |||
1899 | SCS.First = ICK_Array_To_Pointer; | |||
1900 | ||||
1901 | // An lvalue or rvalue of type "array of N T" or "array of unknown | |||
1902 | // bound of T" can be converted to an rvalue of type "pointer to | |||
1903 | // T" (C++ 4.2p1). | |||
1904 | FromType = S.Context.getArrayDecayedType(FromType); | |||
1905 | ||||
1906 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { | |||
1907 | // This conversion is deprecated in C++03 (D.4) | |||
1908 | SCS.DeprecatedStringLiteralToCharPtr = true; | |||
1909 | ||||
1910 | // For the purpose of ranking in overload resolution | |||
1911 | // (13.3.3.1.1), this conversion is considered an | |||
1912 | // array-to-pointer conversion followed by a qualification | |||
1913 | // conversion (4.4). (C++ 4.2p2) | |||
1914 | SCS.Second = ICK_Identity; | |||
1915 | SCS.Third = ICK_Qualification; | |||
1916 | SCS.QualificationIncludesObjCLifetime = false; | |||
1917 | SCS.setAllToTypes(FromType); | |||
1918 | return true; | |||
1919 | } | |||
1920 | } else if (FromType->isFunctionType() && argIsLValue) { | |||
1921 | // Function-to-pointer conversion (C++ 4.3). | |||
1922 | SCS.First = ICK_Function_To_Pointer; | |||
1923 | ||||
1924 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) | |||
1925 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | |||
1926 | if (!S.checkAddressOfFunctionIsAvailable(FD)) | |||
1927 | return false; | |||
1928 | ||||
1929 | // An lvalue of function type T can be converted to an rvalue of | |||
1930 | // type "pointer to T." The result is a pointer to the | |||
1931 | // function. (C++ 4.3p1). | |||
1932 | FromType = S.Context.getPointerType(FromType); | |||
1933 | } else { | |||
1934 | // We don't require any conversions for the first step. | |||
1935 | SCS.First = ICK_Identity; | |||
1936 | } | |||
1937 | SCS.setToType(0, FromType); | |||
1938 | ||||
1939 | // The second conversion can be an integral promotion, floating | |||
1940 | // point promotion, integral conversion, floating point conversion, | |||
1941 | // floating-integral conversion, pointer conversion, | |||
1942 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). | |||
1943 | // For overloading in C, this can also be a "compatible-type" | |||
1944 | // conversion. | |||
1945 | bool IncompatibleObjC = false; | |||
1946 | ImplicitConversionKind SecondICK = ICK_Identity; | |||
1947 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { | |||
1948 | // The unqualified versions of the types are the same: there's no | |||
1949 | // conversion to do. | |||
1950 | SCS.Second = ICK_Identity; | |||
1951 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { | |||
1952 | // Integral promotion (C++ 4.5). | |||
1953 | SCS.Second = ICK_Integral_Promotion; | |||
1954 | FromType = ToType.getUnqualifiedType(); | |||
1955 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { | |||
1956 | // Floating point promotion (C++ 4.6). | |||
1957 | SCS.Second = ICK_Floating_Promotion; | |||
1958 | FromType = ToType.getUnqualifiedType(); | |||
1959 | } else if (S.IsComplexPromotion(FromType, ToType)) { | |||
1960 | // Complex promotion (Clang extension) | |||
1961 | SCS.Second = ICK_Complex_Promotion; | |||
1962 | FromType = ToType.getUnqualifiedType(); | |||
1963 | } else if (ToType->isBooleanType() && | |||
1964 | (FromType->isArithmeticType() || | |||
1965 | FromType->isAnyPointerType() || | |||
1966 | FromType->isBlockPointerType() || | |||
1967 | FromType->isMemberPointerType())) { | |||
1968 | // Boolean conversions (C++ 4.12). | |||
1969 | SCS.Second = ICK_Boolean_Conversion; | |||
1970 | FromType = S.Context.BoolTy; | |||
1971 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | |||
1972 | ToType->isIntegralType(S.Context)) { | |||
1973 | // Integral conversions (C++ 4.7). | |||
1974 | SCS.Second = ICK_Integral_Conversion; | |||
1975 | FromType = ToType.getUnqualifiedType(); | |||
1976 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { | |||
1977 | // Complex conversions (C99 6.3.1.6) | |||
1978 | SCS.Second = ICK_Complex_Conversion; | |||
1979 | FromType = ToType.getUnqualifiedType(); | |||
1980 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || | |||
1981 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { | |||
1982 | // Complex-real conversions (C99 6.3.1.7) | |||
1983 | SCS.Second = ICK_Complex_Real; | |||
1984 | FromType = ToType.getUnqualifiedType(); | |||
1985 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { | |||
1986 | // FIXME: disable conversions between long double, __ibm128 and __float128 | |||
1987 | // if their representation is different until there is back end support | |||
1988 | // We of course allow this conversion if long double is really double. | |||
1989 | ||||
1990 | // Conversions between bfloat and other floats are not permitted. | |||
1991 | if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) | |||
1992 | return false; | |||
1993 | ||||
1994 | // Conversions between IEEE-quad and IBM-extended semantics are not | |||
1995 | // permitted. | |||
1996 | const llvm::fltSemantics &FromSem = | |||
1997 | S.Context.getFloatTypeSemantics(FromType); | |||
1998 | const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); | |||
1999 | if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && | |||
2000 | &ToSem == &llvm::APFloat::IEEEquad()) || | |||
2001 | (&FromSem == &llvm::APFloat::IEEEquad() && | |||
2002 | &ToSem == &llvm::APFloat::PPCDoubleDouble())) | |||
2003 | return false; | |||
2004 | ||||
2005 | // Floating point conversions (C++ 4.8). | |||
2006 | SCS.Second = ICK_Floating_Conversion; | |||
2007 | FromType = ToType.getUnqualifiedType(); | |||
2008 | } else if ((FromType->isRealFloatingType() && | |||
2009 | ToType->isIntegralType(S.Context)) || | |||
2010 | (FromType->isIntegralOrUnscopedEnumerationType() && | |||
2011 | ToType->isRealFloatingType())) { | |||
2012 | // Conversions between bfloat and int are not permitted. | |||
2013 | if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) | |||
2014 | return false; | |||
2015 | ||||
2016 | // Floating-integral conversions (C++ 4.9). | |||
2017 | SCS.Second = ICK_Floating_Integral; | |||
2018 | FromType = ToType.getUnqualifiedType(); | |||
2019 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { | |||
2020 | SCS.Second = ICK_Block_Pointer_Conversion; | |||
2021 | } else if (AllowObjCWritebackConversion && | |||
2022 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { | |||
2023 | SCS.Second = ICK_Writeback_Conversion; | |||
2024 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, | |||
2025 | FromType, IncompatibleObjC)) { | |||
2026 | // Pointer conversions (C++ 4.10). | |||
2027 | SCS.Second = ICK_Pointer_Conversion; | |||
2028 | SCS.IncompatibleObjC = IncompatibleObjC; | |||
2029 | FromType = FromType.getUnqualifiedType(); | |||
2030 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, | |||
2031 | InOverloadResolution, FromType)) { | |||
2032 | // Pointer to member conversions (4.11). | |||
2033 | SCS.Second = ICK_Pointer_Member; | |||
2034 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From, | |||
2035 | InOverloadResolution, CStyle)) { | |||
2036 | SCS.Second = SecondICK; | |||
2037 | FromType = ToType.getUnqualifiedType(); | |||
2038 | } else if (!S.getLangOpts().CPlusPlus && | |||
2039 | S.Context.typesAreCompatible(ToType, FromType)) { | |||
2040 | // Compatible conversions (Clang extension for C function overloading) | |||
2041 | SCS.Second = ICK_Compatible_Conversion; | |||
2042 | FromType = ToType.getUnqualifiedType(); | |||
2043 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, | |||
2044 | InOverloadResolution, | |||
2045 | SCS, CStyle)) { | |||
2046 | SCS.Second = ICK_TransparentUnionConversion; | |||
2047 | FromType = ToType; | |||
2048 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, | |||
2049 | CStyle)) { | |||
2050 | // tryAtomicConversion has updated the standard conversion sequence | |||
2051 | // appropriately. | |||
2052 | return true; | |||
2053 | } else if (ToType->isEventT() && | |||
2054 | From->isIntegerConstantExpr(S.getASTContext()) && | |||
2055 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { | |||
2056 | SCS.Second = ICK_Zero_Event_Conversion; | |||
2057 | FromType = ToType; | |||
2058 | } else if (ToType->isQueueT() && | |||
2059 | From->isIntegerConstantExpr(S.getASTContext()) && | |||
2060 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { | |||
2061 | SCS.Second = ICK_Zero_Queue_Conversion; | |||
2062 | FromType = ToType; | |||
2063 | } else if (ToType->isSamplerT() && | |||
2064 | From->isIntegerConstantExpr(S.getASTContext())) { | |||
2065 | SCS.Second = ICK_Compatible_Conversion; | |||
2066 | FromType = ToType; | |||
2067 | } else { | |||
2068 | // No second conversion required. | |||
2069 | SCS.Second = ICK_Identity; | |||
2070 | } | |||
2071 | SCS.setToType(1, FromType); | |||
2072 | ||||
2073 | // The third conversion can be a function pointer conversion or a | |||
2074 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). | |||
2075 | bool ObjCLifetimeConversion; | |||
2076 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { | |||
2077 | // Function pointer conversions (removing 'noexcept') including removal of | |||
2078 | // 'noreturn' (Clang extension). | |||
2079 | SCS.Third = ICK_Function_Conversion; | |||
2080 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, | |||
2081 | ObjCLifetimeConversion)) { | |||
2082 | SCS.Third = ICK_Qualification; | |||
2083 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; | |||
2084 | FromType = ToType; | |||
2085 | } else { | |||
2086 | // No conversion required | |||
2087 | SCS.Third = ICK_Identity; | |||
2088 | } | |||
2089 | ||||
2090 | // C++ [over.best.ics]p6: | |||
2091 | // [...] Any difference in top-level cv-qualification is | |||
2092 | // subsumed by the initialization itself and does not constitute | |||
2093 | // a conversion. [...] | |||
2094 | QualType CanonFrom = S.Context.getCanonicalType(FromType); | |||
2095 | QualType CanonTo = S.Context.getCanonicalType(ToType); | |||
2096 | if (CanonFrom.getLocalUnqualifiedType() | |||
2097 | == CanonTo.getLocalUnqualifiedType() && | |||
2098 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { | |||
2099 | FromType = ToType; | |||
2100 | CanonFrom = CanonTo; | |||
2101 | } | |||
2102 | ||||
2103 | SCS.setToType(2, FromType); | |||
2104 | ||||
2105 | if (CanonFrom == CanonTo) | |||
2106 | return true; | |||
2107 | ||||
2108 | // If we have not converted the argument type to the parameter type, | |||
2109 | // this is a bad conversion sequence, unless we're resolving an overload in C. | |||
2110 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) | |||
2111 | return false; | |||
2112 | ||||
2113 | ExprResult ER = ExprResult{From}; | |||
2114 | Sema::AssignConvertType Conv = | |||
2115 | S.CheckSingleAssignmentConstraints(ToType, ER, | |||
2116 | /*Diagnose=*/false, | |||
2117 | /*DiagnoseCFAudited=*/false, | |||
2118 | /*ConvertRHS=*/false); | |||
2119 | ImplicitConversionKind SecondConv; | |||
2120 | switch (Conv) { | |||
2121 | case Sema::Compatible: | |||
2122 | SecondConv = ICK_C_Only_Conversion; | |||
2123 | break; | |||
2124 | // For our purposes, discarding qualifiers is just as bad as using an | |||
2125 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop | |||
2126 | // qualifiers, as well. | |||
2127 | case Sema::CompatiblePointerDiscardsQualifiers: | |||
2128 | case Sema::IncompatiblePointer: | |||
2129 | case Sema::IncompatiblePointerSign: | |||
2130 | SecondConv = ICK_Incompatible_Pointer_Conversion; | |||
2131 | break; | |||
2132 | default: | |||
2133 | return false; | |||
2134 | } | |||
2135 | ||||
2136 | // First can only be an lvalue conversion, so we pretend that this was the | |||
2137 | // second conversion. First should already be valid from earlier in the | |||
2138 | // function. | |||
2139 | SCS.Second = SecondConv; | |||
2140 | SCS.setToType(1, ToType); | |||
2141 | ||||
2142 | // Third is Identity, because Second should rank us worse than any other | |||
2143 | // conversion. This could also be ICK_Qualification, but it's simpler to just | |||
2144 | // lump everything in with the second conversion, and we don't gain anything | |||
2145 | // from making this ICK_Qualification. | |||
2146 | SCS.Third = ICK_Identity; | |||
2147 | SCS.setToType(2, ToType); | |||
2148 | return true; | |||
2149 | } | |||
2150 | ||||
2151 | static bool | |||
2152 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, | |||
2153 | QualType &ToType, | |||
2154 | bool InOverloadResolution, | |||
2155 | StandardConversionSequence &SCS, | |||
2156 | bool CStyle) { | |||
2157 | ||||
2158 | const RecordType *UT = ToType->getAsUnionType(); | |||
2159 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | |||
2160 | return false; | |||
2161 | // The field to initialize within the transparent union. | |||
2162 | RecordDecl *UD = UT->getDecl(); | |||
2163 | // It's compatible if the expression matches any of the fields. | |||
2164 | for (const auto *it : UD->fields()) { | |||
2165 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, | |||
2166 | CStyle, /*AllowObjCWritebackConversion=*/false)) { | |||
2167 | ToType = it->getType(); | |||
2168 | return true; | |||
2169 | } | |||
2170 | } | |||
2171 | return false; | |||
2172 | } | |||
2173 | ||||
2174 | /// IsIntegralPromotion - Determines whether the conversion from the | |||
2175 | /// expression From (whose potentially-adjusted type is FromType) to | |||
2176 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | |||
2177 | /// sets PromotedType to the promoted type. | |||
2178 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | |||
2179 | const BuiltinType *To = ToType->getAs<BuiltinType>(); | |||
2180 | // All integers are built-in. | |||
2181 | if (!To) { | |||
2182 | return false; | |||
2183 | } | |||
2184 | ||||
2185 | // An rvalue of type char, signed char, unsigned char, short int, or | |||
2186 | // unsigned short int can be converted to an rvalue of type int if | |||
2187 | // int can represent all the values of the source type; otherwise, | |||
2188 | // the source rvalue can be converted to an rvalue of type unsigned | |||
2189 | // int (C++ 4.5p1). | |||
2190 | if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() && | |||
2191 | !FromType->isEnumeralType()) { | |||
2192 | if ( // We can promote any signed, promotable integer type to an int | |||
2193 | (FromType->isSignedIntegerType() || | |||
2194 | // We can promote any unsigned integer type whose size is | |||
2195 | // less than int to an int. | |||
2196 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { | |||
2197 | return To->getKind() == BuiltinType::Int; | |||
2198 | } | |||
2199 | ||||
2200 | return To->getKind() == BuiltinType::UInt; | |||
2201 | } | |||
2202 | ||||
2203 | // C++11 [conv.prom]p3: | |||
2204 | // A prvalue of an unscoped enumeration type whose underlying type is not | |||
2205 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the | |||
2206 | // following types that can represent all the values of the enumeration | |||
2207 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, | |||
2208 | // unsigned int, long int, unsigned long int, long long int, or unsigned | |||
2209 | // long long int. If none of the types in that list can represent all the | |||
2210 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration | |||
2211 | // type can be converted to an rvalue a prvalue of the extended integer type | |||
2212 | // with lowest integer conversion rank (4.13) greater than the rank of long | |||
2213 | // long in which all the values of the enumeration can be represented. If | |||
2214 | // there are two such extended types, the signed one is chosen. | |||
2215 | // C++11 [conv.prom]p4: | |||
2216 | // A prvalue of an unscoped enumeration type whose underlying type is fixed | |||
2217 | // can be converted to a prvalue of its underlying type. Moreover, if | |||
2218 | // integral promotion can be applied to its underlying type, a prvalue of an | |||
2219 | // unscoped enumeration type whose underlying type is fixed can also be | |||
2220 | // converted to a prvalue of the promoted underlying type. | |||
2221 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { | |||
2222 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not | |||
2223 | // provided for a scoped enumeration. | |||
2224 | if (FromEnumType->getDecl()->isScoped()) | |||
2225 | return false; | |||
2226 | ||||
2227 | // We can perform an integral promotion to the underlying type of the enum, | |||
2228 | // even if that's not the promoted type. Note that the check for promoting | |||
2229 | // the underlying type is based on the type alone, and does not consider | |||
2230 | // the bitfield-ness of the actual source expression. | |||
2231 | if (FromEnumType->getDecl()->isFixed()) { | |||
2232 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); | |||
2233 | return Context.hasSameUnqualifiedType(Underlying, ToType) || | |||
2234 | IsIntegralPromotion(nullptr, Underlying, ToType); | |||
2235 | } | |||
2236 | ||||
2237 | // We have already pre-calculated the promotion type, so this is trivial. | |||
2238 | if (ToType->isIntegerType() && | |||
2239 | isCompleteType(From->getBeginLoc(), FromType)) | |||
| ||||
2240 | return Context.hasSameUnqualifiedType( | |||
2241 | ToType, FromEnumType->getDecl()->getPromotionType()); | |||
2242 | ||||
2243 | // C++ [conv.prom]p5: | |||
2244 | // If the bit-field has an enumerated type, it is treated as any other | |||
2245 | // value of that type for promotion purposes. | |||
2246 | // | |||
2247 | // ... so do not fall through into the bit-field checks below in C++. | |||
2248 | if (getLangOpts().CPlusPlus) | |||
2249 | return false; | |||
2250 | } | |||
2251 | ||||
2252 | // C++0x [conv.prom]p2: | |||
2253 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted | |||
2254 | // to an rvalue a prvalue of the first of the following types that can | |||
2255 | // represent all the values of its underlying type: int, unsigned int, | |||
2256 | // long int, unsigned long int, long long int, or unsigned long long int. | |||
2257 | // If none of the types in that list can represent all the values of its | |||
2258 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, | |||
2259 | // or wchar_t can be converted to an rvalue a prvalue of its underlying | |||
2260 | // type. | |||
2261 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && | |||
2262 | ToType->isIntegerType()) { | |||
2263 | // Determine whether the type we're converting from is signed or | |||
2264 | // unsigned. | |||
2265 | bool FromIsSigned = FromType->isSignedIntegerType(); | |||
2266 | uint64_t FromSize = Context.getTypeSize(FromType); | |||
2267 | ||||
2268 | // The types we'll try to promote to, in the appropriate | |||
2269 | // order. Try each of these types. | |||
2270 | QualType PromoteTypes[6] = { | |||
2271 | Context.IntTy, Context.UnsignedIntTy, | |||
2272 | Context.LongTy, Context.UnsignedLongTy , | |||
2273 | Context.LongLongTy, Context.UnsignedLongLongTy | |||
2274 | }; | |||
2275 | for (int Idx = 0; Idx < 6; ++Idx) { | |||
2276 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | |||
2277 | if (FromSize < ToSize || | |||
2278 | (FromSize == ToSize && | |||
2279 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | |||
2280 | // We found the type that we can promote to. If this is the | |||
2281 | // type we wanted, we have a promotion. Otherwise, no | |||
2282 | // promotion. | |||
2283 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | |||
2284 | } | |||
2285 | } | |||
2286 | } | |||
2287 | ||||
2288 | // An rvalue for an integral bit-field (9.6) can be converted to an | |||
2289 | // rvalue of type int if int can represent all the values of the | |||
2290 | // bit-field; otherwise, it can be converted to unsigned int if | |||
2291 | // unsigned int can represent all the values of the bit-field. If | |||
2292 | // the bit-field is larger yet, no integral promotion applies to | |||
2293 | // it. If the bit-field has an enumerated type, it is treated as any | |||
2294 | // other value of that type for promotion purposes (C++ 4.5p3). | |||
2295 | // FIXME: We should delay checking of bit-fields until we actually perform the | |||
2296 | // conversion. | |||
2297 | // | |||
2298 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be | |||
2299 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum | |||
2300 | // bit-fields and those whose underlying type is larger than int) for GCC | |||
2301 | // compatibility. | |||
2302 | if (From) { | |||
2303 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { | |||
2304 | std::optional<llvm::APSInt> BitWidth; | |||
2305 | if (FromType->isIntegralType(Context) && | |||
2306 | (BitWidth = | |||
2307 | MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { | |||
2308 | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); | |||
2309 | ToSize = Context.getTypeSize(ToType); | |||
2310 | ||||
2311 | // Are we promoting to an int from a bitfield that fits in an int? | |||
2312 | if (*BitWidth < ToSize || | |||
2313 | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { | |||
2314 | return To->getKind() == BuiltinType::Int; | |||
2315 | } | |||
2316 | ||||
2317 | // Are we promoting to an unsigned int from an unsigned bitfield | |||
2318 | // that fits into an unsigned int? | |||
2319 | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { | |||
2320 | return To->getKind() == BuiltinType::UInt; | |||
2321 | } | |||
2322 | ||||
2323 | return false; | |||
2324 | } | |||
2325 | } | |||
2326 | } | |||
2327 | ||||
2328 | // An rvalue of type bool can be converted to an rvalue of type int, | |||
2329 | // with false becoming zero and true becoming one (C++ 4.5p4). | |||
2330 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | |||
2331 | return true; | |||
2332 | } | |||
2333 | ||||
2334 | return false; | |||
2335 | } | |||
2336 | ||||
2337 | /// IsFloatingPointPromotion - Determines whether the conversion from | |||
2338 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | |||
2339 | /// returns true and sets PromotedType to the promoted type. | |||
2340 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | |||
2341 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | |||
2342 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | |||
2343 | /// An rvalue of type float can be converted to an rvalue of type | |||
2344 | /// double. (C++ 4.6p1). | |||
2345 | if (FromBuiltin->getKind() == BuiltinType::Float && | |||
2346 | ToBuiltin->getKind() == BuiltinType::Double) | |||
2347 | return true; | |||
2348 | ||||
2349 | // C99 6.3.1.5p1: | |||
2350 | // When a float is promoted to double or long double, or a | |||
2351 | // double is promoted to long double [...]. | |||
2352 | if (!getLangOpts().CPlusPlus && | |||
2353 | (FromBuiltin->getKind() == BuiltinType::Float || | |||
2354 | FromBuiltin->getKind() == BuiltinType::Double) && | |||
2355 | (ToBuiltin->getKind() == BuiltinType::LongDouble || | |||
2356 | ToBuiltin->getKind() == BuiltinType::Float128 || | |||
2357 | ToBuiltin->getKind() == BuiltinType::Ibm128)) | |||
2358 | return true; | |||
2359 | ||||
2360 | // Half can be promoted to float. | |||
2361 | if (!getLangOpts().NativeHalfType && | |||
2362 | FromBuiltin->getKind() == BuiltinType::Half && | |||
2363 | ToBuiltin->getKind() == BuiltinType::Float) | |||
2364 | return true; | |||
2365 | } | |||
2366 | ||||
2367 | return false; | |||
2368 | } | |||
2369 | ||||
2370 | /// Determine if a conversion is a complex promotion. | |||
2371 | /// | |||
2372 | /// A complex promotion is defined as a complex -> complex conversion | |||
2373 | /// where the conversion between the underlying real types is a | |||
2374 | /// floating-point or integral promotion. | |||
2375 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | |||
2376 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | |||
2377 | if (!FromComplex) | |||
2378 | return false; | |||
2379 | ||||
2380 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | |||
2381 | if (!ToComplex) | |||
2382 | return false; | |||
2383 | ||||
2384 | return IsFloatingPointPromotion(FromComplex->getElementType(), | |||
2385 | ToComplex->getElementType()) || | |||
2386 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), | |||
2387 | ToComplex->getElementType()); | |||
2388 | } | |||
2389 | ||||
2390 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | |||
2391 | /// the pointer type FromPtr to a pointer to type ToPointee, with the | |||
2392 | /// same type qualifiers as FromPtr has on its pointee type. ToType, | |||
2393 | /// if non-empty, will be a pointer to ToType that may or may not have | |||
2394 | /// the right set of qualifiers on its pointee. | |||
2395 | /// | |||
2396 | static QualType | |||
2397 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, | |||
2398 | QualType ToPointee, QualType ToType, | |||
2399 | ASTContext &Context, | |||
2400 | bool StripObjCLifetime = false) { | |||
2401 | assert((FromPtr->getTypeClass() == Type::Pointer ||(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )) | |||
2402 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )) | |||
2403 | "Invalid similarly-qualified pointer type")(static_cast <bool> ((FromPtr->getTypeClass() == Type ::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer ) && "Invalid similarly-qualified pointer type") ? void (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "clang/lib/Sema/SemaOverload.cpp", 2403, __extension__ __PRETTY_FUNCTION__ )); | |||
2404 | ||||
2405 | /// Conversions to 'id' subsume cv-qualifier conversions. | |||
2406 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) | |||
2407 | return ToType.getUnqualifiedType(); | |||
2408 | ||||
2409 | QualType CanonFromPointee | |||
2410 | = Context.getCanonicalType(FromPtr->getPointeeType()); | |||
2411 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); | |||
2412 | Qualifiers Quals = CanonFromPointee.getQualifiers(); | |||
2413 | ||||
2414 | if (StripObjCLifetime) | |||
2415 | Quals.removeObjCLifetime(); | |||
2416 | ||||
2417 | // Exact qualifier match -> return the pointer type we're converting to. | |||
2418 | if (CanonToPointee.getLocalQualifiers() == Quals) { | |||
2419 | // ToType is exactly what we need. Return it. | |||
2420 | if (!ToType.isNull()) | |||
2421 | return ToType.getUnqualifiedType(); | |||
2422 | ||||
2423 | // Build a pointer to ToPointee. It has the right qualifiers | |||
2424 | // already. | |||
2425 | if (isa<ObjCObjectPointerType>(ToType)) | |||
2426 | return Context.getObjCObjectPointerType(ToPointee); | |||
2427 | return Context.getPointerType(ToPointee); | |||
2428 | } | |||
2429 | ||||
2430 | // Just build a canonical type that has the right qualifiers. | |||
2431 | QualType QualifiedCanonToPointee | |||
2432 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); | |||
2433 | ||||
2434 | if (isa<ObjCObjectPointerType>(ToType)) | |||
2435 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); | |||
2436 | return Context.getPointerType(QualifiedCanonToPointee); | |||
2437 | } | |||
2438 | ||||
2439 | static bool isNullPointerConstantForConversion(Expr *Expr, | |||
2440 | bool InOverloadResolution, | |||
2441 | ASTContext &Context) { | |||
2442 | // Handle value-dependent integral null pointer constants correctly. | |||
2443 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | |||
2444 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && | |||
2445 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) | |||
2446 | return !InOverloadResolution; | |||
2447 | ||||
2448 | return Expr->isNullPointerConstant(Context, | |||
2449 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | |||
2450 | : Expr::NPC_ValueDependentIsNull); | |||
2451 | } | |||
2452 | ||||
2453 | /// IsPointerConversion - Determines whether the conversion of the | |||
2454 | /// expression From, which has the (possibly adjusted) type FromType, | |||
2455 | /// can be converted to the type ToType via a pointer conversion (C++ | |||
2456 | /// 4.10). If so, returns true and places the converted type (that | |||
2457 | /// might differ from ToType in its cv-qualifiers at some level) into | |||
2458 | /// ConvertedType. | |||
2459 | /// | |||
2460 | /// This routine also supports conversions to and from block pointers | |||
2461 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | |||
2462 | /// pointers to interfaces. FIXME: Once we've determined the | |||
2463 | /// appropriate overloading rules for Objective-C, we may want to | |||
2464 | /// split the Objective-C checks into a different routine; however, | |||
2465 | /// GCC seems to consider all of these conversions to be pointer | |||
2466 | /// conversions, so for now they live here. IncompatibleObjC will be | |||
2467 | /// set if the conversion is an allowed Objective-C conversion that | |||
2468 | /// should result in a warning. | |||
2469 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | |||
2470 | bool InOverloadResolution, | |||
2471 | QualType& ConvertedType, | |||
2472 | bool &IncompatibleObjC) { | |||
2473 | IncompatibleObjC = false; | |||
2474 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, | |||
2475 | IncompatibleObjC)) | |||
2476 | return true; | |||
2477 | ||||
2478 | // Conversion from a null pointer constant to any Objective-C pointer type. | |||
2479 | if (ToType->isObjCObjectPointerType() && | |||
2480 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2481 | ConvertedType = ToType; | |||
2482 | return true; | |||
2483 | } | |||
2484 | ||||
2485 | // Blocks: Block pointers can be converted to void*. | |||
2486 | if (FromType->isBlockPointerType() && ToType->isPointerType() && | |||
2487 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | |||
2488 | ConvertedType = ToType; | |||
2489 | return true; | |||
2490 | } | |||
2491 | // Blocks: A null pointer constant can be converted to a block | |||
2492 | // pointer type. | |||
2493 | if (ToType->isBlockPointerType() && | |||
2494 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2495 | ConvertedType = ToType; | |||
2496 | return true; | |||
2497 | } | |||
2498 | ||||
2499 | // If the left-hand-side is nullptr_t, the right side can be a null | |||
2500 | // pointer constant. | |||
2501 | if (ToType->isNullPtrType() && | |||
2502 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2503 | ConvertedType = ToType; | |||
2504 | return true; | |||
2505 | } | |||
2506 | ||||
2507 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | |||
2508 | if (!ToTypePtr) | |||
2509 | return false; | |||
2510 | ||||
2511 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | |||
2512 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2513 | ConvertedType = ToType; | |||
2514 | return true; | |||
2515 | } | |||
2516 | ||||
2517 | // Beyond this point, both types need to be pointers | |||
2518 | // , including objective-c pointers. | |||
2519 | QualType ToPointeeType = ToTypePtr->getPointeeType(); | |||
2520 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && | |||
2521 | !getLangOpts().ObjCAutoRefCount) { | |||
2522 | ConvertedType = BuildSimilarlyQualifiedPointerType( | |||
2523 | FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType, | |||
2524 | Context); | |||
2525 | return true; | |||
2526 | } | |||
2527 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | |||
2528 | if (!FromTypePtr) | |||
2529 | return false; | |||
2530 | ||||
2531 | QualType FromPointeeType = FromTypePtr->getPointeeType(); | |||
2532 | ||||
2533 | // If the unqualified pointee types are the same, this can't be a | |||
2534 | // pointer conversion, so don't do all of the work below. | |||
2535 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) | |||
2536 | return false; | |||
2537 | ||||
2538 | // An rvalue of type "pointer to cv T," where T is an object type, | |||
2539 | // can be converted to an rvalue of type "pointer to cv void" (C++ | |||
2540 | // 4.10p2). | |||
2541 | if (FromPointeeType->isIncompleteOrObjectType() && | |||
2542 | ToPointeeType->isVoidType()) { | |||
2543 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2544 | ToPointeeType, | |||
2545 | ToType, Context, | |||
2546 | /*StripObjCLifetime=*/true); | |||
2547 | return true; | |||
2548 | } | |||
2549 | ||||
2550 | // MSVC allows implicit function to void* type conversion. | |||
2551 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && | |||
2552 | ToPointeeType->isVoidType()) { | |||
2553 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2554 | ToPointeeType, | |||
2555 | ToType, Context); | |||
2556 | return true; | |||
2557 | } | |||
2558 | ||||
2559 | // When we're overloading in C, we allow a special kind of pointer | |||
2560 | // conversion for compatible-but-not-identical pointee types. | |||
2561 | if (!getLangOpts().CPlusPlus && | |||
2562 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | |||
2563 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2564 | ToPointeeType, | |||
2565 | ToType, Context); | |||
2566 | return true; | |||
2567 | } | |||
2568 | ||||
2569 | // C++ [conv.ptr]p3: | |||
2570 | // | |||
2571 | // An rvalue of type "pointer to cv D," where D is a class type, | |||
2572 | // can be converted to an rvalue of type "pointer to cv B," where | |||
2573 | // B is a base class (clause 10) of D. If B is an inaccessible | |||
2574 | // (clause 11) or ambiguous (10.2) base class of D, a program that | |||
2575 | // necessitates this conversion is ill-formed. The result of the | |||
2576 | // conversion is a pointer to the base class sub-object of the | |||
2577 | // derived class object. The null pointer value is converted to | |||
2578 | // the null pointer value of the destination type. | |||
2579 | // | |||
2580 | // Note that we do not check for ambiguity or inaccessibility | |||
2581 | // here. That is handled by CheckPointerConversion. | |||
2582 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && | |||
2583 | ToPointeeType->isRecordType() && | |||
2584 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | |||
2585 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { | |||
2586 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2587 | ToPointeeType, | |||
2588 | ToType, Context); | |||
2589 | return true; | |||
2590 | } | |||
2591 | ||||
2592 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && | |||
2593 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { | |||
2594 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2595 | ToPointeeType, | |||
2596 | ToType, Context); | |||
2597 | return true; | |||
2598 | } | |||
2599 | ||||
2600 | return false; | |||
2601 | } | |||
2602 | ||||
2603 | /// Adopt the given qualifiers for the given type. | |||
2604 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ | |||
2605 | Qualifiers TQs = T.getQualifiers(); | |||
2606 | ||||
2607 | // Check whether qualifiers already match. | |||
2608 | if (TQs == Qs) | |||
2609 | return T; | |||
2610 | ||||
2611 | if (Qs.compatiblyIncludes(TQs)) | |||
2612 | return Context.getQualifiedType(T, Qs); | |||
2613 | ||||
2614 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); | |||
2615 | } | |||
2616 | ||||
2617 | /// isObjCPointerConversion - Determines whether this is an | |||
2618 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | |||
2619 | /// with the same arguments and return values. | |||
2620 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | |||
2621 | QualType& ConvertedType, | |||
2622 | bool &IncompatibleObjC) { | |||
2623 | if (!getLangOpts().ObjC) | |||
2624 | return false; | |||
2625 | ||||
2626 | // The set of qualifiers on the type we're converting from. | |||
2627 | Qualifiers FromQualifiers = FromType.getQualifiers(); | |||
2628 | ||||
2629 | // First, we handle all conversions on ObjC object pointer types. | |||
2630 | const ObjCObjectPointerType* ToObjCPtr = | |||
2631 | ToType->getAs<ObjCObjectPointerType>(); | |||
2632 | const ObjCObjectPointerType *FromObjCPtr = | |||
2633 | FromType->getAs<ObjCObjectPointerType>(); | |||
2634 | ||||
2635 | if (ToObjCPtr && FromObjCPtr) { | |||
2636 | // If the pointee types are the same (ignoring qualifications), | |||
2637 | // then this is not a pointer conversion. | |||
2638 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), | |||
2639 | FromObjCPtr->getPointeeType())) | |||
2640 | return false; | |||
2641 | ||||
2642 | // Conversion between Objective-C pointers. | |||
2643 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | |||
2644 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | |||
2645 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | |||
2646 | if (getLangOpts().CPlusPlus && LHS && RHS && | |||
2647 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | |||
2648 | FromObjCPtr->getPointeeType())) | |||
2649 | return false; | |||
2650 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | |||
2651 | ToObjCPtr->getPointeeType(), | |||
2652 | ToType, Context); | |||
2653 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2654 | return true; | |||
2655 | } | |||
2656 | ||||
2657 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | |||
2658 | // Okay: this is some kind of implicit downcast of Objective-C | |||
2659 | // interfaces, which is permitted. However, we're going to | |||
2660 | // complain about it. | |||
2661 | IncompatibleObjC = true; | |||
2662 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | |||
2663 | ToObjCPtr->getPointeeType(), | |||
2664 | ToType, Context); | |||
2665 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2666 | return true; | |||
2667 | } | |||
2668 | } | |||
2669 | // Beyond this point, both types need to be C pointers or block pointers. | |||
2670 | QualType ToPointeeType; | |||
2671 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | |||
2672 | ToPointeeType = ToCPtr->getPointeeType(); | |||
2673 | else if (const BlockPointerType *ToBlockPtr = | |||
2674 | ToType->getAs<BlockPointerType>()) { | |||
2675 | // Objective C++: We're able to convert from a pointer to any object | |||
2676 | // to a block pointer type. | |||
2677 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | |||
2678 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2679 | return true; | |||
2680 | } | |||
2681 | ToPointeeType = ToBlockPtr->getPointeeType(); | |||
2682 | } | |||
2683 | else if (FromType->getAs<BlockPointerType>() && | |||
2684 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | |||
2685 | // Objective C++: We're able to convert from a block pointer type to a | |||
2686 | // pointer to any object. | |||
2687 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2688 | return true; | |||
2689 | } | |||
2690 | else | |||
2691 | return false; | |||
2692 | ||||
2693 | QualType FromPointeeType; | |||
2694 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | |||
2695 | FromPointeeType = FromCPtr->getPointeeType(); | |||
2696 | else if (const BlockPointerType *FromBlockPtr = | |||
2697 | FromType->getAs<BlockPointerType>()) | |||
2698 | FromPointeeType = FromBlockPtr->getPointeeType(); | |||
2699 | else | |||
2700 | return false; | |||
2701 | ||||
2702 | // If we have pointers to pointers, recursively check whether this | |||
2703 | // is an Objective-C conversion. | |||
2704 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | |||
2705 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | |||
2706 | IncompatibleObjC)) { | |||
2707 | // We always complain about this conversion. | |||
2708 | IncompatibleObjC = true; | |||
2709 | ConvertedType = Context.getPointerType(ConvertedType); | |||
2710 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2711 | return true; | |||
2712 | } | |||
2713 | // Allow conversion of pointee being objective-c pointer to another one; | |||
2714 | // as in I* to id. | |||
2715 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && | |||
2716 | ToPointeeType->getAs<ObjCObjectPointerType>() && | |||
2717 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | |||
2718 | IncompatibleObjC)) { | |||
2719 | ||||
2720 | ConvertedType = Context.getPointerType(ConvertedType); | |||
2721 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2722 | return true; | |||
2723 | } | |||
2724 | ||||
2725 | // If we have pointers to functions or blocks, check whether the only | |||
2726 | // differences in the argument and result types are in Objective-C | |||
2727 | // pointer conversions. If so, we permit the conversion (but | |||
2728 | // complain about it). | |||
2729 | const FunctionProtoType *FromFunctionType | |||
2730 | = FromPointeeType->getAs<FunctionProtoType>(); | |||
2731 | const FunctionProtoType *ToFunctionType | |||
2732 | = ToPointeeType->getAs<FunctionProtoType>(); | |||
2733 | if (FromFunctionType && ToFunctionType) { | |||
2734 | // If the function types are exactly the same, this isn't an | |||
2735 | // Objective-C pointer conversion. | |||
2736 | if (Context.getCanonicalType(FromPointeeType) | |||
2737 | == Context.getCanonicalType(ToPointeeType)) | |||
2738 | return false; | |||
2739 | ||||
2740 | // Perform the quick checks that will tell us whether these | |||
2741 | // function types are obviously different. | |||
2742 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | |||
2743 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | |||
2744 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) | |||
2745 | return false; | |||
2746 | ||||
2747 | bool HasObjCConversion = false; | |||
2748 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == | |||
2749 | Context.getCanonicalType(ToFunctionType->getReturnType())) { | |||
2750 | // Okay, the types match exactly. Nothing to do. | |||
2751 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), | |||
2752 | ToFunctionType->getReturnType(), | |||
2753 | ConvertedType, IncompatibleObjC)) { | |||
2754 | // Okay, we have an Objective-C pointer conversion. | |||
2755 | HasObjCConversion = true; | |||
2756 | } else { | |||
2757 | // Function types are too different. Abort. | |||
2758 | return false; | |||
2759 | } | |||
2760 | ||||
2761 | // Check argument types. | |||
2762 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | |||
2763 | ArgIdx != NumArgs; ++ArgIdx) { | |||
2764 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | |||
2765 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | |||
2766 | if (Context.getCanonicalType(FromArgType) | |||
2767 | == Context.getCanonicalType(ToArgType)) { | |||
2768 | // Okay, the types match exactly. Nothing to do. | |||
2769 | } else if (isObjCPointerConversion(FromArgType, ToArgType, | |||
2770 | ConvertedType, IncompatibleObjC)) { | |||
2771 | // Okay, we have an Objective-C pointer conversion. | |||
2772 | HasObjCConversion = true; | |||
2773 | } else { | |||
2774 | // Argument types are too different. Abort. | |||
2775 | return false; | |||
2776 | } | |||
2777 | } | |||
2778 | ||||
2779 | if (HasObjCConversion) { | |||
2780 | // We had an Objective-C conversion. Allow this pointer | |||
2781 | // conversion, but complain about it. | |||
2782 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2783 | IncompatibleObjC = true; | |||
2784 | return true; | |||
2785 | } | |||
2786 | } | |||
2787 | ||||
2788 | return false; | |||
2789 | } | |||
2790 | ||||
2791 | /// Determine whether this is an Objective-C writeback conversion, | |||
2792 | /// used for parameter passing when performing automatic reference counting. | |||
2793 | /// | |||
2794 | /// \param FromType The type we're converting form. | |||
2795 | /// | |||
2796 | /// \param ToType The type we're converting to. | |||
2797 | /// | |||
2798 | /// \param ConvertedType The type that will be produced after applying | |||
2799 | /// this conversion. | |||
2800 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, | |||
2801 | QualType &ConvertedType) { | |||
2802 | if (!getLangOpts().ObjCAutoRefCount || | |||
2803 | Context.hasSameUnqualifiedType(FromType, ToType)) | |||
2804 | return false; | |||
2805 | ||||
2806 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). | |||
2807 | QualType ToPointee; | |||
2808 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) | |||
2809 | ToPointee = ToPointer->getPointeeType(); | |||
2810 | else | |||
2811 | return false; | |||
2812 | ||||
2813 | Qualifiers ToQuals = ToPointee.getQualifiers(); | |||
2814 | if (!ToPointee->isObjCLifetimeType() || | |||
2815 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || | |||
2816 | !ToQuals.withoutObjCLifetime().empty()) | |||
2817 | return false; | |||
2818 | ||||
2819 | // Argument must be a pointer to __strong to __weak. | |||
2820 | QualType FromPointee; | |||
2821 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) | |||
2822 | FromPointee = FromPointer->getPointeeType(); | |||
2823 | else | |||
2824 | return false; | |||
2825 | ||||
2826 | Qualifiers FromQuals = FromPointee.getQualifiers(); | |||
2827 | if (!FromPointee->isObjCLifetimeType() || | |||
2828 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && | |||
2829 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) | |||
2830 | return false; | |||
2831 | ||||
2832 | // Make sure that we have compatible qualifiers. | |||
2833 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); | |||
2834 | if (!ToQuals.compatiblyIncludes(FromQuals)) | |||
2835 | return false; | |||
2836 | ||||
2837 | // Remove qualifiers from the pointee type we're converting from; they | |||
2838 | // aren't used in the compatibility check belong, and we'll be adding back | |||
2839 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. | |||
2840 | FromPointee = FromPointee.getUnqualifiedType(); | |||
2841 | ||||
2842 | // The unqualified form of the pointee types must be compatible. | |||
2843 | ToPointee = ToPointee.getUnqualifiedType(); | |||
2844 | bool IncompatibleObjC; | |||
2845 | if (Context.typesAreCompatible(FromPointee, ToPointee)) | |||
2846 | FromPointee = ToPointee; | |||
2847 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, | |||
2848 | IncompatibleObjC)) | |||
2849 | return false; | |||
2850 | ||||
2851 | /// Construct the type we're converting to, which is a pointer to | |||
2852 | /// __autoreleasing pointee. | |||
2853 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); | |||
2854 | ConvertedType = Context.getPointerType(FromPointee); | |||
2855 | return true; | |||
2856 | } | |||
2857 | ||||
2858 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, | |||
2859 | QualType& ConvertedType) { | |||
2860 | QualType ToPointeeType; | |||
2861 | if (const BlockPointerType *ToBlockPtr = | |||
2862 | ToType->getAs<BlockPointerType>()) | |||
2863 | ToPointeeType = ToBlockPtr->getPointeeType(); | |||
2864 | else | |||
2865 | return false; | |||
2866 | ||||
2867 | QualType FromPointeeType; | |||
2868 | if (const BlockPointerType *FromBlockPtr = | |||
2869 | FromType->getAs<BlockPointerType>()) | |||
2870 | FromPointeeType = FromBlockPtr->getPointeeType(); | |||
2871 | else | |||
2872 | return false; | |||
2873 | // We have pointer to blocks, check whether the only | |||
2874 | // differences in the argument and result types are in Objective-C | |||
2875 | // pointer conversions. If so, we permit the conversion. | |||
2876 | ||||
2877 | const FunctionProtoType *FromFunctionType | |||
2878 | = FromPointeeType->getAs<FunctionProtoType>(); | |||
2879 | const FunctionProtoType *ToFunctionType | |||
2880 | = ToPointeeType->getAs<FunctionProtoType>(); | |||
2881 | ||||
2882 | if (!FromFunctionType || !ToFunctionType) | |||
2883 | return false; | |||
2884 | ||||
2885 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) | |||
2886 | return true; | |||
2887 | ||||
2888 | // Perform the quick checks that will tell us whether these | |||
2889 | // function types are obviously different. | |||
2890 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | |||
2891 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) | |||
2892 | return false; | |||
2893 | ||||
2894 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); | |||
2895 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); | |||
2896 | if (FromEInfo != ToEInfo) | |||
2897 | return false; | |||
2898 | ||||
2899 | bool IncompatibleObjC = false; | |||
2900 | if (Context.hasSameType(FromFunctionType->getReturnType(), | |||
2901 | ToFunctionType->getReturnType())) { | |||
2902 | // Okay, the types match exactly. Nothing to do. | |||
2903 | } else { | |||
2904 | QualType RHS = FromFunctionType->getReturnType(); | |||
2905 | QualType LHS = ToFunctionType->getReturnType(); | |||
2906 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && | |||
2907 | !RHS.hasQualifiers() && LHS.hasQualifiers()) | |||
2908 | LHS = LHS.getUnqualifiedType(); | |||
2909 | ||||
2910 | if (Context.hasSameType(RHS,LHS)) { | |||
2911 | // OK exact match. | |||
2912 | } else if (isObjCPointerConversion(RHS, LHS, | |||
2913 | ConvertedType, IncompatibleObjC)) { | |||
2914 | if (IncompatibleObjC) | |||
2915 | return false; | |||
2916 | // Okay, we have an Objective-C pointer conversion. | |||
2917 | } | |||
2918 | else | |||
2919 | return false; | |||
2920 | } | |||
2921 | ||||
2922 | // Check argument types. | |||
2923 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | |||
2924 | ArgIdx != NumArgs; ++ArgIdx) { | |||
2925 | IncompatibleObjC = false; | |||
2926 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | |||
2927 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | |||
2928 | if (Context.hasSameType(FromArgType, ToArgType)) { | |||
2929 | // Okay, the types match exactly. Nothing to do. | |||
2930 | } else if (isObjCPointerConversion(ToArgType, FromArgType, | |||
2931 | ConvertedType, IncompatibleObjC)) { | |||
2932 | if (IncompatibleObjC) | |||
2933 | return false; | |||
2934 | // Okay, we have an Objective-C pointer conversion. | |||
2935 | } else | |||
2936 | // Argument types are too different. Abort. | |||
2937 | return false; | |||
2938 | } | |||
2939 | ||||
2940 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | |||
2941 | bool CanUseToFPT, CanUseFromFPT; | |||
2942 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, | |||
2943 | CanUseToFPT, CanUseFromFPT, | |||
2944 | NewParamInfos)) | |||
2945 | return false; | |||
2946 | ||||
2947 | ConvertedType = ToType; | |||
2948 | return true; | |||
2949 | } | |||
2950 | ||||
2951 | enum { | |||
2952 | ft_default, | |||
2953 | ft_different_class, | |||
2954 | ft_parameter_arity, | |||
2955 | ft_parameter_mismatch, | |||
2956 | ft_return_type, | |||
2957 | ft_qualifer_mismatch, | |||
2958 | ft_noexcept | |||
2959 | }; | |||
2960 | ||||
2961 | /// Attempts to get the FunctionProtoType from a Type. Handles | |||
2962 | /// MemberFunctionPointers properly. | |||
2963 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { | |||
2964 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) | |||
2965 | return FPT; | |||
2966 | ||||
2967 | if (auto *MPT = FromType->getAs<MemberPointerType>()) | |||
2968 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); | |||
2969 | ||||
2970 | return nullptr; | |||
2971 | } | |||
2972 | ||||
2973 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing | |||
2974 | /// function types. Catches different number of parameter, mismatch in | |||
2975 | /// parameter types, and different return types. | |||
2976 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | |||
2977 | QualType FromType, QualType ToType) { | |||
2978 | // If either type is not valid, include no extra info. | |||
2979 | if (FromType.isNull() || ToType.isNull()) { | |||
2980 | PDiag << ft_default; | |||
2981 | return; | |||
2982 | } | |||
2983 | ||||
2984 | // Get the function type from the pointers. | |||
2985 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { | |||
2986 | const auto *FromMember = FromType->castAs<MemberPointerType>(), | |||
2987 | *ToMember = ToType->castAs<MemberPointerType>(); | |||
2988 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { | |||
2989 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) | |||
2990 | << QualType(FromMember->getClass(), 0); | |||
2991 | return; | |||
2992 | } | |||
2993 | FromType = FromMember->getPointeeType(); | |||
2994 | ToType = ToMember->getPointeeType(); | |||
2995 | } | |||
2996 | ||||
2997 | if (FromType->isPointerType()) | |||
2998 | FromType = FromType->getPointeeType(); | |||
2999 | if (ToType->isPointerType()) | |||
3000 | ToType = ToType->getPointeeType(); | |||
3001 | ||||
3002 | // Remove references. | |||
3003 | FromType = FromType.getNonReferenceType(); | |||
3004 | ToType = ToType.getNonReferenceType(); | |||
3005 | ||||
3006 | // Don't print extra info for non-specialized template functions. | |||
3007 | if (FromType->isInstantiationDependentType() && | |||
3008 | !FromType->getAs<TemplateSpecializationType>()) { | |||
3009 | PDiag << ft_default; | |||
3010 | return; | |||
3011 | } | |||
3012 | ||||
3013 | // No extra info for same types. | |||
3014 | if (Context.hasSameType(FromType, ToType)) { | |||
3015 | PDiag << ft_default; | |||
3016 | return; | |||
3017 | } | |||
3018 | ||||
3019 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), | |||
3020 | *ToFunction = tryGetFunctionProtoType(ToType); | |||
3021 | ||||
3022 | // Both types need to be function types. | |||
3023 | if (!FromFunction || !ToFunction) { | |||
3024 | PDiag << ft_default; | |||
3025 | return; | |||
3026 | } | |||
3027 | ||||
3028 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { | |||
3029 | PDiag << ft_parameter_arity << ToFunction->getNumParams() | |||
3030 | << FromFunction->getNumParams(); | |||
3031 | return; | |||
3032 | } | |||
3033 | ||||
3034 | // Handle different parameter types. | |||
3035 | unsigned ArgPos; | |||
3036 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { | |||
3037 | PDiag << ft_parameter_mismatch << ArgPos + 1 | |||
3038 | << ToFunction->getParamType(ArgPos) | |||
3039 | << FromFunction->getParamType(ArgPos); | |||
3040 | return; | |||
3041 | } | |||
3042 | ||||
3043 | // Handle different return type. | |||
3044 | if (!Context.hasSameType(FromFunction->getReturnType(), | |||
3045 | ToFunction->getReturnType())) { | |||
3046 | PDiag << ft_return_type << ToFunction->getReturnType() | |||
3047 | << FromFunction->getReturnType(); | |||
3048 | return; | |||
3049 | } | |||
3050 | ||||
3051 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { | |||
3052 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() | |||
3053 | << FromFunction->getMethodQuals(); | |||
3054 | return; | |||
3055 | } | |||
3056 | ||||
3057 | // Handle exception specification differences on canonical type (in C++17 | |||
3058 | // onwards). | |||
3059 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) | |||
3060 | ->isNothrow() != | |||
3061 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) | |||
3062 | ->isNothrow()) { | |||
3063 | PDiag << ft_noexcept; | |||
3064 | return; | |||
3065 | } | |||
3066 | ||||
3067 | // Unable to find a difference, so add no extra info. | |||
3068 | PDiag << ft_default; | |||
3069 | } | |||
3070 | ||||
3071 | /// FunctionParamTypesAreEqual - This routine checks two function proto types | |||
3072 | /// for equality of their parameter types. Caller has already checked that | |||
3073 | /// they have same number of parameters. If the parameters are different, | |||
3074 | /// ArgPos will have the parameter index of the first different parameter. | |||
3075 | /// If `Reversed` is true, the parameters of `NewType` will be compared in | |||
3076 | /// reverse order. That's useful if one of the functions is being used as a C++20 | |||
3077 | /// synthesized operator overload with a reversed parameter order. | |||
3078 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | |||
3079 | const FunctionProtoType *NewType, | |||
3080 | unsigned *ArgPos, bool Reversed) { | |||
3081 | assert(OldType->getNumParams() == NewType->getNumParams() &&(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )) | |||
3082 | "Can't compare parameters of functions with different number of "(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )) | |||
3083 | "parameters!")(static_cast <bool> (OldType->getNumParams() == NewType ->getNumParams() && "Can't compare parameters of functions with different number of " "parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\"" , "clang/lib/Sema/SemaOverload.cpp", 3083, __extension__ __PRETTY_FUNCTION__ )); | |||
3084 | for (size_t I = 0; I < OldType->getNumParams(); I++) { | |||
3085 | // Reverse iterate over the parameters of `OldType` if `Reversed` is true. | |||
3086 | size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I; | |||
3087 | ||||
3088 | // Ignore address spaces in pointee type. This is to disallow overloading | |||
3089 | // on __ptr32/__ptr64 address spaces. | |||
3090 | QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType()); | |||
3091 | QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType()); | |||
3092 | ||||
3093 | if (!Context.hasSameType(Old, New)) { | |||
3094 | if (ArgPos) | |||
3095 | *ArgPos = I; | |||
3096 | return false; | |||
3097 | } | |||
3098 | } | |||
3099 | return true; | |||
3100 | } | |||
3101 | ||||
3102 | /// CheckPointerConversion - Check the pointer conversion from the | |||
3103 | /// expression From to the type ToType. This routine checks for | |||
3104 | /// ambiguous or inaccessible derived-to-base pointer | |||
3105 | /// conversions for which IsPointerConversion has already returned | |||
3106 | /// true. It returns true and produces a diagnostic if there was an | |||
3107 | /// error, or returns false otherwise. | |||
3108 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | |||
3109 | CastKind &Kind, | |||
3110 | CXXCastPath& BasePath, | |||
3111 | bool IgnoreBaseAccess, | |||
3112 | bool Diagnose) { | |||
3113 | QualType FromType = From->getType(); | |||
3114 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; | |||
3115 | ||||
3116 | Kind = CK_BitCast; | |||
3117 | ||||
3118 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && | |||
3119 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == | |||
3120 | Expr::NPCK_ZeroExpression) { | |||
3121 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) | |||
3122 | DiagRuntimeBehavior(From->getExprLoc(), From, | |||
3123 | PDiag(diag::warn_impcast_bool_to_null_pointer) | |||
3124 | << ToType << From->getSourceRange()); | |||
3125 | else if (!isUnevaluatedContext()) | |||
3126 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) | |||
3127 | << ToType << From->getSourceRange(); | |||
3128 | } | |||
3129 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | |||
3130 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { | |||
3131 | QualType FromPointeeType = FromPtrType->getPointeeType(), | |||
3132 | ToPointeeType = ToPtrType->getPointeeType(); | |||
3133 | ||||
3134 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | |||
3135 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | |||
3136 | // We must have a derived-to-base conversion. Check an | |||
3137 | // ambiguous or inaccessible conversion. | |||
3138 | unsigned InaccessibleID = 0; | |||
3139 | unsigned AmbiguousID = 0; | |||
3140 | if (Diagnose) { | |||
3141 | InaccessibleID = diag::err_upcast_to_inaccessible_base; | |||
3142 | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; | |||
3143 | } | |||
3144 | if (CheckDerivedToBaseConversion( | |||
3145 | FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, | |||
3146 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), | |||
3147 | &BasePath, IgnoreBaseAccess)) | |||
3148 | return true; | |||
3149 | ||||
3150 | // The conversion was successful. | |||
3151 | Kind = CK_DerivedToBase; | |||
3152 | } | |||
3153 | ||||
3154 | if (Diagnose && !IsCStyleOrFunctionalCast && | |||
3155 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { | |||
3156 | assert(getLangOpts().MSVCCompat &&(static_cast <bool> (getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "clang/lib/Sema/SemaOverload.cpp", 3157, __extension__ __PRETTY_FUNCTION__ )) | |||
3157 | "this should only be possible with MSVCCompat!")(static_cast <bool> (getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "clang/lib/Sema/SemaOverload.cpp", 3157, __extension__ __PRETTY_FUNCTION__ )); | |||
3158 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) | |||
3159 | << From->getSourceRange(); | |||
3160 | } | |||
3161 | } | |||
3162 | } else if (const ObjCObjectPointerType *ToPtrType = | |||
3163 | ToType->getAs<ObjCObjectPointerType>()) { | |||
3164 | if (const ObjCObjectPointerType *FromPtrType = | |||
3165 | FromType->getAs<ObjCObjectPointerType>()) { | |||
3166 | // Objective-C++ conversions are always okay. | |||
3167 | // FIXME: We should have a different class of conversions for the | |||
3168 | // Objective-C++ implicit conversions. | |||
3169 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | |||
3170 | return false; | |||
3171 | } else if (FromType->isBlockPointerType()) { | |||
3172 | Kind = CK_BlockPointerToObjCPointerCast; | |||
3173 | } else { | |||
3174 | Kind = CK_CPointerToObjCPointerCast; | |||
3175 | } | |||
3176 | } else if (ToType->isBlockPointerType()) { | |||
3177 | if (!FromType->isBlockPointerType()) | |||
3178 | Kind = CK_AnyPointerToBlockPointerCast; | |||
3179 | } | |||
3180 | ||||
3181 | // We shouldn't fall into this case unless it's valid for other | |||
3182 | // reasons. | |||
3183 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | |||
3184 | Kind = CK_NullToPointer; | |||
3185 | ||||
3186 | return false; | |||
3187 | } | |||
3188 | ||||
3189 | /// IsMemberPointerConversion - Determines whether the conversion of the | |||
3190 | /// expression From, which has the (possibly adjusted) type FromType, can be | |||
3191 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | |||
3192 | /// If so, returns true and places the converted type (that might differ from | |||
3193 | /// ToType in its cv-qualifiers at some level) into ConvertedType. | |||
3194 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | |||
3195 | QualType ToType, | |||
3196 | bool InOverloadResolution, | |||
3197 | QualType &ConvertedType) { | |||
3198 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | |||
3199 | if (!ToTypePtr) | |||
3200 | return false; | |||
3201 | ||||
3202 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | |||
3203 | if (From->isNullPointerConstant(Context, | |||
3204 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | |||
3205 | : Expr::NPC_ValueDependentIsNull)) { | |||
3206 | ConvertedType = ToType; | |||
3207 | return true; | |||
3208 | } | |||
3209 | ||||
3210 | // Otherwise, both types have to be member pointers. | |||
3211 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | |||
3212 | if (!FromTypePtr) | |||
3213 | return false; | |||
3214 | ||||
3215 | // A pointer to member of B can be converted to a pointer to member of D, | |||
3216 | // where D is derived from B (C++ 4.11p2). | |||
3217 | QualType FromClass(FromTypePtr->getClass(), 0); | |||
3218 | QualType ToClass(ToTypePtr->getClass(), 0); | |||
3219 | ||||
3220 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && | |||
3221 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { | |||
3222 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | |||
3223 | ToClass.getTypePtr()); | |||
3224 | return true; | |||
3225 | } | |||
3226 | ||||
3227 | return false; | |||
3228 | } | |||
3229 | ||||
3230 | /// CheckMemberPointerConversion - Check the member pointer conversion from the | |||
3231 | /// expression From to the type ToType. This routine checks for ambiguous or | |||
3232 | /// virtual or inaccessible base-to-derived member pointer conversions | |||
3233 | /// for which IsMemberPointerConversion has already returned true. It returns | |||
3234 | /// true and produces a diagnostic if there was an error, or returns false | |||
3235 | /// otherwise. | |||
3236 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | |||
3237 | CastKind &Kind, | |||
3238 | CXXCastPath &BasePath, | |||
3239 | bool IgnoreBaseAccess) { | |||
3240 | QualType FromType = From->getType(); | |||
3241 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | |||
3242 | if (!FromPtrType) { | |||
3243 | // This must be a null pointer to member pointer conversion | |||
3244 | assert(From->isNullPointerConstant(Context,(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )) | |||
3245 | Expr::NPC_ValueDependentIsNull) &&(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )) | |||
3246 | "Expr must be null pointer constant!")(static_cast <bool> (From->isNullPointerConstant(Context , Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!" ) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "clang/lib/Sema/SemaOverload.cpp", 3246, __extension__ __PRETTY_FUNCTION__ )); | |||
3247 | Kind = CK_NullToMemberPointer; | |||
3248 | return false; | |||
3249 | } | |||
3250 | ||||
3251 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | |||
3252 | assert(ToPtrType && "No member pointer cast has a target type "(static_cast <bool> (ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? void (0) : __assert_fail ( "ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "clang/lib/Sema/SemaOverload.cpp", 3253, __extension__ __PRETTY_FUNCTION__ )) | |||
3253 | "that is not a member pointer.")(static_cast <bool> (ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? void (0) : __assert_fail ( "ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "clang/lib/Sema/SemaOverload.cpp", 3253, __extension__ __PRETTY_FUNCTION__ )); | |||
3254 | ||||
3255 | QualType FromClass = QualType(FromPtrType->getClass(), 0); | |||
3256 | QualType ToClass = QualType(ToPtrType->getClass(), 0); | |||
3257 | ||||
3258 | // FIXME: What about dependent types? | |||
3259 | assert(FromClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (FromClass->isRecordType() && "Pointer into non-class.") ? void (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\"" , "clang/lib/Sema/SemaOverload.cpp", 3259, __extension__ __PRETTY_FUNCTION__ )); | |||
3260 | assert(ToClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (ToClass->isRecordType() && "Pointer into non-class.") ? void (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\"" , "clang/lib/Sema/SemaOverload.cpp", 3260, __extension__ __PRETTY_FUNCTION__ )); | |||
3261 | ||||
3262 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
3263 | /*DetectVirtual=*/true); | |||
3264 | bool DerivationOkay = | |||
3265 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); | |||
3266 | assert(DerivationOkay &&(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK." ) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "clang/lib/Sema/SemaOverload.cpp", 3267, __extension__ __PRETTY_FUNCTION__ )) | |||
3267 | "Should not have been called if derivation isn't OK.")(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK." ) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "clang/lib/Sema/SemaOverload.cpp", 3267, __extension__ __PRETTY_FUNCTION__ )); | |||
3268 | (void)DerivationOkay; | |||
3269 | ||||
3270 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | |||
3271 | getUnqualifiedType())) { | |||
3272 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | |||
3273 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | |||
3274 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | |||
3275 | return true; | |||
3276 | } | |||
3277 | ||||
3278 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { | |||
3279 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | |||
3280 | << FromClass << ToClass << QualType(VBase, 0) | |||
3281 | << From->getSourceRange(); | |||
3282 | return true; | |||
3283 | } | |||
3284 | ||||
3285 | if (!IgnoreBaseAccess) | |||
3286 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | |||
3287 | Paths.front(), | |||
3288 | diag::err_downcast_from_inaccessible_base); | |||
3289 | ||||
3290 | // Must be a base to derived member conversion. | |||
3291 | BuildBasePathArray(Paths, BasePath); | |||
3292 | Kind = CK_BaseToDerivedMemberPointer; | |||
3293 | return false; | |||
3294 | } | |||
3295 | ||||
3296 | /// Determine whether the lifetime conversion between the two given | |||
3297 | /// qualifiers sets is nontrivial. | |||
3298 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, | |||
3299 | Qualifiers ToQuals) { | |||
3300 | // Converting anything to const __unsafe_unretained is trivial. | |||
3301 | if (ToQuals.hasConst() && | |||
3302 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) | |||
3303 | return false; | |||
3304 | ||||
3305 | return true; | |||
3306 | } | |||
3307 | ||||
3308 | /// Perform a single iteration of the loop for checking if a qualification | |||
3309 | /// conversion is valid. | |||
3310 | /// | |||
3311 | /// Specifically, check whether any change between the qualifiers of \p | |||
3312 | /// FromType and \p ToType is permissible, given knowledge about whether every | |||
3313 | /// outer layer is const-qualified. | |||
3314 | static bool isQualificationConversionStep(QualType FromType, QualType ToType, | |||
3315 | bool CStyle, bool IsTopLevel, | |||
3316 | bool &PreviousToQualsIncludeConst, | |||
3317 | bool &ObjCLifetimeConversion) { | |||
3318 | Qualifiers FromQuals = FromType.getQualifiers(); | |||
3319 | Qualifiers ToQuals = ToType.getQualifiers(); | |||
3320 | ||||
3321 | // Ignore __unaligned qualifier. | |||
3322 | FromQuals.removeUnaligned(); | |||
3323 | ||||
3324 | // Objective-C ARC: | |||
3325 | // Check Objective-C lifetime conversions. | |||
3326 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { | |||
3327 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { | |||
3328 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) | |||
3329 | ObjCLifetimeConversion = true; | |||
3330 | FromQuals.removeObjCLifetime(); | |||
3331 | ToQuals.removeObjCLifetime(); | |||
3332 | } else { | |||
3333 | // Qualification conversions cannot cast between different | |||
3334 | // Objective-C lifetime qualifiers. | |||
3335 | return false; | |||
3336 | } | |||
3337 | } | |||
3338 | ||||
3339 | // Allow addition/removal of GC attributes but not changing GC attributes. | |||
3340 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && | |||
3341 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { | |||
3342 | FromQuals.removeObjCGCAttr(); | |||
3343 | ToQuals.removeObjCGCAttr(); | |||
3344 | } | |||
3345 | ||||
3346 | // -- for every j > 0, if const is in cv 1,j then const is in cv | |||
3347 | // 2,j, and similarly for volatile. | |||
3348 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) | |||
3349 | return false; | |||
3350 | ||||
3351 | // If address spaces mismatch: | |||
3352 | // - in top level it is only valid to convert to addr space that is a | |||
3353 | // superset in all cases apart from C-style casts where we allow | |||
3354 | // conversions between overlapping address spaces. | |||
3355 | // - in non-top levels it is not a valid conversion. | |||
3356 | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && | |||
3357 | (!IsTopLevel || | |||
3358 | !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || | |||
3359 | (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) | |||
3360 | return false; | |||
3361 | ||||
3362 | // -- if the cv 1,j and cv 2,j are different, then const is in | |||
3363 | // every cv for 0 < k < j. | |||
3364 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && | |||
3365 | !PreviousToQualsIncludeConst) | |||
3366 | return false; | |||
3367 | ||||
3368 | // The following wording is from C++20, where the result of the conversion | |||
3369 | // is T3, not T2. | |||
3370 | // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is | |||
3371 | // "array of unknown bound of" | |||
3372 | if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) | |||
3373 | return false; | |||
3374 | ||||
3375 | // -- if the resulting P3,i is different from P1,i [...], then const is | |||
3376 | // added to every cv 3_k for 0 < k < i. | |||
3377 | if (!CStyle && FromType->isConstantArrayType() && | |||
3378 | ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) | |||
3379 | return false; | |||
3380 | ||||
3381 | // Keep track of whether all prior cv-qualifiers in the "to" type | |||
3382 | // include const. | |||
3383 | PreviousToQualsIncludeConst = | |||
3384 | PreviousToQualsIncludeConst && ToQuals.hasConst(); | |||
3385 | return true; | |||
3386 | } | |||
3387 | ||||
3388 | /// IsQualificationConversion - Determines whether the conversion from | |||
3389 | /// an rvalue of type FromType to ToType is a qualification conversion | |||
3390 | /// (C++ 4.4). | |||
3391 | /// | |||
3392 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate | |||
3393 | /// when the qualification conversion involves a change in the Objective-C | |||
3394 | /// object lifetime. | |||
3395 | bool | |||
3396 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, | |||
3397 | bool CStyle, bool &ObjCLifetimeConversion) { | |||
3398 | FromType = Context.getCanonicalType(FromType); | |||
3399 | ToType = Context.getCanonicalType(ToType); | |||
3400 | ObjCLifetimeConversion = false; | |||
3401 | ||||
3402 | // If FromType and ToType are the same type, this is not a | |||
3403 | // qualification conversion. | |||
3404 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | |||
3405 | return false; | |||
3406 | ||||
3407 | // (C++ 4.4p4): | |||
3408 | // A conversion can add cv-qualifiers at levels other than the first | |||
3409 | // in multi-level pointers, subject to the following rules: [...] | |||
3410 | bool PreviousToQualsIncludeConst = true; | |||
3411 | bool UnwrappedAnyPointer = false; | |||
3412 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { | |||
3413 | if (!isQualificationConversionStep( | |||
3414 | FromType, ToType, CStyle, !UnwrappedAnyPointer, | |||
3415 | PreviousToQualsIncludeConst, ObjCLifetimeConversion)) | |||
3416 | return false; | |||
3417 | UnwrappedAnyPointer = true; | |||
3418 | } | |||
3419 | ||||
3420 | // We are left with FromType and ToType being the pointee types | |||
3421 | // after unwrapping the original FromType and ToType the same number | |||
3422 | // of times. If we unwrapped any pointers, and if FromType and | |||
3423 | // ToType have the same unqualified type (since we checked | |||
3424 | // qualifiers above), then this is a qualification conversion. | |||
3425 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | |||
3426 | } | |||
3427 | ||||
3428 | /// - Determine whether this is a conversion from a scalar type to an | |||
3429 | /// atomic type. | |||
3430 | /// | |||
3431 | /// If successful, updates \c SCS's second and third steps in the conversion | |||
3432 | /// sequence to finish the conversion. | |||
3433 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | |||
3434 | bool InOverloadResolution, | |||
3435 | StandardConversionSequence &SCS, | |||
3436 | bool CStyle) { | |||
3437 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); | |||
3438 | if (!ToAtomic) | |||
3439 | return false; | |||
3440 | ||||
3441 | StandardConversionSequence InnerSCS; | |||
3442 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), | |||
3443 | InOverloadResolution, InnerSCS, | |||
3444 | CStyle, /*AllowObjCWritebackConversion=*/false)) | |||
3445 | return false; | |||
3446 | ||||
3447 | SCS.Second = InnerSCS.Second; | |||
3448 | SCS.setToType(1, InnerSCS.getToType(1)); | |||
3449 | SCS.Third = InnerSCS.Third; | |||
3450 | SCS.QualificationIncludesObjCLifetime | |||
3451 | = InnerSCS.QualificationIncludesObjCLifetime; | |||
3452 | SCS.setToType(2, InnerSCS.getToType(2)); | |||
3453 | return true; | |||
3454 | } | |||
3455 | ||||
3456 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, | |||
3457 | CXXConstructorDecl *Constructor, | |||
3458 | QualType Type) { | |||
3459 | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); | |||
3460 | if (CtorType->getNumParams() > 0) { | |||
3461 | QualType FirstArg = CtorType->getParamType(0); | |||
3462 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) | |||
3463 | return true; | |||
3464 | } | |||
3465 | return false; | |||
3466 | } | |||
3467 | ||||
3468 | static OverloadingResult | |||
3469 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, | |||
3470 | CXXRecordDecl *To, | |||
3471 | UserDefinedConversionSequence &User, | |||
3472 | OverloadCandidateSet &CandidateSet, | |||
3473 | bool AllowExplicit) { | |||
3474 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3475 | for (auto *D : S.LookupConstructors(To)) { | |||
3476 | auto Info = getConstructorInfo(D); | |||
3477 | if (!Info) | |||
3478 | continue; | |||
3479 | ||||
3480 | bool Usable = !Info.Constructor->isInvalidDecl() && | |||
3481 | S.isInitListConstructor(Info.Constructor); | |||
3482 | if (Usable) { | |||
3483 | bool SuppressUserConversions = false; | |||
3484 | if (Info.ConstructorTmpl) | |||
3485 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, | |||
3486 | /*ExplicitArgs*/ nullptr, From, | |||
3487 | CandidateSet, SuppressUserConversions, | |||
3488 | /*PartialOverloading*/ false, | |||
3489 | AllowExplicit); | |||
3490 | else | |||
3491 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, | |||
3492 | CandidateSet, SuppressUserConversions, | |||
3493 | /*PartialOverloading*/ false, AllowExplicit); | |||
3494 | } | |||
3495 | } | |||
3496 | ||||
3497 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
3498 | ||||
3499 | OverloadCandidateSet::iterator Best; | |||
3500 | switch (auto Result = | |||
3501 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | |||
3502 | case OR_Deleted: | |||
3503 | case OR_Success: { | |||
3504 | // Record the standard conversion we used and the conversion function. | |||
3505 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | |||
3506 | QualType ThisType = Constructor->getThisType(); | |||
3507 | // Initializer lists don't have conversions as such. | |||
3508 | User.Before.setAsIdentityConversion(); | |||
3509 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3510 | User.ConversionFunction = Constructor; | |||
3511 | User.FoundConversionFunction = Best->FoundDecl; | |||
3512 | User.After.setAsIdentityConversion(); | |||
3513 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | |||
3514 | User.After.setAllToTypes(ToType); | |||
3515 | return Result; | |||
3516 | } | |||
3517 | ||||
3518 | case OR_No_Viable_Function: | |||
3519 | return OR_No_Viable_Function; | |||
3520 | case OR_Ambiguous: | |||
3521 | return OR_Ambiguous; | |||
3522 | } | |||
3523 | ||||
3524 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 3524); | |||
3525 | } | |||
3526 | ||||
3527 | /// Determines whether there is a user-defined conversion sequence | |||
3528 | /// (C++ [over.ics.user]) that converts expression From to the type | |||
3529 | /// ToType. If such a conversion exists, User will contain the | |||
3530 | /// user-defined conversion sequence that performs such a conversion | |||
3531 | /// and this routine will return true. Otherwise, this routine returns | |||
3532 | /// false and User is unspecified. | |||
3533 | /// | |||
3534 | /// \param AllowExplicit true if the conversion should consider C++0x | |||
3535 | /// "explicit" conversion functions as well as non-explicit conversion | |||
3536 | /// functions (C++0x [class.conv.fct]p2). | |||
3537 | /// | |||
3538 | /// \param AllowObjCConversionOnExplicit true if the conversion should | |||
3539 | /// allow an extra Objective-C pointer conversion on uses of explicit | |||
3540 | /// constructors. Requires \c AllowExplicit to also be set. | |||
3541 | static OverloadingResult | |||
3542 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
3543 | UserDefinedConversionSequence &User, | |||
3544 | OverloadCandidateSet &CandidateSet, | |||
3545 | AllowedExplicit AllowExplicit, | |||
3546 | bool AllowObjCConversionOnExplicit) { | |||
3547 | assert(AllowExplicit != AllowedExplicit::None ||(static_cast <bool> (AllowExplicit != AllowedExplicit:: None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit" , "clang/lib/Sema/SemaOverload.cpp", 3548, __extension__ __PRETTY_FUNCTION__ )) | |||
3548 | !AllowObjCConversionOnExplicit)(static_cast <bool> (AllowExplicit != AllowedExplicit:: None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit" , "clang/lib/Sema/SemaOverload.cpp", 3548, __extension__ __PRETTY_FUNCTION__ )); | |||
3549 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3550 | ||||
3551 | // Whether we will only visit constructors. | |||
3552 | bool ConstructorsOnly = false; | |||
3553 | ||||
3554 | // If the type we are conversion to is a class type, enumerate its | |||
3555 | // constructors. | |||
3556 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | |||
3557 | // C++ [over.match.ctor]p1: | |||
3558 | // When objects of class type are direct-initialized (8.5), or | |||
3559 | // copy-initialized from an expression of the same or a | |||
3560 | // derived class type (8.5), overload resolution selects the | |||
3561 | // constructor. [...] For copy-initialization, the candidate | |||
3562 | // functions are all the converting constructors (12.3.1) of | |||
3563 | // that class. The argument list is the expression-list within | |||
3564 | // the parentheses of the initializer. | |||
3565 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || | |||
3566 | (From->getType()->getAs<RecordType>() && | |||
3567 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) | |||
3568 | ConstructorsOnly = true; | |||
3569 | ||||
3570 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { | |||
3571 | // We're not going to find any constructors. | |||
3572 | } else if (CXXRecordDecl *ToRecordDecl | |||
3573 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | |||
3574 | ||||
3575 | Expr **Args = &From; | |||
3576 | unsigned NumArgs = 1; | |||
3577 | bool ListInitializing = false; | |||
3578 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { | |||
3579 | // But first, see if there is an init-list-constructor that will work. | |||
3580 | OverloadingResult Result = IsInitializerListConstructorConversion( | |||
3581 | S, From, ToType, ToRecordDecl, User, CandidateSet, | |||
3582 | AllowExplicit == AllowedExplicit::All); | |||
3583 | if (Result != OR_No_Viable_Function) | |||
3584 | return Result; | |||
3585 | // Never mind. | |||
3586 | CandidateSet.clear( | |||
3587 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3588 | ||||
3589 | // If we're list-initializing, we pass the individual elements as | |||
3590 | // arguments, not the entire list. | |||
3591 | Args = InitList->getInits(); | |||
3592 | NumArgs = InitList->getNumInits(); | |||
3593 | ListInitializing = true; | |||
3594 | } | |||
3595 | ||||
3596 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { | |||
3597 | auto Info = getConstructorInfo(D); | |||
3598 | if (!Info) | |||
3599 | continue; | |||
3600 | ||||
3601 | bool Usable = !Info.Constructor->isInvalidDecl(); | |||
3602 | if (!ListInitializing) | |||
3603 | Usable = Usable && Info.Constructor->isConvertingConstructor( | |||
3604 | /*AllowExplicit*/ true); | |||
3605 | if (Usable) { | |||
3606 | bool SuppressUserConversions = !ConstructorsOnly; | |||
3607 | // C++20 [over.best.ics.general]/4.5: | |||
3608 | // if the target is the first parameter of a constructor [of class | |||
3609 | // X] and the constructor [...] is a candidate by [...] the second | |||
3610 | // phase of [over.match.list] when the initializer list has exactly | |||
3611 | // one element that is itself an initializer list, [...] and the | |||
3612 | // conversion is to X or reference to cv X, user-defined conversion | |||
3613 | // sequences are not cnosidered. | |||
3614 | if (SuppressUserConversions && ListInitializing) { | |||
3615 | SuppressUserConversions = | |||
3616 | NumArgs == 1 && isa<InitListExpr>(Args[0]) && | |||
3617 | isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, | |||
3618 | ToType); | |||
3619 | } | |||
3620 | if (Info.ConstructorTmpl) | |||
3621 | S.AddTemplateOverloadCandidate( | |||
3622 | Info.ConstructorTmpl, Info.FoundDecl, | |||
3623 | /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs), | |||
3624 | CandidateSet, SuppressUserConversions, | |||
3625 | /*PartialOverloading*/ false, | |||
3626 | AllowExplicit == AllowedExplicit::All); | |||
3627 | else | |||
3628 | // Allow one user-defined conversion when user specifies a | |||
3629 | // From->ToType conversion via an static cast (c-style, etc). | |||
3630 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, | |||
3631 | llvm::ArrayRef(Args, NumArgs), CandidateSet, | |||
3632 | SuppressUserConversions, | |||
3633 | /*PartialOverloading*/ false, | |||
3634 | AllowExplicit == AllowedExplicit::All); | |||
3635 | } | |||
3636 | } | |||
3637 | } | |||
3638 | } | |||
3639 | ||||
3640 | // Enumerate conversion functions, if we're allowed to. | |||
3641 | if (ConstructorsOnly || isa<InitListExpr>(From)) { | |||
3642 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { | |||
3643 | // No conversion functions from incomplete types. | |||
3644 | } else if (const RecordType *FromRecordType = | |||
3645 | From->getType()->getAs<RecordType>()) { | |||
3646 | if (CXXRecordDecl *FromRecordDecl | |||
3647 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | |||
3648 | // Add all of the conversion functions as candidates. | |||
3649 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); | |||
3650 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
3651 | DeclAccessPair FoundDecl = I.getPair(); | |||
3652 | NamedDecl *D = FoundDecl.getDecl(); | |||
3653 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | |||
3654 | if (isa<UsingShadowDecl>(D)) | |||
3655 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
3656 | ||||
3657 | CXXConversionDecl *Conv; | |||
3658 | FunctionTemplateDecl *ConvTemplate; | |||
3659 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | |||
3660 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
3661 | else | |||
3662 | Conv = cast<CXXConversionDecl>(D); | |||
3663 | ||||
3664 | if (ConvTemplate) | |||
3665 | S.AddTemplateConversionCandidate( | |||
3666 | ConvTemplate, FoundDecl, ActingContext, From, ToType, | |||
3667 | CandidateSet, AllowObjCConversionOnExplicit, | |||
3668 | AllowExplicit != AllowedExplicit::None); | |||
3669 | else | |||
3670 | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, | |||
3671 | CandidateSet, AllowObjCConversionOnExplicit, | |||
3672 | AllowExplicit != AllowedExplicit::None); | |||
3673 | } | |||
3674 | } | |||
3675 | } | |||
3676 | ||||
3677 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
3678 | ||||
3679 | OverloadCandidateSet::iterator Best; | |||
3680 | switch (auto Result = | |||
3681 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | |||
3682 | case OR_Success: | |||
3683 | case OR_Deleted: | |||
3684 | // Record the standard conversion we used and the conversion function. | |||
3685 | if (CXXConstructorDecl *Constructor | |||
3686 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { | |||
3687 | // C++ [over.ics.user]p1: | |||
3688 | // If the user-defined conversion is specified by a | |||
3689 | // constructor (12.3.1), the initial standard conversion | |||
3690 | // sequence converts the source type to the type required by | |||
3691 | // the argument of the constructor. | |||
3692 | // | |||
3693 | QualType ThisType = Constructor->getThisType(); | |||
3694 | if (isa<InitListExpr>(From)) { | |||
3695 | // Initializer lists don't have conversions as such. | |||
3696 | User.Before.setAsIdentityConversion(); | |||
3697 | } else { | |||
3698 | if (Best->Conversions[0].isEllipsis()) | |||
3699 | User.EllipsisConversion = true; | |||
3700 | else { | |||
3701 | User.Before = Best->Conversions[0].Standard; | |||
3702 | User.EllipsisConversion = false; | |||
3703 | } | |||
3704 | } | |||
3705 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3706 | User.ConversionFunction = Constructor; | |||
3707 | User.FoundConversionFunction = Best->FoundDecl; | |||
3708 | User.After.setAsIdentityConversion(); | |||
3709 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | |||
3710 | User.After.setAllToTypes(ToType); | |||
3711 | return Result; | |||
3712 | } | |||
3713 | if (CXXConversionDecl *Conversion | |||
3714 | = dyn_cast<CXXConversionDecl>(Best->Function)) { | |||
3715 | // C++ [over.ics.user]p1: | |||
3716 | // | |||
3717 | // [...] If the user-defined conversion is specified by a | |||
3718 | // conversion function (12.3.2), the initial standard | |||
3719 | // conversion sequence converts the source type to the | |||
3720 | // implicit object parameter of the conversion function. | |||
3721 | User.Before = Best->Conversions[0].Standard; | |||
3722 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3723 | User.ConversionFunction = Conversion; | |||
3724 | User.FoundConversionFunction = Best->FoundDecl; | |||
3725 | User.EllipsisConversion = false; | |||
3726 | ||||
3727 | // C++ [over.ics.user]p2: | |||
3728 | // The second standard conversion sequence converts the | |||
3729 | // result of the user-defined conversion to the target type | |||
3730 | // for the sequence. Since an implicit conversion sequence | |||
3731 | // is an initialization, the special rules for | |||
3732 | // initialization by user-defined conversion apply when | |||
3733 | // selecting the best user-defined conversion for a | |||
3734 | // user-defined conversion sequence (see 13.3.3 and | |||
3735 | // 13.3.3.1). | |||
3736 | User.After = Best->FinalConversion; | |||
3737 | return Result; | |||
3738 | } | |||
3739 | llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?" , "clang/lib/Sema/SemaOverload.cpp", 3739); | |||
3740 | ||||
3741 | case OR_No_Viable_Function: | |||
3742 | return OR_No_Viable_Function; | |||
3743 | ||||
3744 | case OR_Ambiguous: | |||
3745 | return OR_Ambiguous; | |||
3746 | } | |||
3747 | ||||
3748 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 3748); | |||
3749 | } | |||
3750 | ||||
3751 | bool | |||
3752 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | |||
3753 | ImplicitConversionSequence ICS; | |||
3754 | OverloadCandidateSet CandidateSet(From->getExprLoc(), | |||
3755 | OverloadCandidateSet::CSK_Normal); | |||
3756 | OverloadingResult OvResult = | |||
3757 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, | |||
3758 | CandidateSet, AllowedExplicit::None, false); | |||
3759 | ||||
3760 | if (!(OvResult == OR_Ambiguous || | |||
3761 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) | |||
3762 | return false; | |||
3763 | ||||
3764 | auto Cands = CandidateSet.CompleteCandidates( | |||
3765 | *this, | |||
3766 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, | |||
3767 | From); | |||
3768 | if (OvResult == OR_Ambiguous) | |||
3769 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) | |||
3770 | << From->getType() << ToType << From->getSourceRange(); | |||
3771 | else { // OR_No_Viable_Function && !CandidateSet.empty() | |||
3772 | if (!RequireCompleteType(From->getBeginLoc(), ToType, | |||
3773 | diag::err_typecheck_nonviable_condition_incomplete, | |||
3774 | From->getType(), From->getSourceRange())) | |||
3775 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) | |||
3776 | << false << From->getType() << From->getSourceRange() << ToType; | |||
3777 | } | |||
3778 | ||||
3779 | CandidateSet.NoteCandidates( | |||
3780 | *this, From, Cands); | |||
3781 | return true; | |||
3782 | } | |||
3783 | ||||
3784 | // Helper for compareConversionFunctions that gets the FunctionType that the | |||
3785 | // conversion-operator return value 'points' to, or nullptr. | |||
3786 | static const FunctionType * | |||
3787 | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { | |||
3788 | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); | |||
3789 | const PointerType *RetPtrTy = | |||
3790 | ConvFuncTy->getReturnType()->getAs<PointerType>(); | |||
3791 | ||||
3792 | if (!RetPtrTy) | |||
3793 | return nullptr; | |||
3794 | ||||
3795 | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); | |||
3796 | } | |||
3797 | ||||
3798 | /// Compare the user-defined conversion functions or constructors | |||
3799 | /// of two user-defined conversion sequences to determine whether any ordering | |||
3800 | /// is possible. | |||
3801 | static ImplicitConversionSequence::CompareKind | |||
3802 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, | |||
3803 | FunctionDecl *Function2) { | |||
3804 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); | |||
3805 | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); | |||
3806 | if (!Conv1 || !Conv2) | |||
3807 | return ImplicitConversionSequence::Indistinguishable; | |||
3808 | ||||
3809 | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) | |||
3810 | return ImplicitConversionSequence::Indistinguishable; | |||
3811 | ||||
3812 | // Objective-C++: | |||
3813 | // If both conversion functions are implicitly-declared conversions from | |||
3814 | // a lambda closure type to a function pointer and a block pointer, | |||
3815 | // respectively, always prefer the conversion to a function pointer, | |||
3816 | // because the function pointer is more lightweight and is more likely | |||
3817 | // to keep code working. | |||
3818 | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { | |||
3819 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); | |||
3820 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); | |||
3821 | if (Block1 != Block2) | |||
3822 | return Block1 ? ImplicitConversionSequence::Worse | |||
3823 | : ImplicitConversionSequence::Better; | |||
3824 | } | |||
3825 | ||||
3826 | // In order to support multiple calling conventions for the lambda conversion | |||
3827 | // operator (such as when the free and member function calling convention is | |||
3828 | // different), prefer the 'free' mechanism, followed by the calling-convention | |||
3829 | // of operator(). The latter is in place to support the MSVC-like solution of | |||
3830 | // defining ALL of the possible conversions in regards to calling-convention. | |||
3831 | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); | |||
3832 | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); | |||
3833 | ||||
3834 | if (Conv1FuncRet && Conv2FuncRet && | |||
3835 | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { | |||
3836 | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); | |||
3837 | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); | |||
3838 | ||||
3839 | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); | |||
3840 | const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>(); | |||
3841 | ||||
3842 | CallingConv CallOpCC = | |||
3843 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); | |||
3844 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( | |||
3845 | CallOpProto->isVariadic(), /*IsCXXMethod=*/false); | |||
3846 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( | |||
3847 | CallOpProto->isVariadic(), /*IsCXXMethod=*/true); | |||
3848 | ||||
3849 | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; | |||
3850 | for (CallingConv CC : PrefOrder) { | |||
3851 | if (Conv1CC == CC) | |||
3852 | return ImplicitConversionSequence::Better; | |||
3853 | if (Conv2CC == CC) | |||
3854 | return ImplicitConversionSequence::Worse; | |||
3855 | } | |||
3856 | } | |||
3857 | ||||
3858 | return ImplicitConversionSequence::Indistinguishable; | |||
3859 | } | |||
3860 | ||||
3861 | static bool hasDeprecatedStringLiteralToCharPtrConversion( | |||
3862 | const ImplicitConversionSequence &ICS) { | |||
3863 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || | |||
3864 | (ICS.isUserDefined() && | |||
3865 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); | |||
3866 | } | |||
3867 | ||||
3868 | /// CompareImplicitConversionSequences - Compare two implicit | |||
3869 | /// conversion sequences to determine whether one is better than the | |||
3870 | /// other or if they are indistinguishable (C++ 13.3.3.2). | |||
3871 | static ImplicitConversionSequence::CompareKind | |||
3872 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, | |||
3873 | const ImplicitConversionSequence& ICS1, | |||
3874 | const ImplicitConversionSequence& ICS2) | |||
3875 | { | |||
3876 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | |||
3877 | // conversion sequences (as defined in 13.3.3.1) | |||
3878 | // -- a standard conversion sequence (13.3.3.1.1) is a better | |||
3879 | // conversion sequence than a user-defined conversion sequence or | |||
3880 | // an ellipsis conversion sequence, and | |||
3881 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better | |||
3882 | // conversion sequence than an ellipsis conversion sequence | |||
3883 | // (13.3.3.1.3). | |||
3884 | // | |||
3885 | // C++0x [over.best.ics]p10: | |||
3886 | // For the purpose of ranking implicit conversion sequences as | |||
3887 | // described in 13.3.3.2, the ambiguous conversion sequence is | |||
3888 | // treated as a user-defined sequence that is indistinguishable | |||
3889 | // from any other user-defined conversion sequence. | |||
3890 | ||||
3891 | // String literal to 'char *' conversion has been deprecated in C++03. It has | |||
3892 | // been removed from C++11. We still accept this conversion, if it happens at | |||
3893 | // the best viable function. Otherwise, this conversion is considered worse | |||
3894 | // than ellipsis conversion. Consider this as an extension; this is not in the | |||
3895 | // standard. For example: | |||
3896 | // | |||
3897 | // int &f(...); // #1 | |||
3898 | // void f(char*); // #2 | |||
3899 | // void g() { int &r = f("foo"); } | |||
3900 | // | |||
3901 | // In C++03, we pick #2 as the best viable function. | |||
3902 | // In C++11, we pick #1 as the best viable function, because ellipsis | |||
3903 | // conversion is better than string-literal to char* conversion (since there | |||
3904 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't | |||
3905 | // convert arguments, #2 would be the best viable function in C++11. | |||
3906 | // If the best viable function has this conversion, a warning will be issued | |||
3907 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. | |||
3908 | ||||
3909 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | |||
3910 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != | |||
3911 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && | |||
3912 | // Ill-formedness must not differ | |||
3913 | ICS1.isBad() == ICS2.isBad()) | |||
3914 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) | |||
3915 | ? ImplicitConversionSequence::Worse | |||
3916 | : ImplicitConversionSequence::Better; | |||
3917 | ||||
3918 | if (ICS1.getKindRank() < ICS2.getKindRank()) | |||
3919 | return ImplicitConversionSequence::Better; | |||
3920 | if (ICS2.getKindRank() < ICS1.getKindRank()) | |||
3921 | return ImplicitConversionSequence::Worse; | |||
3922 | ||||
3923 | // The following checks require both conversion sequences to be of | |||
3924 | // the same kind. | |||
3925 | if (ICS1.getKind() != ICS2.getKind()) | |||
3926 | return ImplicitConversionSequence::Indistinguishable; | |||
3927 | ||||
3928 | ImplicitConversionSequence::CompareKind Result = | |||
3929 | ImplicitConversionSequence::Indistinguishable; | |||
3930 | ||||
3931 | // Two implicit conversion sequences of the same form are | |||
3932 | // indistinguishable conversion sequences unless one of the | |||
3933 | // following rules apply: (C++ 13.3.3.2p3): | |||
3934 | ||||
3935 | // List-initialization sequence L1 is a better conversion sequence than | |||
3936 | // list-initialization sequence L2 if: | |||
3937 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, | |||
3938 | // if not that, | |||
3939 | // — L1 and L2 convert to arrays of the same element type, and either the | |||
3940 | // number of elements n_1 initialized by L1 is less than the number of | |||
3941 | // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to | |||
3942 | // an array of unknown bound and L1 does not, | |||
3943 | // even if one of the other rules in this paragraph would otherwise apply. | |||
3944 | if (!ICS1.isBad()) { | |||
3945 | bool StdInit1 = false, StdInit2 = false; | |||
3946 | if (ICS1.hasInitializerListContainerType()) | |||
3947 | StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), | |||
3948 | nullptr); | |||
3949 | if (ICS2.hasInitializerListContainerType()) | |||
3950 | StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), | |||
3951 | nullptr); | |||
3952 | if (StdInit1 != StdInit2) | |||
3953 | return StdInit1 ? ImplicitConversionSequence::Better | |||
3954 | : ImplicitConversionSequence::Worse; | |||
3955 | ||||
3956 | if (ICS1.hasInitializerListContainerType() && | |||
3957 | ICS2.hasInitializerListContainerType()) | |||
3958 | if (auto *CAT1 = S.Context.getAsConstantArrayType( | |||
3959 | ICS1.getInitializerListContainerType())) | |||
3960 | if (auto *CAT2 = S.Context.getAsConstantArrayType( | |||
3961 | ICS2.getInitializerListContainerType())) { | |||
3962 | if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), | |||
3963 | CAT2->getElementType())) { | |||
3964 | // Both to arrays of the same element type | |||
3965 | if (CAT1->getSize() != CAT2->getSize()) | |||
3966 | // Different sized, the smaller wins | |||
3967 | return CAT1->getSize().ult(CAT2->getSize()) | |||
3968 | ? ImplicitConversionSequence::Better | |||
3969 | : ImplicitConversionSequence::Worse; | |||
3970 | if (ICS1.isInitializerListOfIncompleteArray() != | |||
3971 | ICS2.isInitializerListOfIncompleteArray()) | |||
3972 | // One is incomplete, it loses | |||
3973 | return ICS2.isInitializerListOfIncompleteArray() | |||
3974 | ? ImplicitConversionSequence::Better | |||
3975 | : ImplicitConversionSequence::Worse; | |||
3976 | } | |||
3977 | } | |||
3978 | } | |||
3979 | ||||
3980 | if (ICS1.isStandard()) | |||
3981 | // Standard conversion sequence S1 is a better conversion sequence than | |||
3982 | // standard conversion sequence S2 if [...] | |||
3983 | Result = CompareStandardConversionSequences(S, Loc, | |||
3984 | ICS1.Standard, ICS2.Standard); | |||
3985 | else if (ICS1.isUserDefined()) { | |||
3986 | // User-defined conversion sequence U1 is a better conversion | |||
3987 | // sequence than another user-defined conversion sequence U2 if | |||
3988 | // they contain the same user-defined conversion function or | |||
3989 | // constructor and if the second standard conversion sequence of | |||
3990 | // U1 is better than the second standard conversion sequence of | |||
3991 | // U2 (C++ 13.3.3.2p3). | |||
3992 | if (ICS1.UserDefined.ConversionFunction == | |||
3993 | ICS2.UserDefined.ConversionFunction) | |||
3994 | Result = CompareStandardConversionSequences(S, Loc, | |||
3995 | ICS1.UserDefined.After, | |||
3996 | ICS2.UserDefined.After); | |||
3997 | else | |||
3998 | Result = compareConversionFunctions(S, | |||
3999 | ICS1.UserDefined.ConversionFunction, | |||
4000 | ICS2.UserDefined.ConversionFunction); | |||
4001 | } | |||
4002 | ||||
4003 | return Result; | |||
4004 | } | |||
4005 | ||||
4006 | // Per 13.3.3.2p3, compare the given standard conversion sequences to | |||
4007 | // determine if one is a proper subset of the other. | |||
4008 | static ImplicitConversionSequence::CompareKind | |||
4009 | compareStandardConversionSubsets(ASTContext &Context, | |||
4010 | const StandardConversionSequence& SCS1, | |||
4011 | const StandardConversionSequence& SCS2) { | |||
4012 | ImplicitConversionSequence::CompareKind Result | |||
4013 | = ImplicitConversionSequence::Indistinguishable; | |||
4014 | ||||
4015 | // the identity conversion sequence is considered to be a subsequence of | |||
4016 | // any non-identity conversion sequence | |||
4017 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) | |||
4018 | return ImplicitConversionSequence::Better; | |||
4019 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) | |||
4020 | return ImplicitConversionSequence::Worse; | |||
4021 | ||||
4022 | if (SCS1.Second != SCS2.Second) { | |||
4023 | if (SCS1.Second == ICK_Identity) | |||
4024 | Result = ImplicitConversionSequence::Better; | |||
4025 | else if (SCS2.Second == ICK_Identity) | |||
4026 | Result = ImplicitConversionSequence::Worse; | |||
4027 | else | |||
4028 | return ImplicitConversionSequence::Indistinguishable; | |||
4029 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) | |||
4030 | return ImplicitConversionSequence::Indistinguishable; | |||
4031 | ||||
4032 | if (SCS1.Third == SCS2.Third) { | |||
4033 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | |||
4034 | : ImplicitConversionSequence::Indistinguishable; | |||
4035 | } | |||
4036 | ||||
4037 | if (SCS1.Third == ICK_Identity) | |||
4038 | return Result == ImplicitConversionSequence::Worse | |||
4039 | ? ImplicitConversionSequence::Indistinguishable | |||
4040 | : ImplicitConversionSequence::Better; | |||
4041 | ||||
4042 | if (SCS2.Third == ICK_Identity) | |||
4043 | return Result == ImplicitConversionSequence::Better | |||
4044 | ? ImplicitConversionSequence::Indistinguishable | |||
4045 | : ImplicitConversionSequence::Worse; | |||
4046 | ||||
4047 | return ImplicitConversionSequence::Indistinguishable; | |||
4048 | } | |||
4049 | ||||
4050 | /// Determine whether one of the given reference bindings is better | |||
4051 | /// than the other based on what kind of bindings they are. | |||
4052 | static bool | |||
4053 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, | |||
4054 | const StandardConversionSequence &SCS2) { | |||
4055 | // C++0x [over.ics.rank]p3b4: | |||
4056 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | |||
4057 | // implicit object parameter of a non-static member function declared | |||
4058 | // without a ref-qualifier, and *either* S1 binds an rvalue reference | |||
4059 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an | |||
4060 | // lvalue reference to a function lvalue and S2 binds an rvalue | |||
4061 | // reference*. | |||
4062 | // | |||
4063 | // FIXME: Rvalue references. We're going rogue with the above edits, | |||
4064 | // because the semantics in the current C++0x working paper (N3225 at the | |||
4065 | // time of this writing) break the standard definition of std::forward | |||
4066 | // and std::reference_wrapper when dealing with references to functions. | |||
4067 | // Proposed wording changes submitted to CWG for consideration. | |||
4068 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || | |||
4069 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) | |||
4070 | return false; | |||
4071 | ||||
4072 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && | |||
4073 | SCS2.IsLvalueReference) || | |||
4074 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && | |||
4075 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); | |||
4076 | } | |||
4077 | ||||
4078 | enum class FixedEnumPromotion { | |||
4079 | None, | |||
4080 | ToUnderlyingType, | |||
4081 | ToPromotedUnderlyingType | |||
4082 | }; | |||
4083 | ||||
4084 | /// Returns kind of fixed enum promotion the \a SCS uses. | |||
4085 | static FixedEnumPromotion | |||
4086 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { | |||
4087 | ||||
4088 | if (SCS.Second != ICK_Integral_Promotion) | |||
4089 | return FixedEnumPromotion::None; | |||
4090 | ||||
4091 | QualType FromType = SCS.getFromType(); | |||
4092 | if (!FromType->isEnumeralType()) | |||
4093 | return FixedEnumPromotion::None; | |||
4094 | ||||
4095 | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); | |||
4096 | if (!Enum->isFixed()) | |||
4097 | return FixedEnumPromotion::None; | |||
4098 | ||||
4099 | QualType UnderlyingType = Enum->getIntegerType(); | |||
4100 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) | |||
4101 | return FixedEnumPromotion::ToUnderlyingType; | |||
4102 | ||||
4103 | return FixedEnumPromotion::ToPromotedUnderlyingType; | |||
4104 | } | |||
4105 | ||||
4106 | /// CompareStandardConversionSequences - Compare two standard | |||
4107 | /// conversion sequences to determine whether one is better than the | |||
4108 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | |||
4109 | static ImplicitConversionSequence::CompareKind | |||
4110 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | |||
4111 | const StandardConversionSequence& SCS1, | |||
4112 | const StandardConversionSequence& SCS2) | |||
4113 | { | |||
4114 | // Standard conversion sequence S1 is a better conversion sequence | |||
4115 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | |||
4116 | ||||
4117 | // -- S1 is a proper subsequence of S2 (comparing the conversion | |||
4118 | // sequences in the canonical form defined by 13.3.3.1.1, | |||
4119 | // excluding any Lvalue Transformation; the identity conversion | |||
4120 | // sequence is considered to be a subsequence of any | |||
4121 | // non-identity conversion sequence) or, if not that, | |||
4122 | if (ImplicitConversionSequence::CompareKind CK | |||
4123 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) | |||
4124 | return CK; | |||
4125 | ||||
4126 | // -- the rank of S1 is better than the rank of S2 (by the rules | |||
4127 | // defined below), or, if not that, | |||
4128 | ImplicitConversionRank Rank1 = SCS1.getRank(); | |||
4129 | ImplicitConversionRank Rank2 = SCS2.getRank(); | |||
4130 | if (Rank1 < Rank2) | |||
4131 | return ImplicitConversionSequence::Better; | |||
4132 | else if (Rank2 < Rank1) | |||
4133 | return ImplicitConversionSequence::Worse; | |||
4134 | ||||
4135 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | |||
4136 | // are indistinguishable unless one of the following rules | |||
4137 | // applies: | |||
4138 | ||||
4139 | // A conversion that is not a conversion of a pointer, or | |||
4140 | // pointer to member, to bool is better than another conversion | |||
4141 | // that is such a conversion. | |||
4142 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | |||
4143 | return SCS2.isPointerConversionToBool() | |||
4144 | ? ImplicitConversionSequence::Better | |||
4145 | : ImplicitConversionSequence::Worse; | |||
4146 | ||||
4147 | // C++14 [over.ics.rank]p4b2: | |||
4148 | // This is retroactively applied to C++11 by CWG 1601. | |||
4149 | // | |||
4150 | // A conversion that promotes an enumeration whose underlying type is fixed | |||
4151 | // to its underlying type is better than one that promotes to the promoted | |||
4152 | // underlying type, if the two are different. | |||
4153 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); | |||
4154 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); | |||
4155 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && | |||
4156 | FEP1 != FEP2) | |||
4157 | return FEP1 == FixedEnumPromotion::ToUnderlyingType | |||
4158 | ? ImplicitConversionSequence::Better | |||
4159 | : ImplicitConversionSequence::Worse; | |||
4160 | ||||
4161 | // C++ [over.ics.rank]p4b2: | |||
4162 | // | |||
4163 | // If class B is derived directly or indirectly from class A, | |||
4164 | // conversion of B* to A* is better than conversion of B* to | |||
4165 | // void*, and conversion of A* to void* is better than conversion | |||
4166 | // of B* to void*. | |||
4167 | bool SCS1ConvertsToVoid | |||
4168 | = SCS1.isPointerConversionToVoidPointer(S.Context); | |||
4169 | bool SCS2ConvertsToVoid | |||
4170 | = SCS2.isPointerConversionToVoidPointer(S.Context); | |||
4171 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | |||
4172 | // Exactly one of the conversion sequences is a conversion to | |||
4173 | // a void pointer; it's the worse conversion. | |||
4174 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | |||
4175 | : ImplicitConversionSequence::Worse; | |||
4176 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | |||
4177 | // Neither conversion sequence converts to a void pointer; compare | |||
4178 | // their derived-to-base conversions. | |||
4179 | if (ImplicitConversionSequence::CompareKind DerivedCK | |||
4180 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) | |||
4181 | return DerivedCK; | |||
4182 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && | |||
4183 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { | |||
4184 | // Both conversion sequences are conversions to void | |||
4185 | // pointers. Compare the source types to determine if there's an | |||
4186 | // inheritance relationship in their sources. | |||
4187 | QualType FromType1 = SCS1.getFromType(); | |||
4188 | QualType FromType2 = SCS2.getFromType(); | |||
4189 | ||||
4190 | // Adjust the types we're converting from via the array-to-pointer | |||
4191 | // conversion, if we need to. | |||
4192 | if (SCS1.First == ICK_Array_To_Pointer) | |||
4193 | FromType1 = S.Context.getArrayDecayedType(FromType1); | |||
4194 | if (SCS2.First == ICK_Array_To_Pointer) | |||
4195 | FromType2 = S.Context.getArrayDecayedType(FromType2); | |||
4196 | ||||
4197 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); | |||
4198 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); | |||
4199 | ||||
4200 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4201 | return ImplicitConversionSequence::Better; | |||
4202 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4203 | return ImplicitConversionSequence::Worse; | |||
4204 | ||||
4205 | // Objective-C++: If one interface is more specific than the | |||
4206 | // other, it is the better one. | |||
4207 | const ObjCObjectPointerType* FromObjCPtr1 | |||
4208 | = FromType1->getAs<ObjCObjectPointerType>(); | |||
4209 | const ObjCObjectPointerType* FromObjCPtr2 | |||
4210 | = FromType2->getAs<ObjCObjectPointerType>(); | |||
4211 | if (FromObjCPtr1 && FromObjCPtr2) { | |||
4212 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, | |||
4213 | FromObjCPtr2); | |||
4214 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, | |||
4215 | FromObjCPtr1); | |||
4216 | if (AssignLeft != AssignRight) { | |||
4217 | return AssignLeft? ImplicitConversionSequence::Better | |||
4218 | : ImplicitConversionSequence::Worse; | |||
4219 | } | |||
4220 | } | |||
4221 | } | |||
4222 | ||||
4223 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | |||
4224 | // Check for a better reference binding based on the kind of bindings. | |||
4225 | if (isBetterReferenceBindingKind(SCS1, SCS2)) | |||
4226 | return ImplicitConversionSequence::Better; | |||
4227 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) | |||
4228 | return ImplicitConversionSequence::Worse; | |||
4229 | } | |||
4230 | ||||
4231 | // Compare based on qualification conversions (C++ 13.3.3.2p3, | |||
4232 | // bullet 3). | |||
4233 | if (ImplicitConversionSequence::CompareKind QualCK | |||
4234 | = CompareQualificationConversions(S, SCS1, SCS2)) | |||
4235 | return QualCK; | |||
4236 | ||||
4237 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | |||
4238 | // C++ [over.ics.rank]p3b4: | |||
4239 | // -- S1 and S2 are reference bindings (8.5.3), and the types to | |||
4240 | // which the references refer are the same type except for | |||
4241 | // top-level cv-qualifiers, and the type to which the reference | |||
4242 | // initialized by S2 refers is more cv-qualified than the type | |||
4243 | // to which the reference initialized by S1 refers. | |||
4244 | QualType T1 = SCS1.getToType(2); | |||
4245 | QualType T2 = SCS2.getToType(2); | |||
4246 | T1 = S.Context.getCanonicalType(T1); | |||
4247 | T2 = S.Context.getCanonicalType(T2); | |||
4248 | Qualifiers T1Quals, T2Quals; | |||
4249 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4250 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4251 | if (UnqualT1 == UnqualT2) { | |||
4252 | // Objective-C++ ARC: If the references refer to objects with different | |||
4253 | // lifetimes, prefer bindings that don't change lifetime. | |||
4254 | if (SCS1.ObjCLifetimeConversionBinding != | |||
4255 | SCS2.ObjCLifetimeConversionBinding) { | |||
4256 | return SCS1.ObjCLifetimeConversionBinding | |||
4257 | ? ImplicitConversionSequence::Worse | |||
4258 | : ImplicitConversionSequence::Better; | |||
4259 | } | |||
4260 | ||||
4261 | // If the type is an array type, promote the element qualifiers to the | |||
4262 | // type for comparison. | |||
4263 | if (isa<ArrayType>(T1) && T1Quals) | |||
4264 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | |||
4265 | if (isa<ArrayType>(T2) && T2Quals) | |||
4266 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | |||
4267 | if (T2.isMoreQualifiedThan(T1)) | |||
4268 | return ImplicitConversionSequence::Better; | |||
4269 | if (T1.isMoreQualifiedThan(T2)) | |||
4270 | return ImplicitConversionSequence::Worse; | |||
4271 | } | |||
4272 | } | |||
4273 | ||||
4274 | // In Microsoft mode (below 19.28), prefer an integral conversion to a | |||
4275 | // floating-to-integral conversion if the integral conversion | |||
4276 | // is between types of the same size. | |||
4277 | // For example: | |||
4278 | // void f(float); | |||
4279 | // void f(int); | |||
4280 | // int main { | |||
4281 | // long a; | |||
4282 | // f(a); | |||
4283 | // } | |||
4284 | // Here, MSVC will call f(int) instead of generating a compile error | |||
4285 | // as clang will do in standard mode. | |||
4286 | if (S.getLangOpts().MSVCCompat && | |||
4287 | !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && | |||
4288 | SCS1.Second == ICK_Integral_Conversion && | |||
4289 | SCS2.Second == ICK_Floating_Integral && | |||
4290 | S.Context.getTypeSize(SCS1.getFromType()) == | |||
4291 | S.Context.getTypeSize(SCS1.getToType(2))) | |||
4292 | return ImplicitConversionSequence::Better; | |||
4293 | ||||
4294 | // Prefer a compatible vector conversion over a lax vector conversion | |||
4295 | // For example: | |||
4296 | // | |||
4297 | // typedef float __v4sf __attribute__((__vector_size__(16))); | |||
4298 | // void f(vector float); | |||
4299 | // void f(vector signed int); | |||
4300 | // int main() { | |||
4301 | // __v4sf a; | |||
4302 | // f(a); | |||
4303 | // } | |||
4304 | // Here, we'd like to choose f(vector float) and not | |||
4305 | // report an ambiguous call error | |||
4306 | if (SCS1.Second == ICK_Vector_Conversion && | |||
4307 | SCS2.Second == ICK_Vector_Conversion) { | |||
4308 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | |||
4309 | SCS1.getFromType(), SCS1.getToType(2)); | |||
4310 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | |||
4311 | SCS2.getFromType(), SCS2.getToType(2)); | |||
4312 | ||||
4313 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) | |||
4314 | return SCS1IsCompatibleVectorConversion | |||
4315 | ? ImplicitConversionSequence::Better | |||
4316 | : ImplicitConversionSequence::Worse; | |||
4317 | } | |||
4318 | ||||
4319 | if (SCS1.Second == ICK_SVE_Vector_Conversion && | |||
4320 | SCS2.Second == ICK_SVE_Vector_Conversion) { | |||
4321 | bool SCS1IsCompatibleSVEVectorConversion = | |||
4322 | S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); | |||
4323 | bool SCS2IsCompatibleSVEVectorConversion = | |||
4324 | S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); | |||
4325 | ||||
4326 | if (SCS1IsCompatibleSVEVectorConversion != | |||
4327 | SCS2IsCompatibleSVEVectorConversion) | |||
4328 | return SCS1IsCompatibleSVEVectorConversion | |||
4329 | ? ImplicitConversionSequence::Better | |||
4330 | : ImplicitConversionSequence::Worse; | |||
4331 | } | |||
4332 | ||||
4333 | return ImplicitConversionSequence::Indistinguishable; | |||
4334 | } | |||
4335 | ||||
4336 | /// CompareQualificationConversions - Compares two standard conversion | |||
4337 | /// sequences to determine whether they can be ranked based on their | |||
4338 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | |||
4339 | static ImplicitConversionSequence::CompareKind | |||
4340 | CompareQualificationConversions(Sema &S, | |||
4341 | const StandardConversionSequence& SCS1, | |||
4342 | const StandardConversionSequence& SCS2) { | |||
4343 | // C++ [over.ics.rank]p3: | |||
4344 | // -- S1 and S2 differ only in their qualification conversion and | |||
4345 | // yield similar types T1 and T2 (C++ 4.4), respectively, [...] | |||
4346 | // [C++98] | |||
4347 | // [...] and the cv-qualification signature of type T1 is a proper subset | |||
4348 | // of the cv-qualification signature of type T2, and S1 is not the | |||
4349 | // deprecated string literal array-to-pointer conversion (4.2). | |||
4350 | // [C++2a] | |||
4351 | // [...] where T1 can be converted to T2 by a qualification conversion. | |||
4352 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | |||
4353 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | |||
4354 | return ImplicitConversionSequence::Indistinguishable; | |||
4355 | ||||
4356 | // FIXME: the example in the standard doesn't use a qualification | |||
4357 | // conversion (!) | |||
4358 | QualType T1 = SCS1.getToType(2); | |||
4359 | QualType T2 = SCS2.getToType(2); | |||
4360 | T1 = S.Context.getCanonicalType(T1); | |||
4361 | T2 = S.Context.getCanonicalType(T2); | |||
4362 | assert(!T1->isReferenceType() && !T2->isReferenceType())(static_cast <bool> (!T1->isReferenceType() && !T2->isReferenceType()) ? void (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()" , "clang/lib/Sema/SemaOverload.cpp", 4362, __extension__ __PRETTY_FUNCTION__ )); | |||
4363 | Qualifiers T1Quals, T2Quals; | |||
4364 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4365 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4366 | ||||
4367 | // If the types are the same, we won't learn anything by unwrapping | |||
4368 | // them. | |||
4369 | if (UnqualT1 == UnqualT2) | |||
4370 | return ImplicitConversionSequence::Indistinguishable; | |||
4371 | ||||
4372 | // Don't ever prefer a standard conversion sequence that uses the deprecated | |||
4373 | // string literal array to pointer conversion. | |||
4374 | bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; | |||
4375 | bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; | |||
4376 | ||||
4377 | // Objective-C++ ARC: | |||
4378 | // Prefer qualification conversions not involving a change in lifetime | |||
4379 | // to qualification conversions that do change lifetime. | |||
4380 | if (SCS1.QualificationIncludesObjCLifetime && | |||
4381 | !SCS2.QualificationIncludesObjCLifetime) | |||
4382 | CanPick1 = false; | |||
4383 | if (SCS2.QualificationIncludesObjCLifetime && | |||
4384 | !SCS1.QualificationIncludesObjCLifetime) | |||
4385 | CanPick2 = false; | |||
4386 | ||||
4387 | bool ObjCLifetimeConversion; | |||
4388 | if (CanPick1 && | |||
4389 | !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) | |||
4390 | CanPick1 = false; | |||
4391 | // FIXME: In Objective-C ARC, we can have qualification conversions in both | |||
4392 | // directions, so we can't short-cut this second check in general. | |||
4393 | if (CanPick2 && | |||
4394 | !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) | |||
4395 | CanPick2 = false; | |||
4396 | ||||
4397 | if (CanPick1 != CanPick2) | |||
4398 | return CanPick1 ? ImplicitConversionSequence::Better | |||
4399 | : ImplicitConversionSequence::Worse; | |||
4400 | return ImplicitConversionSequence::Indistinguishable; | |||
4401 | } | |||
4402 | ||||
4403 | /// CompareDerivedToBaseConversions - Compares two standard conversion | |||
4404 | /// sequences to determine whether they can be ranked based on their | |||
4405 | /// various kinds of derived-to-base conversions (C++ | |||
4406 | /// [over.ics.rank]p4b3). As part of these checks, we also look at | |||
4407 | /// conversions between Objective-C interface types. | |||
4408 | static ImplicitConversionSequence::CompareKind | |||
4409 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | |||
4410 | const StandardConversionSequence& SCS1, | |||
4411 | const StandardConversionSequence& SCS2) { | |||
4412 | QualType FromType1 = SCS1.getFromType(); | |||
4413 | QualType ToType1 = SCS1.getToType(1); | |||
4414 | QualType FromType2 = SCS2.getFromType(); | |||
4415 | QualType ToType2 = SCS2.getToType(1); | |||
4416 | ||||
4417 | // Adjust the types we're converting from via the array-to-pointer | |||
4418 | // conversion, if we need to. | |||
4419 | if (SCS1.First == ICK_Array_To_Pointer) | |||
4420 | FromType1 = S.Context.getArrayDecayedType(FromType1); | |||
4421 | if (SCS2.First == ICK_Array_To_Pointer) | |||
4422 | FromType2 = S.Context.getArrayDecayedType(FromType2); | |||
4423 | ||||
4424 | // Canonicalize all of the types. | |||
4425 | FromType1 = S.Context.getCanonicalType(FromType1); | |||
4426 | ToType1 = S.Context.getCanonicalType(ToType1); | |||
4427 | FromType2 = S.Context.getCanonicalType(FromType2); | |||
4428 | ToType2 = S.Context.getCanonicalType(ToType2); | |||
4429 | ||||
4430 | // C++ [over.ics.rank]p4b3: | |||
4431 | // | |||
4432 | // If class B is derived directly or indirectly from class A and | |||
4433 | // class C is derived directly or indirectly from B, | |||
4434 | // | |||
4435 | // Compare based on pointer conversions. | |||
4436 | if (SCS1.Second == ICK_Pointer_Conversion && | |||
4437 | SCS2.Second == ICK_Pointer_Conversion && | |||
4438 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ | |||
4439 | FromType1->isPointerType() && FromType2->isPointerType() && | |||
4440 | ToType1->isPointerType() && ToType2->isPointerType()) { | |||
4441 | QualType FromPointee1 = | |||
4442 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4443 | QualType ToPointee1 = | |||
4444 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4445 | QualType FromPointee2 = | |||
4446 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4447 | QualType ToPointee2 = | |||
4448 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4449 | ||||
4450 | // -- conversion of C* to B* is better than conversion of C* to A*, | |||
4451 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | |||
4452 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | |||
4453 | return ImplicitConversionSequence::Better; | |||
4454 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | |||
4455 | return ImplicitConversionSequence::Worse; | |||
4456 | } | |||
4457 | ||||
4458 | // -- conversion of B* to A* is better than conversion of C* to A*, | |||
4459 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | |||
4460 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4461 | return ImplicitConversionSequence::Better; | |||
4462 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4463 | return ImplicitConversionSequence::Worse; | |||
4464 | } | |||
4465 | } else if (SCS1.Second == ICK_Pointer_Conversion && | |||
4466 | SCS2.Second == ICK_Pointer_Conversion) { | |||
4467 | const ObjCObjectPointerType *FromPtr1 | |||
4468 | = FromType1->getAs<ObjCObjectPointerType>(); | |||
4469 | const ObjCObjectPointerType *FromPtr2 | |||
4470 | = FromType2->getAs<ObjCObjectPointerType>(); | |||
4471 | const ObjCObjectPointerType *ToPtr1 | |||
4472 | = ToType1->getAs<ObjCObjectPointerType>(); | |||
4473 | const ObjCObjectPointerType *ToPtr2 | |||
4474 | = ToType2->getAs<ObjCObjectPointerType>(); | |||
4475 | ||||
4476 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { | |||
4477 | // Apply the same conversion ranking rules for Objective-C pointer types | |||
4478 | // that we do for C++ pointers to class types. However, we employ the | |||
4479 | // Objective-C pseudo-subtyping relationship used for assignment of | |||
4480 | // Objective-C pointer types. | |||
4481 | bool FromAssignLeft | |||
4482 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); | |||
4483 | bool FromAssignRight | |||
4484 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); | |||
4485 | bool ToAssignLeft | |||
4486 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); | |||
4487 | bool ToAssignRight | |||
4488 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); | |||
4489 | ||||
4490 | // A conversion to an a non-id object pointer type or qualified 'id' | |||
4491 | // type is better than a conversion to 'id'. | |||
4492 | if (ToPtr1->isObjCIdType() && | |||
4493 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) | |||
4494 | return ImplicitConversionSequence::Worse; | |||
4495 | if (ToPtr2->isObjCIdType() && | |||
4496 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) | |||
4497 | return ImplicitConversionSequence::Better; | |||
4498 | ||||
4499 | // A conversion to a non-id object pointer type is better than a | |||
4500 | // conversion to a qualified 'id' type | |||
4501 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) | |||
4502 | return ImplicitConversionSequence::Worse; | |||
4503 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) | |||
4504 | return ImplicitConversionSequence::Better; | |||
4505 | ||||
4506 | // A conversion to an a non-Class object pointer type or qualified 'Class' | |||
4507 | // type is better than a conversion to 'Class'. | |||
4508 | if (ToPtr1->isObjCClassType() && | |||
4509 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) | |||
4510 | return ImplicitConversionSequence::Worse; | |||
4511 | if (ToPtr2->isObjCClassType() && | |||
4512 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) | |||
4513 | return ImplicitConversionSequence::Better; | |||
4514 | ||||
4515 | // A conversion to a non-Class object pointer type is better than a | |||
4516 | // conversion to a qualified 'Class' type. | |||
4517 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) | |||
4518 | return ImplicitConversionSequence::Worse; | |||
4519 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) | |||
4520 | return ImplicitConversionSequence::Better; | |||
4521 | ||||
4522 | // -- "conversion of C* to B* is better than conversion of C* to A*," | |||
4523 | if (S.Context.hasSameType(FromType1, FromType2) && | |||
4524 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && | |||
4525 | (ToAssignLeft != ToAssignRight)) { | |||
4526 | if (FromPtr1->isSpecialized()) { | |||
4527 | // "conversion of B<A> * to B * is better than conversion of B * to | |||
4528 | // C *. | |||
4529 | bool IsFirstSame = | |||
4530 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); | |||
4531 | bool IsSecondSame = | |||
4532 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); | |||
4533 | if (IsFirstSame) { | |||
4534 | if (!IsSecondSame) | |||
4535 | return ImplicitConversionSequence::Better; | |||
4536 | } else if (IsSecondSame) | |||
4537 | return ImplicitConversionSequence::Worse; | |||
4538 | } | |||
4539 | return ToAssignLeft? ImplicitConversionSequence::Worse | |||
4540 | : ImplicitConversionSequence::Better; | |||
4541 | } | |||
4542 | ||||
4543 | // -- "conversion of B* to A* is better than conversion of C* to A*," | |||
4544 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && | |||
4545 | (FromAssignLeft != FromAssignRight)) | |||
4546 | return FromAssignLeft? ImplicitConversionSequence::Better | |||
4547 | : ImplicitConversionSequence::Worse; | |||
4548 | } | |||
4549 | } | |||
4550 | ||||
4551 | // Ranking of member-pointer types. | |||
4552 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | |||
4553 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | |||
4554 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | |||
4555 | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); | |||
4556 | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); | |||
4557 | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); | |||
4558 | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); | |||
4559 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); | |||
4560 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); | |||
4561 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); | |||
4562 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); | |||
4563 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | |||
4564 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | |||
4565 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | |||
4566 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | |||
4567 | // conversion of A::* to B::* is better than conversion of A::* to C::*, | |||
4568 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | |||
4569 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | |||
4570 | return ImplicitConversionSequence::Worse; | |||
4571 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | |||
4572 | return ImplicitConversionSequence::Better; | |||
4573 | } | |||
4574 | // conversion of B::* to C::* is better than conversion of A::* to C::* | |||
4575 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | |||
4576 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4577 | return ImplicitConversionSequence::Better; | |||
4578 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4579 | return ImplicitConversionSequence::Worse; | |||
4580 | } | |||
4581 | } | |||
4582 | ||||
4583 | if (SCS1.Second == ICK_Derived_To_Base) { | |||
4584 | // -- conversion of C to B is better than conversion of C to A, | |||
4585 | // -- binding of an expression of type C to a reference of type | |||
4586 | // B& is better than binding an expression of type C to a | |||
4587 | // reference of type A&, | |||
4588 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | |||
4589 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | |||
4590 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) | |||
4591 | return ImplicitConversionSequence::Better; | |||
4592 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) | |||
4593 | return ImplicitConversionSequence::Worse; | |||
4594 | } | |||
4595 | ||||
4596 | // -- conversion of B to A is better than conversion of C to A. | |||
4597 | // -- binding of an expression of type B to a reference of type | |||
4598 | // A& is better than binding an expression of type C to a | |||
4599 | // reference of type A&, | |||
4600 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | |||
4601 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | |||
4602 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) | |||
4603 | return ImplicitConversionSequence::Better; | |||
4604 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) | |||
4605 | return ImplicitConversionSequence::Worse; | |||
4606 | } | |||
4607 | } | |||
4608 | ||||
4609 | return ImplicitConversionSequence::Indistinguishable; | |||
4610 | } | |||
4611 | ||||
4612 | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { | |||
4613 | if (!T.getQualifiers().hasUnaligned()) | |||
4614 | return T; | |||
4615 | ||||
4616 | Qualifiers Q; | |||
4617 | T = Ctx.getUnqualifiedArrayType(T, Q); | |||
4618 | Q.removeUnaligned(); | |||
4619 | return Ctx.getQualifiedType(T, Q); | |||
4620 | } | |||
4621 | ||||
4622 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | |||
4623 | /// determine whether they are reference-compatible, | |||
4624 | /// reference-related, or incompatible, for use in C++ initialization by | |||
4625 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | |||
4626 | /// type, and the first type (T1) is the pointee type of the reference | |||
4627 | /// type being initialized. | |||
4628 | Sema::ReferenceCompareResult | |||
4629 | Sema::CompareReferenceRelationship(SourceLocation Loc, | |||
4630 | QualType OrigT1, QualType OrigT2, | |||
4631 | ReferenceConversions *ConvOut) { | |||
4632 | assert(!OrigT1->isReferenceType() &&(static_cast <bool> (!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type") ? void ( 0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4633, __extension__ __PRETTY_FUNCTION__ )) | |||
4633 | "T1 must be the pointee type of the reference type")(static_cast <bool> (!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type") ? void ( 0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4633, __extension__ __PRETTY_FUNCTION__ )); | |||
4634 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")(static_cast <bool> (!OrigT2->isReferenceType() && "T2 cannot be a reference type") ? void (0) : __assert_fail ( "!OrigT2->isReferenceType() && \"T2 cannot be a reference type\"" , "clang/lib/Sema/SemaOverload.cpp", 4634, __extension__ __PRETTY_FUNCTION__ )); | |||
4635 | ||||
4636 | QualType T1 = Context.getCanonicalType(OrigT1); | |||
4637 | QualType T2 = Context.getCanonicalType(OrigT2); | |||
4638 | Qualifiers T1Quals, T2Quals; | |||
4639 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4640 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4641 | ||||
4642 | ReferenceConversions ConvTmp; | |||
4643 | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; | |||
4644 | Conv = ReferenceConversions(); | |||
4645 | ||||
4646 | // C++2a [dcl.init.ref]p4: | |||
4647 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | |||
4648 | // reference-related to "cv2 T2" if T1 is similar to T2, or | |||
4649 | // T1 is a base class of T2. | |||
4650 | // "cv1 T1" is reference-compatible with "cv2 T2" if | |||
4651 | // a prvalue of type "pointer to cv2 T2" can be converted to the type | |||
4652 | // "pointer to cv1 T1" via a standard conversion sequence. | |||
4653 | ||||
4654 | // Check for standard conversions we can apply to pointers: derived-to-base | |||
4655 | // conversions, ObjC pointer conversions, and function pointer conversions. | |||
4656 | // (Qualification conversions are checked last.) | |||
4657 | QualType ConvertedT2; | |||
4658 | if (UnqualT1 == UnqualT2) { | |||
4659 | // Nothing to do. | |||
4660 | } else if (isCompleteType(Loc, OrigT2) && | |||
4661 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) | |||
4662 | Conv |= ReferenceConversions::DerivedToBase; | |||
4663 | else if (UnqualT1->isObjCObjectOrInterfaceType() && | |||
4664 | UnqualT2->isObjCObjectOrInterfaceType() && | |||
4665 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) | |||
4666 | Conv |= ReferenceConversions::ObjC; | |||
4667 | else if (UnqualT2->isFunctionType() && | |||
4668 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { | |||
4669 | Conv |= ReferenceConversions::Function; | |||
4670 | // No need to check qualifiers; function types don't have them. | |||
4671 | return Ref_Compatible; | |||
4672 | } | |||
4673 | bool ConvertedReferent = Conv != 0; | |||
4674 | ||||
4675 | // We can have a qualification conversion. Compute whether the types are | |||
4676 | // similar at the same time. | |||
4677 | bool PreviousToQualsIncludeConst = true; | |||
4678 | bool TopLevel = true; | |||
4679 | do { | |||
4680 | if (T1 == T2) | |||
4681 | break; | |||
4682 | ||||
4683 | // We will need a qualification conversion. | |||
4684 | Conv |= ReferenceConversions::Qualification; | |||
4685 | ||||
4686 | // Track whether we performed a qualification conversion anywhere other | |||
4687 | // than the top level. This matters for ranking reference bindings in | |||
4688 | // overload resolution. | |||
4689 | if (!TopLevel) | |||
4690 | Conv |= ReferenceConversions::NestedQualification; | |||
4691 | ||||
4692 | // MS compiler ignores __unaligned qualifier for references; do the same. | |||
4693 | T1 = withoutUnaligned(Context, T1); | |||
4694 | T2 = withoutUnaligned(Context, T2); | |||
4695 | ||||
4696 | // If we find a qualifier mismatch, the types are not reference-compatible, | |||
4697 | // but are still be reference-related if they're similar. | |||
4698 | bool ObjCLifetimeConversion = false; | |||
4699 | if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, | |||
4700 | PreviousToQualsIncludeConst, | |||
4701 | ObjCLifetimeConversion)) | |||
4702 | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) | |||
4703 | ? Ref_Related | |||
4704 | : Ref_Incompatible; | |||
4705 | ||||
4706 | // FIXME: Should we track this for any level other than the first? | |||
4707 | if (ObjCLifetimeConversion) | |||
4708 | Conv |= ReferenceConversions::ObjCLifetime; | |||
4709 | ||||
4710 | TopLevel = false; | |||
4711 | } while (Context.UnwrapSimilarTypes(T1, T2)); | |||
4712 | ||||
4713 | // At this point, if the types are reference-related, we must either have the | |||
4714 | // same inner type (ignoring qualifiers), or must have already worked out how | |||
4715 | // to convert the referent. | |||
4716 | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) | |||
4717 | ? Ref_Compatible | |||
4718 | : Ref_Incompatible; | |||
4719 | } | |||
4720 | ||||
4721 | /// Look for a user-defined conversion to a value reference-compatible | |||
4722 | /// with DeclType. Return true if something definite is found. | |||
4723 | static bool | |||
4724 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, | |||
4725 | QualType DeclType, SourceLocation DeclLoc, | |||
4726 | Expr *Init, QualType T2, bool AllowRvalues, | |||
4727 | bool AllowExplicit) { | |||
4728 | assert(T2->isRecordType() && "Can only find conversions of record types.")(static_cast <bool> (T2->isRecordType() && "Can only find conversions of record types." ) ? void (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\"" , "clang/lib/Sema/SemaOverload.cpp", 4728, __extension__ __PRETTY_FUNCTION__ )); | |||
4729 | auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); | |||
4730 | ||||
4731 | OverloadCandidateSet CandidateSet( | |||
4732 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
4733 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | |||
4734 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
4735 | NamedDecl *D = *I; | |||
4736 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | |||
4737 | if (isa<UsingShadowDecl>(D)) | |||
4738 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
4739 | ||||
4740 | FunctionTemplateDecl *ConvTemplate | |||
4741 | = dyn_cast<FunctionTemplateDecl>(D); | |||
4742 | CXXConversionDecl *Conv; | |||
4743 | if (ConvTemplate) | |||
4744 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
4745 | else | |||
4746 | Conv = cast<CXXConversionDecl>(D); | |||
4747 | ||||
4748 | if (AllowRvalues) { | |||
4749 | // If we are initializing an rvalue reference, don't permit conversion | |||
4750 | // functions that return lvalues. | |||
4751 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { | |||
4752 | const ReferenceType *RefType | |||
4753 | = Conv->getConversionType()->getAs<LValueReferenceType>(); | |||
4754 | if (RefType && !RefType->getPointeeType()->isFunctionType()) | |||
4755 | continue; | |||
4756 | } | |||
4757 | ||||
4758 | if (!ConvTemplate && | |||
4759 | S.CompareReferenceRelationship( | |||
4760 | DeclLoc, | |||
4761 | Conv->getConversionType() | |||
4762 | .getNonReferenceType() | |||
4763 | .getUnqualifiedType(), | |||
4764 | DeclType.getNonReferenceType().getUnqualifiedType()) == | |||
4765 | Sema::Ref_Incompatible) | |||
4766 | continue; | |||
4767 | } else { | |||
4768 | // If the conversion function doesn't return a reference type, | |||
4769 | // it can't be considered for this conversion. An rvalue reference | |||
4770 | // is only acceptable if its referencee is a function type. | |||
4771 | ||||
4772 | const ReferenceType *RefType = | |||
4773 | Conv->getConversionType()->getAs<ReferenceType>(); | |||
4774 | if (!RefType || | |||
4775 | (!RefType->isLValueReferenceType() && | |||
4776 | !RefType->getPointeeType()->isFunctionType())) | |||
4777 | continue; | |||
4778 | } | |||
4779 | ||||
4780 | if (ConvTemplate) | |||
4781 | S.AddTemplateConversionCandidate( | |||
4782 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | |||
4783 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | |||
4784 | else | |||
4785 | S.AddConversionCandidate( | |||
4786 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | |||
4787 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | |||
4788 | } | |||
4789 | ||||
4790 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
4791 | ||||
4792 | OverloadCandidateSet::iterator Best; | |||
4793 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { | |||
4794 | case OR_Success: | |||
4795 | // C++ [over.ics.ref]p1: | |||
4796 | // | |||
4797 | // [...] If the parameter binds directly to the result of | |||
4798 | // applying a conversion function to the argument | |||
4799 | // expression, the implicit conversion sequence is a | |||
4800 | // user-defined conversion sequence (13.3.3.1.2), with the | |||
4801 | // second standard conversion sequence either an identity | |||
4802 | // conversion or, if the conversion function returns an | |||
4803 | // entity of a type that is a derived class of the parameter | |||
4804 | // type, a derived-to-base Conversion. | |||
4805 | if (!Best->FinalConversion.DirectBinding) | |||
4806 | return false; | |||
4807 | ||||
4808 | ICS.setUserDefined(); | |||
4809 | ICS.UserDefined.Before = Best->Conversions[0].Standard; | |||
4810 | ICS.UserDefined.After = Best->FinalConversion; | |||
4811 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; | |||
4812 | ICS.UserDefined.ConversionFunction = Best->Function; | |||
4813 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; | |||
4814 | ICS.UserDefined.EllipsisConversion = false; | |||
4815 | assert(ICS.UserDefined.After.ReferenceBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )) | |||
4816 | ICS.UserDefined.After.DirectBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )) | |||
4817 | "Expected a direct reference binding!")(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!" ) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "clang/lib/Sema/SemaOverload.cpp", 4817, __extension__ __PRETTY_FUNCTION__ )); | |||
4818 | return true; | |||
4819 | ||||
4820 | case OR_Ambiguous: | |||
4821 | ICS.setAmbiguous(); | |||
4822 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | |||
4823 | Cand != CandidateSet.end(); ++Cand) | |||
4824 | if (Cand->Best) | |||
4825 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | |||
4826 | return true; | |||
4827 | ||||
4828 | case OR_No_Viable_Function: | |||
4829 | case OR_Deleted: | |||
4830 | // There was no suitable conversion, or we found a deleted | |||
4831 | // conversion; continue with other checks. | |||
4832 | return false; | |||
4833 | } | |||
4834 | ||||
4835 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp" , 4835); | |||
4836 | } | |||
4837 | ||||
4838 | /// Compute an implicit conversion sequence for reference | |||
4839 | /// initialization. | |||
4840 | static ImplicitConversionSequence | |||
4841 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, | |||
4842 | SourceLocation DeclLoc, | |||
4843 | bool SuppressUserConversions, | |||
4844 | bool AllowExplicit) { | |||
4845 | assert(DeclType->isReferenceType() && "Reference init needs a reference")(static_cast <bool> (DeclType->isReferenceType() && "Reference init needs a reference") ? void (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\"" , "clang/lib/Sema/SemaOverload.cpp", 4845, __extension__ __PRETTY_FUNCTION__ )); | |||
4846 | ||||
4847 | // Most paths end in a failed conversion. | |||
4848 | ImplicitConversionSequence ICS; | |||
4849 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
4850 | ||||
4851 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); | |||
4852 | QualType T2 = Init->getType(); | |||
4853 | ||||
4854 | // If the initializer is the address of an overloaded function, try | |||
4855 | // to resolve the overloaded function. If all goes well, T2 is the | |||
4856 | // type of the resulting function. | |||
4857 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | |||
4858 | DeclAccessPair Found; | |||
4859 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | |||
4860 | false, Found)) | |||
4861 | T2 = Fn->getType(); | |||
4862 | } | |||
4863 | ||||
4864 | // Compute some basic properties of the types and the initializer. | |||
4865 | bool isRValRef = DeclType->isRValueReferenceType(); | |||
4866 | Expr::Classification InitCategory = Init->Classify(S.Context); | |||
4867 | ||||
4868 | Sema::ReferenceConversions RefConv; | |||
4869 | Sema::ReferenceCompareResult RefRelationship = | |||
4870 | S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); | |||
4871 | ||||
4872 | auto SetAsReferenceBinding = [&](bool BindsDirectly) { | |||
4873 | ICS.setStandard(); | |||
4874 | ICS.Standard.First = ICK_Identity; | |||
4875 | // FIXME: A reference binding can be a function conversion too. We should | |||
4876 | // consider that when ordering reference-to-function bindings. | |||
4877 | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) | |||
4878 | ? ICK_Derived_To_Base | |||
4879 | : (RefConv & Sema::ReferenceConversions::ObjC) | |||
4880 | ? ICK_Compatible_Conversion | |||
4881 | : ICK_Identity; | |||
4882 | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank | |||
4883 | // a reference binding that performs a non-top-level qualification | |||
4884 | // conversion as a qualification conversion, not as an identity conversion. | |||
4885 | ICS.Standard.Third = (RefConv & | |||
4886 | Sema::ReferenceConversions::NestedQualification) | |||
4887 | ? ICK_Qualification | |||
4888 | : ICK_Identity; | |||
4889 | ICS.Standard.setFromType(T2); | |||
4890 | ICS.Standard.setToType(0, T2); | |||
4891 | ICS.Standard.setToType(1, T1); | |||
4892 | ICS.Standard.setToType(2, T1); | |||
4893 | ICS.Standard.ReferenceBinding = true; | |||
4894 | ICS.Standard.DirectBinding = BindsDirectly; | |||
4895 | ICS.Standard.IsLvalueReference = !isRValRef; | |||
4896 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | |||
4897 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); | |||
4898 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
4899 | ICS.Standard.ObjCLifetimeConversionBinding = | |||
4900 | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; | |||
4901 | ICS.Standard.CopyConstructor = nullptr; | |||
4902 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | |||
4903 | }; | |||
4904 | ||||
4905 | // C++0x [dcl.init.ref]p5: | |||
4906 | // A reference to type "cv1 T1" is initialized by an expression | |||
4907 | // of type "cv2 T2" as follows: | |||
4908 | ||||
4909 | // -- If reference is an lvalue reference and the initializer expression | |||
4910 | if (!isRValRef) { | |||
4911 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is | |||
4912 | // reference-compatible with "cv2 T2," or | |||
4913 | // | |||
4914 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | |||
4915 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { | |||
4916 | // C++ [over.ics.ref]p1: | |||
4917 | // When a parameter of reference type binds directly (8.5.3) | |||
4918 | // to an argument expression, the implicit conversion sequence | |||
4919 | // is the identity conversion, unless the argument expression | |||
4920 | // has a type that is a derived class of the parameter type, | |||
4921 | // in which case the implicit conversion sequence is a | |||
4922 | // derived-to-base Conversion (13.3.3.1). | |||
4923 | SetAsReferenceBinding(/*BindsDirectly=*/true); | |||
4924 | ||||
4925 | // Nothing more to do: the inaccessibility/ambiguity check for | |||
4926 | // derived-to-base conversions is suppressed when we're | |||
4927 | // computing the implicit conversion sequence (C++ | |||
4928 | // [over.best.ics]p2). | |||
4929 | return ICS; | |||
4930 | } | |||
4931 | ||||
4932 | // -- has a class type (i.e., T2 is a class type), where T1 is | |||
4933 | // not reference-related to T2, and can be implicitly | |||
4934 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" | |||
4935 | // is reference-compatible with "cv3 T3" 92) (this | |||
4936 | // conversion is selected by enumerating the applicable | |||
4937 | // conversion functions (13.3.1.6) and choosing the best | |||
4938 | // one through overload resolution (13.3)), | |||
4939 | if (!SuppressUserConversions && T2->isRecordType() && | |||
4940 | S.isCompleteType(DeclLoc, T2) && | |||
4941 | RefRelationship == Sema::Ref_Incompatible) { | |||
4942 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | |||
4943 | Init, T2, /*AllowRvalues=*/false, | |||
4944 | AllowExplicit)) | |||
4945 | return ICS; | |||
4946 | } | |||
4947 | } | |||
4948 | ||||
4949 | // -- Otherwise, the reference shall be an lvalue reference to a | |||
4950 | // non-volatile const type (i.e., cv1 shall be const), or the reference | |||
4951 | // shall be an rvalue reference. | |||
4952 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { | |||
4953 | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) | |||
4954 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); | |||
4955 | return ICS; | |||
4956 | } | |||
4957 | ||||
4958 | // -- If the initializer expression | |||
4959 | // | |||
4960 | // -- is an xvalue, class prvalue, array prvalue or function | |||
4961 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or | |||
4962 | if (RefRelationship == Sema::Ref_Compatible && | |||
4963 | (InitCategory.isXValue() || | |||
4964 | (InitCategory.isPRValue() && | |||
4965 | (T2->isRecordType() || T2->isArrayType())) || | |||
4966 | (InitCategory.isLValue() && T2->isFunctionType()))) { | |||
4967 | // In C++11, this is always a direct binding. In C++98/03, it's a direct | |||
4968 | // binding unless we're binding to a class prvalue. | |||
4969 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we | |||
4970 | // allow the use of rvalue references in C++98/03 for the benefit of | |||
4971 | // standard library implementors; therefore, we need the xvalue check here. | |||
4972 | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || | |||
4973 | !(InitCategory.isPRValue() || T2->isRecordType())); | |||
4974 | return ICS; | |||
4975 | } | |||
4976 | ||||
4977 | // -- has a class type (i.e., T2 is a class type), where T1 is not | |||
4978 | // reference-related to T2, and can be implicitly converted to | |||
4979 | // an xvalue, class prvalue, or function lvalue of type | |||
4980 | // "cv3 T3", where "cv1 T1" is reference-compatible with | |||
4981 | // "cv3 T3", | |||
4982 | // | |||
4983 | // then the reference is bound to the value of the initializer | |||
4984 | // expression in the first case and to the result of the conversion | |||
4985 | // in the second case (or, in either case, to an appropriate base | |||
4986 | // class subobject). | |||
4987 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | |||
4988 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && | |||
4989 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | |||
4990 | Init, T2, /*AllowRvalues=*/true, | |||
4991 | AllowExplicit)) { | |||
4992 | // In the second case, if the reference is an rvalue reference | |||
4993 | // and the second standard conversion sequence of the | |||
4994 | // user-defined conversion sequence includes an lvalue-to-rvalue | |||
4995 | // conversion, the program is ill-formed. | |||
4996 | if (ICS.isUserDefined() && isRValRef && | |||
4997 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) | |||
4998 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
4999 | ||||
5000 | return ICS; | |||
5001 | } | |||
5002 | ||||
5003 | // A temporary of function type cannot be created; don't even try. | |||
5004 | if (T1->isFunctionType()) | |||
5005 | return ICS; | |||
5006 | ||||
5007 | // -- Otherwise, a temporary of type "cv1 T1" is created and | |||
5008 | // initialized from the initializer expression using the | |||
5009 | // rules for a non-reference copy initialization (8.5). The | |||
5010 | // reference is then bound to the temporary. If T1 is | |||
5011 | // reference-related to T2, cv1 must be the same | |||
5012 | // cv-qualification as, or greater cv-qualification than, | |||
5013 | // cv2; otherwise, the program is ill-formed. | |||
5014 | if (RefRelationship == Sema::Ref_Related) { | |||
5015 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | |||
5016 | // we would be reference-compatible or reference-compatible with | |||
5017 | // added qualification. But that wasn't the case, so the reference | |||
5018 | // initialization fails. | |||
5019 | // | |||
5020 | // Note that we only want to check address spaces and cvr-qualifiers here. | |||
5021 | // ObjC GC, lifetime and unaligned qualifiers aren't important. | |||
5022 | Qualifiers T1Quals = T1.getQualifiers(); | |||
5023 | Qualifiers T2Quals = T2.getQualifiers(); | |||
5024 | T1Quals.removeObjCGCAttr(); | |||
5025 | T1Quals.removeObjCLifetime(); | |||
5026 | T2Quals.removeObjCGCAttr(); | |||
5027 | T2Quals.removeObjCLifetime(); | |||
5028 | // MS compiler ignores __unaligned qualifier for references; do the same. | |||
5029 | T1Quals.removeUnaligned(); | |||
5030 | T2Quals.removeUnaligned(); | |||
5031 | if (!T1Quals.compatiblyIncludes(T2Quals)) | |||
5032 | return ICS; | |||
5033 | } | |||
5034 | ||||
5035 | // If at least one of the types is a class type, the types are not | |||
5036 | // related, and we aren't allowed any user conversions, the | |||
5037 | // reference binding fails. This case is important for breaking | |||
5038 | // recursion, since TryImplicitConversion below will attempt to | |||
5039 | // create a temporary through the use of a copy constructor. | |||
5040 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | |||
5041 | (T1->isRecordType() || T2->isRecordType())) | |||
5042 | return ICS; | |||
5043 | ||||
5044 | // If T1 is reference-related to T2 and the reference is an rvalue | |||
5045 | // reference, the initializer expression shall not be an lvalue. | |||
5046 | if (RefRelationship >= Sema::Ref_Related && isRValRef && | |||
5047 | Init->Classify(S.Context).isLValue()) { | |||
5048 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); | |||
5049 | return ICS; | |||
5050 | } | |||
5051 | ||||
5052 | // C++ [over.ics.ref]p2: | |||
5053 | // When a parameter of reference type is not bound directly to | |||
5054 | // an argument expression, the conversion sequence is the one | |||
5055 | // required to convert the argument expression to the | |||
5056 | // underlying type of the reference according to | |||
5057 | // 13.3.3.1. Conceptually, this conversion sequence corresponds | |||
5058 | // to copy-initializing a temporary of the underlying type with | |||
5059 | // the argument expression. Any difference in top-level | |||
5060 | // cv-qualification is subsumed by the initialization itself | |||
5061 | // and does not constitute a conversion. | |||
5062 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, | |||
5063 | AllowedExplicit::None, | |||
5064 | /*InOverloadResolution=*/false, | |||
5065 | /*CStyle=*/false, | |||
5066 | /*AllowObjCWritebackConversion=*/false, | |||
5067 | /*AllowObjCConversionOnExplicit=*/false); | |||
5068 | ||||
5069 | // Of course, that's still a reference binding. | |||
5070 | if (ICS.isStandard()) { | |||
5071 | ICS.Standard.ReferenceBinding = true; | |||
5072 | ICS.Standard.IsLvalueReference = !isRValRef; | |||
5073 | ICS.Standard.BindsToFunctionLvalue = false; | |||
5074 | ICS.Standard.BindsToRvalue = true; | |||
5075 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
5076 | ICS.Standard.ObjCLifetimeConversionBinding = false; | |||
5077 | } else if (ICS.isUserDefined()) { | |||
5078 | const ReferenceType *LValRefType = | |||
5079 | ICS.UserDefined.ConversionFunction->getReturnType() | |||
5080 | ->getAs<LValueReferenceType>(); | |||
5081 | ||||
5082 | // C++ [over.ics.ref]p3: | |||
5083 | // Except for an implicit object parameter, for which see 13.3.1, a | |||
5084 | // standard conversion sequence cannot be formed if it requires [...] | |||
5085 | // binding an rvalue reference to an lvalue other than a function | |||
5086 | // lvalue. | |||
5087 | // Note that the function case is not possible here. | |||
5088 | if (isRValRef && LValRefType) { | |||
5089 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
5090 | return ICS; | |||
5091 | } | |||
5092 | ||||
5093 | ICS.UserDefined.After.ReferenceBinding = true; | |||
5094 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; | |||
5095 | ICS.UserDefined.After.BindsToFunctionLvalue = false; | |||
5096 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; | |||
5097 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
5098 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; | |||
5099 | } | |||
5100 | ||||
5101 | return ICS; | |||
5102 | } | |||
5103 | ||||
5104 | static ImplicitConversionSequence | |||
5105 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | |||
5106 | bool SuppressUserConversions, | |||
5107 | bool InOverloadResolution, | |||
5108 | bool AllowObjCWritebackConversion, | |||
5109 | bool AllowExplicit = false); | |||
5110 | ||||
5111 | /// TryListConversion - Try to copy-initialize a value of type ToType from the | |||
5112 | /// initializer list From. | |||
5113 | static ImplicitConversionSequence | |||
5114 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, | |||
5115 | bool SuppressUserConversions, | |||
5116 | bool InOverloadResolution, | |||
5117 | bool AllowObjCWritebackConversion) { | |||
5118 | // C++11 [over.ics.list]p1: | |||
5119 | // When an argument is an initializer list, it is not an expression and | |||
5120 | // special rules apply for converting it to a parameter type. | |||
5121 | ||||
5122 | ImplicitConversionSequence Result; | |||
5123 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
5124 | ||||
5125 | // We need a complete type for what follows. With one C++20 exception, | |||
5126 | // incomplete types can never be initialized from init lists. | |||
5127 | QualType InitTy = ToType; | |||
5128 | const ArrayType *AT = S.Context.getAsArrayType(ToType); | |||
5129 | if (AT && S.getLangOpts().CPlusPlus20) | |||
5130 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) | |||
5131 | // C++20 allows list initialization of an incomplete array type. | |||
5132 | InitTy = IAT->getElementType(); | |||
5133 | if (!S.isCompleteType(From->getBeginLoc(), InitTy)) | |||
5134 | return Result; | |||
5135 | ||||
5136 | // Per DR1467: | |||
5137 | // If the parameter type is a class X and the initializer list has a single | |||
5138 | // element of type cv U, where U is X or a class derived from X, the | |||
5139 | // implicit conversion sequence is the one required to convert the element | |||
5140 | // to the parameter type. | |||
5141 | // | |||
5142 | // Otherwise, if the parameter type is a character array [... ] | |||
5143 | // and the initializer list has a single element that is an | |||
5144 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the | |||
5145 | // implicit conversion sequence is the identity conversion. | |||
5146 | if (From->getNumInits() == 1) { | |||
5147 | if (ToType->isRecordType()) { | |||
5148 | QualType InitType = From->getInit(0)->getType(); | |||
5149 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || | |||
5150 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) | |||
5151 | return TryCopyInitialization(S, From->getInit(0), ToType, | |||
5152 | SuppressUserConversions, | |||
5153 | InOverloadResolution, | |||
5154 | AllowObjCWritebackConversion); | |||
5155 | } | |||
5156 | ||||
5157 | if (AT && S.IsStringInit(From->getInit(0), AT)) { | |||
5158 | InitializedEntity Entity = | |||
5159 | InitializedEntity::InitializeParameter(S.Context, ToType, | |||
5160 | /*Consumed=*/false); | |||
5161 | if (S.CanPerformCopyInitialization(Entity, From)) { | |||
5162 | Result.setStandard(); | |||
5163 | Result.Standard.setAsIdentityConversion(); | |||
5164 | Result.Standard.setFromType(ToType); | |||
5165 | Result.Standard.setAllToTypes(ToType); | |||
5166 | return Result; | |||
5167 | } | |||
5168 | } | |||
5169 | } | |||
5170 | ||||
5171 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). | |||
5172 | // C++11 [over.ics.list]p2: | |||
5173 | // If the parameter type is std::initializer_list<X> or "array of X" and | |||
5174 | // all the elements can be implicitly converted to X, the implicit | |||
5175 | // conversion sequence is the worst conversion necessary to convert an | |||
5176 | // element of the list to X. | |||
5177 | // | |||
5178 | // C++14 [over.ics.list]p3: | |||
5179 | // Otherwise, if the parameter type is "array of N X", if the initializer | |||
5180 | // list has exactly N elements or if it has fewer than N elements and X is | |||
5181 | // default-constructible, and if all the elements of the initializer list | |||
5182 | // can be implicitly converted to X, the implicit conversion sequence is | |||
5183 | // the worst conversion necessary to convert an element of the list to X. | |||
5184 | if (AT || S.isStdInitializerList(ToType, &InitTy)) { | |||
5185 | unsigned e = From->getNumInits(); | |||
5186 | ImplicitConversionSequence DfltElt; | |||
5187 | DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), | |||
5188 | QualType()); | |||
5189 | QualType ContTy = ToType; | |||
5190 | bool IsUnbounded = false; | |||
5191 | if (AT) { | |||
5192 | InitTy = AT->getElementType(); | |||
5193 | if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { | |||
5194 | if (CT->getSize().ult(e)) { | |||
5195 | // Too many inits, fatally bad | |||
5196 | Result.setBad(BadConversionSequence::too_many_initializers, From, | |||
5197 | ToType); | |||
5198 | Result.setInitializerListContainerType(ContTy, IsUnbounded); | |||
5199 | return Result; | |||
5200 | } | |||
5201 | if (CT->getSize().ugt(e)) { | |||
5202 | // Need an init from empty {}, is there one? | |||
5203 | InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt, | |||
5204 | From->getEndLoc()); | |||
5205 | EmptyList.setType(S.Context.VoidTy); | |||
5206 | DfltElt = TryListConversion( | |||
5207 | S, &EmptyList, InitTy, SuppressUserConversions, | |||
5208 | InOverloadResolution, AllowObjCWritebackConversion); | |||
5209 | if (DfltElt.isBad()) { | |||
5210 | // No {} init, fatally bad | |||
5211 | Result.setBad(BadConversionSequence::too_few_initializers, From, | |||
5212 | ToType); | |||
5213 | Result.setInitializerListContainerType(ContTy, IsUnbounded); | |||
5214 | return Result; | |||
5215 | } | |||
5216 | } | |||
5217 | } else { | |||
5218 | assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array")(static_cast <bool> (isa<IncompleteArrayType>(AT) && "Expected incomplete array") ? void (0) : __assert_fail ("isa<IncompleteArrayType>(AT) && \"Expected incomplete array\"" , "clang/lib/Sema/SemaOverload.cpp", 5218, __extension__ __PRETTY_FUNCTION__ )); | |||
5219 | IsUnbounded = true; | |||
5220 | if (!e) { | |||
5221 | // Cannot convert to zero-sized. | |||
5222 | Result.setBad(BadConversionSequence::too_few_initializers, From, | |||
5223 | ToType); | |||
5224 | Result.setInitializerListContainerType(ContTy, IsUnbounded); | |||
5225 | return Result; | |||
5226 | } | |||
5227 | llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); | |||
5228 | ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, | |||
5229 | ArrayType::Normal, 0); | |||
5230 | } | |||
5231 | } | |||
5232 | ||||
5233 | Result.setStandard(); | |||
5234 | Result.Standard.setAsIdentityConversion(); | |||
5235 | Result.Standard.setFromType(InitTy); | |||
5236 | Result.Standard.setAllToTypes(InitTy); | |||
5237 | for (unsigned i = 0; i < e; ++i) { | |||
5238 | Expr *Init = From->getInit(i); | |||
5239 | ImplicitConversionSequence ICS = TryCopyInitialization( | |||
5240 | S, Init, InitTy, SuppressUserConversions, InOverloadResolution, | |||
5241 | AllowObjCWritebackConversion); | |||
5242 | ||||
5243 | // Keep the worse conversion seen so far. | |||
5244 | // FIXME: Sequences are not totally ordered, so 'worse' can be | |||
5245 | // ambiguous. CWG has been informed. | |||
5246 | if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, | |||
5247 | Result) == | |||
5248 | ImplicitConversionSequence::Worse) { | |||
5249 | Result = ICS; | |||
5250 | // Bail as soon as we find something unconvertible. | |||
5251 | if (Result.isBad()) { | |||
5252 | Result.setInitializerListContainerType(ContTy, IsUnbounded); | |||
5253 | return Result; | |||
5254 | } | |||
5255 | } | |||
5256 | } | |||
5257 | ||||
5258 | // If we needed any implicit {} initialization, compare that now. | |||
5259 | // over.ics.list/6 indicates we should compare that conversion. Again CWG | |||
5260 | // has been informed that this might not be the best thing. | |||
5261 | if (!DfltElt.isBad() && CompareImplicitConversionSequences( | |||
5262 | S, From->getEndLoc(), DfltElt, Result) == | |||
5263 | ImplicitConversionSequence::Worse) | |||
5264 | Result = DfltElt; | |||
5265 | // Record the type being initialized so that we may compare sequences | |||
5266 | Result.setInitializerListContainerType(ContTy, IsUnbounded); | |||
5267 | return Result; | |||
5268 | } | |||
5269 | ||||
5270 | // C++14 [over.ics.list]p4: | |||
5271 | // C++11 [over.ics.list]p3: | |||
5272 | // Otherwise, if the parameter is a non-aggregate class X and overload | |||
5273 | // resolution chooses a single best constructor [...] the implicit | |||
5274 | // conversion sequence is a user-defined conversion sequence. If multiple | |||
5275 | // constructors are viable but none is better than the others, the | |||
5276 | // implicit conversion sequence is a user-defined conversion sequence. | |||
5277 | if (ToType->isRecordType() && !ToType->isAggregateType()) { | |||
5278 | // This function can deal with initializer lists. | |||
5279 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | |||
5280 | AllowedExplicit::None, | |||
5281 | InOverloadResolution, /*CStyle=*/false, | |||
5282 | AllowObjCWritebackConversion, | |||
5283 | /*AllowObjCConversionOnExplicit=*/false); | |||
5284 | } | |||
5285 | ||||
5286 | // C++14 [over.ics.list]p5: | |||
5287 | // C++11 [over.ics.list]p4: | |||
5288 | // Otherwise, if the parameter has an aggregate type which can be | |||
5289 | // initialized from the initializer list [...] the implicit conversion | |||
5290 | // sequence is a user-defined conversion sequence. | |||
5291 | if (ToType->isAggregateType()) { | |||
5292 | // Type is an aggregate, argument is an init list. At this point it comes | |||
5293 | // down to checking whether the initialization works. | |||
5294 | // FIXME: Find out whether this parameter is consumed or not. | |||
5295 | InitializedEntity Entity = | |||
5296 | InitializedEntity::InitializeParameter(S.Context, ToType, | |||
5297 | /*Consumed=*/false); | |||
5298 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, | |||
5299 | From)) { | |||
5300 | Result.setUserDefined(); | |||
5301 | Result.UserDefined.Before.setAsIdentityConversion(); | |||
5302 | // Initializer lists don't have a type. | |||
5303 | Result.UserDefined.Before.setFromType(QualType()); | |||
5304 | Result.UserDefined.Before.setAllToTypes(QualType()); | |||
5305 | ||||
5306 | Result.UserDefined.After.setAsIdentityConversion(); | |||
5307 | Result.UserDefined.After.setFromType(ToType); | |||
5308 | Result.UserDefined.After.setAllToTypes(ToType); | |||
5309 | Result.UserDefined.ConversionFunction = nullptr; | |||
5310 | } | |||
5311 | return Result; | |||
5312 | } | |||
5313 | ||||
5314 | // C++14 [over.ics.list]p6: | |||
5315 | // C++11 [over.ics.list]p5: | |||
5316 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. | |||
5317 | if (ToType->isReferenceType()) { | |||
5318 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't | |||
5319 | // mention initializer lists in any way. So we go by what list- | |||
5320 | // initialization would do and try to extrapolate from that. | |||
5321 | ||||
5322 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); | |||
5323 | ||||
5324 | // If the initializer list has a single element that is reference-related | |||
5325 | // to the parameter type, we initialize the reference from that. | |||
5326 | if (From->getNumInits() == 1) { | |||
5327 | Expr *Init = From->getInit(0); | |||
5328 | ||||
5329 | QualType T2 = Init->getType(); | |||
5330 | ||||
5331 | // If the initializer is the address of an overloaded function, try | |||
5332 | // to resolve the overloaded function. If all goes well, T2 is the | |||
5333 | // type of the resulting function. | |||
5334 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | |||
5335 | DeclAccessPair Found; | |||
5336 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( | |||
5337 | Init, ToType, false, Found)) | |||
5338 | T2 = Fn->getType(); | |||
5339 | } | |||
5340 | ||||
5341 | // Compute some basic properties of the types and the initializer. | |||
5342 | Sema::ReferenceCompareResult RefRelationship = | |||
5343 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); | |||
5344 | ||||
5345 | if (RefRelationship >= Sema::Ref_Related) { | |||
5346 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), | |||
5347 | SuppressUserConversions, | |||
5348 | /*AllowExplicit=*/false); | |||
5349 | } | |||
5350 | } | |||
5351 | ||||
5352 | // Otherwise, we bind the reference to a temporary created from the | |||
5353 | // initializer list. | |||
5354 | Result = TryListConversion(S, From, T1, SuppressUserConversions, | |||
5355 | InOverloadResolution, | |||
5356 | AllowObjCWritebackConversion); | |||
5357 | if (Result.isFailure()) | |||
5358 | return Result; | |||
5359 | assert(!Result.isEllipsis() &&(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "clang/lib/Sema/SemaOverload.cpp", 5360, __extension__ __PRETTY_FUNCTION__ )) | |||
5360 | "Sub-initialization cannot result in ellipsis conversion.")(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "clang/lib/Sema/SemaOverload.cpp", 5360, __extension__ __PRETTY_FUNCTION__ )); | |||
5361 | ||||
5362 | // Can we even bind to a temporary? | |||
5363 | if (ToType->isRValueReferenceType() || | |||
5364 | (T1.isConstQualified() && !T1.isVolatileQualified())) { | |||
5365 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : | |||
5366 | Result.UserDefined.After; | |||
5367 | SCS.ReferenceBinding = true; | |||
5368 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); | |||
5369 | SCS.BindsToRvalue = true; | |||
5370 | SCS.BindsToFunctionLvalue = false; | |||
5371 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
5372 | SCS.ObjCLifetimeConversionBinding = false; | |||
5373 | } else | |||
5374 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, | |||
5375 | From, ToType); | |||
5376 | return Result; | |||
5377 | } | |||
5378 | ||||
5379 | // C++14 [over.ics.list]p7: | |||
5380 | // C++11 [over.ics.list]p6: | |||
5381 | // Otherwise, if the parameter type is not a class: | |||
5382 | if (!ToType->isRecordType()) { | |||
5383 | // - if the initializer list has one element that is not itself an | |||
5384 | // initializer list, the implicit conversion sequence is the one | |||
5385 | // required to convert the element to the parameter type. | |||
5386 | unsigned NumInits = From->getNumInits(); | |||
5387 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) | |||
5388 | Result = TryCopyInitialization(S, From->getInit(0), ToType, | |||
5389 | SuppressUserConversions, | |||
5390 | InOverloadResolution, | |||
5391 | AllowObjCWritebackConversion); | |||
5392 | // - if the initializer list has no elements, the implicit conversion | |||
5393 | // sequence is the identity conversion. | |||
5394 | else if (NumInits == 0) { | |||
5395 | Result.setStandard(); | |||
5396 | Result.Standard.setAsIdentityConversion(); | |||
5397 | Result.Standard.setFromType(ToType); | |||
5398 | Result.Standard.setAllToTypes(ToType); | |||
5399 | } | |||
5400 | return Result; | |||
5401 | } | |||
5402 | ||||
5403 | // C++14 [over.ics.list]p8: | |||
5404 | // C++11 [over.ics.list]p7: | |||
5405 | // In all cases other than those enumerated above, no conversion is possible | |||
5406 | return Result; | |||
5407 | } | |||
5408 | ||||
5409 | /// TryCopyInitialization - Try to copy-initialize a value of type | |||
5410 | /// ToType from the expression From. Return the implicit conversion | |||
5411 | /// sequence required to pass this argument, which may be a bad | |||
5412 | /// conversion sequence (meaning that the argument cannot be passed to | |||
5413 | /// a parameter of this type). If @p SuppressUserConversions, then we | |||
5414 | /// do not permit any user-defined conversion sequences. | |||
5415 | static ImplicitConversionSequence | |||
5416 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | |||
5417 | bool SuppressUserConversions, | |||
5418 | bool InOverloadResolution, | |||
5419 | bool AllowObjCWritebackConversion, | |||
5420 | bool AllowExplicit) { | |||
5421 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) | |||
5422 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, | |||
5423 | InOverloadResolution,AllowObjCWritebackConversion); | |||
5424 | ||||
5425 | if (ToType->isReferenceType()) | |||
5426 | return TryReferenceInit(S, From, ToType, | |||
5427 | /*FIXME:*/ From->getBeginLoc(), | |||
5428 | SuppressUserConversions, AllowExplicit); | |||
5429 | ||||
5430 | return TryImplicitConversion(S, From, ToType, | |||
5431 | SuppressUserConversions, | |||
5432 | AllowedExplicit::None, | |||
5433 | InOverloadResolution, | |||
5434 | /*CStyle=*/false, | |||
5435 | AllowObjCWritebackConversion, | |||
5436 | /*AllowObjCConversionOnExplicit=*/false); | |||
5437 | } | |||
5438 | ||||
5439 | static bool TryCopyInitialization(const CanQualType FromQTy, | |||
5440 | const CanQualType ToQTy, | |||
5441 | Sema &S, | |||
5442 | SourceLocation Loc, | |||
5443 | ExprValueKind FromVK) { | |||
5444 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); | |||
5445 | ImplicitConversionSequence ICS = | |||
5446 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); | |||
5447 | ||||
5448 | return !ICS.isBad(); | |||
5449 | } | |||
5450 | ||||
5451 | /// TryObjectArgumentInitialization - Try to initialize the object | |||
5452 | /// parameter of the given member function (@c Method) from the | |||
5453 | /// expression @p From. | |||
5454 | static ImplicitConversionSequence | |||
5455 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, | |||
5456 | Expr::Classification FromClassification, | |||
5457 | CXXMethodDecl *Method, | |||
5458 | CXXRecordDecl *ActingContext) { | |||
5459 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); | |||
5460 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or | |||
5461 | // const volatile object. | |||
5462 | Qualifiers Quals = Method->getMethodQualifiers(); | |||
5463 | if (isa<CXXDestructorDecl>(Method)) { | |||
5464 | Quals.addConst(); | |||
5465 | Quals.addVolatile(); | |||
5466 | } | |||
5467 | ||||
5468 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); | |||
5469 | ||||
5470 | // Set up the conversion sequence as a "bad" conversion, to allow us | |||
5471 | // to exit early. | |||
5472 | ImplicitConversionSequence ICS; | |||
5473 | ||||
5474 | // We need to have an object of class type. | |||
5475 | if (const PointerType *PT = FromType->getAs<PointerType>()) { | |||
5476 | FromType = PT->getPointeeType(); | |||
5477 | ||||
5478 | // When we had a pointer, it's implicitly dereferenced, so we | |||
5479 | // better have an lvalue. | |||
5480 | assert(FromClassification.isLValue())(static_cast <bool> (FromClassification.isLValue()) ? void (0) : __assert_fail ("FromClassification.isLValue()", "clang/lib/Sema/SemaOverload.cpp" , 5480, __extension__ __PRETTY_FUNCTION__)); | |||
5481 | } | |||
5482 | ||||
5483 | assert(FromType->isRecordType())(static_cast <bool> (FromType->isRecordType()) ? void (0) : __assert_fail ("FromType->isRecordType()", "clang/lib/Sema/SemaOverload.cpp" , 5483, __extension__ __PRETTY_FUNCTION__)); | |||
5484 | ||||
5485 | // C++0x [over.match.funcs]p4: | |||
5486 | // For non-static member functions, the type of the implicit object | |||
5487 | // parameter is | |||
5488 | // | |||
5489 | // - "lvalue reference to cv X" for functions declared without a | |||
5490 | // ref-qualifier or with the & ref-qualifier | |||
5491 | // - "rvalue reference to cv X" for functions declared with the && | |||
5492 | // ref-qualifier | |||
5493 | // | |||
5494 | // where X is the class of which the function is a member and cv is the | |||
5495 | // cv-qualification on the member function declaration. | |||
5496 | // | |||
5497 | // However, when finding an implicit conversion sequence for the argument, we | |||
5498 | // are not allowed to perform user-defined conversions | |||
5499 | // (C++ [over.match.funcs]p5). We perform a simplified version of | |||
5500 | // reference binding here, that allows class rvalues to bind to | |||
5501 | // non-constant references. | |||
5502 | ||||
5503 | // First check the qualifiers. | |||
5504 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); | |||
5505 | if (ImplicitParamType.getCVRQualifiers() | |||
5506 | != FromTypeCanon.getLocalCVRQualifiers() && | |||
5507 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { | |||
5508 | ICS.setBad(BadConversionSequence::bad_qualifiers, | |||
5509 | FromType, ImplicitParamType); | |||
5510 | return ICS; | |||
5511 | } | |||
5512 | ||||
5513 | if (FromTypeCanon.hasAddressSpace()) { | |||
5514 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); | |||
5515 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); | |||
5516 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { | |||
5517 | ICS.setBad(BadConversionSequence::bad_qualifiers, | |||
5518 | FromType, ImplicitParamType); | |||
5519 | return ICS; | |||
5520 | } | |||
5521 | } | |||
5522 | ||||
5523 | // Check that we have either the same type or a derived type. It | |||
5524 | // affects the conversion rank. | |||
5525 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); | |||
5526 | ImplicitConversionKind SecondKind; | |||
5527 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | |||
5528 | SecondKind = ICK_Identity; | |||
5529 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) | |||
5530 | SecondKind = ICK_Derived_To_Base; | |||
5531 | else { | |||
5532 | ICS.setBad(BadConversionSequence::unrelated_class, | |||
5533 | FromType, ImplicitParamType); | |||
5534 | return ICS; | |||
5535 | } | |||
5536 | ||||
5537 | // Check the ref-qualifier. | |||
5538 | switch (Method->getRefQualifier()) { | |||
5539 | case RQ_None: | |||
5540 | // Do nothing; we don't care about lvalueness or rvalueness. | |||
5541 | break; | |||
5542 | ||||
5543 | case RQ_LValue: | |||
5544 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { | |||
5545 | // non-const lvalue reference cannot bind to an rvalue | |||
5546 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, | |||
5547 | ImplicitParamType); | |||
5548 | return ICS; | |||
5549 | } | |||
5550 | break; | |||
5551 | ||||
5552 | case RQ_RValue: | |||
5553 | if (!FromClassification.isRValue()) { | |||
5554 | // rvalue reference cannot bind to an lvalue | |||
5555 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, | |||
5556 | ImplicitParamType); | |||
5557 | return ICS; | |||
5558 | } | |||
5559 | break; | |||
5560 | } | |||
5561 | ||||
5562 | // Success. Mark this as a reference binding. | |||
5563 | ICS.setStandard(); | |||
5564 | ICS.Standard.setAsIdentityConversion(); | |||
5565 | ICS.Standard.Second = SecondKind; | |||
5566 | ICS.Standard.setFromType(FromType); | |||
5567 | ICS.Standard.setAllToTypes(ImplicitParamType); | |||
5568 | ICS.Standard.ReferenceBinding = true; | |||
5569 | ICS.Standard.DirectBinding = true; | |||
5570 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; | |||
5571 | ICS.Standard.BindsToFunctionLvalue = false; | |||
5572 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); | |||
5573 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier | |||
5574 | = (Method->getRefQualifier() == RQ_None); | |||
5575 | return ICS; | |||
5576 | } | |||
5577 | ||||
5578 | /// PerformObjectArgumentInitialization - Perform initialization of | |||
5579 | /// the implicit object parameter for the given Method with the given | |||
5580 | /// expression. | |||
5581 | ExprResult | |||
5582 | Sema::PerformObjectArgumentInitialization(Expr *From, | |||
5583 | NestedNameSpecifier *Qualifier, | |||
5584 | NamedDecl *FoundDecl, | |||
5585 | CXXMethodDecl *Method) { | |||
5586 | QualType FromRecordType, DestType; | |||
5587 | QualType ImplicitParamRecordType = | |||
5588 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); | |||
5589 | ||||
5590 | Expr::Classification FromClassification; | |||
5591 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | |||
5592 | FromRecordType = PT->getPointeeType(); | |||
5593 | DestType = Method->getThisType(); | |||
5594 | FromClassification = Expr::Classification::makeSimpleLValue(); | |||
5595 | } else { | |||
5596 | FromRecordType = From->getType(); | |||
5597 | DestType = ImplicitParamRecordType; | |||
5598 | FromClassification = From->Classify(Context); | |||
5599 | ||||
5600 | // When performing member access on a prvalue, materialize a temporary. | |||
5601 | if (From->isPRValue()) { | |||
5602 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, | |||
5603 | Method->getRefQualifier() != | |||
5604 | RefQualifierKind::RQ_RValue); | |||
5605 | } | |||
5606 | } | |||
5607 | ||||
5608 | // Note that we always use the true parent context when performing | |||
5609 | // the actual argument initialization. | |||
5610 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( | |||
5611 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, | |||
5612 | Method->getParent()); | |||
5613 | if (ICS.isBad()) { | |||
5614 | switch (ICS.Bad.Kind) { | |||
5615 | case BadConversionSequence::bad_qualifiers: { | |||
5616 | Qualifiers FromQs = FromRecordType.getQualifiers(); | |||
5617 | Qualifiers ToQs = DestType.getQualifiers(); | |||
5618 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | |||
5619 | if (CVR) { | |||
5620 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) | |||
5621 | << Method->getDeclName() << FromRecordType << (CVR - 1) | |||
5622 | << From->getSourceRange(); | |||
5623 | Diag(Method->getLocation(), diag::note_previous_decl) | |||
5624 | << Method->getDeclName(); | |||
5625 | return ExprError(); | |||
5626 | } | |||
5627 | break; | |||
5628 | } | |||
5629 | ||||
5630 | case BadConversionSequence::lvalue_ref_to_rvalue: | |||
5631 | case BadConversionSequence::rvalue_ref_to_lvalue: { | |||
5632 | bool IsRValueQualified = | |||
5633 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; | |||
5634 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) | |||
5635 | << Method->getDeclName() << FromClassification.isRValue() | |||
5636 | << IsRValueQualified; | |||
5637 | Diag(Method->getLocation(), diag::note_previous_decl) | |||
5638 | << Method->getDeclName(); | |||
5639 | return ExprError(); | |||
5640 | } | |||
5641 | ||||
5642 | case BadConversionSequence::no_conversion: | |||
5643 | case BadConversionSequence::unrelated_class: | |||
5644 | break; | |||
5645 | ||||
5646 | case BadConversionSequence::too_few_initializers: | |||
5647 | case BadConversionSequence::too_many_initializers: | |||
5648 | llvm_unreachable("Lists are not objects")::llvm::llvm_unreachable_internal("Lists are not objects", "clang/lib/Sema/SemaOverload.cpp" , 5648); | |||
5649 | } | |||
5650 | ||||
5651 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) | |||
5652 | << ImplicitParamRecordType << FromRecordType | |||
5653 | << From->getSourceRange(); | |||
5654 | } | |||
5655 | ||||
5656 | if (ICS.Standard.Second == ICK_Derived_To_Base) { | |||
5657 | ExprResult FromRes = | |||
5658 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | |||
5659 | if (FromRes.isInvalid()) | |||
5660 | return ExprError(); | |||
5661 | From = FromRes.get(); | |||
5662 | } | |||
5663 | ||||
5664 | if (!Context.hasSameType(From->getType(), DestType)) { | |||
5665 | CastKind CK; | |||
5666 | QualType PteeTy = DestType->getPointeeType(); | |||
5667 | LangAS DestAS = | |||
5668 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); | |||
5669 | if (FromRecordType.getAddressSpace() != DestAS) | |||
5670 | CK = CK_AddressSpaceConversion; | |||
5671 | else | |||
5672 | CK = CK_NoOp; | |||
5673 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); | |||
5674 | } | |||
5675 | return From; | |||
5676 | } | |||
5677 | ||||
5678 | /// TryContextuallyConvertToBool - Attempt to contextually convert the | |||
5679 | /// expression From to bool (C++0x [conv]p3). | |||
5680 | static ImplicitConversionSequence | |||
5681 | TryContextuallyConvertToBool(Sema &S, Expr *From) { | |||
5682 | // C++ [dcl.init]/17.8: | |||
5683 | // - Otherwise, if the initialization is direct-initialization, the source | |||
5684 | // type is std::nullptr_t, and the destination type is bool, the initial | |||
5685 | // value of the object being initialized is false. | |||
5686 | if (From->getType()->isNullPtrType()) | |||
5687 | return ImplicitConversionSequence::getNullptrToBool(From->getType(), | |||
5688 | S.Context.BoolTy, | |||
5689 | From->isGLValue()); | |||
5690 | ||||
5691 | // All other direct-initialization of bool is equivalent to an implicit | |||
5692 | // conversion to bool in which explicit conversions are permitted. | |||
5693 | return TryImplicitConversion(S, From, S.Context.BoolTy, | |||
5694 | /*SuppressUserConversions=*/false, | |||
5695 | AllowedExplicit::Conversions, | |||
5696 | /*InOverloadResolution=*/false, | |||
5697 | /*CStyle=*/false, | |||
5698 | /*AllowObjCWritebackConversion=*/false, | |||
5699 | /*AllowObjCConversionOnExplicit=*/false); | |||
5700 | } | |||
5701 | ||||
5702 | /// PerformContextuallyConvertToBool - Perform a contextual conversion | |||
5703 | /// of the expression From to bool (C++0x [conv]p3). | |||
5704 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { | |||
5705 | if (checkPlaceholderForOverload(*this, From)) | |||
5706 | return ExprError(); | |||
5707 | ||||
5708 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); | |||
5709 | if (!ICS.isBad()) | |||
5710 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | |||
5711 | ||||
5712 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | |||
5713 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) | |||
5714 | << From->getType() << From->getSourceRange(); | |||
5715 | return ExprError(); | |||
5716 | } | |||
5717 | ||||
5718 | /// Check that the specified conversion is permitted in a converted constant | |||
5719 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion | |||
5720 | /// is acceptable. | |||
5721 | static bool CheckConvertedConstantConversions(Sema &S, | |||
5722 | StandardConversionSequence &SCS) { | |||
5723 | // Since we know that the target type is an integral or unscoped enumeration | |||
5724 | // type, most conversion kinds are impossible. All possible First and Third | |||
5725 | // conversions are fine. | |||
5726 | switch (SCS.Second) { | |||
5727 | case ICK_Identity: | |||
5728 | case ICK_Integral_Promotion: | |||
5729 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. | |||
5730 | case ICK_Zero_Queue_Conversion: | |||
5731 | return true; | |||
5732 | ||||
5733 | case ICK_Boolean_Conversion: | |||
5734 | // Conversion from an integral or unscoped enumeration type to bool is | |||
5735 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral | |||
5736 | // conversion, so we allow it in a converted constant expression. | |||
5737 | // | |||
5738 | // FIXME: Per core issue 1407, we should not allow this, but that breaks | |||
5739 | // a lot of popular code. We should at least add a warning for this | |||
5740 | // (non-conforming) extension. | |||
5741 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && | |||
5742 | SCS.getToType(2)->isBooleanType(); | |||
5743 | ||||
5744 | case ICK_Pointer_Conversion: | |||
5745 | case ICK_Pointer_Member: | |||
5746 | // C++1z: null pointer conversions and null member pointer conversions are | |||
5747 | // only permitted if the source type is std::nullptr_t. | |||
5748 | return SCS.getFromType()->isNullPtrType(); | |||
5749 | ||||
5750 | case ICK_Floating_Promotion: | |||
5751 | case ICK_Complex_Promotion: | |||
5752 | case ICK_Floating_Conversion: | |||
5753 | case ICK_Complex_Conversion: | |||
5754 | case ICK_Floating_Integral: | |||
5755 | case ICK_Compatible_Conversion: | |||
5756 | case ICK_Derived_To_Base: | |||
5757 | case ICK_Vector_Conversion: | |||
5758 | case ICK_SVE_Vector_Conversion: | |||
5759 | case ICK_Vector_Splat: | |||
5760 | case ICK_Complex_Real: | |||
5761 | case ICK_Block_Pointer_Conversion: | |||
5762 | case ICK_TransparentUnionConversion: | |||
5763 | case ICK_Writeback_Conversion: | |||
5764 | case ICK_Zero_Event_Conversion: | |||
5765 | case ICK_C_Only_Conversion: | |||
5766 | case ICK_Incompatible_Pointer_Conversion: | |||
5767 | return false; | |||
5768 | ||||
5769 | case ICK_Lvalue_To_Rvalue: | |||
5770 | case ICK_Array_To_Pointer: | |||
5771 | case ICK_Function_To_Pointer: | |||
5772 | llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second" , "clang/lib/Sema/SemaOverload.cpp", 5772); | |||
5773 | ||||
5774 | case ICK_Function_Conversion: | |||
5775 | case ICK_Qualification: | |||
5776 | llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second" , "clang/lib/Sema/SemaOverload.cpp", 5776); | |||
5777 | ||||
5778 | case ICK_Num_Conversion_Kinds: | |||
5779 | break; | |||
5780 | } | |||
5781 | ||||
5782 | llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "clang/lib/Sema/SemaOverload.cpp" , 5782); | |||
5783 | } | |||
5784 | ||||
5785 | /// CheckConvertedConstantExpression - Check that the expression From is a | |||
5786 | /// converted constant expression of type T, perform the conversion and produce | |||
5787 | /// the converted expression, per C++11 [expr.const]p3. | |||
5788 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, | |||
5789 | QualType T, APValue &Value, | |||
5790 |