Bug Summary

File:clang/lib/Sema/SemaOverload.cpp
Warning:line 3864, column 20
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 DeclRefExpr *DRE = new (S.Context)
64 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
65 if (HadMultipleCandidates)
66 DRE->setHadMultipleCandidates(true);
67
68 S.MarkDeclRefReferenced(DRE, Base);
69 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
70 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
71 S.ResolveExceptionSpec(Loc, FPT);
72 DRE->setType(Fn->getType());
73 }
74 }
75 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
76 CK_FunctionToPointerDecay);
77}
78
79static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
80 bool InOverloadResolution,
81 StandardConversionSequence &SCS,
82 bool CStyle,
83 bool AllowObjCWritebackConversion);
84
85static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
86 QualType &ToType,
87 bool InOverloadResolution,
88 StandardConversionSequence &SCS,
89 bool CStyle);
90static OverloadingResult
91IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
92 UserDefinedConversionSequence& User,
93 OverloadCandidateSet& Conversions,
94 bool AllowExplicit,
95 bool AllowObjCConversionOnExplicit);
96
97
98static ImplicitConversionSequence::CompareKind
99CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
100 const StandardConversionSequence& SCS1,
101 const StandardConversionSequence& SCS2);
102
103static ImplicitConversionSequence::CompareKind
104CompareQualificationConversions(Sema &S,
105 const StandardConversionSequence& SCS1,
106 const StandardConversionSequence& SCS2);
107
108static ImplicitConversionSequence::CompareKind
109CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
110 const StandardConversionSequence& SCS1,
111 const StandardConversionSequence& SCS2);
112
113/// GetConversionRank - Retrieve the implicit conversion rank
114/// corresponding to the given implicit conversion kind.
115ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
116 static const ImplicitConversionRank
117 Rank[(int)ICK_Num_Conversion_Kinds] = {
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Exact_Match,
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Promotion,
125 ICR_Promotion,
126 ICR_Promotion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_OCL_Scalar_Widening,
138 ICR_Complex_Real_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Writeback_Conversion,
142 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
143 // it was omitted by the patch that added
144 // ICK_Zero_Event_Conversion
145 ICR_C_Conversion,
146 ICR_C_Conversion_Extension
147 };
148 return Rank[(int)Kind];
149}
150
151/// GetImplicitConversionName - Return the name of this kind of
152/// implicit conversion.
153static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
154 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
155 "No conversion",
156 "Lvalue-to-rvalue",
157 "Array-to-pointer",
158 "Function-to-pointer",
159 "Function pointer conversion",
160 "Qualification",
161 "Integral promotion",
162 "Floating point promotion",
163 "Complex promotion",
164 "Integral conversion",
165 "Floating conversion",
166 "Complex conversion",
167 "Floating-integral conversion",
168 "Pointer conversion",
169 "Pointer-to-member conversion",
170 "Boolean conversion",
171 "Compatible-types conversion",
172 "Derived-to-base conversion",
173 "Vector conversion",
174 "Vector splat",
175 "Complex-real conversion",
176 "Block Pointer conversion",
177 "Transparent Union Conversion",
178 "Writeback conversion",
179 "OpenCL Zero Event Conversion",
180 "C specific type conversion",
181 "Incompatible pointer conversion"
182 };
183 return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189 First = ICK_Identity;
190 Second = ICK_Identity;
191 Third = ICK_Identity;
192 DeprecatedStringLiteralToCharPtr = false;
193 QualificationIncludesObjCLifetime = false;
194 ReferenceBinding = false;
195 DirectBinding = false;
196 IsLvalueReference = true;
197 BindsToFunctionLvalue = false;
198 BindsToRvalue = false;
199 BindsImplicitObjectArgumentWithoutRefQualifier = false;
200 ObjCLifetimeConversionBinding = false;
201 CopyConstructor = nullptr;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208 ImplicitConversionRank Rank = ICR_Exact_Match;
209 if (GetConversionRank(First) > Rank)
210 Rank = GetConversionRank(First);
211 if (GetConversionRank(Second) > Rank)
212 Rank = GetConversionRank(Second);
213 if (GetConversionRank(Third) > Rank)
214 Rank = GetConversionRank(Third);
215 return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223 // Note that FromType has not necessarily been transformed by the
224 // array-to-pointer or function-to-pointer implicit conversions, so
225 // check for their presence as well as checking whether FromType is
226 // a pointer.
227 if (getToType(1)->isBooleanType() &&
228 (getFromType()->isPointerType() ||
229 getFromType()->isMemberPointerType() ||
230 getFromType()->isObjCObjectPointerType() ||
231 getFromType()->isBlockPointerType() ||
232 getFromType()->isNullPtrType() ||
233 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234 return true;
235
236 return false;
237}
238
239/// isPointerConversionToVoidPointer - Determines whether this
240/// conversion is a conversion of a pointer to a void pointer. This is
241/// used as part of the ranking of standard conversion sequences (C++
242/// 13.3.3.2p4).
243bool
244StandardConversionSequence::
245isPointerConversionToVoidPointer(ASTContext& Context) const {
246 QualType FromType = getFromType();
247 QualType ToType = getToType(1);
248
249 // Note that FromType has not necessarily been transformed by the
250 // array-to-pointer implicit conversion, so check for its presence
251 // and redo the conversion to get a pointer.
252 if (First == ICK_Array_To_Pointer)
253 FromType = Context.getArrayDecayedType(FromType);
254
255 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257 return ToPtrType->getPointeeType()->isVoidType();
258
259 return false;
260}
261
262/// Skip any implicit casts which could be either part of a narrowing conversion
263/// or after one in an implicit conversion.
264static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
265 const Expr *Converted) {
266 // We can have cleanups wrapping the converted expression; these need to be
267 // preserved so that destructors run if necessary.
268 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
269 Expr *Inner =
270 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
271 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
272 EWC->getObjects());
273 }
274
275 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
276 switch (ICE->getCastKind()) {
277 case CK_NoOp:
278 case CK_IntegralCast:
279 case CK_IntegralToBoolean:
280 case CK_IntegralToFloating:
281 case CK_BooleanToSignedIntegral:
282 case CK_FloatingToIntegral:
283 case CK_FloatingToBoolean:
284 case CK_FloatingCast:
285 Converted = ICE->getSubExpr();
286 continue;
287
288 default:
289 return Converted;
290 }
291 }
292
293 return Converted;
294}
295
296/// Check if this standard conversion sequence represents a narrowing
297/// conversion, according to C++11 [dcl.init.list]p7.
298///
299/// \param Ctx The AST context.
300/// \param Converted The result of applying this standard conversion sequence.
301/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
302/// value of the expression prior to the narrowing conversion.
303/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
304/// type of the expression prior to the narrowing conversion.
305/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
306/// from floating point types to integral types should be ignored.
307NarrowingKind StandardConversionSequence::getNarrowingKind(
308 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
309 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
310 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 // C++11 [dcl.init.list]p7:
313 // A narrowing conversion is an implicit conversion ...
314 QualType FromType = getToType(0);
315 QualType ToType = getToType(1);
316
317 // A conversion to an enumeration type is narrowing if the conversion to
318 // the underlying type is narrowing. This only arises for expressions of
319 // the form 'Enum{init}'.
320 if (auto *ET = ToType->getAs<EnumType>())
321 ToType = ET->getDecl()->getIntegerType();
322
323 switch (Second) {
324 // 'bool' is an integral type; dispatch to the right place to handle it.
325 case ICK_Boolean_Conversion:
326 if (FromType->isRealFloatingType())
327 goto FloatingIntegralConversion;
328 if (FromType->isIntegralOrUnscopedEnumerationType())
329 goto IntegralConversion;
330 // Boolean conversions can be from pointers and pointers to members
331 // [conv.bool], and those aren't considered narrowing conversions.
332 return NK_Not_Narrowing;
333
334 // -- from a floating-point type to an integer type, or
335 //
336 // -- from an integer type or unscoped enumeration type to a floating-point
337 // type, except where the source is a constant expression and the actual
338 // value after conversion will fit into the target type and will produce
339 // the original value when converted back to the original type, or
340 case ICK_Floating_Integral:
341 FloatingIntegralConversion:
342 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
343 return NK_Type_Narrowing;
344 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
345 ToType->isRealFloatingType()) {
346 if (IgnoreFloatToIntegralConversion)
347 return NK_Not_Narrowing;
348 llvm::APSInt IntConstantValue;
349 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
350 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 350, __PRETTY_FUNCTION__))
;
351
352 // If it's value-dependent, we can't tell whether it's narrowing.
353 if (Initializer->isValueDependent())
354 return NK_Dependent_Narrowing;
355
356 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
357 // Convert the integer to the floating type.
358 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
359 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
360 llvm::APFloat::rmNearestTiesToEven);
361 // And back.
362 llvm::APSInt ConvertedValue = IntConstantValue;
363 bool ignored;
364 Result.convertToInteger(ConvertedValue,
365 llvm::APFloat::rmTowardZero, &ignored);
366 // If the resulting value is different, this was a narrowing conversion.
367 if (IntConstantValue != ConvertedValue) {
368 ConstantValue = APValue(IntConstantValue);
369 ConstantType = Initializer->getType();
370 return NK_Constant_Narrowing;
371 }
372 } else {
373 // Variables are always narrowings.
374 return NK_Variable_Narrowing;
375 }
376 }
377 return NK_Not_Narrowing;
378
379 // -- from long double to double or float, or from double to float, except
380 // where the source is a constant expression and the actual value after
381 // conversion is within the range of values that can be represented (even
382 // if it cannot be represented exactly), or
383 case ICK_Floating_Conversion:
384 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
385 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
386 // FromType is larger than ToType.
387 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
388
389 // If it's value-dependent, we can't tell whether it's narrowing.
390 if (Initializer->isValueDependent())
391 return NK_Dependent_Narrowing;
392
393 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
394 // Constant!
395 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 395, __PRETTY_FUNCTION__))
;
396 llvm::APFloat FloatVal = ConstantValue.getFloat();
397 // Convert the source value into the target type.
398 bool ignored;
399 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
400 Ctx.getFloatTypeSemantics(ToType),
401 llvm::APFloat::rmNearestTiesToEven, &ignored);
402 // If there was no overflow, the source value is within the range of
403 // values that can be represented.
404 if (ConvertStatus & llvm::APFloat::opOverflow) {
405 ConstantType = Initializer->getType();
406 return NK_Constant_Narrowing;
407 }
408 } else {
409 return NK_Variable_Narrowing;
410 }
411 }
412 return NK_Not_Narrowing;
413
414 // -- from an integer type or unscoped enumeration type to an integer type
415 // that cannot represent all the values of the original type, except where
416 // the source is a constant expression and the actual value after
417 // conversion will fit into the target type and will produce the original
418 // value when converted back to the original type.
419 case ICK_Integral_Conversion:
420 IntegralConversion: {
421 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 421, __PRETTY_FUNCTION__))
;
422 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 422, __PRETTY_FUNCTION__))
;
423 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
424 const unsigned FromWidth = Ctx.getIntWidth(FromType);
425 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
426 const unsigned ToWidth = Ctx.getIntWidth(ToType);
427
428 if (FromWidth > ToWidth ||
429 (FromWidth == ToWidth && FromSigned != ToSigned) ||
430 (FromSigned && !ToSigned)) {
431 // Not all values of FromType can be represented in ToType.
432 llvm::APSInt InitializerValue;
433 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
434
435 // If it's value-dependent, we can't tell whether it's narrowing.
436 if (Initializer->isValueDependent())
437 return NK_Dependent_Narrowing;
438
439 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
440 // Such conversions on variables are always narrowing.
441 return NK_Variable_Narrowing;
442 }
443 bool Narrowing = false;
444 if (FromWidth < ToWidth) {
445 // Negative -> unsigned is narrowing. Otherwise, more bits is never
446 // narrowing.
447 if (InitializerValue.isSigned() && InitializerValue.isNegative())
448 Narrowing = true;
449 } else {
450 // Add a bit to the InitializerValue so we don't have to worry about
451 // signed vs. unsigned comparisons.
452 InitializerValue = InitializerValue.extend(
453 InitializerValue.getBitWidth() + 1);
454 // Convert the initializer to and from the target width and signed-ness.
455 llvm::APSInt ConvertedValue = InitializerValue;
456 ConvertedValue = ConvertedValue.trunc(ToWidth);
457 ConvertedValue.setIsSigned(ToSigned);
458 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
459 ConvertedValue.setIsSigned(InitializerValue.isSigned());
460 // If the result is different, this was a narrowing conversion.
461 if (ConvertedValue != InitializerValue)
462 Narrowing = true;
463 }
464 if (Narrowing) {
465 ConstantType = Initializer->getType();
466 ConstantValue = APValue(InitializerValue);
467 return NK_Constant_Narrowing;
468 }
469 }
470 return NK_Not_Narrowing;
471 }
472
473 default:
474 // Other kinds of conversions are not narrowings.
475 return NK_Not_Narrowing;
476 }
477}
478
479/// dump - Print this standard conversion sequence to standard
480/// error. Useful for debugging overloading issues.
481LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
482 raw_ostream &OS = llvm::errs();
483 bool PrintedSomething = false;
484 if (First != ICK_Identity) {
485 OS << GetImplicitConversionName(First);
486 PrintedSomething = true;
487 }
488
489 if (Second != ICK_Identity) {
490 if (PrintedSomething) {
491 OS << " -> ";
492 }
493 OS << GetImplicitConversionName(Second);
494
495 if (CopyConstructor) {
496 OS << " (by copy constructor)";
497 } else if (DirectBinding) {
498 OS << " (direct reference binding)";
499 } else if (ReferenceBinding) {
500 OS << " (reference binding)";
501 }
502 PrintedSomething = true;
503 }
504
505 if (Third != ICK_Identity) {
506 if (PrintedSomething) {
507 OS << " -> ";
508 }
509 OS << GetImplicitConversionName(Third);
510 PrintedSomething = true;
511 }
512
513 if (!PrintedSomething) {
514 OS << "No conversions required";
515 }
516}
517
518/// dump - Print this user-defined conversion sequence to standard
519/// error. Useful for debugging overloading issues.
520void UserDefinedConversionSequence::dump() const {
521 raw_ostream &OS = llvm::errs();
522 if (Before.First || Before.Second || Before.Third) {
523 Before.dump();
524 OS << " -> ";
525 }
526 if (ConversionFunction)
527 OS << '\'' << *ConversionFunction << '\'';
528 else
529 OS << "aggregate initialization";
530 if (After.First || After.Second || After.Third) {
531 OS << " -> ";
532 After.dump();
533 }
534}
535
536/// dump - Print this implicit conversion sequence to standard
537/// error. Useful for debugging overloading issues.
538void ImplicitConversionSequence::dump() const {
539 raw_ostream &OS = llvm::errs();
540 if (isStdInitializerListElement())
541 OS << "Worst std::initializer_list element conversion: ";
542 switch (ConversionKind) {
543 case StandardConversion:
544 OS << "Standard conversion: ";
545 Standard.dump();
546 break;
547 case UserDefinedConversion:
548 OS << "User-defined conversion: ";
549 UserDefined.dump();
550 break;
551 case EllipsisConversion:
552 OS << "Ellipsis conversion";
553 break;
554 case AmbiguousConversion:
555 OS << "Ambiguous conversion";
556 break;
557 case BadConversion:
558 OS << "Bad conversion";
559 break;
560 }
561
562 OS << "\n";
563}
564
565void AmbiguousConversionSequence::construct() {
566 new (&conversions()) ConversionSet();
567}
568
569void AmbiguousConversionSequence::destruct() {
570 conversions().~ConversionSet();
571}
572
573void
574AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
575 FromTypePtr = O.FromTypePtr;
576 ToTypePtr = O.ToTypePtr;
577 new (&conversions()) ConversionSet(O.conversions());
578}
579
580namespace {
581 // Structure used by DeductionFailureInfo to store
582 // template argument information.
583 struct DFIArguments {
584 TemplateArgument FirstArg;
585 TemplateArgument SecondArg;
586 };
587 // Structure used by DeductionFailureInfo to store
588 // template parameter and template argument information.
589 struct DFIParamWithArguments : DFIArguments {
590 TemplateParameter Param;
591 };
592 // Structure used by DeductionFailureInfo to store template argument
593 // information and the index of the problematic call argument.
594 struct DFIDeducedMismatchArgs : DFIArguments {
595 TemplateArgumentList *TemplateArgs;
596 unsigned CallArgIndex;
597 };
598 // Structure used by DeductionFailureInfo to store information about
599 // unsatisfied constraints.
600 struct CNSInfo {
601 TemplateArgumentList *TemplateArgs;
602 ConstraintSatisfaction Satisfaction;
603 };
604}
605
606/// Convert from Sema's representation of template deduction information
607/// to the form used in overload-candidate information.
608DeductionFailureInfo
609clang::MakeDeductionFailureInfo(ASTContext &Context,
610 Sema::TemplateDeductionResult TDK,
611 TemplateDeductionInfo &Info) {
612 DeductionFailureInfo Result;
613 Result.Result = static_cast<unsigned>(TDK);
614 Result.HasDiagnostic = false;
615 switch (TDK) {
616 case Sema::TDK_Invalid:
617 case Sema::TDK_InstantiationDepth:
618 case Sema::TDK_TooManyArguments:
619 case Sema::TDK_TooFewArguments:
620 case Sema::TDK_MiscellaneousDeductionFailure:
621 case Sema::TDK_CUDATargetMismatch:
622 Result.Data = nullptr;
623 break;
624
625 case Sema::TDK_Incomplete:
626 case Sema::TDK_InvalidExplicitArguments:
627 Result.Data = Info.Param.getOpaqueValue();
628 break;
629
630 case Sema::TDK_DeducedMismatch:
631 case Sema::TDK_DeducedMismatchNested: {
632 // FIXME: Should allocate from normal heap so that we can free this later.
633 auto *Saved = new (Context) DFIDeducedMismatchArgs;
634 Saved->FirstArg = Info.FirstArg;
635 Saved->SecondArg = Info.SecondArg;
636 Saved->TemplateArgs = Info.take();
637 Saved->CallArgIndex = Info.CallArgIndex;
638 Result.Data = Saved;
639 break;
640 }
641
642 case Sema::TDK_NonDeducedMismatch: {
643 // FIXME: Should allocate from normal heap so that we can free this later.
644 DFIArguments *Saved = new (Context) DFIArguments;
645 Saved->FirstArg = Info.FirstArg;
646 Saved->SecondArg = Info.SecondArg;
647 Result.Data = Saved;
648 break;
649 }
650
651 case Sema::TDK_IncompletePack:
652 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
653 case Sema::TDK_Inconsistent:
654 case Sema::TDK_Underqualified: {
655 // FIXME: Should allocate from normal heap so that we can free this later.
656 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
657 Saved->Param = Info.Param;
658 Saved->FirstArg = Info.FirstArg;
659 Saved->SecondArg = Info.SecondArg;
660 Result.Data = Saved;
661 break;
662 }
663
664 case Sema::TDK_SubstitutionFailure:
665 Result.Data = Info.take();
666 if (Info.hasSFINAEDiagnostic()) {
667 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
668 SourceLocation(), PartialDiagnostic::NullDiagnostic());
669 Info.takeSFINAEDiagnostic(*Diag);
670 Result.HasDiagnostic = true;
671 }
672 break;
673
674 case Sema::TDK_ConstraintsNotSatisfied: {
675 CNSInfo *Saved = new (Context) CNSInfo;
676 Saved->TemplateArgs = Info.take();
677 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
678 Result.Data = Saved;
679 break;
680 }
681
682 case Sema::TDK_Success:
683 case Sema::TDK_NonDependentConversionFailure:
684 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 684)
;
685 }
686
687 return Result;
688}
689
690void DeductionFailureInfo::Destroy() {
691 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
692 case Sema::TDK_Success:
693 case Sema::TDK_Invalid:
694 case Sema::TDK_InstantiationDepth:
695 case Sema::TDK_Incomplete:
696 case Sema::TDK_TooManyArguments:
697 case Sema::TDK_TooFewArguments:
698 case Sema::TDK_InvalidExplicitArguments:
699 case Sema::TDK_CUDATargetMismatch:
700 case Sema::TDK_NonDependentConversionFailure:
701 break;
702
703 case Sema::TDK_IncompletePack:
704 case Sema::TDK_Inconsistent:
705 case Sema::TDK_Underqualified:
706 case Sema::TDK_DeducedMismatch:
707 case Sema::TDK_DeducedMismatchNested:
708 case Sema::TDK_NonDeducedMismatch:
709 // FIXME: Destroy the data?
710 Data = nullptr;
711 break;
712
713 case Sema::TDK_SubstitutionFailure:
714 // FIXME: Destroy the template argument list?
715 Data = nullptr;
716 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
717 Diag->~PartialDiagnosticAt();
718 HasDiagnostic = false;
719 }
720 break;
721
722 case Sema::TDK_ConstraintsNotSatisfied:
723 // FIXME: Destroy the template argument list?
724 Data = nullptr;
725 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
726 Diag->~PartialDiagnosticAt();
727 HasDiagnostic = false;
728 }
729 break;
730
731 // Unhandled
732 case Sema::TDK_MiscellaneousDeductionFailure:
733 break;
734 }
735}
736
737PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
738 if (HasDiagnostic)
739 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
740 return nullptr;
741}
742
743TemplateParameter DeductionFailureInfo::getTemplateParameter() {
744 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
745 case Sema::TDK_Success:
746 case Sema::TDK_Invalid:
747 case Sema::TDK_InstantiationDepth:
748 case Sema::TDK_TooManyArguments:
749 case Sema::TDK_TooFewArguments:
750 case Sema::TDK_SubstitutionFailure:
751 case Sema::TDK_DeducedMismatch:
752 case Sema::TDK_DeducedMismatchNested:
753 case Sema::TDK_NonDeducedMismatch:
754 case Sema::TDK_CUDATargetMismatch:
755 case Sema::TDK_NonDependentConversionFailure:
756 case Sema::TDK_ConstraintsNotSatisfied:
757 return TemplateParameter();
758
759 case Sema::TDK_Incomplete:
760 case Sema::TDK_InvalidExplicitArguments:
761 return TemplateParameter::getFromOpaqueValue(Data);
762
763 case Sema::TDK_IncompletePack:
764 case Sema::TDK_Inconsistent:
765 case Sema::TDK_Underqualified:
766 return static_cast<DFIParamWithArguments*>(Data)->Param;
767
768 // Unhandled
769 case Sema::TDK_MiscellaneousDeductionFailure:
770 break;
771 }
772
773 return TemplateParameter();
774}
775
776TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
777 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
778 case Sema::TDK_Success:
779 case Sema::TDK_Invalid:
780 case Sema::TDK_InstantiationDepth:
781 case Sema::TDK_TooManyArguments:
782 case Sema::TDK_TooFewArguments:
783 case Sema::TDK_Incomplete:
784 case Sema::TDK_IncompletePack:
785 case Sema::TDK_InvalidExplicitArguments:
786 case Sema::TDK_Inconsistent:
787 case Sema::TDK_Underqualified:
788 case Sema::TDK_NonDeducedMismatch:
789 case Sema::TDK_CUDATargetMismatch:
790 case Sema::TDK_NonDependentConversionFailure:
791 return nullptr;
792
793 case Sema::TDK_DeducedMismatch:
794 case Sema::TDK_DeducedMismatchNested:
795 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
796
797 case Sema::TDK_SubstitutionFailure:
798 return static_cast<TemplateArgumentList*>(Data);
799
800 case Sema::TDK_ConstraintsNotSatisfied:
801 return static_cast<CNSInfo*>(Data)->TemplateArgs;
802
803 // Unhandled
804 case Sema::TDK_MiscellaneousDeductionFailure:
805 break;
806 }
807
808 return nullptr;
809}
810
811const TemplateArgument *DeductionFailureInfo::getFirstArg() {
812 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
813 case Sema::TDK_Success:
814 case Sema::TDK_Invalid:
815 case Sema::TDK_InstantiationDepth:
816 case Sema::TDK_Incomplete:
817 case Sema::TDK_TooManyArguments:
818 case Sema::TDK_TooFewArguments:
819 case Sema::TDK_InvalidExplicitArguments:
820 case Sema::TDK_SubstitutionFailure:
821 case Sema::TDK_CUDATargetMismatch:
822 case Sema::TDK_NonDependentConversionFailure:
823 case Sema::TDK_ConstraintsNotSatisfied:
824 return nullptr;
825
826 case Sema::TDK_IncompletePack:
827 case Sema::TDK_Inconsistent:
828 case Sema::TDK_Underqualified:
829 case Sema::TDK_DeducedMismatch:
830 case Sema::TDK_DeducedMismatchNested:
831 case Sema::TDK_NonDeducedMismatch:
832 return &static_cast<DFIArguments*>(Data)->FirstArg;
833
834 // Unhandled
835 case Sema::TDK_MiscellaneousDeductionFailure:
836 break;
837 }
838
839 return nullptr;
840}
841
842const TemplateArgument *DeductionFailureInfo::getSecondArg() {
843 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
844 case Sema::TDK_Success:
845 case Sema::TDK_Invalid:
846 case Sema::TDK_InstantiationDepth:
847 case Sema::TDK_Incomplete:
848 case Sema::TDK_IncompletePack:
849 case Sema::TDK_TooManyArguments:
850 case Sema::TDK_TooFewArguments:
851 case Sema::TDK_InvalidExplicitArguments:
852 case Sema::TDK_SubstitutionFailure:
853 case Sema::TDK_CUDATargetMismatch:
854 case Sema::TDK_NonDependentConversionFailure:
855 case Sema::TDK_ConstraintsNotSatisfied:
856 return nullptr;
857
858 case Sema::TDK_Inconsistent:
859 case Sema::TDK_Underqualified:
860 case Sema::TDK_DeducedMismatch:
861 case Sema::TDK_DeducedMismatchNested:
862 case Sema::TDK_NonDeducedMismatch:
863 return &static_cast<DFIArguments*>(Data)->SecondArg;
864
865 // Unhandled
866 case Sema::TDK_MiscellaneousDeductionFailure:
867 break;
868 }
869
870 return nullptr;
871}
872
873llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
874 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
875 case Sema::TDK_DeducedMismatch:
876 case Sema::TDK_DeducedMismatchNested:
877 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
878
879 default:
880 return llvm::None;
881 }
882}
883
884bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
885 OverloadedOperatorKind Op) {
886 if (!AllowRewrittenCandidates)
887 return false;
888 return Op == OO_EqualEqual || Op == OO_Spaceship;
889}
890
891bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
892 ASTContext &Ctx, const FunctionDecl *FD) {
893 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
894 return false;
895 // Don't bother adding a reversed candidate that can never be a better
896 // match than the non-reversed version.
897 return FD->getNumParams() != 2 ||
898 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
899 FD->getParamDecl(1)->getType()) ||
900 FD->hasAttr<EnableIfAttr>();
901}
902
903void OverloadCandidateSet::destroyCandidates() {
904 for (iterator i = begin(), e = end(); i != e; ++i) {
905 for (auto &C : i->Conversions)
906 C.~ImplicitConversionSequence();
907 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
908 i->DeductionFailure.Destroy();
909 }
910}
911
912void OverloadCandidateSet::clear(CandidateSetKind CSK) {
913 destroyCandidates();
914 SlabAllocator.Reset();
915 NumInlineBytesUsed = 0;
916 Candidates.clear();
917 Functions.clear();
918 Kind = CSK;
919}
920
921namespace {
922 class UnbridgedCastsSet {
923 struct Entry {
924 Expr **Addr;
925 Expr *Saved;
926 };
927 SmallVector<Entry, 2> Entries;
928
929 public:
930 void save(Sema &S, Expr *&E) {
931 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 931, __PRETTY_FUNCTION__))
;
932 Entry entry = { &E, E };
933 Entries.push_back(entry);
934 E = S.stripARCUnbridgedCast(E);
935 }
936
937 void restore() {
938 for (SmallVectorImpl<Entry>::iterator
939 i = Entries.begin(), e = Entries.end(); i != e; ++i)
940 *i->Addr = i->Saved;
941 }
942 };
943}
944
945/// checkPlaceholderForOverload - Do any interesting placeholder-like
946/// preprocessing on the given expression.
947///
948/// \param unbridgedCasts a collection to which to add unbridged casts;
949/// without this, they will be immediately diagnosed as errors
950///
951/// Return true on unrecoverable error.
952static bool
953checkPlaceholderForOverload(Sema &S, Expr *&E,
954 UnbridgedCastsSet *unbridgedCasts = nullptr) {
955 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
956 // We can't handle overloaded expressions here because overload
957 // resolution might reasonably tweak them.
958 if (placeholder->getKind() == BuiltinType::Overload) return false;
959
960 // If the context potentially accepts unbridged ARC casts, strip
961 // the unbridged cast and add it to the collection for later restoration.
962 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
963 unbridgedCasts) {
964 unbridgedCasts->save(S, E);
965 return false;
966 }
967
968 // Go ahead and check everything else.
969 ExprResult result = S.CheckPlaceholderExpr(E);
970 if (result.isInvalid())
971 return true;
972
973 E = result.get();
974 return false;
975 }
976
977 // Nothing to do.
978 return false;
979}
980
981/// checkArgPlaceholdersForOverload - Check a set of call operands for
982/// placeholders.
983static bool checkArgPlaceholdersForOverload(Sema &S,
984 MultiExprArg Args,
985 UnbridgedCastsSet &unbridged) {
986 for (unsigned i = 0, e = Args.size(); i != e; ++i)
987 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
988 return true;
989
990 return false;
991}
992
993/// Determine whether the given New declaration is an overload of the
994/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
995/// New and Old cannot be overloaded, e.g., if New has the same signature as
996/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
997/// functions (or function templates) at all. When it does return Ovl_Match or
998/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
999/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1000/// declaration.
1001///
1002/// Example: Given the following input:
1003///
1004/// void f(int, float); // #1
1005/// void f(int, int); // #2
1006/// int f(int, int); // #3
1007///
1008/// When we process #1, there is no previous declaration of "f", so IsOverload
1009/// will not be used.
1010///
1011/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1012/// the parameter types, we see that #1 and #2 are overloaded (since they have
1013/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1014/// unchanged.
1015///
1016/// When we process #3, Old is an overload set containing #1 and #2. We compare
1017/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1018/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1019/// functions are not part of the signature), IsOverload returns Ovl_Match and
1020/// MatchedDecl will be set to point to the FunctionDecl for #2.
1021///
1022/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1023/// by a using declaration. The rules for whether to hide shadow declarations
1024/// ignore some properties which otherwise figure into a function template's
1025/// signature.
1026Sema::OverloadKind
1027Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1028 NamedDecl *&Match, bool NewIsUsingDecl) {
1029 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1030 I != E; ++I) {
1031 NamedDecl *OldD = *I;
1032
1033 bool OldIsUsingDecl = false;
1034 if (isa<UsingShadowDecl>(OldD)) {
1035 OldIsUsingDecl = true;
1036
1037 // We can always introduce two using declarations into the same
1038 // context, even if they have identical signatures.
1039 if (NewIsUsingDecl) continue;
1040
1041 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1042 }
1043
1044 // A using-declaration does not conflict with another declaration
1045 // if one of them is hidden.
1046 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1047 continue;
1048
1049 // If either declaration was introduced by a using declaration,
1050 // we'll need to use slightly different rules for matching.
1051 // Essentially, these rules are the normal rules, except that
1052 // function templates hide function templates with different
1053 // return types or template parameter lists.
1054 bool UseMemberUsingDeclRules =
1055 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1056 !New->getFriendObjectKind();
1057
1058 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1059 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1060 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1061 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1062 continue;
1063 }
1064
1065 if (!isa<FunctionTemplateDecl>(OldD) &&
1066 !shouldLinkPossiblyHiddenDecl(*I, New))
1067 continue;
1068
1069 Match = *I;
1070 return Ovl_Match;
1071 }
1072
1073 // Builtins that have custom typechecking or have a reference should
1074 // not be overloadable or redeclarable.
1075 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1076 Match = *I;
1077 return Ovl_NonFunction;
1078 }
1079 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1080 // We can overload with these, which can show up when doing
1081 // redeclaration checks for UsingDecls.
1082 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1082, __PRETTY_FUNCTION__))
;
1083 } else if (isa<TagDecl>(OldD)) {
1084 // We can always overload with tags by hiding them.
1085 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1086 // Optimistically assume that an unresolved using decl will
1087 // overload; if it doesn't, we'll have to diagnose during
1088 // template instantiation.
1089 //
1090 // Exception: if the scope is dependent and this is not a class
1091 // member, the using declaration can only introduce an enumerator.
1092 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1093 Match = *I;
1094 return Ovl_NonFunction;
1095 }
1096 } else {
1097 // (C++ 13p1):
1098 // Only function declarations can be overloaded; object and type
1099 // declarations cannot be overloaded.
1100 Match = *I;
1101 return Ovl_NonFunction;
1102 }
1103 }
1104
1105 // C++ [temp.friend]p1:
1106 // For a friend function declaration that is not a template declaration:
1107 // -- if the name of the friend is a qualified or unqualified template-id,
1108 // [...], otherwise
1109 // -- if the name of the friend is a qualified-id and a matching
1110 // non-template function is found in the specified class or namespace,
1111 // the friend declaration refers to that function, otherwise,
1112 // -- if the name of the friend is a qualified-id and a matching function
1113 // template is found in the specified class or namespace, the friend
1114 // declaration refers to the deduced specialization of that function
1115 // template, otherwise
1116 // -- the name shall be an unqualified-id [...]
1117 // If we get here for a qualified friend declaration, we've just reached the
1118 // third bullet. If the type of the friend is dependent, skip this lookup
1119 // until instantiation.
1120 if (New->getFriendObjectKind() && New->getQualifier() &&
1121 !New->getDescribedFunctionTemplate() &&
1122 !New->getDependentSpecializationInfo() &&
1123 !New->getType()->isDependentType()) {
1124 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1125 TemplateSpecResult.addAllDecls(Old);
1126 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1127 /*QualifiedFriend*/true)) {
1128 New->setInvalidDecl();
1129 return Ovl_Overload;
1130 }
1131
1132 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1133 return Ovl_Match;
1134 }
1135
1136 return Ovl_Overload;
1137}
1138
1139bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1140 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1141 bool ConsiderRequiresClauses) {
1142 // C++ [basic.start.main]p2: This function shall not be overloaded.
1143 if (New->isMain())
1144 return false;
1145
1146 // MSVCRT user defined entry points cannot be overloaded.
1147 if (New->isMSVCRTEntryPoint())
1148 return false;
1149
1150 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1151 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1152
1153 // C++ [temp.fct]p2:
1154 // A function template can be overloaded with other function templates
1155 // and with normal (non-template) functions.
1156 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1157 return true;
1158
1159 // Is the function New an overload of the function Old?
1160 QualType OldQType = Context.getCanonicalType(Old->getType());
1161 QualType NewQType = Context.getCanonicalType(New->getType());
1162
1163 // Compare the signatures (C++ 1.3.10) of the two functions to
1164 // determine whether they are overloads. If we find any mismatch
1165 // in the signature, they are overloads.
1166
1167 // If either of these functions is a K&R-style function (no
1168 // prototype), then we consider them to have matching signatures.
1169 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1170 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1171 return false;
1172
1173 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1174 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1175
1176 // The signature of a function includes the types of its
1177 // parameters (C++ 1.3.10), which includes the presence or absence
1178 // of the ellipsis; see C++ DR 357).
1179 if (OldQType != NewQType &&
1180 (OldType->getNumParams() != NewType->getNumParams() ||
1181 OldType->isVariadic() != NewType->isVariadic() ||
1182 !FunctionParamTypesAreEqual(OldType, NewType)))
1183 return true;
1184
1185 // C++ [temp.over.link]p4:
1186 // The signature of a function template consists of its function
1187 // signature, its return type and its template parameter list. The names
1188 // of the template parameters are significant only for establishing the
1189 // relationship between the template parameters and the rest of the
1190 // signature.
1191 //
1192 // We check the return type and template parameter lists for function
1193 // templates first; the remaining checks follow.
1194 //
1195 // However, we don't consider either of these when deciding whether
1196 // a member introduced by a shadow declaration is hidden.
1197 if (!UseMemberUsingDeclRules && NewTemplate &&
1198 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1199 OldTemplate->getTemplateParameters(),
1200 false, TPL_TemplateMatch) ||
1201 !Context.hasSameType(Old->getDeclaredReturnType(),
1202 New->getDeclaredReturnType())))
1203 return true;
1204
1205 // If the function is a class member, its signature includes the
1206 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1207 //
1208 // As part of this, also check whether one of the member functions
1209 // is static, in which case they are not overloads (C++
1210 // 13.1p2). While not part of the definition of the signature,
1211 // this check is important to determine whether these functions
1212 // can be overloaded.
1213 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1214 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1215 if (OldMethod && NewMethod &&
1216 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1217 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1218 if (!UseMemberUsingDeclRules &&
1219 (OldMethod->getRefQualifier() == RQ_None ||
1220 NewMethod->getRefQualifier() == RQ_None)) {
1221 // C++0x [over.load]p2:
1222 // - Member function declarations with the same name and the same
1223 // parameter-type-list as well as member function template
1224 // declarations with the same name, the same parameter-type-list, and
1225 // the same template parameter lists cannot be overloaded if any of
1226 // them, but not all, have a ref-qualifier (8.3.5).
1227 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1228 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1229 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1230 }
1231 return true;
1232 }
1233
1234 // We may not have applied the implicit const for a constexpr member
1235 // function yet (because we haven't yet resolved whether this is a static
1236 // or non-static member function). Add it now, on the assumption that this
1237 // is a redeclaration of OldMethod.
1238 auto OldQuals = OldMethod->getMethodQualifiers();
1239 auto NewQuals = NewMethod->getMethodQualifiers();
1240 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1241 !isa<CXXConstructorDecl>(NewMethod))
1242 NewQuals.addConst();
1243 // We do not allow overloading based off of '__restrict'.
1244 OldQuals.removeRestrict();
1245 NewQuals.removeRestrict();
1246 if (OldQuals != NewQuals)
1247 return true;
1248 }
1249
1250 // Though pass_object_size is placed on parameters and takes an argument, we
1251 // consider it to be a function-level modifier for the sake of function
1252 // identity. Either the function has one or more parameters with
1253 // pass_object_size or it doesn't.
1254 if (functionHasPassObjectSizeParams(New) !=
1255 functionHasPassObjectSizeParams(Old))
1256 return true;
1257
1258 // enable_if attributes are an order-sensitive part of the signature.
1259 for (specific_attr_iterator<EnableIfAttr>
1260 NewI = New->specific_attr_begin<EnableIfAttr>(),
1261 NewE = New->specific_attr_end<EnableIfAttr>(),
1262 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1263 OldE = Old->specific_attr_end<EnableIfAttr>();
1264 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1265 if (NewI == NewE || OldI == OldE)
1266 return true;
1267 llvm::FoldingSetNodeID NewID, OldID;
1268 NewI->getCond()->Profile(NewID, Context, true);
1269 OldI->getCond()->Profile(OldID, Context, true);
1270 if (NewID != OldID)
1271 return true;
1272 }
1273
1274 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1275 // Don't allow overloading of destructors. (In theory we could, but it
1276 // would be a giant change to clang.)
1277 if (!isa<CXXDestructorDecl>(New)) {
1278 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1279 OldTarget = IdentifyCUDATarget(Old);
1280 if (NewTarget != CFT_InvalidTarget) {
1281 assert((OldTarget != CFT_InvalidTarget) &&(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1282, __PRETTY_FUNCTION__))
1282 "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1282, __PRETTY_FUNCTION__))
;
1283
1284 // Allow overloading of functions with same signature and different CUDA
1285 // target attributes.
1286 if (NewTarget != OldTarget)
1287 return true;
1288 }
1289 }
1290 }
1291
1292 if (ConsiderRequiresClauses) {
1293 Expr *NewRC = New->getTrailingRequiresClause(),
1294 *OldRC = Old->getTrailingRequiresClause();
1295 if ((NewRC != nullptr) != (OldRC != nullptr))
1296 // RC are most certainly different - these are overloads.
1297 return true;
1298
1299 if (NewRC) {
1300 llvm::FoldingSetNodeID NewID, OldID;
1301 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1302 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1303 if (NewID != OldID)
1304 // RCs are not equivalent - these are overloads.
1305 return true;
1306 }
1307 }
1308
1309 // The signatures match; this is not an overload.
1310 return false;
1311}
1312
1313/// Tries a user-defined conversion from From to ToType.
1314///
1315/// Produces an implicit conversion sequence for when a standard conversion
1316/// is not an option. See TryImplicitConversion for more information.
1317static ImplicitConversionSequence
1318TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1319 bool SuppressUserConversions,
1320 bool AllowExplicit,
1321 bool InOverloadResolution,
1322 bool CStyle,
1323 bool AllowObjCWritebackConversion,
1324 bool AllowObjCConversionOnExplicit) {
1325 ImplicitConversionSequence ICS;
1326
1327 if (SuppressUserConversions) {
1328 // We're not in the case above, so there is no conversion that
1329 // we can perform.
1330 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1331 return ICS;
1332 }
1333
1334 // Attempt user-defined conversion.
1335 OverloadCandidateSet Conversions(From->getExprLoc(),
1336 OverloadCandidateSet::CSK_Normal);
1337 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1338 Conversions, AllowExplicit,
1339 AllowObjCConversionOnExplicit)) {
1340 case OR_Success:
1341 case OR_Deleted:
1342 ICS.setUserDefined();
1343 // C++ [over.ics.user]p4:
1344 // A conversion of an expression of class type to the same class
1345 // type is given Exact Match rank, and a conversion of an
1346 // expression of class type to a base class of that type is
1347 // given Conversion rank, in spite of the fact that a copy
1348 // constructor (i.e., a user-defined conversion function) is
1349 // called for those cases.
1350 if (CXXConstructorDecl *Constructor
1351 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1352 QualType FromCanon
1353 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1354 QualType ToCanon
1355 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1356 if (Constructor->isCopyConstructor() &&
1357 (FromCanon == ToCanon ||
1358 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1359 // Turn this into a "standard" conversion sequence, so that it
1360 // gets ranked with standard conversion sequences.
1361 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1362 ICS.setStandard();
1363 ICS.Standard.setAsIdentityConversion();
1364 ICS.Standard.setFromType(From->getType());
1365 ICS.Standard.setAllToTypes(ToType);
1366 ICS.Standard.CopyConstructor = Constructor;
1367 ICS.Standard.FoundCopyConstructor = Found;
1368 if (ToCanon != FromCanon)
1369 ICS.Standard.Second = ICK_Derived_To_Base;
1370 }
1371 }
1372 break;
1373
1374 case OR_Ambiguous:
1375 ICS.setAmbiguous();
1376 ICS.Ambiguous.setFromType(From->getType());
1377 ICS.Ambiguous.setToType(ToType);
1378 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1379 Cand != Conversions.end(); ++Cand)
1380 if (Cand->Best)
1381 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1382 break;
1383
1384 // Fall through.
1385 case OR_No_Viable_Function:
1386 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1387 break;
1388 }
1389
1390 return ICS;
1391}
1392
1393/// TryImplicitConversion - Attempt to perform an implicit conversion
1394/// from the given expression (Expr) to the given type (ToType). This
1395/// function returns an implicit conversion sequence that can be used
1396/// to perform the initialization. Given
1397///
1398/// void f(float f);
1399/// void g(int i) { f(i); }
1400///
1401/// this routine would produce an implicit conversion sequence to
1402/// describe the initialization of f from i, which will be a standard
1403/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1404/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1405//
1406/// Note that this routine only determines how the conversion can be
1407/// performed; it does not actually perform the conversion. As such,
1408/// it will not produce any diagnostics if no conversion is available,
1409/// but will instead return an implicit conversion sequence of kind
1410/// "BadConversion".
1411///
1412/// If @p SuppressUserConversions, then user-defined conversions are
1413/// not permitted.
1414/// If @p AllowExplicit, then explicit user-defined conversions are
1415/// permitted.
1416///
1417/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1418/// writeback conversion, which allows __autoreleasing id* parameters to
1419/// be initialized with __strong id* or __weak id* arguments.
1420static ImplicitConversionSequence
1421TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1422 bool SuppressUserConversions,
1423 bool AllowExplicit,
1424 bool InOverloadResolution,
1425 bool CStyle,
1426 bool AllowObjCWritebackConversion,
1427 bool AllowObjCConversionOnExplicit) {
1428 ImplicitConversionSequence ICS;
1429 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1430 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1431 ICS.setStandard();
1432 return ICS;
1433 }
1434
1435 if (!S.getLangOpts().CPlusPlus) {
1436 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1437 return ICS;
1438 }
1439
1440 // C++ [over.ics.user]p4:
1441 // A conversion of an expression of class type to the same class
1442 // type is given Exact Match rank, and a conversion of an
1443 // expression of class type to a base class of that type is
1444 // given Conversion rank, in spite of the fact that a copy/move
1445 // constructor (i.e., a user-defined conversion function) is
1446 // called for those cases.
1447 QualType FromType = From->getType();
1448 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1449 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1450 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1451 ICS.setStandard();
1452 ICS.Standard.setAsIdentityConversion();
1453 ICS.Standard.setFromType(FromType);
1454 ICS.Standard.setAllToTypes(ToType);
1455
1456 // We don't actually check at this point whether there is a valid
1457 // copy/move constructor, since overloading just assumes that it
1458 // exists. When we actually perform initialization, we'll find the
1459 // appropriate constructor to copy the returned object, if needed.
1460 ICS.Standard.CopyConstructor = nullptr;
1461
1462 // Determine whether this is considered a derived-to-base conversion.
1463 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1464 ICS.Standard.Second = ICK_Derived_To_Base;
1465
1466 return ICS;
1467 }
1468
1469 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1470 AllowExplicit, InOverloadResolution, CStyle,
1471 AllowObjCWritebackConversion,
1472 AllowObjCConversionOnExplicit);
1473}
1474
1475ImplicitConversionSequence
1476Sema::TryImplicitConversion(Expr *From, QualType ToType,
1477 bool SuppressUserConversions,
1478 bool AllowExplicit,
1479 bool InOverloadResolution,
1480 bool CStyle,
1481 bool AllowObjCWritebackConversion) {
1482 return ::TryImplicitConversion(*this, From, ToType,
1483 SuppressUserConversions, AllowExplicit,
1484 InOverloadResolution, CStyle,
1485 AllowObjCWritebackConversion,
1486 /*AllowObjCConversionOnExplicit=*/false);
1487}
1488
1489/// PerformImplicitConversion - Perform an implicit conversion of the
1490/// expression From to the type ToType. Returns the
1491/// converted expression. Flavor is the kind of conversion we're
1492/// performing, used in the error message. If @p AllowExplicit,
1493/// explicit user-defined conversions are permitted.
1494ExprResult
1495Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1496 AssignmentAction Action, bool AllowExplicit) {
1497 ImplicitConversionSequence ICS;
1498 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1499}
1500
1501ExprResult
1502Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1503 AssignmentAction Action, bool AllowExplicit,
1504 ImplicitConversionSequence& ICS) {
1505 if (checkPlaceholderForOverload(*this, From))
1506 return ExprError();
1507
1508 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1509 bool AllowObjCWritebackConversion
1510 = getLangOpts().ObjCAutoRefCount &&
1511 (Action == AA_Passing || Action == AA_Sending);
1512 if (getLangOpts().ObjC)
1513 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1514 From->getType(), From);
1515 ICS = ::TryImplicitConversion(*this, From, ToType,
1516 /*SuppressUserConversions=*/false,
1517 AllowExplicit,
1518 /*InOverloadResolution=*/false,
1519 /*CStyle=*/false,
1520 AllowObjCWritebackConversion,
1521 /*AllowObjCConversionOnExplicit=*/false);
1522 return PerformImplicitConversion(From, ToType, ICS, Action);
1523}
1524
1525/// Determine whether the conversion from FromType to ToType is a valid
1526/// conversion that strips "noexcept" or "noreturn" off the nested function
1527/// type.
1528bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1529 QualType &ResultTy) {
1530 if (Context.hasSameUnqualifiedType(FromType, ToType))
1531 return false;
1532
1533 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1534 // or F(t noexcept) -> F(t)
1535 // where F adds one of the following at most once:
1536 // - a pointer
1537 // - a member pointer
1538 // - a block pointer
1539 // Changes here need matching changes in FindCompositePointerType.
1540 CanQualType CanTo = Context.getCanonicalType(ToType);
1541 CanQualType CanFrom = Context.getCanonicalType(FromType);
1542 Type::TypeClass TyClass = CanTo->getTypeClass();
1543 if (TyClass != CanFrom->getTypeClass()) return false;
1544 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1545 if (TyClass == Type::Pointer) {
1546 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1547 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1548 } else if (TyClass == Type::BlockPointer) {
1549 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1550 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1551 } else if (TyClass == Type::MemberPointer) {
1552 auto ToMPT = CanTo.castAs<MemberPointerType>();
1553 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1554 // A function pointer conversion cannot change the class of the function.
1555 if (ToMPT->getClass() != FromMPT->getClass())
1556 return false;
1557 CanTo = ToMPT->getPointeeType();
1558 CanFrom = FromMPT->getPointeeType();
1559 } else {
1560 return false;
1561 }
1562
1563 TyClass = CanTo->getTypeClass();
1564 if (TyClass != CanFrom->getTypeClass()) return false;
1565 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1566 return false;
1567 }
1568
1569 const auto *FromFn = cast<FunctionType>(CanFrom);
1570 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1571
1572 const auto *ToFn = cast<FunctionType>(CanTo);
1573 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1574
1575 bool Changed = false;
1576
1577 // Drop 'noreturn' if not present in target type.
1578 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1579 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1580 Changed = true;
1581 }
1582
1583 // Drop 'noexcept' if not present in target type.
1584 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1585 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1586 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1587 FromFn = cast<FunctionType>(
1588 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1589 EST_None)
1590 .getTypePtr());
1591 Changed = true;
1592 }
1593
1594 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1595 // only if the ExtParameterInfo lists of the two function prototypes can be
1596 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1597 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1598 bool CanUseToFPT, CanUseFromFPT;
1599 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1600 CanUseFromFPT, NewParamInfos) &&
1601 CanUseToFPT && !CanUseFromFPT) {
1602 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1603 ExtInfo.ExtParameterInfos =
1604 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1605 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1606 FromFPT->getParamTypes(), ExtInfo);
1607 FromFn = QT->getAs<FunctionType>();
1608 Changed = true;
1609 }
1610 }
1611
1612 if (!Changed)
1613 return false;
1614
1615 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1615, __PRETTY_FUNCTION__))
;
1616 if (QualType(FromFn, 0) != CanTo) return false;
1617
1618 ResultTy = ToType;
1619 return true;
1620}
1621
1622/// Determine whether the conversion from FromType to ToType is a valid
1623/// vector conversion.
1624///
1625/// \param ICK Will be set to the vector conversion kind, if this is a vector
1626/// conversion.
1627static bool IsVectorConversion(Sema &S, QualType FromType,
1628 QualType ToType, ImplicitConversionKind &ICK) {
1629 // We need at least one of these types to be a vector type to have a vector
1630 // conversion.
1631 if (!ToType->isVectorType() && !FromType->isVectorType())
1632 return false;
1633
1634 // Identical types require no conversions.
1635 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1636 return false;
1637
1638 // There are no conversions between extended vector types, only identity.
1639 if (ToType->isExtVectorType()) {
1640 // There are no conversions between extended vector types other than the
1641 // identity conversion.
1642 if (FromType->isExtVectorType())
1643 return false;
1644
1645 // Vector splat from any arithmetic type to a vector.
1646 if (FromType->isArithmeticType()) {
1647 ICK = ICK_Vector_Splat;
1648 return true;
1649 }
1650 }
1651
1652 // We can perform the conversion between vector types in the following cases:
1653 // 1)vector types are equivalent AltiVec and GCC vector types
1654 // 2)lax vector conversions are permitted and the vector types are of the
1655 // same size
1656 if (ToType->isVectorType() && FromType->isVectorType()) {
1657 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1658 S.isLaxVectorConversion(FromType, ToType)) {
1659 ICK = ICK_Vector_Conversion;
1660 return true;
1661 }
1662 }
1663
1664 return false;
1665}
1666
1667static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1668 bool InOverloadResolution,
1669 StandardConversionSequence &SCS,
1670 bool CStyle);
1671
1672/// IsStandardConversion - Determines whether there is a standard
1673/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1674/// expression From to the type ToType. Standard conversion sequences
1675/// only consider non-class types; for conversions that involve class
1676/// types, use TryImplicitConversion. If a conversion exists, SCS will
1677/// contain the standard conversion sequence required to perform this
1678/// conversion and this routine will return true. Otherwise, this
1679/// routine will return false and the value of SCS is unspecified.
1680static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1681 bool InOverloadResolution,
1682 StandardConversionSequence &SCS,
1683 bool CStyle,
1684 bool AllowObjCWritebackConversion) {
1685 QualType FromType = From->getType();
1686
1687 // Standard conversions (C++ [conv])
1688 SCS.setAsIdentityConversion();
1689 SCS.IncompatibleObjC = false;
1690 SCS.setFromType(FromType);
1691 SCS.CopyConstructor = nullptr;
1692
1693 // There are no standard conversions for class types in C++, so
1694 // abort early. When overloading in C, however, we do permit them.
1695 if (S.getLangOpts().CPlusPlus &&
1696 (FromType->isRecordType() || ToType->isRecordType()))
1697 return false;
1698
1699 // The first conversion can be an lvalue-to-rvalue conversion,
1700 // array-to-pointer conversion, or function-to-pointer conversion
1701 // (C++ 4p1).
1702
1703 if (FromType == S.Context.OverloadTy) {
1704 DeclAccessPair AccessPair;
1705 if (FunctionDecl *Fn
1706 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1707 AccessPair)) {
1708 // We were able to resolve the address of the overloaded function,
1709 // so we can convert to the type of that function.
1710 FromType = Fn->getType();
1711 SCS.setFromType(FromType);
1712
1713 // we can sometimes resolve &foo<int> regardless of ToType, so check
1714 // if the type matches (identity) or we are converting to bool
1715 if (!S.Context.hasSameUnqualifiedType(
1716 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1717 QualType resultTy;
1718 // if the function type matches except for [[noreturn]], it's ok
1719 if (!S.IsFunctionConversion(FromType,
1720 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1721 // otherwise, only a boolean conversion is standard
1722 if (!ToType->isBooleanType())
1723 return false;
1724 }
1725
1726 // Check if the "from" expression is taking the address of an overloaded
1727 // function and recompute the FromType accordingly. Take advantage of the
1728 // fact that non-static member functions *must* have such an address-of
1729 // expression.
1730 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1731 if (Method && !Method->isStatic()) {
1732 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1733, __PRETTY_FUNCTION__))
1733 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1733, __PRETTY_FUNCTION__))
;
1734 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
1735 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
1736 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
;
1737 const Type *ClassType
1738 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1739 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1740 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1741 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1743, __PRETTY_FUNCTION__))
1742 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1743, __PRETTY_FUNCTION__))
1743 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1743, __PRETTY_FUNCTION__))
;
1744 FromType = S.Context.getPointerType(FromType);
1745 }
1746
1747 // Check that we've computed the proper type after overload resolution.
1748 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1749 // be calling it from within an NDEBUG block.
1750 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1752, __PRETTY_FUNCTION__))
1751 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1752, __PRETTY_FUNCTION__))
1752 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 1752, __PRETTY_FUNCTION__))
;
1753 } else {
1754 return false;
1755 }
1756 }
1757 // Lvalue-to-rvalue conversion (C++11 4.1):
1758 // A glvalue (3.10) of a non-function, non-array type T can
1759 // be converted to a prvalue.
1760 bool argIsLValue = From->isGLValue();
1761 if (argIsLValue &&
1762 !FromType->isFunctionType() && !FromType->isArrayType() &&
1763 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1764 SCS.First = ICK_Lvalue_To_Rvalue;
1765
1766 // C11 6.3.2.1p2:
1767 // ... if the lvalue has atomic type, the value has the non-atomic version
1768 // of the type of the lvalue ...
1769 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1770 FromType = Atomic->getValueType();
1771
1772 // If T is a non-class type, the type of the rvalue is the
1773 // cv-unqualified version of T. Otherwise, the type of the rvalue
1774 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1775 // just strip the qualifiers because they don't matter.
1776 FromType = FromType.getUnqualifiedType();
1777 } else if (FromType->isArrayType()) {
1778 // Array-to-pointer conversion (C++ 4.2)
1779 SCS.First = ICK_Array_To_Pointer;
1780
1781 // An lvalue or rvalue of type "array of N T" or "array of unknown
1782 // bound of T" can be converted to an rvalue of type "pointer to
1783 // T" (C++ 4.2p1).
1784 FromType = S.Context.getArrayDecayedType(FromType);
1785
1786 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1787 // This conversion is deprecated in C++03 (D.4)
1788 SCS.DeprecatedStringLiteralToCharPtr = true;
1789
1790 // For the purpose of ranking in overload resolution
1791 // (13.3.3.1.1), this conversion is considered an
1792 // array-to-pointer conversion followed by a qualification
1793 // conversion (4.4). (C++ 4.2p2)
1794 SCS.Second = ICK_Identity;
1795 SCS.Third = ICK_Qualification;
1796 SCS.QualificationIncludesObjCLifetime = false;
1797 SCS.setAllToTypes(FromType);
1798 return true;
1799 }
1800 } else if (FromType->isFunctionType() && argIsLValue) {
1801 // Function-to-pointer conversion (C++ 4.3).
1802 SCS.First = ICK_Function_To_Pointer;
1803
1804 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1805 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1806 if (!S.checkAddressOfFunctionIsAvailable(FD))
1807 return false;
1808
1809 // An lvalue of function type T can be converted to an rvalue of
1810 // type "pointer to T." The result is a pointer to the
1811 // function. (C++ 4.3p1).
1812 FromType = S.Context.getPointerType(FromType);
1813 } else {
1814 // We don't require any conversions for the first step.
1815 SCS.First = ICK_Identity;
1816 }
1817 SCS.setToType(0, FromType);
1818
1819 // The second conversion can be an integral promotion, floating
1820 // point promotion, integral conversion, floating point conversion,
1821 // floating-integral conversion, pointer conversion,
1822 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1823 // For overloading in C, this can also be a "compatible-type"
1824 // conversion.
1825 bool IncompatibleObjC = false;
1826 ImplicitConversionKind SecondICK = ICK_Identity;
1827 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1828 // The unqualified versions of the types are the same: there's no
1829 // conversion to do.
1830 SCS.Second = ICK_Identity;
1831 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1832 // Integral promotion (C++ 4.5).
1833 SCS.Second = ICK_Integral_Promotion;
1834 FromType = ToType.getUnqualifiedType();
1835 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1836 // Floating point promotion (C++ 4.6).
1837 SCS.Second = ICK_Floating_Promotion;
1838 FromType = ToType.getUnqualifiedType();
1839 } else if (S.IsComplexPromotion(FromType, ToType)) {
1840 // Complex promotion (Clang extension)
1841 SCS.Second = ICK_Complex_Promotion;
1842 FromType = ToType.getUnqualifiedType();
1843 } else if (ToType->isBooleanType() &&
1844 (FromType->isArithmeticType() ||
1845 FromType->isAnyPointerType() ||
1846 FromType->isBlockPointerType() ||
1847 FromType->isMemberPointerType() ||
1848 FromType->isNullPtrType())) {
1849 // Boolean conversions (C++ 4.12).
1850 SCS.Second = ICK_Boolean_Conversion;
1851 FromType = S.Context.BoolTy;
1852 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1853 ToType->isIntegralType(S.Context)) {
1854 // Integral conversions (C++ 4.7).
1855 SCS.Second = ICK_Integral_Conversion;
1856 FromType = ToType.getUnqualifiedType();
1857 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1858 // Complex conversions (C99 6.3.1.6)
1859 SCS.Second = ICK_Complex_Conversion;
1860 FromType = ToType.getUnqualifiedType();
1861 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1862 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1863 // Complex-real conversions (C99 6.3.1.7)
1864 SCS.Second = ICK_Complex_Real;
1865 FromType = ToType.getUnqualifiedType();
1866 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1867 // FIXME: disable conversions between long double and __float128 if
1868 // their representation is different until there is back end support
1869 // We of course allow this conversion if long double is really double.
1870 if (&S.Context.getFloatTypeSemantics(FromType) !=
1871 &S.Context.getFloatTypeSemantics(ToType)) {
1872 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1873 ToType == S.Context.LongDoubleTy) ||
1874 (FromType == S.Context.LongDoubleTy &&
1875 ToType == S.Context.Float128Ty));
1876 if (Float128AndLongDouble &&
1877 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1878 &llvm::APFloat::PPCDoubleDouble()))
1879 return false;
1880 }
1881 // Floating point conversions (C++ 4.8).
1882 SCS.Second = ICK_Floating_Conversion;
1883 FromType = ToType.getUnqualifiedType();
1884 } else if ((FromType->isRealFloatingType() &&
1885 ToType->isIntegralType(S.Context)) ||
1886 (FromType->isIntegralOrUnscopedEnumerationType() &&
1887 ToType->isRealFloatingType())) {
1888 // Floating-integral conversions (C++ 4.9).
1889 SCS.Second = ICK_Floating_Integral;
1890 FromType = ToType.getUnqualifiedType();
1891 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1892 SCS.Second = ICK_Block_Pointer_Conversion;
1893 } else if (AllowObjCWritebackConversion &&
1894 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1895 SCS.Second = ICK_Writeback_Conversion;
1896 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1897 FromType, IncompatibleObjC)) {
1898 // Pointer conversions (C++ 4.10).
1899 SCS.Second = ICK_Pointer_Conversion;
1900 SCS.IncompatibleObjC = IncompatibleObjC;
1901 FromType = FromType.getUnqualifiedType();
1902 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1903 InOverloadResolution, FromType)) {
1904 // Pointer to member conversions (4.11).
1905 SCS.Second = ICK_Pointer_Member;
1906 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1907 SCS.Second = SecondICK;
1908 FromType = ToType.getUnqualifiedType();
1909 } else if (!S.getLangOpts().CPlusPlus &&
1910 S.Context.typesAreCompatible(ToType, FromType)) {
1911 // Compatible conversions (Clang extension for C function overloading)
1912 SCS.Second = ICK_Compatible_Conversion;
1913 FromType = ToType.getUnqualifiedType();
1914 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1915 InOverloadResolution,
1916 SCS, CStyle)) {
1917 SCS.Second = ICK_TransparentUnionConversion;
1918 FromType = ToType;
1919 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1920 CStyle)) {
1921 // tryAtomicConversion has updated the standard conversion sequence
1922 // appropriately.
1923 return true;
1924 } else if (ToType->isEventT() &&
1925 From->isIntegerConstantExpr(S.getASTContext()) &&
1926 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1927 SCS.Second = ICK_Zero_Event_Conversion;
1928 FromType = ToType;
1929 } else if (ToType->isQueueT() &&
1930 From->isIntegerConstantExpr(S.getASTContext()) &&
1931 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1932 SCS.Second = ICK_Zero_Queue_Conversion;
1933 FromType = ToType;
1934 } else if (ToType->isSamplerT() &&
1935 From->isIntegerConstantExpr(S.getASTContext())) {
1936 SCS.Second = ICK_Compatible_Conversion;
1937 FromType = ToType;
1938 } else {
1939 // No second conversion required.
1940 SCS.Second = ICK_Identity;
1941 }
1942 SCS.setToType(1, FromType);
1943
1944 // The third conversion can be a function pointer conversion or a
1945 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1946 bool ObjCLifetimeConversion;
1947 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1948 // Function pointer conversions (removing 'noexcept') including removal of
1949 // 'noreturn' (Clang extension).
1950 SCS.Third = ICK_Function_Conversion;
1951 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1952 ObjCLifetimeConversion)) {
1953 SCS.Third = ICK_Qualification;
1954 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1955 FromType = ToType;
1956 } else {
1957 // No conversion required
1958 SCS.Third = ICK_Identity;
1959 }
1960
1961 // C++ [over.best.ics]p6:
1962 // [...] Any difference in top-level cv-qualification is
1963 // subsumed by the initialization itself and does not constitute
1964 // a conversion. [...]
1965 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1966 QualType CanonTo = S.Context.getCanonicalType(ToType);
1967 if (CanonFrom.getLocalUnqualifiedType()
1968 == CanonTo.getLocalUnqualifiedType() &&
1969 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1970 FromType = ToType;
1971 CanonFrom = CanonTo;
1972 }
1973
1974 SCS.setToType(2, FromType);
1975
1976 if (CanonFrom == CanonTo)
1977 return true;
1978
1979 // If we have not converted the argument type to the parameter type,
1980 // this is a bad conversion sequence, unless we're resolving an overload in C.
1981 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1982 return false;
1983
1984 ExprResult ER = ExprResult{From};
1985 Sema::AssignConvertType Conv =
1986 S.CheckSingleAssignmentConstraints(ToType, ER,
1987 /*Diagnose=*/false,
1988 /*DiagnoseCFAudited=*/false,
1989 /*ConvertRHS=*/false);
1990 ImplicitConversionKind SecondConv;
1991 switch (Conv) {
1992 case Sema::Compatible:
1993 SecondConv = ICK_C_Only_Conversion;
1994 break;
1995 // For our purposes, discarding qualifiers is just as bad as using an
1996 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1997 // qualifiers, as well.
1998 case Sema::CompatiblePointerDiscardsQualifiers:
1999 case Sema::IncompatiblePointer:
2000 case Sema::IncompatiblePointerSign:
2001 SecondConv = ICK_Incompatible_Pointer_Conversion;
2002 break;
2003 default:
2004 return false;
2005 }
2006
2007 // First can only be an lvalue conversion, so we pretend that this was the
2008 // second conversion. First should already be valid from earlier in the
2009 // function.
2010 SCS.Second = SecondConv;
2011 SCS.setToType(1, ToType);
2012
2013 // Third is Identity, because Second should rank us worse than any other
2014 // conversion. This could also be ICK_Qualification, but it's simpler to just
2015 // lump everything in with the second conversion, and we don't gain anything
2016 // from making this ICK_Qualification.
2017 SCS.Third = ICK_Identity;
2018 SCS.setToType(2, ToType);
2019 return true;
2020}
2021
2022static bool
2023IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2024 QualType &ToType,
2025 bool InOverloadResolution,
2026 StandardConversionSequence &SCS,
2027 bool CStyle) {
2028
2029 const RecordType *UT = ToType->getAsUnionType();
2030 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2031 return false;
2032 // The field to initialize within the transparent union.
2033 RecordDecl *UD = UT->getDecl();
2034 // It's compatible if the expression matches any of the fields.
2035 for (const auto *it : UD->fields()) {
2036 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2037 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2038 ToType = it->getType();
2039 return true;
2040 }
2041 }
2042 return false;
2043}
2044
2045/// IsIntegralPromotion - Determines whether the conversion from the
2046/// expression From (whose potentially-adjusted type is FromType) to
2047/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2048/// sets PromotedType to the promoted type.
2049bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2050 const BuiltinType *To = ToType->getAs<BuiltinType>();
2051 // All integers are built-in.
2052 if (!To) {
2053 return false;
2054 }
2055
2056 // An rvalue of type char, signed char, unsigned char, short int, or
2057 // unsigned short int can be converted to an rvalue of type int if
2058 // int can represent all the values of the source type; otherwise,
2059 // the source rvalue can be converted to an rvalue of type unsigned
2060 // int (C++ 4.5p1).
2061 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2062 !FromType->isEnumeralType()) {
2063 if (// We can promote any signed, promotable integer type to an int
2064 (FromType->isSignedIntegerType() ||
2065 // We can promote any unsigned integer type whose size is
2066 // less than int to an int.
2067 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2068 return To->getKind() == BuiltinType::Int;
2069 }
2070
2071 return To->getKind() == BuiltinType::UInt;
2072 }
2073
2074 // C++11 [conv.prom]p3:
2075 // A prvalue of an unscoped enumeration type whose underlying type is not
2076 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2077 // following types that can represent all the values of the enumeration
2078 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2079 // unsigned int, long int, unsigned long int, long long int, or unsigned
2080 // long long int. If none of the types in that list can represent all the
2081 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2082 // type can be converted to an rvalue a prvalue of the extended integer type
2083 // with lowest integer conversion rank (4.13) greater than the rank of long
2084 // long in which all the values of the enumeration can be represented. If
2085 // there are two such extended types, the signed one is chosen.
2086 // C++11 [conv.prom]p4:
2087 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2088 // can be converted to a prvalue of its underlying type. Moreover, if
2089 // integral promotion can be applied to its underlying type, a prvalue of an
2090 // unscoped enumeration type whose underlying type is fixed can also be
2091 // converted to a prvalue of the promoted underlying type.
2092 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2093 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2094 // provided for a scoped enumeration.
2095 if (FromEnumType->getDecl()->isScoped())
2096 return false;
2097
2098 // We can perform an integral promotion to the underlying type of the enum,
2099 // even if that's not the promoted type. Note that the check for promoting
2100 // the underlying type is based on the type alone, and does not consider
2101 // the bitfield-ness of the actual source expression.
2102 if (FromEnumType->getDecl()->isFixed()) {
2103 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2104 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2105 IsIntegralPromotion(nullptr, Underlying, ToType);
2106 }
2107
2108 // We have already pre-calculated the promotion type, so this is trivial.
2109 if (ToType->isIntegerType() &&
2110 isCompleteType(From->getBeginLoc(), FromType))
2111 return Context.hasSameUnqualifiedType(
2112 ToType, FromEnumType->getDecl()->getPromotionType());
2113
2114 // C++ [conv.prom]p5:
2115 // If the bit-field has an enumerated type, it is treated as any other
2116 // value of that type for promotion purposes.
2117 //
2118 // ... so do not fall through into the bit-field checks below in C++.
2119 if (getLangOpts().CPlusPlus)
2120 return false;
2121 }
2122
2123 // C++0x [conv.prom]p2:
2124 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2125 // to an rvalue a prvalue of the first of the following types that can
2126 // represent all the values of its underlying type: int, unsigned int,
2127 // long int, unsigned long int, long long int, or unsigned long long int.
2128 // If none of the types in that list can represent all the values of its
2129 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2130 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2131 // type.
2132 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2133 ToType->isIntegerType()) {
2134 // Determine whether the type we're converting from is signed or
2135 // unsigned.
2136 bool FromIsSigned = FromType->isSignedIntegerType();
2137 uint64_t FromSize = Context.getTypeSize(FromType);
2138
2139 // The types we'll try to promote to, in the appropriate
2140 // order. Try each of these types.
2141 QualType PromoteTypes[6] = {
2142 Context.IntTy, Context.UnsignedIntTy,
2143 Context.LongTy, Context.UnsignedLongTy ,
2144 Context.LongLongTy, Context.UnsignedLongLongTy
2145 };
2146 for (int Idx = 0; Idx < 6; ++Idx) {
2147 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2148 if (FromSize < ToSize ||
2149 (FromSize == ToSize &&
2150 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2151 // We found the type that we can promote to. If this is the
2152 // type we wanted, we have a promotion. Otherwise, no
2153 // promotion.
2154 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2155 }
2156 }
2157 }
2158
2159 // An rvalue for an integral bit-field (9.6) can be converted to an
2160 // rvalue of type int if int can represent all the values of the
2161 // bit-field; otherwise, it can be converted to unsigned int if
2162 // unsigned int can represent all the values of the bit-field. If
2163 // the bit-field is larger yet, no integral promotion applies to
2164 // it. If the bit-field has an enumerated type, it is treated as any
2165 // other value of that type for promotion purposes (C++ 4.5p3).
2166 // FIXME: We should delay checking of bit-fields until we actually perform the
2167 // conversion.
2168 //
2169 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2170 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2171 // bit-fields and those whose underlying type is larger than int) for GCC
2172 // compatibility.
2173 if (From) {
2174 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2175 llvm::APSInt BitWidth;
2176 if (FromType->isIntegralType(Context) &&
2177 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2178 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2179 ToSize = Context.getTypeSize(ToType);
2180
2181 // Are we promoting to an int from a bitfield that fits in an int?
2182 if (BitWidth < ToSize ||
2183 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2184 return To->getKind() == BuiltinType::Int;
2185 }
2186
2187 // Are we promoting to an unsigned int from an unsigned bitfield
2188 // that fits into an unsigned int?
2189 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2190 return To->getKind() == BuiltinType::UInt;
2191 }
2192
2193 return false;
2194 }
2195 }
2196 }
2197
2198 // An rvalue of type bool can be converted to an rvalue of type int,
2199 // with false becoming zero and true becoming one (C++ 4.5p4).
2200 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2201 return true;
2202 }
2203
2204 return false;
2205}
2206
2207/// IsFloatingPointPromotion - Determines whether the conversion from
2208/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2209/// returns true and sets PromotedType to the promoted type.
2210bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2211 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2212 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2213 /// An rvalue of type float can be converted to an rvalue of type
2214 /// double. (C++ 4.6p1).
2215 if (FromBuiltin->getKind() == BuiltinType::Float &&
2216 ToBuiltin->getKind() == BuiltinType::Double)
2217 return true;
2218
2219 // C99 6.3.1.5p1:
2220 // When a float is promoted to double or long double, or a
2221 // double is promoted to long double [...].
2222 if (!getLangOpts().CPlusPlus &&
2223 (FromBuiltin->getKind() == BuiltinType::Float ||
2224 FromBuiltin->getKind() == BuiltinType::Double) &&
2225 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2226 ToBuiltin->getKind() == BuiltinType::Float128))
2227 return true;
2228
2229 // Half can be promoted to float.
2230 if (!getLangOpts().NativeHalfType &&
2231 FromBuiltin->getKind() == BuiltinType::Half &&
2232 ToBuiltin->getKind() == BuiltinType::Float)
2233 return true;
2234 }
2235
2236 return false;
2237}
2238
2239/// Determine if a conversion is a complex promotion.
2240///
2241/// A complex promotion is defined as a complex -> complex conversion
2242/// where the conversion between the underlying real types is a
2243/// floating-point or integral promotion.
2244bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2245 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2246 if (!FromComplex)
2247 return false;
2248
2249 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2250 if (!ToComplex)
2251 return false;
2252
2253 return IsFloatingPointPromotion(FromComplex->getElementType(),
2254 ToComplex->getElementType()) ||
2255 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2256 ToComplex->getElementType());
2257}
2258
2259/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2260/// the pointer type FromPtr to a pointer to type ToPointee, with the
2261/// same type qualifiers as FromPtr has on its pointee type. ToType,
2262/// if non-empty, will be a pointer to ToType that may or may not have
2263/// the right set of qualifiers on its pointee.
2264///
2265static QualType
2266BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2267 QualType ToPointee, QualType ToType,
2268 ASTContext &Context,
2269 bool StripObjCLifetime = false) {
2270 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 2272, __PRETTY_FUNCTION__))
2271 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 2272, __PRETTY_FUNCTION__))
2272 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 2272, __PRETTY_FUNCTION__))
;
2273
2274 /// Conversions to 'id' subsume cv-qualifier conversions.
2275 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2276 return ToType.getUnqualifiedType();
2277
2278 QualType CanonFromPointee
2279 = Context.getCanonicalType(FromPtr->getPointeeType());
2280 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2281 Qualifiers Quals = CanonFromPointee.getQualifiers();
2282
2283 if (StripObjCLifetime)
2284 Quals.removeObjCLifetime();
2285
2286 // Exact qualifier match -> return the pointer type we're converting to.
2287 if (CanonToPointee.getLocalQualifiers() == Quals) {
2288 // ToType is exactly what we need. Return it.
2289 if (!ToType.isNull())
2290 return ToType.getUnqualifiedType();
2291
2292 // Build a pointer to ToPointee. It has the right qualifiers
2293 // already.
2294 if (isa<ObjCObjectPointerType>(ToType))
2295 return Context.getObjCObjectPointerType(ToPointee);
2296 return Context.getPointerType(ToPointee);
2297 }
2298
2299 // Just build a canonical type that has the right qualifiers.
2300 QualType QualifiedCanonToPointee
2301 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2302
2303 if (isa<ObjCObjectPointerType>(ToType))
2304 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2305 return Context.getPointerType(QualifiedCanonToPointee);
2306}
2307
2308static bool isNullPointerConstantForConversion(Expr *Expr,
2309 bool InOverloadResolution,
2310 ASTContext &Context) {
2311 // Handle value-dependent integral null pointer constants correctly.
2312 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2313 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2314 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2315 return !InOverloadResolution;
2316
2317 return Expr->isNullPointerConstant(Context,
2318 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2319 : Expr::NPC_ValueDependentIsNull);
2320}
2321
2322/// IsPointerConversion - Determines whether the conversion of the
2323/// expression From, which has the (possibly adjusted) type FromType,
2324/// can be converted to the type ToType via a pointer conversion (C++
2325/// 4.10). If so, returns true and places the converted type (that
2326/// might differ from ToType in its cv-qualifiers at some level) into
2327/// ConvertedType.
2328///
2329/// This routine also supports conversions to and from block pointers
2330/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2331/// pointers to interfaces. FIXME: Once we've determined the
2332/// appropriate overloading rules for Objective-C, we may want to
2333/// split the Objective-C checks into a different routine; however,
2334/// GCC seems to consider all of these conversions to be pointer
2335/// conversions, so for now they live here. IncompatibleObjC will be
2336/// set if the conversion is an allowed Objective-C conversion that
2337/// should result in a warning.
2338bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2339 bool InOverloadResolution,
2340 QualType& ConvertedType,
2341 bool &IncompatibleObjC) {
2342 IncompatibleObjC = false;
2343 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2344 IncompatibleObjC))
2345 return true;
2346
2347 // Conversion from a null pointer constant to any Objective-C pointer type.
2348 if (ToType->isObjCObjectPointerType() &&
2349 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2350 ConvertedType = ToType;
2351 return true;
2352 }
2353
2354 // Blocks: Block pointers can be converted to void*.
2355 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2356 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2357 ConvertedType = ToType;
2358 return true;
2359 }
2360 // Blocks: A null pointer constant can be converted to a block
2361 // pointer type.
2362 if (ToType->isBlockPointerType() &&
2363 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364 ConvertedType = ToType;
2365 return true;
2366 }
2367
2368 // If the left-hand-side is nullptr_t, the right side can be a null
2369 // pointer constant.
2370 if (ToType->isNullPtrType() &&
2371 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2372 ConvertedType = ToType;
2373 return true;
2374 }
2375
2376 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2377 if (!ToTypePtr)
2378 return false;
2379
2380 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2381 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2382 ConvertedType = ToType;
2383 return true;
2384 }
2385
2386 // Beyond this point, both types need to be pointers
2387 // , including objective-c pointers.
2388 QualType ToPointeeType = ToTypePtr->getPointeeType();
2389 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2390 !getLangOpts().ObjCAutoRefCount) {
2391 ConvertedType = BuildSimilarlyQualifiedPointerType(
2392 FromType->getAs<ObjCObjectPointerType>(),
2393 ToPointeeType,
2394 ToType, Context);
2395 return true;
2396 }
2397 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2398 if (!FromTypePtr)
2399 return false;
2400
2401 QualType FromPointeeType = FromTypePtr->getPointeeType();
2402
2403 // If the unqualified pointee types are the same, this can't be a
2404 // pointer conversion, so don't do all of the work below.
2405 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2406 return false;
2407
2408 // An rvalue of type "pointer to cv T," where T is an object type,
2409 // can be converted to an rvalue of type "pointer to cv void" (C++
2410 // 4.10p2).
2411 if (FromPointeeType->isIncompleteOrObjectType() &&
2412 ToPointeeType->isVoidType()) {
2413 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2414 ToPointeeType,
2415 ToType, Context,
2416 /*StripObjCLifetime=*/true);
2417 return true;
2418 }
2419
2420 // MSVC allows implicit function to void* type conversion.
2421 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2422 ToPointeeType->isVoidType()) {
2423 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2424 ToPointeeType,
2425 ToType, Context);
2426 return true;
2427 }
2428
2429 // When we're overloading in C, we allow a special kind of pointer
2430 // conversion for compatible-but-not-identical pointee types.
2431 if (!getLangOpts().CPlusPlus &&
2432 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2433 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2434 ToPointeeType,
2435 ToType, Context);
2436 return true;
2437 }
2438
2439 // C++ [conv.ptr]p3:
2440 //
2441 // An rvalue of type "pointer to cv D," where D is a class type,
2442 // can be converted to an rvalue of type "pointer to cv B," where
2443 // B is a base class (clause 10) of D. If B is an inaccessible
2444 // (clause 11) or ambiguous (10.2) base class of D, a program that
2445 // necessitates this conversion is ill-formed. The result of the
2446 // conversion is a pointer to the base class sub-object of the
2447 // derived class object. The null pointer value is converted to
2448 // the null pointer value of the destination type.
2449 //
2450 // Note that we do not check for ambiguity or inaccessibility
2451 // here. That is handled by CheckPointerConversion.
2452 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2453 ToPointeeType->isRecordType() &&
2454 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2455 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2456 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2457 ToPointeeType,
2458 ToType, Context);
2459 return true;
2460 }
2461
2462 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2463 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2464 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2465 ToPointeeType,
2466 ToType, Context);
2467 return true;
2468 }
2469
2470 return false;
2471}
2472
2473/// Adopt the given qualifiers for the given type.
2474static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2475 Qualifiers TQs = T.getQualifiers();
2476
2477 // Check whether qualifiers already match.
2478 if (TQs == Qs)
2479 return T;
2480
2481 if (Qs.compatiblyIncludes(TQs))
2482 return Context.getQualifiedType(T, Qs);
2483
2484 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2485}
2486
2487/// isObjCPointerConversion - Determines whether this is an
2488/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2489/// with the same arguments and return values.
2490bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2491 QualType& ConvertedType,
2492 bool &IncompatibleObjC) {
2493 if (!getLangOpts().ObjC)
2494 return false;
2495
2496 // The set of qualifiers on the type we're converting from.
2497 Qualifiers FromQualifiers = FromType.getQualifiers();
2498
2499 // First, we handle all conversions on ObjC object pointer types.
2500 const ObjCObjectPointerType* ToObjCPtr =
2501 ToType->getAs<ObjCObjectPointerType>();
2502 const ObjCObjectPointerType *FromObjCPtr =
2503 FromType->getAs<ObjCObjectPointerType>();
2504
2505 if (ToObjCPtr && FromObjCPtr) {
2506 // If the pointee types are the same (ignoring qualifications),
2507 // then this is not a pointer conversion.
2508 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2509 FromObjCPtr->getPointeeType()))
2510 return false;
2511
2512 // Conversion between Objective-C pointers.
2513 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2514 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2515 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2516 if (getLangOpts().CPlusPlus && LHS && RHS &&
2517 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2518 FromObjCPtr->getPointeeType()))
2519 return false;
2520 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2521 ToObjCPtr->getPointeeType(),
2522 ToType, Context);
2523 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2524 return true;
2525 }
2526
2527 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2528 // Okay: this is some kind of implicit downcast of Objective-C
2529 // interfaces, which is permitted. However, we're going to
2530 // complain about it.
2531 IncompatibleObjC = true;
2532 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2533 ToObjCPtr->getPointeeType(),
2534 ToType, Context);
2535 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2536 return true;
2537 }
2538 }
2539 // Beyond this point, both types need to be C pointers or block pointers.
2540 QualType ToPointeeType;
2541 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2542 ToPointeeType = ToCPtr->getPointeeType();
2543 else if (const BlockPointerType *ToBlockPtr =
2544 ToType->getAs<BlockPointerType>()) {
2545 // Objective C++: We're able to convert from a pointer to any object
2546 // to a block pointer type.
2547 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2548 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2549 return true;
2550 }
2551 ToPointeeType = ToBlockPtr->getPointeeType();
2552 }
2553 else if (FromType->getAs<BlockPointerType>() &&
2554 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2555 // Objective C++: We're able to convert from a block pointer type to a
2556 // pointer to any object.
2557 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2558 return true;
2559 }
2560 else
2561 return false;
2562
2563 QualType FromPointeeType;
2564 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2565 FromPointeeType = FromCPtr->getPointeeType();
2566 else if (const BlockPointerType *FromBlockPtr =
2567 FromType->getAs<BlockPointerType>())
2568 FromPointeeType = FromBlockPtr->getPointeeType();
2569 else
2570 return false;
2571
2572 // If we have pointers to pointers, recursively check whether this
2573 // is an Objective-C conversion.
2574 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2575 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2576 IncompatibleObjC)) {
2577 // We always complain about this conversion.
2578 IncompatibleObjC = true;
2579 ConvertedType = Context.getPointerType(ConvertedType);
2580 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2581 return true;
2582 }
2583 // Allow conversion of pointee being objective-c pointer to another one;
2584 // as in I* to id.
2585 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2586 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2587 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2588 IncompatibleObjC)) {
2589
2590 ConvertedType = Context.getPointerType(ConvertedType);
2591 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2592 return true;
2593 }
2594
2595 // If we have pointers to functions or blocks, check whether the only
2596 // differences in the argument and result types are in Objective-C
2597 // pointer conversions. If so, we permit the conversion (but
2598 // complain about it).
2599 const FunctionProtoType *FromFunctionType
2600 = FromPointeeType->getAs<FunctionProtoType>();
2601 const FunctionProtoType *ToFunctionType
2602 = ToPointeeType->getAs<FunctionProtoType>();
2603 if (FromFunctionType && ToFunctionType) {
2604 // If the function types are exactly the same, this isn't an
2605 // Objective-C pointer conversion.
2606 if (Context.getCanonicalType(FromPointeeType)
2607 == Context.getCanonicalType(ToPointeeType))
2608 return false;
2609
2610 // Perform the quick checks that will tell us whether these
2611 // function types are obviously different.
2612 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2613 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2614 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2615 return false;
2616
2617 bool HasObjCConversion = false;
2618 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2619 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2620 // Okay, the types match exactly. Nothing to do.
2621 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2622 ToFunctionType->getReturnType(),
2623 ConvertedType, IncompatibleObjC)) {
2624 // Okay, we have an Objective-C pointer conversion.
2625 HasObjCConversion = true;
2626 } else {
2627 // Function types are too different. Abort.
2628 return false;
2629 }
2630
2631 // Check argument types.
2632 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2633 ArgIdx != NumArgs; ++ArgIdx) {
2634 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2635 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2636 if (Context.getCanonicalType(FromArgType)
2637 == Context.getCanonicalType(ToArgType)) {
2638 // Okay, the types match exactly. Nothing to do.
2639 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2640 ConvertedType, IncompatibleObjC)) {
2641 // Okay, we have an Objective-C pointer conversion.
2642 HasObjCConversion = true;
2643 } else {
2644 // Argument types are too different. Abort.
2645 return false;
2646 }
2647 }
2648
2649 if (HasObjCConversion) {
2650 // We had an Objective-C conversion. Allow this pointer
2651 // conversion, but complain about it.
2652 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2653 IncompatibleObjC = true;
2654 return true;
2655 }
2656 }
2657
2658 return false;
2659}
2660
2661/// Determine whether this is an Objective-C writeback conversion,
2662/// used for parameter passing when performing automatic reference counting.
2663///
2664/// \param FromType The type we're converting form.
2665///
2666/// \param ToType The type we're converting to.
2667///
2668/// \param ConvertedType The type that will be produced after applying
2669/// this conversion.
2670bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2671 QualType &ConvertedType) {
2672 if (!getLangOpts().ObjCAutoRefCount ||
2673 Context.hasSameUnqualifiedType(FromType, ToType))
2674 return false;
2675
2676 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2677 QualType ToPointee;
2678 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2679 ToPointee = ToPointer->getPointeeType();
2680 else
2681 return false;
2682
2683 Qualifiers ToQuals = ToPointee.getQualifiers();
2684 if (!ToPointee->isObjCLifetimeType() ||
2685 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2686 !ToQuals.withoutObjCLifetime().empty())
2687 return false;
2688
2689 // Argument must be a pointer to __strong to __weak.
2690 QualType FromPointee;
2691 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2692 FromPointee = FromPointer->getPointeeType();
2693 else
2694 return false;
2695
2696 Qualifiers FromQuals = FromPointee.getQualifiers();
2697 if (!FromPointee->isObjCLifetimeType() ||
2698 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2699 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2700 return false;
2701
2702 // Make sure that we have compatible qualifiers.
2703 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2704 if (!ToQuals.compatiblyIncludes(FromQuals))
2705 return false;
2706
2707 // Remove qualifiers from the pointee type we're converting from; they
2708 // aren't used in the compatibility check belong, and we'll be adding back
2709 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2710 FromPointee = FromPointee.getUnqualifiedType();
2711
2712 // The unqualified form of the pointee types must be compatible.
2713 ToPointee = ToPointee.getUnqualifiedType();
2714 bool IncompatibleObjC;
2715 if (Context.typesAreCompatible(FromPointee, ToPointee))
2716 FromPointee = ToPointee;
2717 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2718 IncompatibleObjC))
2719 return false;
2720
2721 /// Construct the type we're converting to, which is a pointer to
2722 /// __autoreleasing pointee.
2723 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2724 ConvertedType = Context.getPointerType(FromPointee);
2725 return true;
2726}
2727
2728bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2729 QualType& ConvertedType) {
2730 QualType ToPointeeType;
2731 if (const BlockPointerType *ToBlockPtr =
2732 ToType->getAs<BlockPointerType>())
2733 ToPointeeType = ToBlockPtr->getPointeeType();
2734 else
2735 return false;
2736
2737 QualType FromPointeeType;
2738 if (const BlockPointerType *FromBlockPtr =
2739 FromType->getAs<BlockPointerType>())
2740 FromPointeeType = FromBlockPtr->getPointeeType();
2741 else
2742 return false;
2743 // We have pointer to blocks, check whether the only
2744 // differences in the argument and result types are in Objective-C
2745 // pointer conversions. If so, we permit the conversion.
2746
2747 const FunctionProtoType *FromFunctionType
2748 = FromPointeeType->getAs<FunctionProtoType>();
2749 const FunctionProtoType *ToFunctionType
2750 = ToPointeeType->getAs<FunctionProtoType>();
2751
2752 if (!FromFunctionType || !ToFunctionType)
2753 return false;
2754
2755 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2756 return true;
2757
2758 // Perform the quick checks that will tell us whether these
2759 // function types are obviously different.
2760 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2761 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2762 return false;
2763
2764 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2765 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2766 if (FromEInfo != ToEInfo)
2767 return false;
2768
2769 bool IncompatibleObjC = false;
2770 if (Context.hasSameType(FromFunctionType->getReturnType(),
2771 ToFunctionType->getReturnType())) {
2772 // Okay, the types match exactly. Nothing to do.
2773 } else {
2774 QualType RHS = FromFunctionType->getReturnType();
2775 QualType LHS = ToFunctionType->getReturnType();
2776 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2777 !RHS.hasQualifiers() && LHS.hasQualifiers())
2778 LHS = LHS.getUnqualifiedType();
2779
2780 if (Context.hasSameType(RHS,LHS)) {
2781 // OK exact match.
2782 } else if (isObjCPointerConversion(RHS, LHS,
2783 ConvertedType, IncompatibleObjC)) {
2784 if (IncompatibleObjC)
2785 return false;
2786 // Okay, we have an Objective-C pointer conversion.
2787 }
2788 else
2789 return false;
2790 }
2791
2792 // Check argument types.
2793 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2794 ArgIdx != NumArgs; ++ArgIdx) {
2795 IncompatibleObjC = false;
2796 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2797 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2798 if (Context.hasSameType(FromArgType, ToArgType)) {
2799 // Okay, the types match exactly. Nothing to do.
2800 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2801 ConvertedType, IncompatibleObjC)) {
2802 if (IncompatibleObjC)
2803 return false;
2804 // Okay, we have an Objective-C pointer conversion.
2805 } else
2806 // Argument types are too different. Abort.
2807 return false;
2808 }
2809
2810 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2811 bool CanUseToFPT, CanUseFromFPT;
2812 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2813 CanUseToFPT, CanUseFromFPT,
2814 NewParamInfos))
2815 return false;
2816
2817 ConvertedType = ToType;
2818 return true;
2819}
2820
2821enum {
2822 ft_default,
2823 ft_different_class,
2824 ft_parameter_arity,
2825 ft_parameter_mismatch,
2826 ft_return_type,
2827 ft_qualifer_mismatch,
2828 ft_noexcept
2829};
2830
2831/// Attempts to get the FunctionProtoType from a Type. Handles
2832/// MemberFunctionPointers properly.
2833static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2834 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2835 return FPT;
2836
2837 if (auto *MPT = FromType->getAs<MemberPointerType>())
2838 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2839
2840 return nullptr;
2841}
2842
2843/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2844/// function types. Catches different number of parameter, mismatch in
2845/// parameter types, and different return types.
2846void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2847 QualType FromType, QualType ToType) {
2848 // If either type is not valid, include no extra info.
2849 if (FromType.isNull() || ToType.isNull()) {
2850 PDiag << ft_default;
2851 return;
2852 }
2853
2854 // Get the function type from the pointers.
2855 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2856 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2857 *ToMember = ToType->getAs<MemberPointerType>();
2858 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2859 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2860 << QualType(FromMember->getClass(), 0);
2861 return;
2862 }
2863 FromType = FromMember->getPointeeType();
2864 ToType = ToMember->getPointeeType();
2865 }
2866
2867 if (FromType->isPointerType())
2868 FromType = FromType->getPointeeType();
2869 if (ToType->isPointerType())
2870 ToType = ToType->getPointeeType();
2871
2872 // Remove references.
2873 FromType = FromType.getNonReferenceType();
2874 ToType = ToType.getNonReferenceType();
2875
2876 // Don't print extra info for non-specialized template functions.
2877 if (FromType->isInstantiationDependentType() &&
2878 !FromType->getAs<TemplateSpecializationType>()) {
2879 PDiag << ft_default;
2880 return;
2881 }
2882
2883 // No extra info for same types.
2884 if (Context.hasSameType(FromType, ToType)) {
2885 PDiag << ft_default;
2886 return;
2887 }
2888
2889 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2890 *ToFunction = tryGetFunctionProtoType(ToType);
2891
2892 // Both types need to be function types.
2893 if (!FromFunction || !ToFunction) {
2894 PDiag << ft_default;
2895 return;
2896 }
2897
2898 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2899 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2900 << FromFunction->getNumParams();
2901 return;
2902 }
2903
2904 // Handle different parameter types.
2905 unsigned ArgPos;
2906 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2907 PDiag << ft_parameter_mismatch << ArgPos + 1
2908 << ToFunction->getParamType(ArgPos)
2909 << FromFunction->getParamType(ArgPos);
2910 return;
2911 }
2912
2913 // Handle different return type.
2914 if (!Context.hasSameType(FromFunction->getReturnType(),
2915 ToFunction->getReturnType())) {
2916 PDiag << ft_return_type << ToFunction->getReturnType()
2917 << FromFunction->getReturnType();
2918 return;
2919 }
2920
2921 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2922 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2923 << FromFunction->getMethodQuals();
2924 return;
2925 }
2926
2927 // Handle exception specification differences on canonical type (in C++17
2928 // onwards).
2929 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2930 ->isNothrow() !=
2931 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2932 ->isNothrow()) {
2933 PDiag << ft_noexcept;
2934 return;
2935 }
2936
2937 // Unable to find a difference, so add no extra info.
2938 PDiag << ft_default;
2939}
2940
2941/// FunctionParamTypesAreEqual - This routine checks two function proto types
2942/// for equality of their argument types. Caller has already checked that
2943/// they have same number of arguments. If the parameters are different,
2944/// ArgPos will have the parameter index of the first different parameter.
2945bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2946 const FunctionProtoType *NewType,
2947 unsigned *ArgPos) {
2948 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2949 N = NewType->param_type_begin(),
2950 E = OldType->param_type_end();
2951 O && (O != E); ++O, ++N) {
2952 // Ignore address spaces in pointee type. This is to disallow overloading
2953 // on __ptr32/__ptr64 address spaces.
2954 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2955 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2956
2957 if (!Context.hasSameType(Old, New)) {
2958 if (ArgPos)
2959 *ArgPos = O - OldType->param_type_begin();
2960 return false;
2961 }
2962 }
2963 return true;
2964}
2965
2966/// CheckPointerConversion - Check the pointer conversion from the
2967/// expression From to the type ToType. This routine checks for
2968/// ambiguous or inaccessible derived-to-base pointer
2969/// conversions for which IsPointerConversion has already returned
2970/// true. It returns true and produces a diagnostic if there was an
2971/// error, or returns false otherwise.
2972bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2973 CastKind &Kind,
2974 CXXCastPath& BasePath,
2975 bool IgnoreBaseAccess,
2976 bool Diagnose) {
2977 QualType FromType = From->getType();
2978 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2979
2980 Kind = CK_BitCast;
2981
2982 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2983 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2984 Expr::NPCK_ZeroExpression) {
2985 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2986 DiagRuntimeBehavior(From->getExprLoc(), From,
2987 PDiag(diag::warn_impcast_bool_to_null_pointer)
2988 << ToType << From->getSourceRange());
2989 else if (!isUnevaluatedContext())
2990 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2991 << ToType << From->getSourceRange();
2992 }
2993 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2994 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2995 QualType FromPointeeType = FromPtrType->getPointeeType(),
2996 ToPointeeType = ToPtrType->getPointeeType();
2997
2998 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2999 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3000 // We must have a derived-to-base conversion. Check an
3001 // ambiguous or inaccessible conversion.
3002 unsigned InaccessibleID = 0;
3003 unsigned AmbigiousID = 0;
3004 if (Diagnose) {
3005 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3006 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
3007 }
3008 if (CheckDerivedToBaseConversion(
3009 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
3010 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3011 &BasePath, IgnoreBaseAccess))
3012 return true;
3013
3014 // The conversion was successful.
3015 Kind = CK_DerivedToBase;
3016 }
3017
3018 if (Diagnose && !IsCStyleOrFunctionalCast &&
3019 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3020 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3021, __PRETTY_FUNCTION__))
3021 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3021, __PRETTY_FUNCTION__))
;
3022 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3023 << From->getSourceRange();
3024 }
3025 }
3026 } else if (const ObjCObjectPointerType *ToPtrType =
3027 ToType->getAs<ObjCObjectPointerType>()) {
3028 if (const ObjCObjectPointerType *FromPtrType =
3029 FromType->getAs<ObjCObjectPointerType>()) {
3030 // Objective-C++ conversions are always okay.
3031 // FIXME: We should have a different class of conversions for the
3032 // Objective-C++ implicit conversions.
3033 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3034 return false;
3035 } else if (FromType->isBlockPointerType()) {
3036 Kind = CK_BlockPointerToObjCPointerCast;
3037 } else {
3038 Kind = CK_CPointerToObjCPointerCast;
3039 }
3040 } else if (ToType->isBlockPointerType()) {
3041 if (!FromType->isBlockPointerType())
3042 Kind = CK_AnyPointerToBlockPointerCast;
3043 }
3044
3045 // We shouldn't fall into this case unless it's valid for other
3046 // reasons.
3047 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3048 Kind = CK_NullToPointer;
3049
3050 return false;
3051}
3052
3053/// IsMemberPointerConversion - Determines whether the conversion of the
3054/// expression From, which has the (possibly adjusted) type FromType, can be
3055/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3056/// If so, returns true and places the converted type (that might differ from
3057/// ToType in its cv-qualifiers at some level) into ConvertedType.
3058bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3059 QualType ToType,
3060 bool InOverloadResolution,
3061 QualType &ConvertedType) {
3062 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3063 if (!ToTypePtr)
3064 return false;
3065
3066 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3067 if (From->isNullPointerConstant(Context,
3068 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3069 : Expr::NPC_ValueDependentIsNull)) {
3070 ConvertedType = ToType;
3071 return true;
3072 }
3073
3074 // Otherwise, both types have to be member pointers.
3075 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3076 if (!FromTypePtr)
3077 return false;
3078
3079 // A pointer to member of B can be converted to a pointer to member of D,
3080 // where D is derived from B (C++ 4.11p2).
3081 QualType FromClass(FromTypePtr->getClass(), 0);
3082 QualType ToClass(ToTypePtr->getClass(), 0);
3083
3084 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3085 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3086 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3087 ToClass.getTypePtr());
3088 return true;
3089 }
3090
3091 return false;
3092}
3093
3094/// CheckMemberPointerConversion - Check the member pointer conversion from the
3095/// expression From to the type ToType. This routine checks for ambiguous or
3096/// virtual or inaccessible base-to-derived member pointer conversions
3097/// for which IsMemberPointerConversion has already returned true. It returns
3098/// true and produces a diagnostic if there was an error, or returns false
3099/// otherwise.
3100bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3101 CastKind &Kind,
3102 CXXCastPath &BasePath,
3103 bool IgnoreBaseAccess) {
3104 QualType FromType = From->getType();
3105 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3106 if (!FromPtrType) {
3107 // This must be a null pointer to member pointer conversion
3108 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3110, __PRETTY_FUNCTION__))
3109 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3110, __PRETTY_FUNCTION__))
3110 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3110, __PRETTY_FUNCTION__))
;
3111 Kind = CK_NullToMemberPointer;
3112 return false;
3113 }
3114
3115 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3116 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3117, __PRETTY_FUNCTION__))
3117 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3117, __PRETTY_FUNCTION__))
;
3118
3119 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3120 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3121
3122 // FIXME: What about dependent types?
3123 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
;
3124 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3124, __PRETTY_FUNCTION__))
;
3125
3126 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3127 /*DetectVirtual=*/true);
3128 bool DerivationOkay =
3129 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3130 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3131, __PRETTY_FUNCTION__))
3131 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3131, __PRETTY_FUNCTION__))
;
3132 (void)DerivationOkay;
3133
3134 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3135 getUnqualifiedType())) {
3136 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3137 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3138 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3139 return true;
3140 }
3141
3142 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3143 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3144 << FromClass << ToClass << QualType(VBase, 0)
3145 << From->getSourceRange();
3146 return true;
3147 }
3148
3149 if (!IgnoreBaseAccess)
3150 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3151 Paths.front(),
3152 diag::err_downcast_from_inaccessible_base);
3153
3154 // Must be a base to derived member conversion.
3155 BuildBasePathArray(Paths, BasePath);
3156 Kind = CK_BaseToDerivedMemberPointer;
3157 return false;
3158}
3159
3160/// Determine whether the lifetime conversion between the two given
3161/// qualifiers sets is nontrivial.
3162static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3163 Qualifiers ToQuals) {
3164 // Converting anything to const __unsafe_unretained is trivial.
3165 if (ToQuals.hasConst() &&
3166 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3167 return false;
3168
3169 return true;
3170}
3171
3172/// Perform a single iteration of the loop for checking if a qualification
3173/// conversion is valid.
3174///
3175/// Specifically, check whether any change between the qualifiers of \p
3176/// FromType and \p ToType is permissible, given knowledge about whether every
3177/// outer layer is const-qualified.
3178static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3179 bool CStyle,
3180 bool &PreviousToQualsIncludeConst,
3181 bool &ObjCLifetimeConversion) {
3182 Qualifiers FromQuals = FromType.getQualifiers();
3183 Qualifiers ToQuals = ToType.getQualifiers();
3184
3185 // Ignore __unaligned qualifier if this type is void.
3186 if (ToType.getUnqualifiedType()->isVoidType())
3187 FromQuals.removeUnaligned();
3188
3189 // Objective-C ARC:
3190 // Check Objective-C lifetime conversions.
3191 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3192 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3193 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3194 ObjCLifetimeConversion = true;
3195 FromQuals.removeObjCLifetime();
3196 ToQuals.removeObjCLifetime();
3197 } else {
3198 // Qualification conversions cannot cast between different
3199 // Objective-C lifetime qualifiers.
3200 return false;
3201 }
3202 }
3203
3204 // Allow addition/removal of GC attributes but not changing GC attributes.
3205 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3206 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3207 FromQuals.removeObjCGCAttr();
3208 ToQuals.removeObjCGCAttr();
3209 }
3210
3211 // -- for every j > 0, if const is in cv 1,j then const is in cv
3212 // 2,j, and similarly for volatile.
3213 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3214 return false;
3215
3216 // For a C-style cast, just require the address spaces to overlap.
3217 // FIXME: Does "superset" also imply the representation of a pointer is the
3218 // same? We're assuming that it does here and in compatiblyIncludes.
3219 if (CStyle && !ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3220 !FromQuals.isAddressSpaceSupersetOf(ToQuals))
3221 return false;
3222
3223 // -- if the cv 1,j and cv 2,j are different, then const is in
3224 // every cv for 0 < k < j.
3225 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3226 !PreviousToQualsIncludeConst)
3227 return false;
3228
3229 // Keep track of whether all prior cv-qualifiers in the "to" type
3230 // include const.
3231 PreviousToQualsIncludeConst =
3232 PreviousToQualsIncludeConst && ToQuals.hasConst();
3233 return true;
3234}
3235
3236/// IsQualificationConversion - Determines whether the conversion from
3237/// an rvalue of type FromType to ToType is a qualification conversion
3238/// (C++ 4.4).
3239///
3240/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3241/// when the qualification conversion involves a change in the Objective-C
3242/// object lifetime.
3243bool
3244Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3245 bool CStyle, bool &ObjCLifetimeConversion) {
3246 FromType = Context.getCanonicalType(FromType);
3247 ToType = Context.getCanonicalType(ToType);
3248 ObjCLifetimeConversion = false;
3249
3250 // If FromType and ToType are the same type, this is not a
3251 // qualification conversion.
3252 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3253 return false;
3254
3255 // (C++ 4.4p4):
3256 // A conversion can add cv-qualifiers at levels other than the first
3257 // in multi-level pointers, subject to the following rules: [...]
3258 bool PreviousToQualsIncludeConst = true;
3259 bool UnwrappedAnyPointer = false;
3260 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3261 if (!isQualificationConversionStep(FromType, ToType, CStyle,
3262 PreviousToQualsIncludeConst,
3263 ObjCLifetimeConversion))
3264 return false;
3265 UnwrappedAnyPointer = true;
3266 }
3267
3268 // We are left with FromType and ToType being the pointee types
3269 // after unwrapping the original FromType and ToType the same number
3270 // of times. If we unwrapped any pointers, and if FromType and
3271 // ToType have the same unqualified type (since we checked
3272 // qualifiers above), then this is a qualification conversion.
3273 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3274}
3275
3276/// - Determine whether this is a conversion from a scalar type to an
3277/// atomic type.
3278///
3279/// If successful, updates \c SCS's second and third steps in the conversion
3280/// sequence to finish the conversion.
3281static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3282 bool InOverloadResolution,
3283 StandardConversionSequence &SCS,
3284 bool CStyle) {
3285 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3286 if (!ToAtomic)
3287 return false;
3288
3289 StandardConversionSequence InnerSCS;
3290 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3291 InOverloadResolution, InnerSCS,
3292 CStyle, /*AllowObjCWritebackConversion=*/false))
3293 return false;
3294
3295 SCS.Second = InnerSCS.Second;
3296 SCS.setToType(1, InnerSCS.getToType(1));
3297 SCS.Third = InnerSCS.Third;
3298 SCS.QualificationIncludesObjCLifetime
3299 = InnerSCS.QualificationIncludesObjCLifetime;
3300 SCS.setToType(2, InnerSCS.getToType(2));
3301 return true;
3302}
3303
3304static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3305 CXXConstructorDecl *Constructor,
3306 QualType Type) {
3307 const FunctionProtoType *CtorType =
3308 Constructor->getType()->getAs<FunctionProtoType>();
3309 if (CtorType->getNumParams() > 0) {
3310 QualType FirstArg = CtorType->getParamType(0);
3311 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3312 return true;
3313 }
3314 return false;
3315}
3316
3317static OverloadingResult
3318IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3319 CXXRecordDecl *To,
3320 UserDefinedConversionSequence &User,
3321 OverloadCandidateSet &CandidateSet,
3322 bool AllowExplicit) {
3323 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3324 for (auto *D : S.LookupConstructors(To)) {
3325 auto Info = getConstructorInfo(D);
3326 if (!Info)
3327 continue;
3328
3329 bool Usable = !Info.Constructor->isInvalidDecl() &&
3330 S.isInitListConstructor(Info.Constructor);
3331 if (Usable) {
3332 // If the first argument is (a reference to) the target type,
3333 // suppress conversions.
3334 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3335 S.Context, Info.Constructor, ToType);
3336 if (Info.ConstructorTmpl)
3337 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3338 /*ExplicitArgs*/ nullptr, From,
3339 CandidateSet, SuppressUserConversions,
3340 /*PartialOverloading*/ false,
3341 AllowExplicit);
3342 else
3343 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3344 CandidateSet, SuppressUserConversions,
3345 /*PartialOverloading*/ false, AllowExplicit);
3346 }
3347 }
3348
3349 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3350
3351 OverloadCandidateSet::iterator Best;
3352 switch (auto Result =
3353 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3354 case OR_Deleted:
3355 case OR_Success: {
3356 // Record the standard conversion we used and the conversion function.
3357 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3358 QualType ThisType = Constructor->getThisType();
3359 // Initializer lists don't have conversions as such.
3360 User.Before.setAsIdentityConversion();
3361 User.HadMultipleCandidates = HadMultipleCandidates;
3362 User.ConversionFunction = Constructor;
3363 User.FoundConversionFunction = Best->FoundDecl;
3364 User.After.setAsIdentityConversion();
3365 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3366 User.After.setAllToTypes(ToType);
3367 return Result;
3368 }
3369
3370 case OR_No_Viable_Function:
3371 return OR_No_Viable_Function;
3372 case OR_Ambiguous:
3373 return OR_Ambiguous;
3374 }
3375
3376 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3376)
;
3377}
3378
3379/// Determines whether there is a user-defined conversion sequence
3380/// (C++ [over.ics.user]) that converts expression From to the type
3381/// ToType. If such a conversion exists, User will contain the
3382/// user-defined conversion sequence that performs such a conversion
3383/// and this routine will return true. Otherwise, this routine returns
3384/// false and User is unspecified.
3385///
3386/// \param AllowExplicit true if the conversion should consider C++0x
3387/// "explicit" conversion functions as well as non-explicit conversion
3388/// functions (C++0x [class.conv.fct]p2).
3389///
3390/// \param AllowObjCConversionOnExplicit true if the conversion should
3391/// allow an extra Objective-C pointer conversion on uses of explicit
3392/// constructors. Requires \c AllowExplicit to also be set.
3393static OverloadingResult
3394IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3395 UserDefinedConversionSequence &User,
3396 OverloadCandidateSet &CandidateSet,
3397 bool AllowExplicit,
3398 bool AllowObjCConversionOnExplicit) {
3399 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3399, __PRETTY_FUNCTION__))
;
3400 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3401
3402 // Whether we will only visit constructors.
3403 bool ConstructorsOnly = false;
3404
3405 // If the type we are conversion to is a class type, enumerate its
3406 // constructors.
3407 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3408 // C++ [over.match.ctor]p1:
3409 // When objects of class type are direct-initialized (8.5), or
3410 // copy-initialized from an expression of the same or a
3411 // derived class type (8.5), overload resolution selects the
3412 // constructor. [...] For copy-initialization, the candidate
3413 // functions are all the converting constructors (12.3.1) of
3414 // that class. The argument list is the expression-list within
3415 // the parentheses of the initializer.
3416 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3417 (From->getType()->getAs<RecordType>() &&
3418 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3419 ConstructorsOnly = true;
3420
3421 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3422 // We're not going to find any constructors.
3423 } else if (CXXRecordDecl *ToRecordDecl
3424 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3425
3426 Expr **Args = &From;
3427 unsigned NumArgs = 1;
3428 bool ListInitializing = false;
3429 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3430 // But first, see if there is an init-list-constructor that will work.
3431 OverloadingResult Result = IsInitializerListConstructorConversion(
3432 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3433 if (Result != OR_No_Viable_Function)
3434 return Result;
3435 // Never mind.
3436 CandidateSet.clear(
3437 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3438
3439 // If we're list-initializing, we pass the individual elements as
3440 // arguments, not the entire list.
3441 Args = InitList->getInits();
3442 NumArgs = InitList->getNumInits();
3443 ListInitializing = true;
3444 }
3445
3446 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3447 auto Info = getConstructorInfo(D);
3448 if (!Info)
3449 continue;
3450
3451 bool Usable = !Info.Constructor->isInvalidDecl();
3452 if (!ListInitializing)
3453 Usable = Usable && Info.Constructor->isConvertingConstructor(
3454 /*AllowExplicit*/ true);
3455 if (Usable) {
3456 bool SuppressUserConversions = !ConstructorsOnly;
3457 if (SuppressUserConversions && ListInitializing) {
3458 SuppressUserConversions = false;
3459 if (NumArgs == 1) {
3460 // If the first argument is (a reference to) the target type,
3461 // suppress conversions.
3462 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3463 S.Context, Info.Constructor, ToType);
3464 }
3465 }
3466 if (Info.ConstructorTmpl)
3467 S.AddTemplateOverloadCandidate(
3468 Info.ConstructorTmpl, Info.FoundDecl,
3469 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3470 CandidateSet, SuppressUserConversions,
3471 /*PartialOverloading*/ false, AllowExplicit);
3472 else
3473 // Allow one user-defined conversion when user specifies a
3474 // From->ToType conversion via an static cast (c-style, etc).
3475 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3476 llvm::makeArrayRef(Args, NumArgs),
3477 CandidateSet, SuppressUserConversions,
3478 /*PartialOverloading*/ false, AllowExplicit);
3479 }
3480 }
3481 }
3482 }
3483
3484 // Enumerate conversion functions, if we're allowed to.
3485 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3486 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3487 // No conversion functions from incomplete types.
3488 } else if (const RecordType *FromRecordType =
3489 From->getType()->getAs<RecordType>()) {
3490 if (CXXRecordDecl *FromRecordDecl
3491 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3492 // Add all of the conversion functions as candidates.
3493 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3494 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3495 DeclAccessPair FoundDecl = I.getPair();
3496 NamedDecl *D = FoundDecl.getDecl();
3497 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3498 if (isa<UsingShadowDecl>(D))
3499 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3500
3501 CXXConversionDecl *Conv;
3502 FunctionTemplateDecl *ConvTemplate;
3503 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3504 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3505 else
3506 Conv = cast<CXXConversionDecl>(D);
3507
3508 if (ConvTemplate)
3509 S.AddTemplateConversionCandidate(
3510 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3511 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3512 else
3513 S.AddConversionCandidate(
3514 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3515 AllowObjCConversionOnExplicit, AllowExplicit);
3516 }
3517 }
3518 }
3519
3520 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3521
3522 OverloadCandidateSet::iterator Best;
3523 switch (auto Result =
3524 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3525 case OR_Success:
3526 case OR_Deleted:
3527 // Record the standard conversion we used and the conversion function.
3528 if (CXXConstructorDecl *Constructor
3529 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3530 // C++ [over.ics.user]p1:
3531 // If the user-defined conversion is specified by a
3532 // constructor (12.3.1), the initial standard conversion
3533 // sequence converts the source type to the type required by
3534 // the argument of the constructor.
3535 //
3536 QualType ThisType = Constructor->getThisType();
3537 if (isa<InitListExpr>(From)) {
3538 // Initializer lists don't have conversions as such.
3539 User.Before.setAsIdentityConversion();
3540 } else {
3541 if (Best->Conversions[0].isEllipsis())
3542 User.EllipsisConversion = true;
3543 else {
3544 User.Before = Best->Conversions[0].Standard;
3545 User.EllipsisConversion = false;
3546 }
3547 }
3548 User.HadMultipleCandidates = HadMultipleCandidates;
3549 User.ConversionFunction = Constructor;
3550 User.FoundConversionFunction = Best->FoundDecl;
3551 User.After.setAsIdentityConversion();
3552 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3553 User.After.setAllToTypes(ToType);
3554 return Result;
3555 }
3556 if (CXXConversionDecl *Conversion
3557 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3558 // C++ [over.ics.user]p1:
3559 //
3560 // [...] If the user-defined conversion is specified by a
3561 // conversion function (12.3.2), the initial standard
3562 // conversion sequence converts the source type to the
3563 // implicit object parameter of the conversion function.
3564 User.Before = Best->Conversions[0].Standard;
3565 User.HadMultipleCandidates = HadMultipleCandidates;
3566 User.ConversionFunction = Conversion;
3567 User.FoundConversionFunction = Best->FoundDecl;
3568 User.EllipsisConversion = false;
3569
3570 // C++ [over.ics.user]p2:
3571 // The second standard conversion sequence converts the
3572 // result of the user-defined conversion to the target type
3573 // for the sequence. Since an implicit conversion sequence
3574 // is an initialization, the special rules for
3575 // initialization by user-defined conversion apply when
3576 // selecting the best user-defined conversion for a
3577 // user-defined conversion sequence (see 13.3.3 and
3578 // 13.3.3.1).
3579 User.After = Best->FinalConversion;
3580 return Result;
3581 }
3582 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3582)
;
3583
3584 case OR_No_Viable_Function:
3585 return OR_No_Viable_Function;
3586
3587 case OR_Ambiguous:
3588 return OR_Ambiguous;
3589 }
3590
3591 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 3591)
;
3592}
3593
3594bool
3595Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3596 ImplicitConversionSequence ICS;
3597 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3598 OverloadCandidateSet::CSK_Normal);
3599 OverloadingResult OvResult =
3600 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3601 CandidateSet, false, false);
3602
3603 if (!(OvResult == OR_Ambiguous ||
3604 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3605 return false;
3606
3607 auto Cands = CandidateSet.CompleteCandidates(
3608 *this,
3609 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3610 From);
3611 if (OvResult == OR_Ambiguous)
3612 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3613 << From->getType() << ToType << From->getSourceRange();
3614 else { // OR_No_Viable_Function && !CandidateSet.empty()
3615 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3616 diag::err_typecheck_nonviable_condition_incomplete,
3617 From->getType(), From->getSourceRange()))
3618 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3619 << false << From->getType() << From->getSourceRange() << ToType;
3620 }
3621
3622 CandidateSet.NoteCandidates(
3623 *this, From, Cands);
3624 return true;
3625}
3626
3627/// Compare the user-defined conversion functions or constructors
3628/// of two user-defined conversion sequences to determine whether any ordering
3629/// is possible.
3630static ImplicitConversionSequence::CompareKind
3631compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3632 FunctionDecl *Function2) {
3633 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3634 return ImplicitConversionSequence::Indistinguishable;
3635
3636 // Objective-C++:
3637 // If both conversion functions are implicitly-declared conversions from
3638 // a lambda closure type to a function pointer and a block pointer,
3639 // respectively, always prefer the conversion to a function pointer,
3640 // because the function pointer is more lightweight and is more likely
3641 // to keep code working.
3642 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3643 if (!Conv1)
3644 return ImplicitConversionSequence::Indistinguishable;
3645
3646 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3647 if (!Conv2)
3648 return ImplicitConversionSequence::Indistinguishable;
3649
3650 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3651 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3652 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3653 if (Block1 != Block2)
3654 return Block1 ? ImplicitConversionSequence::Worse
3655 : ImplicitConversionSequence::Better;
3656 }
3657
3658 return ImplicitConversionSequence::Indistinguishable;
3659}
3660
3661static bool hasDeprecatedStringLiteralToCharPtrConversion(
3662 const ImplicitConversionSequence &ICS) {
3663 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3664 (ICS.isUserDefined() &&
3665 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3666}
3667
3668/// CompareImplicitConversionSequences - Compare two implicit
3669/// conversion sequences to determine whether one is better than the
3670/// other or if they are indistinguishable (C++ 13.3.3.2).
3671static ImplicitConversionSequence::CompareKind
3672CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3673 const ImplicitConversionSequence& ICS1,
3674 const ImplicitConversionSequence& ICS2)
3675{
3676 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3677 // conversion sequences (as defined in 13.3.3.1)
3678 // -- a standard conversion sequence (13.3.3.1.1) is a better
3679 // conversion sequence than a user-defined conversion sequence or
3680 // an ellipsis conversion sequence, and
3681 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3682 // conversion sequence than an ellipsis conversion sequence
3683 // (13.3.3.1.3).
3684 //
3685 // C++0x [over.best.ics]p10:
3686 // For the purpose of ranking implicit conversion sequences as
3687 // described in 13.3.3.2, the ambiguous conversion sequence is
3688 // treated as a user-defined sequence that is indistinguishable
3689 // from any other user-defined conversion sequence.
3690
3691 // String literal to 'char *' conversion has been deprecated in C++03. It has
3692 // been removed from C++11. We still accept this conversion, if it happens at
3693 // the best viable function. Otherwise, this conversion is considered worse
3694 // than ellipsis conversion. Consider this as an extension; this is not in the
3695 // standard. For example:
3696 //
3697 // int &f(...); // #1
3698 // void f(char*); // #2
3699 // void g() { int &r = f("foo"); }
3700 //
3701 // In C++03, we pick #2 as the best viable function.
3702 // In C++11, we pick #1 as the best viable function, because ellipsis
3703 // conversion is better than string-literal to char* conversion (since there
3704 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3705 // convert arguments, #2 would be the best viable function in C++11.
3706 // If the best viable function has this conversion, a warning will be issued
3707 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3708
3709 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3710 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3711 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3712 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3713 ? ImplicitConversionSequence::Worse
3714 : ImplicitConversionSequence::Better;
3715
3716 if (ICS1.getKindRank() < ICS2.getKindRank())
3717 return ImplicitConversionSequence::Better;
3718 if (ICS2.getKindRank() < ICS1.getKindRank())
3719 return ImplicitConversionSequence::Worse;
3720
3721 // The following checks require both conversion sequences to be of
3722 // the same kind.
3723 if (ICS1.getKind() != ICS2.getKind())
3724 return ImplicitConversionSequence::Indistinguishable;
3725
3726 ImplicitConversionSequence::CompareKind Result =
3727 ImplicitConversionSequence::Indistinguishable;
3728
3729 // Two implicit conversion sequences of the same form are
3730 // indistinguishable conversion sequences unless one of the
3731 // following rules apply: (C++ 13.3.3.2p3):
3732
3733 // List-initialization sequence L1 is a better conversion sequence than
3734 // list-initialization sequence L2 if:
3735 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3736 // if not that,
3737 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3738 // and N1 is smaller than N2.,
3739 // even if one of the other rules in this paragraph would otherwise apply.
3740 if (!ICS1.isBad()) {
3741 if (ICS1.isStdInitializerListElement() &&
3742 !ICS2.isStdInitializerListElement())
3743 return ImplicitConversionSequence::Better;
3744 if (!ICS1.isStdInitializerListElement() &&
3745 ICS2.isStdInitializerListElement())
3746 return ImplicitConversionSequence::Worse;
3747 }
3748
3749 if (ICS1.isStandard())
3750 // Standard conversion sequence S1 is a better conversion sequence than
3751 // standard conversion sequence S2 if [...]
3752 Result = CompareStandardConversionSequences(S, Loc,
3753 ICS1.Standard, ICS2.Standard);
3754 else if (ICS1.isUserDefined()) {
3755 // User-defined conversion sequence U1 is a better conversion
3756 // sequence than another user-defined conversion sequence U2 if
3757 // they contain the same user-defined conversion function or
3758 // constructor and if the second standard conversion sequence of
3759 // U1 is better than the second standard conversion sequence of
3760 // U2 (C++ 13.3.3.2p3).
3761 if (ICS1.UserDefined.ConversionFunction ==
3762 ICS2.UserDefined.ConversionFunction)
3763 Result = CompareStandardConversionSequences(S, Loc,
3764 ICS1.UserDefined.After,
3765 ICS2.UserDefined.After);
3766 else
3767 Result = compareConversionFunctions(S,
3768 ICS1.UserDefined.ConversionFunction,
3769 ICS2.UserDefined.ConversionFunction);
3770 }
3771
3772 return Result;
3773}
3774
3775// Per 13.3.3.2p3, compare the given standard conversion sequences to
3776// determine if one is a proper subset of the other.
3777static ImplicitConversionSequence::CompareKind
3778compareStandardConversionSubsets(ASTContext &Context,
3779 const StandardConversionSequence& SCS1,
3780 const StandardConversionSequence& SCS2) {
3781 ImplicitConversionSequence::CompareKind Result
3782 = ImplicitConversionSequence::Indistinguishable;
3783
3784 // the identity conversion sequence is considered to be a subsequence of
3785 // any non-identity conversion sequence
3786 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3787 return ImplicitConversionSequence::Better;
3788 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3789 return ImplicitConversionSequence::Worse;
3790
3791 if (SCS1.Second != SCS2.Second) {
3792 if (SCS1.Second == ICK_Identity)
3793 Result = ImplicitConversionSequence::Better;
3794 else if (SCS2.Second == ICK_Identity)
3795 Result = ImplicitConversionSequence::Worse;
3796 else
3797 return ImplicitConversionSequence::Indistinguishable;
3798 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3799 return ImplicitConversionSequence::Indistinguishable;
3800
3801 if (SCS1.Third == SCS2.Third) {
3802 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3803 : ImplicitConversionSequence::Indistinguishable;
3804 }
3805
3806 if (SCS1.Third == ICK_Identity)
3807 return Result == ImplicitConversionSequence::Worse
3808 ? ImplicitConversionSequence::Indistinguishable
3809 : ImplicitConversionSequence::Better;
3810
3811 if (SCS2.Third == ICK_Identity)
3812 return Result == ImplicitConversionSequence::Better
3813 ? ImplicitConversionSequence::Indistinguishable
3814 : ImplicitConversionSequence::Worse;
3815
3816 return ImplicitConversionSequence::Indistinguishable;
3817}
3818
3819/// Determine whether one of the given reference bindings is better
3820/// than the other based on what kind of bindings they are.
3821static bool
3822isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3823 const StandardConversionSequence &SCS2) {
3824 // C++0x [over.ics.rank]p3b4:
3825 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3826 // implicit object parameter of a non-static member function declared
3827 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3828 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3829 // lvalue reference to a function lvalue and S2 binds an rvalue
3830 // reference*.
3831 //
3832 // FIXME: Rvalue references. We're going rogue with the above edits,
3833 // because the semantics in the current C++0x working paper (N3225 at the
3834 // time of this writing) break the standard definition of std::forward
3835 // and std::reference_wrapper when dealing with references to functions.
3836 // Proposed wording changes submitted to CWG for consideration.
3837 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3838 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3839 return false;
3840
3841 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3842 SCS2.IsLvalueReference) ||
3843 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3844 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3845}
3846
3847enum class FixedEnumPromotion {
3848 None,
3849 ToUnderlyingType,
3850 ToPromotedUnderlyingType
3851};
3852
3853/// Returns kind of fixed enum promotion the \a SCS uses.
3854static FixedEnumPromotion
3855getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3856
3857 if (SCS.Second != ICK_Integral_Promotion)
29
Assuming field 'Second' is equal to ICK_Integral_Promotion
30
Taking false branch
3858 return FixedEnumPromotion::None;
3859
3860 QualType FromType = SCS.getFromType();
3861 if (!FromType->isEnumeralType())
31
Calling 'Type::isEnumeralType'
34
Returning from 'Type::isEnumeralType'
35
Taking false branch
3862 return FixedEnumPromotion::None;
3863
3864 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
36
Assuming the object is not a 'EnumType'
37
Called C++ object pointer is null
3865 if (!Enum->isFixed())
3866 return FixedEnumPromotion::None;
3867
3868 QualType UnderlyingType = Enum->getIntegerType();
3869 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3870 return FixedEnumPromotion::ToUnderlyingType;
3871
3872 return FixedEnumPromotion::ToPromotedUnderlyingType;
3873}
3874
3875/// CompareStandardConversionSequences - Compare two standard
3876/// conversion sequences to determine whether one is better than the
3877/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3878static ImplicitConversionSequence::CompareKind
3879CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3880 const StandardConversionSequence& SCS1,
3881 const StandardConversionSequence& SCS2)
3882{
3883 // Standard conversion sequence S1 is a better conversion sequence
3884 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3885
3886 // -- S1 is a proper subsequence of S2 (comparing the conversion
3887 // sequences in the canonical form defined by 13.3.3.1.1,
3888 // excluding any Lvalue Transformation; the identity conversion
3889 // sequence is considered to be a subsequence of any
3890 // non-identity conversion sequence) or, if not that,
3891 if (ImplicitConversionSequence::CompareKind CK
23.1
'CK' is 0
23.1
'CK' is 0
24
Taking false branch
3892 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3893 return CK; 3894 3895 // -- the rank of S1 is better than the rank of S2 (by the rules 3896 // defined below), or, if not that, 3897 ImplicitConversionRank Rank1 = SCS1.getRank(); 3898 ImplicitConversionRank Rank2 = SCS2.getRank(); 3899 if (Rank1
24.1
'Rank1' is >= 'Rank2'
24.1
'Rank1' is >= 'Rank2'
< Rank2)
25
Taking false branch
3900 return ImplicitConversionSequence::Better; 3901 else if (Rank2
25.1
'Rank2' is >= 'Rank1'
25.1
'Rank2' is >= 'Rank1'
< Rank1)
26
Taking false branch
3902 return ImplicitConversionSequence::Worse; 3903 3904 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3905 // are indistinguishable unless one of the following rules 3906 // applies: 3907 3908 // A conversion that is not a conversion of a pointer, or 3909 // pointer to member, to bool is better than another conversion 3910 // that is such a conversion. 3911 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
27
Taking false branch
3912 return SCS2.isPointerConversionToBool() 3913 ? ImplicitConversionSequence::Better 3914 : ImplicitConversionSequence::Worse; 3915 3916 // C++14 [over.ics.rank]p4b2: 3917 // This is retroactively applied to C++11 by CWG 1601. 3918 // 3919 // A conversion that promotes an enumeration whose underlying type is fixed 3920 // to its underlying type is better than one that promotes to the promoted 3921 // underlying type, if the two are different. 3922 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
28
Calling 'getFixedEnumPromtion'
3923 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 3924 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 3925 FEP1 != FEP2) 3926 return FEP1 == FixedEnumPromotion::ToUnderlyingType 3927 ? ImplicitConversionSequence::Better 3928 : ImplicitConversionSequence::Worse; 3929 3930 // C++ [over.ics.rank]p4b2: 3931 // 3932 // If class B is derived directly or indirectly from class A, 3933 // conversion of B* to A* is better than conversion of B* to 3934 // void*, and conversion of A* to void* is better than conversion 3935 // of B* to void*. 3936 bool SCS1ConvertsToVoid 3937 = SCS1.isPointerConversionToVoidPointer(S.Context); 3938 bool SCS2ConvertsToVoid 3939 = SCS2.isPointerConversionToVoidPointer(S.Context); 3940 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 3941 // Exactly one of the conversion sequences is a conversion to 3942 // a void pointer; it's the worse conversion. 3943 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 3944 : ImplicitConversionSequence::Worse; 3945 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 3946 // Neither conversion sequence converts to a void pointer; compare 3947 // their derived-to-base conversions. 3948 if (ImplicitConversionSequence::CompareKind DerivedCK 3949 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 3950 return DerivedCK; 3951 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 3952 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 3953 // Both conversion sequences are conversions to void 3954 // pointers. Compare the source types to determine if there's an 3955 // inheritance relationship in their sources. 3956 QualType FromType1 = SCS1.getFromType(); 3957 QualType FromType2 = SCS2.getFromType(); 3958 3959 // Adjust the types we're converting from via the array-to-pointer 3960 // conversion, if we need to. 3961 if (SCS1.First == ICK_Array_To_Pointer) 3962 FromType1 = S.Context.getArrayDecayedType(FromType1); 3963 if (SCS2.First == ICK_Array_To_Pointer) 3964 FromType2 = S.Context.getArrayDecayedType(FromType2); 3965 3966 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3967 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3968 3969 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 3970 return ImplicitConversionSequence::Better; 3971 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 3972 return ImplicitConversionSequence::Worse; 3973 3974 // Objective-C++: If one interface is more specific than the 3975 // other, it is the better one. 3976 const ObjCObjectPointerType* FromObjCPtr1 3977 = FromType1->getAs<ObjCObjectPointerType>(); 3978 const ObjCObjectPointerType* FromObjCPtr2 3979 = FromType2->getAs<ObjCObjectPointerType>(); 3980 if (FromObjCPtr1 && FromObjCPtr2) { 3981 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3982 FromObjCPtr2); 3983 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3984 FromObjCPtr1); 3985 if (AssignLeft != AssignRight) { 3986 return AssignLeft? ImplicitConversionSequence::Better 3987 : ImplicitConversionSequence::Worse; 3988 } 3989 } 3990 } 3991 3992 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3993 // Check for a better reference binding based on the kind of bindings. 3994 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3995 return ImplicitConversionSequence::Better; 3996 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3997 return ImplicitConversionSequence::Worse; 3998 } 3999 4000 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4001 // bullet 3). 4002 if (ImplicitConversionSequence::CompareKind QualCK 4003 = CompareQualificationConversions(S, SCS1, SCS2)) 4004 return QualCK; 4005 4006 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4007 // C++ [over.ics.rank]p3b4: 4008 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4009 // which the references refer are the same type except for 4010 // top-level cv-qualifiers, and the type to which the reference 4011 // initialized by S2 refers is more cv-qualified than the type 4012 // to which the reference initialized by S1 refers. 4013 QualType T1 = SCS1.getToType(2); 4014 QualType T2 = SCS2.getToType(2); 4015 T1 = S.Context.getCanonicalType(T1); 4016 T2 = S.Context.getCanonicalType(T2); 4017 Qualifiers T1Quals, T2Quals; 4018 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4019 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4020 if (UnqualT1 == UnqualT2) { 4021 // Objective-C++ ARC: If the references refer to objects with different 4022 // lifetimes, prefer bindings that don't change lifetime. 4023 if (SCS1.ObjCLifetimeConversionBinding != 4024 SCS2.ObjCLifetimeConversionBinding) { 4025 return SCS1.ObjCLifetimeConversionBinding 4026 ? ImplicitConversionSequence::Worse 4027 : ImplicitConversionSequence::Better; 4028 } 4029 4030 // If the type is an array type, promote the element qualifiers to the 4031 // type for comparison. 4032 if (isa<ArrayType>(T1) && T1Quals) 4033 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4034 if (isa<ArrayType>(T2) && T2Quals) 4035 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4036 if (T2.isMoreQualifiedThan(T1)) 4037 return ImplicitConversionSequence::Better; 4038 if (T1.isMoreQualifiedThan(T2)) 4039 return ImplicitConversionSequence::Worse; 4040 } 4041 } 4042 4043 // In Microsoft mode, prefer an integral conversion to a 4044 // floating-to-integral conversion if the integral conversion 4045 // is between types of the same size. 4046 // For example: 4047 // void f(float); 4048 // void f(int); 4049 // int main { 4050 // long a; 4051 // f(a); 4052 // } 4053 // Here, MSVC will call f(int) instead of generating a compile error 4054 // as clang will do in standard mode. 4055 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && 4056 SCS2.Second == ICK_Floating_Integral && 4057 S.Context.getTypeSize(SCS1.getFromType()) == 4058 S.Context.getTypeSize(SCS1.getToType(2))) 4059 return ImplicitConversionSequence::Better; 4060 4061 // Prefer a compatible vector conversion over a lax vector conversion 4062 // For example: 4063 // 4064 // typedef float __v4sf __attribute__((__vector_size__(16))); 4065 // void f(vector float); 4066 // void f(vector signed int); 4067 // int main() { 4068 // __v4sf a; 4069 // f(a); 4070 // } 4071 // Here, we'd like to choose f(vector float) and not 4072 // report an ambiguous call error 4073 if (SCS1.Second == ICK_Vector_Conversion && 4074 SCS2.Second == ICK_Vector_Conversion) { 4075 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4076 SCS1.getFromType(), SCS1.getToType(2)); 4077 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4078 SCS2.getFromType(), SCS2.getToType(2)); 4079 4080 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4081 return SCS1IsCompatibleVectorConversion 4082 ? ImplicitConversionSequence::Better 4083 : ImplicitConversionSequence::Worse; 4084 } 4085 4086 return ImplicitConversionSequence::Indistinguishable; 4087} 4088 4089/// CompareQualificationConversions - Compares two standard conversion 4090/// sequences to determine whether they can be ranked based on their 4091/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4092static ImplicitConversionSequence::CompareKind 4093CompareQualificationConversions(Sema &S, 4094 const StandardConversionSequence& SCS1, 4095 const StandardConversionSequence& SCS2) { 4096 // C++ 13.3.3.2p3: 4097 // -- S1 and S2 differ only in their qualification conversion and 4098 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 4099 // cv-qualification signature of type T1 is a proper subset of 4100 // the cv-qualification signature of type T2, and S1 is not the 4101 // deprecated string literal array-to-pointer conversion (4.2). 4102 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4103 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4104 return ImplicitConversionSequence::Indistinguishable; 4105 4106 // FIXME: the example in the standard doesn't use a qualification 4107 // conversion (!) 4108 QualType T1 = SCS1.getToType(2); 4109 QualType T2 = SCS2.getToType(2); 4110 T1 = S.Context.getCanonicalType(T1); 4111 T2 = S.Context.getCanonicalType(T2); 4112 assert(!T1->isReferenceType() && !T2->isReferenceType())((!T1->isReferenceType() && !T2->isReferenceType
()) ? static_cast<void> (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4112, __PRETTY_FUNCTION__))
; 4113 Qualifiers T1Quals, T2Quals; 4114 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4115 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4116 4117 // If the types are the same, we won't learn anything by unwrapping 4118 // them. 4119 if (UnqualT1 == UnqualT2) 4120 return ImplicitConversionSequence::Indistinguishable; 4121 4122 ImplicitConversionSequence::CompareKind Result 4123 = ImplicitConversionSequence::Indistinguishable; 4124 4125 // Objective-C++ ARC: 4126 // Prefer qualification conversions not involving a change in lifetime 4127 // to qualification conversions that do not change lifetime. 4128 if (SCS1.QualificationIncludesObjCLifetime != 4129 SCS2.QualificationIncludesObjCLifetime) { 4130 Result = SCS1.QualificationIncludesObjCLifetime 4131 ? ImplicitConversionSequence::Worse 4132 : ImplicitConversionSequence::Better; 4133 } 4134 4135 while (S.Context.UnwrapSimilarTypes(T1, T2)) { 4136 // Within each iteration of the loop, we check the qualifiers to 4137 // determine if this still looks like a qualification 4138 // conversion. Then, if all is well, we unwrap one more level of 4139 // pointers or pointers-to-members and do it all again 4140 // until there are no more pointers or pointers-to-members left 4141 // to unwrap. This essentially mimics what 4142 // IsQualificationConversion does, but here we're checking for a 4143 // strict subset of qualifiers. 4144 if (T1.getQualifiers().withoutObjCLifetime() == 4145 T2.getQualifiers().withoutObjCLifetime()) 4146 // The qualifiers are the same, so this doesn't tell us anything 4147 // about how the sequences rank. 4148 // ObjC ownership quals are omitted above as they interfere with 4149 // the ARC overload rule. 4150 ; 4151 else if (T2.isMoreQualifiedThan(T1)) { 4152 // T1 has fewer qualifiers, so it could be the better sequence. 4153 if (Result == ImplicitConversionSequence::Worse) 4154 // Neither has qualifiers that are a subset of the other's 4155 // qualifiers. 4156 return ImplicitConversionSequence::Indistinguishable; 4157 4158 Result = ImplicitConversionSequence::Better; 4159 } else if (T1.isMoreQualifiedThan(T2)) { 4160 // T2 has fewer qualifiers, so it could be the better sequence. 4161 if (Result == ImplicitConversionSequence::Better) 4162 // Neither has qualifiers that are a subset of the other's 4163 // qualifiers. 4164 return ImplicitConversionSequence::Indistinguishable; 4165 4166 Result = ImplicitConversionSequence::Worse; 4167 } else { 4168 // Qualifiers are disjoint. 4169 return ImplicitConversionSequence::Indistinguishable; 4170 } 4171 4172 // If the types after this point are equivalent, we're done. 4173 if (S.Context.hasSameUnqualifiedType(T1, T2)) 4174 break; 4175 } 4176 4177 // Check that the winning standard conversion sequence isn't using 4178 // the deprecated string literal array to pointer conversion. 4179 switch (Result) { 4180 case ImplicitConversionSequence::Better: 4181 if (SCS1.DeprecatedStringLiteralToCharPtr) 4182 Result = ImplicitConversionSequence::Indistinguishable; 4183 break; 4184 4185 case ImplicitConversionSequence::Indistinguishable: 4186 break; 4187 4188 case ImplicitConversionSequence::Worse: 4189 if (SCS2.DeprecatedStringLiteralToCharPtr) 4190 Result = ImplicitConversionSequence::Indistinguishable; 4191 break; 4192 } 4193 4194 return Result; 4195} 4196 4197/// CompareDerivedToBaseConversions - Compares two standard conversion 4198/// sequences to determine whether they can be ranked based on their 4199/// various kinds of derived-to-base conversions (C++ 4200/// [over.ics.rank]p4b3). As part of these checks, we also look at 4201/// conversions between Objective-C interface types. 4202static ImplicitConversionSequence::CompareKind 4203CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4204 const StandardConversionSequence& SCS1, 4205 const StandardConversionSequence& SCS2) { 4206 QualType FromType1 = SCS1.getFromType(); 4207 QualType ToType1 = SCS1.getToType(1); 4208 QualType FromType2 = SCS2.getFromType(); 4209 QualType ToType2 = SCS2.getToType(1); 4210 4211 // Adjust the types we're converting from via the array-to-pointer 4212 // conversion, if we need to. 4213 if (SCS1.First == ICK_Array_To_Pointer) 4214 FromType1 = S.Context.getArrayDecayedType(FromType1); 4215 if (SCS2.First == ICK_Array_To_Pointer) 4216 FromType2 = S.Context.getArrayDecayedType(FromType2); 4217 4218 // Canonicalize all of the types. 4219 FromType1 = S.Context.getCanonicalType(FromType1); 4220 ToType1 = S.Context.getCanonicalType(ToType1); 4221 FromType2 = S.Context.getCanonicalType(FromType2); 4222 ToType2 = S.Context.getCanonicalType(ToType2); 4223 4224 // C++ [over.ics.rank]p4b3: 4225 // 4226 // If class B is derived directly or indirectly from class A and 4227 // class C is derived directly or indirectly from B, 4228 // 4229 // Compare based on pointer conversions. 4230 if (SCS1.Second == ICK_Pointer_Conversion && 4231 SCS2.Second == ICK_Pointer_Conversion && 4232 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4233 FromType1->isPointerType() && FromType2->isPointerType() && 4234 ToType1->isPointerType() && ToType2->isPointerType()) { 4235 QualType FromPointee1 = 4236 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4237 QualType ToPointee1 = 4238 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4239 QualType FromPointee2 = 4240 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4241 QualType ToPointee2 = 4242 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4243 4244 // -- conversion of C* to B* is better than conversion of C* to A*, 4245 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4246 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4247 return ImplicitConversionSequence::Better; 4248 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4249 return ImplicitConversionSequence::Worse; 4250 } 4251 4252 // -- conversion of B* to A* is better than conversion of C* to A*, 4253 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4254 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4255 return ImplicitConversionSequence::Better; 4256 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4257 return ImplicitConversionSequence::Worse; 4258 } 4259 } else if (SCS1.Second == ICK_Pointer_Conversion && 4260 SCS2.Second == ICK_Pointer_Conversion) { 4261 const ObjCObjectPointerType *FromPtr1 4262 = FromType1->getAs<ObjCObjectPointerType>(); 4263 const ObjCObjectPointerType *FromPtr2 4264 = FromType2->getAs<ObjCObjectPointerType>(); 4265 const ObjCObjectPointerType *ToPtr1 4266 = ToType1->getAs<ObjCObjectPointerType>(); 4267 const ObjCObjectPointerType *ToPtr2 4268 = ToType2->getAs<ObjCObjectPointerType>(); 4269 4270 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4271 // Apply the same conversion ranking rules for Objective-C pointer types 4272 // that we do for C++ pointers to class types. However, we employ the 4273 // Objective-C pseudo-subtyping relationship used for assignment of 4274 // Objective-C pointer types. 4275 bool FromAssignLeft 4276 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4277 bool FromAssignRight 4278 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4279 bool ToAssignLeft 4280 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4281 bool ToAssignRight 4282 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4283 4284 // A conversion to an a non-id object pointer type or qualified 'id' 4285 // type is better than a conversion to 'id'. 4286 if (ToPtr1->isObjCIdType() && 4287 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4288 return ImplicitConversionSequence::Worse; 4289 if (ToPtr2->isObjCIdType() && 4290 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4291 return ImplicitConversionSequence::Better; 4292 4293 // A conversion to a non-id object pointer type is better than a 4294 // conversion to a qualified 'id' type 4295 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4296 return ImplicitConversionSequence::Worse; 4297 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4298 return ImplicitConversionSequence::Better; 4299 4300 // A conversion to an a non-Class object pointer type or qualified 'Class' 4301 // type is better than a conversion to 'Class'. 4302 if (ToPtr1->isObjCClassType() && 4303 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4304 return ImplicitConversionSequence::Worse; 4305 if (ToPtr2->isObjCClassType() && 4306 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4307 return ImplicitConversionSequence::Better; 4308 4309 // A conversion to a non-Class object pointer type is better than a 4310 // conversion to a qualified 'Class' type. 4311 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4312 return ImplicitConversionSequence::Worse; 4313 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4314 return ImplicitConversionSequence::Better; 4315 4316 // -- "conversion of C* to B* is better than conversion of C* to A*," 4317 if (S.Context.hasSameType(FromType1, FromType2) && 4318 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4319 (ToAssignLeft != ToAssignRight)) { 4320 if (FromPtr1->isSpecialized()) { 4321 // "conversion of B<A> * to B * is better than conversion of B * to 4322 // C *. 4323 bool IsFirstSame = 4324 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4325 bool IsSecondSame = 4326 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4327 if (IsFirstSame) { 4328 if (!IsSecondSame) 4329 return ImplicitConversionSequence::Better; 4330 } else if (IsSecondSame) 4331 return ImplicitConversionSequence::Worse; 4332 } 4333 return ToAssignLeft? ImplicitConversionSequence::Worse 4334 : ImplicitConversionSequence::Better; 4335 } 4336 4337 // -- "conversion of B* to A* is better than conversion of C* to A*," 4338 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4339 (FromAssignLeft != FromAssignRight)) 4340 return FromAssignLeft? ImplicitConversionSequence::Better 4341 : ImplicitConversionSequence::Worse; 4342 } 4343 } 4344 4345 // Ranking of member-pointer types. 4346 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4347 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4348 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4349 const MemberPointerType * FromMemPointer1 = 4350 FromType1->getAs<MemberPointerType>(); 4351 const MemberPointerType * ToMemPointer1 = 4352 ToType1->getAs<MemberPointerType>(); 4353 const MemberPointerType * FromMemPointer2 = 4354 FromType2->getAs<MemberPointerType>(); 4355 const MemberPointerType * ToMemPointer2 = 4356 ToType2->getAs<MemberPointerType>(); 4357 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4358 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4359 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4360 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4361 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4362 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4363 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4364 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4365 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4366 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4367 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4368 return ImplicitConversionSequence::Worse; 4369 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4370 return ImplicitConversionSequence::Better; 4371 } 4372 // conversion of B::* to C::* is better than conversion of A::* to C::* 4373 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4374 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4375 return ImplicitConversionSequence::Better; 4376 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4377 return ImplicitConversionSequence::Worse; 4378 } 4379 } 4380 4381 if (SCS1.Second == ICK_Derived_To_Base) { 4382 // -- conversion of C to B is better than conversion of C to A, 4383 // -- binding of an expression of type C to a reference of type 4384 // B& is better than binding an expression of type C to a 4385 // reference of type A&, 4386 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4387 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4388 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4389 return ImplicitConversionSequence::Better; 4390 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4391 return ImplicitConversionSequence::Worse; 4392 } 4393 4394 // -- conversion of B to A is better than conversion of C to A. 4395 // -- binding of an expression of type B to a reference of type 4396 // A& is better than binding an expression of type C to a 4397 // reference of type A&, 4398 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4399 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4400 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4401 return ImplicitConversionSequence::Better; 4402 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4403 return ImplicitConversionSequence::Worse; 4404 } 4405 } 4406 4407 return ImplicitConversionSequence::Indistinguishable; 4408} 4409 4410/// Determine whether the given type is valid, e.g., it is not an invalid 4411/// C++ class. 4412static bool isTypeValid(QualType T) { 4413 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4414 return !Record->isInvalidDecl(); 4415 4416 return true; 4417} 4418 4419static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4420 if (!T.getQualifiers().hasUnaligned()) 4421 return T; 4422 4423 Qualifiers Q; 4424 T = Ctx.getUnqualifiedArrayType(T, Q); 4425 Q.removeUnaligned(); 4426 return Ctx.getQualifiedType(T, Q); 4427} 4428 4429/// CompareReferenceRelationship - Compare the two types T1 and T2 to 4430/// determine whether they are reference-compatible, 4431/// reference-related, or incompatible, for use in C++ initialization by 4432/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4433/// type, and the first type (T1) is the pointee type of the reference 4434/// type being initialized. 4435Sema::ReferenceCompareResult 4436Sema::CompareReferenceRelationship(SourceLocation Loc, 4437 QualType OrigT1, QualType OrigT2, 4438 ReferenceConversions *ConvOut) { 4439 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4440, __PRETTY_FUNCTION__))
4440 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4440, __PRETTY_FUNCTION__))
; 4441 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4441, __PRETTY_FUNCTION__))
; 4442 4443 QualType T1 = Context.getCanonicalType(OrigT1); 4444 QualType T2 = Context.getCanonicalType(OrigT2); 4445 Qualifiers T1Quals, T2Quals; 4446 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4447 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4448 4449 ReferenceConversions ConvTmp; 4450 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4451 Conv = ReferenceConversions(); 4452 4453 // C++2a [dcl.init.ref]p4: 4454 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4455 // reference-related to "cv2 T2" if T1 is similar to T2, or 4456 // T1 is a base class of T2. 4457 // "cv1 T1" is reference-compatible with "cv2 T2" if 4458 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4459 // "pointer to cv1 T1" via a standard conversion sequence. 4460 4461 // Check for standard conversions we can apply to pointers: derived-to-base 4462 // conversions, ObjC pointer conversions, and function pointer conversions. 4463 // (Qualification conversions are checked last.) 4464 QualType ConvertedT2; 4465 if (UnqualT1 == UnqualT2) { 4466 // Nothing to do. 4467 } else if (isCompleteType(Loc, OrigT2) && 4468 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4469 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4470 Conv |= ReferenceConversions::DerivedToBase; 4471 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4472 UnqualT2->isObjCObjectOrInterfaceType() && 4473 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4474 Conv |= ReferenceConversions::ObjC; 4475 else if (UnqualT2->isFunctionType() && 4476 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4477 Conv |= ReferenceConversions::Function; 4478 // No need to check qualifiers; function types don't have them. 4479 return Ref_Compatible; 4480 } 4481 bool ConvertedReferent = Conv != 0; 4482 4483 // We can have a qualification conversion. Compute whether the types are 4484 // similar at the same time. 4485 bool PreviousToQualsIncludeConst = true; 4486 bool TopLevel = true; 4487 do { 4488 if (T1 == T2) 4489 break; 4490 4491 // We will need a qualification conversion. 4492 Conv |= ReferenceConversions::Qualification; 4493 4494 // Track whether we performed a qualification conversion anywhere other 4495 // than the top level. This matters for ranking reference bindings in 4496 // overload resolution. 4497 if (!TopLevel) 4498 Conv |= ReferenceConversions::NestedQualification; 4499 4500 // MS compiler ignores __unaligned qualifier for references; do the same. 4501 T1 = withoutUnaligned(Context, T1); 4502 T2 = withoutUnaligned(Context, T2); 4503 4504 // If we find a qualifier mismatch, the types are not reference-compatible, 4505 // but are still be reference-related if they're similar. 4506 bool ObjCLifetimeConversion = false; 4507 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, 4508 PreviousToQualsIncludeConst, 4509 ObjCLifetimeConversion)) 4510 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4511 ? Ref_Related 4512 : Ref_Incompatible; 4513 4514 // FIXME: Should we track this for any level other than the first? 4515 if (ObjCLifetimeConversion) 4516 Conv |= ReferenceConversions::ObjCLifetime; 4517 4518 TopLevel = false; 4519 } while (Context.UnwrapSimilarTypes(T1, T2)); 4520 4521 // At this point, if the types are reference-related, we must either have the 4522 // same inner type (ignoring qualifiers), or must have already worked out how 4523 // to convert the referent. 4524 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4525 ? Ref_Compatible 4526 : Ref_Incompatible; 4527} 4528 4529/// Look for a user-defined conversion to a value reference-compatible 4530/// with DeclType. Return true if something definite is found. 4531static bool 4532FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4533 QualType DeclType, SourceLocation DeclLoc, 4534 Expr *Init, QualType T2, bool AllowRvalues, 4535 bool AllowExplicit) { 4536 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4536, __PRETTY_FUNCTION__))
; 4537 CXXRecordDecl *T2RecordDecl 4538 = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4539 4540 OverloadCandidateSet CandidateSet( 4541 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4542 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4543 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4544 NamedDecl *D = *I; 4545 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4546 if (isa<UsingShadowDecl>(D)) 4547 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4548 4549 FunctionTemplateDecl *ConvTemplate 4550 = dyn_cast<FunctionTemplateDecl>(D); 4551 CXXConversionDecl *Conv; 4552 if (ConvTemplate) 4553 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4554 else 4555 Conv = cast<CXXConversionDecl>(D); 4556 4557 if (AllowRvalues) { 4558 // If we are initializing an rvalue reference, don't permit conversion 4559 // functions that return lvalues. 4560 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4561 const ReferenceType *RefType 4562 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4563 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4564 continue; 4565 } 4566 4567 if (!ConvTemplate && 4568 S.CompareReferenceRelationship( 4569 DeclLoc, 4570 Conv->getConversionType() 4571 .getNonReferenceType() 4572 .getUnqualifiedType(), 4573 DeclType.getNonReferenceType().getUnqualifiedType()) == 4574 Sema::Ref_Incompatible) 4575 continue; 4576 } else { 4577 // If the conversion function doesn't return a reference type, 4578 // it can't be considered for this conversion. An rvalue reference 4579 // is only acceptable if its referencee is a function type. 4580 4581 const ReferenceType *RefType = 4582 Conv->getConversionType()->getAs<ReferenceType>(); 4583 if (!RefType || 4584 (!RefType->isLValueReferenceType() && 4585 !RefType->getPointeeType()->isFunctionType())) 4586 continue; 4587 } 4588 4589 if (ConvTemplate) 4590 S.AddTemplateConversionCandidate( 4591 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4592 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4593 else 4594 S.AddConversionCandidate( 4595 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4596 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4597 } 4598 4599 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4600 4601 OverloadCandidateSet::iterator Best; 4602 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4603 case OR_Success: 4604 // C++ [over.ics.ref]p1: 4605 // 4606 // [...] If the parameter binds directly to the result of 4607 // applying a conversion function to the argument 4608 // expression, the implicit conversion sequence is a 4609 // user-defined conversion sequence (13.3.3.1.2), with the 4610 // second standard conversion sequence either an identity 4611 // conversion or, if the conversion function returns an 4612 // entity of a type that is a derived class of the parameter 4613 // type, a derived-to-base Conversion. 4614 if (!Best->FinalConversion.DirectBinding) 4615 return false; 4616 4617 ICS.setUserDefined(); 4618 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4619 ICS.UserDefined.After = Best->FinalConversion; 4620 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4621 ICS.UserDefined.ConversionFunction = Best->Function; 4622 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4623 ICS.UserDefined.EllipsisConversion = false; 4624 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4626, __PRETTY_FUNCTION__))
4625 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4626, __PRETTY_FUNCTION__))
4626 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4626, __PRETTY_FUNCTION__))
; 4627 return true; 4628 4629 case OR_Ambiguous: 4630 ICS.setAmbiguous(); 4631 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4632 Cand != CandidateSet.end(); ++Cand) 4633 if (Cand->Best) 4634 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4635 return true; 4636 4637 case OR_No_Viable_Function: 4638 case OR_Deleted: 4639 // There was no suitable conversion, or we found a deleted 4640 // conversion; continue with other checks. 4641 return false; 4642 } 4643 4644 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4644)
; 4645} 4646 4647/// Compute an implicit conversion sequence for reference 4648/// initialization. 4649static ImplicitConversionSequence 4650TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4651 SourceLocation DeclLoc, 4652 bool SuppressUserConversions, 4653 bool AllowExplicit) { 4654 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 4654, __PRETTY_FUNCTION__))
; 4655 4656 // Most paths end in a failed conversion. 4657 ImplicitConversionSequence ICS; 4658 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4659 4660 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4661 QualType T2 = Init->getType(); 4662 4663 // If the initializer is the address of an overloaded function, try 4664 // to resolve the overloaded function. If all goes well, T2 is the 4665 // type of the resulting function. 4666 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4667 DeclAccessPair Found; 4668 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4669 false, Found)) 4670 T2 = Fn->getType(); 4671 } 4672 4673 // Compute some basic properties of the types and the initializer. 4674 bool isRValRef = DeclType->isRValueReferenceType(); 4675 Expr::Classification InitCategory = Init->Classify(S.Context); 4676 4677 Sema::ReferenceConversions RefConv; 4678 Sema::ReferenceCompareResult RefRelationship = 4679 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4680 4681 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4682 ICS.setStandard(); 4683 ICS.Standard.First = ICK_Identity; 4684 // FIXME: A reference binding can be a function conversion too. We should 4685 // consider that when ordering reference-to-function bindings. 4686 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4687 ? ICK_Derived_To_Base 4688 : (RefConv & Sema::ReferenceConversions::ObjC) 4689 ? ICK_Compatible_Conversion 4690 : ICK_Identity; 4691 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4692 // a reference binding that performs a non-top-level qualification 4693 // conversion as a qualification conversion, not as an identity conversion. 4694 ICS.Standard.Third = (RefConv & 4695 Sema::ReferenceConversions::NestedQualification) 4696 ? ICK_Qualification 4697 : ICK_Identity; 4698 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4699 ICS.Standard.setToType(0, T2); 4700 ICS.Standard.setToType(1, T1); 4701 ICS.Standard.setToType(2, T1); 4702 ICS.Standard.ReferenceBinding = true; 4703 ICS.Standard.DirectBinding = BindsDirectly; 4704 ICS.Standard.IsLvalueReference = !isRValRef; 4705 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4706 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4707 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4708 ICS.Standard.ObjCLifetimeConversionBinding = 4709 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4710 ICS.Standard.CopyConstructor = nullptr; 4711 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4712 }; 4713 4714 // C++0x [dcl.init.ref]p5: 4715 // A reference to type "cv1 T1" is initialized by an expression 4716 // of type "cv2 T2" as follows: 4717 4718 // -- If reference is an lvalue reference and the initializer expression 4719 if (!isRValRef) { 4720 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4721 // reference-compatible with "cv2 T2," or 4722 // 4723 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4724 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4725 // C++ [over.ics.ref]p1: 4726 // When a parameter of reference type binds directly (8.5.3) 4727 // to an argument expression, the implicit conversion sequence 4728 // is the identity conversion, unless the argument expression 4729 // has a type that is a derived class of the parameter type, 4730 // in which case the implicit conversion sequence is a 4731 // derived-to-base Conversion (13.3.3.1). 4732 SetAsReferenceBinding(/*BindsDirectly=*/true); 4733 4734 // Nothing more to do: the inaccessibility/ambiguity check for 4735 // derived-to-base conversions is suppressed when we're 4736 // computing the implicit conversion sequence (C++ 4737 // [over.best.ics]p2). 4738 return ICS; 4739 } 4740 4741 // -- has a class type (i.e., T2 is a class type), where T1 is 4742 // not reference-related to T2, and can be implicitly 4743 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4744 // is reference-compatible with "cv3 T3" 92) (this 4745 // conversion is selected by enumerating the applicable 4746 // conversion functions (13.3.1.6) and choosing the best 4747 // one through overload resolution (13.3)), 4748 if (!SuppressUserConversions && T2->isRecordType() && 4749 S.isCompleteType(DeclLoc, T2) && 4750 RefRelationship == Sema::Ref_Incompatible) { 4751 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4752 Init, T2, /*AllowRvalues=*/false, 4753 AllowExplicit)) 4754 return ICS; 4755 } 4756 } 4757 4758 // -- Otherwise, the reference shall be an lvalue reference to a 4759 // non-volatile const type (i.e., cv1 shall be const), or the reference 4760 // shall be an rvalue reference. 4761 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) 4762 return ICS; 4763 4764 // -- If the initializer expression 4765 // 4766 // -- is an xvalue, class prvalue, array prvalue or function 4767 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4768 if (RefRelationship == Sema::Ref_Compatible && 4769 (InitCategory.isXValue() || 4770 (InitCategory.isPRValue() && 4771 (T2->isRecordType() || T2->isArrayType())) || 4772 (InitCategory.isLValue() && T2->isFunctionType()))) { 4773 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4774 // binding unless we're binding to a class prvalue. 4775 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4776 // allow the use of rvalue references in C++98/03 for the benefit of 4777 // standard library implementors; therefore, we need the xvalue check here. 4778 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4779 !(InitCategory.isPRValue() || T2->isRecordType())); 4780 return ICS; 4781 } 4782 4783 // -- has a class type (i.e., T2 is a class type), where T1 is not 4784 // reference-related to T2, and can be implicitly converted to 4785 // an xvalue, class prvalue, or function lvalue of type 4786 // "cv3 T3", where "cv1 T1" is reference-compatible with 4787 // "cv3 T3", 4788 // 4789 // then the reference is bound to the value of the initializer 4790 // expression in the first case and to the result of the conversion 4791 // in the second case (or, in either case, to an appropriate base 4792 // class subobject). 4793 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4794 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4795 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4796 Init, T2, /*AllowRvalues=*/true, 4797 AllowExplicit)) { 4798 // In the second case, if the reference is an rvalue reference 4799 // and the second standard conversion sequence of the 4800 // user-defined conversion sequence includes an lvalue-to-rvalue 4801 // conversion, the program is ill-formed. 4802 if (ICS.isUserDefined() && isRValRef && 4803 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4804 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4805 4806 return ICS; 4807 } 4808 4809 // A temporary of function type cannot be created; don't even try. 4810 if (T1->isFunctionType()) 4811 return ICS; 4812 4813 // -- Otherwise, a temporary of type "cv1 T1" is created and 4814 // initialized from the initializer expression using the 4815 // rules for a non-reference copy initialization (8.5). The 4816 // reference is then bound to the temporary. If T1 is 4817 // reference-related to T2, cv1 must be the same 4818 // cv-qualification as, or greater cv-qualification than, 4819 // cv2; otherwise, the program is ill-formed. 4820 if (RefRelationship == Sema::Ref_Related) { 4821 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4822 // we would be reference-compatible or reference-compatible with 4823 // added qualification. But that wasn't the case, so the reference 4824 // initialization fails. 4825 // 4826 // Note that we only want to check address spaces and cvr-qualifiers here. 4827 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4828 Qualifiers T1Quals = T1.getQualifiers(); 4829 Qualifiers T2Quals = T2.getQualifiers(); 4830 T1Quals.removeObjCGCAttr(); 4831 T1Quals.removeObjCLifetime(); 4832 T2Quals.removeObjCGCAttr(); 4833 T2Quals.removeObjCLifetime(); 4834 // MS compiler ignores __unaligned qualifier for references; do the same. 4835 T1Quals.removeUnaligned(); 4836 T2Quals.removeUnaligned(); 4837 if (!T1Quals.compatiblyIncludes(T2Quals)) 4838 return ICS; 4839 } 4840 4841 // If at least one of the types is a class type, the types are not 4842 // related, and we aren't allowed any user conversions, the 4843 // reference binding fails. This case is important for breaking 4844 // recursion, since TryImplicitConversion below will attempt to 4845 // create a temporary through the use of a copy constructor. 4846 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4847 (T1->isRecordType() || T2->isRecordType())) 4848 return ICS; 4849 4850 // If T1 is reference-related to T2 and the reference is an rvalue 4851 // reference, the initializer expression shall not be an lvalue. 4852 if (RefRelationship >= Sema::Ref_Related && 4853 isRValRef && Init->Classify(S.Context).isLValue()) 4854 return ICS; 4855 4856 // C++ [over.ics.ref]p2: 4857 // When a parameter of reference type is not bound directly to 4858 // an argument expression, the conversion sequence is the one 4859 // required to convert the argument expression to the 4860 // underlying type of the reference according to 4861 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4862 // to copy-initializing a temporary of the underlying type with 4863 // the argument expression. Any difference in top-level 4864 // cv-qualification is subsumed by the initialization itself 4865 // and does not constitute a conversion. 4866 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4867 /*AllowExplicit=*/false, 4868 /*InOverloadResolution=*/false, 4869 /*CStyle=*/false, 4870 /*AllowObjCWritebackConversion=*/false, 4871 /*AllowObjCConversionOnExplicit=*/false); 4872 4873 // Of course, that's still a reference binding. 4874 if (ICS.isStandard()) { 4875 ICS.Standard.ReferenceBinding = true; 4876 ICS.Standard.IsLvalueReference = !isRValRef; 4877 ICS.Standard.BindsToFunctionLvalue = false; 4878 ICS.Standard.BindsToRvalue = true; 4879 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4880 ICS.Standard.ObjCLifetimeConversionBinding = false; 4881 } else if (ICS.isUserDefined()) { 4882 const ReferenceType *LValRefType = 4883 ICS.UserDefined.ConversionFunction->getReturnType() 4884 ->getAs<LValueReferenceType>(); 4885 4886 // C++ [over.ics.ref]p3: 4887 // Except for an implicit object parameter, for which see 13.3.1, a 4888 // standard conversion sequence cannot be formed if it requires [...] 4889 // binding an rvalue reference to an lvalue other than a function 4890 // lvalue. 4891 // Note that the function case is not possible here. 4892 if (DeclType->isRValueReferenceType() && LValRefType) { 4893 // FIXME: This is the wrong BadConversionSequence. The problem is binding 4894 // an rvalue reference to a (non-function) lvalue, not binding an lvalue 4895 // reference to an rvalue! 4896 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4897 return ICS; 4898 } 4899 4900 ICS.UserDefined.After.ReferenceBinding = true; 4901 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4902 ICS.UserDefined.After.BindsToFunctionLvalue = false; 4903 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 4904 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4905 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4906 } 4907 4908 return ICS; 4909} 4910 4911static ImplicitConversionSequence 4912TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4913 bool SuppressUserConversions, 4914 bool InOverloadResolution, 4915 bool AllowObjCWritebackConversion, 4916 bool AllowExplicit = false); 4917 4918/// TryListConversion - Try to copy-initialize a value of type ToType from the 4919/// initializer list From. 4920static ImplicitConversionSequence 4921TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4922 bool SuppressUserConversions, 4923 bool InOverloadResolution, 4924 bool AllowObjCWritebackConversion) { 4925 // C++11 [over.ics.list]p1: 4926 // When an argument is an initializer list, it is not an expression and 4927 // special rules apply for converting it to a parameter type. 4928 4929 ImplicitConversionSequence Result; 4930 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 4931 4932 // We need a complete type for what follows. Incomplete types can never be 4933 // initialized from init lists. 4934 if (!S.isCompleteType(From->getBeginLoc(), ToType)) 4935 return Result; 4936 4937 // Per DR1467: 4938 // If the parameter type is a class X and the initializer list has a single 4939 // element of type cv U, where U is X or a class derived from X, the 4940 // implicit conversion sequence is the one required to convert the element 4941 // to the parameter type. 4942 // 4943 // Otherwise, if the parameter type is a character array [... ] 4944 // and the initializer list has a single element that is an 4945 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 4946 // implicit conversion sequence is the identity conversion. 4947 if (From->getNumInits() == 1) { 4948 if (ToType->isRecordType()) { 4949 QualType InitType = From->getInit(0)->getType(); 4950 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 4951 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 4952 return TryCopyInitialization(S, From->getInit(0), ToType, 4953 SuppressUserConversions, 4954 InOverloadResolution, 4955 AllowObjCWritebackConversion); 4956 } 4957 // FIXME: Check the other conditions here: array of character type, 4958 // initializer is a string literal. 4959 if (ToType->isArrayType()) { 4960 InitializedEntity Entity = 4961 InitializedEntity::InitializeParameter(S.Context, ToType, 4962 /*Consumed=*/false); 4963 if (S.CanPerformCopyInitialization(Entity, From)) { 4964 Result.setStandard(); 4965 Result.Standard.setAsIdentityConversion(); 4966 Result.Standard.setFromType(ToType); 4967 Result.Standard.setAllToTypes(ToType); 4968 return Result; 4969 } 4970 } 4971 } 4972 4973 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 4974 // C++11 [over.ics.list]p2: 4975 // If the parameter type is std::initializer_list<X> or "array of X" and 4976 // all the elements can be implicitly converted to X, the implicit 4977 // conversion sequence is the worst conversion necessary to convert an 4978 // element of the list to X. 4979 // 4980 // C++14 [over.ics.list]p3: 4981 // Otherwise, if the parameter type is "array of N X", if the initializer 4982 // list has exactly N elements or if it has fewer than N elements and X is 4983 // default-constructible, and if all the elements of the initializer list 4984 // can be implicitly converted to X, the implicit conversion sequence is 4985 // the worst conversion necessary to convert an element of the list to X. 4986 // 4987 // FIXME: We're missing a lot of these checks. 4988 bool toStdInitializerList = false; 4989 QualType X; 4990 if (ToType->isArrayType()) 4991 X = S.Context.getAsArrayType(ToType)->getElementType(); 4992 else 4993 toStdInitializerList = S.isStdInitializerList(ToType, &X); 4994 if (!X.isNull()) { 4995 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 4996 Expr *Init = From->getInit(i); 4997 ImplicitConversionSequence ICS = 4998 TryCopyInitialization(S, Init, X, SuppressUserConversions, 4999 InOverloadResolution, 5000 AllowObjCWritebackConversion); 5001 // If a single element isn't convertible, fail. 5002 if (ICS.isBad()) { 5003 Result = ICS; 5004 break; 5005 } 5006 // Otherwise, look for the worst conversion. 5007 if (Result.isBad() || CompareImplicitConversionSequences( 5008 S, From->getBeginLoc(), ICS, Result) == 5009 ImplicitConversionSequence::Worse) 5010 Result = ICS; 5011 } 5012 5013 // For an empty list, we won't have computed any conversion sequence. 5014 // Introduce the identity conversion sequence. 5015 if (From->getNumInits() == 0) { 5016 Result.setStandard(); 5017 Result.Standard.setAsIdentityConversion(); 5018 Result.Standard.setFromType(ToType); 5019 Result.Standard.setAllToTypes(ToType); 5020 } 5021 5022 Result.setStdInitializerListElement(toStdInitializerList); 5023 return Result; 5024 } 5025 5026 // C++14 [over.ics.list]p4: 5027 // C++11 [over.ics.list]p3: 5028 // Otherwise, if the parameter is a non-aggregate class X and overload 5029 // resolution chooses a single best constructor [...] the implicit 5030 // conversion sequence is a user-defined conversion sequence. If multiple 5031 // constructors are viable but none is better than the others, the 5032 // implicit conversion sequence is a user-defined conversion sequence. 5033 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5034 // This function can deal with initializer lists. 5035 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5036 /*AllowExplicit=*/false, 5037 InOverloadResolution, /*CStyle=*/false, 5038 AllowObjCWritebackConversion, 5039 /*AllowObjCConversionOnExplicit=*/false); 5040 } 5041 5042 // C++14 [over.ics.list]p5: 5043 // C++11 [over.ics.list]p4: 5044 // Otherwise, if the parameter has an aggregate type which can be 5045 // initialized from the initializer list [...] the implicit conversion 5046 // sequence is a user-defined conversion sequence. 5047 if (ToType->isAggregateType()) { 5048 // Type is an aggregate, argument is an init list. At this point it comes 5049 // down to checking whether the initialization works. 5050 // FIXME: Find out whether this parameter is consumed or not. 5051 InitializedEntity Entity = 5052 InitializedEntity::InitializeParameter(S.Context, ToType, 5053 /*Consumed=*/false); 5054 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5055 From)) { 5056 Result.setUserDefined(); 5057 Result.UserDefined.Before.setAsIdentityConversion(); 5058 // Initializer lists don't have a type. 5059 Result.UserDefined.Before.setFromType(QualType()); 5060 Result.UserDefined.Before.setAllToTypes(QualType()); 5061 5062 Result.UserDefined.After.setAsIdentityConversion(); 5063 Result.UserDefined.After.setFromType(ToType); 5064 Result.UserDefined.After.setAllToTypes(ToType); 5065 Result.UserDefined.ConversionFunction = nullptr; 5066 } 5067 return Result; 5068 } 5069 5070 // C++14 [over.ics.list]p6: 5071 // C++11 [over.ics.list]p5: 5072 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5073 if (ToType->isReferenceType()) { 5074 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5075 // mention initializer lists in any way. So we go by what list- 5076 // initialization would do and try to extrapolate from that. 5077 5078 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5079 5080 // If the initializer list has a single element that is reference-related 5081 // to the parameter type, we initialize the reference from that. 5082 if (From->getNumInits() == 1) { 5083 Expr *Init = From->getInit(0); 5084 5085 QualType T2 = Init->getType(); 5086 5087 // If the initializer is the address of an overloaded function, try 5088 // to resolve the overloaded function. If all goes well, T2 is the 5089 // type of the resulting function. 5090 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5091 DeclAccessPair Found; 5092 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5093 Init, ToType, false, Found)) 5094 T2 = Fn->getType(); 5095 } 5096 5097 // Compute some basic properties of the types and the initializer. 5098 Sema::ReferenceCompareResult RefRelationship = 5099 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5100 5101 if (RefRelationship >= Sema::Ref_Related) { 5102 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5103 SuppressUserConversions, 5104 /*AllowExplicit=*/false); 5105 } 5106 } 5107 5108 // Otherwise, we bind the reference to a temporary created from the 5109 // initializer list. 5110 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5111 InOverloadResolution, 5112 AllowObjCWritebackConversion); 5113 if (Result.isFailure()) 5114 return Result; 5115 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5116, __PRETTY_FUNCTION__))
5116 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5116, __PRETTY_FUNCTION__))
; 5117 5118 // Can we even bind to a temporary? 5119 if (ToType->isRValueReferenceType() || 5120 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5121 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5122 Result.UserDefined.After; 5123 SCS.ReferenceBinding = true; 5124 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5125 SCS.BindsToRvalue = true; 5126 SCS.BindsToFunctionLvalue = false; 5127 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5128 SCS.ObjCLifetimeConversionBinding = false; 5129 } else 5130 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5131 From, ToType); 5132 return Result; 5133 } 5134 5135 // C++14 [over.ics.list]p7: 5136 // C++11 [over.ics.list]p6: 5137 // Otherwise, if the parameter type is not a class: 5138 if (!ToType->isRecordType()) { 5139 // - if the initializer list has one element that is not itself an 5140 // initializer list, the implicit conversion sequence is the one 5141 // required to convert the element to the parameter type. 5142 unsigned NumInits = From->getNumInits(); 5143 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5144 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5145 SuppressUserConversions, 5146 InOverloadResolution, 5147 AllowObjCWritebackConversion); 5148 // - if the initializer list has no elements, the implicit conversion 5149 // sequence is the identity conversion. 5150 else if (NumInits == 0) { 5151 Result.setStandard(); 5152 Result.Standard.setAsIdentityConversion(); 5153 Result.Standard.setFromType(ToType); 5154 Result.Standard.setAllToTypes(ToType); 5155 } 5156 return Result; 5157 } 5158 5159 // C++14 [over.ics.list]p8: 5160 // C++11 [over.ics.list]p7: 5161 // In all cases other than those enumerated above, no conversion is possible 5162 return Result; 5163} 5164 5165/// TryCopyInitialization - Try to copy-initialize a value of type 5166/// ToType from the expression From. Return the implicit conversion 5167/// sequence required to pass this argument, which may be a bad 5168/// conversion sequence (meaning that the argument cannot be passed to 5169/// a parameter of this type). If @p SuppressUserConversions, then we 5170/// do not permit any user-defined conversion sequences. 5171static ImplicitConversionSequence 5172TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5173 bool SuppressUserConversions, 5174 bool InOverloadResolution, 5175 bool AllowObjCWritebackConversion, 5176 bool AllowExplicit) { 5177 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5178 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5179 InOverloadResolution,AllowObjCWritebackConversion); 5180 5181 if (ToType->isReferenceType()) 5182 return TryReferenceInit(S, From, ToType, 5183 /*FIXME:*/ From->getBeginLoc(), 5184 SuppressUserConversions, AllowExplicit); 5185 5186 return TryImplicitConversion(S, From, ToType, 5187 SuppressUserConversions, 5188 /*AllowExplicit=*/false, 5189 InOverloadResolution, 5190 /*CStyle=*/false, 5191 AllowObjCWritebackConversion, 5192 /*AllowObjCConversionOnExplicit=*/false); 5193} 5194 5195static bool TryCopyInitialization(const CanQualType FromQTy, 5196 const CanQualType ToQTy, 5197 Sema &S, 5198 SourceLocation Loc, 5199 ExprValueKind FromVK) { 5200 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5201 ImplicitConversionSequence ICS = 5202 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5203 5204 return !ICS.isBad(); 5205} 5206 5207/// TryObjectArgumentInitialization - Try to initialize the object 5208/// parameter of the given member function (@c Method) from the 5209/// expression @p From. 5210static ImplicitConversionSequence 5211TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5212 Expr::Classification FromClassification, 5213 CXXMethodDecl *Method, 5214 CXXRecordDecl *ActingContext) { 5215 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5216 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5217 // const volatile object. 5218 Qualifiers Quals = Method->getMethodQualifiers(); 5219 if (isa<CXXDestructorDecl>(Method)) { 5220 Quals.addConst(); 5221 Quals.addVolatile(); 5222 } 5223 5224 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5225 5226 // Set up the conversion sequence as a "bad" conversion, to allow us 5227 // to exit early. 5228 ImplicitConversionSequence ICS; 5229 5230 // We need to have an object of class type. 5231 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5232 FromType = PT->getPointeeType(); 5233 5234 // When we had a pointer, it's implicitly dereferenced, so we 5235 // better have an lvalue. 5236 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5236, __PRETTY_FUNCTION__))
; 5237 } 5238 5239 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5239, __PRETTY_FUNCTION__))
; 5240 5241 // C++0x [over.match.funcs]p4: 5242 // For non-static member functions, the type of the implicit object 5243 // parameter is 5244 // 5245 // - "lvalue reference to cv X" for functions declared without a 5246 // ref-qualifier or with the & ref-qualifier 5247 // - "rvalue reference to cv X" for functions declared with the && 5248 // ref-qualifier 5249 // 5250 // where X is the class of which the function is a member and cv is the 5251 // cv-qualification on the member function declaration. 5252 // 5253 // However, when finding an implicit conversion sequence for the argument, we 5254 // are not allowed to perform user-defined conversions 5255 // (C++ [over.match.funcs]p5). We perform a simplified version of 5256 // reference binding here, that allows class rvalues to bind to 5257 // non-constant references. 5258 5259 // First check the qualifiers. 5260 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5261 if (ImplicitParamType.getCVRQualifiers() 5262 != FromTypeCanon.getLocalCVRQualifiers() && 5263 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5264 ICS.setBad(BadConversionSequence::bad_qualifiers, 5265 FromType, ImplicitParamType); 5266 return ICS; 5267 } 5268 5269 if (FromTypeCanon.hasAddressSpace()) { 5270 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5271 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5272 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5273 ICS.setBad(BadConversionSequence::bad_qualifiers, 5274 FromType, ImplicitParamType); 5275 return ICS; 5276 } 5277 } 5278 5279 // Check that we have either the same type or a derived type. It 5280 // affects the conversion rank. 5281 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5282 ImplicitConversionKind SecondKind; 5283 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5284 SecondKind = ICK_Identity; 5285 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5286 SecondKind = ICK_Derived_To_Base; 5287 else { 5288 ICS.setBad(BadConversionSequence::unrelated_class, 5289 FromType, ImplicitParamType); 5290 return ICS; 5291 } 5292 5293 // Check the ref-qualifier. 5294 switch (Method->getRefQualifier()) { 5295 case RQ_None: 5296 // Do nothing; we don't care about lvalueness or rvalueness. 5297 break; 5298 5299 case RQ_LValue: 5300 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5301 // non-const lvalue reference cannot bind to an rvalue 5302 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5303 ImplicitParamType); 5304 return ICS; 5305 } 5306 break; 5307 5308 case RQ_RValue: 5309 if (!FromClassification.isRValue()) { 5310 // rvalue reference cannot bind to an lvalue 5311 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5312 ImplicitParamType); 5313 return ICS; 5314 } 5315 break; 5316 } 5317 5318 // Success. Mark this as a reference binding. 5319 ICS.setStandard(); 5320 ICS.Standard.setAsIdentityConversion(); 5321 ICS.Standard.Second = SecondKind; 5322 ICS.Standard.setFromType(FromType); 5323 ICS.Standard.setAllToTypes(ImplicitParamType); 5324 ICS.Standard.ReferenceBinding = true; 5325 ICS.Standard.DirectBinding = true; 5326 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5327 ICS.Standard.BindsToFunctionLvalue = false; 5328 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5329 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5330 = (Method->getRefQualifier() == RQ_None); 5331 return ICS; 5332} 5333 5334/// PerformObjectArgumentInitialization - Perform initialization of 5335/// the implicit object parameter for the given Method with the given 5336/// expression. 5337ExprResult 5338Sema::PerformObjectArgumentInitialization(Expr *From, 5339 NestedNameSpecifier *Qualifier, 5340 NamedDecl *FoundDecl, 5341 CXXMethodDecl *Method) { 5342 QualType FromRecordType, DestType; 5343 QualType ImplicitParamRecordType = 5344 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5345 5346 Expr::Classification FromClassification; 5347 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5348 FromRecordType = PT->getPointeeType(); 5349 DestType = Method->getThisType(); 5350 FromClassification = Expr::Classification::makeSimpleLValue(); 5351 } else { 5352 FromRecordType = From->getType(); 5353 DestType = ImplicitParamRecordType; 5354 FromClassification = From->Classify(Context); 5355 5356 // When performing member access on an rvalue, materialize a temporary. 5357 if (From->isRValue()) { 5358 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5359 Method->getRefQualifier() != 5360 RefQualifierKind::RQ_RValue); 5361 } 5362 } 5363 5364 // Note that we always use the true parent context when performing 5365 // the actual argument initialization. 5366 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5367 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5368 Method->getParent()); 5369 if (ICS.isBad()) { 5370 switch (ICS.Bad.Kind) { 5371 case BadConversionSequence::bad_qualifiers: { 5372 Qualifiers FromQs = FromRecordType.getQualifiers(); 5373 Qualifiers ToQs = DestType.getQualifiers(); 5374 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5375 if (CVR) { 5376 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5377 << Method->getDeclName() << FromRecordType << (CVR - 1) 5378 << From->getSourceRange(); 5379 Diag(Method->getLocation(), diag::note_previous_decl) 5380 << Method->getDeclName(); 5381 return ExprError(); 5382 } 5383 break; 5384 } 5385 5386 case BadConversionSequence::lvalue_ref_to_rvalue: 5387 case BadConversionSequence::rvalue_ref_to_lvalue: { 5388 bool IsRValueQualified = 5389 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5390 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5391 << Method->getDeclName() << FromClassification.isRValue() 5392 << IsRValueQualified; 5393 Diag(Method->getLocation(), diag::note_previous_decl) 5394 << Method->getDeclName(); 5395 return ExprError(); 5396 } 5397 5398 case BadConversionSequence::no_conversion: 5399 case BadConversionSequence::unrelated_class: 5400 break; 5401 } 5402 5403 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5404 << ImplicitParamRecordType << FromRecordType 5405 << From->getSourceRange(); 5406 } 5407 5408 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5409 ExprResult FromRes = 5410 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5411 if (FromRes.isInvalid()) 5412 return ExprError(); 5413 From = FromRes.get(); 5414 } 5415 5416 if (!Context.hasSameType(From->getType(), DestType)) { 5417 CastKind CK; 5418 QualType PteeTy = DestType->getPointeeType(); 5419 LangAS DestAS = 5420 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5421 if (FromRecordType.getAddressSpace() != DestAS) 5422 CK = CK_AddressSpaceConversion; 5423 else 5424 CK = CK_NoOp; 5425 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5426 } 5427 return From; 5428} 5429 5430/// TryContextuallyConvertToBool - Attempt to contextually convert the 5431/// expression From to bool (C++0x [conv]p3). 5432static ImplicitConversionSequence 5433TryContextuallyConvertToBool(Sema &S, Expr *From) { 5434 return TryImplicitConversion(S, From, S.Context.BoolTy, 5435 /*SuppressUserConversions=*/false, 5436 /*AllowExplicit=*/true, 5437 /*InOverloadResolution=*/false, 5438 /*CStyle=*/false, 5439 /*AllowObjCWritebackConversion=*/false, 5440 /*AllowObjCConversionOnExplicit=*/false); 5441} 5442 5443/// PerformContextuallyConvertToBool - Perform a contextual conversion 5444/// of the expression From to bool (C++0x [conv]p3). 5445ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5446 if (checkPlaceholderForOverload(*this, From)) 5447 return ExprError(); 5448 5449 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5450 if (!ICS.isBad()) 5451 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5452 5453 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5454 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5455 << From->getType() << From->getSourceRange(); 5456 return ExprError(); 5457} 5458 5459/// Check that the specified conversion is permitted in a converted constant 5460/// expression, according to C++11 [expr.const]p3. Return true if the conversion 5461/// is acceptable. 5462static bool CheckConvertedConstantConversions(Sema &S, 5463 StandardConversionSequence &SCS) { 5464 // Since we know that the target type is an integral or unscoped enumeration 5465 // type, most conversion kinds are impossible. All possible First and Third 5466 // conversions are fine. 5467 switch (SCS.Second) { 5468 case ICK_Identity: 5469 case ICK_Function_Conversion: 5470 case ICK_Integral_Promotion: 5471 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5472 case ICK_Zero_Queue_Conversion: 5473 return true; 5474 5475 case ICK_Boolean_Conversion: 5476 // Conversion from an integral or unscoped enumeration type to bool is 5477 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5478 // conversion, so we allow it in a converted constant expression. 5479 // 5480 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5481 // a lot of popular code. We should at least add a warning for this 5482 // (non-conforming) extension. 5483 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5484 SCS.getToType(2)->isBooleanType(); 5485 5486 case ICK_Pointer_Conversion: 5487 case ICK_Pointer_Member: 5488 // C++1z: null pointer conversions and null member pointer conversions are 5489 // only permitted if the source type is std::nullptr_t. 5490 return SCS.getFromType()->isNullPtrType(); 5491 5492 case ICK_Floating_Promotion: 5493 case ICK_Complex_Promotion: 5494 case ICK_Floating_Conversion: 5495 case ICK_Complex_Conversion: 5496 case ICK_Floating_Integral: 5497 case ICK_Compatible_Conversion: 5498 case ICK_Derived_To_Base: 5499 case ICK_Vector_Conversion: 5500 case ICK_Vector_Splat: 5501 case ICK_Complex_Real: 5502 case ICK_Block_Pointer_Conversion: 5503 case ICK_TransparentUnionConversion: 5504 case ICK_Writeback_Conversion: 5505 case ICK_Zero_Event_Conversion: 5506 case ICK_C_Only_Conversion: 5507 case ICK_Incompatible_Pointer_Conversion: 5508 return false; 5509 5510 case ICK_Lvalue_To_Rvalue: 5511 case ICK_Array_To_Pointer: 5512 case ICK_Function_To_Pointer: 5513 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5513)
; 5514 5515 case ICK_Qualification: 5516 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5516)
; 5517 5518 case ICK_Num_Conversion_Kinds: 5519 break; 5520 } 5521 5522 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5522)
; 5523} 5524 5525/// CheckConvertedConstantExpression - Check that the expression From is a 5526/// converted constant expression of type T, perform the conversion and produce 5527/// the converted expression, per C++11 [expr.const]p3. 5528static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5529 QualType T, APValue &Value, 5530 Sema::CCEKind CCE, 5531 bool RequireInt) { 5532 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5533, __PRETTY_FUNCTION__))
5533 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5533, __PRETTY_FUNCTION__))
; 5534 5535 if (checkPlaceholderForOverload(S, From)) 5536 return ExprError(); 5537 5538 // C++1z [expr.const]p3: 5539 // A converted constant expression of type T is an expression, 5540 // implicitly converted to type T, where the converted 5541 // expression is a constant expression and the implicit conversion 5542 // sequence contains only [... list of conversions ...]. 5543 // C++1z [stmt.if]p2: 5544 // If the if statement is of the form if constexpr, the value of the 5545 // condition shall be a contextually converted constant expression of type 5546 // bool. 5547 ImplicitConversionSequence ICS = 5548 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool 5549 ? TryContextuallyConvertToBool(S, From) 5550 : TryCopyInitialization(S, From, T, 5551 /*SuppressUserConversions=*/false, 5552 /*InOverloadResolution=*/false, 5553 /*AllowObjCWritebackConversion=*/false, 5554 /*AllowExplicit=*/false); 5555 StandardConversionSequence *SCS = nullptr; 5556 switch (ICS.getKind()) { 5557 case ImplicitConversionSequence::StandardConversion: 5558 SCS = &ICS.Standard; 5559 break; 5560 case ImplicitConversionSequence::UserDefinedConversion: 5561 // We are converting to a non-class type, so the Before sequence 5562 // must be trivial. 5563 SCS = &ICS.UserDefined.After; 5564 break; 5565 case ImplicitConversionSequence::AmbiguousConversion: 5566 case ImplicitConversionSequence::BadConversion: 5567 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5568 return S.Diag(From->getBeginLoc(), 5569 diag::err_typecheck_converted_constant_expression) 5570 << From->getType() << From->getSourceRange() << T; 5571 return ExprError(); 5572 5573 case ImplicitConversionSequence::EllipsisConversion: 5574 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5574)
; 5575 } 5576 5577 // Check that we would only use permitted conversions. 5578 if (!CheckConvertedConstantConversions(S, *SCS)) { 5579 return S.Diag(From->getBeginLoc(), 5580 diag::err_typecheck_converted_constant_expression_disallowed) 5581 << From->getType() << From->getSourceRange() << T; 5582 } 5583 // [...] and where the reference binding (if any) binds directly. 5584 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5585 return S.Diag(From->getBeginLoc(), 5586 diag::err_typecheck_converted_constant_expression_indirect) 5587 << From->getType() << From->getSourceRange() << T; 5588 } 5589 5590 ExprResult Result = 5591 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5592 if (Result.isInvalid()) 5593 return Result; 5594 5595 // C++2a [intro.execution]p5: 5596 // A full-expression is [...] a constant-expression [...] 5597 Result = 5598 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5599 /*DiscardedValue=*/false, /*IsConstexpr=*/true); 5600 if (Result.isInvalid()) 5601 return Result; 5602 5603 // Check for a narrowing implicit conversion. 5604 APValue PreNarrowingValue; 5605 QualType PreNarrowingType; 5606 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5607 PreNarrowingType)) { 5608 case NK_Dependent_Narrowing: 5609 // Implicit conversion to a narrower type, but the expression is 5610 // value-dependent so we can't tell whether it's actually narrowing. 5611 case NK_Variable_Narrowing: 5612 // Implicit conversion to a narrower type, and the value is not a constant 5613 // expression. We'll diagnose this in a moment. 5614 case NK_Not_Narrowing: 5615 break; 5616 5617 case NK_Constant_Narrowing: 5618 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5619 << CCE << /*Constant*/ 1 5620 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5621 break; 5622 5623 case NK_Type_Narrowing: 5624 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5625 << CCE << /*Constant*/ 0 << From->getType() << T; 5626 break; 5627 } 5628 5629 if (Result.get()->isValueDependent()) { 5630 Value = APValue(); 5631 return Result; 5632 } 5633 5634 // Check the expression is a constant expression. 5635 SmallVector<PartialDiagnosticAt, 8> Notes; 5636 Expr::EvalResult Eval; 5637 Eval.Diag = &Notes; 5638 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg 5639 ? Expr::EvaluateForMangling 5640 : Expr::EvaluateForCodeGen; 5641 5642 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) || 5643 (RequireInt && !Eval.Val.isInt())) { 5644 // The expression can't be folded, so we can't keep it at this position in 5645 // the AST. 5646 Result = ExprError(); 5647 } else { 5648 Value = Eval.Val; 5649 5650 if (Notes.empty()) { 5651 // It's a constant expression. 5652 return ConstantExpr::Create(S.Context, Result.get(), Value); 5653 } 5654 } 5655 5656 // It's not a constant expression. Produce an appropriate diagnostic. 5657 if (Notes.size() == 1 && 5658 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) 5659 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5660 else { 5661 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5662 << CCE << From->getSourceRange(); 5663 for (unsigned I = 0; I < Notes.size(); ++I) 5664 S.Diag(Notes[I].first, Notes[I].second); 5665 } 5666 return ExprError(); 5667} 5668 5669ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5670 APValue &Value, CCEKind CCE) { 5671 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false); 5672} 5673 5674ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5675 llvm::APSInt &Value, 5676 CCEKind CCE) { 5677 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaOverload.cpp"
, 5677, __PRETTY_FUNCTION__))
; 5678 5679 APValue V; 5680 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true); 5681 if (!R.isInvalid() && !R.get()->isValueDependent()) 5682 Value = V.getInt(); 5683 return R; 5684} 5685 5686 5687/// dropPointerConversions - If the given standard conversion sequence 5688/// involves any pointer conversions, remove them. This may change 5689/// the result type of the conversion sequence. 5690static void dropPointerConversion(StandardConversionSequence &SCS) { 5691 if (SCS.Second == ICK_Pointer_Conversion) { 5692 SCS.Second = ICK_Identity; 5693 SCS.Third = ICK_Identity; 5694 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5695 } 5696} 5697 5698/// TryContextuallyConvertToObjCPointer - Attempt to contextually 5699/// convert the expression From to an Objective-C pointer type. 5700static ImplicitConversionSequence 5701TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5702 // Do an implicit conversion to 'id'. 5703 QualType Ty = S.Context.getObjCIdType(); 5704 ImplicitConversionSequence ICS 5705 = TryImplicitConversion(S, From, Ty, 5706 // FIXME: Are these flags correct? 5707 /*SuppressUserConversions=*/false, 5708 /*AllowExplicit=*/true, 5709 /*InOverloadResolution=*/false, 5710 /*CStyle=*/false, 5711 /*AllowObjCWritebackConversion=*/false, 5712 /*AllowObjCConversionOnExplicit=*/true); 5713 5714 // Strip off any final conversions to 'id'. 5715 switch (ICS.getKind()) { 5716 case ImplicitConversionSequence::BadConversion: 5717 case ImplicitConversionSequence::AmbiguousConversion: 5718 case ImplicitConversionSequence::EllipsisConversion: 5719 break; 5720 5721 case ImplicitConversionSequence::UserDefinedConversion: 5722 dropPointerConversion(ICS.UserDefined.After); 5723 break; 5724 5725 case ImplicitConversionSequence::StandardConversion: 5726 dropPointerConversion(ICS.Standard); 5727 break; 5728 } 5729 5730 return ICS; 5731} 5732 5733/// PerformContextuallyConvertToObjCPointer - Perform a contextual 5734/// conversion of the expression From to an Objective-C pointer type. 5735/// Returns a valid but null ExprResult if no conversion sequence exists. 5736ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5737 if (checkPlaceholderForOverload(*this, From)) 5738 return ExprError(); 5739 5740 QualType Ty = Context.getObjCIdType(); 5741 ImplicitConversionSequence ICS = 5742 TryContextuallyConvertToObjCPointer(*this, From); 5743 if (!ICS.isBad()) 5744 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5745 return ExprResult(); 5746} 5747 5748/// Determine whether the provided type is an integral type, or an enumeration 5749/// type of a permitted flavor. 5750bool Sema::ICEConvertDiagnoser::match(QualType T) { 5751 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5752 : T->isIntegralOrUnscopedEnumerationType(); 5753} 5754 5755static ExprResult 5756diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5757 Sema::ContextualImplicitConverter &Converter, 5758 QualType T, UnresolvedSetImpl &ViableConversions) { 5759 5760 if (Converter.Suppress) 5761 return ExprError(); 5762 5763 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5764 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5765 CXXConversionDecl *Conv = 5766 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5767 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5768 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5769 } 5770 return From; 5771} 5772 5773static bool 5774diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5775 Sema::ContextualImplicitConverter &Converter, 5776 QualType T, bool HadMultipleCandidates, 5777 UnresolvedSetImpl &ExplicitConversions) { 5778 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5779 DeclAccessPair Found = ExplicitConversions[0]; 5780 CXXConversionDecl *Conversion = 5781 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5782 5783 // The user probably meant to invoke the given explicit 5784 // conversion; use it. 5785 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5786 std::string TypeStr; 5787 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5788 5789 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5790 << FixItHint::CreateInsertion(From->getBeginLoc(), 5791 "static_cast<" + TypeStr + ">(") 5792 << FixItHint::CreateInsertion( 5793 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 5794 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5795 5796 // If we aren't in a SFINAE context, build a call to the 5797 // explicit conversion function. 5798 if (SemaRef.isSFINAEContext()) 5799 return true; 5800 5801 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5802 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5803 HadMultipleCandidates); 5804 if (Result.isInvalid()) 5805 return true; 5806 // Record usage of conversion in an implicit cast. 5807 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5808 CK_UserDefinedConversion, Result.get(), 5809 nullptr, Result.get()->getValueKind()); 5810 } 5811 return false; 5812} 5813 5814static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5815 Sema::ContextualImplicitConverter &Converter, 5816 QualType T, bool HadMultipleCandidates, 5817 DeclAccessPair &Found) { 5818 CXXConversionDecl *Conversion = 5819 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5820 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5821 5822 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 5823 if (!Converter.SuppressConversion) { 5824 if (SemaRef.isSFINAEContext()) 5825 return true; 5826 5827 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 5828 << From->getSourceRange(); 5829 } 5830 5831 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5832 HadMultipleCandidates); 5833 if (Result.isInvalid()) 5834 return true; 5835 // Record usage of conversion in an implicit cast. 5836 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5837 CK_UserDefinedConversion, Result.get(), 5838 nullptr, Result.get()->getValueKind()); 5839 return false; 5840} 5841 5842static ExprResult finishContextualImplicitConversion( 5843 Sema &SemaRef, SourceLocation Loc, Expr *From, 5844 Sema::ContextualImplicitConverter &Converter) { 5845 if (!Converter.match(From->getType()) && !Converter.Suppress) 5846 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 5847 << From->getSourceRange(); 5848 5849 return SemaRef.DefaultLvalueConversion(From); 5850} 5851 5852static void 5853collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 5854 UnresolvedSetImpl &ViableConversions, 5855 OverloadCandidateSet &CandidateSet) { 5856 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5857 DeclAccessPair FoundDecl = ViableConversions[I]; 5858 NamedDecl *D = FoundDecl.getDecl(); 5859 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5860 if (isa<UsingShadowDecl>(D)) 5861 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5862 5863 CXXConversionDecl *Conv; 5864 FunctionTemplateDecl *ConvTemplate; 5865 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 5866 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5867 else 5868 Conv = cast<CXXConversionDecl>(D); 5869 5870 if (ConvTemplate) 5871 SemaRef.AddTemplateConversionCandidate( 5872 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 5873 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 5874 else 5875 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 5876 ToType, CandidateSet, 5877 /*AllowObjCConversionOnExplicit=*/false, 5878 /*AllowExplicit*/ true); 5879 } 5880} 5881 5882/// Attempt to convert the given expression to a type which is accepted 5883/// by the given converter. 5884/// 5885/// This routine will attempt to convert an expression of class type to a 5886/// type accepted by the specified converter. In C++11 and before, the class 5887/// must have a single non-explicit conversion function converting to a matching 5888/// type. In C++1y, there can be multiple such conversion functions, but only 5889/// one target type. 5890/// 5891/// \param Loc The source location of the construct that requires the 5892/// conversion. 5893/// 5894/// \param From The expression we're converting from. 5895/// 5896/// \param Converter Used to control and diagnose the conversion process. 5897/// 5898/// \returns The expression, converted to an integral or enumeration type if 5899/// successful. 5900ExprResult Sema::PerformContextualImplicitConversion( 5901 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 5902 // We can't perform any more checking for type-dependent expressions. 5903 if (From->isTypeDependent()) 5904 return From; 5905 5906 // Process placeholders immediately. 5907 if (From->hasPlaceholderType()) { 5908 ExprResult result = CheckPlaceholderExpr(From); 5909 if (result.isInvalid()) 5910 return result; 5911 From = result.get(); 5912 } 5913 5914 // If the expression already has a matching type, we're golden. 5915 QualType T = From->getType(); 5916