Bug Summary

File:clang/lib/Sema/SemaOverload.cpp
Warning:line 3709, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/include -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-11-29-190409-37574-1 -x c++ /build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp

/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/CXXInheritance.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DependenceFlags.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/Optional.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include <algorithm>
38#include <cstdlib>
39
40using namespace clang;
41using namespace sema;
42
43using AllowedExplicit = Sema::AllowedExplicit;
44
45static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47 return P->hasAttr<PassObjectSizeAttr>();
48 });
49}
50
51/// A convenience routine for creating a decayed reference to a function.
52static ExprResult
53CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54 const Expr *Base, bool HadMultipleCandidates,
55 SourceLocation Loc = SourceLocation(),
56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58 return ExprError();
59 // If FoundDecl is different from Fn (such as if one is a template
60 // and the other a specialization), make sure DiagnoseUseOfDecl is
61 // called on both.
62 // FIXME: This would be more comprehensively addressed by modifying
63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64 // being used.
65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66 return ExprError();
67 DeclRefExpr *DRE = new (S.Context)
68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69 if (HadMultipleCandidates)
70 DRE->setHadMultipleCandidates(true);
71
72 S.MarkDeclRefReferenced(DRE, Base);
73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75 S.ResolveExceptionSpec(Loc, FPT);
76 DRE->setType(Fn->getType());
77 }
78 }
79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80 CK_FunctionToPointerDecay);
81}
82
83static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84 bool InOverloadResolution,
85 StandardConversionSequence &SCS,
86 bool CStyle,
87 bool AllowObjCWritebackConversion);
88
89static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90 QualType &ToType,
91 bool InOverloadResolution,
92 StandardConversionSequence &SCS,
93 bool CStyle);
94static OverloadingResult
95IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96 UserDefinedConversionSequence& User,
97 OverloadCandidateSet& Conversions,
98 AllowedExplicit AllowExplicit,
99 bool AllowObjCConversionOnExplicit);
100
101static ImplicitConversionSequence::CompareKind
102CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103 const StandardConversionSequence& SCS1,
104 const StandardConversionSequence& SCS2);
105
106static ImplicitConversionSequence::CompareKind
107CompareQualificationConversions(Sema &S,
108 const StandardConversionSequence& SCS1,
109 const StandardConversionSequence& SCS2);
110
111static ImplicitConversionSequence::CompareKind
112CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113 const StandardConversionSequence& SCS1,
114 const StandardConversionSequence& SCS2);
115
116/// GetConversionRank - Retrieve the implicit conversion rank
117/// corresponding to the given implicit conversion kind.
118ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119 static const ImplicitConversionRank
120 Rank[(int)ICK_Num_Conversion_Kinds] = {
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Promotion,
128 ICR_Promotion,
129 ICR_Promotion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_OCL_Scalar_Widening,
142 ICR_Complex_Real_Conversion,
143 ICR_Conversion,
144 ICR_Conversion,
145 ICR_Writeback_Conversion,
146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147 // it was omitted by the patch that added
148 // ICK_Zero_Event_Conversion
149 ICR_C_Conversion,
150 ICR_C_Conversion_Extension
151 };
152 return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159 "No conversion",
160 "Lvalue-to-rvalue",
161 "Array-to-pointer",
162 "Function-to-pointer",
163 "Function pointer conversion",
164 "Qualification",
165 "Integral promotion",
166 "Floating point promotion",
167 "Complex promotion",
168 "Integral conversion",
169 "Floating conversion",
170 "Complex conversion",
171 "Floating-integral conversion",
172 "Pointer conversion",
173 "Pointer-to-member conversion",
174 "Boolean conversion",
175 "Compatible-types conversion",
176 "Derived-to-base conversion",
177 "Vector conversion",
178 "SVE Vector conversion",
179 "Vector splat",
180 "Complex-real conversion",
181 "Block Pointer conversion",
182 "Transparent Union Conversion",
183 "Writeback conversion",
184 "OpenCL Zero Event Conversion",
185 "C specific type conversion",
186 "Incompatible pointer conversion"
187 };
188 return Name[Kind];
189}
190
191/// StandardConversionSequence - Set the standard conversion
192/// sequence to the identity conversion.
193void StandardConversionSequence::setAsIdentityConversion() {
194 First = ICK_Identity;
195 Second = ICK_Identity;
196 Third = ICK_Identity;
197 DeprecatedStringLiteralToCharPtr = false;
198 QualificationIncludesObjCLifetime = false;
199 ReferenceBinding = false;
200 DirectBinding = false;
201 IsLvalueReference = true;
202 BindsToFunctionLvalue = false;
203 BindsToRvalue = false;
204 BindsImplicitObjectArgumentWithoutRefQualifier = false;
205 ObjCLifetimeConversionBinding = false;
206 CopyConstructor = nullptr;
207}
208
209/// getRank - Retrieve the rank of this standard conversion sequence
210/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211/// implicit conversions.
212ImplicitConversionRank StandardConversionSequence::getRank() const {
213 ImplicitConversionRank Rank = ICR_Exact_Match;
214 if (GetConversionRank(First) > Rank)
215 Rank = GetConversionRank(First);
216 if (GetConversionRank(Second) > Rank)
217 Rank = GetConversionRank(Second);
218 if (GetConversionRank(Third) > Rank)
219 Rank = GetConversionRank(Third);
220 return Rank;
221}
222
223/// isPointerConversionToBool - Determines whether this conversion is
224/// a conversion of a pointer or pointer-to-member to bool. This is
225/// used as part of the ranking of standard conversion sequences
226/// (C++ 13.3.3.2p4).
227bool StandardConversionSequence::isPointerConversionToBool() const {
228 // Note that FromType has not necessarily been transformed by the
229 // array-to-pointer or function-to-pointer implicit conversions, so
230 // check for their presence as well as checking whether FromType is
231 // a pointer.
232 if (getToType(1)->isBooleanType() &&
233 (getFromType()->isPointerType() ||
234 getFromType()->isMemberPointerType() ||
235 getFromType()->isObjCObjectPointerType() ||
236 getFromType()->isBlockPointerType() ||
237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238 return true;
239
240 return false;
241}
242
243/// isPointerConversionToVoidPointer - Determines whether this
244/// conversion is a conversion of a pointer to a void pointer. This is
245/// used as part of the ranking of standard conversion sequences (C++
246/// 13.3.3.2p4).
247bool
248StandardConversionSequence::
249isPointerConversionToVoidPointer(ASTContext& Context) const {
250 QualType FromType = getFromType();
251 QualType ToType = getToType(1);
252
253 // Note that FromType has not necessarily been transformed by the
254 // array-to-pointer implicit conversion, so check for its presence
255 // and redo the conversion to get a pointer.
256 if (First == ICK_Array_To_Pointer)
257 FromType = Context.getArrayDecayedType(FromType);
258
259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261 return ToPtrType->getPointeeType()->isVoidType();
262
263 return false;
264}
265
266/// Skip any implicit casts which could be either part of a narrowing conversion
267/// or after one in an implicit conversion.
268static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269 const Expr *Converted) {
270 // We can have cleanups wrapping the converted expression; these need to be
271 // preserved so that destructors run if necessary.
272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273 Expr *Inner =
274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276 EWC->getObjects());
277 }
278
279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280 switch (ICE->getCastKind()) {
281 case CK_NoOp:
282 case CK_IntegralCast:
283 case CK_IntegralToBoolean:
284 case CK_IntegralToFloating:
285 case CK_BooleanToSignedIntegral:
286 case CK_FloatingToIntegral:
287 case CK_FloatingToBoolean:
288 case CK_FloatingCast:
289 Converted = ICE->getSubExpr();
290 continue;
291
292 default:
293 return Converted;
294 }
295 }
296
297 return Converted;
298}
299
300/// Check if this standard conversion sequence represents a narrowing
301/// conversion, according to C++11 [dcl.init.list]p7.
302///
303/// \param Ctx The AST context.
304/// \param Converted The result of applying this standard conversion sequence.
305/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
306/// value of the expression prior to the narrowing conversion.
307/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
308/// type of the expression prior to the narrowing conversion.
309/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310/// from floating point types to integral types should be ignored.
311NarrowingKind StandardConversionSequence::getNarrowingKind(
312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 314, __PRETTY_FUNCTION__))
;
315
316 // C++11 [dcl.init.list]p7:
317 // A narrowing conversion is an implicit conversion ...
318 QualType FromType = getToType(0);
319 QualType ToType = getToType(1);
320
321 // A conversion to an enumeration type is narrowing if the conversion to
322 // the underlying type is narrowing. This only arises for expressions of
323 // the form 'Enum{init}'.
324 if (auto *ET = ToType->getAs<EnumType>())
325 ToType = ET->getDecl()->getIntegerType();
326
327 switch (Second) {
328 // 'bool' is an integral type; dispatch to the right place to handle it.
329 case ICK_Boolean_Conversion:
330 if (FromType->isRealFloatingType())
331 goto FloatingIntegralConversion;
332 if (FromType->isIntegralOrUnscopedEnumerationType())
333 goto IntegralConversion;
334 // -- from a pointer type or pointer-to-member type to bool, or
335 return NK_Type_Narrowing;
336
337 // -- from a floating-point type to an integer type, or
338 //
339 // -- from an integer type or unscoped enumeration type to a floating-point
340 // type, except where the source is a constant expression and the actual
341 // value after conversion will fit into the target type and will produce
342 // the original value when converted back to the original type, or
343 case ICK_Floating_Integral:
344 FloatingIntegralConversion:
345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346 return NK_Type_Narrowing;
347 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348 ToType->isRealFloatingType()) {
349 if (IgnoreFloatToIntegralConversion)
350 return NK_Not_Narrowing;
351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 352, __PRETTY_FUNCTION__))
;
353
354 // If it's value-dependent, we can't tell whether it's narrowing.
355 if (Initializer->isValueDependent())
356 return NK_Dependent_Narrowing;
357
358 if (Optional<llvm::APSInt> IntConstantValue =
359 Initializer->getIntegerConstantExpr(Ctx)) {
360 // Convert the integer to the floating type.
361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363 llvm::APFloat::rmNearestTiesToEven);
364 // And back.
365 llvm::APSInt ConvertedValue = *IntConstantValue;
366 bool ignored;
367 Result.convertToInteger(ConvertedValue,
368 llvm::APFloat::rmTowardZero, &ignored);
369 // If the resulting value is different, this was a narrowing conversion.
370 if (*IntConstantValue != ConvertedValue) {
371 ConstantValue = APValue(*IntConstantValue);
372 ConstantType = Initializer->getType();
373 return NK_Constant_Narrowing;
374 }
375 } else {
376 // Variables are always narrowings.
377 return NK_Variable_Narrowing;
378 }
379 }
380 return NK_Not_Narrowing;
381
382 // -- from long double to double or float, or from double to float, except
383 // where the source is a constant expression and the actual value after
384 // conversion is within the range of values that can be represented (even
385 // if it cannot be represented exactly), or
386 case ICK_Floating_Conversion:
387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389 // FromType is larger than ToType.
390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391
392 // If it's value-dependent, we can't tell whether it's narrowing.
393 if (Initializer->isValueDependent())
394 return NK_Dependent_Narrowing;
395
396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397 // Constant!
398 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 398, __PRETTY_FUNCTION__))
;
399 llvm::APFloat FloatVal = ConstantValue.getFloat();
400 // Convert the source value into the target type.
401 bool ignored;
402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403 Ctx.getFloatTypeSemantics(ToType),
404 llvm::APFloat::rmNearestTiesToEven, &ignored);
405 // If there was no overflow, the source value is within the range of
406 // values that can be represented.
407 if (ConvertStatus & llvm::APFloat::opOverflow) {
408 ConstantType = Initializer->getType();
409 return NK_Constant_Narrowing;
410 }
411 } else {
412 return NK_Variable_Narrowing;
413 }
414 }
415 return NK_Not_Narrowing;
416
417 // -- from an integer type or unscoped enumeration type to an integer type
418 // that cannot represent all the values of the original type, except where
419 // the source is a constant expression and the actual value after
420 // conversion will fit into the target type and will produce the original
421 // value when converted back to the original type.
422 case ICK_Integral_Conversion:
423 IntegralConversion: {
424 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 424, __PRETTY_FUNCTION__))
;
425 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 425, __PRETTY_FUNCTION__))
;
426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427 const unsigned FromWidth = Ctx.getIntWidth(FromType);
428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429 const unsigned ToWidth = Ctx.getIntWidth(ToType);
430
431 if (FromWidth > ToWidth ||
432 (FromWidth == ToWidth && FromSigned != ToSigned) ||
433 (FromSigned && !ToSigned)) {
434 // Not all values of FromType can be represented in ToType.
435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436
437 // If it's value-dependent, we can't tell whether it's narrowing.
438 if (Initializer->isValueDependent())
439 return NK_Dependent_Narrowing;
440
441 Optional<llvm::APSInt> OptInitializerValue;
442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443 // Such conversions on variables are always narrowing.
444 return NK_Variable_Narrowing;
445 }
446 llvm::APSInt &InitializerValue = *OptInitializerValue;
447 bool Narrowing = false;
448 if (FromWidth < ToWidth) {
449 // Negative -> unsigned is narrowing. Otherwise, more bits is never
450 // narrowing.
451 if (InitializerValue.isSigned() && InitializerValue.isNegative())
452 Narrowing = true;
453 } else {
454 // Add a bit to the InitializerValue so we don't have to worry about
455 // signed vs. unsigned comparisons.
456 InitializerValue = InitializerValue.extend(
457 InitializerValue.getBitWidth() + 1);
458 // Convert the initializer to and from the target width and signed-ness.
459 llvm::APSInt ConvertedValue = InitializerValue;
460 ConvertedValue = ConvertedValue.trunc(ToWidth);
461 ConvertedValue.setIsSigned(ToSigned);
462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463 ConvertedValue.setIsSigned(InitializerValue.isSigned());
464 // If the result is different, this was a narrowing conversion.
465 if (ConvertedValue != InitializerValue)
466 Narrowing = true;
467 }
468 if (Narrowing) {
469 ConstantType = Initializer->getType();
470 ConstantValue = APValue(InitializerValue);
471 return NK_Constant_Narrowing;
472 }
473 }
474 return NK_Not_Narrowing;
475 }
476
477 default:
478 // Other kinds of conversions are not narrowings.
479 return NK_Not_Narrowing;
480 }
481}
482
483/// dump - Print this standard conversion sequence to standard
484/// error. Useful for debugging overloading issues.
485LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
486 raw_ostream &OS = llvm::errs();
487 bool PrintedSomething = false;
488 if (First != ICK_Identity) {
489 OS << GetImplicitConversionName(First);
490 PrintedSomething = true;
491 }
492
493 if (Second != ICK_Identity) {
494 if (PrintedSomething) {
495 OS << " -> ";
496 }
497 OS << GetImplicitConversionName(Second);
498
499 if (CopyConstructor) {
500 OS << " (by copy constructor)";
501 } else if (DirectBinding) {
502 OS << " (direct reference binding)";
503 } else if (ReferenceBinding) {
504 OS << " (reference binding)";
505 }
506 PrintedSomething = true;
507 }
508
509 if (Third != ICK_Identity) {
510 if (PrintedSomething) {
511 OS << " -> ";
512 }
513 OS << GetImplicitConversionName(Third);
514 PrintedSomething = true;
515 }
516
517 if (!PrintedSomething) {
518 OS << "No conversions required";
519 }
520}
521
522/// dump - Print this user-defined conversion sequence to standard
523/// error. Useful for debugging overloading issues.
524void UserDefinedConversionSequence::dump() const {
525 raw_ostream &OS = llvm::errs();
526 if (Before.First || Before.Second || Before.Third) {
527 Before.dump();
528 OS << " -> ";
529 }
530 if (ConversionFunction)
531 OS << '\'' << *ConversionFunction << '\'';
532 else
533 OS << "aggregate initialization";
534 if (After.First || After.Second || After.Third) {
535 OS << " -> ";
536 After.dump();
537 }
538}
539
540/// dump - Print this implicit conversion sequence to standard
541/// error. Useful for debugging overloading issues.
542void ImplicitConversionSequence::dump() const {
543 raw_ostream &OS = llvm::errs();
544 if (isStdInitializerListElement())
545 OS << "Worst std::initializer_list element conversion: ";
546 switch (ConversionKind) {
547 case StandardConversion:
548 OS << "Standard conversion: ";
549 Standard.dump();
550 break;
551 case UserDefinedConversion:
552 OS << "User-defined conversion: ";
553 UserDefined.dump();
554 break;
555 case EllipsisConversion:
556 OS << "Ellipsis conversion";
557 break;
558 case AmbiguousConversion:
559 OS << "Ambiguous conversion";
560 break;
561 case BadConversion:
562 OS << "Bad conversion";
563 break;
564 }
565
566 OS << "\n";
567}
568
569void AmbiguousConversionSequence::construct() {
570 new (&conversions()) ConversionSet();
571}
572
573void AmbiguousConversionSequence::destruct() {
574 conversions().~ConversionSet();
575}
576
577void
578AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579 FromTypePtr = O.FromTypePtr;
580 ToTypePtr = O.ToTypePtr;
581 new (&conversions()) ConversionSet(O.conversions());
582}
583
584namespace {
585 // Structure used by DeductionFailureInfo to store
586 // template argument information.
587 struct DFIArguments {
588 TemplateArgument FirstArg;
589 TemplateArgument SecondArg;
590 };
591 // Structure used by DeductionFailureInfo to store
592 // template parameter and template argument information.
593 struct DFIParamWithArguments : DFIArguments {
594 TemplateParameter Param;
595 };
596 // Structure used by DeductionFailureInfo to store template argument
597 // information and the index of the problematic call argument.
598 struct DFIDeducedMismatchArgs : DFIArguments {
599 TemplateArgumentList *TemplateArgs;
600 unsigned CallArgIndex;
601 };
602 // Structure used by DeductionFailureInfo to store information about
603 // unsatisfied constraints.
604 struct CNSInfo {
605 TemplateArgumentList *TemplateArgs;
606 ConstraintSatisfaction Satisfaction;
607 };
608}
609
610/// Convert from Sema's representation of template deduction information
611/// to the form used in overload-candidate information.
612DeductionFailureInfo
613clang::MakeDeductionFailureInfo(ASTContext &Context,
614 Sema::TemplateDeductionResult TDK,
615 TemplateDeductionInfo &Info) {
616 DeductionFailureInfo Result;
617 Result.Result = static_cast<unsigned>(TDK);
618 Result.HasDiagnostic = false;
619 switch (TDK) {
620 case Sema::TDK_Invalid:
621 case Sema::TDK_InstantiationDepth:
622 case Sema::TDK_TooManyArguments:
623 case Sema::TDK_TooFewArguments:
624 case Sema::TDK_MiscellaneousDeductionFailure:
625 case Sema::TDK_CUDATargetMismatch:
626 Result.Data = nullptr;
627 break;
628
629 case Sema::TDK_Incomplete:
630 case Sema::TDK_InvalidExplicitArguments:
631 Result.Data = Info.Param.getOpaqueValue();
632 break;
633
634 case Sema::TDK_DeducedMismatch:
635 case Sema::TDK_DeducedMismatchNested: {
636 // FIXME: Should allocate from normal heap so that we can free this later.
637 auto *Saved = new (Context) DFIDeducedMismatchArgs;
638 Saved->FirstArg = Info.FirstArg;
639 Saved->SecondArg = Info.SecondArg;
640 Saved->TemplateArgs = Info.take();
641 Saved->CallArgIndex = Info.CallArgIndex;
642 Result.Data = Saved;
643 break;
644 }
645
646 case Sema::TDK_NonDeducedMismatch: {
647 // FIXME: Should allocate from normal heap so that we can free this later.
648 DFIArguments *Saved = new (Context) DFIArguments;
649 Saved->FirstArg = Info.FirstArg;
650 Saved->SecondArg = Info.SecondArg;
651 Result.Data = Saved;
652 break;
653 }
654
655 case Sema::TDK_IncompletePack:
656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657 case Sema::TDK_Inconsistent:
658 case Sema::TDK_Underqualified: {
659 // FIXME: Should allocate from normal heap so that we can free this later.
660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661 Saved->Param = Info.Param;
662 Saved->FirstArg = Info.FirstArg;
663 Saved->SecondArg = Info.SecondArg;
664 Result.Data = Saved;
665 break;
666 }
667
668 case Sema::TDK_SubstitutionFailure:
669 Result.Data = Info.take();
670 if (Info.hasSFINAEDiagnostic()) {
671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672 SourceLocation(), PartialDiagnostic::NullDiagnostic());
673 Info.takeSFINAEDiagnostic(*Diag);
674 Result.HasDiagnostic = true;
675 }
676 break;
677
678 case Sema::TDK_ConstraintsNotSatisfied: {
679 CNSInfo *Saved = new (Context) CNSInfo;
680 Saved->TemplateArgs = Info.take();
681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682 Result.Data = Saved;
683 break;
684 }
685
686 case Sema::TDK_Success:
687 case Sema::TDK_NonDependentConversionFailure:
688 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 688)
;
689 }
690
691 return Result;
692}
693
694void DeductionFailureInfo::Destroy() {
695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696 case Sema::TDK_Success:
697 case Sema::TDK_Invalid:
698 case Sema::TDK_InstantiationDepth:
699 case Sema::TDK_Incomplete:
700 case Sema::TDK_TooManyArguments:
701 case Sema::TDK_TooFewArguments:
702 case Sema::TDK_InvalidExplicitArguments:
703 case Sema::TDK_CUDATargetMismatch:
704 case Sema::TDK_NonDependentConversionFailure:
705 break;
706
707 case Sema::TDK_IncompletePack:
708 case Sema::TDK_Inconsistent:
709 case Sema::TDK_Underqualified:
710 case Sema::TDK_DeducedMismatch:
711 case Sema::TDK_DeducedMismatchNested:
712 case Sema::TDK_NonDeducedMismatch:
713 // FIXME: Destroy the data?
714 Data = nullptr;
715 break;
716
717 case Sema::TDK_SubstitutionFailure:
718 // FIXME: Destroy the template argument list?
719 Data = nullptr;
720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721 Diag->~PartialDiagnosticAt();
722 HasDiagnostic = false;
723 }
724 break;
725
726 case Sema::TDK_ConstraintsNotSatisfied:
727 // FIXME: Destroy the template argument list?
728 Data = nullptr;
729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730 Diag->~PartialDiagnosticAt();
731 HasDiagnostic = false;
732 }
733 break;
734
735 // Unhandled
736 case Sema::TDK_MiscellaneousDeductionFailure:
737 break;
738 }
739}
740
741PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742 if (HasDiagnostic)
743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744 return nullptr;
745}
746
747TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749 case Sema::TDK_Success:
750 case Sema::TDK_Invalid:
751 case Sema::TDK_InstantiationDepth:
752 case Sema::TDK_TooManyArguments:
753 case Sema::TDK_TooFewArguments:
754 case Sema::TDK_SubstitutionFailure:
755 case Sema::TDK_DeducedMismatch:
756 case Sema::TDK_DeducedMismatchNested:
757 case Sema::TDK_NonDeducedMismatch:
758 case Sema::TDK_CUDATargetMismatch:
759 case Sema::TDK_NonDependentConversionFailure:
760 case Sema::TDK_ConstraintsNotSatisfied:
761 return TemplateParameter();
762
763 case Sema::TDK_Incomplete:
764 case Sema::TDK_InvalidExplicitArguments:
765 return TemplateParameter::getFromOpaqueValue(Data);
766
767 case Sema::TDK_IncompletePack:
768 case Sema::TDK_Inconsistent:
769 case Sema::TDK_Underqualified:
770 return static_cast<DFIParamWithArguments*>(Data)->Param;
771
772 // Unhandled
773 case Sema::TDK_MiscellaneousDeductionFailure:
774 break;
775 }
776
777 return TemplateParameter();
778}
779
780TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782 case Sema::TDK_Success:
783 case Sema::TDK_Invalid:
784 case Sema::TDK_InstantiationDepth:
785 case Sema::TDK_TooManyArguments:
786 case Sema::TDK_TooFewArguments:
787 case Sema::TDK_Incomplete:
788 case Sema::TDK_IncompletePack:
789 case Sema::TDK_InvalidExplicitArguments:
790 case Sema::TDK_Inconsistent:
791 case Sema::TDK_Underqualified:
792 case Sema::TDK_NonDeducedMismatch:
793 case Sema::TDK_CUDATargetMismatch:
794 case Sema::TDK_NonDependentConversionFailure:
795 return nullptr;
796
797 case Sema::TDK_DeducedMismatch:
798 case Sema::TDK_DeducedMismatchNested:
799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800
801 case Sema::TDK_SubstitutionFailure:
802 return static_cast<TemplateArgumentList*>(Data);
803
804 case Sema::TDK_ConstraintsNotSatisfied:
805 return static_cast<CNSInfo*>(Data)->TemplateArgs;
806
807 // Unhandled
808 case Sema::TDK_MiscellaneousDeductionFailure:
809 break;
810 }
811
812 return nullptr;
813}
814
815const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817 case Sema::TDK_Success:
818 case Sema::TDK_Invalid:
819 case Sema::TDK_InstantiationDepth:
820 case Sema::TDK_Incomplete:
821 case Sema::TDK_TooManyArguments:
822 case Sema::TDK_TooFewArguments:
823 case Sema::TDK_InvalidExplicitArguments:
824 case Sema::TDK_SubstitutionFailure:
825 case Sema::TDK_CUDATargetMismatch:
826 case Sema::TDK_NonDependentConversionFailure:
827 case Sema::TDK_ConstraintsNotSatisfied:
828 return nullptr;
829
830 case Sema::TDK_IncompletePack:
831 case Sema::TDK_Inconsistent:
832 case Sema::TDK_Underqualified:
833 case Sema::TDK_DeducedMismatch:
834 case Sema::TDK_DeducedMismatchNested:
835 case Sema::TDK_NonDeducedMismatch:
836 return &static_cast<DFIArguments*>(Data)->FirstArg;
837
838 // Unhandled
839 case Sema::TDK_MiscellaneousDeductionFailure:
840 break;
841 }
842
843 return nullptr;
844}
845
846const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848 case Sema::TDK_Success:
849 case Sema::TDK_Invalid:
850 case Sema::TDK_InstantiationDepth:
851 case Sema::TDK_Incomplete:
852 case Sema::TDK_IncompletePack:
853 case Sema::TDK_TooManyArguments:
854 case Sema::TDK_TooFewArguments:
855 case Sema::TDK_InvalidExplicitArguments:
856 case Sema::TDK_SubstitutionFailure:
857 case Sema::TDK_CUDATargetMismatch:
858 case Sema::TDK_NonDependentConversionFailure:
859 case Sema::TDK_ConstraintsNotSatisfied:
860 return nullptr;
861
862 case Sema::TDK_Inconsistent:
863 case Sema::TDK_Underqualified:
864 case Sema::TDK_DeducedMismatch:
865 case Sema::TDK_DeducedMismatchNested:
866 case Sema::TDK_NonDeducedMismatch:
867 return &static_cast<DFIArguments*>(Data)->SecondArg;
868
869 // Unhandled
870 case Sema::TDK_MiscellaneousDeductionFailure:
871 break;
872 }
873
874 return nullptr;
875}
876
877llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879 case Sema::TDK_DeducedMismatch:
880 case Sema::TDK_DeducedMismatchNested:
881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882
883 default:
884 return llvm::None;
885 }
886}
887
888bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889 OverloadedOperatorKind Op) {
890 if (!AllowRewrittenCandidates)
891 return false;
892 return Op == OO_EqualEqual || Op == OO_Spaceship;
893}
894
895bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896 ASTContext &Ctx, const FunctionDecl *FD) {
897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898 return false;
899 // Don't bother adding a reversed candidate that can never be a better
900 // match than the non-reversed version.
901 return FD->getNumParams() != 2 ||
902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903 FD->getParamDecl(1)->getType()) ||
904 FD->hasAttr<EnableIfAttr>();
905}
906
907void OverloadCandidateSet::destroyCandidates() {
908 for (iterator i = begin(), e = end(); i != e; ++i) {
909 for (auto &C : i->Conversions)
910 C.~ImplicitConversionSequence();
911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912 i->DeductionFailure.Destroy();
913 }
914}
915
916void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917 destroyCandidates();
918 SlabAllocator.Reset();
919 NumInlineBytesUsed = 0;
920 Candidates.clear();
921 Functions.clear();
922 Kind = CSK;
923}
924
925namespace {
926 class UnbridgedCastsSet {
927 struct Entry {
928 Expr **Addr;
929 Expr *Saved;
930 };
931 SmallVector<Entry, 2> Entries;
932
933 public:
934 void save(Sema &S, Expr *&E) {
935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 935, __PRETTY_FUNCTION__))
;
936 Entry entry = { &E, E };
937 Entries.push_back(entry);
938 E = S.stripARCUnbridgedCast(E);
939 }
940
941 void restore() {
942 for (SmallVectorImpl<Entry>::iterator
943 i = Entries.begin(), e = Entries.end(); i != e; ++i)
944 *i->Addr = i->Saved;
945 }
946 };
947}
948
949/// checkPlaceholderForOverload - Do any interesting placeholder-like
950/// preprocessing on the given expression.
951///
952/// \param unbridgedCasts a collection to which to add unbridged casts;
953/// without this, they will be immediately diagnosed as errors
954///
955/// Return true on unrecoverable error.
956static bool
957checkPlaceholderForOverload(Sema &S, Expr *&E,
958 UnbridgedCastsSet *unbridgedCasts = nullptr) {
959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
960 // We can't handle overloaded expressions here because overload
961 // resolution might reasonably tweak them.
962 if (placeholder->getKind() == BuiltinType::Overload) return false;
963
964 // If the context potentially accepts unbridged ARC casts, strip
965 // the unbridged cast and add it to the collection for later restoration.
966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967 unbridgedCasts) {
968 unbridgedCasts->save(S, E);
969 return false;
970 }
971
972 // Go ahead and check everything else.
973 ExprResult result = S.CheckPlaceholderExpr(E);
974 if (result.isInvalid())
975 return true;
976
977 E = result.get();
978 return false;
979 }
980
981 // Nothing to do.
982 return false;
983}
984
985/// checkArgPlaceholdersForOverload - Check a set of call operands for
986/// placeholders.
987static bool checkArgPlaceholdersForOverload(Sema &S,
988 MultiExprArg Args,
989 UnbridgedCastsSet &unbridged) {
990 for (unsigned i = 0, e = Args.size(); i != e; ++i)
991 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992 return true;
993
994 return false;
995}
996
997/// Determine whether the given New declaration is an overload of the
998/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999/// New and Old cannot be overloaded, e.g., if New has the same signature as
1000/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001/// functions (or function templates) at all. When it does return Ovl_Match or
1002/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004/// declaration.
1005///
1006/// Example: Given the following input:
1007///
1008/// void f(int, float); // #1
1009/// void f(int, int); // #2
1010/// int f(int, int); // #3
1011///
1012/// When we process #1, there is no previous declaration of "f", so IsOverload
1013/// will not be used.
1014///
1015/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016/// the parameter types, we see that #1 and #2 are overloaded (since they have
1017/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018/// unchanged.
1019///
1020/// When we process #3, Old is an overload set containing #1 and #2. We compare
1021/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023/// functions are not part of the signature), IsOverload returns Ovl_Match and
1024/// MatchedDecl will be set to point to the FunctionDecl for #2.
1025///
1026/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027/// by a using declaration. The rules for whether to hide shadow declarations
1028/// ignore some properties which otherwise figure into a function template's
1029/// signature.
1030Sema::OverloadKind
1031Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032 NamedDecl *&Match, bool NewIsUsingDecl) {
1033 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034 I != E; ++I) {
1035 NamedDecl *OldD = *I;
1036
1037 bool OldIsUsingDecl = false;
1038 if (isa<UsingShadowDecl>(OldD)) {
1039 OldIsUsingDecl = true;
1040
1041 // We can always introduce two using declarations into the same
1042 // context, even if they have identical signatures.
1043 if (NewIsUsingDecl) continue;
1044
1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046 }
1047
1048 // A using-declaration does not conflict with another declaration
1049 // if one of them is hidden.
1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051 continue;
1052
1053 // If either declaration was introduced by a using declaration,
1054 // we'll need to use slightly different rules for matching.
1055 // Essentially, these rules are the normal rules, except that
1056 // function templates hide function templates with different
1057 // return types or template parameter lists.
1058 bool UseMemberUsingDeclRules =
1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060 !New->getFriendObjectKind();
1061
1062 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066 continue;
1067 }
1068
1069 if (!isa<FunctionTemplateDecl>(OldD) &&
1070 !shouldLinkPossiblyHiddenDecl(*I, New))
1071 continue;
1072
1073 Match = *I;
1074 return Ovl_Match;
1075 }
1076
1077 // Builtins that have custom typechecking or have a reference should
1078 // not be overloadable or redeclarable.
1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080 Match = *I;
1081 return Ovl_NonFunction;
1082 }
1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084 // We can overload with these, which can show up when doing
1085 // redeclaration checks for UsingDecls.
1086 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087 } else if (isa<TagDecl>(OldD)) {
1088 // We can always overload with tags by hiding them.
1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090 // Optimistically assume that an unresolved using decl will
1091 // overload; if it doesn't, we'll have to diagnose during
1092 // template instantiation.
1093 //
1094 // Exception: if the scope is dependent and this is not a class
1095 // member, the using declaration can only introduce an enumerator.
1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097 Match = *I;
1098 return Ovl_NonFunction;
1099 }
1100 } else {
1101 // (C++ 13p1):
1102 // Only function declarations can be overloaded; object and type
1103 // declarations cannot be overloaded.
1104 Match = *I;
1105 return Ovl_NonFunction;
1106 }
1107 }
1108
1109 // C++ [temp.friend]p1:
1110 // For a friend function declaration that is not a template declaration:
1111 // -- if the name of the friend is a qualified or unqualified template-id,
1112 // [...], otherwise
1113 // -- if the name of the friend is a qualified-id and a matching
1114 // non-template function is found in the specified class or namespace,
1115 // the friend declaration refers to that function, otherwise,
1116 // -- if the name of the friend is a qualified-id and a matching function
1117 // template is found in the specified class or namespace, the friend
1118 // declaration refers to the deduced specialization of that function
1119 // template, otherwise
1120 // -- the name shall be an unqualified-id [...]
1121 // If we get here for a qualified friend declaration, we've just reached the
1122 // third bullet. If the type of the friend is dependent, skip this lookup
1123 // until instantiation.
1124 if (New->getFriendObjectKind() && New->getQualifier() &&
1125 !New->getDescribedFunctionTemplate() &&
1126 !New->getDependentSpecializationInfo() &&
1127 !New->getType()->isDependentType()) {
1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129 TemplateSpecResult.addAllDecls(Old);
1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131 /*QualifiedFriend*/true)) {
1132 New->setInvalidDecl();
1133 return Ovl_Overload;
1134 }
1135
1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137 return Ovl_Match;
1138 }
1139
1140 return Ovl_Overload;
1141}
1142
1143bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145 bool ConsiderRequiresClauses) {
1146 // C++ [basic.start.main]p2: This function shall not be overloaded.
1147 if (New->isMain())
1148 return false;
1149
1150 // MSVCRT user defined entry points cannot be overloaded.
1151 if (New->isMSVCRTEntryPoint())
1152 return false;
1153
1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156
1157 // C++ [temp.fct]p2:
1158 // A function template can be overloaded with other function templates
1159 // and with normal (non-template) functions.
1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161 return true;
1162
1163 // Is the function New an overload of the function Old?
1164 QualType OldQType = Context.getCanonicalType(Old->getType());
1165 QualType NewQType = Context.getCanonicalType(New->getType());
1166
1167 // Compare the signatures (C++ 1.3.10) of the two functions to
1168 // determine whether they are overloads. If we find any mismatch
1169 // in the signature, they are overloads.
1170
1171 // If either of these functions is a K&R-style function (no
1172 // prototype), then we consider them to have matching signatures.
1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175 return false;
1176
1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179
1180 // The signature of a function includes the types of its
1181 // parameters (C++ 1.3.10), which includes the presence or absence
1182 // of the ellipsis; see C++ DR 357).
1183 if (OldQType != NewQType &&
1184 (OldType->getNumParams() != NewType->getNumParams() ||
1185 OldType->isVariadic() != NewType->isVariadic() ||
1186 !FunctionParamTypesAreEqual(OldType, NewType)))
1187 return true;
1188
1189 // C++ [temp.over.link]p4:
1190 // The signature of a function template consists of its function
1191 // signature, its return type and its template parameter list. The names
1192 // of the template parameters are significant only for establishing the
1193 // relationship between the template parameters and the rest of the
1194 // signature.
1195 //
1196 // We check the return type and template parameter lists for function
1197 // templates first; the remaining checks follow.
1198 //
1199 // However, we don't consider either of these when deciding whether
1200 // a member introduced by a shadow declaration is hidden.
1201 if (!UseMemberUsingDeclRules && NewTemplate &&
1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203 OldTemplate->getTemplateParameters(),
1204 false, TPL_TemplateMatch) ||
1205 !Context.hasSameType(Old->getDeclaredReturnType(),
1206 New->getDeclaredReturnType())))
1207 return true;
1208
1209 // If the function is a class member, its signature includes the
1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211 //
1212 // As part of this, also check whether one of the member functions
1213 // is static, in which case they are not overloads (C++
1214 // 13.1p2). While not part of the definition of the signature,
1215 // this check is important to determine whether these functions
1216 // can be overloaded.
1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219 if (OldMethod && NewMethod &&
1220 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222 if (!UseMemberUsingDeclRules &&
1223 (OldMethod->getRefQualifier() == RQ_None ||
1224 NewMethod->getRefQualifier() == RQ_None)) {
1225 // C++0x [over.load]p2:
1226 // - Member function declarations with the same name and the same
1227 // parameter-type-list as well as member function template
1228 // declarations with the same name, the same parameter-type-list, and
1229 // the same template parameter lists cannot be overloaded if any of
1230 // them, but not all, have a ref-qualifier (8.3.5).
1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234 }
1235 return true;
1236 }
1237
1238 // We may not have applied the implicit const for a constexpr member
1239 // function yet (because we haven't yet resolved whether this is a static
1240 // or non-static member function). Add it now, on the assumption that this
1241 // is a redeclaration of OldMethod.
1242 auto OldQuals = OldMethod->getMethodQualifiers();
1243 auto NewQuals = NewMethod->getMethodQualifiers();
1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245 !isa<CXXConstructorDecl>(NewMethod))
1246 NewQuals.addConst();
1247 // We do not allow overloading based off of '__restrict'.
1248 OldQuals.removeRestrict();
1249 NewQuals.removeRestrict();
1250 if (OldQuals != NewQuals)
1251 return true;
1252 }
1253
1254 // Though pass_object_size is placed on parameters and takes an argument, we
1255 // consider it to be a function-level modifier for the sake of function
1256 // identity. Either the function has one or more parameters with
1257 // pass_object_size or it doesn't.
1258 if (functionHasPassObjectSizeParams(New) !=
1259 functionHasPassObjectSizeParams(Old))
1260 return true;
1261
1262 // enable_if attributes are an order-sensitive part of the signature.
1263 for (specific_attr_iterator<EnableIfAttr>
1264 NewI = New->specific_attr_begin<EnableIfAttr>(),
1265 NewE = New->specific_attr_end<EnableIfAttr>(),
1266 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267 OldE = Old->specific_attr_end<EnableIfAttr>();
1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269 if (NewI == NewE || OldI == OldE)
1270 return true;
1271 llvm::FoldingSetNodeID NewID, OldID;
1272 NewI->getCond()->Profile(NewID, Context, true);
1273 OldI->getCond()->Profile(OldID, Context, true);
1274 if (NewID != OldID)
1275 return true;
1276 }
1277
1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279 // Don't allow overloading of destructors. (In theory we could, but it
1280 // would be a giant change to clang.)
1281 if (!isa<CXXDestructorDecl>(New)) {
1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283 OldTarget = IdentifyCUDATarget(Old);
1284 if (NewTarget != CFT_InvalidTarget) {
1285 assert((OldTarget != CFT_InvalidTarget) &&(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1286, __PRETTY_FUNCTION__))
1286 "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1286, __PRETTY_FUNCTION__))
;
1287
1288 // Allow overloading of functions with same signature and different CUDA
1289 // target attributes.
1290 if (NewTarget != OldTarget)
1291 return true;
1292 }
1293 }
1294 }
1295
1296 if (ConsiderRequiresClauses) {
1297 Expr *NewRC = New->getTrailingRequiresClause(),
1298 *OldRC = Old->getTrailingRequiresClause();
1299 if ((NewRC != nullptr) != (OldRC != nullptr))
1300 // RC are most certainly different - these are overloads.
1301 return true;
1302
1303 if (NewRC) {
1304 llvm::FoldingSetNodeID NewID, OldID;
1305 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307 if (NewID != OldID)
1308 // RCs are not equivalent - these are overloads.
1309 return true;
1310 }
1311 }
1312
1313 // The signatures match; this is not an overload.
1314 return false;
1315}
1316
1317/// Tries a user-defined conversion from From to ToType.
1318///
1319/// Produces an implicit conversion sequence for when a standard conversion
1320/// is not an option. See TryImplicitConversion for more information.
1321static ImplicitConversionSequence
1322TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323 bool SuppressUserConversions,
1324 AllowedExplicit AllowExplicit,
1325 bool InOverloadResolution,
1326 bool CStyle,
1327 bool AllowObjCWritebackConversion,
1328 bool AllowObjCConversionOnExplicit) {
1329 ImplicitConversionSequence ICS;
1330
1331 if (SuppressUserConversions) {
1332 // We're not in the case above, so there is no conversion that
1333 // we can perform.
1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335 return ICS;
1336 }
1337
1338 // Attempt user-defined conversion.
1339 OverloadCandidateSet Conversions(From->getExprLoc(),
1340 OverloadCandidateSet::CSK_Normal);
1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342 Conversions, AllowExplicit,
1343 AllowObjCConversionOnExplicit)) {
1344 case OR_Success:
1345 case OR_Deleted:
1346 ICS.setUserDefined();
1347 // C++ [over.ics.user]p4:
1348 // A conversion of an expression of class type to the same class
1349 // type is given Exact Match rank, and a conversion of an
1350 // expression of class type to a base class of that type is
1351 // given Conversion rank, in spite of the fact that a copy
1352 // constructor (i.e., a user-defined conversion function) is
1353 // called for those cases.
1354 if (CXXConstructorDecl *Constructor
1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356 QualType FromCanon
1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358 QualType ToCanon
1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360 if (Constructor->isCopyConstructor() &&
1361 (FromCanon == ToCanon ||
1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363 // Turn this into a "standard" conversion sequence, so that it
1364 // gets ranked with standard conversion sequences.
1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366 ICS.setStandard();
1367 ICS.Standard.setAsIdentityConversion();
1368 ICS.Standard.setFromType(From->getType());
1369 ICS.Standard.setAllToTypes(ToType);
1370 ICS.Standard.CopyConstructor = Constructor;
1371 ICS.Standard.FoundCopyConstructor = Found;
1372 if (ToCanon != FromCanon)
1373 ICS.Standard.Second = ICK_Derived_To_Base;
1374 }
1375 }
1376 break;
1377
1378 case OR_Ambiguous:
1379 ICS.setAmbiguous();
1380 ICS.Ambiguous.setFromType(From->getType());
1381 ICS.Ambiguous.setToType(ToType);
1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383 Cand != Conversions.end(); ++Cand)
1384 if (Cand->Best)
1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386 break;
1387
1388 // Fall through.
1389 case OR_No_Viable_Function:
1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391 break;
1392 }
1393
1394 return ICS;
1395}
1396
1397/// TryImplicitConversion - Attempt to perform an implicit conversion
1398/// from the given expression (Expr) to the given type (ToType). This
1399/// function returns an implicit conversion sequence that can be used
1400/// to perform the initialization. Given
1401///
1402/// void f(float f);
1403/// void g(int i) { f(i); }
1404///
1405/// this routine would produce an implicit conversion sequence to
1406/// describe the initialization of f from i, which will be a standard
1407/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409//
1410/// Note that this routine only determines how the conversion can be
1411/// performed; it does not actually perform the conversion. As such,
1412/// it will not produce any diagnostics if no conversion is available,
1413/// but will instead return an implicit conversion sequence of kind
1414/// "BadConversion".
1415///
1416/// If @p SuppressUserConversions, then user-defined conversions are
1417/// not permitted.
1418/// If @p AllowExplicit, then explicit user-defined conversions are
1419/// permitted.
1420///
1421/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422/// writeback conversion, which allows __autoreleasing id* parameters to
1423/// be initialized with __strong id* or __weak id* arguments.
1424static ImplicitConversionSequence
1425TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426 bool SuppressUserConversions,
1427 AllowedExplicit AllowExplicit,
1428 bool InOverloadResolution,
1429 bool CStyle,
1430 bool AllowObjCWritebackConversion,
1431 bool AllowObjCConversionOnExplicit) {
1432 ImplicitConversionSequence ICS;
1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435 ICS.setStandard();
1436 return ICS;
1437 }
1438
1439 if (!S.getLangOpts().CPlusPlus) {
1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441 return ICS;
1442 }
1443
1444 // C++ [over.ics.user]p4:
1445 // A conversion of an expression of class type to the same class
1446 // type is given Exact Match rank, and a conversion of an
1447 // expression of class type to a base class of that type is
1448 // given Conversion rank, in spite of the fact that a copy/move
1449 // constructor (i.e., a user-defined conversion function) is
1450 // called for those cases.
1451 QualType FromType = From->getType();
1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455 ICS.setStandard();
1456 ICS.Standard.setAsIdentityConversion();
1457 ICS.Standard.setFromType(FromType);
1458 ICS.Standard.setAllToTypes(ToType);
1459
1460 // We don't actually check at this point whether there is a valid
1461 // copy/move constructor, since overloading just assumes that it
1462 // exists. When we actually perform initialization, we'll find the
1463 // appropriate constructor to copy the returned object, if needed.
1464 ICS.Standard.CopyConstructor = nullptr;
1465
1466 // Determine whether this is considered a derived-to-base conversion.
1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468 ICS.Standard.Second = ICK_Derived_To_Base;
1469
1470 return ICS;
1471 }
1472
1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474 AllowExplicit, InOverloadResolution, CStyle,
1475 AllowObjCWritebackConversion,
1476 AllowObjCConversionOnExplicit);
1477}
1478
1479ImplicitConversionSequence
1480Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481 bool SuppressUserConversions,
1482 AllowedExplicit AllowExplicit,
1483 bool InOverloadResolution,
1484 bool CStyle,
1485 bool AllowObjCWritebackConversion) {
1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487 AllowExplicit, InOverloadResolution, CStyle,
1488 AllowObjCWritebackConversion,
1489 /*AllowObjCConversionOnExplicit=*/false);
1490}
1491
1492/// PerformImplicitConversion - Perform an implicit conversion of the
1493/// expression From to the type ToType. Returns the
1494/// converted expression. Flavor is the kind of conversion we're
1495/// performing, used in the error message. If @p AllowExplicit,
1496/// explicit user-defined conversions are permitted.
1497ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498 AssignmentAction Action,
1499 bool AllowExplicit) {
1500 if (checkPlaceholderForOverload(*this, From))
1501 return ExprError();
1502
1503 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504 bool AllowObjCWritebackConversion
1505 = getLangOpts().ObjCAutoRefCount &&
1506 (Action == AA_Passing || Action == AA_Sending);
1507 if (getLangOpts().ObjC)
1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509 From->getType(), From);
1510 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511 *this, From, ToType,
1512 /*SuppressUserConversions=*/false,
1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514 /*InOverloadResolution=*/false,
1515 /*CStyle=*/false, AllowObjCWritebackConversion,
1516 /*AllowObjCConversionOnExplicit=*/false);
1517 return PerformImplicitConversion(From, ToType, ICS, Action);
1518}
1519
1520/// Determine whether the conversion from FromType to ToType is a valid
1521/// conversion that strips "noexcept" or "noreturn" off the nested function
1522/// type.
1523bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524 QualType &ResultTy) {
1525 if (Context.hasSameUnqualifiedType(FromType, ToType))
1526 return false;
1527
1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529 // or F(t noexcept) -> F(t)
1530 // where F adds one of the following at most once:
1531 // - a pointer
1532 // - a member pointer
1533 // - a block pointer
1534 // Changes here need matching changes in FindCompositePointerType.
1535 CanQualType CanTo = Context.getCanonicalType(ToType);
1536 CanQualType CanFrom = Context.getCanonicalType(FromType);
1537 Type::TypeClass TyClass = CanTo->getTypeClass();
1538 if (TyClass != CanFrom->getTypeClass()) return false;
1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540 if (TyClass == Type::Pointer) {
1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543 } else if (TyClass == Type::BlockPointer) {
1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546 } else if (TyClass == Type::MemberPointer) {
1547 auto ToMPT = CanTo.castAs<MemberPointerType>();
1548 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549 // A function pointer conversion cannot change the class of the function.
1550 if (ToMPT->getClass() != FromMPT->getClass())
1551 return false;
1552 CanTo = ToMPT->getPointeeType();
1553 CanFrom = FromMPT->getPointeeType();
1554 } else {
1555 return false;
1556 }
1557
1558 TyClass = CanTo->getTypeClass();
1559 if (TyClass != CanFrom->getTypeClass()) return false;
1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561 return false;
1562 }
1563
1564 const auto *FromFn = cast<FunctionType>(CanFrom);
1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566
1567 const auto *ToFn = cast<FunctionType>(CanTo);
1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569
1570 bool Changed = false;
1571
1572 // Drop 'noreturn' if not present in target type.
1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575 Changed = true;
1576 }
1577
1578 // Drop 'noexcept' if not present in target type.
1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582 FromFn = cast<FunctionType>(
1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584 EST_None)
1585 .getTypePtr());
1586 Changed = true;
1587 }
1588
1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590 // only if the ExtParameterInfo lists of the two function prototypes can be
1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593 bool CanUseToFPT, CanUseFromFPT;
1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595 CanUseFromFPT, NewParamInfos) &&
1596 CanUseToFPT && !CanUseFromFPT) {
1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598 ExtInfo.ExtParameterInfos =
1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601 FromFPT->getParamTypes(), ExtInfo);
1602 FromFn = QT->getAs<FunctionType>();
1603 Changed = true;
1604 }
1605 }
1606
1607 if (!Changed)
1608 return false;
1609
1610 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1610, __PRETTY_FUNCTION__))
;
1611 if (QualType(FromFn, 0) != CanTo) return false;
1612
1613 ResultTy = ToType;
1614 return true;
1615}
1616
1617/// Determine whether the conversion from FromType to ToType is a valid
1618/// vector conversion.
1619///
1620/// \param ICK Will be set to the vector conversion kind, if this is a vector
1621/// conversion.
1622static bool IsVectorConversion(Sema &S, QualType FromType,
1623 QualType ToType, ImplicitConversionKind &ICK) {
1624 // We need at least one of these types to be a vector type to have a vector
1625 // conversion.
1626 if (!ToType->isVectorType() && !FromType->isVectorType())
1627 return false;
1628
1629 // Identical types require no conversions.
1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631 return false;
1632
1633 // There are no conversions between extended vector types, only identity.
1634 if (ToType->isExtVectorType()) {
1635 // There are no conversions between extended vector types other than the
1636 // identity conversion.
1637 if (FromType->isExtVectorType())
1638 return false;
1639
1640 // Vector splat from any arithmetic type to a vector.
1641 if (FromType->isArithmeticType()) {
1642 ICK = ICK_Vector_Splat;
1643 return true;
1644 }
1645 }
1646
1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650 ICK = ICK_SVE_Vector_Conversion;
1651 return true;
1652 }
1653
1654 // We can perform the conversion between vector types in the following cases:
1655 // 1)vector types are equivalent AltiVec and GCC vector types
1656 // 2)lax vector conversions are permitted and the vector types are of the
1657 // same size
1658 // 3)the destination type does not have the ARM MVE strict-polymorphism
1659 // attribute, which inhibits lax vector conversion for overload resolution
1660 // only
1661 if (ToType->isVectorType() && FromType->isVectorType()) {
1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663 (S.isLaxVectorConversion(FromType, ToType) &&
1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665 ICK = ICK_Vector_Conversion;
1666 return true;
1667 }
1668 }
1669
1670 return false;
1671}
1672
1673static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674 bool InOverloadResolution,
1675 StandardConversionSequence &SCS,
1676 bool CStyle);
1677
1678/// IsStandardConversion - Determines whether there is a standard
1679/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680/// expression From to the type ToType. Standard conversion sequences
1681/// only consider non-class types; for conversions that involve class
1682/// types, use TryImplicitConversion. If a conversion exists, SCS will
1683/// contain the standard conversion sequence required to perform this
1684/// conversion and this routine will return true. Otherwise, this
1685/// routine will return false and the value of SCS is unspecified.
1686static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687 bool InOverloadResolution,
1688 StandardConversionSequence &SCS,
1689 bool CStyle,
1690 bool AllowObjCWritebackConversion) {
1691 QualType FromType = From->getType();
1692
1693 // Standard conversions (C++ [conv])
1694 SCS.setAsIdentityConversion();
1695 SCS.IncompatibleObjC = false;
1696 SCS.setFromType(FromType);
1697 SCS.CopyConstructor = nullptr;
1698
1699 // There are no standard conversions for class types in C++, so
1700 // abort early. When overloading in C, however, we do permit them.
1701 if (S.getLangOpts().CPlusPlus &&
1702 (FromType->isRecordType() || ToType->isRecordType()))
1703 return false;
1704
1705 // The first conversion can be an lvalue-to-rvalue conversion,
1706 // array-to-pointer conversion, or function-to-pointer conversion
1707 // (C++ 4p1).
1708
1709 if (FromType == S.Context.OverloadTy) {
1710 DeclAccessPair AccessPair;
1711 if (FunctionDecl *Fn
1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713 AccessPair)) {
1714 // We were able to resolve the address of the overloaded function,
1715 // so we can convert to the type of that function.
1716 FromType = Fn->getType();
1717 SCS.setFromType(FromType);
1718
1719 // we can sometimes resolve &foo<int> regardless of ToType, so check
1720 // if the type matches (identity) or we are converting to bool
1721 if (!S.Context.hasSameUnqualifiedType(
1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723 QualType resultTy;
1724 // if the function type matches except for [[noreturn]], it's ok
1725 if (!S.IsFunctionConversion(FromType,
1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727 // otherwise, only a boolean conversion is standard
1728 if (!ToType->isBooleanType())
1729 return false;
1730 }
1731
1732 // Check if the "from" expression is taking the address of an overloaded
1733 // function and recompute the FromType accordingly. Take advantage of the
1734 // fact that non-static member functions *must* have such an address-of
1735 // expression.
1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737 if (Method && !Method->isStatic()) {
1738 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1739, __PRETTY_FUNCTION__))
1739 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1739, __PRETTY_FUNCTION__))
;
1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1742, __PRETTY_FUNCTION__))
1741 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1742, __PRETTY_FUNCTION__))
1742 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1742, __PRETTY_FUNCTION__))
;
1743 const Type *ClassType
1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1749, __PRETTY_FUNCTION__))
1748 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1749, __PRETTY_FUNCTION__))
1749 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1749, __PRETTY_FUNCTION__))
;
1750 FromType = S.Context.getPointerType(FromType);
1751 }
1752
1753 // Check that we've computed the proper type after overload resolution.
1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755 // be calling it from within an NDEBUG block.
1756 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1758, __PRETTY_FUNCTION__))
1757 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1758, __PRETTY_FUNCTION__))
1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 1758, __PRETTY_FUNCTION__))
;
1759 } else {
1760 return false;
1761 }
1762 }
1763 // Lvalue-to-rvalue conversion (C++11 4.1):
1764 // A glvalue (3.10) of a non-function, non-array type T can
1765 // be converted to a prvalue.
1766 bool argIsLValue = From->isGLValue();
1767 if (argIsLValue &&
1768 !FromType->isFunctionType() && !FromType->isArrayType() &&
1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770 SCS.First = ICK_Lvalue_To_Rvalue;
1771
1772 // C11 6.3.2.1p2:
1773 // ... if the lvalue has atomic type, the value has the non-atomic version
1774 // of the type of the lvalue ...
1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776 FromType = Atomic->getValueType();
1777
1778 // If T is a non-class type, the type of the rvalue is the
1779 // cv-unqualified version of T. Otherwise, the type of the rvalue
1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781 // just strip the qualifiers because they don't matter.
1782 FromType = FromType.getUnqualifiedType();
1783 } else if (FromType->isArrayType()) {
1784 // Array-to-pointer conversion (C++ 4.2)
1785 SCS.First = ICK_Array_To_Pointer;
1786
1787 // An lvalue or rvalue of type "array of N T" or "array of unknown
1788 // bound of T" can be converted to an rvalue of type "pointer to
1789 // T" (C++ 4.2p1).
1790 FromType = S.Context.getArrayDecayedType(FromType);
1791
1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793 // This conversion is deprecated in C++03 (D.4)
1794 SCS.DeprecatedStringLiteralToCharPtr = true;
1795
1796 // For the purpose of ranking in overload resolution
1797 // (13.3.3.1.1), this conversion is considered an
1798 // array-to-pointer conversion followed by a qualification
1799 // conversion (4.4). (C++ 4.2p2)
1800 SCS.Second = ICK_Identity;
1801 SCS.Third = ICK_Qualification;
1802 SCS.QualificationIncludesObjCLifetime = false;
1803 SCS.setAllToTypes(FromType);
1804 return true;
1805 }
1806 } else if (FromType->isFunctionType() && argIsLValue) {
1807 // Function-to-pointer conversion (C++ 4.3).
1808 SCS.First = ICK_Function_To_Pointer;
1809
1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812 if (!S.checkAddressOfFunctionIsAvailable(FD))
1813 return false;
1814
1815 // An lvalue of function type T can be converted to an rvalue of
1816 // type "pointer to T." The result is a pointer to the
1817 // function. (C++ 4.3p1).
1818 FromType = S.Context.getPointerType(FromType);
1819 } else {
1820 // We don't require any conversions for the first step.
1821 SCS.First = ICK_Identity;
1822 }
1823 SCS.setToType(0, FromType);
1824
1825 // The second conversion can be an integral promotion, floating
1826 // point promotion, integral conversion, floating point conversion,
1827 // floating-integral conversion, pointer conversion,
1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829 // For overloading in C, this can also be a "compatible-type"
1830 // conversion.
1831 bool IncompatibleObjC = false;
1832 ImplicitConversionKind SecondICK = ICK_Identity;
1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834 // The unqualified versions of the types are the same: there's no
1835 // conversion to do.
1836 SCS.Second = ICK_Identity;
1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838 // Integral promotion (C++ 4.5).
1839 SCS.Second = ICK_Integral_Promotion;
1840 FromType = ToType.getUnqualifiedType();
1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842 // Floating point promotion (C++ 4.6).
1843 SCS.Second = ICK_Floating_Promotion;
1844 FromType = ToType.getUnqualifiedType();
1845 } else if (S.IsComplexPromotion(FromType, ToType)) {
1846 // Complex promotion (Clang extension)
1847 SCS.Second = ICK_Complex_Promotion;
1848 FromType = ToType.getUnqualifiedType();
1849 } else if (ToType->isBooleanType() &&
1850 (FromType->isArithmeticType() ||
1851 FromType->isAnyPointerType() ||
1852 FromType->isBlockPointerType() ||
1853 FromType->isMemberPointerType())) {
1854 // Boolean conversions (C++ 4.12).
1855 SCS.Second = ICK_Boolean_Conversion;
1856 FromType = S.Context.BoolTy;
1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858 ToType->isIntegralType(S.Context)) {
1859 // Integral conversions (C++ 4.7).
1860 SCS.Second = ICK_Integral_Conversion;
1861 FromType = ToType.getUnqualifiedType();
1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863 // Complex conversions (C99 6.3.1.6)
1864 SCS.Second = ICK_Complex_Conversion;
1865 FromType = ToType.getUnqualifiedType();
1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868 // Complex-real conversions (C99 6.3.1.7)
1869 SCS.Second = ICK_Complex_Real;
1870 FromType = ToType.getUnqualifiedType();
1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872 // FIXME: disable conversions between long double and __float128 if
1873 // their representation is different until there is back end support
1874 // We of course allow this conversion if long double is really double.
1875
1876 // Conversions between bfloat and other floats are not permitted.
1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878 return false;
1879 if (&S.Context.getFloatTypeSemantics(FromType) !=
1880 &S.Context.getFloatTypeSemantics(ToType)) {
1881 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1882 ToType == S.Context.LongDoubleTy) ||
1883 (FromType == S.Context.LongDoubleTy &&
1884 ToType == S.Context.Float128Ty));
1885 if (Float128AndLongDouble &&
1886 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1887 &llvm::APFloat::PPCDoubleDouble()))
1888 return false;
1889 }
1890 // Floating point conversions (C++ 4.8).
1891 SCS.Second = ICK_Floating_Conversion;
1892 FromType = ToType.getUnqualifiedType();
1893 } else if ((FromType->isRealFloatingType() &&
1894 ToType->isIntegralType(S.Context)) ||
1895 (FromType->isIntegralOrUnscopedEnumerationType() &&
1896 ToType->isRealFloatingType())) {
1897 // Conversions between bfloat and int are not permitted.
1898 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1899 return false;
1900
1901 // Floating-integral conversions (C++ 4.9).
1902 SCS.Second = ICK_Floating_Integral;
1903 FromType = ToType.getUnqualifiedType();
1904 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905 SCS.Second = ICK_Block_Pointer_Conversion;
1906 } else if (AllowObjCWritebackConversion &&
1907 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908 SCS.Second = ICK_Writeback_Conversion;
1909 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910 FromType, IncompatibleObjC)) {
1911 // Pointer conversions (C++ 4.10).
1912 SCS.Second = ICK_Pointer_Conversion;
1913 SCS.IncompatibleObjC = IncompatibleObjC;
1914 FromType = FromType.getUnqualifiedType();
1915 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916 InOverloadResolution, FromType)) {
1917 // Pointer to member conversions (4.11).
1918 SCS.Second = ICK_Pointer_Member;
1919 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1920 SCS.Second = SecondICK;
1921 FromType = ToType.getUnqualifiedType();
1922 } else if (!S.getLangOpts().CPlusPlus &&
1923 S.Context.typesAreCompatible(ToType, FromType)) {
1924 // Compatible conversions (Clang extension for C function overloading)
1925 SCS.Second = ICK_Compatible_Conversion;
1926 FromType = ToType.getUnqualifiedType();
1927 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1928 InOverloadResolution,
1929 SCS, CStyle)) {
1930 SCS.Second = ICK_TransparentUnionConversion;
1931 FromType = ToType;
1932 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1933 CStyle)) {
1934 // tryAtomicConversion has updated the standard conversion sequence
1935 // appropriately.
1936 return true;
1937 } else if (ToType->isEventT() &&
1938 From->isIntegerConstantExpr(S.getASTContext()) &&
1939 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1940 SCS.Second = ICK_Zero_Event_Conversion;
1941 FromType = ToType;
1942 } else if (ToType->isQueueT() &&
1943 From->isIntegerConstantExpr(S.getASTContext()) &&
1944 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1945 SCS.Second = ICK_Zero_Queue_Conversion;
1946 FromType = ToType;
1947 } else if (ToType->isSamplerT() &&
1948 From->isIntegerConstantExpr(S.getASTContext())) {
1949 SCS.Second = ICK_Compatible_Conversion;
1950 FromType = ToType;
1951 } else {
1952 // No second conversion required.
1953 SCS.Second = ICK_Identity;
1954 }
1955 SCS.setToType(1, FromType);
1956
1957 // The third conversion can be a function pointer conversion or a
1958 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1959 bool ObjCLifetimeConversion;
1960 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1961 // Function pointer conversions (removing 'noexcept') including removal of
1962 // 'noreturn' (Clang extension).
1963 SCS.Third = ICK_Function_Conversion;
1964 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1965 ObjCLifetimeConversion)) {
1966 SCS.Third = ICK_Qualification;
1967 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1968 FromType = ToType;
1969 } else {
1970 // No conversion required
1971 SCS.Third = ICK_Identity;
1972 }
1973
1974 // C++ [over.best.ics]p6:
1975 // [...] Any difference in top-level cv-qualification is
1976 // subsumed by the initialization itself and does not constitute
1977 // a conversion. [...]
1978 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1979 QualType CanonTo = S.Context.getCanonicalType(ToType);
1980 if (CanonFrom.getLocalUnqualifiedType()
1981 == CanonTo.getLocalUnqualifiedType() &&
1982 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1983 FromType = ToType;
1984 CanonFrom = CanonTo;
1985 }
1986
1987 SCS.setToType(2, FromType);
1988
1989 if (CanonFrom == CanonTo)
1990 return true;
1991
1992 // If we have not converted the argument type to the parameter type,
1993 // this is a bad conversion sequence, unless we're resolving an overload in C.
1994 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1995 return false;
1996
1997 ExprResult ER = ExprResult{From};
1998 Sema::AssignConvertType Conv =
1999 S.CheckSingleAssignmentConstraints(ToType, ER,
2000 /*Diagnose=*/false,
2001 /*DiagnoseCFAudited=*/false,
2002 /*ConvertRHS=*/false);
2003 ImplicitConversionKind SecondConv;
2004 switch (Conv) {
2005 case Sema::Compatible:
2006 SecondConv = ICK_C_Only_Conversion;
2007 break;
2008 // For our purposes, discarding qualifiers is just as bad as using an
2009 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2010 // qualifiers, as well.
2011 case Sema::CompatiblePointerDiscardsQualifiers:
2012 case Sema::IncompatiblePointer:
2013 case Sema::IncompatiblePointerSign:
2014 SecondConv = ICK_Incompatible_Pointer_Conversion;
2015 break;
2016 default:
2017 return false;
2018 }
2019
2020 // First can only be an lvalue conversion, so we pretend that this was the
2021 // second conversion. First should already be valid from earlier in the
2022 // function.
2023 SCS.Second = SecondConv;
2024 SCS.setToType(1, ToType);
2025
2026 // Third is Identity, because Second should rank us worse than any other
2027 // conversion. This could also be ICK_Qualification, but it's simpler to just
2028 // lump everything in with the second conversion, and we don't gain anything
2029 // from making this ICK_Qualification.
2030 SCS.Third = ICK_Identity;
2031 SCS.setToType(2, ToType);
2032 return true;
2033}
2034
2035static bool
2036IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2037 QualType &ToType,
2038 bool InOverloadResolution,
2039 StandardConversionSequence &SCS,
2040 bool CStyle) {
2041
2042 const RecordType *UT = ToType->getAsUnionType();
2043 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2044 return false;
2045 // The field to initialize within the transparent union.
2046 RecordDecl *UD = UT->getDecl();
2047 // It's compatible if the expression matches any of the fields.
2048 for (const auto *it : UD->fields()) {
2049 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2050 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2051 ToType = it->getType();
2052 return true;
2053 }
2054 }
2055 return false;
2056}
2057
2058/// IsIntegralPromotion - Determines whether the conversion from the
2059/// expression From (whose potentially-adjusted type is FromType) to
2060/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2061/// sets PromotedType to the promoted type.
2062bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2063 const BuiltinType *To = ToType->getAs<BuiltinType>();
2064 // All integers are built-in.
2065 if (!To) {
2066 return false;
2067 }
2068
2069 // An rvalue of type char, signed char, unsigned char, short int, or
2070 // unsigned short int can be converted to an rvalue of type int if
2071 // int can represent all the values of the source type; otherwise,
2072 // the source rvalue can be converted to an rvalue of type unsigned
2073 // int (C++ 4.5p1).
2074 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2075 !FromType->isEnumeralType()) {
2076 if (// We can promote any signed, promotable integer type to an int
2077 (FromType->isSignedIntegerType() ||
2078 // We can promote any unsigned integer type whose size is
2079 // less than int to an int.
2080 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2081 return To->getKind() == BuiltinType::Int;
2082 }
2083
2084 return To->getKind() == BuiltinType::UInt;
2085 }
2086
2087 // C++11 [conv.prom]p3:
2088 // A prvalue of an unscoped enumeration type whose underlying type is not
2089 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2090 // following types that can represent all the values of the enumeration
2091 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2092 // unsigned int, long int, unsigned long int, long long int, or unsigned
2093 // long long int. If none of the types in that list can represent all the
2094 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2095 // type can be converted to an rvalue a prvalue of the extended integer type
2096 // with lowest integer conversion rank (4.13) greater than the rank of long
2097 // long in which all the values of the enumeration can be represented. If
2098 // there are two such extended types, the signed one is chosen.
2099 // C++11 [conv.prom]p4:
2100 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2101 // can be converted to a prvalue of its underlying type. Moreover, if
2102 // integral promotion can be applied to its underlying type, a prvalue of an
2103 // unscoped enumeration type whose underlying type is fixed can also be
2104 // converted to a prvalue of the promoted underlying type.
2105 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2106 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2107 // provided for a scoped enumeration.
2108 if (FromEnumType->getDecl()->isScoped())
2109 return false;
2110
2111 // We can perform an integral promotion to the underlying type of the enum,
2112 // even if that's not the promoted type. Note that the check for promoting
2113 // the underlying type is based on the type alone, and does not consider
2114 // the bitfield-ness of the actual source expression.
2115 if (FromEnumType->getDecl()->isFixed()) {
2116 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2117 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2118 IsIntegralPromotion(nullptr, Underlying, ToType);
2119 }
2120
2121 // We have already pre-calculated the promotion type, so this is trivial.
2122 if (ToType->isIntegerType() &&
2123 isCompleteType(From->getBeginLoc(), FromType))
2124 return Context.hasSameUnqualifiedType(
2125 ToType, FromEnumType->getDecl()->getPromotionType());
2126
2127 // C++ [conv.prom]p5:
2128 // If the bit-field has an enumerated type, it is treated as any other
2129 // value of that type for promotion purposes.
2130 //
2131 // ... so do not fall through into the bit-field checks below in C++.
2132 if (getLangOpts().CPlusPlus)
2133 return false;
2134 }
2135
2136 // C++0x [conv.prom]p2:
2137 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2138 // to an rvalue a prvalue of the first of the following types that can
2139 // represent all the values of its underlying type: int, unsigned int,
2140 // long int, unsigned long int, long long int, or unsigned long long int.
2141 // If none of the types in that list can represent all the values of its
2142 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2143 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2144 // type.
2145 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2146 ToType->isIntegerType()) {
2147 // Determine whether the type we're converting from is signed or
2148 // unsigned.
2149 bool FromIsSigned = FromType->isSignedIntegerType();
2150 uint64_t FromSize = Context.getTypeSize(FromType);
2151
2152 // The types we'll try to promote to, in the appropriate
2153 // order. Try each of these types.
2154 QualType PromoteTypes[6] = {
2155 Context.IntTy, Context.UnsignedIntTy,
2156 Context.LongTy, Context.UnsignedLongTy ,
2157 Context.LongLongTy, Context.UnsignedLongLongTy
2158 };
2159 for (int Idx = 0; Idx < 6; ++Idx) {
2160 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2161 if (FromSize < ToSize ||
2162 (FromSize == ToSize &&
2163 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2164 // We found the type that we can promote to. If this is the
2165 // type we wanted, we have a promotion. Otherwise, no
2166 // promotion.
2167 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2168 }
2169 }
2170 }
2171
2172 // An rvalue for an integral bit-field (9.6) can be converted to an
2173 // rvalue of type int if int can represent all the values of the
2174 // bit-field; otherwise, it can be converted to unsigned int if
2175 // unsigned int can represent all the values of the bit-field. If
2176 // the bit-field is larger yet, no integral promotion applies to
2177 // it. If the bit-field has an enumerated type, it is treated as any
2178 // other value of that type for promotion purposes (C++ 4.5p3).
2179 // FIXME: We should delay checking of bit-fields until we actually perform the
2180 // conversion.
2181 //
2182 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2183 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2184 // bit-fields and those whose underlying type is larger than int) for GCC
2185 // compatibility.
2186 if (From) {
2187 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2188 Optional<llvm::APSInt> BitWidth;
2189 if (FromType->isIntegralType(Context) &&
2190 (BitWidth =
2191 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2192 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2193 ToSize = Context.getTypeSize(ToType);
2194
2195 // Are we promoting to an int from a bitfield that fits in an int?
2196 if (*BitWidth < ToSize ||
2197 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2198 return To->getKind() == BuiltinType::Int;
2199 }
2200
2201 // Are we promoting to an unsigned int from an unsigned bitfield
2202 // that fits into an unsigned int?
2203 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2204 return To->getKind() == BuiltinType::UInt;
2205 }
2206
2207 return false;
2208 }
2209 }
2210 }
2211
2212 // An rvalue of type bool can be converted to an rvalue of type int,
2213 // with false becoming zero and true becoming one (C++ 4.5p4).
2214 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2215 return true;
2216 }
2217
2218 return false;
2219}
2220
2221/// IsFloatingPointPromotion - Determines whether the conversion from
2222/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2223/// returns true and sets PromotedType to the promoted type.
2224bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2225 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2226 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2227 /// An rvalue of type float can be converted to an rvalue of type
2228 /// double. (C++ 4.6p1).
2229 if (FromBuiltin->getKind() == BuiltinType::Float &&
2230 ToBuiltin->getKind() == BuiltinType::Double)
2231 return true;
2232
2233 // C99 6.3.1.5p1:
2234 // When a float is promoted to double or long double, or a
2235 // double is promoted to long double [...].
2236 if (!getLangOpts().CPlusPlus &&
2237 (FromBuiltin->getKind() == BuiltinType::Float ||
2238 FromBuiltin->getKind() == BuiltinType::Double) &&
2239 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2240 ToBuiltin->getKind() == BuiltinType::Float128))
2241 return true;
2242
2243 // Half can be promoted to float.
2244 if (!getLangOpts().NativeHalfType &&
2245 FromBuiltin->getKind() == BuiltinType::Half &&
2246 ToBuiltin->getKind() == BuiltinType::Float)
2247 return true;
2248 }
2249
2250 return false;
2251}
2252
2253/// Determine if a conversion is a complex promotion.
2254///
2255/// A complex promotion is defined as a complex -> complex conversion
2256/// where the conversion between the underlying real types is a
2257/// floating-point or integral promotion.
2258bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2259 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2260 if (!FromComplex)
2261 return false;
2262
2263 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2264 if (!ToComplex)
2265 return false;
2266
2267 return IsFloatingPointPromotion(FromComplex->getElementType(),
2268 ToComplex->getElementType()) ||
2269 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2270 ToComplex->getElementType());
2271}
2272
2273/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2274/// the pointer type FromPtr to a pointer to type ToPointee, with the
2275/// same type qualifiers as FromPtr has on its pointee type. ToType,
2276/// if non-empty, will be a pointer to ToType that may or may not have
2277/// the right set of qualifiers on its pointee.
2278///
2279static QualType
2280BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2281 QualType ToPointee, QualType ToType,
2282 ASTContext &Context,
2283 bool StripObjCLifetime = false) {
2284 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 2286, __PRETTY_FUNCTION__))
2285 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 2286, __PRETTY_FUNCTION__))
2286 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 2286, __PRETTY_FUNCTION__))
;
2287
2288 /// Conversions to 'id' subsume cv-qualifier conversions.
2289 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2290 return ToType.getUnqualifiedType();
2291
2292 QualType CanonFromPointee
2293 = Context.getCanonicalType(FromPtr->getPointeeType());
2294 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2295 Qualifiers Quals = CanonFromPointee.getQualifiers();
2296
2297 if (StripObjCLifetime)
2298 Quals.removeObjCLifetime();
2299
2300 // Exact qualifier match -> return the pointer type we're converting to.
2301 if (CanonToPointee.getLocalQualifiers() == Quals) {
2302 // ToType is exactly what we need. Return it.
2303 if (!ToType.isNull())
2304 return ToType.getUnqualifiedType();
2305
2306 // Build a pointer to ToPointee. It has the right qualifiers
2307 // already.
2308 if (isa<ObjCObjectPointerType>(ToType))
2309 return Context.getObjCObjectPointerType(ToPointee);
2310 return Context.getPointerType(ToPointee);
2311 }
2312
2313 // Just build a canonical type that has the right qualifiers.
2314 QualType QualifiedCanonToPointee
2315 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2316
2317 if (isa<ObjCObjectPointerType>(ToType))
2318 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2319 return Context.getPointerType(QualifiedCanonToPointee);
2320}
2321
2322static bool isNullPointerConstantForConversion(Expr *Expr,
2323 bool InOverloadResolution,
2324 ASTContext &Context) {
2325 // Handle value-dependent integral null pointer constants correctly.
2326 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2327 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2328 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2329 return !InOverloadResolution;
2330
2331 return Expr->isNullPointerConstant(Context,
2332 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2333 : Expr::NPC_ValueDependentIsNull);
2334}
2335
2336/// IsPointerConversion - Determines whether the conversion of the
2337/// expression From, which has the (possibly adjusted) type FromType,
2338/// can be converted to the type ToType via a pointer conversion (C++
2339/// 4.10). If so, returns true and places the converted type (that
2340/// might differ from ToType in its cv-qualifiers at some level) into
2341/// ConvertedType.
2342///
2343/// This routine also supports conversions to and from block pointers
2344/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2345/// pointers to interfaces. FIXME: Once we've determined the
2346/// appropriate overloading rules for Objective-C, we may want to
2347/// split the Objective-C checks into a different routine; however,
2348/// GCC seems to consider all of these conversions to be pointer
2349/// conversions, so for now they live here. IncompatibleObjC will be
2350/// set if the conversion is an allowed Objective-C conversion that
2351/// should result in a warning.
2352bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2353 bool InOverloadResolution,
2354 QualType& ConvertedType,
2355 bool &IncompatibleObjC) {
2356 IncompatibleObjC = false;
2357 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2358 IncompatibleObjC))
2359 return true;
2360
2361 // Conversion from a null pointer constant to any Objective-C pointer type.
2362 if (ToType->isObjCObjectPointerType() &&
2363 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364 ConvertedType = ToType;
2365 return true;
2366 }
2367
2368 // Blocks: Block pointers can be converted to void*.
2369 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2370 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2371 ConvertedType = ToType;
2372 return true;
2373 }
2374 // Blocks: A null pointer constant can be converted to a block
2375 // pointer type.
2376 if (ToType->isBlockPointerType() &&
2377 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2378 ConvertedType = ToType;
2379 return true;
2380 }
2381
2382 // If the left-hand-side is nullptr_t, the right side can be a null
2383 // pointer constant.
2384 if (ToType->isNullPtrType() &&
2385 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2386 ConvertedType = ToType;
2387 return true;
2388 }
2389
2390 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2391 if (!ToTypePtr)
2392 return false;
2393
2394 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2395 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2396 ConvertedType = ToType;
2397 return true;
2398 }
2399
2400 // Beyond this point, both types need to be pointers
2401 // , including objective-c pointers.
2402 QualType ToPointeeType = ToTypePtr->getPointeeType();
2403 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2404 !getLangOpts().ObjCAutoRefCount) {
2405 ConvertedType = BuildSimilarlyQualifiedPointerType(
2406 FromType->getAs<ObjCObjectPointerType>(),
2407 ToPointeeType,
2408 ToType, Context);
2409 return true;
2410 }
2411 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2412 if (!FromTypePtr)
2413 return false;
2414
2415 QualType FromPointeeType = FromTypePtr->getPointeeType();
2416
2417 // If the unqualified pointee types are the same, this can't be a
2418 // pointer conversion, so don't do all of the work below.
2419 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2420 return false;
2421
2422 // An rvalue of type "pointer to cv T," where T is an object type,
2423 // can be converted to an rvalue of type "pointer to cv void" (C++
2424 // 4.10p2).
2425 if (FromPointeeType->isIncompleteOrObjectType() &&
2426 ToPointeeType->isVoidType()) {
2427 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2428 ToPointeeType,
2429 ToType, Context,
2430 /*StripObjCLifetime=*/true);
2431 return true;
2432 }
2433
2434 // MSVC allows implicit function to void* type conversion.
2435 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2436 ToPointeeType->isVoidType()) {
2437 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2438 ToPointeeType,
2439 ToType, Context);
2440 return true;
2441 }
2442
2443 // When we're overloading in C, we allow a special kind of pointer
2444 // conversion for compatible-but-not-identical pointee types.
2445 if (!getLangOpts().CPlusPlus &&
2446 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2447 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2448 ToPointeeType,
2449 ToType, Context);
2450 return true;
2451 }
2452
2453 // C++ [conv.ptr]p3:
2454 //
2455 // An rvalue of type "pointer to cv D," where D is a class type,
2456 // can be converted to an rvalue of type "pointer to cv B," where
2457 // B is a base class (clause 10) of D. If B is an inaccessible
2458 // (clause 11) or ambiguous (10.2) base class of D, a program that
2459 // necessitates this conversion is ill-formed. The result of the
2460 // conversion is a pointer to the base class sub-object of the
2461 // derived class object. The null pointer value is converted to
2462 // the null pointer value of the destination type.
2463 //
2464 // Note that we do not check for ambiguity or inaccessibility
2465 // here. That is handled by CheckPointerConversion.
2466 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2467 ToPointeeType->isRecordType() &&
2468 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2469 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2470 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2471 ToPointeeType,
2472 ToType, Context);
2473 return true;
2474 }
2475
2476 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2477 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2478 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2479 ToPointeeType,
2480 ToType, Context);
2481 return true;
2482 }
2483
2484 return false;
2485}
2486
2487/// Adopt the given qualifiers for the given type.
2488static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2489 Qualifiers TQs = T.getQualifiers();
2490
2491 // Check whether qualifiers already match.
2492 if (TQs == Qs)
2493 return T;
2494
2495 if (Qs.compatiblyIncludes(TQs))
2496 return Context.getQualifiedType(T, Qs);
2497
2498 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2499}
2500
2501/// isObjCPointerConversion - Determines whether this is an
2502/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2503/// with the same arguments and return values.
2504bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2505 QualType& ConvertedType,
2506 bool &IncompatibleObjC) {
2507 if (!getLangOpts().ObjC)
2508 return false;
2509
2510 // The set of qualifiers on the type we're converting from.
2511 Qualifiers FromQualifiers = FromType.getQualifiers();
2512
2513 // First, we handle all conversions on ObjC object pointer types.
2514 const ObjCObjectPointerType* ToObjCPtr =
2515 ToType->getAs<ObjCObjectPointerType>();
2516 const ObjCObjectPointerType *FromObjCPtr =
2517 FromType->getAs<ObjCObjectPointerType>();
2518
2519 if (ToObjCPtr && FromObjCPtr) {
2520 // If the pointee types are the same (ignoring qualifications),
2521 // then this is not a pointer conversion.
2522 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2523 FromObjCPtr->getPointeeType()))
2524 return false;
2525
2526 // Conversion between Objective-C pointers.
2527 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2528 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2529 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2530 if (getLangOpts().CPlusPlus && LHS && RHS &&
2531 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2532 FromObjCPtr->getPointeeType()))
2533 return false;
2534 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2535 ToObjCPtr->getPointeeType(),
2536 ToType, Context);
2537 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2538 return true;
2539 }
2540
2541 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2542 // Okay: this is some kind of implicit downcast of Objective-C
2543 // interfaces, which is permitted. However, we're going to
2544 // complain about it.
2545 IncompatibleObjC = true;
2546 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2547 ToObjCPtr->getPointeeType(),
2548 ToType, Context);
2549 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2550 return true;
2551 }
2552 }
2553 // Beyond this point, both types need to be C pointers or block pointers.
2554 QualType ToPointeeType;
2555 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2556 ToPointeeType = ToCPtr->getPointeeType();
2557 else if (const BlockPointerType *ToBlockPtr =
2558 ToType->getAs<BlockPointerType>()) {
2559 // Objective C++: We're able to convert from a pointer to any object
2560 // to a block pointer type.
2561 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2562 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2563 return true;
2564 }
2565 ToPointeeType = ToBlockPtr->getPointeeType();
2566 }
2567 else if (FromType->getAs<BlockPointerType>() &&
2568 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2569 // Objective C++: We're able to convert from a block pointer type to a
2570 // pointer to any object.
2571 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2572 return true;
2573 }
2574 else
2575 return false;
2576
2577 QualType FromPointeeType;
2578 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2579 FromPointeeType = FromCPtr->getPointeeType();
2580 else if (const BlockPointerType *FromBlockPtr =
2581 FromType->getAs<BlockPointerType>())
2582 FromPointeeType = FromBlockPtr->getPointeeType();
2583 else
2584 return false;
2585
2586 // If we have pointers to pointers, recursively check whether this
2587 // is an Objective-C conversion.
2588 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2589 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2590 IncompatibleObjC)) {
2591 // We always complain about this conversion.
2592 IncompatibleObjC = true;
2593 ConvertedType = Context.getPointerType(ConvertedType);
2594 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2595 return true;
2596 }
2597 // Allow conversion of pointee being objective-c pointer to another one;
2598 // as in I* to id.
2599 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2600 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2601 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2602 IncompatibleObjC)) {
2603
2604 ConvertedType = Context.getPointerType(ConvertedType);
2605 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2606 return true;
2607 }
2608
2609 // If we have pointers to functions or blocks, check whether the only
2610 // differences in the argument and result types are in Objective-C
2611 // pointer conversions. If so, we permit the conversion (but
2612 // complain about it).
2613 const FunctionProtoType *FromFunctionType
2614 = FromPointeeType->getAs<FunctionProtoType>();
2615 const FunctionProtoType *ToFunctionType
2616 = ToPointeeType->getAs<FunctionProtoType>();
2617 if (FromFunctionType && ToFunctionType) {
2618 // If the function types are exactly the same, this isn't an
2619 // Objective-C pointer conversion.
2620 if (Context.getCanonicalType(FromPointeeType)
2621 == Context.getCanonicalType(ToPointeeType))
2622 return false;
2623
2624 // Perform the quick checks that will tell us whether these
2625 // function types are obviously different.
2626 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2627 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2628 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2629 return false;
2630
2631 bool HasObjCConversion = false;
2632 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2633 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2634 // Okay, the types match exactly. Nothing to do.
2635 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2636 ToFunctionType->getReturnType(),
2637 ConvertedType, IncompatibleObjC)) {
2638 // Okay, we have an Objective-C pointer conversion.
2639 HasObjCConversion = true;
2640 } else {
2641 // Function types are too different. Abort.
2642 return false;
2643 }
2644
2645 // Check argument types.
2646 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2647 ArgIdx != NumArgs; ++ArgIdx) {
2648 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2649 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2650 if (Context.getCanonicalType(FromArgType)
2651 == Context.getCanonicalType(ToArgType)) {
2652 // Okay, the types match exactly. Nothing to do.
2653 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2654 ConvertedType, IncompatibleObjC)) {
2655 // Okay, we have an Objective-C pointer conversion.
2656 HasObjCConversion = true;
2657 } else {
2658 // Argument types are too different. Abort.
2659 return false;
2660 }
2661 }
2662
2663 if (HasObjCConversion) {
2664 // We had an Objective-C conversion. Allow this pointer
2665 // conversion, but complain about it.
2666 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2667 IncompatibleObjC = true;
2668 return true;
2669 }
2670 }
2671
2672 return false;
2673}
2674
2675/// Determine whether this is an Objective-C writeback conversion,
2676/// used for parameter passing when performing automatic reference counting.
2677///
2678/// \param FromType The type we're converting form.
2679///
2680/// \param ToType The type we're converting to.
2681///
2682/// \param ConvertedType The type that will be produced after applying
2683/// this conversion.
2684bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2685 QualType &ConvertedType) {
2686 if (!getLangOpts().ObjCAutoRefCount ||
2687 Context.hasSameUnqualifiedType(FromType, ToType))
2688 return false;
2689
2690 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2691 QualType ToPointee;
2692 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2693 ToPointee = ToPointer->getPointeeType();
2694 else
2695 return false;
2696
2697 Qualifiers ToQuals = ToPointee.getQualifiers();
2698 if (!ToPointee->isObjCLifetimeType() ||
2699 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2700 !ToQuals.withoutObjCLifetime().empty())
2701 return false;
2702
2703 // Argument must be a pointer to __strong to __weak.
2704 QualType FromPointee;
2705 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2706 FromPointee = FromPointer->getPointeeType();
2707 else
2708 return false;
2709
2710 Qualifiers FromQuals = FromPointee.getQualifiers();
2711 if (!FromPointee->isObjCLifetimeType() ||
2712 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2713 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2714 return false;
2715
2716 // Make sure that we have compatible qualifiers.
2717 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2718 if (!ToQuals.compatiblyIncludes(FromQuals))
2719 return false;
2720
2721 // Remove qualifiers from the pointee type we're converting from; they
2722 // aren't used in the compatibility check belong, and we'll be adding back
2723 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2724 FromPointee = FromPointee.getUnqualifiedType();
2725
2726 // The unqualified form of the pointee types must be compatible.
2727 ToPointee = ToPointee.getUnqualifiedType();
2728 bool IncompatibleObjC;
2729 if (Context.typesAreCompatible(FromPointee, ToPointee))
2730 FromPointee = ToPointee;
2731 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2732 IncompatibleObjC))
2733 return false;
2734
2735 /// Construct the type we're converting to, which is a pointer to
2736 /// __autoreleasing pointee.
2737 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2738 ConvertedType = Context.getPointerType(FromPointee);
2739 return true;
2740}
2741
2742bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2743 QualType& ConvertedType) {
2744 QualType ToPointeeType;
2745 if (const BlockPointerType *ToBlockPtr =
2746 ToType->getAs<BlockPointerType>())
2747 ToPointeeType = ToBlockPtr->getPointeeType();
2748 else
2749 return false;
2750
2751 QualType FromPointeeType;
2752 if (const BlockPointerType *FromBlockPtr =
2753 FromType->getAs<BlockPointerType>())
2754 FromPointeeType = FromBlockPtr->getPointeeType();
2755 else
2756 return false;
2757 // We have pointer to blocks, check whether the only
2758 // differences in the argument and result types are in Objective-C
2759 // pointer conversions. If so, we permit the conversion.
2760
2761 const FunctionProtoType *FromFunctionType
2762 = FromPointeeType->getAs<FunctionProtoType>();
2763 const FunctionProtoType *ToFunctionType
2764 = ToPointeeType->getAs<FunctionProtoType>();
2765
2766 if (!FromFunctionType || !ToFunctionType)
2767 return false;
2768
2769 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2770 return true;
2771
2772 // Perform the quick checks that will tell us whether these
2773 // function types are obviously different.
2774 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2775 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2776 return false;
2777
2778 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2779 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2780 if (FromEInfo != ToEInfo)
2781 return false;
2782
2783 bool IncompatibleObjC = false;
2784 if (Context.hasSameType(FromFunctionType->getReturnType(),
2785 ToFunctionType->getReturnType())) {
2786 // Okay, the types match exactly. Nothing to do.
2787 } else {
2788 QualType RHS = FromFunctionType->getReturnType();
2789 QualType LHS = ToFunctionType->getReturnType();
2790 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2791 !RHS.hasQualifiers() && LHS.hasQualifiers())
2792 LHS = LHS.getUnqualifiedType();
2793
2794 if (Context.hasSameType(RHS,LHS)) {
2795 // OK exact match.
2796 } else if (isObjCPointerConversion(RHS, LHS,
2797 ConvertedType, IncompatibleObjC)) {
2798 if (IncompatibleObjC)
2799 return false;
2800 // Okay, we have an Objective-C pointer conversion.
2801 }
2802 else
2803 return false;
2804 }
2805
2806 // Check argument types.
2807 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2808 ArgIdx != NumArgs; ++ArgIdx) {
2809 IncompatibleObjC = false;
2810 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2811 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2812 if (Context.hasSameType(FromArgType, ToArgType)) {
2813 // Okay, the types match exactly. Nothing to do.
2814 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2815 ConvertedType, IncompatibleObjC)) {
2816 if (IncompatibleObjC)
2817 return false;
2818 // Okay, we have an Objective-C pointer conversion.
2819 } else
2820 // Argument types are too different. Abort.
2821 return false;
2822 }
2823
2824 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2825 bool CanUseToFPT, CanUseFromFPT;
2826 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2827 CanUseToFPT, CanUseFromFPT,
2828 NewParamInfos))
2829 return false;
2830
2831 ConvertedType = ToType;
2832 return true;
2833}
2834
2835enum {
2836 ft_default,
2837 ft_different_class,
2838 ft_parameter_arity,
2839 ft_parameter_mismatch,
2840 ft_return_type,
2841 ft_qualifer_mismatch,
2842 ft_noexcept
2843};
2844
2845/// Attempts to get the FunctionProtoType from a Type. Handles
2846/// MemberFunctionPointers properly.
2847static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2848 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2849 return FPT;
2850
2851 if (auto *MPT = FromType->getAs<MemberPointerType>())
2852 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2853
2854 return nullptr;
2855}
2856
2857/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2858/// function types. Catches different number of parameter, mismatch in
2859/// parameter types, and different return types.
2860void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2861 QualType FromType, QualType ToType) {
2862 // If either type is not valid, include no extra info.
2863 if (FromType.isNull() || ToType.isNull()) {
2864 PDiag << ft_default;
2865 return;
2866 }
2867
2868 // Get the function type from the pointers.
2869 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2870 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2871 *ToMember = ToType->castAs<MemberPointerType>();
2872 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2873 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2874 << QualType(FromMember->getClass(), 0);
2875 return;
2876 }
2877 FromType = FromMember->getPointeeType();
2878 ToType = ToMember->getPointeeType();
2879 }
2880
2881 if (FromType->isPointerType())
2882 FromType = FromType->getPointeeType();
2883 if (ToType->isPointerType())
2884 ToType = ToType->getPointeeType();
2885
2886 // Remove references.
2887 FromType = FromType.getNonReferenceType();
2888 ToType = ToType.getNonReferenceType();
2889
2890 // Don't print extra info for non-specialized template functions.
2891 if (FromType->isInstantiationDependentType() &&
2892 !FromType->getAs<TemplateSpecializationType>()) {
2893 PDiag << ft_default;
2894 return;
2895 }
2896
2897 // No extra info for same types.
2898 if (Context.hasSameType(FromType, ToType)) {
2899 PDiag << ft_default;
2900 return;
2901 }
2902
2903 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2904 *ToFunction = tryGetFunctionProtoType(ToType);
2905
2906 // Both types need to be function types.
2907 if (!FromFunction || !ToFunction) {
2908 PDiag << ft_default;
2909 return;
2910 }
2911
2912 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2913 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2914 << FromFunction->getNumParams();
2915 return;
2916 }
2917
2918 // Handle different parameter types.
2919 unsigned ArgPos;
2920 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2921 PDiag << ft_parameter_mismatch << ArgPos + 1
2922 << ToFunction->getParamType(ArgPos)
2923 << FromFunction->getParamType(ArgPos);
2924 return;
2925 }
2926
2927 // Handle different return type.
2928 if (!Context.hasSameType(FromFunction->getReturnType(),
2929 ToFunction->getReturnType())) {
2930 PDiag << ft_return_type << ToFunction->getReturnType()
2931 << FromFunction->getReturnType();
2932 return;
2933 }
2934
2935 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2936 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2937 << FromFunction->getMethodQuals();
2938 return;
2939 }
2940
2941 // Handle exception specification differences on canonical type (in C++17
2942 // onwards).
2943 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2944 ->isNothrow() !=
2945 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2946 ->isNothrow()) {
2947 PDiag << ft_noexcept;
2948 return;
2949 }
2950
2951 // Unable to find a difference, so add no extra info.
2952 PDiag << ft_default;
2953}
2954
2955/// FunctionParamTypesAreEqual - This routine checks two function proto types
2956/// for equality of their argument types. Caller has already checked that
2957/// they have same number of arguments. If the parameters are different,
2958/// ArgPos will have the parameter index of the first different parameter.
2959bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2960 const FunctionProtoType *NewType,
2961 unsigned *ArgPos) {
2962 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2963 N = NewType->param_type_begin(),
2964 E = OldType->param_type_end();
2965 O && (O != E); ++O, ++N) {
2966 // Ignore address spaces in pointee type. This is to disallow overloading
2967 // on __ptr32/__ptr64 address spaces.
2968 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2969 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2970
2971 if (!Context.hasSameType(Old, New)) {
2972 if (ArgPos)
2973 *ArgPos = O - OldType->param_type_begin();
2974 return false;
2975 }
2976 }
2977 return true;
2978}
2979
2980/// CheckPointerConversion - Check the pointer conversion from the
2981/// expression From to the type ToType. This routine checks for
2982/// ambiguous or inaccessible derived-to-base pointer
2983/// conversions for which IsPointerConversion has already returned
2984/// true. It returns true and produces a diagnostic if there was an
2985/// error, or returns false otherwise.
2986bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2987 CastKind &Kind,
2988 CXXCastPath& BasePath,
2989 bool IgnoreBaseAccess,
2990 bool Diagnose) {
2991 QualType FromType = From->getType();
2992 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2993
2994 Kind = CK_BitCast;
2995
2996 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2997 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2998 Expr::NPCK_ZeroExpression) {
2999 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3000 DiagRuntimeBehavior(From->getExprLoc(), From,
3001 PDiag(diag::warn_impcast_bool_to_null_pointer)
3002 << ToType << From->getSourceRange());
3003 else if (!isUnevaluatedContext())
3004 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3005 << ToType << From->getSourceRange();
3006 }
3007 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3008 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3009 QualType FromPointeeType = FromPtrType->getPointeeType(),
3010 ToPointeeType = ToPtrType->getPointeeType();
3011
3012 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3013 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3014 // We must have a derived-to-base conversion. Check an
3015 // ambiguous or inaccessible conversion.
3016 unsigned InaccessibleID = 0;
3017 unsigned AmbiguousID = 0;
3018 if (Diagnose) {
3019 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3020 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3021 }
3022 if (CheckDerivedToBaseConversion(
3023 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3024 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3025 &BasePath, IgnoreBaseAccess))
3026 return true;
3027
3028 // The conversion was successful.
3029 Kind = CK_DerivedToBase;
3030 }
3031
3032 if (Diagnose && !IsCStyleOrFunctionalCast &&
3033 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3034 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3035, __PRETTY_FUNCTION__))
3035 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3035, __PRETTY_FUNCTION__))
;
3036 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3037 << From->getSourceRange();
3038 }
3039 }
3040 } else if (const ObjCObjectPointerType *ToPtrType =
3041 ToType->getAs<ObjCObjectPointerType>()) {
3042 if (const ObjCObjectPointerType *FromPtrType =
3043 FromType->getAs<ObjCObjectPointerType>()) {
3044 // Objective-C++ conversions are always okay.
3045 // FIXME: We should have a different class of conversions for the
3046 // Objective-C++ implicit conversions.
3047 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3048 return false;
3049 } else if (FromType->isBlockPointerType()) {
3050 Kind = CK_BlockPointerToObjCPointerCast;
3051 } else {
3052 Kind = CK_CPointerToObjCPointerCast;
3053 }
3054 } else if (ToType->isBlockPointerType()) {
3055 if (!FromType->isBlockPointerType())
3056 Kind = CK_AnyPointerToBlockPointerCast;
3057 }
3058
3059 // We shouldn't fall into this case unless it's valid for other
3060 // reasons.
3061 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3062 Kind = CK_NullToPointer;
3063
3064 return false;
3065}
3066
3067/// IsMemberPointerConversion - Determines whether the conversion of the
3068/// expression From, which has the (possibly adjusted) type FromType, can be
3069/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3070/// If so, returns true and places the converted type (that might differ from
3071/// ToType in its cv-qualifiers at some level) into ConvertedType.
3072bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3073 QualType ToType,
3074 bool InOverloadResolution,
3075 QualType &ConvertedType) {
3076 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3077 if (!ToTypePtr)
3078 return false;
3079
3080 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3081 if (From->isNullPointerConstant(Context,
3082 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3083 : Expr::NPC_ValueDependentIsNull)) {
3084 ConvertedType = ToType;
3085 return true;
3086 }
3087
3088 // Otherwise, both types have to be member pointers.
3089 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3090 if (!FromTypePtr)
3091 return false;
3092
3093 // A pointer to member of B can be converted to a pointer to member of D,
3094 // where D is derived from B (C++ 4.11p2).
3095 QualType FromClass(FromTypePtr->getClass(), 0);
3096 QualType ToClass(ToTypePtr->getClass(), 0);
3097
3098 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3099 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3100 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3101 ToClass.getTypePtr());
3102 return true;
3103 }
3104
3105 return false;
3106}
3107
3108/// CheckMemberPointerConversion - Check the member pointer conversion from the
3109/// expression From to the type ToType. This routine checks for ambiguous or
3110/// virtual or inaccessible base-to-derived member pointer conversions
3111/// for which IsMemberPointerConversion has already returned true. It returns
3112/// true and produces a diagnostic if there was an error, or returns false
3113/// otherwise.
3114bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3115 CastKind &Kind,
3116 CXXCastPath &BasePath,
3117 bool IgnoreBaseAccess) {
3118 QualType FromType = From->getType();
3119 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3120 if (!FromPtrType) {
3121 // This must be a null pointer to member pointer conversion
3122 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3124, __PRETTY_FUNCTION__))
3123 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3124, __PRETTY_FUNCTION__))
3124 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3124, __PRETTY_FUNCTION__))
;
3125 Kind = CK_NullToMemberPointer;
3126 return false;
3127 }
3128
3129 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3130 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3131, __PRETTY_FUNCTION__))
3131 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3131, __PRETTY_FUNCTION__))
;
3132
3133 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3134 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3135
3136 // FIXME: What about dependent types?
3137 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3137, __PRETTY_FUNCTION__))
;
3138 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3138, __PRETTY_FUNCTION__))
;
3139
3140 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3141 /*DetectVirtual=*/true);
3142 bool DerivationOkay =
3143 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3144 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3145, __PRETTY_FUNCTION__))
3145 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3145, __PRETTY_FUNCTION__))
;
3146 (void)DerivationOkay;
3147
3148 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3149 getUnqualifiedType())) {
3150 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3151 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3152 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3153 return true;
3154 }
3155
3156 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3157 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3158 << FromClass << ToClass << QualType(VBase, 0)
3159 << From->getSourceRange();
3160 return true;
3161 }
3162
3163 if (!IgnoreBaseAccess)
3164 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3165 Paths.front(),
3166 diag::err_downcast_from_inaccessible_base);
3167
3168 // Must be a base to derived member conversion.
3169 BuildBasePathArray(Paths, BasePath);
3170 Kind = CK_BaseToDerivedMemberPointer;
3171 return false;
3172}
3173
3174/// Determine whether the lifetime conversion between the two given
3175/// qualifiers sets is nontrivial.
3176static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3177 Qualifiers ToQuals) {
3178 // Converting anything to const __unsafe_unretained is trivial.
3179 if (ToQuals.hasConst() &&
3180 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3181 return false;
3182
3183 return true;
3184}
3185
3186/// Perform a single iteration of the loop for checking if a qualification
3187/// conversion is valid.
3188///
3189/// Specifically, check whether any change between the qualifiers of \p
3190/// FromType and \p ToType is permissible, given knowledge about whether every
3191/// outer layer is const-qualified.
3192static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3193 bool CStyle, bool IsTopLevel,
3194 bool &PreviousToQualsIncludeConst,
3195 bool &ObjCLifetimeConversion) {
3196 Qualifiers FromQuals = FromType.getQualifiers();
3197 Qualifiers ToQuals = ToType.getQualifiers();
3198
3199 // Ignore __unaligned qualifier if this type is void.
3200 if (ToType.getUnqualifiedType()->isVoidType())
3201 FromQuals.removeUnaligned();
3202
3203 // Objective-C ARC:
3204 // Check Objective-C lifetime conversions.
3205 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3206 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3207 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3208 ObjCLifetimeConversion = true;
3209 FromQuals.removeObjCLifetime();
3210 ToQuals.removeObjCLifetime();
3211 } else {
3212 // Qualification conversions cannot cast between different
3213 // Objective-C lifetime qualifiers.
3214 return false;
3215 }
3216 }
3217
3218 // Allow addition/removal of GC attributes but not changing GC attributes.
3219 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3220 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3221 FromQuals.removeObjCGCAttr();
3222 ToQuals.removeObjCGCAttr();
3223 }
3224
3225 // -- for every j > 0, if const is in cv 1,j then const is in cv
3226 // 2,j, and similarly for volatile.
3227 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3228 return false;
3229
3230 // If address spaces mismatch:
3231 // - in top level it is only valid to convert to addr space that is a
3232 // superset in all cases apart from C-style casts where we allow
3233 // conversions between overlapping address spaces.
3234 // - in non-top levels it is not a valid conversion.
3235 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3236 (!IsTopLevel ||
3237 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3238 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3239 return false;
3240
3241 // -- if the cv 1,j and cv 2,j are different, then const is in
3242 // every cv for 0 < k < j.
3243 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3244 !PreviousToQualsIncludeConst)
3245 return false;
3246
3247 // Keep track of whether all prior cv-qualifiers in the "to" type
3248 // include const.
3249 PreviousToQualsIncludeConst =
3250 PreviousToQualsIncludeConst && ToQuals.hasConst();
3251 return true;
3252}
3253
3254/// IsQualificationConversion - Determines whether the conversion from
3255/// an rvalue of type FromType to ToType is a qualification conversion
3256/// (C++ 4.4).
3257///
3258/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3259/// when the qualification conversion involves a change in the Objective-C
3260/// object lifetime.
3261bool
3262Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3263 bool CStyle, bool &ObjCLifetimeConversion) {
3264 FromType = Context.getCanonicalType(FromType);
3265 ToType = Context.getCanonicalType(ToType);
3266 ObjCLifetimeConversion = false;
3267
3268 // If FromType and ToType are the same type, this is not a
3269 // qualification conversion.
3270 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3271 return false;
3272
3273 // (C++ 4.4p4):
3274 // A conversion can add cv-qualifiers at levels other than the first
3275 // in multi-level pointers, subject to the following rules: [...]
3276 bool PreviousToQualsIncludeConst = true;
3277 bool UnwrappedAnyPointer = false;
3278 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3279 if (!isQualificationConversionStep(
3280 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3281 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3282 return false;
3283 UnwrappedAnyPointer = true;
3284 }
3285
3286 // We are left with FromType and ToType being the pointee types
3287 // after unwrapping the original FromType and ToType the same number
3288 // of times. If we unwrapped any pointers, and if FromType and
3289 // ToType have the same unqualified type (since we checked
3290 // qualifiers above), then this is a qualification conversion.
3291 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3292}
3293
3294/// - Determine whether this is a conversion from a scalar type to an
3295/// atomic type.
3296///
3297/// If successful, updates \c SCS's second and third steps in the conversion
3298/// sequence to finish the conversion.
3299static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3300 bool InOverloadResolution,
3301 StandardConversionSequence &SCS,
3302 bool CStyle) {
3303 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3304 if (!ToAtomic)
3305 return false;
3306
3307 StandardConversionSequence InnerSCS;
3308 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3309 InOverloadResolution, InnerSCS,
3310 CStyle, /*AllowObjCWritebackConversion=*/false))
3311 return false;
3312
3313 SCS.Second = InnerSCS.Second;
3314 SCS.setToType(1, InnerSCS.getToType(1));
3315 SCS.Third = InnerSCS.Third;
3316 SCS.QualificationIncludesObjCLifetime
3317 = InnerSCS.QualificationIncludesObjCLifetime;
3318 SCS.setToType(2, InnerSCS.getToType(2));
3319 return true;
3320}
3321
3322static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3323 CXXConstructorDecl *Constructor,
3324 QualType Type) {
3325 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3326 if (CtorType->getNumParams() > 0) {
3327 QualType FirstArg = CtorType->getParamType(0);
3328 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3329 return true;
3330 }
3331 return false;
3332}
3333
3334static OverloadingResult
3335IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3336 CXXRecordDecl *To,
3337 UserDefinedConversionSequence &User,
3338 OverloadCandidateSet &CandidateSet,
3339 bool AllowExplicit) {
3340 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3341 for (auto *D : S.LookupConstructors(To)) {
3342 auto Info = getConstructorInfo(D);
3343 if (!Info)
3344 continue;
3345
3346 bool Usable = !Info.Constructor->isInvalidDecl() &&
3347 S.isInitListConstructor(Info.Constructor);
3348 if (Usable) {
3349 // If the first argument is (a reference to) the target type,
3350 // suppress conversions.
3351 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3352 S.Context, Info.Constructor, ToType);
3353 if (Info.ConstructorTmpl)
3354 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3355 /*ExplicitArgs*/ nullptr, From,
3356 CandidateSet, SuppressUserConversions,
3357 /*PartialOverloading*/ false,
3358 AllowExplicit);
3359 else
3360 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3361 CandidateSet, SuppressUserConversions,
3362 /*PartialOverloading*/ false, AllowExplicit);
3363 }
3364 }
3365
3366 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3367
3368 OverloadCandidateSet::iterator Best;
3369 switch (auto Result =
3370 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3371 case OR_Deleted:
3372 case OR_Success: {
3373 // Record the standard conversion we used and the conversion function.
3374 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3375 QualType ThisType = Constructor->getThisType();
3376 // Initializer lists don't have conversions as such.
3377 User.Before.setAsIdentityConversion();
3378 User.HadMultipleCandidates = HadMultipleCandidates;
3379 User.ConversionFunction = Constructor;
3380 User.FoundConversionFunction = Best->FoundDecl;
3381 User.After.setAsIdentityConversion();
3382 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3383 User.After.setAllToTypes(ToType);
3384 return Result;
3385 }
3386
3387 case OR_No_Viable_Function:
3388 return OR_No_Viable_Function;
3389 case OR_Ambiguous:
3390 return OR_Ambiguous;
3391 }
3392
3393 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3393)
;
3394}
3395
3396/// Determines whether there is a user-defined conversion sequence
3397/// (C++ [over.ics.user]) that converts expression From to the type
3398/// ToType. If such a conversion exists, User will contain the
3399/// user-defined conversion sequence that performs such a conversion
3400/// and this routine will return true. Otherwise, this routine returns
3401/// false and User is unspecified.
3402///
3403/// \param AllowExplicit true if the conversion should consider C++0x
3404/// "explicit" conversion functions as well as non-explicit conversion
3405/// functions (C++0x [class.conv.fct]p2).
3406///
3407/// \param AllowObjCConversionOnExplicit true if the conversion should
3408/// allow an extra Objective-C pointer conversion on uses of explicit
3409/// constructors. Requires \c AllowExplicit to also be set.
3410static OverloadingResult
3411IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3412 UserDefinedConversionSequence &User,
3413 OverloadCandidateSet &CandidateSet,
3414 AllowedExplicit AllowExplicit,
3415 bool AllowObjCConversionOnExplicit) {
3416 assert(AllowExplicit != AllowedExplicit::None ||((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3417, __PRETTY_FUNCTION__))
3417 !AllowObjCConversionOnExplicit)((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3417, __PRETTY_FUNCTION__))
;
3418 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3419
3420 // Whether we will only visit constructors.
3421 bool ConstructorsOnly = false;
3422
3423 // If the type we are conversion to is a class type, enumerate its
3424 // constructors.
3425 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3426 // C++ [over.match.ctor]p1:
3427 // When objects of class type are direct-initialized (8.5), or
3428 // copy-initialized from an expression of the same or a
3429 // derived class type (8.5), overload resolution selects the
3430 // constructor. [...] For copy-initialization, the candidate
3431 // functions are all the converting constructors (12.3.1) of
3432 // that class. The argument list is the expression-list within
3433 // the parentheses of the initializer.
3434 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3435 (From->getType()->getAs<RecordType>() &&
3436 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3437 ConstructorsOnly = true;
3438
3439 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3440 // We're not going to find any constructors.
3441 } else if (CXXRecordDecl *ToRecordDecl
3442 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3443
3444 Expr **Args = &From;
3445 unsigned NumArgs = 1;
3446 bool ListInitializing = false;
3447 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3448 // But first, see if there is an init-list-constructor that will work.
3449 OverloadingResult Result = IsInitializerListConstructorConversion(
3450 S, From, ToType, ToRecordDecl, User, CandidateSet,
3451 AllowExplicit == AllowedExplicit::All);
3452 if (Result != OR_No_Viable_Function)
3453 return Result;
3454 // Never mind.
3455 CandidateSet.clear(
3456 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3457
3458 // If we're list-initializing, we pass the individual elements as
3459 // arguments, not the entire list.
3460 Args = InitList->getInits();
3461 NumArgs = InitList->getNumInits();
3462 ListInitializing = true;
3463 }
3464
3465 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3466 auto Info = getConstructorInfo(D);
3467 if (!Info)
3468 continue;
3469
3470 bool Usable = !Info.Constructor->isInvalidDecl();
3471 if (!ListInitializing)
3472 Usable = Usable && Info.Constructor->isConvertingConstructor(
3473 /*AllowExplicit*/ true);
3474 if (Usable) {
3475 bool SuppressUserConversions = !ConstructorsOnly;
3476 if (SuppressUserConversions && ListInitializing) {
3477 SuppressUserConversions = false;
3478 if (NumArgs == 1) {
3479 // If the first argument is (a reference to) the target type,
3480 // suppress conversions.
3481 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3482 S.Context, Info.Constructor, ToType);
3483 }
3484 }
3485 if (Info.ConstructorTmpl)
3486 S.AddTemplateOverloadCandidate(
3487 Info.ConstructorTmpl, Info.FoundDecl,
3488 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3489 CandidateSet, SuppressUserConversions,
3490 /*PartialOverloading*/ false,
3491 AllowExplicit == AllowedExplicit::All);
3492 else
3493 // Allow one user-defined conversion when user specifies a
3494 // From->ToType conversion via an static cast (c-style, etc).
3495 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3496 llvm::makeArrayRef(Args, NumArgs),
3497 CandidateSet, SuppressUserConversions,
3498 /*PartialOverloading*/ false,
3499 AllowExplicit == AllowedExplicit::All);
3500 }
3501 }
3502 }
3503 }
3504
3505 // Enumerate conversion functions, if we're allowed to.
3506 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3507 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3508 // No conversion functions from incomplete types.
3509 } else if (const RecordType *FromRecordType =
3510 From->getType()->getAs<RecordType>()) {
3511 if (CXXRecordDecl *FromRecordDecl
3512 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3513 // Add all of the conversion functions as candidates.
3514 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3515 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3516 DeclAccessPair FoundDecl = I.getPair();
3517 NamedDecl *D = FoundDecl.getDecl();
3518 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3519 if (isa<UsingShadowDecl>(D))
3520 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3521
3522 CXXConversionDecl *Conv;
3523 FunctionTemplateDecl *ConvTemplate;
3524 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3525 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3526 else
3527 Conv = cast<CXXConversionDecl>(D);
3528
3529 if (ConvTemplate)
3530 S.AddTemplateConversionCandidate(
3531 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3532 CandidateSet, AllowObjCConversionOnExplicit,
3533 AllowExplicit != AllowedExplicit::None);
3534 else
3535 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3536 CandidateSet, AllowObjCConversionOnExplicit,
3537 AllowExplicit != AllowedExplicit::None);
3538 }
3539 }
3540 }
3541
3542 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3543
3544 OverloadCandidateSet::iterator Best;
3545 switch (auto Result =
3546 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3547 case OR_Success:
3548 case OR_Deleted:
3549 // Record the standard conversion we used and the conversion function.
3550 if (CXXConstructorDecl *Constructor
3551 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3552 // C++ [over.ics.user]p1:
3553 // If the user-defined conversion is specified by a
3554 // constructor (12.3.1), the initial standard conversion
3555 // sequence converts the source type to the type required by
3556 // the argument of the constructor.
3557 //
3558 QualType ThisType = Constructor->getThisType();
3559 if (isa<InitListExpr>(From)) {
3560 // Initializer lists don't have conversions as such.
3561 User.Before.setAsIdentityConversion();
3562 } else {
3563 if (Best->Conversions[0].isEllipsis())
3564 User.EllipsisConversion = true;
3565 else {
3566 User.Before = Best->Conversions[0].Standard;
3567 User.EllipsisConversion = false;
3568 }
3569 }
3570 User.HadMultipleCandidates = HadMultipleCandidates;
3571 User.ConversionFunction = Constructor;
3572 User.FoundConversionFunction = Best->FoundDecl;
3573 User.After.setAsIdentityConversion();
3574 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3575 User.After.setAllToTypes(ToType);
3576 return Result;
3577 }
3578 if (CXXConversionDecl *Conversion
3579 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3580 // C++ [over.ics.user]p1:
3581 //
3582 // [...] If the user-defined conversion is specified by a
3583 // conversion function (12.3.2), the initial standard
3584 // conversion sequence converts the source type to the
3585 // implicit object parameter of the conversion function.
3586 User.Before = Best->Conversions[0].Standard;
3587 User.HadMultipleCandidates = HadMultipleCandidates;
3588 User.ConversionFunction = Conversion;
3589 User.FoundConversionFunction = Best->FoundDecl;
3590 User.EllipsisConversion = false;
3591
3592 // C++ [over.ics.user]p2:
3593 // The second standard conversion sequence converts the
3594 // result of the user-defined conversion to the target type
3595 // for the sequence. Since an implicit conversion sequence
3596 // is an initialization, the special rules for
3597 // initialization by user-defined conversion apply when
3598 // selecting the best user-defined conversion for a
3599 // user-defined conversion sequence (see 13.3.3 and
3600 // 13.3.3.1).
3601 User.After = Best->FinalConversion;
3602 return Result;
3603 }
3604 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3604)
;
3605
3606 case OR_No_Viable_Function:
3607 return OR_No_Viable_Function;
3608
3609 case OR_Ambiguous:
3610 return OR_Ambiguous;
3611 }
3612
3613 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 3613)
;
3614}
3615
3616bool
3617Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3618 ImplicitConversionSequence ICS;
3619 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3620 OverloadCandidateSet::CSK_Normal);
3621 OverloadingResult OvResult =
3622 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3623 CandidateSet, AllowedExplicit::None, false);
3624
3625 if (!(OvResult == OR_Ambiguous ||
3626 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3627 return false;
3628
3629 auto Cands = CandidateSet.CompleteCandidates(
3630 *this,
3631 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3632 From);
3633 if (OvResult == OR_Ambiguous)
3634 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3635 << From->getType() << ToType << From->getSourceRange();
3636 else { // OR_No_Viable_Function && !CandidateSet.empty()
3637 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3638 diag::err_typecheck_nonviable_condition_incomplete,
3639 From->getType(), From->getSourceRange()))
3640 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3641 << false << From->getType() << From->getSourceRange() << ToType;
3642 }
3643
3644 CandidateSet.NoteCandidates(
3645 *this, From, Cands);
3646 return true;
3647}
3648
3649// Helper for compareConversionFunctions that gets the FunctionType that the
3650// conversion-operator return value 'points' to, or nullptr.
3651static const FunctionType *
3652getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3653 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3654 const PointerType *RetPtrTy =
3655 ConvFuncTy->getReturnType()->getAs<PointerType>();
3656
3657 if (!RetPtrTy)
3658 return nullptr;
3659
3660 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3661}
3662
3663/// Compare the user-defined conversion functions or constructors
3664/// of two user-defined conversion sequences to determine whether any ordering
3665/// is possible.
3666static ImplicitConversionSequence::CompareKind
3667compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3668 FunctionDecl *Function2) {
3669 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
21
'Function1' is a 'CXXConversionDecl'
3670 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
22
'Function2' is a 'CXXConversionDecl'
3671 if (!Conv1
22.1
'Conv1' is non-null
22.1
'Conv1' is non-null
|| !Conv2
22.2
'Conv2' is non-null
22.2
'Conv2' is non-null
)
23
Taking false branch
3672 return ImplicitConversionSequence::Indistinguishable;
3673
3674 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
24
Calling 'CXXRecordDecl::isLambda'
27
Returning from 'CXXRecordDecl::isLambda'
28
Assuming the condition is false
29
Calling 'CXXRecordDecl::isLambda'
32
Returning from 'CXXRecordDecl::isLambda'
33
Assuming the condition is false
34
Taking false branch
3675 return ImplicitConversionSequence::Indistinguishable;
3676
3677 // Objective-C++:
3678 // If both conversion functions are implicitly-declared conversions from
3679 // a lambda closure type to a function pointer and a block pointer,
3680 // respectively, always prefer the conversion to a function pointer,
3681 // because the function pointer is more lightweight and is more likely
3682 // to keep code working.
3683 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
35
Assuming field 'ObjC' is 0
3684 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3685 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3686 if (Block1 != Block2)
3687 return Block1 ? ImplicitConversionSequence::Worse
3688 : ImplicitConversionSequence::Better;
3689 }
3690
3691 // In order to support multiple calling conventions for the lambda conversion
3692 // operator (such as when the free and member function calling convention is
3693 // different), prefer the 'free' mechanism, followed by the calling-convention
3694 // of operator(). The latter is in place to support the MSVC-like solution of
3695 // defining ALL of the possible conversions in regards to calling-convention.
3696 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3697 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3698
3699 if (Conv1FuncRet && Conv2FuncRet &&
36
Assuming 'Conv1FuncRet' is non-null
37
Assuming 'Conv2FuncRet' is non-null
39
Taking true branch
3700 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
38
Assuming the condition is true
3701 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3702 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3703
3704 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3705 const FunctionProtoType *CallOpProto =
3706 CallOp->getType()->getAs<FunctionProtoType>();
40
Assuming the object is not a 'FunctionProtoType'
3707
3708 CallingConv CallOpCC =
3709 CallOp->getType()->getAs<FunctionType>()->getCallConv();
41
Assuming the object is not a 'FunctionType'
42
Called C++ object pointer is null
3710 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3711 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3712 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3713 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3714
3715 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3716 for (CallingConv CC : PrefOrder) {
3717 if (Conv1CC == CC)
3718 return ImplicitConversionSequence::Better;
3719 if (Conv2CC == CC)
3720 return ImplicitConversionSequence::Worse;
3721 }
3722 }
3723
3724 return ImplicitConversionSequence::Indistinguishable;
3725}
3726
3727static bool hasDeprecatedStringLiteralToCharPtrConversion(
3728 const ImplicitConversionSequence &ICS) {
3729 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3730 (ICS.isUserDefined() &&
3731 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3732}
3733
3734/// CompareImplicitConversionSequences - Compare two implicit
3735/// conversion sequences to determine whether one is better than the
3736/// other or if they are indistinguishable (C++ 13.3.3.2).
3737static ImplicitConversionSequence::CompareKind
3738CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3739 const ImplicitConversionSequence& ICS1,
3740 const ImplicitConversionSequence& ICS2)
3741{
3742 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3743 // conversion sequences (as defined in 13.3.3.1)
3744 // -- a standard conversion sequence (13.3.3.1.1) is a better
3745 // conversion sequence than a user-defined conversion sequence or
3746 // an ellipsis conversion sequence, and
3747 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3748 // conversion sequence than an ellipsis conversion sequence
3749 // (13.3.3.1.3).
3750 //
3751 // C++0x [over.best.ics]p10:
3752 // For the purpose of ranking implicit conversion sequences as
3753 // described in 13.3.3.2, the ambiguous conversion sequence is
3754 // treated as a user-defined sequence that is indistinguishable
3755 // from any other user-defined conversion sequence.
3756
3757 // String literal to 'char *' conversion has been deprecated in C++03. It has
3758 // been removed from C++11. We still accept this conversion, if it happens at
3759 // the best viable function. Otherwise, this conversion is considered worse
3760 // than ellipsis conversion. Consider this as an extension; this is not in the
3761 // standard. For example:
3762 //
3763 // int &f(...); // #1
3764 // void f(char*); // #2
3765 // void g() { int &r = f("foo"); }
3766 //
3767 // In C++03, we pick #2 as the best viable function.
3768 // In C++11, we pick #1 as the best viable function, because ellipsis
3769 // conversion is better than string-literal to char* conversion (since there
3770 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3771 // convert arguments, #2 would be the best viable function in C++11.
3772 // If the best viable function has this conversion, a warning will be issued
3773 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3774
3775 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3776 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3777 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3778 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3779 ? ImplicitConversionSequence::Worse
3780 : ImplicitConversionSequence::Better;
3781
3782 if (ICS1.getKindRank() < ICS2.getKindRank())
3783 return ImplicitConversionSequence::Better;
3784 if (ICS2.getKindRank() < ICS1.getKindRank())
3785 return ImplicitConversionSequence::Worse;
3786
3787 // The following checks require both conversion sequences to be of
3788 // the same kind.
3789 if (ICS1.getKind() != ICS2.getKind())
3790 return ImplicitConversionSequence::Indistinguishable;
3791
3792 ImplicitConversionSequence::CompareKind Result =
3793 ImplicitConversionSequence::Indistinguishable;
3794
3795 // Two implicit conversion sequences of the same form are
3796 // indistinguishable conversion sequences unless one of the
3797 // following rules apply: (C++ 13.3.3.2p3):
3798
3799 // List-initialization sequence L1 is a better conversion sequence than
3800 // list-initialization sequence L2 if:
3801 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3802 // if not that,
3803 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3804 // and N1 is smaller than N2.,
3805 // even if one of the other rules in this paragraph would otherwise apply.
3806 if (!ICS1.isBad()) {
3807 if (ICS1.isStdInitializerListElement() &&
3808 !ICS2.isStdInitializerListElement())
3809 return ImplicitConversionSequence::Better;
3810 if (!ICS1.isStdInitializerListElement() &&
3811 ICS2.isStdInitializerListElement())
3812 return ImplicitConversionSequence::Worse;
3813 }
3814
3815 if (ICS1.isStandard())
3816 // Standard conversion sequence S1 is a better conversion sequence than
3817 // standard conversion sequence S2 if [...]
3818 Result = CompareStandardConversionSequences(S, Loc,
3819 ICS1.Standard, ICS2.Standard);
3820 else if (ICS1.isUserDefined()) {
3821 // User-defined conversion sequence U1 is a better conversion
3822 // sequence than another user-defined conversion sequence U2 if
3823 // they contain the same user-defined conversion function or
3824 // constructor and if the second standard conversion sequence of
3825 // U1 is better than the second standard conversion sequence of
3826 // U2 (C++ 13.3.3.2p3).
3827 if (ICS1.UserDefined.ConversionFunction ==
3828 ICS2.UserDefined.ConversionFunction)
3829 Result = CompareStandardConversionSequences(S, Loc,
3830 ICS1.UserDefined.After,
3831 ICS2.UserDefined.After);
3832 else
3833 Result = compareConversionFunctions(S,
3834 ICS1.UserDefined.ConversionFunction,
3835 ICS2.UserDefined.ConversionFunction);
3836 }
3837
3838 return Result;
3839}
3840
3841// Per 13.3.3.2p3, compare the given standard conversion sequences to
3842// determine if one is a proper subset of the other.
3843static ImplicitConversionSequence::CompareKind
3844compareStandardConversionSubsets(ASTContext &Context,
3845 const StandardConversionSequence& SCS1,
3846 const StandardConversionSequence& SCS2) {
3847 ImplicitConversionSequence::CompareKind Result
3848 = ImplicitConversionSequence::Indistinguishable;
3849
3850 // the identity conversion sequence is considered to be a subsequence of
3851 // any non-identity conversion sequence
3852 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3853 return ImplicitConversionSequence::Better;
3854 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3855 return ImplicitConversionSequence::Worse;
3856
3857 if (SCS1.Second != SCS2.Second) {
3858 if (SCS1.Second == ICK_Identity)
3859 Result = ImplicitConversionSequence::Better;
3860 else if (SCS2.Second == ICK_Identity)
3861 Result = ImplicitConversionSequence::Worse;
3862 else
3863 return ImplicitConversionSequence::Indistinguishable;
3864 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3865 return ImplicitConversionSequence::Indistinguishable;
3866
3867 if (SCS1.Third == SCS2.Third) {
3868 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3869 : ImplicitConversionSequence::Indistinguishable;
3870 }
3871
3872 if (SCS1.Third == ICK_Identity)
3873 return Result == ImplicitConversionSequence::Worse
3874 ? ImplicitConversionSequence::Indistinguishable
3875 : ImplicitConversionSequence::Better;
3876
3877 if (SCS2.Third == ICK_Identity)
3878 return Result == ImplicitConversionSequence::Better
3879 ? ImplicitConversionSequence::Indistinguishable
3880 : ImplicitConversionSequence::Worse;
3881
3882 return ImplicitConversionSequence::Indistinguishable;
3883}
3884
3885/// Determine whether one of the given reference bindings is better
3886/// than the other based on what kind of bindings they are.
3887static bool
3888isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3889 const StandardConversionSequence &SCS2) {
3890 // C++0x [over.ics.rank]p3b4:
3891 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3892 // implicit object parameter of a non-static member function declared
3893 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3894 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3895 // lvalue reference to a function lvalue and S2 binds an rvalue
3896 // reference*.
3897 //
3898 // FIXME: Rvalue references. We're going rogue with the above edits,
3899 // because the semantics in the current C++0x working paper (N3225 at the
3900 // time of this writing) break the standard definition of std::forward
3901 // and std::reference_wrapper when dealing with references to functions.
3902 // Proposed wording changes submitted to CWG for consideration.
3903 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3904 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3905 return false;
3906
3907 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3908 SCS2.IsLvalueReference) ||
3909 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3910 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3911}
3912
3913enum class FixedEnumPromotion {
3914 None,
3915 ToUnderlyingType,
3916 ToPromotedUnderlyingType
3917};
3918
3919/// Returns kind of fixed enum promotion the \a SCS uses.
3920static FixedEnumPromotion
3921getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3922
3923 if (SCS.Second != ICK_Integral_Promotion)
3924 return FixedEnumPromotion::None;
3925
3926 QualType FromType = SCS.getFromType();
3927 if (!FromType->isEnumeralType())
3928 return FixedEnumPromotion::None;
3929
3930 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3931 if (!Enum->isFixed())
3932 return FixedEnumPromotion::None;
3933
3934 QualType UnderlyingType = Enum->getIntegerType();
3935 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3936 return FixedEnumPromotion::ToUnderlyingType;
3937
3938 return FixedEnumPromotion::ToPromotedUnderlyingType;
3939}
3940
3941/// CompareStandardConversionSequences - Compare two standard
3942/// conversion sequences to determine whether one is better than the
3943/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3944static ImplicitConversionSequence::CompareKind
3945CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3946 const StandardConversionSequence& SCS1,
3947 const StandardConversionSequence& SCS2)
3948{
3949 // Standard conversion sequence S1 is a better conversion sequence
3950 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3951
3952 // -- S1 is a proper subsequence of S2 (comparing the conversion
3953 // sequences in the canonical form defined by 13.3.3.1.1,
3954 // excluding any Lvalue Transformation; the identity conversion
3955 // sequence is considered to be a subsequence of any
3956 // non-identity conversion sequence) or, if not that,
3957 if (ImplicitConversionSequence::CompareKind CK
3958 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3959 return CK;
3960
3961 // -- the rank of S1 is better than the rank of S2 (by the rules
3962 // defined below), or, if not that,
3963 ImplicitConversionRank Rank1 = SCS1.getRank();
3964 ImplicitConversionRank Rank2 = SCS2.getRank();
3965 if (Rank1 < Rank2)
3966 return ImplicitConversionSequence::Better;
3967 else if (Rank2 < Rank1)
3968 return ImplicitConversionSequence::Worse;
3969
3970 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3971 // are indistinguishable unless one of the following rules
3972 // applies:
3973
3974 // A conversion that is not a conversion of a pointer, or
3975 // pointer to member, to bool is better than another conversion
3976 // that is such a conversion.
3977 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3978 return SCS2.isPointerConversionToBool()
3979 ? ImplicitConversionSequence::Better
3980 : ImplicitConversionSequence::Worse;
3981
3982 // C++14 [over.ics.rank]p4b2:
3983 // This is retroactively applied to C++11 by CWG 1601.
3984 //
3985 // A conversion that promotes an enumeration whose underlying type is fixed
3986 // to its underlying type is better than one that promotes to the promoted
3987 // underlying type, if the two are different.
3988 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3989 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3990 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3991 FEP1 != FEP2)
3992 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3993 ? ImplicitConversionSequence::Better
3994 : ImplicitConversionSequence::Worse;
3995
3996 // C++ [over.ics.rank]p4b2:
3997 //
3998 // If class B is derived directly or indirectly from class A,
3999 // conversion of B* to A* is better than conversion of B* to
4000 // void*, and conversion of A* to void* is better than conversion
4001 // of B* to void*.
4002 bool SCS1ConvertsToVoid
4003 = SCS1.isPointerConversionToVoidPointer(S.Context);
4004 bool SCS2ConvertsToVoid
4005 = SCS2.isPointerConversionToVoidPointer(S.Context);
4006 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4007 // Exactly one of the conversion sequences is a conversion to
4008 // a void pointer; it's the worse conversion.
4009 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4010 : ImplicitConversionSequence::Worse;
4011 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4012 // Neither conversion sequence converts to a void pointer; compare
4013 // their derived-to-base conversions.
4014 if (ImplicitConversionSequence::CompareKind DerivedCK
4015 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4016 return DerivedCK;
4017 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4018 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4019 // Both conversion sequences are conversions to void
4020 // pointers. Compare the source types to determine if there's an
4021 // inheritance relationship in their sources.
4022 QualType FromType1 = SCS1.getFromType();
4023 QualType FromType2 = SCS2.getFromType();
4024
4025 // Adjust the types we're converting from via the array-to-pointer
4026 // conversion, if we need to.
4027 if (SCS1.First == ICK_Array_To_Pointer)
4028 FromType1 = S.Context.getArrayDecayedType(FromType1);
4029 if (SCS2.First == ICK_Array_To_Pointer)
4030 FromType2 = S.Context.getArrayDecayedType(FromType2);
4031
4032 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4033 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4034
4035 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4036 return ImplicitConversionSequence::Better;
4037 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4038 return ImplicitConversionSequence::Worse;
4039
4040 // Objective-C++: If one interface is more specific than the
4041 // other, it is the better one.
4042 const ObjCObjectPointerType* FromObjCPtr1
4043 = FromType1->getAs<ObjCObjectPointerType>();
4044 const ObjCObjectPointerType* FromObjCPtr2
4045 = FromType2->getAs<ObjCObjectPointerType>();
4046 if (FromObjCPtr1 && FromObjCPtr2) {
4047 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4048 FromObjCPtr2);
4049 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4050 FromObjCPtr1);
4051 if (AssignLeft != AssignRight) {
4052 return AssignLeft? ImplicitConversionSequence::Better
4053 : ImplicitConversionSequence::Worse;
4054 }
4055 }
4056 }
4057
4058 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4059 // Check for a better reference binding based on the kind of bindings.
4060 if (isBetterReferenceBindingKind(SCS1, SCS2))
4061 return ImplicitConversionSequence::Better;
4062 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4063 return ImplicitConversionSequence::Worse;
4064 }
4065
4066 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4067 // bullet 3).
4068 if (ImplicitConversionSequence::CompareKind QualCK
4069 = CompareQualificationConversions(S, SCS1, SCS2))
4070 return QualCK;
4071
4072 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4073 // C++ [over.ics.rank]p3b4:
4074 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4075 // which the references refer are the same type except for
4076 // top-level cv-qualifiers, and the type to which the reference
4077 // initialized by S2 refers is more cv-qualified than the type
4078 // to which the reference initialized by S1 refers.
4079 QualType T1 = SCS1.getToType(2);
4080 QualType T2 = SCS2.getToType(2);
4081 T1 = S.Context.getCanonicalType(T1);
4082 T2 = S.Context.getCanonicalType(T2);
4083 Qualifiers T1Quals, T2Quals;
4084 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4085 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4086 if (UnqualT1 == UnqualT2) {
4087 // Objective-C++ ARC: If the references refer to objects with different
4088 // lifetimes, prefer bindings that don't change lifetime.
4089 if (SCS1.ObjCLifetimeConversionBinding !=
4090 SCS2.ObjCLifetimeConversionBinding) {
4091 return SCS1.ObjCLifetimeConversionBinding
4092 ? ImplicitConversionSequence::Worse
4093 : ImplicitConversionSequence::Better;
4094 }
4095
4096 // If the type is an array type, promote the element qualifiers to the
4097 // type for comparison.
4098 if (isa<ArrayType>(T1) && T1Quals)
4099 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4100 if (isa<ArrayType>(T2) && T2Quals)
4101 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4102 if (T2.isMoreQualifiedThan(T1))
4103 return ImplicitConversionSequence::Better;
4104 if (T1.isMoreQualifiedThan(T2))
4105 return ImplicitConversionSequence::Worse;
4106 }
4107 }
4108
4109 // In Microsoft mode, prefer an integral conversion to a
4110 // floating-to-integral conversion if the integral conversion
4111 // is between types of the same size.
4112 // For example:
4113 // void f(float);
4114 // void f(int);
4115 // int main {
4116 // long a;
4117 // f(a);
4118 // }
4119 // Here, MSVC will call f(int) instead of generating a compile error
4120 // as clang will do in standard mode.
4121 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
4122 SCS2.Second == ICK_Floating_Integral &&
4123 S.Context.getTypeSize(SCS1.getFromType()) ==
4124 S.Context.getTypeSize(SCS1.getToType(2)))
4125 return ImplicitConversionSequence::Better;
4126
4127 // Prefer a compatible vector conversion over a lax vector conversion
4128 // For example:
4129 //
4130 // typedef float __v4sf __attribute__((__vector_size__(16)));
4131 // void f(vector float);
4132 // void f(vector signed int);
4133 // int main() {
4134 // __v4sf a;
4135 // f(a);
4136 // }
4137 // Here, we'd like to choose f(vector float) and not
4138 // report an ambiguous call error
4139 if (SCS1.Second == ICK_Vector_Conversion &&
4140 SCS2.Second == ICK_Vector_Conversion) {
4141 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4142 SCS1.getFromType(), SCS1.getToType(2));
4143 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4144 SCS2.getFromType(), SCS2.getToType(2));
4145
4146 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4147 return SCS1IsCompatibleVectorConversion
4148 ? ImplicitConversionSequence::Better
4149 : ImplicitConversionSequence::Worse;
4150 }
4151
4152 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4153 SCS2.Second == ICK_SVE_Vector_Conversion) {
4154 bool SCS1IsCompatibleSVEVectorConversion =
4155 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4156 bool SCS2IsCompatibleSVEVectorConversion =
4157 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4158
4159 if (SCS1IsCompatibleSVEVectorConversion !=
4160 SCS2IsCompatibleSVEVectorConversion)
4161 return SCS1IsCompatibleSVEVectorConversion
4162 ? ImplicitConversionSequence::Better
4163 : ImplicitConversionSequence::Worse;
4164 }
4165
4166 return ImplicitConversionSequence::Indistinguishable;
4167}
4168
4169/// CompareQualificationConversions - Compares two standard conversion
4170/// sequences to determine whether they can be ranked based on their
4171/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4172static ImplicitConversionSequence::CompareKind
4173CompareQualificationConversions(Sema &S,
4174 const StandardConversionSequence& SCS1,
4175 const StandardConversionSequence& SCS2) {
4176 // C++ 13.3.3.2p3:
4177 // -- S1 and S2 differ only in their qualification conversion and
4178 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4179 // cv-qualification signature of type T1 is a proper subset of
4180 // the cv-qualification signature of type T2, and S1 is not the
4181 // deprecated string literal array-to-pointer conversion (4.2).
4182 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4183 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4184 return ImplicitConversionSequence::Indistinguishable;
4185
4186 // FIXME: the example in the standard doesn't use a qualification
4187 // conversion (!)
4188 QualType T1 = SCS1.getToType(2);
4189 QualType T2 = SCS2.getToType(2);
4190 T1 = S.Context.getCanonicalType(T1);
4191 T2 = S.Context.getCanonicalType(T2);
4192 assert(!T1->isReferenceType() && !T2->isReferenceType())((!T1->isReferenceType() && !T2->isReferenceType
()) ? static_cast<void> (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4192, __PRETTY_FUNCTION__))
;
4193 Qualifiers T1Quals, T2Quals;
4194 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4195 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4196
4197 // If the types are the same, we won't learn anything by unwrapping
4198 // them.
4199 if (UnqualT1 == UnqualT2)
4200 return ImplicitConversionSequence::Indistinguishable;
4201
4202 ImplicitConversionSequence::CompareKind Result
4203 = ImplicitConversionSequence::Indistinguishable;
4204
4205 // Objective-C++ ARC:
4206 // Prefer qualification conversions not involving a change in lifetime
4207 // to qualification conversions that do not change lifetime.
4208 if (SCS1.QualificationIncludesObjCLifetime !=
4209 SCS2.QualificationIncludesObjCLifetime) {
4210 Result = SCS1.QualificationIncludesObjCLifetime
4211 ? ImplicitConversionSequence::Worse
4212 : ImplicitConversionSequence::Better;
4213 }
4214
4215 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4216 // Within each iteration of the loop, we check the qualifiers to
4217 // determine if this still looks like a qualification
4218 // conversion. Then, if all is well, we unwrap one more level of
4219 // pointers or pointers-to-members and do it all again
4220 // until there are no more pointers or pointers-to-members left
4221 // to unwrap. This essentially mimics what
4222 // IsQualificationConversion does, but here we're checking for a
4223 // strict subset of qualifiers.
4224 if (T1.getQualifiers().withoutObjCLifetime() ==
4225 T2.getQualifiers().withoutObjCLifetime())
4226 // The qualifiers are the same, so this doesn't tell us anything
4227 // about how the sequences rank.
4228 // ObjC ownership quals are omitted above as they interfere with
4229 // the ARC overload rule.
4230 ;
4231 else if (T2.isMoreQualifiedThan(T1)) {
4232 // T1 has fewer qualifiers, so it could be the better sequence.
4233 if (Result == ImplicitConversionSequence::Worse)
4234 // Neither has qualifiers that are a subset of the other's
4235 // qualifiers.
4236 return ImplicitConversionSequence::Indistinguishable;
4237
4238 Result = ImplicitConversionSequence::Better;
4239 } else if (T1.isMoreQualifiedThan(T2)) {
4240 // T2 has fewer qualifiers, so it could be the better sequence.
4241 if (Result == ImplicitConversionSequence::Better)
4242 // Neither has qualifiers that are a subset of the other's
4243 // qualifiers.
4244 return ImplicitConversionSequence::Indistinguishable;
4245
4246 Result = ImplicitConversionSequence::Worse;
4247 } else {
4248 // Qualifiers are disjoint.
4249 return ImplicitConversionSequence::Indistinguishable;
4250 }
4251
4252 // If the types after this point are equivalent, we're done.
4253 if (S.Context.hasSameUnqualifiedType(T1, T2))
4254 break;
4255 }
4256
4257 // Check that the winning standard conversion sequence isn't using
4258 // the deprecated string literal array to pointer conversion.
4259 switch (Result) {
4260 case ImplicitConversionSequence::Better:
4261 if (SCS1.DeprecatedStringLiteralToCharPtr)
4262 Result = ImplicitConversionSequence::Indistinguishable;
4263 break;
4264
4265 case ImplicitConversionSequence::Indistinguishable:
4266 break;
4267
4268 case ImplicitConversionSequence::Worse:
4269 if (SCS2.DeprecatedStringLiteralToCharPtr)
4270 Result = ImplicitConversionSequence::Indistinguishable;
4271 break;
4272 }
4273
4274 return Result;
4275}
4276
4277/// CompareDerivedToBaseConversions - Compares two standard conversion
4278/// sequences to determine whether they can be ranked based on their
4279/// various kinds of derived-to-base conversions (C++
4280/// [over.ics.rank]p4b3). As part of these checks, we also look at
4281/// conversions between Objective-C interface types.
4282static ImplicitConversionSequence::CompareKind
4283CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4284 const StandardConversionSequence& SCS1,
4285 const StandardConversionSequence& SCS2) {
4286 QualType FromType1 = SCS1.getFromType();
4287 QualType ToType1 = SCS1.getToType(1);
4288 QualType FromType2 = SCS2.getFromType();
4289 QualType ToType2 = SCS2.getToType(1);
4290
4291 // Adjust the types we're converting from via the array-to-pointer
4292 // conversion, if we need to.
4293 if (SCS1.First == ICK_Array_To_Pointer)
4294 FromType1 = S.Context.getArrayDecayedType(FromType1);
4295 if (SCS2.First == ICK_Array_To_Pointer)
4296 FromType2 = S.Context.getArrayDecayedType(FromType2);
4297
4298 // Canonicalize all of the types.
4299 FromType1 = S.Context.getCanonicalType(FromType1);
4300 ToType1 = S.Context.getCanonicalType(ToType1);
4301 FromType2 = S.Context.getCanonicalType(FromType2);
4302 ToType2 = S.Context.getCanonicalType(ToType2);
4303
4304 // C++ [over.ics.rank]p4b3:
4305 //
4306 // If class B is derived directly or indirectly from class A and
4307 // class C is derived directly or indirectly from B,
4308 //
4309 // Compare based on pointer conversions.
4310 if (SCS1.Second == ICK_Pointer_Conversion &&
4311 SCS2.Second == ICK_Pointer_Conversion &&
4312 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4313 FromType1->isPointerType() && FromType2->isPointerType() &&
4314 ToType1->isPointerType() && ToType2->isPointerType()) {
4315 QualType FromPointee1 =
4316 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4317 QualType ToPointee1 =
4318 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4319 QualType FromPointee2 =
4320 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4321 QualType ToPointee2 =
4322 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4323
4324 // -- conversion of C* to B* is better than conversion of C* to A*,
4325 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4326 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4327 return ImplicitConversionSequence::Better;
4328 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4329 return ImplicitConversionSequence::Worse;
4330 }
4331
4332 // -- conversion of B* to A* is better than conversion of C* to A*,
4333 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4334 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4335 return ImplicitConversionSequence::Better;
4336 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4337 return ImplicitConversionSequence::Worse;
4338 }
4339 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4340 SCS2.Second == ICK_Pointer_Conversion) {
4341 const ObjCObjectPointerType *FromPtr1
4342 = FromType1->getAs<ObjCObjectPointerType>();
4343 const ObjCObjectPointerType *FromPtr2
4344 = FromType2->getAs<ObjCObjectPointerType>();
4345 const ObjCObjectPointerType *ToPtr1
4346 = ToType1->getAs<ObjCObjectPointerType>();
4347 const ObjCObjectPointerType *ToPtr2
4348 = ToType2->getAs<ObjCObjectPointerType>();
4349
4350 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4351 // Apply the same conversion ranking rules for Objective-C pointer types
4352 // that we do for C++ pointers to class types. However, we employ the
4353 // Objective-C pseudo-subtyping relationship used for assignment of
4354 // Objective-C pointer types.
4355 bool FromAssignLeft
4356 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4357 bool FromAssignRight
4358 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4359 bool ToAssignLeft
4360 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4361 bool ToAssignRight
4362 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4363
4364 // A conversion to an a non-id object pointer type or qualified 'id'
4365 // type is better than a conversion to 'id'.
4366 if (ToPtr1->isObjCIdType() &&
4367 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4368 return ImplicitConversionSequence::Worse;
4369 if (ToPtr2->isObjCIdType() &&
4370 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4371 return ImplicitConversionSequence::Better;
4372
4373 // A conversion to a non-id object pointer type is better than a
4374 // conversion to a qualified 'id' type
4375 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4376 return ImplicitConversionSequence::Worse;
4377 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4378 return ImplicitConversionSequence::Better;
4379
4380 // A conversion to an a non-Class object pointer type or qualified 'Class'
4381 // type is better than a conversion to 'Class'.
4382 if (ToPtr1->isObjCClassType() &&
4383 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4384 return ImplicitConversionSequence::Worse;
4385 if (ToPtr2->isObjCClassType() &&
4386 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4387 return ImplicitConversionSequence::Better;
4388
4389 // A conversion to a non-Class object pointer type is better than a
4390 // conversion to a qualified 'Class' type.
4391 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4392 return ImplicitConversionSequence::Worse;
4393 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4394 return ImplicitConversionSequence::Better;
4395
4396 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4397 if (S.Context.hasSameType(FromType1, FromType2) &&
4398 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4399 (ToAssignLeft != ToAssignRight)) {
4400 if (FromPtr1->isSpecialized()) {
4401 // "conversion of B<A> * to B * is better than conversion of B * to
4402 // C *.
4403 bool IsFirstSame =
4404 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4405 bool IsSecondSame =
4406 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4407 if (IsFirstSame) {
4408 if (!IsSecondSame)
4409 return ImplicitConversionSequence::Better;
4410 } else if (IsSecondSame)
4411 return ImplicitConversionSequence::Worse;
4412 }
4413 return ToAssignLeft? ImplicitConversionSequence::Worse
4414 : ImplicitConversionSequence::Better;
4415 }
4416
4417 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4418 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4419 (FromAssignLeft != FromAssignRight))
4420 return FromAssignLeft? ImplicitConversionSequence::Better
4421 : ImplicitConversionSequence::Worse;
4422 }
4423 }
4424
4425 // Ranking of member-pointer types.
4426 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4427 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4428 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4429 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4430 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4431 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4432 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4433 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4434 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4435 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4436 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4437 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4438 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4439 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4440 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4441 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4442 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4443 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4444 return ImplicitConversionSequence::Worse;
4445 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4446 return ImplicitConversionSequence::Better;
4447 }
4448 // conversion of B::* to C::* is better than conversion of A::* to C::*
4449 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4450 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4451 return ImplicitConversionSequence::Better;
4452 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4453 return ImplicitConversionSequence::Worse;
4454 }
4455 }
4456
4457 if (SCS1.Second == ICK_Derived_To_Base) {
4458 // -- conversion of C to B is better than conversion of C to A,
4459 // -- binding of an expression of type C to a reference of type
4460 // B& is better than binding an expression of type C to a
4461 // reference of type A&,
4462 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4463 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4464 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4465 return ImplicitConversionSequence::Better;
4466 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4467 return ImplicitConversionSequence::Worse;
4468 }
4469
4470 // -- conversion of B to A is better than conversion of C to A.
4471 // -- binding of an expression of type B to a reference of type
4472 // A& is better than binding an expression of type C to a
4473 // reference of type A&,
4474 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4475 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4476 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4477 return ImplicitConversionSequence::Better;
4478 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4479 return ImplicitConversionSequence::Worse;
4480 }
4481 }
4482
4483 return ImplicitConversionSequence::Indistinguishable;
4484}
4485
4486/// Determine whether the given type is valid, e.g., it is not an invalid
4487/// C++ class.
4488static bool isTypeValid(QualType T) {
4489 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4490 return !Record->isInvalidDecl();
4491
4492 return true;
4493}
4494
4495static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4496 if (!T.getQualifiers().hasUnaligned())
4497 return T;
4498
4499 Qualifiers Q;
4500 T = Ctx.getUnqualifiedArrayType(T, Q);
4501 Q.removeUnaligned();
4502 return Ctx.getQualifiedType(T, Q);
4503}
4504
4505/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4506/// determine whether they are reference-compatible,
4507/// reference-related, or incompatible, for use in C++ initialization by
4508/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4509/// type, and the first type (T1) is the pointee type of the reference
4510/// type being initialized.
4511Sema::ReferenceCompareResult
4512Sema::CompareReferenceRelationship(SourceLocation Loc,
4513 QualType OrigT1, QualType OrigT2,
4514 ReferenceConversions *ConvOut) {
4515 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4516, __PRETTY_FUNCTION__))
4516 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4516, __PRETTY_FUNCTION__))
;
4517 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4517, __PRETTY_FUNCTION__))
;
4518
4519 QualType T1 = Context.getCanonicalType(OrigT1);
4520 QualType T2 = Context.getCanonicalType(OrigT2);
4521 Qualifiers T1Quals, T2Quals;
4522 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4523 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4524
4525 ReferenceConversions ConvTmp;
4526 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4527 Conv = ReferenceConversions();
4528
4529 // C++2a [dcl.init.ref]p4:
4530 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4531 // reference-related to "cv2 T2" if T1 is similar to T2, or
4532 // T1 is a base class of T2.
4533 // "cv1 T1" is reference-compatible with "cv2 T2" if
4534 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4535 // "pointer to cv1 T1" via a standard conversion sequence.
4536
4537 // Check for standard conversions we can apply to pointers: derived-to-base
4538 // conversions, ObjC pointer conversions, and function pointer conversions.
4539 // (Qualification conversions are checked last.)
4540 QualType ConvertedT2;
4541 if (UnqualT1 == UnqualT2) {
4542 // Nothing to do.
4543 } else if (isCompleteType(Loc, OrigT2) &&
4544 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4545 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4546 Conv |= ReferenceConversions::DerivedToBase;
4547 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4548 UnqualT2->isObjCObjectOrInterfaceType() &&
4549 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4550 Conv |= ReferenceConversions::ObjC;
4551 else if (UnqualT2->isFunctionType() &&
4552 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4553 Conv |= ReferenceConversions::Function;
4554 // No need to check qualifiers; function types don't have them.
4555 return Ref_Compatible;
4556 }
4557 bool ConvertedReferent = Conv != 0;
4558
4559 // We can have a qualification conversion. Compute whether the types are
4560 // similar at the same time.
4561 bool PreviousToQualsIncludeConst = true;
4562 bool TopLevel = true;
4563 do {
4564 if (T1 == T2)
4565 break;
4566
4567 // We will need a qualification conversion.
4568 Conv |= ReferenceConversions::Qualification;
4569
4570 // Track whether we performed a qualification conversion anywhere other
4571 // than the top level. This matters for ranking reference bindings in
4572 // overload resolution.
4573 if (!TopLevel)
4574 Conv |= ReferenceConversions::NestedQualification;
4575
4576 // MS compiler ignores __unaligned qualifier for references; do the same.
4577 T1 = withoutUnaligned(Context, T1);
4578 T2 = withoutUnaligned(Context, T2);
4579
4580 // If we find a qualifier mismatch, the types are not reference-compatible,
4581 // but are still be reference-related if they're similar.
4582 bool ObjCLifetimeConversion = false;
4583 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4584 PreviousToQualsIncludeConst,
4585 ObjCLifetimeConversion))
4586 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4587 ? Ref_Related
4588 : Ref_Incompatible;
4589
4590 // FIXME: Should we track this for any level other than the first?
4591 if (ObjCLifetimeConversion)
4592 Conv |= ReferenceConversions::ObjCLifetime;
4593
4594 TopLevel = false;
4595 } while (Context.UnwrapSimilarTypes(T1, T2));
4596
4597 // At this point, if the types are reference-related, we must either have the
4598 // same inner type (ignoring qualifiers), or must have already worked out how
4599 // to convert the referent.
4600 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4601 ? Ref_Compatible
4602 : Ref_Incompatible;
4603}
4604
4605/// Look for a user-defined conversion to a value reference-compatible
4606/// with DeclType. Return true if something definite is found.
4607static bool
4608FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4609 QualType DeclType, SourceLocation DeclLoc,
4610 Expr *Init, QualType T2, bool AllowRvalues,
4611 bool AllowExplicit) {
4612 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4612, __PRETTY_FUNCTION__))
;
4613 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4614
4615 OverloadCandidateSet CandidateSet(
4616 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4617 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4618 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4619 NamedDecl *D = *I;
4620 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4621 if (isa<UsingShadowDecl>(D))
4622 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4623
4624 FunctionTemplateDecl *ConvTemplate
4625 = dyn_cast<FunctionTemplateDecl>(D);
4626 CXXConversionDecl *Conv;
4627 if (ConvTemplate)
4628 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4629 else
4630 Conv = cast<CXXConversionDecl>(D);
4631
4632 if (AllowRvalues) {
4633 // If we are initializing an rvalue reference, don't permit conversion
4634 // functions that return lvalues.
4635 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4636 const ReferenceType *RefType
4637 = Conv->getConversionType()->getAs<LValueReferenceType>();
4638 if (RefType && !RefType->getPointeeType()->isFunctionType())
4639 continue;
4640 }
4641
4642 if (!ConvTemplate &&
4643 S.CompareReferenceRelationship(
4644 DeclLoc,
4645 Conv->getConversionType()
4646 .getNonReferenceType()
4647 .getUnqualifiedType(),
4648 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4649 Sema::Ref_Incompatible)
4650 continue;
4651 } else {
4652 // If the conversion function doesn't return a reference type,
4653 // it can't be considered for this conversion. An rvalue reference
4654 // is only acceptable if its referencee is a function type.
4655
4656 const ReferenceType *RefType =
4657 Conv->getConversionType()->getAs<ReferenceType>();
4658 if (!RefType ||
4659 (!RefType->isLValueReferenceType() &&
4660 !RefType->getPointeeType()->isFunctionType()))
4661 continue;
4662 }
4663
4664 if (ConvTemplate)
4665 S.AddTemplateConversionCandidate(
4666 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4667 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4668 else
4669 S.AddConversionCandidate(
4670 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4671 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4672 }
4673
4674 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4675
4676 OverloadCandidateSet::iterator Best;
4677 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4678 case OR_Success:
4679 // C++ [over.ics.ref]p1:
4680 //
4681 // [...] If the parameter binds directly to the result of
4682 // applying a conversion function to the argument
4683 // expression, the implicit conversion sequence is a
4684 // user-defined conversion sequence (13.3.3.1.2), with the
4685 // second standard conversion sequence either an identity
4686 // conversion or, if the conversion function returns an
4687 // entity of a type that is a derived class of the parameter
4688 // type, a derived-to-base Conversion.
4689 if (!Best->FinalConversion.DirectBinding)
4690 return false;
4691
4692 ICS.setUserDefined();
4693 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4694 ICS.UserDefined.After = Best->FinalConversion;
4695 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4696 ICS.UserDefined.ConversionFunction = Best->Function;
4697 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4698 ICS.UserDefined.EllipsisConversion = false;
4699 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4701, __PRETTY_FUNCTION__))
4700 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4701, __PRETTY_FUNCTION__))
4701 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4701, __PRETTY_FUNCTION__))
;
4702 return true;
4703
4704 case OR_Ambiguous:
4705 ICS.setAmbiguous();
4706 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4707 Cand != CandidateSet.end(); ++Cand)
4708 if (Cand->Best)
4709 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4710 return true;
4711
4712 case OR_No_Viable_Function:
4713 case OR_Deleted:
4714 // There was no suitable conversion, or we found a deleted
4715 // conversion; continue with other checks.
4716 return false;
4717 }
4718
4719 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4719)
;
4720}
4721
4722/// Compute an implicit conversion sequence for reference
4723/// initialization.
4724static ImplicitConversionSequence
4725TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4726 SourceLocation DeclLoc,
4727 bool SuppressUserConversions,
4728 bool AllowExplicit) {
4729 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 4729, __PRETTY_FUNCTION__))
;
4730
4731 // Most paths end in a failed conversion.
4732 ImplicitConversionSequence ICS;
4733 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4734
4735 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4736 QualType T2 = Init->getType();
4737
4738 // If the initializer is the address of an overloaded function, try
4739 // to resolve the overloaded function. If all goes well, T2 is the
4740 // type of the resulting function.
4741 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4742 DeclAccessPair Found;
4743 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4744 false, Found))
4745 T2 = Fn->getType();
4746 }
4747
4748 // Compute some basic properties of the types and the initializer.
4749 bool isRValRef = DeclType->isRValueReferenceType();
4750 Expr::Classification InitCategory = Init->Classify(S.Context);
4751
4752 Sema::ReferenceConversions RefConv;
4753 Sema::ReferenceCompareResult RefRelationship =
4754 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4755
4756 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4757 ICS.setStandard();
4758 ICS.Standard.First = ICK_Identity;
4759 // FIXME: A reference binding can be a function conversion too. We should
4760 // consider that when ordering reference-to-function bindings.
4761 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4762 ? ICK_Derived_To_Base
4763 : (RefConv & Sema::ReferenceConversions::ObjC)
4764 ? ICK_Compatible_Conversion
4765 : ICK_Identity;
4766 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4767 // a reference binding that performs a non-top-level qualification
4768 // conversion as a qualification conversion, not as an identity conversion.
4769 ICS.Standard.Third = (RefConv &
4770 Sema::ReferenceConversions::NestedQualification)
4771 ? ICK_Qualification
4772 : ICK_Identity;
4773 ICS.Standard.setFromType(T2);
4774 ICS.Standard.setToType(0, T2);
4775 ICS.Standard.setToType(1, T1);
4776 ICS.Standard.setToType(2, T1);
4777 ICS.Standard.ReferenceBinding = true;
4778 ICS.Standard.DirectBinding = BindsDirectly;
4779 ICS.Standard.IsLvalueReference = !isRValRef;
4780 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4781 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4782 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4783 ICS.Standard.ObjCLifetimeConversionBinding =
4784 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4785 ICS.Standard.CopyConstructor = nullptr;
4786 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4787 };
4788
4789 // C++0x [dcl.init.ref]p5:
4790 // A reference to type "cv1 T1" is initialized by an expression
4791 // of type "cv2 T2" as follows:
4792
4793 // -- If reference is an lvalue reference and the initializer expression
4794 if (!isRValRef) {
4795 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4796 // reference-compatible with "cv2 T2," or
4797 //
4798 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4799 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4800 // C++ [over.ics.ref]p1:
4801 // When a parameter of reference type binds directly (8.5.3)
4802 // to an argument expression, the implicit conversion sequence
4803 // is the identity conversion, unless the argument expression
4804 // has a type that is a derived class of the parameter type,
4805 // in which case the implicit conversion sequence is a
4806 // derived-to-base Conversion (13.3.3.1).
4807 SetAsReferenceBinding(/*BindsDirectly=*/true);
4808
4809 // Nothing more to do: the inaccessibility/ambiguity check for
4810 // derived-to-base conversions is suppressed when we're
4811 // computing the implicit conversion sequence (C++
4812 // [over.best.ics]p2).
4813 return ICS;
4814 }
4815
4816 // -- has a class type (i.e., T2 is a class type), where T1 is
4817 // not reference-related to T2, and can be implicitly
4818 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4819 // is reference-compatible with "cv3 T3" 92) (this
4820 // conversion is selected by enumerating the applicable
4821 // conversion functions (13.3.1.6) and choosing the best
4822 // one through overload resolution (13.3)),
4823 if (!SuppressUserConversions && T2->isRecordType() &&
4824 S.isCompleteType(DeclLoc, T2) &&
4825 RefRelationship == Sema::Ref_Incompatible) {
4826 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4827 Init, T2, /*AllowRvalues=*/false,
4828 AllowExplicit))
4829 return ICS;
4830 }
4831 }
4832
4833 // -- Otherwise, the reference shall be an lvalue reference to a
4834 // non-volatile const type (i.e., cv1 shall be const), or the reference
4835 // shall be an rvalue reference.
4836 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4837 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4838 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4839 return ICS;
4840 }
4841
4842 // -- If the initializer expression
4843 //
4844 // -- is an xvalue, class prvalue, array prvalue or function
4845 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4846 if (RefRelationship == Sema::Ref_Compatible &&
4847 (InitCategory.isXValue() ||
4848 (InitCategory.isPRValue() &&
4849 (T2->isRecordType() || T2->isArrayType())) ||
4850 (InitCategory.isLValue() && T2->isFunctionType()))) {
4851 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4852 // binding unless we're binding to a class prvalue.
4853 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4854 // allow the use of rvalue references in C++98/03 for the benefit of
4855 // standard library implementors; therefore, we need the xvalue check here.
4856 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4857 !(InitCategory.isPRValue() || T2->isRecordType()));
4858 return ICS;
4859 }
4860
4861 // -- has a class type (i.e., T2 is a class type), where T1 is not
4862 // reference-related to T2, and can be implicitly converted to
4863 // an xvalue, class prvalue, or function lvalue of type
4864 // "cv3 T3", where "cv1 T1" is reference-compatible with
4865 // "cv3 T3",
4866 //
4867 // then the reference is bound to the value of the initializer
4868 // expression in the first case and to the result of the conversion
4869 // in the second case (or, in either case, to an appropriate base
4870 // class subobject).
4871 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4872 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4873 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4874 Init, T2, /*AllowRvalues=*/true,
4875 AllowExplicit)) {
4876 // In the second case, if the reference is an rvalue reference
4877 // and the second standard conversion sequence of the
4878 // user-defined conversion sequence includes an lvalue-to-rvalue
4879 // conversion, the program is ill-formed.
4880 if (ICS.isUserDefined() && isRValRef &&
4881 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4882 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4883
4884 return ICS;
4885 }
4886
4887 // A temporary of function type cannot be created; don't even try.
4888 if (T1->isFunctionType())
4889 return ICS;
4890
4891 // -- Otherwise, a temporary of type "cv1 T1" is created and
4892 // initialized from the initializer expression using the
4893 // rules for a non-reference copy initialization (8.5). The
4894 // reference is then bound to the temporary. If T1 is
4895 // reference-related to T2, cv1 must be the same
4896 // cv-qualification as, or greater cv-qualification than,
4897 // cv2; otherwise, the program is ill-formed.
4898 if (RefRelationship == Sema::Ref_Related) {
4899 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4900 // we would be reference-compatible or reference-compatible with
4901 // added qualification. But that wasn't the case, so the reference
4902 // initialization fails.
4903 //
4904 // Note that we only want to check address spaces and cvr-qualifiers here.
4905 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4906 Qualifiers T1Quals = T1.getQualifiers();
4907 Qualifiers T2Quals = T2.getQualifiers();
4908 T1Quals.removeObjCGCAttr();
4909 T1Quals.removeObjCLifetime();
4910 T2Quals.removeObjCGCAttr();
4911 T2Quals.removeObjCLifetime();
4912 // MS compiler ignores __unaligned qualifier for references; do the same.
4913 T1Quals.removeUnaligned();
4914 T2Quals.removeUnaligned();
4915 if (!T1Quals.compatiblyIncludes(T2Quals))
4916 return ICS;
4917 }
4918
4919 // If at least one of the types is a class type, the types are not
4920 // related, and we aren't allowed any user conversions, the
4921 // reference binding fails. This case is important for breaking
4922 // recursion, since TryImplicitConversion below will attempt to
4923 // create a temporary through the use of a copy constructor.
4924 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4925 (T1->isRecordType() || T2->isRecordType()))
4926 return ICS;
4927
4928 // If T1 is reference-related to T2 and the reference is an rvalue
4929 // reference, the initializer expression shall not be an lvalue.
4930 if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4931 Init->Classify(S.Context).isLValue()) {
4932 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4933 return ICS;
4934 }
4935
4936 // C++ [over.ics.ref]p2:
4937 // When a parameter of reference type is not bound directly to
4938 // an argument expression, the conversion sequence is the one
4939 // required to convert the argument expression to the
4940 // underlying type of the reference according to
4941 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4942 // to copy-initializing a temporary of the underlying type with
4943 // the argument expression. Any difference in top-level
4944 // cv-qualification is subsumed by the initialization itself
4945 // and does not constitute a conversion.
4946 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4947 AllowedExplicit::None,
4948 /*InOverloadResolution=*/false,
4949 /*CStyle=*/false,
4950 /*AllowObjCWritebackConversion=*/false,
4951 /*AllowObjCConversionOnExplicit=*/false);
4952
4953 // Of course, that's still a reference binding.
4954 if (ICS.isStandard()) {
4955 ICS.Standard.ReferenceBinding = true;
4956 ICS.Standard.IsLvalueReference = !isRValRef;
4957 ICS.Standard.BindsToFunctionLvalue = false;
4958 ICS.Standard.BindsToRvalue = true;
4959 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4960 ICS.Standard.ObjCLifetimeConversionBinding = false;
4961 } else if (ICS.isUserDefined()) {
4962 const ReferenceType *LValRefType =
4963 ICS.UserDefined.ConversionFunction->getReturnType()
4964 ->getAs<LValueReferenceType>();
4965
4966 // C++ [over.ics.ref]p3:
4967 // Except for an implicit object parameter, for which see 13.3.1, a
4968 // standard conversion sequence cannot be formed if it requires [...]
4969 // binding an rvalue reference to an lvalue other than a function
4970 // lvalue.
4971 // Note that the function case is not possible here.
4972 if (isRValRef && LValRefType) {
4973 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4974 return ICS;
4975 }
4976
4977 ICS.UserDefined.After.ReferenceBinding = true;
4978 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4979 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4980 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4981 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4982 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4983 }
4984
4985 return ICS;
4986}
4987
4988static ImplicitConversionSequence
4989TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4990 bool SuppressUserConversions,
4991 bool InOverloadResolution,
4992 bool AllowObjCWritebackConversion,
4993 bool AllowExplicit = false);
4994
4995/// TryListConversion - Try to copy-initialize a value of type ToType from the
4996/// initializer list From.
4997static ImplicitConversionSequence
4998TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4999 bool SuppressUserConversions,
5000 bool InOverloadResolution,
5001 bool AllowObjCWritebackConversion) {
5002 // C++11 [over.ics.list]p1:
5003 // When an argument is an initializer list, it is not an expression and
5004 // special rules apply for converting it to a parameter type.
5005
5006 ImplicitConversionSequence Result;
5007 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5008
5009 // We need a complete type for what follows. Incomplete types can never be
5010 // initialized from init lists.
5011 if (!S.isCompleteType(From->getBeginLoc(), ToType))
5012 return Result;
5013
5014 // Per DR1467:
5015 // If the parameter type is a class X and the initializer list has a single
5016 // element of type cv U, where U is X or a class derived from X, the
5017 // implicit conversion sequence is the one required to convert the element
5018 // to the parameter type.
5019 //
5020 // Otherwise, if the parameter type is a character array [... ]
5021 // and the initializer list has a single element that is an
5022 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5023 // implicit conversion sequence is the identity conversion.
5024 if (From->getNumInits() == 1) {
5025 if (ToType->isRecordType()) {
5026 QualType InitType = From->getInit(0)->getType();
5027 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5028 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5029 return TryCopyInitialization(S, From->getInit(0), ToType,
5030 SuppressUserConversions,
5031 InOverloadResolution,
5032 AllowObjCWritebackConversion);
5033 }
5034
5035 if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5036 if (S.IsStringInit(From->getInit(0), AT)) {
5037 InitializedEntity Entity =
5038 InitializedEntity::InitializeParameter(S.Context, ToType,
5039 /*Consumed=*/false);
5040 if (S.CanPerformCopyInitialization(Entity, From)) {
5041 Result.setStandard();
5042 Result.Standard.setAsIdentityConversion();
5043 Result.Standard.setFromType(ToType);
5044 Result.Standard.setAllToTypes(ToType);
5045 return Result;
5046 }
5047 }
5048 }
5049 }
5050
5051 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5052 // C++11 [over.ics.list]p2:
5053 // If the parameter type is std::initializer_list<X> or "array of X" and
5054 // all the elements can be implicitly converted to X, the implicit
5055 // conversion sequence is the worst conversion necessary to convert an
5056 // element of the list to X.
5057 //
5058 // C++14 [over.ics.list]p3:
5059 // Otherwise, if the parameter type is "array of N X", if the initializer
5060 // list has exactly N elements or if it has fewer than N elements and X is
5061 // default-constructible, and if all the elements of the initializer list
5062 // can be implicitly converted to X, the implicit conversion sequence is
5063 // the worst conversion necessary to convert an element of the list to X.
5064 //
5065 // FIXME: We're missing a lot of these checks.
5066 bool toStdInitializerList = false;
5067 QualType X;
5068 if (ToType->isArrayType())
5069 X = S.Context.getAsArrayType(ToType)->getElementType();
5070 else
5071 toStdInitializerList = S.isStdInitializerList(ToType, &X);
5072 if (!X.isNull()) {
5073 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5074 Expr *Init = From->getInit(i);
5075 ImplicitConversionSequence ICS =
5076 TryCopyInitialization(S, Init, X, SuppressUserConversions,
5077 InOverloadResolution,
5078 AllowObjCWritebackConversion);
5079 // If a single element isn't convertible, fail.
5080 if (ICS.isBad()) {
5081 Result = ICS;
5082 break;
5083 }
5084 // Otherwise, look for the worst conversion.
5085 if (Result.isBad() || CompareImplicitConversionSequences(
5086 S, From->getBeginLoc(), ICS, Result) ==
5087 ImplicitConversionSequence::Worse)
5088 Result = ICS;
5089 }
5090
5091 // For an empty list, we won't have computed any conversion sequence.
5092 // Introduce the identity conversion sequence.
5093 if (From->getNumInits() == 0) {
5094 Result.setStandard();
5095 Result.Standard.setAsIdentityConversion();
5096 Result.Standard.setFromType(ToType);
5097 Result.Standard.setAllToTypes(ToType);
5098 }
5099
5100 Result.setStdInitializerListElement(toStdInitializerList);
5101 return Result;
5102 }
5103
5104 // C++14 [over.ics.list]p4:
5105 // C++11 [over.ics.list]p3:
5106 // Otherwise, if the parameter is a non-aggregate class X and overload
5107 // resolution chooses a single best constructor [...] the implicit
5108 // conversion sequence is a user-defined conversion sequence. If multiple
5109 // constructors are viable but none is better than the others, the
5110 // implicit conversion sequence is a user-defined conversion sequence.
5111 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5112 // This function can deal with initializer lists.
5113 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5114 AllowedExplicit::None,
5115 InOverloadResolution, /*CStyle=*/false,
5116 AllowObjCWritebackConversion,
5117 /*AllowObjCConversionOnExplicit=*/false);
5118 }
5119
5120 // C++14 [over.ics.list]p5:
5121 // C++11 [over.ics.list]p4:
5122 // Otherwise, if the parameter has an aggregate type which can be
5123 // initialized from the initializer list [...] the implicit conversion
5124 // sequence is a user-defined conversion sequence.
5125 if (ToType->isAggregateType()) {
5126 // Type is an aggregate, argument is an init list. At this point it comes
5127 // down to checking whether the initialization works.
5128 // FIXME: Find out whether this parameter is consumed or not.
5129 InitializedEntity Entity =
5130 InitializedEntity::InitializeParameter(S.Context, ToType,
5131 /*Consumed=*/false);
5132 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5133 From)) {
5134 Result.setUserDefined();
5135 Result.UserDefined.Before.setAsIdentityConversion();
5136 // Initializer lists don't have a type.
5137 Result.UserDefined.Before.setFromType(QualType());
5138 Result.UserDefined.Before.setAllToTypes(QualType());
5139
5140 Result.UserDefined.After.setAsIdentityConversion();
5141 Result.UserDefined.After.setFromType(ToType);
5142 Result.UserDefined.After.setAllToTypes(ToType);
5143 Result.UserDefined.ConversionFunction = nullptr;
5144 }
5145 return Result;
5146 }
5147
5148 // C++14 [over.ics.list]p6:
5149 // C++11 [over.ics.list]p5:
5150 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5151 if (ToType->isReferenceType()) {
5152 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5153 // mention initializer lists in any way. So we go by what list-
5154 // initialization would do and try to extrapolate from that.
5155
5156 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5157
5158 // If the initializer list has a single element that is reference-related
5159 // to the parameter type, we initialize the reference from that.
5160 if (From->getNumInits() == 1) {
5161 Expr *Init = From->getInit(0);
5162
5163 QualType T2 = Init->getType();
5164
5165 // If the initializer is the address of an overloaded function, try
5166 // to resolve the overloaded function. If all goes well, T2 is the
5167 // type of the resulting function.
5168 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5169 DeclAccessPair Found;
5170 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5171 Init, ToType, false, Found))
5172 T2 = Fn->getType();
5173 }
5174
5175 // Compute some basic properties of the types and the initializer.
5176 Sema::ReferenceCompareResult RefRelationship =
5177 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5178
5179 if (RefRelationship >= Sema::Ref_Related) {
5180 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5181 SuppressUserConversions,
5182 /*AllowExplicit=*/false);
5183 }
5184 }
5185
5186 // Otherwise, we bind the reference to a temporary created from the
5187 // initializer list.
5188 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5189 InOverloadResolution,
5190 AllowObjCWritebackConversion);
5191 if (Result.isFailure())
5192 return Result;
5193 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5194, __PRETTY_FUNCTION__))
5194 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5194, __PRETTY_FUNCTION__))
;
5195
5196 // Can we even bind to a temporary?
5197 if (ToType->isRValueReferenceType() ||
5198 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5199 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5200 Result.UserDefined.After;
5201 SCS.ReferenceBinding = true;
5202 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5203 SCS.BindsToRvalue = true;
5204 SCS.BindsToFunctionLvalue = false;
5205 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5206 SCS.ObjCLifetimeConversionBinding = false;
5207 } else
5208 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5209 From, ToType);
5210 return Result;
5211 }
5212
5213 // C++14 [over.ics.list]p7:
5214 // C++11 [over.ics.list]p6:
5215 // Otherwise, if the parameter type is not a class:
5216 if (!ToType->isRecordType()) {
5217 // - if the initializer list has one element that is not itself an
5218 // initializer list, the implicit conversion sequence is the one
5219 // required to convert the element to the parameter type.
5220 unsigned NumInits = From->getNumInits();
5221 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5222 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5223 SuppressUserConversions,
5224 InOverloadResolution,
5225 AllowObjCWritebackConversion);
5226 // - if the initializer list has no elements, the implicit conversion
5227 // sequence is the identity conversion.
5228 else if (NumInits == 0) {
5229 Result.setStandard();
5230 Result.Standard.setAsIdentityConversion();
5231 Result.Standard.setFromType(ToType);
5232 Result.Standard.setAllToTypes(ToType);
5233 }
5234 return Result;
5235 }
5236
5237 // C++14 [over.ics.list]p8:
5238 // C++11 [over.ics.list]p7:
5239 // In all cases other than those enumerated above, no conversion is possible
5240 return Result;
5241}
5242
5243/// TryCopyInitialization - Try to copy-initialize a value of type
5244/// ToType from the expression From. Return the implicit conversion
5245/// sequence required to pass this argument, which may be a bad
5246/// conversion sequence (meaning that the argument cannot be passed to
5247/// a parameter of this type). If @p SuppressUserConversions, then we
5248/// do not permit any user-defined conversion sequences.
5249static ImplicitConversionSequence
5250TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5251 bool SuppressUserConversions,
5252 bool InOverloadResolution,
5253 bool AllowObjCWritebackConversion,
5254 bool AllowExplicit) {
5255 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5256 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5257 InOverloadResolution,AllowObjCWritebackConversion);
5258
5259 if (ToType->isReferenceType())
5260 return TryReferenceInit(S, From, ToType,
5261 /*FIXME:*/ From->getBeginLoc(),
5262 SuppressUserConversions, AllowExplicit);
5263
5264 return TryImplicitConversion(S, From, ToType,
5265 SuppressUserConversions,
5266 AllowedExplicit::None,
5267 InOverloadResolution,
5268 /*CStyle=*/false,
5269 AllowObjCWritebackConversion,
5270 /*AllowObjCConversionOnExplicit=*/false);
5271}
5272
5273static bool TryCopyInitialization(const CanQualType FromQTy,
5274 const CanQualType ToQTy,
5275 Sema &S,
5276 SourceLocation Loc,
5277 ExprValueKind FromVK) {
5278 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5279 ImplicitConversionSequence ICS =
5280 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5281
5282 return !ICS.isBad();
5283}
5284
5285/// TryObjectArgumentInitialization - Try to initialize the object
5286/// parameter of the given member function (@c Method) from the
5287/// expression @p From.
5288static ImplicitConversionSequence
5289TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5290 Expr::Classification FromClassification,
5291 CXXMethodDecl *Method,
5292 CXXRecordDecl *ActingContext) {
5293 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5294 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5295 // const volatile object.
5296 Qualifiers Quals = Method->getMethodQualifiers();
5297 if (isa<CXXDestructorDecl>(Method)) {
5298 Quals.addConst();
5299 Quals.addVolatile();
5300 }
5301
5302 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5303
5304 // Set up the conversion sequence as a "bad" conversion, to allow us
5305 // to exit early.
5306 ImplicitConversionSequence ICS;
5307
5308 // We need to have an object of class type.
5309 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5310 FromType = PT->getPointeeType();
5311
5312 // When we had a pointer, it's implicitly dereferenced, so we
5313 // better have an lvalue.
5314 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5314, __PRETTY_FUNCTION__))
;
5315 }
5316
5317 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5317, __PRETTY_FUNCTION__))
;
5318
5319 // C++0x [over.match.funcs]p4:
5320 // For non-static member functions, the type of the implicit object
5321 // parameter is
5322 //
5323 // - "lvalue reference to cv X" for functions declared without a
5324 // ref-qualifier or with the & ref-qualifier
5325 // - "rvalue reference to cv X" for functions declared with the &&
5326 // ref-qualifier
5327 //
5328 // where X is the class of which the function is a member and cv is the
5329 // cv-qualification on the member function declaration.
5330 //
5331 // However, when finding an implicit conversion sequence for the argument, we
5332 // are not allowed to perform user-defined conversions
5333 // (C++ [over.match.funcs]p5). We perform a simplified version of
5334 // reference binding here, that allows class rvalues to bind to
5335 // non-constant references.
5336
5337 // First check the qualifiers.
5338 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5339 if (ImplicitParamType.getCVRQualifiers()
5340 != FromTypeCanon.getLocalCVRQualifiers() &&
5341 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5342 ICS.setBad(BadConversionSequence::bad_qualifiers,
5343 FromType, ImplicitParamType);
5344 return ICS;
5345 }
5346
5347 if (FromTypeCanon.hasAddressSpace()) {
5348 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5349 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5350 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5351 ICS.setBad(BadConversionSequence::bad_qualifiers,
5352 FromType, ImplicitParamType);
5353 return ICS;
5354 }
5355 }
5356
5357 // Check that we have either the same type or a derived type. It
5358 // affects the conversion rank.
5359 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5360 ImplicitConversionKind SecondKind;
5361 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5362 SecondKind = ICK_Identity;
5363 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5364 SecondKind = ICK_Derived_To_Base;
5365 else {
5366 ICS.setBad(BadConversionSequence::unrelated_class,
5367 FromType, ImplicitParamType);
5368 return ICS;
5369 }
5370
5371 // Check the ref-qualifier.
5372 switch (Method->getRefQualifier()) {
5373 case RQ_None:
5374 // Do nothing; we don't care about lvalueness or rvalueness.
5375 break;
5376
5377 case RQ_LValue:
5378 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5379 // non-const lvalue reference cannot bind to an rvalue
5380 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5381 ImplicitParamType);
5382 return ICS;
5383 }
5384 break;
5385
5386 case RQ_RValue:
5387 if (!FromClassification.isRValue()) {
5388 // rvalue reference cannot bind to an lvalue
5389 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5390 ImplicitParamType);
5391 return ICS;
5392 }
5393 break;
5394 }
5395
5396 // Success. Mark this as a reference binding.
5397 ICS.setStandard();
5398 ICS.Standard.setAsIdentityConversion();
5399 ICS.Standard.Second = SecondKind;
5400 ICS.Standard.setFromType(FromType);
5401 ICS.Standard.setAllToTypes(ImplicitParamType);
5402 ICS.Standard.ReferenceBinding = true;
5403 ICS.Standard.DirectBinding = true;
5404 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5405 ICS.Standard.BindsToFunctionLvalue = false;
5406 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5407 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5408 = (Method->getRefQualifier() == RQ_None);
5409 return ICS;
5410}
5411
5412/// PerformObjectArgumentInitialization - Perform initialization of
5413/// the implicit object parameter for the given Method with the given
5414/// expression.
5415ExprResult
5416Sema::PerformObjectArgumentInitialization(Expr *From,
5417 NestedNameSpecifier *Qualifier,
5418 NamedDecl *FoundDecl,
5419 CXXMethodDecl *Method) {
5420 QualType FromRecordType, DestType;
5421 QualType ImplicitParamRecordType =
5422 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5423
5424 Expr::Classification FromClassification;
5425 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5426 FromRecordType = PT->getPointeeType();
5427 DestType = Method->getThisType();
5428 FromClassification = Expr::Classification::makeSimpleLValue();
5429 } else {
5430 FromRecordType = From->getType();
5431 DestType = ImplicitParamRecordType;
5432 FromClassification = From->Classify(Context);
5433
5434 // When performing member access on an rvalue, materialize a temporary.
5435 if (From->isRValue()) {
5436 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5437 Method->getRefQualifier() !=
5438 RefQualifierKind::RQ_RValue);
5439 }
5440 }
5441
5442 // Note that we always use the true parent context when performing
5443 // the actual argument initialization.
5444 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5445 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5446 Method->getParent());
5447 if (ICS.isBad()) {
5448 switch (ICS.Bad.Kind) {
5449 case BadConversionSequence::bad_qualifiers: {
5450 Qualifiers FromQs = FromRecordType.getQualifiers();
5451 Qualifiers ToQs = DestType.getQualifiers();
5452 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5453 if (CVR) {
5454 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5455 << Method->getDeclName() << FromRecordType << (CVR - 1)
5456 << From->getSourceRange();
5457 Diag(Method->getLocation(), diag::note_previous_decl)
5458 << Method->getDeclName();
5459 return ExprError();
5460 }
5461 break;
5462 }
5463
5464 case BadConversionSequence::lvalue_ref_to_rvalue:
5465 case BadConversionSequence::rvalue_ref_to_lvalue: {
5466 bool IsRValueQualified =
5467 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5468 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5469 << Method->getDeclName() << FromClassification.isRValue()
5470 << IsRValueQualified;
5471 Diag(Method->getLocation(), diag::note_previous_decl)
5472 << Method->getDeclName();
5473 return ExprError();
5474 }
5475
5476 case BadConversionSequence::no_conversion:
5477 case BadConversionSequence::unrelated_class:
5478 break;
5479 }
5480
5481 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5482 << ImplicitParamRecordType << FromRecordType
5483 << From->getSourceRange();
5484 }
5485
5486 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5487 ExprResult FromRes =
5488 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5489 if (FromRes.isInvalid())
5490 return ExprError();
5491 From = FromRes.get();
5492 }
5493
5494 if (!Context.hasSameType(From->getType(), DestType)) {
5495 CastKind CK;
5496 QualType PteeTy = DestType->getPointeeType();
5497 LangAS DestAS =
5498 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5499 if (FromRecordType.getAddressSpace() != DestAS)
5500 CK = CK_AddressSpaceConversion;
5501 else
5502 CK = CK_NoOp;
5503 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5504 }
5505 return From;
5506}
5507
5508/// TryContextuallyConvertToBool - Attempt to contextually convert the
5509/// expression From to bool (C++0x [conv]p3).
5510static ImplicitConversionSequence
5511TryContextuallyConvertToBool(Sema &S, Expr *From) {
5512 // C++ [dcl.init]/17.8:
5513 // - Otherwise, if the initialization is direct-initialization, the source
5514 // type is std::nullptr_t, and the destination type is bool, the initial
5515 // value of the object being initialized is false.
5516 if (From->getType()->isNullPtrType())
5517 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5518 S.Context.BoolTy,
5519 From->isGLValue());
5520
5521 // All other direct-initialization of bool is equivalent to an implicit
5522 // conversion to bool in which explicit conversions are permitted.
5523 return TryImplicitConversion(S, From, S.Context.BoolTy,
5524 /*SuppressUserConversions=*/false,
5525 AllowedExplicit::Conversions,
5526 /*InOverloadResolution=*/false,
5527 /*CStyle=*/false,
5528 /*AllowObjCWritebackConversion=*/false,
5529 /*AllowObjCConversionOnExplicit=*/false);
5530}
5531
5532/// PerformContextuallyConvertToBool - Perform a contextual conversion
5533/// of the expression From to bool (C++0x [conv]p3).
5534ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5535 if (checkPlaceholderForOverload(*this, From))
5536 return ExprError();
5537
5538 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5539 if (!ICS.isBad())
5540 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5541
5542 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5543 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5544 << From->getType() << From->getSourceRange();
5545 return ExprError();
5546}
5547
5548/// Check that the specified conversion is permitted in a converted constant
5549/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5550/// is acceptable.
5551static bool CheckConvertedConstantConversions(Sema &S,
5552 StandardConversionSequence &SCS) {
5553 // Since we know that the target type is an integral or unscoped enumeration
5554 // type, most conversion kinds are impossible. All possible First and Third
5555 // conversions are fine.
5556 switch (SCS.Second) {
5557 case ICK_Identity:
5558 case ICK_Integral_Promotion:
5559 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5560 case ICK_Zero_Queue_Conversion:
5561 return true;
5562
5563 case ICK_Boolean_Conversion:
5564 // Conversion from an integral or unscoped enumeration type to bool is
5565 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5566 // conversion, so we allow it in a converted constant expression.
5567 //
5568 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5569 // a lot of popular code. We should at least add a warning for this
5570 // (non-conforming) extension.
5571 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5572 SCS.getToType(2)->isBooleanType();
5573
5574 case ICK_Pointer_Conversion:
5575 case ICK_Pointer_Member:
5576 // C++1z: null pointer conversions and null member pointer conversions are
5577 // only permitted if the source type is std::nullptr_t.
5578 return SCS.getFromType()->isNullPtrType();
5579
5580 case ICK_Floating_Promotion:
5581 case ICK_Complex_Promotion:
5582 case ICK_Floating_Conversion:
5583 case ICK_Complex_Conversion:
5584 case ICK_Floating_Integral:
5585 case ICK_Compatible_Conversion:
5586 case ICK_Derived_To_Base:
5587 case ICK_Vector_Conversion:
5588 case ICK_SVE_Vector_Conversion:
5589 case ICK_Vector_Splat:
5590 case ICK_Complex_Real:
5591 case ICK_Block_Pointer_Conversion:
5592 case ICK_TransparentUnionConversion:
5593 case ICK_Writeback_Conversion:
5594 case ICK_Zero_Event_Conversion:
5595 case ICK_C_Only_Conversion:
5596 case ICK_Incompatible_Pointer_Conversion:
5597 return false;
5598
5599 case ICK_Lvalue_To_Rvalue:
5600 case ICK_Array_To_Pointer:
5601 case ICK_Function_To_Pointer:
5602 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5602)
;
5603
5604 case ICK_Function_Conversion:
5605 case ICK_Qualification:
5606 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5606)
;
5607
5608 case ICK_Num_Conversion_Kinds:
5609 break;
5610 }
5611
5612 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5612)
;
5613}
5614
5615/// CheckConvertedConstantExpression - Check that the expression From is a
5616/// converted constant expression of type T, perform the conversion and produce
5617/// the converted expression, per C++11 [expr.const]p3.
5618static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5619 QualType T, APValue &Value,
5620 Sema::CCEKind CCE,
5621 bool RequireInt,
5622 NamedDecl *Dest) {
5623 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5624, __PRETTY_FUNCTION__))
5624 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5624, __PRETTY_FUNCTION__))
;
5625
5626 if (checkPlaceholderForOverload(S, From))
5627 return ExprError();
5628
5629 // C++1z [expr.const]p3:
5630 // A converted constant expression of type T is an expression,
5631 // implicitly converted to type T, where the converted
5632 // expression is a constant expression and the implicit conversion
5633 // sequence contains only [... list of conversions ...].
5634 // C++1z [stmt.if]p2:
5635 // If the if statement is of the form if constexpr, the value of the
5636 // condition shall be a contextually converted constant expression of type
5637 // bool.
5638 ImplicitConversionSequence ICS =
5639 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5640 ? TryContextuallyConvertToBool(S, From)
5641 : TryCopyInitialization(S, From, T,
5642 /*SuppressUserConversions=*/false,
5643 /*InOverloadResolution=*/false,
5644 /*AllowObjCWritebackConversion=*/false,
5645 /*AllowExplicit=*/false);
5646 StandardConversionSequence *SCS = nullptr;
5647 switch (ICS.getKind()) {
5648 case ImplicitConversionSequence::StandardConversion:
5649 SCS = &ICS.Standard;
5650 break;
5651 case ImplicitConversionSequence::UserDefinedConversion:
5652 if (T->isRecordType())
5653 SCS = &ICS.UserDefined.Before;
5654 else
5655 SCS = &ICS.UserDefined.After;
5656 break;
5657 case ImplicitConversionSequence::AmbiguousConversion:
5658 case ImplicitConversionSequence::BadConversion:
5659 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5660 return S.Diag(From->getBeginLoc(),
5661 diag::err_typecheck_converted_constant_expression)
5662 << From->getType() << From->getSourceRange() << T;
5663 return ExprError();
5664
5665 case ImplicitConversionSequence::EllipsisConversion:
5666 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5666)
;
5667 }
5668
5669 // Check that we would only use permitted conversions.
5670 if (!CheckConvertedConstantConversions(S, *SCS)) {
5671 return S.Diag(From->getBeginLoc(),
5672 diag::err_typecheck_converted_constant_expression_disallowed)
5673 << From->getType() << From->getSourceRange() << T;
5674 }
5675 // [...] and where the reference binding (if any) binds directly.
5676 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5677 return S.Diag(From->getBeginLoc(),
5678 diag::err_typecheck_converted_constant_expression_indirect)
5679 << From->getType() << From->getSourceRange() << T;
5680 }
5681
5682 // Usually we can simply apply the ImplicitConversionSequence we formed
5683 // earlier, but that's not guaranteed to work when initializing an object of
5684 // class type.
5685 ExprResult Result;
5686 if (T->isRecordType()) {
5687 assert(CCE == Sema::CCEK_TemplateArg &&((CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr"
) ? static_cast<void> (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5688, __PRETTY_FUNCTION__))
5688 "unexpected class type converted constant expr")((CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr"
) ? static_cast<void> (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5688, __PRETTY_FUNCTION__))
;
5689 Result = S.PerformCopyInitialization(
5690 InitializedEntity::InitializeTemplateParameter(
5691 T, cast<NonTypeTemplateParmDecl>(Dest)),
5692 SourceLocation(), From);
5693 } else {
5694 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5695 }
5696 if (Result.isInvalid())
5697 return Result;
5698
5699 // C++2a [intro.execution]p5:
5700 // A full-expression is [...] a constant-expression [...]
5701 Result =
5702 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5703 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5704 if (Result.isInvalid())
5705 return Result;
5706
5707 // Check for a narrowing implicit conversion.
5708 bool ReturnPreNarrowingValue = false;
5709 APValue PreNarrowingValue;
5710 QualType PreNarrowingType;
5711 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5712 PreNarrowingType)) {
5713 case NK_Dependent_Narrowing:
5714 // Implicit conversion to a narrower type, but the expression is
5715 // value-dependent so we can't tell whether it's actually narrowing.
5716 case NK_Variable_Narrowing:
5717 // Implicit conversion to a narrower type, and the value is not a constant
5718 // expression. We'll diagnose this in a moment.
5719 case NK_Not_Narrowing:
5720 break;
5721
5722 case NK_Constant_Narrowing:
5723 if (CCE == Sema::CCEK_ArrayBound &&
5724 PreNarrowingType->isIntegralOrEnumerationType() &&
5725 PreNarrowingValue.isInt()) {
5726 // Don't diagnose array bound narrowing here; we produce more precise
5727 // errors by allowing the un-narrowed value through.
5728 ReturnPreNarrowingValue = true;
5729 break;
5730 }
5731 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5732 << CCE << /*Constant*/ 1
5733 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5734 break;
5735
5736 case NK_Type_Narrowing:
5737 // FIXME: It would be better to diagnose that the expression is not a
5738 // constant expression.
5739 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5740 << CCE << /*Constant*/ 0 << From->getType() << T;
5741 break;
5742 }
5743
5744 if (Result.get()->isValueDependent()) {
5745 Value = APValue();
5746 return Result;
5747 }
5748
5749 // Check the expression is a constant expression.
5750 SmallVector<PartialDiagnosticAt, 8> Notes;
5751 Expr::EvalResult Eval;
5752 Eval.Diag = &Notes;
5753
5754 ConstantExprKind Kind;
5755 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5756 Kind = ConstantExprKind::ClassTemplateArgument;
5757 else if (CCE == Sema::CCEK_TemplateArg)
5758 Kind = ConstantExprKind::NonClassTemplateArgument;
5759 else
5760 Kind = ConstantExprKind::Normal;
5761
5762 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5763 (RequireInt && !Eval.Val.isInt())) {
5764 // The expression can't be folded, so we can't keep it at this position in
5765 // the AST.
5766 Result = ExprError();
5767 } else {
5768 Value = Eval.Val;
5769
5770 if (Notes.empty()) {
5771 // It's a constant expression.
5772 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5773 if (ReturnPreNarrowingValue)
5774 Value = std::move(PreNarrowingValue);
5775 return E;
5776 }
5777 }
5778
5779 // It's not a constant expression. Produce an appropriate diagnostic.
5780 if (Notes.size() == 1 &&
5781 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5782 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5783 } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5784 diag::note_constexpr_invalid_template_arg) {
5785 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5786 for (unsigned I = 0; I < Notes.size(); ++I)
5787 S.Diag(Notes[I].first, Notes[I].second);
5788 } else {
5789 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5790 << CCE << From->getSourceRange();
5791 for (unsigned I = 0; I < Notes.size(); ++I)
5792 S.Diag(Notes[I].first, Notes[I].second);
5793 }
5794 return ExprError();
5795}
5796
5797ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5798 APValue &Value, CCEKind CCE,
5799 NamedDecl *Dest) {
5800 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5801 Dest);
5802}
5803
5804ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5805 llvm::APSInt &Value,
5806 CCEKind CCE) {
5807 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-12~++20201129111111+e987fbdd85d/clang/lib/Sema/SemaOverload.cpp"
, 5807, __PRETTY_FUNCTION__))
;
5808
5809 APValue V;
5810 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5811 /*Dest=*/nullptr);
5812 if (!R.isInvalid() && !R.get()->isValueDependent())
5813 Value = V.getInt();
5814 return R;
5815}
5816
5817
5818/// dropPointerConversions - If the given standard conversion sequence
5819/// involves any pointer conversions, remove them. This may change
5820/// the result type of the conversion sequence.
5821static void dropPointerConversion(StandardConversionSequence &SCS) {
5822 if (SCS.Second == ICK_Pointer_Conversion) {
5823 SCS.Second = ICK_Identity;
5824 SCS.Third = ICK_Identity;
5825 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5826 }
5827}
5828
5829/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5830/// convert the expression From to an Objective-C pointer type.
5831static ImplicitConversionSequence
5832TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5833 // Do an implicit conversion to 'id'.
5834 QualType Ty = S.Context.getObjCIdType();
5835 ImplicitConversionSequence ICS
5836 = TryImplicitConversion(S, From, Ty,
5837 // FIXME: Are these flags correct?
5838 /*SuppressUserConversions=*/false,
5839 AllowedExplicit::Conversions,
5840 /*InOverloadResolution=*/false,
5841 /*CStyle=*/false,
5842 /*AllowObjCWritebackConversion=*/false,
5843 /*AllowObjCConversionOnExplicit=*/true);
5844
5845 // Strip off any final conversions to 'id'.
5846 switch (ICS.getKind()) {
5847 case ImplicitConversionSequence::BadConversion:
5848 case ImplicitConversionSequence::AmbiguousConversion:
5849 case ImplicitConversionSequence::EllipsisConversion:
5850 break;
5851
5852 case ImplicitConversionSequence::UserDefinedConversion:
5853 dropPointerConversion(ICS.UserDefined.After);
5854 break;
5855
5856 case ImplicitConversionSequence::StandardConversion:
5857 dropPointerConversion(ICS.Standard);
5858 break;
5859 }
5860
5861 return ICS;
5862}
5863
5864/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5865/// conversion of the expression From to an Objective-C pointer type.
5866/// Returns a valid but null ExprResult if no conversion sequence exists.
5867ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5868 if (checkPlaceholderForOverload(*this, From))
5869 return ExprError();
5870
5871 QualType Ty = Context.getObjCIdType();
5872 ImplicitConversionSequence ICS =
5873 TryContextuallyConvertToObjCPointer(*this, From);
5874 if (!ICS.isBad())
5875 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5876 return ExprResult();
5877}
5878
5879/// Determine whether the provided type is an integral type, or an enumeration
5880/// type of a permitted flavor.
5881bool Sema::ICEConvertDiagnoser::match(QualType T) {
5882 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5883 : T->isIntegralOrUnscopedEnumerationType();
5884}
5885
5886static ExprResult
5887diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5888 Sema::ContextualImplicitConverter &Converter,
5889 QualType T, UnresolvedSetImpl &ViableConversions) {
5890
5891 if (Converter.Suppress)
5892 return Ex