Bug Summary

File:tools/clang/include/clang/Sema/Overload.h
Warning:line 832, column 16
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64 S.ResolveExceptionSpec(Loc, FPT);
65 DeclRefExpr *DRE = new (S.Context)
66 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67 if (HadMultipleCandidates)
68 DRE->setHadMultipleCandidates(true);
69
70 S.MarkDeclRefReferenced(DRE, Base);
71 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72 CK_FunctionToPointerDecay);
73}
74
75static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76 bool InOverloadResolution,
77 StandardConversionSequence &SCS,
78 bool CStyle,
79 bool AllowObjCWritebackConversion);
80
81static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82 QualType &ToType,
83 bool InOverloadResolution,
84 StandardConversionSequence &SCS,
85 bool CStyle);
86static OverloadingResult
87IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88 UserDefinedConversionSequence& User,
89 OverloadCandidateSet& Conversions,
90 bool AllowExplicit,
91 bool AllowObjCConversionOnExplicit);
92
93
94static ImplicitConversionSequence::CompareKind
95CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96 const StandardConversionSequence& SCS1,
97 const StandardConversionSequence& SCS2);
98
99static ImplicitConversionSequence::CompareKind
100CompareQualificationConversions(Sema &S,
101 const StandardConversionSequence& SCS1,
102 const StandardConversionSequence& SCS2);
103
104static ImplicitConversionSequence::CompareKind
105CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109/// GetConversionRank - Retrieve the implicit conversion rank
110/// corresponding to the given implicit conversion kind.
111ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112 static const ImplicitConversionRank
113 Rank[(int)ICK_Num_Conversion_Kinds] = {
114 ICR_Exact_Match,
115 ICR_Exact_Match,
116 ICR_Exact_Match,
117 ICR_Exact_Match,
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Promotion,
121 ICR_Promotion,
122 ICR_Promotion,
123 ICR_Conversion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_OCL_Scalar_Widening,
134 ICR_Complex_Real_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Writeback_Conversion,
138 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139 // it was omitted by the patch that added
140 // ICK_Zero_Event_Conversion
141 ICR_C_Conversion,
142 ICR_C_Conversion_Extension
143 };
144 return Rank[(int)Kind];
145}
146
147/// GetImplicitConversionName - Return the name of this kind of
148/// implicit conversion.
149static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151 "No conversion",
152 "Lvalue-to-rvalue",
153 "Array-to-pointer",
154 "Function-to-pointer",
155 "Function pointer conversion",
156 "Qualification",
157 "Integral promotion",
158 "Floating point promotion",
159 "Complex promotion",
160 "Integral conversion",
161 "Floating conversion",
162 "Complex conversion",
163 "Floating-integral conversion",
164 "Pointer conversion",
165 "Pointer-to-member conversion",
166 "Boolean conversion",
167 "Compatible-types conversion",
168 "Derived-to-base conversion",
169 "Vector conversion",
170 "Vector splat",
171 "Complex-real conversion",
172 "Block Pointer conversion",
173 "Transparent Union Conversion",
174 "Writeback conversion",
175 "OpenCL Zero Event Conversion",
176 "C specific type conversion",
177 "Incompatible pointer conversion"
178 };
179 return Name[Kind];
180}
181
182/// StandardConversionSequence - Set the standard conversion
183/// sequence to the identity conversion.
184void StandardConversionSequence::setAsIdentityConversion() {
185 First = ICK_Identity;
186 Second = ICK_Identity;
187 Third = ICK_Identity;
188 DeprecatedStringLiteralToCharPtr = false;
189 QualificationIncludesObjCLifetime = false;
190 ReferenceBinding = false;
191 DirectBinding = false;
192 IsLvalueReference = true;
193 BindsToFunctionLvalue = false;
194 BindsToRvalue = false;
195 BindsImplicitObjectArgumentWithoutRefQualifier = false;
196 ObjCLifetimeConversionBinding = false;
197 CopyConstructor = nullptr;
198}
199
200/// getRank - Retrieve the rank of this standard conversion sequence
201/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202/// implicit conversions.
203ImplicitConversionRank StandardConversionSequence::getRank() const {
204 ImplicitConversionRank Rank = ICR_Exact_Match;
205 if (GetConversionRank(First) > Rank)
206 Rank = GetConversionRank(First);
207 if (GetConversionRank(Second) > Rank)
208 Rank = GetConversionRank(Second);
209 if (GetConversionRank(Third) > Rank)
210 Rank = GetConversionRank(Third);
211 return Rank;
212}
213
214/// isPointerConversionToBool - Determines whether this conversion is
215/// a conversion of a pointer or pointer-to-member to bool. This is
216/// used as part of the ranking of standard conversion sequences
217/// (C++ 13.3.3.2p4).
218bool StandardConversionSequence::isPointerConversionToBool() const {
219 // Note that FromType has not necessarily been transformed by the
220 // array-to-pointer or function-to-pointer implicit conversions, so
221 // check for their presence as well as checking whether FromType is
222 // a pointer.
223 if (getToType(1)->isBooleanType() &&
224 (getFromType()->isPointerType() ||
225 getFromType()->isMemberPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256}
257
258/// Skip any implicit casts which could be either part of a narrowing conversion
259/// or after one in an implicit conversion.
260static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
261 const Expr *Converted) {
262 // We can have cleanups wrapping the converted expression; these need to be
263 // preserved so that destructors run if necessary.
264 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
265 Expr *Inner =
266 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
267 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
268 EWC->getObjects());
269 }
270
271 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
272 switch (ICE->getCastKind()) {
273 case CK_NoOp:
274 case CK_IntegralCast:
275 case CK_IntegralToBoolean:
276 case CK_IntegralToFloating:
277 case CK_BooleanToSignedIntegral:
278 case CK_FloatingToIntegral:
279 case CK_FloatingToBoolean:
280 case CK_FloatingCast:
281 Converted = ICE->getSubExpr();
282 continue;
283
284 default:
285 return Converted;
286 }
287 }
288
289 return Converted;
290}
291
292/// Check if this standard conversion sequence represents a narrowing
293/// conversion, according to C++11 [dcl.init.list]p7.
294///
295/// \param Ctx The AST context.
296/// \param Converted The result of applying this standard conversion sequence.
297/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
298/// value of the expression prior to the narrowing conversion.
299/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
300/// type of the expression prior to the narrowing conversion.
301/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
302/// from floating point types to integral types should be ignored.
303NarrowingKind StandardConversionSequence::getNarrowingKind(
304 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
305 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
306 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 306, __PRETTY_FUNCTION__))
;
307
308 // C++11 [dcl.init.list]p7:
309 // A narrowing conversion is an implicit conversion ...
310 QualType FromType = getToType(0);
311 QualType ToType = getToType(1);
312
313 // A conversion to an enumeration type is narrowing if the conversion to
314 // the underlying type is narrowing. This only arises for expressions of
315 // the form 'Enum{init}'.
316 if (auto *ET = ToType->getAs<EnumType>())
317 ToType = ET->getDecl()->getIntegerType();
318
319 switch (Second) {
320 // 'bool' is an integral type; dispatch to the right place to handle it.
321 case ICK_Boolean_Conversion:
322 if (FromType->isRealFloatingType())
323 goto FloatingIntegralConversion;
324 if (FromType->isIntegralOrUnscopedEnumerationType())
325 goto IntegralConversion;
326 // Boolean conversions can be from pointers and pointers to members
327 // [conv.bool], and those aren't considered narrowing conversions.
328 return NK_Not_Narrowing;
329
330 // -- from a floating-point type to an integer type, or
331 //
332 // -- from an integer type or unscoped enumeration type to a floating-point
333 // type, except where the source is a constant expression and the actual
334 // value after conversion will fit into the target type and will produce
335 // the original value when converted back to the original type, or
336 case ICK_Floating_Integral:
337 FloatingIntegralConversion:
338 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
339 return NK_Type_Narrowing;
340 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
341 ToType->isRealFloatingType()) {
342 if (IgnoreFloatToIntegralConversion)
343 return NK_Not_Narrowing;
344 llvm::APSInt IntConstantValue;
345 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
346 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 346, __PRETTY_FUNCTION__))
;
347
348 // If it's value-dependent, we can't tell whether it's narrowing.
349 if (Initializer->isValueDependent())
350 return NK_Dependent_Narrowing;
351
352 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
353 // Convert the integer to the floating type.
354 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
355 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
356 llvm::APFloat::rmNearestTiesToEven);
357 // And back.
358 llvm::APSInt ConvertedValue = IntConstantValue;
359 bool ignored;
360 Result.convertToInteger(ConvertedValue,
361 llvm::APFloat::rmTowardZero, &ignored);
362 // If the resulting value is different, this was a narrowing conversion.
363 if (IntConstantValue != ConvertedValue) {
364 ConstantValue = APValue(IntConstantValue);
365 ConstantType = Initializer->getType();
366 return NK_Constant_Narrowing;
367 }
368 } else {
369 // Variables are always narrowings.
370 return NK_Variable_Narrowing;
371 }
372 }
373 return NK_Not_Narrowing;
374
375 // -- from long double to double or float, or from double to float, except
376 // where the source is a constant expression and the actual value after
377 // conversion is within the range of values that can be represented (even
378 // if it cannot be represented exactly), or
379 case ICK_Floating_Conversion:
380 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
381 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
382 // FromType is larger than ToType.
383 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
384
385 // If it's value-dependent, we can't tell whether it's narrowing.
386 if (Initializer->isValueDependent())
387 return NK_Dependent_Narrowing;
388
389 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
390 // Constant!
391 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 391, __PRETTY_FUNCTION__))
;
392 llvm::APFloat FloatVal = ConstantValue.getFloat();
393 // Convert the source value into the target type.
394 bool ignored;
395 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
396 Ctx.getFloatTypeSemantics(ToType),
397 llvm::APFloat::rmNearestTiesToEven, &ignored);
398 // If there was no overflow, the source value is within the range of
399 // values that can be represented.
400 if (ConvertStatus & llvm::APFloat::opOverflow) {
401 ConstantType = Initializer->getType();
402 return NK_Constant_Narrowing;
403 }
404 } else {
405 return NK_Variable_Narrowing;
406 }
407 }
408 return NK_Not_Narrowing;
409
410 // -- from an integer type or unscoped enumeration type to an integer type
411 // that cannot represent all the values of the original type, except where
412 // the source is a constant expression and the actual value after
413 // conversion will fit into the target type and will produce the original
414 // value when converted back to the original type.
415 case ICK_Integral_Conversion:
416 IntegralConversion: {
417 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 417, __PRETTY_FUNCTION__))
;
418 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 418, __PRETTY_FUNCTION__))
;
419 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
420 const unsigned FromWidth = Ctx.getIntWidth(FromType);
421 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
422 const unsigned ToWidth = Ctx.getIntWidth(ToType);
423
424 if (FromWidth > ToWidth ||
425 (FromWidth == ToWidth && FromSigned != ToSigned) ||
426 (FromSigned && !ToSigned)) {
427 // Not all values of FromType can be represented in ToType.
428 llvm::APSInt InitializerValue;
429 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
430
431 // If it's value-dependent, we can't tell whether it's narrowing.
432 if (Initializer->isValueDependent())
433 return NK_Dependent_Narrowing;
434
435 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
436 // Such conversions on variables are always narrowing.
437 return NK_Variable_Narrowing;
438 }
439 bool Narrowing = false;
440 if (FromWidth < ToWidth) {
441 // Negative -> unsigned is narrowing. Otherwise, more bits is never
442 // narrowing.
443 if (InitializerValue.isSigned() && InitializerValue.isNegative())
444 Narrowing = true;
445 } else {
446 // Add a bit to the InitializerValue so we don't have to worry about
447 // signed vs. unsigned comparisons.
448 InitializerValue = InitializerValue.extend(
449 InitializerValue.getBitWidth() + 1);
450 // Convert the initializer to and from the target width and signed-ness.
451 llvm::APSInt ConvertedValue = InitializerValue;
452 ConvertedValue = ConvertedValue.trunc(ToWidth);
453 ConvertedValue.setIsSigned(ToSigned);
454 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
455 ConvertedValue.setIsSigned(InitializerValue.isSigned());
456 // If the result is different, this was a narrowing conversion.
457 if (ConvertedValue != InitializerValue)
458 Narrowing = true;
459 }
460 if (Narrowing) {
461 ConstantType = Initializer->getType();
462 ConstantValue = APValue(InitializerValue);
463 return NK_Constant_Narrowing;
464 }
465 }
466 return NK_Not_Narrowing;
467 }
468
469 default:
470 // Other kinds of conversions are not narrowings.
471 return NK_Not_Narrowing;
472 }
473}
474
475/// dump - Print this standard conversion sequence to standard
476/// error. Useful for debugging overloading issues.
477LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
478 raw_ostream &OS = llvm::errs();
479 bool PrintedSomething = false;
480 if (First != ICK_Identity) {
481 OS << GetImplicitConversionName(First);
482 PrintedSomething = true;
483 }
484
485 if (Second != ICK_Identity) {
486 if (PrintedSomething) {
487 OS << " -> ";
488 }
489 OS << GetImplicitConversionName(Second);
490
491 if (CopyConstructor) {
492 OS << " (by copy constructor)";
493 } else if (DirectBinding) {
494 OS << " (direct reference binding)";
495 } else if (ReferenceBinding) {
496 OS << " (reference binding)";
497 }
498 PrintedSomething = true;
499 }
500
501 if (Third != ICK_Identity) {
502 if (PrintedSomething) {
503 OS << " -> ";
504 }
505 OS << GetImplicitConversionName(Third);
506 PrintedSomething = true;
507 }
508
509 if (!PrintedSomething) {
510 OS << "No conversions required";
511 }
512}
513
514/// dump - Print this user-defined conversion sequence to standard
515/// error. Useful for debugging overloading issues.
516void UserDefinedConversionSequence::dump() const {
517 raw_ostream &OS = llvm::errs();
518 if (Before.First || Before.Second || Before.Third) {
519 Before.dump();
520 OS << " -> ";
521 }
522 if (ConversionFunction)
523 OS << '\'' << *ConversionFunction << '\'';
524 else
525 OS << "aggregate initialization";
526 if (After.First || After.Second || After.Third) {
527 OS << " -> ";
528 After.dump();
529 }
530}
531
532/// dump - Print this implicit conversion sequence to standard
533/// error. Useful for debugging overloading issues.
534void ImplicitConversionSequence::dump() const {
535 raw_ostream &OS = llvm::errs();
536 if (isStdInitializerListElement())
537 OS << "Worst std::initializer_list element conversion: ";
538 switch (ConversionKind) {
539 case StandardConversion:
540 OS << "Standard conversion: ";
541 Standard.dump();
542 break;
543 case UserDefinedConversion:
544 OS << "User-defined conversion: ";
545 UserDefined.dump();
546 break;
547 case EllipsisConversion:
548 OS << "Ellipsis conversion";
549 break;
550 case AmbiguousConversion:
551 OS << "Ambiguous conversion";
552 break;
553 case BadConversion:
554 OS << "Bad conversion";
555 break;
556 }
557
558 OS << "\n";
559}
560
561void AmbiguousConversionSequence::construct() {
562 new (&conversions()) ConversionSet();
563}
564
565void AmbiguousConversionSequence::destruct() {
566 conversions().~ConversionSet();
567}
568
569void
570AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
571 FromTypePtr = O.FromTypePtr;
572 ToTypePtr = O.ToTypePtr;
573 new (&conversions()) ConversionSet(O.conversions());
574}
575
576namespace {
577 // Structure used by DeductionFailureInfo to store
578 // template argument information.
579 struct DFIArguments {
580 TemplateArgument FirstArg;
581 TemplateArgument SecondArg;
582 };
583 // Structure used by DeductionFailureInfo to store
584 // template parameter and template argument information.
585 struct DFIParamWithArguments : DFIArguments {
586 TemplateParameter Param;
587 };
588 // Structure used by DeductionFailureInfo to store template argument
589 // information and the index of the problematic call argument.
590 struct DFIDeducedMismatchArgs : DFIArguments {
591 TemplateArgumentList *TemplateArgs;
592 unsigned CallArgIndex;
593 };
594}
595
596/// Convert from Sema's representation of template deduction information
597/// to the form used in overload-candidate information.
598DeductionFailureInfo
599clang::MakeDeductionFailureInfo(ASTContext &Context,
600 Sema::TemplateDeductionResult TDK,
601 TemplateDeductionInfo &Info) {
602 DeductionFailureInfo Result;
603 Result.Result = static_cast<unsigned>(TDK);
604 Result.HasDiagnostic = false;
605 switch (TDK) {
606 case Sema::TDK_Invalid:
607 case Sema::TDK_InstantiationDepth:
608 case Sema::TDK_TooManyArguments:
609 case Sema::TDK_TooFewArguments:
610 case Sema::TDK_MiscellaneousDeductionFailure:
611 case Sema::TDK_CUDATargetMismatch:
612 Result.Data = nullptr;
613 break;
614
615 case Sema::TDK_Incomplete:
616 case Sema::TDK_InvalidExplicitArguments:
617 Result.Data = Info.Param.getOpaqueValue();
618 break;
619
620 case Sema::TDK_DeducedMismatch:
621 case Sema::TDK_DeducedMismatchNested: {
622 // FIXME: Should allocate from normal heap so that we can free this later.
623 auto *Saved = new (Context) DFIDeducedMismatchArgs;
624 Saved->FirstArg = Info.FirstArg;
625 Saved->SecondArg = Info.SecondArg;
626 Saved->TemplateArgs = Info.take();
627 Saved->CallArgIndex = Info.CallArgIndex;
628 Result.Data = Saved;
629 break;
630 }
631
632 case Sema::TDK_NonDeducedMismatch: {
633 // FIXME: Should allocate from normal heap so that we can free this later.
634 DFIArguments *Saved = new (Context) DFIArguments;
635 Saved->FirstArg = Info.FirstArg;
636 Saved->SecondArg = Info.SecondArg;
637 Result.Data = Saved;
638 break;
639 }
640
641 case Sema::TDK_IncompletePack:
642 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
643 case Sema::TDK_Inconsistent:
644 case Sema::TDK_Underqualified: {
645 // FIXME: Should allocate from normal heap so that we can free this later.
646 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
647 Saved->Param = Info.Param;
648 Saved->FirstArg = Info.FirstArg;
649 Saved->SecondArg = Info.SecondArg;
650 Result.Data = Saved;
651 break;
652 }
653
654 case Sema::TDK_SubstitutionFailure:
655 Result.Data = Info.take();
656 if (Info.hasSFINAEDiagnostic()) {
657 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
658 SourceLocation(), PartialDiagnostic::NullDiagnostic());
659 Info.takeSFINAEDiagnostic(*Diag);
660 Result.HasDiagnostic = true;
661 }
662 break;
663
664 case Sema::TDK_Success:
665 case Sema::TDK_NonDependentConversionFailure:
666 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 666)
;
667 }
668
669 return Result;
670}
671
672void DeductionFailureInfo::Destroy() {
673 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
674 case Sema::TDK_Success:
675 case Sema::TDK_Invalid:
676 case Sema::TDK_InstantiationDepth:
677 case Sema::TDK_Incomplete:
678 case Sema::TDK_TooManyArguments:
679 case Sema::TDK_TooFewArguments:
680 case Sema::TDK_InvalidExplicitArguments:
681 case Sema::TDK_CUDATargetMismatch:
682 case Sema::TDK_NonDependentConversionFailure:
683 break;
684
685 case Sema::TDK_IncompletePack:
686 case Sema::TDK_Inconsistent:
687 case Sema::TDK_Underqualified:
688 case Sema::TDK_DeducedMismatch:
689 case Sema::TDK_DeducedMismatchNested:
690 case Sema::TDK_NonDeducedMismatch:
691 // FIXME: Destroy the data?
692 Data = nullptr;
693 break;
694
695 case Sema::TDK_SubstitutionFailure:
696 // FIXME: Destroy the template argument list?
697 Data = nullptr;
698 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
699 Diag->~PartialDiagnosticAt();
700 HasDiagnostic = false;
701 }
702 break;
703
704 // Unhandled
705 case Sema::TDK_MiscellaneousDeductionFailure:
706 break;
707 }
708}
709
710PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
711 if (HasDiagnostic)
712 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
713 return nullptr;
714}
715
716TemplateParameter DeductionFailureInfo::getTemplateParameter() {
717 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
718 case Sema::TDK_Success:
719 case Sema::TDK_Invalid:
720 case Sema::TDK_InstantiationDepth:
721 case Sema::TDK_TooManyArguments:
722 case Sema::TDK_TooFewArguments:
723 case Sema::TDK_SubstitutionFailure:
724 case Sema::TDK_DeducedMismatch:
725 case Sema::TDK_DeducedMismatchNested:
726 case Sema::TDK_NonDeducedMismatch:
727 case Sema::TDK_CUDATargetMismatch:
728 case Sema::TDK_NonDependentConversionFailure:
729 return TemplateParameter();
730
731 case Sema::TDK_Incomplete:
732 case Sema::TDK_InvalidExplicitArguments:
733 return TemplateParameter::getFromOpaqueValue(Data);
734
735 case Sema::TDK_IncompletePack:
736 case Sema::TDK_Inconsistent:
737 case Sema::TDK_Underqualified:
738 return static_cast<DFIParamWithArguments*>(Data)->Param;
739
740 // Unhandled
741 case Sema::TDK_MiscellaneousDeductionFailure:
742 break;
743 }
744
745 return TemplateParameter();
746}
747
748TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
749 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
750 case Sema::TDK_Success:
751 case Sema::TDK_Invalid:
752 case Sema::TDK_InstantiationDepth:
753 case Sema::TDK_TooManyArguments:
754 case Sema::TDK_TooFewArguments:
755 case Sema::TDK_Incomplete:
756 case Sema::TDK_IncompletePack:
757 case Sema::TDK_InvalidExplicitArguments:
758 case Sema::TDK_Inconsistent:
759 case Sema::TDK_Underqualified:
760 case Sema::TDK_NonDeducedMismatch:
761 case Sema::TDK_CUDATargetMismatch:
762 case Sema::TDK_NonDependentConversionFailure:
763 return nullptr;
764
765 case Sema::TDK_DeducedMismatch:
766 case Sema::TDK_DeducedMismatchNested:
767 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
768
769 case Sema::TDK_SubstitutionFailure:
770 return static_cast<TemplateArgumentList*>(Data);
771
772 // Unhandled
773 case Sema::TDK_MiscellaneousDeductionFailure:
774 break;
775 }
776
777 return nullptr;
778}
779
780const TemplateArgument *DeductionFailureInfo::getFirstArg() {
781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782 case Sema::TDK_Success:
783 case Sema::TDK_Invalid:
784 case Sema::TDK_InstantiationDepth:
785 case Sema::TDK_Incomplete:
786 case Sema::TDK_TooManyArguments:
787 case Sema::TDK_TooFewArguments:
788 case Sema::TDK_InvalidExplicitArguments:
789 case Sema::TDK_SubstitutionFailure:
790 case Sema::TDK_CUDATargetMismatch:
791 case Sema::TDK_NonDependentConversionFailure:
792 return nullptr;
793
794 case Sema::TDK_IncompletePack:
795 case Sema::TDK_Inconsistent:
796 case Sema::TDK_Underqualified:
797 case Sema::TDK_DeducedMismatch:
798 case Sema::TDK_DeducedMismatchNested:
799 case Sema::TDK_NonDeducedMismatch:
800 return &static_cast<DFIArguments*>(Data)->FirstArg;
801
802 // Unhandled
803 case Sema::TDK_MiscellaneousDeductionFailure:
804 break;
805 }
806
807 return nullptr;
808}
809
810const TemplateArgument *DeductionFailureInfo::getSecondArg() {
811 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
812 case Sema::TDK_Success:
813 case Sema::TDK_Invalid:
814 case Sema::TDK_InstantiationDepth:
815 case Sema::TDK_Incomplete:
816 case Sema::TDK_IncompletePack:
817 case Sema::TDK_TooManyArguments:
818 case Sema::TDK_TooFewArguments:
819 case Sema::TDK_InvalidExplicitArguments:
820 case Sema::TDK_SubstitutionFailure:
821 case Sema::TDK_CUDATargetMismatch:
822 case Sema::TDK_NonDependentConversionFailure:
823 return nullptr;
824
825 case Sema::TDK_Inconsistent:
826 case Sema::TDK_Underqualified:
827 case Sema::TDK_DeducedMismatch:
828 case Sema::TDK_DeducedMismatchNested:
829 case Sema::TDK_NonDeducedMismatch:
830 return &static_cast<DFIArguments*>(Data)->SecondArg;
831
832 // Unhandled
833 case Sema::TDK_MiscellaneousDeductionFailure:
834 break;
835 }
836
837 return nullptr;
838}
839
840llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
841 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
842 case Sema::TDK_DeducedMismatch:
843 case Sema::TDK_DeducedMismatchNested:
844 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
845
846 default:
847 return llvm::None;
848 }
849}
850
851void OverloadCandidateSet::destroyCandidates() {
852 for (iterator i = begin(), e = end(); i != e; ++i) {
853 for (auto &C : i->Conversions)
854 C.~ImplicitConversionSequence();
855 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
856 i->DeductionFailure.Destroy();
857 }
858}
859
860void OverloadCandidateSet::clear(CandidateSetKind CSK) {
861 destroyCandidates();
862 SlabAllocator.Reset();
863 NumInlineBytesUsed = 0;
864 Candidates.clear();
865 Functions.clear();
866 Kind = CSK;
867}
868
869namespace {
870 class UnbridgedCastsSet {
871 struct Entry {
872 Expr **Addr;
873 Expr *Saved;
874 };
875 SmallVector<Entry, 2> Entries;
876
877 public:
878 void save(Sema &S, Expr *&E) {
879 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 879, __PRETTY_FUNCTION__))
;
880 Entry entry = { &E, E };
881 Entries.push_back(entry);
882 E = S.stripARCUnbridgedCast(E);
883 }
884
885 void restore() {
886 for (SmallVectorImpl<Entry>::iterator
887 i = Entries.begin(), e = Entries.end(); i != e; ++i)
888 *i->Addr = i->Saved;
889 }
890 };
891}
892
893/// checkPlaceholderForOverload - Do any interesting placeholder-like
894/// preprocessing on the given expression.
895///
896/// \param unbridgedCasts a collection to which to add unbridged casts;
897/// without this, they will be immediately diagnosed as errors
898///
899/// Return true on unrecoverable error.
900static bool
901checkPlaceholderForOverload(Sema &S, Expr *&E,
902 UnbridgedCastsSet *unbridgedCasts = nullptr) {
903 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
904 // We can't handle overloaded expressions here because overload
905 // resolution might reasonably tweak them.
906 if (placeholder->getKind() == BuiltinType::Overload) return false;
907
908 // If the context potentially accepts unbridged ARC casts, strip
909 // the unbridged cast and add it to the collection for later restoration.
910 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
911 unbridgedCasts) {
912 unbridgedCasts->save(S, E);
913 return false;
914 }
915
916 // Go ahead and check everything else.
917 ExprResult result = S.CheckPlaceholderExpr(E);
918 if (result.isInvalid())
919 return true;
920
921 E = result.get();
922 return false;
923 }
924
925 // Nothing to do.
926 return false;
927}
928
929/// checkArgPlaceholdersForOverload - Check a set of call operands for
930/// placeholders.
931static bool checkArgPlaceholdersForOverload(Sema &S,
932 MultiExprArg Args,
933 UnbridgedCastsSet &unbridged) {
934 for (unsigned i = 0, e = Args.size(); i != e; ++i)
935 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
936 return true;
937
938 return false;
939}
940
941/// Determine whether the given New declaration is an overload of the
942/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
943/// New and Old cannot be overloaded, e.g., if New has the same signature as
944/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
945/// functions (or function templates) at all. When it does return Ovl_Match or
946/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
947/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
948/// declaration.
949///
950/// Example: Given the following input:
951///
952/// void f(int, float); // #1
953/// void f(int, int); // #2
954/// int f(int, int); // #3
955///
956/// When we process #1, there is no previous declaration of "f", so IsOverload
957/// will not be used.
958///
959/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
960/// the parameter types, we see that #1 and #2 are overloaded (since they have
961/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
962/// unchanged.
963///
964/// When we process #3, Old is an overload set containing #1 and #2. We compare
965/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
966/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
967/// functions are not part of the signature), IsOverload returns Ovl_Match and
968/// MatchedDecl will be set to point to the FunctionDecl for #2.
969///
970/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
971/// by a using declaration. The rules for whether to hide shadow declarations
972/// ignore some properties which otherwise figure into a function template's
973/// signature.
974Sema::OverloadKind
975Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
976 NamedDecl *&Match, bool NewIsUsingDecl) {
977 for (LookupResult::iterator I = Old.begin(), E = Old.end();
978 I != E; ++I) {
979 NamedDecl *OldD = *I;
980
981 bool OldIsUsingDecl = false;
982 if (isa<UsingShadowDecl>(OldD)) {
983 OldIsUsingDecl = true;
984
985 // We can always introduce two using declarations into the same
986 // context, even if they have identical signatures.
987 if (NewIsUsingDecl) continue;
988
989 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
990 }
991
992 // A using-declaration does not conflict with another declaration
993 // if one of them is hidden.
994 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
995 continue;
996
997 // If either declaration was introduced by a using declaration,
998 // we'll need to use slightly different rules for matching.
999 // Essentially, these rules are the normal rules, except that
1000 // function templates hide function templates with different
1001 // return types or template parameter lists.
1002 bool UseMemberUsingDeclRules =
1003 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1004 !New->getFriendObjectKind();
1005
1006 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1007 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1008 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1009 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1010 continue;
1011 }
1012
1013 if (!isa<FunctionTemplateDecl>(OldD) &&
1014 !shouldLinkPossiblyHiddenDecl(*I, New))
1015 continue;
1016
1017 Match = *I;
1018 return Ovl_Match;
1019 }
1020
1021 // Builtins that have custom typechecking or have a reference should
1022 // not be overloadable or redeclarable.
1023 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1024 Match = *I;
1025 return Ovl_NonFunction;
1026 }
1027 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1028 // We can overload with these, which can show up when doing
1029 // redeclaration checks for UsingDecls.
1030 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1030, __PRETTY_FUNCTION__))
;
1031 } else if (isa<TagDecl>(OldD)) {
1032 // We can always overload with tags by hiding them.
1033 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1034 // Optimistically assume that an unresolved using decl will
1035 // overload; if it doesn't, we'll have to diagnose during
1036 // template instantiation.
1037 //
1038 // Exception: if the scope is dependent and this is not a class
1039 // member, the using declaration can only introduce an enumerator.
1040 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1041 Match = *I;
1042 return Ovl_NonFunction;
1043 }
1044 } else {
1045 // (C++ 13p1):
1046 // Only function declarations can be overloaded; object and type
1047 // declarations cannot be overloaded.
1048 Match = *I;
1049 return Ovl_NonFunction;
1050 }
1051 }
1052
1053 // C++ [temp.friend]p1:
1054 // For a friend function declaration that is not a template declaration:
1055 // -- if the name of the friend is a qualified or unqualified template-id,
1056 // [...], otherwise
1057 // -- if the name of the friend is a qualified-id and a matching
1058 // non-template function is found in the specified class or namespace,
1059 // the friend declaration refers to that function, otherwise,
1060 // -- if the name of the friend is a qualified-id and a matching function
1061 // template is found in the specified class or namespace, the friend
1062 // declaration refers to the deduced specialization of that function
1063 // template, otherwise
1064 // -- the name shall be an unqualified-id [...]
1065 // If we get here for a qualified friend declaration, we've just reached the
1066 // third bullet. If the type of the friend is dependent, skip this lookup
1067 // until instantiation.
1068 if (New->getFriendObjectKind() && New->getQualifier() &&
1069 !New->getDescribedFunctionTemplate() &&
1070 !New->getDependentSpecializationInfo() &&
1071 !New->getType()->isDependentType()) {
1072 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1073 TemplateSpecResult.addAllDecls(Old);
1074 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1075 /*QualifiedFriend*/true)) {
1076 New->setInvalidDecl();
1077 return Ovl_Overload;
1078 }
1079
1080 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1081 return Ovl_Match;
1082 }
1083
1084 return Ovl_Overload;
1085}
1086
1087bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1088 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1089 // C++ [basic.start.main]p2: This function shall not be overloaded.
1090 if (New->isMain())
1091 return false;
1092
1093 // MSVCRT user defined entry points cannot be overloaded.
1094 if (New->isMSVCRTEntryPoint())
1095 return false;
1096
1097 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1098 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1099
1100 // C++ [temp.fct]p2:
1101 // A function template can be overloaded with other function templates
1102 // and with normal (non-template) functions.
1103 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1104 return true;
1105
1106 // Is the function New an overload of the function Old?
1107 QualType OldQType = Context.getCanonicalType(Old->getType());
1108 QualType NewQType = Context.getCanonicalType(New->getType());
1109
1110 // Compare the signatures (C++ 1.3.10) of the two functions to
1111 // determine whether they are overloads. If we find any mismatch
1112 // in the signature, they are overloads.
1113
1114 // If either of these functions is a K&R-style function (no
1115 // prototype), then we consider them to have matching signatures.
1116 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1117 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1118 return false;
1119
1120 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1121 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1122
1123 // The signature of a function includes the types of its
1124 // parameters (C++ 1.3.10), which includes the presence or absence
1125 // of the ellipsis; see C++ DR 357).
1126 if (OldQType != NewQType &&
1127 (OldType->getNumParams() != NewType->getNumParams() ||
1128 OldType->isVariadic() != NewType->isVariadic() ||
1129 !FunctionParamTypesAreEqual(OldType, NewType)))
1130 return true;
1131
1132 // C++ [temp.over.link]p4:
1133 // The signature of a function template consists of its function
1134 // signature, its return type and its template parameter list. The names
1135 // of the template parameters are significant only for establishing the
1136 // relationship between the template parameters and the rest of the
1137 // signature.
1138 //
1139 // We check the return type and template parameter lists for function
1140 // templates first; the remaining checks follow.
1141 //
1142 // However, we don't consider either of these when deciding whether
1143 // a member introduced by a shadow declaration is hidden.
1144 if (!UseMemberUsingDeclRules && NewTemplate &&
1145 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1146 OldTemplate->getTemplateParameters(),
1147 false, TPL_TemplateMatch) ||
1148 !Context.hasSameType(Old->getDeclaredReturnType(),
1149 New->getDeclaredReturnType())))
1150 return true;
1151
1152 // If the function is a class member, its signature includes the
1153 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1154 //
1155 // As part of this, also check whether one of the member functions
1156 // is static, in which case they are not overloads (C++
1157 // 13.1p2). While not part of the definition of the signature,
1158 // this check is important to determine whether these functions
1159 // can be overloaded.
1160 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1161 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1162 if (OldMethod && NewMethod &&
1163 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1164 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1165 if (!UseMemberUsingDeclRules &&
1166 (OldMethod->getRefQualifier() == RQ_None ||
1167 NewMethod->getRefQualifier() == RQ_None)) {
1168 // C++0x [over.load]p2:
1169 // - Member function declarations with the same name and the same
1170 // parameter-type-list as well as member function template
1171 // declarations with the same name, the same parameter-type-list, and
1172 // the same template parameter lists cannot be overloaded if any of
1173 // them, but not all, have a ref-qualifier (8.3.5).
1174 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1175 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1176 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1177 }
1178 return true;
1179 }
1180
1181 // We may not have applied the implicit const for a constexpr member
1182 // function yet (because we haven't yet resolved whether this is a static
1183 // or non-static member function). Add it now, on the assumption that this
1184 // is a redeclaration of OldMethod.
1185 auto OldQuals = OldMethod->getMethodQualifiers();
1186 auto NewQuals = NewMethod->getMethodQualifiers();
1187 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1188 !isa<CXXConstructorDecl>(NewMethod))
1189 NewQuals.addConst();
1190 // We do not allow overloading based off of '__restrict'.
1191 OldQuals.removeRestrict();
1192 NewQuals.removeRestrict();
1193 if (OldQuals != NewQuals)
1194 return true;
1195 }
1196
1197 // Though pass_object_size is placed on parameters and takes an argument, we
1198 // consider it to be a function-level modifier for the sake of function
1199 // identity. Either the function has one or more parameters with
1200 // pass_object_size or it doesn't.
1201 if (functionHasPassObjectSizeParams(New) !=
1202 functionHasPassObjectSizeParams(Old))
1203 return true;
1204
1205 // enable_if attributes are an order-sensitive part of the signature.
1206 for (specific_attr_iterator<EnableIfAttr>
1207 NewI = New->specific_attr_begin<EnableIfAttr>(),
1208 NewE = New->specific_attr_end<EnableIfAttr>(),
1209 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1210 OldE = Old->specific_attr_end<EnableIfAttr>();
1211 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1212 if (NewI == NewE || OldI == OldE)
1213 return true;
1214 llvm::FoldingSetNodeID NewID, OldID;
1215 NewI->getCond()->Profile(NewID, Context, true);
1216 OldI->getCond()->Profile(OldID, Context, true);
1217 if (NewID != OldID)
1218 return true;
1219 }
1220
1221 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1222 // Don't allow overloading of destructors. (In theory we could, but it
1223 // would be a giant change to clang.)
1224 if (isa<CXXDestructorDecl>(New))
1225 return false;
1226
1227 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1228 OldTarget = IdentifyCUDATarget(Old);
1229 if (NewTarget == CFT_InvalidTarget)
1230 return false;
1231
1232 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1232, __PRETTY_FUNCTION__))
;
1233
1234 // Allow overloading of functions with same signature and different CUDA
1235 // target attributes.
1236 return NewTarget != OldTarget;
1237 }
1238
1239 // The signatures match; this is not an overload.
1240 return false;
1241}
1242
1243/// Tries a user-defined conversion from From to ToType.
1244///
1245/// Produces an implicit conversion sequence for when a standard conversion
1246/// is not an option. See TryImplicitConversion for more information.
1247static ImplicitConversionSequence
1248TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1249 bool SuppressUserConversions,
1250 bool AllowExplicit,
1251 bool InOverloadResolution,
1252 bool CStyle,
1253 bool AllowObjCWritebackConversion,
1254 bool AllowObjCConversionOnExplicit) {
1255 ImplicitConversionSequence ICS;
1256
1257 if (SuppressUserConversions) {
1258 // We're not in the case above, so there is no conversion that
1259 // we can perform.
1260 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1261 return ICS;
1262 }
1263
1264 // Attempt user-defined conversion.
1265 OverloadCandidateSet Conversions(From->getExprLoc(),
1266 OverloadCandidateSet::CSK_Normal);
1267 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1268 Conversions, AllowExplicit,
1269 AllowObjCConversionOnExplicit)) {
1270 case OR_Success:
1271 case OR_Deleted:
1272 ICS.setUserDefined();
1273 // C++ [over.ics.user]p4:
1274 // A conversion of an expression of class type to the same class
1275 // type is given Exact Match rank, and a conversion of an
1276 // expression of class type to a base class of that type is
1277 // given Conversion rank, in spite of the fact that a copy
1278 // constructor (i.e., a user-defined conversion function) is
1279 // called for those cases.
1280 if (CXXConstructorDecl *Constructor
1281 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1282 QualType FromCanon
1283 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1284 QualType ToCanon
1285 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1286 if (Constructor->isCopyConstructor() &&
1287 (FromCanon == ToCanon ||
1288 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1289 // Turn this into a "standard" conversion sequence, so that it
1290 // gets ranked with standard conversion sequences.
1291 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1292 ICS.setStandard();
1293 ICS.Standard.setAsIdentityConversion();
1294 ICS.Standard.setFromType(From->getType());
1295 ICS.Standard.setAllToTypes(ToType);
1296 ICS.Standard.CopyConstructor = Constructor;
1297 ICS.Standard.FoundCopyConstructor = Found;
1298 if (ToCanon != FromCanon)
1299 ICS.Standard.Second = ICK_Derived_To_Base;
1300 }
1301 }
1302 break;
1303
1304 case OR_Ambiguous:
1305 ICS.setAmbiguous();
1306 ICS.Ambiguous.setFromType(From->getType());
1307 ICS.Ambiguous.setToType(ToType);
1308 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1309 Cand != Conversions.end(); ++Cand)
1310 if (Cand->Viable)
1311 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1312 break;
1313
1314 // Fall through.
1315 case OR_No_Viable_Function:
1316 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1317 break;
1318 }
1319
1320 return ICS;
1321}
1322
1323/// TryImplicitConversion - Attempt to perform an implicit conversion
1324/// from the given expression (Expr) to the given type (ToType). This
1325/// function returns an implicit conversion sequence that can be used
1326/// to perform the initialization. Given
1327///
1328/// void f(float f);
1329/// void g(int i) { f(i); }
1330///
1331/// this routine would produce an implicit conversion sequence to
1332/// describe the initialization of f from i, which will be a standard
1333/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1334/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1335//
1336/// Note that this routine only determines how the conversion can be
1337/// performed; it does not actually perform the conversion. As such,
1338/// it will not produce any diagnostics if no conversion is available,
1339/// but will instead return an implicit conversion sequence of kind
1340/// "BadConversion".
1341///
1342/// If @p SuppressUserConversions, then user-defined conversions are
1343/// not permitted.
1344/// If @p AllowExplicit, then explicit user-defined conversions are
1345/// permitted.
1346///
1347/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1348/// writeback conversion, which allows __autoreleasing id* parameters to
1349/// be initialized with __strong id* or __weak id* arguments.
1350static ImplicitConversionSequence
1351TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1352 bool SuppressUserConversions,
1353 bool AllowExplicit,
1354 bool InOverloadResolution,
1355 bool CStyle,
1356 bool AllowObjCWritebackConversion,
1357 bool AllowObjCConversionOnExplicit) {
1358 ImplicitConversionSequence ICS;
1359 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1360 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1361 ICS.setStandard();
1362 return ICS;
1363 }
1364
1365 if (!S.getLangOpts().CPlusPlus) {
1366 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1367 return ICS;
1368 }
1369
1370 // C++ [over.ics.user]p4:
1371 // A conversion of an expression of class type to the same class
1372 // type is given Exact Match rank, and a conversion of an
1373 // expression of class type to a base class of that type is
1374 // given Conversion rank, in spite of the fact that a copy/move
1375 // constructor (i.e., a user-defined conversion function) is
1376 // called for those cases.
1377 QualType FromType = From->getType();
1378 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1379 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1380 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1381 ICS.setStandard();
1382 ICS.Standard.setAsIdentityConversion();
1383 ICS.Standard.setFromType(FromType);
1384 ICS.Standard.setAllToTypes(ToType);
1385
1386 // We don't actually check at this point whether there is a valid
1387 // copy/move constructor, since overloading just assumes that it
1388 // exists. When we actually perform initialization, we'll find the
1389 // appropriate constructor to copy the returned object, if needed.
1390 ICS.Standard.CopyConstructor = nullptr;
1391
1392 // Determine whether this is considered a derived-to-base conversion.
1393 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1394 ICS.Standard.Second = ICK_Derived_To_Base;
1395
1396 return ICS;
1397 }
1398
1399 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1400 AllowExplicit, InOverloadResolution, CStyle,
1401 AllowObjCWritebackConversion,
1402 AllowObjCConversionOnExplicit);
1403}
1404
1405ImplicitConversionSequence
1406Sema::TryImplicitConversion(Expr *From, QualType ToType,
1407 bool SuppressUserConversions,
1408 bool AllowExplicit,
1409 bool InOverloadResolution,
1410 bool CStyle,
1411 bool AllowObjCWritebackConversion) {
1412 return ::TryImplicitConversion(*this, From, ToType,
1413 SuppressUserConversions, AllowExplicit,
1414 InOverloadResolution, CStyle,
1415 AllowObjCWritebackConversion,
1416 /*AllowObjCConversionOnExplicit=*/false);
1417}
1418
1419/// PerformImplicitConversion - Perform an implicit conversion of the
1420/// expression From to the type ToType. Returns the
1421/// converted expression. Flavor is the kind of conversion we're
1422/// performing, used in the error message. If @p AllowExplicit,
1423/// explicit user-defined conversions are permitted.
1424ExprResult
1425Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1426 AssignmentAction Action, bool AllowExplicit) {
1427 ImplicitConversionSequence ICS;
1428 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1429}
1430
1431ExprResult
1432Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1433 AssignmentAction Action, bool AllowExplicit,
1434 ImplicitConversionSequence& ICS) {
1435 if (checkPlaceholderForOverload(*this, From))
1436 return ExprError();
1437
1438 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1439 bool AllowObjCWritebackConversion
1440 = getLangOpts().ObjCAutoRefCount &&
1441 (Action == AA_Passing || Action == AA_Sending);
1442 if (getLangOpts().ObjC)
1443 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1444 From->getType(), From);
1445 ICS = ::TryImplicitConversion(*this, From, ToType,
1446 /*SuppressUserConversions=*/false,
1447 AllowExplicit,
1448 /*InOverloadResolution=*/false,
1449 /*CStyle=*/false,
1450 AllowObjCWritebackConversion,
1451 /*AllowObjCConversionOnExplicit=*/false);
1452 return PerformImplicitConversion(From, ToType, ICS, Action);
1453}
1454
1455/// Determine whether the conversion from FromType to ToType is a valid
1456/// conversion that strips "noexcept" or "noreturn" off the nested function
1457/// type.
1458bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1459 QualType &ResultTy) {
1460 if (Context.hasSameUnqualifiedType(FromType, ToType))
1461 return false;
1462
1463 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1464 // or F(t noexcept) -> F(t)
1465 // where F adds one of the following at most once:
1466 // - a pointer
1467 // - a member pointer
1468 // - a block pointer
1469 // Changes here need matching changes in FindCompositePointerType.
1470 CanQualType CanTo = Context.getCanonicalType(ToType);
1471 CanQualType CanFrom = Context.getCanonicalType(FromType);
1472 Type::TypeClass TyClass = CanTo->getTypeClass();
1473 if (TyClass != CanFrom->getTypeClass()) return false;
1474 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1475 if (TyClass == Type::Pointer) {
1476 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1477 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1478 } else if (TyClass == Type::BlockPointer) {
1479 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1480 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1481 } else if (TyClass == Type::MemberPointer) {
1482 auto ToMPT = CanTo.castAs<MemberPointerType>();
1483 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1484 // A function pointer conversion cannot change the class of the function.
1485 if (ToMPT->getClass() != FromMPT->getClass())
1486 return false;
1487 CanTo = ToMPT->getPointeeType();
1488 CanFrom = FromMPT->getPointeeType();
1489 } else {
1490 return false;
1491 }
1492
1493 TyClass = CanTo->getTypeClass();
1494 if (TyClass != CanFrom->getTypeClass()) return false;
1495 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1496 return false;
1497 }
1498
1499 const auto *FromFn = cast<FunctionType>(CanFrom);
1500 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1501
1502 const auto *ToFn = cast<FunctionType>(CanTo);
1503 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1504
1505 bool Changed = false;
1506
1507 // Drop 'noreturn' if not present in target type.
1508 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1509 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1510 Changed = true;
1511 }
1512
1513 // Drop 'noexcept' if not present in target type.
1514 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1515 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1516 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1517 FromFn = cast<FunctionType>(
1518 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1519 EST_None)
1520 .getTypePtr());
1521 Changed = true;
1522 }
1523
1524 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1525 // only if the ExtParameterInfo lists of the two function prototypes can be
1526 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1527 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1528 bool CanUseToFPT, CanUseFromFPT;
1529 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1530 CanUseFromFPT, NewParamInfos) &&
1531 CanUseToFPT && !CanUseFromFPT) {
1532 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1533 ExtInfo.ExtParameterInfos =
1534 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1535 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1536 FromFPT->getParamTypes(), ExtInfo);
1537 FromFn = QT->getAs<FunctionType>();
1538 Changed = true;
1539 }
1540 }
1541
1542 if (!Changed)
1543 return false;
1544
1545 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1545, __PRETTY_FUNCTION__))
;
1546 if (QualType(FromFn, 0) != CanTo) return false;
1547
1548 ResultTy = ToType;
1549 return true;
1550}
1551
1552/// Determine whether the conversion from FromType to ToType is a valid
1553/// vector conversion.
1554///
1555/// \param ICK Will be set to the vector conversion kind, if this is a vector
1556/// conversion.
1557static bool IsVectorConversion(Sema &S, QualType FromType,
1558 QualType ToType, ImplicitConversionKind &ICK) {
1559 // We need at least one of these types to be a vector type to have a vector
1560 // conversion.
1561 if (!ToType->isVectorType() && !FromType->isVectorType())
1562 return false;
1563
1564 // Identical types require no conversions.
1565 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1566 return false;
1567
1568 // There are no conversions between extended vector types, only identity.
1569 if (ToType->isExtVectorType()) {
1570 // There are no conversions between extended vector types other than the
1571 // identity conversion.
1572 if (FromType->isExtVectorType())
1573 return false;
1574
1575 // Vector splat from any arithmetic type to a vector.
1576 if (FromType->isArithmeticType()) {
1577 ICK = ICK_Vector_Splat;
1578 return true;
1579 }
1580 }
1581
1582 // We can perform the conversion between vector types in the following cases:
1583 // 1)vector types are equivalent AltiVec and GCC vector types
1584 // 2)lax vector conversions are permitted and the vector types are of the
1585 // same size
1586 if (ToType->isVectorType() && FromType->isVectorType()) {
1587 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1588 S.isLaxVectorConversion(FromType, ToType)) {
1589 ICK = ICK_Vector_Conversion;
1590 return true;
1591 }
1592 }
1593
1594 return false;
1595}
1596
1597static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1598 bool InOverloadResolution,
1599 StandardConversionSequence &SCS,
1600 bool CStyle);
1601
1602/// IsStandardConversion - Determines whether there is a standard
1603/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1604/// expression From to the type ToType. Standard conversion sequences
1605/// only consider non-class types; for conversions that involve class
1606/// types, use TryImplicitConversion. If a conversion exists, SCS will
1607/// contain the standard conversion sequence required to perform this
1608/// conversion and this routine will return true. Otherwise, this
1609/// routine will return false and the value of SCS is unspecified.
1610static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1611 bool InOverloadResolution,
1612 StandardConversionSequence &SCS,
1613 bool CStyle,
1614 bool AllowObjCWritebackConversion) {
1615 QualType FromType = From->getType();
1616
1617 // Standard conversions (C++ [conv])
1618 SCS.setAsIdentityConversion();
1619 SCS.IncompatibleObjC = false;
1620 SCS.setFromType(FromType);
1621 SCS.CopyConstructor = nullptr;
1622
1623 // There are no standard conversions for class types in C++, so
1624 // abort early. When overloading in C, however, we do permit them.
1625 if (S.getLangOpts().CPlusPlus &&
1626 (FromType->isRecordType() || ToType->isRecordType()))
1627 return false;
1628
1629 // The first conversion can be an lvalue-to-rvalue conversion,
1630 // array-to-pointer conversion, or function-to-pointer conversion
1631 // (C++ 4p1).
1632
1633 if (FromType == S.Context.OverloadTy) {
1634 DeclAccessPair AccessPair;
1635 if (FunctionDecl *Fn
1636 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1637 AccessPair)) {
1638 // We were able to resolve the address of the overloaded function,
1639 // so we can convert to the type of that function.
1640 FromType = Fn->getType();
1641 SCS.setFromType(FromType);
1642
1643 // we can sometimes resolve &foo<int> regardless of ToType, so check
1644 // if the type matches (identity) or we are converting to bool
1645 if (!S.Context.hasSameUnqualifiedType(
1646 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1647 QualType resultTy;
1648 // if the function type matches except for [[noreturn]], it's ok
1649 if (!S.IsFunctionConversion(FromType,
1650 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1651 // otherwise, only a boolean conversion is standard
1652 if (!ToType->isBooleanType())
1653 return false;
1654 }
1655
1656 // Check if the "from" expression is taking the address of an overloaded
1657 // function and recompute the FromType accordingly. Take advantage of the
1658 // fact that non-static member functions *must* have such an address-of
1659 // expression.
1660 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1661 if (Method && !Method->isStatic()) {
1662 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
1663 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
1665 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
1666 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1666, __PRETTY_FUNCTION__))
;
1667 const Type *ClassType
1668 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1669 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1670 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1671 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
1672 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
1673 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1673, __PRETTY_FUNCTION__))
;
1674 FromType = S.Context.getPointerType(FromType);
1675 }
1676
1677 // Check that we've computed the proper type after overload resolution.
1678 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1679 // be calling it from within an NDEBUG block.
1680 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
1681 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
1682 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 1682, __PRETTY_FUNCTION__))
;
1683 } else {
1684 return false;
1685 }
1686 }
1687 // Lvalue-to-rvalue conversion (C++11 4.1):
1688 // A glvalue (3.10) of a non-function, non-array type T can
1689 // be converted to a prvalue.
1690 bool argIsLValue = From->isGLValue();
1691 if (argIsLValue &&
1692 !FromType->isFunctionType() && !FromType->isArrayType() &&
1693 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1694 SCS.First = ICK_Lvalue_To_Rvalue;
1695
1696 // C11 6.3.2.1p2:
1697 // ... if the lvalue has atomic type, the value has the non-atomic version
1698 // of the type of the lvalue ...
1699 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1700 FromType = Atomic->getValueType();
1701
1702 // If T is a non-class type, the type of the rvalue is the
1703 // cv-unqualified version of T. Otherwise, the type of the rvalue
1704 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1705 // just strip the qualifiers because they don't matter.
1706 FromType = FromType.getUnqualifiedType();
1707 } else if (FromType->isArrayType()) {
1708 // Array-to-pointer conversion (C++ 4.2)
1709 SCS.First = ICK_Array_To_Pointer;
1710
1711 // An lvalue or rvalue of type "array of N T" or "array of unknown
1712 // bound of T" can be converted to an rvalue of type "pointer to
1713 // T" (C++ 4.2p1).
1714 FromType = S.Context.getArrayDecayedType(FromType);
1715
1716 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1717 // This conversion is deprecated in C++03 (D.4)
1718 SCS.DeprecatedStringLiteralToCharPtr = true;
1719
1720 // For the purpose of ranking in overload resolution
1721 // (13.3.3.1.1), this conversion is considered an
1722 // array-to-pointer conversion followed by a qualification
1723 // conversion (4.4). (C++ 4.2p2)
1724 SCS.Second = ICK_Identity;
1725 SCS.Third = ICK_Qualification;
1726 SCS.QualificationIncludesObjCLifetime = false;
1727 SCS.setAllToTypes(FromType);
1728 return true;
1729 }
1730 } else if (FromType->isFunctionType() && argIsLValue) {
1731 // Function-to-pointer conversion (C++ 4.3).
1732 SCS.First = ICK_Function_To_Pointer;
1733
1734 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1735 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1736 if (!S.checkAddressOfFunctionIsAvailable(FD))
1737 return false;
1738
1739 // An lvalue of function type T can be converted to an rvalue of
1740 // type "pointer to T." The result is a pointer to the
1741 // function. (C++ 4.3p1).
1742 FromType = S.Context.getPointerType(FromType);
1743 } else {
1744 // We don't require any conversions for the first step.
1745 SCS.First = ICK_Identity;
1746 }
1747 SCS.setToType(0, FromType);
1748
1749 // The second conversion can be an integral promotion, floating
1750 // point promotion, integral conversion, floating point conversion,
1751 // floating-integral conversion, pointer conversion,
1752 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1753 // For overloading in C, this can also be a "compatible-type"
1754 // conversion.
1755 bool IncompatibleObjC = false;
1756 ImplicitConversionKind SecondICK = ICK_Identity;
1757 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1758 // The unqualified versions of the types are the same: there's no
1759 // conversion to do.
1760 SCS.Second = ICK_Identity;
1761 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1762 // Integral promotion (C++ 4.5).
1763 SCS.Second = ICK_Integral_Promotion;
1764 FromType = ToType.getUnqualifiedType();
1765 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1766 // Floating point promotion (C++ 4.6).
1767 SCS.Second = ICK_Floating_Promotion;
1768 FromType = ToType.getUnqualifiedType();
1769 } else if (S.IsComplexPromotion(FromType, ToType)) {
1770 // Complex promotion (Clang extension)
1771 SCS.Second = ICK_Complex_Promotion;
1772 FromType = ToType.getUnqualifiedType();
1773 } else if (ToType->isBooleanType() &&
1774 (FromType->isArithmeticType() ||
1775 FromType->isAnyPointerType() ||
1776 FromType->isBlockPointerType() ||
1777 FromType->isMemberPointerType() ||
1778 FromType->isNullPtrType())) {
1779 // Boolean conversions (C++ 4.12).
1780 SCS.Second = ICK_Boolean_Conversion;
1781 FromType = S.Context.BoolTy;
1782 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1783 ToType->isIntegralType(S.Context)) {
1784 // Integral conversions (C++ 4.7).
1785 SCS.Second = ICK_Integral_Conversion;
1786 FromType = ToType.getUnqualifiedType();
1787 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1788 // Complex conversions (C99 6.3.1.6)
1789 SCS.Second = ICK_Complex_Conversion;
1790 FromType = ToType.getUnqualifiedType();
1791 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1792 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1793 // Complex-real conversions (C99 6.3.1.7)
1794 SCS.Second = ICK_Complex_Real;
1795 FromType = ToType.getUnqualifiedType();
1796 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1797 // FIXME: disable conversions between long double and __float128 if
1798 // their representation is different until there is back end support
1799 // We of course allow this conversion if long double is really double.
1800 if (&S.Context.getFloatTypeSemantics(FromType) !=
1801 &S.Context.getFloatTypeSemantics(ToType)) {
1802 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1803 ToType == S.Context.LongDoubleTy) ||
1804 (FromType == S.Context.LongDoubleTy &&
1805 ToType == S.Context.Float128Ty));
1806 if (Float128AndLongDouble &&
1807 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1808 &llvm::APFloat::PPCDoubleDouble()))
1809 return false;
1810 }
1811 // Floating point conversions (C++ 4.8).
1812 SCS.Second = ICK_Floating_Conversion;
1813 FromType = ToType.getUnqualifiedType();
1814 } else if ((FromType->isRealFloatingType() &&
1815 ToType->isIntegralType(S.Context)) ||
1816 (FromType->isIntegralOrUnscopedEnumerationType() &&
1817 ToType->isRealFloatingType())) {
1818 // Floating-integral conversions (C++ 4.9).
1819 SCS.Second = ICK_Floating_Integral;
1820 FromType = ToType.getUnqualifiedType();
1821 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1822 SCS.Second = ICK_Block_Pointer_Conversion;
1823 } else if (AllowObjCWritebackConversion &&
1824 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1825 SCS.Second = ICK_Writeback_Conversion;
1826 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1827 FromType, IncompatibleObjC)) {
1828 // Pointer conversions (C++ 4.10).
1829 SCS.Second = ICK_Pointer_Conversion;
1830 SCS.IncompatibleObjC = IncompatibleObjC;
1831 FromType = FromType.getUnqualifiedType();
1832 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1833 InOverloadResolution, FromType)) {
1834 // Pointer to member conversions (4.11).
1835 SCS.Second = ICK_Pointer_Member;
1836 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1837 SCS.Second = SecondICK;
1838 FromType = ToType.getUnqualifiedType();
1839 } else if (!S.getLangOpts().CPlusPlus &&
1840 S.Context.typesAreCompatible(ToType, FromType)) {
1841 // Compatible conversions (Clang extension for C function overloading)
1842 SCS.Second = ICK_Compatible_Conversion;
1843 FromType = ToType.getUnqualifiedType();
1844 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1845 InOverloadResolution,
1846 SCS, CStyle)) {
1847 SCS.Second = ICK_TransparentUnionConversion;
1848 FromType = ToType;
1849 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1850 CStyle)) {
1851 // tryAtomicConversion has updated the standard conversion sequence
1852 // appropriately.
1853 return true;
1854 } else if (ToType->isEventT() &&
1855 From->isIntegerConstantExpr(S.getASTContext()) &&
1856 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1857 SCS.Second = ICK_Zero_Event_Conversion;
1858 FromType = ToType;
1859 } else if (ToType->isQueueT() &&
1860 From->isIntegerConstantExpr(S.getASTContext()) &&
1861 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1862 SCS.Second = ICK_Zero_Queue_Conversion;
1863 FromType = ToType;
1864 } else if (ToType->isSamplerT() &&
1865 From->isIntegerConstantExpr(S.getASTContext())) {
1866 SCS.Second = ICK_Compatible_Conversion;
1867 FromType = ToType;
1868 } else {
1869 // No second conversion required.
1870 SCS.Second = ICK_Identity;
1871 }
1872 SCS.setToType(1, FromType);
1873
1874 // The third conversion can be a function pointer conversion or a
1875 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1876 bool ObjCLifetimeConversion;
1877 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1878 // Function pointer conversions (removing 'noexcept') including removal of
1879 // 'noreturn' (Clang extension).
1880 SCS.Third = ICK_Function_Conversion;
1881 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1882 ObjCLifetimeConversion)) {
1883 SCS.Third = ICK_Qualification;
1884 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1885 FromType = ToType;
1886 } else {
1887 // No conversion required
1888 SCS.Third = ICK_Identity;
1889 }
1890
1891 // C++ [over.best.ics]p6:
1892 // [...] Any difference in top-level cv-qualification is
1893 // subsumed by the initialization itself and does not constitute
1894 // a conversion. [...]
1895 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1896 QualType CanonTo = S.Context.getCanonicalType(ToType);
1897 if (CanonFrom.getLocalUnqualifiedType()
1898 == CanonTo.getLocalUnqualifiedType() &&
1899 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1900 FromType = ToType;
1901 CanonFrom = CanonTo;
1902 }
1903
1904 SCS.setToType(2, FromType);
1905
1906 if (CanonFrom == CanonTo)
1907 return true;
1908
1909 // If we have not converted the argument type to the parameter type,
1910 // this is a bad conversion sequence, unless we're resolving an overload in C.
1911 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1912 return false;
1913
1914 ExprResult ER = ExprResult{From};
1915 Sema::AssignConvertType Conv =
1916 S.CheckSingleAssignmentConstraints(ToType, ER,
1917 /*Diagnose=*/false,
1918 /*DiagnoseCFAudited=*/false,
1919 /*ConvertRHS=*/false);
1920 ImplicitConversionKind SecondConv;
1921 switch (Conv) {
1922 case Sema::Compatible:
1923 SecondConv = ICK_C_Only_Conversion;
1924 break;
1925 // For our purposes, discarding qualifiers is just as bad as using an
1926 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1927 // qualifiers, as well.
1928 case Sema::CompatiblePointerDiscardsQualifiers:
1929 case Sema::IncompatiblePointer:
1930 case Sema::IncompatiblePointerSign:
1931 SecondConv = ICK_Incompatible_Pointer_Conversion;
1932 break;
1933 default:
1934 return false;
1935 }
1936
1937 // First can only be an lvalue conversion, so we pretend that this was the
1938 // second conversion. First should already be valid from earlier in the
1939 // function.
1940 SCS.Second = SecondConv;
1941 SCS.setToType(1, ToType);
1942
1943 // Third is Identity, because Second should rank us worse than any other
1944 // conversion. This could also be ICK_Qualification, but it's simpler to just
1945 // lump everything in with the second conversion, and we don't gain anything
1946 // from making this ICK_Qualification.
1947 SCS.Third = ICK_Identity;
1948 SCS.setToType(2, ToType);
1949 return true;
1950}
1951
1952static bool
1953IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1954 QualType &ToType,
1955 bool InOverloadResolution,
1956 StandardConversionSequence &SCS,
1957 bool CStyle) {
1958
1959 const RecordType *UT = ToType->getAsUnionType();
1960 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1961 return false;
1962 // The field to initialize within the transparent union.
1963 RecordDecl *UD = UT->getDecl();
1964 // It's compatible if the expression matches any of the fields.
1965 for (const auto *it : UD->fields()) {
1966 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1967 CStyle, /*AllowObjCWritebackConversion=*/false)) {
1968 ToType = it->getType();
1969 return true;
1970 }
1971 }
1972 return false;
1973}
1974
1975/// IsIntegralPromotion - Determines whether the conversion from the
1976/// expression From (whose potentially-adjusted type is FromType) to
1977/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1978/// sets PromotedType to the promoted type.
1979bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1980 const BuiltinType *To = ToType->getAs<BuiltinType>();
1981 // All integers are built-in.
1982 if (!To) {
1983 return false;
1984 }
1985
1986 // An rvalue of type char, signed char, unsigned char, short int, or
1987 // unsigned short int can be converted to an rvalue of type int if
1988 // int can represent all the values of the source type; otherwise,
1989 // the source rvalue can be converted to an rvalue of type unsigned
1990 // int (C++ 4.5p1).
1991 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1992 !FromType->isEnumeralType()) {
1993 if (// We can promote any signed, promotable integer type to an int
1994 (FromType->isSignedIntegerType() ||
1995 // We can promote any unsigned integer type whose size is
1996 // less than int to an int.
1997 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1998 return To->getKind() == BuiltinType::Int;
1999 }
2000
2001 return To->getKind() == BuiltinType::UInt;
2002 }
2003
2004 // C++11 [conv.prom]p3:
2005 // A prvalue of an unscoped enumeration type whose underlying type is not
2006 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2007 // following types that can represent all the values of the enumeration
2008 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2009 // unsigned int, long int, unsigned long int, long long int, or unsigned
2010 // long long int. If none of the types in that list can represent all the
2011 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2012 // type can be converted to an rvalue a prvalue of the extended integer type
2013 // with lowest integer conversion rank (4.13) greater than the rank of long
2014 // long in which all the values of the enumeration can be represented. If
2015 // there are two such extended types, the signed one is chosen.
2016 // C++11 [conv.prom]p4:
2017 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2018 // can be converted to a prvalue of its underlying type. Moreover, if
2019 // integral promotion can be applied to its underlying type, a prvalue of an
2020 // unscoped enumeration type whose underlying type is fixed can also be
2021 // converted to a prvalue of the promoted underlying type.
2022 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2023 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2024 // provided for a scoped enumeration.
2025 if (FromEnumType->getDecl()->isScoped())
2026 return false;
2027
2028 // We can perform an integral promotion to the underlying type of the enum,
2029 // even if that's not the promoted type. Note that the check for promoting
2030 // the underlying type is based on the type alone, and does not consider
2031 // the bitfield-ness of the actual source expression.
2032 if (FromEnumType->getDecl()->isFixed()) {
2033 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2034 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2035 IsIntegralPromotion(nullptr, Underlying, ToType);
2036 }
2037
2038 // We have already pre-calculated the promotion type, so this is trivial.
2039 if (ToType->isIntegerType() &&
2040 isCompleteType(From->getBeginLoc(), FromType))
2041 return Context.hasSameUnqualifiedType(
2042 ToType, FromEnumType->getDecl()->getPromotionType());
2043
2044 // C++ [conv.prom]p5:
2045 // If the bit-field has an enumerated type, it is treated as any other
2046 // value of that type for promotion purposes.
2047 //
2048 // ... so do not fall through into the bit-field checks below in C++.
2049 if (getLangOpts().CPlusPlus)
2050 return false;
2051 }
2052
2053 // C++0x [conv.prom]p2:
2054 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2055 // to an rvalue a prvalue of the first of the following types that can
2056 // represent all the values of its underlying type: int, unsigned int,
2057 // long int, unsigned long int, long long int, or unsigned long long int.
2058 // If none of the types in that list can represent all the values of its
2059 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2060 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2061 // type.
2062 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2063 ToType->isIntegerType()) {
2064 // Determine whether the type we're converting from is signed or
2065 // unsigned.
2066 bool FromIsSigned = FromType->isSignedIntegerType();
2067 uint64_t FromSize = Context.getTypeSize(FromType);
2068
2069 // The types we'll try to promote to, in the appropriate
2070 // order. Try each of these types.
2071 QualType PromoteTypes[6] = {
2072 Context.IntTy, Context.UnsignedIntTy,
2073 Context.LongTy, Context.UnsignedLongTy ,
2074 Context.LongLongTy, Context.UnsignedLongLongTy
2075 };
2076 for (int Idx = 0; Idx < 6; ++Idx) {
2077 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2078 if (FromSize < ToSize ||
2079 (FromSize == ToSize &&
2080 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2081 // We found the type that we can promote to. If this is the
2082 // type we wanted, we have a promotion. Otherwise, no
2083 // promotion.
2084 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2085 }
2086 }
2087 }
2088
2089 // An rvalue for an integral bit-field (9.6) can be converted to an
2090 // rvalue of type int if int can represent all the values of the
2091 // bit-field; otherwise, it can be converted to unsigned int if
2092 // unsigned int can represent all the values of the bit-field. If
2093 // the bit-field is larger yet, no integral promotion applies to
2094 // it. If the bit-field has an enumerated type, it is treated as any
2095 // other value of that type for promotion purposes (C++ 4.5p3).
2096 // FIXME: We should delay checking of bit-fields until we actually perform the
2097 // conversion.
2098 //
2099 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2100 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2101 // bit-fields and those whose underlying type is larger than int) for GCC
2102 // compatibility.
2103 if (From) {
2104 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2105 llvm::APSInt BitWidth;
2106 if (FromType->isIntegralType(Context) &&
2107 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2108 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2109 ToSize = Context.getTypeSize(ToType);
2110
2111 // Are we promoting to an int from a bitfield that fits in an int?
2112 if (BitWidth < ToSize ||
2113 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2114 return To->getKind() == BuiltinType::Int;
2115 }
2116
2117 // Are we promoting to an unsigned int from an unsigned bitfield
2118 // that fits into an unsigned int?
2119 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2120 return To->getKind() == BuiltinType::UInt;
2121 }
2122
2123 return false;
2124 }
2125 }
2126 }
2127
2128 // An rvalue of type bool can be converted to an rvalue of type int,
2129 // with false becoming zero and true becoming one (C++ 4.5p4).
2130 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2131 return true;
2132 }
2133
2134 return false;
2135}
2136
2137/// IsFloatingPointPromotion - Determines whether the conversion from
2138/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2139/// returns true and sets PromotedType to the promoted type.
2140bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2141 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2142 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2143 /// An rvalue of type float can be converted to an rvalue of type
2144 /// double. (C++ 4.6p1).
2145 if (FromBuiltin->getKind() == BuiltinType::Float &&
2146 ToBuiltin->getKind() == BuiltinType::Double)
2147 return true;
2148
2149 // C99 6.3.1.5p1:
2150 // When a float is promoted to double or long double, or a
2151 // double is promoted to long double [...].
2152 if (!getLangOpts().CPlusPlus &&
2153 (FromBuiltin->getKind() == BuiltinType::Float ||
2154 FromBuiltin->getKind() == BuiltinType::Double) &&
2155 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2156 ToBuiltin->getKind() == BuiltinType::Float128))
2157 return true;
2158
2159 // Half can be promoted to float.
2160 if (!getLangOpts().NativeHalfType &&
2161 FromBuiltin->getKind() == BuiltinType::Half &&
2162 ToBuiltin->getKind() == BuiltinType::Float)
2163 return true;
2164 }
2165
2166 return false;
2167}
2168
2169/// Determine if a conversion is a complex promotion.
2170///
2171/// A complex promotion is defined as a complex -> complex conversion
2172/// where the conversion between the underlying real types is a
2173/// floating-point or integral promotion.
2174bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2175 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2176 if (!FromComplex)
2177 return false;
2178
2179 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2180 if (!ToComplex)
2181 return false;
2182
2183 return IsFloatingPointPromotion(FromComplex->getElementType(),
2184 ToComplex->getElementType()) ||
2185 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2186 ToComplex->getElementType());
2187}
2188
2189/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2190/// the pointer type FromPtr to a pointer to type ToPointee, with the
2191/// same type qualifiers as FromPtr has on its pointee type. ToType,
2192/// if non-empty, will be a pointer to ToType that may or may not have
2193/// the right set of qualifiers on its pointee.
2194///
2195static QualType
2196BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2197 QualType ToPointee, QualType ToType,
2198 ASTContext &Context,
2199 bool StripObjCLifetime = false) {
2200 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
2201 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
2202 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 2202, __PRETTY_FUNCTION__))
;
2203
2204 /// Conversions to 'id' subsume cv-qualifier conversions.
2205 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2206 return ToType.getUnqualifiedType();
2207
2208 QualType CanonFromPointee
2209 = Context.getCanonicalType(FromPtr->getPointeeType());
2210 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2211 Qualifiers Quals = CanonFromPointee.getQualifiers();
2212
2213 if (StripObjCLifetime)
2214 Quals.removeObjCLifetime();
2215
2216 // Exact qualifier match -> return the pointer type we're converting to.
2217 if (CanonToPointee.getLocalQualifiers() == Quals) {
2218 // ToType is exactly what we need. Return it.
2219 if (!ToType.isNull())
2220 return ToType.getUnqualifiedType();
2221
2222 // Build a pointer to ToPointee. It has the right qualifiers
2223 // already.
2224 if (isa<ObjCObjectPointerType>(ToType))
2225 return Context.getObjCObjectPointerType(ToPointee);
2226 return Context.getPointerType(ToPointee);
2227 }
2228
2229 // Just build a canonical type that has the right qualifiers.
2230 QualType QualifiedCanonToPointee
2231 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2232
2233 if (isa<ObjCObjectPointerType>(ToType))
2234 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2235 return Context.getPointerType(QualifiedCanonToPointee);
2236}
2237
2238static bool isNullPointerConstantForConversion(Expr *Expr,
2239 bool InOverloadResolution,
2240 ASTContext &Context) {
2241 // Handle value-dependent integral null pointer constants correctly.
2242 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2243 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2244 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2245 return !InOverloadResolution;
2246
2247 return Expr->isNullPointerConstant(Context,
2248 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2249 : Expr::NPC_ValueDependentIsNull);
2250}
2251
2252/// IsPointerConversion - Determines whether the conversion of the
2253/// expression From, which has the (possibly adjusted) type FromType,
2254/// can be converted to the type ToType via a pointer conversion (C++
2255/// 4.10). If so, returns true and places the converted type (that
2256/// might differ from ToType in its cv-qualifiers at some level) into
2257/// ConvertedType.
2258///
2259/// This routine also supports conversions to and from block pointers
2260/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2261/// pointers to interfaces. FIXME: Once we've determined the
2262/// appropriate overloading rules for Objective-C, we may want to
2263/// split the Objective-C checks into a different routine; however,
2264/// GCC seems to consider all of these conversions to be pointer
2265/// conversions, so for now they live here. IncompatibleObjC will be
2266/// set if the conversion is an allowed Objective-C conversion that
2267/// should result in a warning.
2268bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2269 bool InOverloadResolution,
2270 QualType& ConvertedType,
2271 bool &IncompatibleObjC) {
2272 IncompatibleObjC = false;
2273 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2274 IncompatibleObjC))
2275 return true;
2276
2277 // Conversion from a null pointer constant to any Objective-C pointer type.
2278 if (ToType->isObjCObjectPointerType() &&
2279 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2280 ConvertedType = ToType;
2281 return true;
2282 }
2283
2284 // Blocks: Block pointers can be converted to void*.
2285 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2286 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2287 ConvertedType = ToType;
2288 return true;
2289 }
2290 // Blocks: A null pointer constant can be converted to a block
2291 // pointer type.
2292 if (ToType->isBlockPointerType() &&
2293 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2294 ConvertedType = ToType;
2295 return true;
2296 }
2297
2298 // If the left-hand-side is nullptr_t, the right side can be a null
2299 // pointer constant.
2300 if (ToType->isNullPtrType() &&
2301 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2302 ConvertedType = ToType;
2303 return true;
2304 }
2305
2306 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2307 if (!ToTypePtr)
2308 return false;
2309
2310 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2311 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2312 ConvertedType = ToType;
2313 return true;
2314 }
2315
2316 // Beyond this point, both types need to be pointers
2317 // , including objective-c pointers.
2318 QualType ToPointeeType = ToTypePtr->getPointeeType();
2319 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2320 !getLangOpts().ObjCAutoRefCount) {
2321 ConvertedType = BuildSimilarlyQualifiedPointerType(
2322 FromType->getAs<ObjCObjectPointerType>(),
2323 ToPointeeType,
2324 ToType, Context);
2325 return true;
2326 }
2327 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2328 if (!FromTypePtr)
2329 return false;
2330
2331 QualType FromPointeeType = FromTypePtr->getPointeeType();
2332
2333 // If the unqualified pointee types are the same, this can't be a
2334 // pointer conversion, so don't do all of the work below.
2335 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2336 return false;
2337
2338 // An rvalue of type "pointer to cv T," where T is an object type,
2339 // can be converted to an rvalue of type "pointer to cv void" (C++
2340 // 4.10p2).
2341 if (FromPointeeType->isIncompleteOrObjectType() &&
2342 ToPointeeType->isVoidType()) {
2343 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2344 ToPointeeType,
2345 ToType, Context,
2346 /*StripObjCLifetime=*/true);
2347 return true;
2348 }
2349
2350 // MSVC allows implicit function to void* type conversion.
2351 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2352 ToPointeeType->isVoidType()) {
2353 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2354 ToPointeeType,
2355 ToType, Context);
2356 return true;
2357 }
2358
2359 // When we're overloading in C, we allow a special kind of pointer
2360 // conversion for compatible-but-not-identical pointee types.
2361 if (!getLangOpts().CPlusPlus &&
2362 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2363 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2364 ToPointeeType,
2365 ToType, Context);
2366 return true;
2367 }
2368
2369 // C++ [conv.ptr]p3:
2370 //
2371 // An rvalue of type "pointer to cv D," where D is a class type,
2372 // can be converted to an rvalue of type "pointer to cv B," where
2373 // B is a base class (clause 10) of D. If B is an inaccessible
2374 // (clause 11) or ambiguous (10.2) base class of D, a program that
2375 // necessitates this conversion is ill-formed. The result of the
2376 // conversion is a pointer to the base class sub-object of the
2377 // derived class object. The null pointer value is converted to
2378 // the null pointer value of the destination type.
2379 //
2380 // Note that we do not check for ambiguity or inaccessibility
2381 // here. That is handled by CheckPointerConversion.
2382 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2383 ToPointeeType->isRecordType() &&
2384 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2385 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2386 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2387 ToPointeeType,
2388 ToType, Context);
2389 return true;
2390 }
2391
2392 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2393 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2394 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2395 ToPointeeType,
2396 ToType, Context);
2397 return true;
2398 }
2399
2400 return false;
2401}
2402
2403/// Adopt the given qualifiers for the given type.
2404static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2405 Qualifiers TQs = T.getQualifiers();
2406
2407 // Check whether qualifiers already match.
2408 if (TQs == Qs)
2409 return T;
2410
2411 if (Qs.compatiblyIncludes(TQs))
2412 return Context.getQualifiedType(T, Qs);
2413
2414 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2415}
2416
2417/// isObjCPointerConversion - Determines whether this is an
2418/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2419/// with the same arguments and return values.
2420bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2421 QualType& ConvertedType,
2422 bool &IncompatibleObjC) {
2423 if (!getLangOpts().ObjC)
2424 return false;
2425
2426 // The set of qualifiers on the type we're converting from.
2427 Qualifiers FromQualifiers = FromType.getQualifiers();
2428
2429 // First, we handle all conversions on ObjC object pointer types.
2430 const ObjCObjectPointerType* ToObjCPtr =
2431 ToType->getAs<ObjCObjectPointerType>();
2432 const ObjCObjectPointerType *FromObjCPtr =
2433 FromType->getAs<ObjCObjectPointerType>();
2434
2435 if (ToObjCPtr && FromObjCPtr) {
2436 // If the pointee types are the same (ignoring qualifications),
2437 // then this is not a pointer conversion.
2438 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2439 FromObjCPtr->getPointeeType()))
2440 return false;
2441
2442 // Conversion between Objective-C pointers.
2443 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2444 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2445 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2446 if (getLangOpts().CPlusPlus && LHS && RHS &&
2447 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2448 FromObjCPtr->getPointeeType()))
2449 return false;
2450 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2451 ToObjCPtr->getPointeeType(),
2452 ToType, Context);
2453 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2454 return true;
2455 }
2456
2457 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2458 // Okay: this is some kind of implicit downcast of Objective-C
2459 // interfaces, which is permitted. However, we're going to
2460 // complain about it.
2461 IncompatibleObjC = true;
2462 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2463 ToObjCPtr->getPointeeType(),
2464 ToType, Context);
2465 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2466 return true;
2467 }
2468 }
2469 // Beyond this point, both types need to be C pointers or block pointers.
2470 QualType ToPointeeType;
2471 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2472 ToPointeeType = ToCPtr->getPointeeType();
2473 else if (const BlockPointerType *ToBlockPtr =
2474 ToType->getAs<BlockPointerType>()) {
2475 // Objective C++: We're able to convert from a pointer to any object
2476 // to a block pointer type.
2477 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2478 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2479 return true;
2480 }
2481 ToPointeeType = ToBlockPtr->getPointeeType();
2482 }
2483 else if (FromType->getAs<BlockPointerType>() &&
2484 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2485 // Objective C++: We're able to convert from a block pointer type to a
2486 // pointer to any object.
2487 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2488 return true;
2489 }
2490 else
2491 return false;
2492
2493 QualType FromPointeeType;
2494 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2495 FromPointeeType = FromCPtr->getPointeeType();
2496 else if (const BlockPointerType *FromBlockPtr =
2497 FromType->getAs<BlockPointerType>())
2498 FromPointeeType = FromBlockPtr->getPointeeType();
2499 else
2500 return false;
2501
2502 // If we have pointers to pointers, recursively check whether this
2503 // is an Objective-C conversion.
2504 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2505 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2506 IncompatibleObjC)) {
2507 // We always complain about this conversion.
2508 IncompatibleObjC = true;
2509 ConvertedType = Context.getPointerType(ConvertedType);
2510 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2511 return true;
2512 }
2513 // Allow conversion of pointee being objective-c pointer to another one;
2514 // as in I* to id.
2515 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2516 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2517 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2518 IncompatibleObjC)) {
2519
2520 ConvertedType = Context.getPointerType(ConvertedType);
2521 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2522 return true;
2523 }
2524
2525 // If we have pointers to functions or blocks, check whether the only
2526 // differences in the argument and result types are in Objective-C
2527 // pointer conversions. If so, we permit the conversion (but
2528 // complain about it).
2529 const FunctionProtoType *FromFunctionType
2530 = FromPointeeType->getAs<FunctionProtoType>();
2531 const FunctionProtoType *ToFunctionType
2532 = ToPointeeType->getAs<FunctionProtoType>();
2533 if (FromFunctionType && ToFunctionType) {
2534 // If the function types are exactly the same, this isn't an
2535 // Objective-C pointer conversion.
2536 if (Context.getCanonicalType(FromPointeeType)
2537 == Context.getCanonicalType(ToPointeeType))
2538 return false;
2539
2540 // Perform the quick checks that will tell us whether these
2541 // function types are obviously different.
2542 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2543 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2544 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2545 return false;
2546
2547 bool HasObjCConversion = false;
2548 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2549 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2550 // Okay, the types match exactly. Nothing to do.
2551 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2552 ToFunctionType->getReturnType(),
2553 ConvertedType, IncompatibleObjC)) {
2554 // Okay, we have an Objective-C pointer conversion.
2555 HasObjCConversion = true;
2556 } else {
2557 // Function types are too different. Abort.
2558 return false;
2559 }
2560
2561 // Check argument types.
2562 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2563 ArgIdx != NumArgs; ++ArgIdx) {
2564 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2565 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2566 if (Context.getCanonicalType(FromArgType)
2567 == Context.getCanonicalType(ToArgType)) {
2568 // Okay, the types match exactly. Nothing to do.
2569 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2570 ConvertedType, IncompatibleObjC)) {
2571 // Okay, we have an Objective-C pointer conversion.
2572 HasObjCConversion = true;
2573 } else {
2574 // Argument types are too different. Abort.
2575 return false;
2576 }
2577 }
2578
2579 if (HasObjCConversion) {
2580 // We had an Objective-C conversion. Allow this pointer
2581 // conversion, but complain about it.
2582 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2583 IncompatibleObjC = true;
2584 return true;
2585 }
2586 }
2587
2588 return false;
2589}
2590
2591/// Determine whether this is an Objective-C writeback conversion,
2592/// used for parameter passing when performing automatic reference counting.
2593///
2594/// \param FromType The type we're converting form.
2595///
2596/// \param ToType The type we're converting to.
2597///
2598/// \param ConvertedType The type that will be produced after applying
2599/// this conversion.
2600bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2601 QualType &ConvertedType) {
2602 if (!getLangOpts().ObjCAutoRefCount ||
2603 Context.hasSameUnqualifiedType(FromType, ToType))
2604 return false;
2605
2606 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2607 QualType ToPointee;
2608 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2609 ToPointee = ToPointer->getPointeeType();
2610 else
2611 return false;
2612
2613 Qualifiers ToQuals = ToPointee.getQualifiers();
2614 if (!ToPointee->isObjCLifetimeType() ||
2615 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2616 !ToQuals.withoutObjCLifetime().empty())
2617 return false;
2618
2619 // Argument must be a pointer to __strong to __weak.
2620 QualType FromPointee;
2621 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2622 FromPointee = FromPointer->getPointeeType();
2623 else
2624 return false;
2625
2626 Qualifiers FromQuals = FromPointee.getQualifiers();
2627 if (!FromPointee->isObjCLifetimeType() ||
2628 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2629 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2630 return false;
2631
2632 // Make sure that we have compatible qualifiers.
2633 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2634 if (!ToQuals.compatiblyIncludes(FromQuals))
2635 return false;
2636
2637 // Remove qualifiers from the pointee type we're converting from; they
2638 // aren't used in the compatibility check belong, and we'll be adding back
2639 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2640 FromPointee = FromPointee.getUnqualifiedType();
2641
2642 // The unqualified form of the pointee types must be compatible.
2643 ToPointee = ToPointee.getUnqualifiedType();
2644 bool IncompatibleObjC;
2645 if (Context.typesAreCompatible(FromPointee, ToPointee))
2646 FromPointee = ToPointee;
2647 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2648 IncompatibleObjC))
2649 return false;
2650
2651 /// Construct the type we're converting to, which is a pointer to
2652 /// __autoreleasing pointee.
2653 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2654 ConvertedType = Context.getPointerType(FromPointee);
2655 return true;
2656}
2657
2658bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2659 QualType& ConvertedType) {
2660 QualType ToPointeeType;
2661 if (const BlockPointerType *ToBlockPtr =
2662 ToType->getAs<BlockPointerType>())
2663 ToPointeeType = ToBlockPtr->getPointeeType();
2664 else
2665 return false;
2666
2667 QualType FromPointeeType;
2668 if (const BlockPointerType *FromBlockPtr =
2669 FromType->getAs<BlockPointerType>())
2670 FromPointeeType = FromBlockPtr->getPointeeType();
2671 else
2672 return false;
2673 // We have pointer to blocks, check whether the only
2674 // differences in the argument and result types are in Objective-C
2675 // pointer conversions. If so, we permit the conversion.
2676
2677 const FunctionProtoType *FromFunctionType
2678 = FromPointeeType->getAs<FunctionProtoType>();
2679 const FunctionProtoType *ToFunctionType
2680 = ToPointeeType->getAs<FunctionProtoType>();
2681
2682 if (!FromFunctionType || !ToFunctionType)
2683 return false;
2684
2685 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2686 return true;
2687
2688 // Perform the quick checks that will tell us whether these
2689 // function types are obviously different.
2690 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2691 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2692 return false;
2693
2694 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2695 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2696 if (FromEInfo != ToEInfo)
2697 return false;
2698
2699 bool IncompatibleObjC = false;
2700 if (Context.hasSameType(FromFunctionType->getReturnType(),
2701 ToFunctionType->getReturnType())) {
2702 // Okay, the types match exactly. Nothing to do.
2703 } else {
2704 QualType RHS = FromFunctionType->getReturnType();
2705 QualType LHS = ToFunctionType->getReturnType();
2706 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2707 !RHS.hasQualifiers() && LHS.hasQualifiers())
2708 LHS = LHS.getUnqualifiedType();
2709
2710 if (Context.hasSameType(RHS,LHS)) {
2711 // OK exact match.
2712 } else if (isObjCPointerConversion(RHS, LHS,
2713 ConvertedType, IncompatibleObjC)) {
2714 if (IncompatibleObjC)
2715 return false;
2716 // Okay, we have an Objective-C pointer conversion.
2717 }
2718 else
2719 return false;
2720 }
2721
2722 // Check argument types.
2723 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2724 ArgIdx != NumArgs; ++ArgIdx) {
2725 IncompatibleObjC = false;
2726 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2727 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2728 if (Context.hasSameType(FromArgType, ToArgType)) {
2729 // Okay, the types match exactly. Nothing to do.
2730 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2731 ConvertedType, IncompatibleObjC)) {
2732 if (IncompatibleObjC)
2733 return false;
2734 // Okay, we have an Objective-C pointer conversion.
2735 } else
2736 // Argument types are too different. Abort.
2737 return false;
2738 }
2739
2740 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2741 bool CanUseToFPT, CanUseFromFPT;
2742 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2743 CanUseToFPT, CanUseFromFPT,
2744 NewParamInfos))
2745 return false;
2746
2747 ConvertedType = ToType;
2748 return true;
2749}
2750
2751enum {
2752 ft_default,
2753 ft_different_class,
2754 ft_parameter_arity,
2755 ft_parameter_mismatch,
2756 ft_return_type,
2757 ft_qualifer_mismatch,
2758 ft_noexcept
2759};
2760
2761/// Attempts to get the FunctionProtoType from a Type. Handles
2762/// MemberFunctionPointers properly.
2763static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2764 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2765 return FPT;
2766
2767 if (auto *MPT = FromType->getAs<MemberPointerType>())
2768 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2769
2770 return nullptr;
2771}
2772
2773/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2774/// function types. Catches different number of parameter, mismatch in
2775/// parameter types, and different return types.
2776void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2777 QualType FromType, QualType ToType) {
2778 // If either type is not valid, include no extra info.
2779 if (FromType.isNull() || ToType.isNull()) {
2780 PDiag << ft_default;
2781 return;
2782 }
2783
2784 // Get the function type from the pointers.
2785 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2786 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2787 *ToMember = ToType->getAs<MemberPointerType>();
2788 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2789 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2790 << QualType(FromMember->getClass(), 0);
2791 return;
2792 }
2793 FromType = FromMember->getPointeeType();
2794 ToType = ToMember->getPointeeType();
2795 }
2796
2797 if (FromType->isPointerType())
2798 FromType = FromType->getPointeeType();
2799 if (ToType->isPointerType())
2800 ToType = ToType->getPointeeType();
2801
2802 // Remove references.
2803 FromType = FromType.getNonReferenceType();
2804 ToType = ToType.getNonReferenceType();
2805
2806 // Don't print extra info for non-specialized template functions.
2807 if (FromType->isInstantiationDependentType() &&
2808 !FromType->getAs<TemplateSpecializationType>()) {
2809 PDiag << ft_default;
2810 return;
2811 }
2812
2813 // No extra info for same types.
2814 if (Context.hasSameType(FromType, ToType)) {
2815 PDiag << ft_default;
2816 return;
2817 }
2818
2819 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2820 *ToFunction = tryGetFunctionProtoType(ToType);
2821
2822 // Both types need to be function types.
2823 if (!FromFunction || !ToFunction) {
2824 PDiag << ft_default;
2825 return;
2826 }
2827
2828 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2829 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2830 << FromFunction->getNumParams();
2831 return;
2832 }
2833
2834 // Handle different parameter types.
2835 unsigned ArgPos;
2836 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2837 PDiag << ft_parameter_mismatch << ArgPos + 1
2838 << ToFunction->getParamType(ArgPos)
2839 << FromFunction->getParamType(ArgPos);
2840 return;
2841 }
2842
2843 // Handle different return type.
2844 if (!Context.hasSameType(FromFunction->getReturnType(),
2845 ToFunction->getReturnType())) {
2846 PDiag << ft_return_type << ToFunction->getReturnType()
2847 << FromFunction->getReturnType();
2848 return;
2849 }
2850
2851 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2852 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2853 << FromFunction->getMethodQuals();
2854 return;
2855 }
2856
2857 // Handle exception specification differences on canonical type (in C++17
2858 // onwards).
2859 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2860 ->isNothrow() !=
2861 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2862 ->isNothrow()) {
2863 PDiag << ft_noexcept;
2864 return;
2865 }
2866
2867 // Unable to find a difference, so add no extra info.
2868 PDiag << ft_default;
2869}
2870
2871/// FunctionParamTypesAreEqual - This routine checks two function proto types
2872/// for equality of their argument types. Caller has already checked that
2873/// they have same number of arguments. If the parameters are different,
2874/// ArgPos will have the parameter index of the first different parameter.
2875bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2876 const FunctionProtoType *NewType,
2877 unsigned *ArgPos) {
2878 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2879 N = NewType->param_type_begin(),
2880 E = OldType->param_type_end();
2881 O && (O != E); ++O, ++N) {
2882 if (!Context.hasSameType(O->getUnqualifiedType(),
2883 N->getUnqualifiedType())) {
2884 if (ArgPos)
2885 *ArgPos = O - OldType->param_type_begin();
2886 return false;
2887 }
2888 }
2889 return true;
2890}
2891
2892/// CheckPointerConversion - Check the pointer conversion from the
2893/// expression From to the type ToType. This routine checks for
2894/// ambiguous or inaccessible derived-to-base pointer
2895/// conversions for which IsPointerConversion has already returned
2896/// true. It returns true and produces a diagnostic if there was an
2897/// error, or returns false otherwise.
2898bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2899 CastKind &Kind,
2900 CXXCastPath& BasePath,
2901 bool IgnoreBaseAccess,
2902 bool Diagnose) {
2903 QualType FromType = From->getType();
2904 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2905
2906 Kind = CK_BitCast;
2907
2908 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2909 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2910 Expr::NPCK_ZeroExpression) {
2911 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2912 DiagRuntimeBehavior(From->getExprLoc(), From,
2913 PDiag(diag::warn_impcast_bool_to_null_pointer)
2914 << ToType << From->getSourceRange());
2915 else if (!isUnevaluatedContext())
2916 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2917 << ToType << From->getSourceRange();
2918 }
2919 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2920 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2921 QualType FromPointeeType = FromPtrType->getPointeeType(),
2922 ToPointeeType = ToPtrType->getPointeeType();
2923
2924 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2925 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2926 // We must have a derived-to-base conversion. Check an
2927 // ambiguous or inaccessible conversion.
2928 unsigned InaccessibleID = 0;
2929 unsigned AmbigiousID = 0;
2930 if (Diagnose) {
2931 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2932 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2933 }
2934 if (CheckDerivedToBaseConversion(
2935 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2936 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2937 &BasePath, IgnoreBaseAccess))
2938 return true;
2939
2940 // The conversion was successful.
2941 Kind = CK_DerivedToBase;
2942 }
2943
2944 if (Diagnose && !IsCStyleOrFunctionalCast &&
2945 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2946 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 2947, __PRETTY_FUNCTION__))
2947 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 2947, __PRETTY_FUNCTION__))
;
2948 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2949 << From->getSourceRange();
2950 }
2951 }
2952 } else if (const ObjCObjectPointerType *ToPtrType =
2953 ToType->getAs<ObjCObjectPointerType>()) {
2954 if (const ObjCObjectPointerType *FromPtrType =
2955 FromType->getAs<ObjCObjectPointerType>()) {
2956 // Objective-C++ conversions are always okay.
2957 // FIXME: We should have a different class of conversions for the
2958 // Objective-C++ implicit conversions.
2959 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2960 return false;
2961 } else if (FromType->isBlockPointerType()) {
2962 Kind = CK_BlockPointerToObjCPointerCast;
2963 } else {
2964 Kind = CK_CPointerToObjCPointerCast;
2965 }
2966 } else if (ToType->isBlockPointerType()) {
2967 if (!FromType->isBlockPointerType())
2968 Kind = CK_AnyPointerToBlockPointerCast;
2969 }
2970
2971 // We shouldn't fall into this case unless it's valid for other
2972 // reasons.
2973 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2974 Kind = CK_NullToPointer;
2975
2976 return false;
2977}
2978
2979/// IsMemberPointerConversion - Determines whether the conversion of the
2980/// expression From, which has the (possibly adjusted) type FromType, can be
2981/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2982/// If so, returns true and places the converted type (that might differ from
2983/// ToType in its cv-qualifiers at some level) into ConvertedType.
2984bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2985 QualType ToType,
2986 bool InOverloadResolution,
2987 QualType &ConvertedType) {
2988 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2989 if (!ToTypePtr)
2990 return false;
2991
2992 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2993 if (From->isNullPointerConstant(Context,
2994 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2995 : Expr::NPC_ValueDependentIsNull)) {
2996 ConvertedType = ToType;
2997 return true;
2998 }
2999
3000 // Otherwise, both types have to be member pointers.
3001 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3002 if (!FromTypePtr)
3003 return false;
3004
3005 // A pointer to member of B can be converted to a pointer to member of D,
3006 // where D is derived from B (C++ 4.11p2).
3007 QualType FromClass(FromTypePtr->getClass(), 0);
3008 QualType ToClass(ToTypePtr->getClass(), 0);
3009
3010 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3011 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3012 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3013 ToClass.getTypePtr());
3014 return true;
3015 }
3016
3017 return false;
3018}
3019
3020/// CheckMemberPointerConversion - Check the member pointer conversion from the
3021/// expression From to the type ToType. This routine checks for ambiguous or
3022/// virtual or inaccessible base-to-derived member pointer conversions
3023/// for which IsMemberPointerConversion has already returned true. It returns
3024/// true and produces a diagnostic if there was an error, or returns false
3025/// otherwise.
3026bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3027 CastKind &Kind,
3028 CXXCastPath &BasePath,
3029 bool IgnoreBaseAccess) {
3030 QualType FromType = From->getType();
3031 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3032 if (!FromPtrType) {
3033 // This must be a null pointer to member pointer conversion
3034 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
3035 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
3036 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
;
3037 Kind = CK_NullToMemberPointer;
3038 return false;
3039 }
3040
3041 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3042 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
3043 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
;
3044
3045 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3046 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3047
3048 // FIXME: What about dependent types?
3049 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3049, __PRETTY_FUNCTION__))
;
3050 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3050, __PRETTY_FUNCTION__))
;
3051
3052 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3053 /*DetectVirtual=*/true);
3054 bool DerivationOkay =
3055 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3056 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3057, __PRETTY_FUNCTION__))
3057 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3057, __PRETTY_FUNCTION__))
;
3058 (void)DerivationOkay;
3059
3060 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3061 getUnqualifiedType())) {
3062 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3063 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3064 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3065 return true;
3066 }
3067
3068 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3069 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3070 << FromClass << ToClass << QualType(VBase, 0)
3071 << From->getSourceRange();
3072 return true;
3073 }
3074
3075 if (!IgnoreBaseAccess)
3076 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3077 Paths.front(),
3078 diag::err_downcast_from_inaccessible_base);
3079
3080 // Must be a base to derived member conversion.
3081 BuildBasePathArray(Paths, BasePath);
3082 Kind = CK_BaseToDerivedMemberPointer;
3083 return false;
3084}
3085
3086/// Determine whether the lifetime conversion between the two given
3087/// qualifiers sets is nontrivial.
3088static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3089 Qualifiers ToQuals) {
3090 // Converting anything to const __unsafe_unretained is trivial.
3091 if (ToQuals.hasConst() &&
3092 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3093 return false;
3094
3095 return true;
3096}
3097
3098/// IsQualificationConversion - Determines whether the conversion from
3099/// an rvalue of type FromType to ToType is a qualification conversion
3100/// (C++ 4.4).
3101///
3102/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3103/// when the qualification conversion involves a change in the Objective-C
3104/// object lifetime.
3105bool
3106Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3107 bool CStyle, bool &ObjCLifetimeConversion) {
3108 FromType = Context.getCanonicalType(FromType);
3109 ToType = Context.getCanonicalType(ToType);
3110 ObjCLifetimeConversion = false;
3111
3112 // If FromType and ToType are the same type, this is not a
3113 // qualification conversion.
3114 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3115 return false;
3116
3117 // (C++ 4.4p4):
3118 // A conversion can add cv-qualifiers at levels other than the first
3119 // in multi-level pointers, subject to the following rules: [...]
3120 bool PreviousToQualsIncludeConst = true;
3121 bool UnwrappedAnyPointer = false;
3122 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3123 // Within each iteration of the loop, we check the qualifiers to
3124 // determine if this still looks like a qualification
3125 // conversion. Then, if all is well, we unwrap one more level of
3126 // pointers or pointers-to-members and do it all again
3127 // until there are no more pointers or pointers-to-members left to
3128 // unwrap.
3129 UnwrappedAnyPointer = true;
3130
3131 Qualifiers FromQuals = FromType.getQualifiers();
3132 Qualifiers ToQuals = ToType.getQualifiers();
3133
3134 // Ignore __unaligned qualifier if this type is void.
3135 if (ToType.getUnqualifiedType()->isVoidType())
3136 FromQuals.removeUnaligned();
3137
3138 // Objective-C ARC:
3139 // Check Objective-C lifetime conversions.
3140 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3141 UnwrappedAnyPointer) {
3142 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3143 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3144 ObjCLifetimeConversion = true;
3145 FromQuals.removeObjCLifetime();
3146 ToQuals.removeObjCLifetime();
3147 } else {
3148 // Qualification conversions cannot cast between different
3149 // Objective-C lifetime qualifiers.
3150 return false;
3151 }
3152 }
3153
3154 // Allow addition/removal of GC attributes but not changing GC attributes.
3155 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3156 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3157 FromQuals.removeObjCGCAttr();
3158 ToQuals.removeObjCGCAttr();
3159 }
3160
3161 // -- for every j > 0, if const is in cv 1,j then const is in cv
3162 // 2,j, and similarly for volatile.
3163 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3164 return false;
3165
3166 // -- if the cv 1,j and cv 2,j are different, then const is in
3167 // every cv for 0 < k < j.
3168 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3169 && !PreviousToQualsIncludeConst)
3170 return false;
3171
3172 // Keep track of whether all prior cv-qualifiers in the "to" type
3173 // include const.
3174 PreviousToQualsIncludeConst
3175 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3176 }
3177
3178 // Allows address space promotion by language rules implemented in
3179 // Type::Qualifiers::isAddressSpaceSupersetOf.
3180 Qualifiers FromQuals = FromType.getQualifiers();
3181 Qualifiers ToQuals = ToType.getQualifiers();
3182 if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3183 !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3184 return false;
3185 }
3186
3187 // We are left with FromType and ToType being the pointee types
3188 // after unwrapping the original FromType and ToType the same number
3189 // of types. If we unwrapped any pointers, and if FromType and
3190 // ToType have the same unqualified type (since we checked
3191 // qualifiers above), then this is a qualification conversion.
3192 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3193}
3194
3195/// - Determine whether this is a conversion from a scalar type to an
3196/// atomic type.
3197///
3198/// If successful, updates \c SCS's second and third steps in the conversion
3199/// sequence to finish the conversion.
3200static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3201 bool InOverloadResolution,
3202 StandardConversionSequence &SCS,
3203 bool CStyle) {
3204 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3205 if (!ToAtomic)
3206 return false;
3207
3208 StandardConversionSequence InnerSCS;
3209 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3210 InOverloadResolution, InnerSCS,
3211 CStyle, /*AllowObjCWritebackConversion=*/false))
3212 return false;
3213
3214 SCS.Second = InnerSCS.Second;
3215 SCS.setToType(1, InnerSCS.getToType(1));
3216 SCS.Third = InnerSCS.Third;
3217 SCS.QualificationIncludesObjCLifetime
3218 = InnerSCS.QualificationIncludesObjCLifetime;
3219 SCS.setToType(2, InnerSCS.getToType(2));
3220 return true;
3221}
3222
3223static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3224 CXXConstructorDecl *Constructor,
3225 QualType Type) {
3226 const FunctionProtoType *CtorType =
3227 Constructor->getType()->getAs<FunctionProtoType>();
3228 if (CtorType->getNumParams() > 0) {
3229 QualType FirstArg = CtorType->getParamType(0);
3230 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3231 return true;
3232 }
3233 return false;
3234}
3235
3236static OverloadingResult
3237IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3238 CXXRecordDecl *To,
3239 UserDefinedConversionSequence &User,
3240 OverloadCandidateSet &CandidateSet,
3241 bool AllowExplicit) {
3242 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3243 for (auto *D : S.LookupConstructors(To)) {
3244 auto Info = getConstructorInfo(D);
3245 if (!Info)
3246 continue;
3247
3248 bool Usable = !Info.Constructor->isInvalidDecl() &&
3249 S.isInitListConstructor(Info.Constructor) &&
3250 (AllowExplicit || !Info.Constructor->isExplicit());
3251 if (Usable) {
3252 // If the first argument is (a reference to) the target type,
3253 // suppress conversions.
3254 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3255 S.Context, Info.Constructor, ToType);
3256 if (Info.ConstructorTmpl)
3257 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3258 /*ExplicitArgs*/ nullptr, From,
3259 CandidateSet, SuppressUserConversions,
3260 /*PartialOverloading*/ false,
3261 AllowExplicit);
3262 else
3263 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3264 CandidateSet, SuppressUserConversions,
3265 /*PartialOverloading*/ false, AllowExplicit);
3266 }
3267 }
3268
3269 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3270
3271 OverloadCandidateSet::iterator Best;
3272 switch (auto Result =
3273 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3274 case OR_Deleted:
3275 case OR_Success: {
3276 // Record the standard conversion we used and the conversion function.
3277 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3278 QualType ThisType = Constructor->getThisType();
3279 // Initializer lists don't have conversions as such.
3280 User.Before.setAsIdentityConversion();
3281 User.HadMultipleCandidates = HadMultipleCandidates;
3282 User.ConversionFunction = Constructor;
3283 User.FoundConversionFunction = Best->FoundDecl;
3284 User.After.setAsIdentityConversion();
3285 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3286 User.After.setAllToTypes(ToType);
3287 return Result;
3288 }
3289
3290 case OR_No_Viable_Function:
3291 return OR_No_Viable_Function;
3292 case OR_Ambiguous:
3293 return OR_Ambiguous;
3294 }
3295
3296 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3296)
;
3297}
3298
3299/// Determines whether there is a user-defined conversion sequence
3300/// (C++ [over.ics.user]) that converts expression From to the type
3301/// ToType. If such a conversion exists, User will contain the
3302/// user-defined conversion sequence that performs such a conversion
3303/// and this routine will return true. Otherwise, this routine returns
3304/// false and User is unspecified.
3305///
3306/// \param AllowExplicit true if the conversion should consider C++0x
3307/// "explicit" conversion functions as well as non-explicit conversion
3308/// functions (C++0x [class.conv.fct]p2).
3309///
3310/// \param AllowObjCConversionOnExplicit true if the conversion should
3311/// allow an extra Objective-C pointer conversion on uses of explicit
3312/// constructors. Requires \c AllowExplicit to also be set.
3313static OverloadingResult
3314IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3315 UserDefinedConversionSequence &User,
3316 OverloadCandidateSet &CandidateSet,
3317 bool AllowExplicit,
3318 bool AllowObjCConversionOnExplicit) {
3319 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3319, __PRETTY_FUNCTION__))
;
3320 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3321
3322 // Whether we will only visit constructors.
3323 bool ConstructorsOnly = false;
3324
3325 // If the type we are conversion to is a class type, enumerate its
3326 // constructors.
3327 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3328 // C++ [over.match.ctor]p1:
3329 // When objects of class type are direct-initialized (8.5), or
3330 // copy-initialized from an expression of the same or a
3331 // derived class type (8.5), overload resolution selects the
3332 // constructor. [...] For copy-initialization, the candidate
3333 // functions are all the converting constructors (12.3.1) of
3334 // that class. The argument list is the expression-list within
3335 // the parentheses of the initializer.
3336 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3337 (From->getType()->getAs<RecordType>() &&
3338 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3339 ConstructorsOnly = true;
3340
3341 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3342 // We're not going to find any constructors.
3343 } else if (CXXRecordDecl *ToRecordDecl
3344 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3345
3346 Expr **Args = &From;
3347 unsigned NumArgs = 1;
3348 bool ListInitializing = false;
3349 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3350 // But first, see if there is an init-list-constructor that will work.
3351 OverloadingResult Result = IsInitializerListConstructorConversion(
3352 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3353 if (Result != OR_No_Viable_Function)
3354 return Result;
3355 // Never mind.
3356 CandidateSet.clear(
3357 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3358
3359 // If we're list-initializing, we pass the individual elements as
3360 // arguments, not the entire list.
3361 Args = InitList->getInits();
3362 NumArgs = InitList->getNumInits();
3363 ListInitializing = true;
3364 }
3365
3366 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3367 auto Info = getConstructorInfo(D);
3368 if (!Info)
3369 continue;
3370
3371 bool Usable = !Info.Constructor->isInvalidDecl();
3372 if (ListInitializing)
3373 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3374 else
3375 Usable = Usable &&
3376 Info.Constructor->isConvertingConstructor(AllowExplicit);
3377 if (Usable) {
3378 bool SuppressUserConversions = !ConstructorsOnly;
3379 if (SuppressUserConversions && ListInitializing) {
3380 SuppressUserConversions = false;
3381 if (NumArgs == 1) {
3382 // If the first argument is (a reference to) the target type,
3383 // suppress conversions.
3384 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3385 S.Context, Info.Constructor, ToType);
3386 }
3387 }
3388 if (Info.ConstructorTmpl)
3389 S.AddTemplateOverloadCandidate(
3390 Info.ConstructorTmpl, Info.FoundDecl,
3391 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3392 CandidateSet, SuppressUserConversions,
3393 /*PartialOverloading*/ false, AllowExplicit);
3394 else
3395 // Allow one user-defined conversion when user specifies a
3396 // From->ToType conversion via an static cast (c-style, etc).
3397 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3398 llvm::makeArrayRef(Args, NumArgs),
3399 CandidateSet, SuppressUserConversions,
3400 /*PartialOverloading*/ false, AllowExplicit);
3401 }
3402 }
3403 }
3404 }
3405
3406 // Enumerate conversion functions, if we're allowed to.
3407 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3408 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3409 // No conversion functions from incomplete types.
3410 } else if (const RecordType *FromRecordType =
3411 From->getType()->getAs<RecordType>()) {
3412 if (CXXRecordDecl *FromRecordDecl
3413 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3414 // Add all of the conversion functions as candidates.
3415 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3416 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3417 DeclAccessPair FoundDecl = I.getPair();
3418 NamedDecl *D = FoundDecl.getDecl();
3419 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3420 if (isa<UsingShadowDecl>(D))
3421 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3422
3423 CXXConversionDecl *Conv;
3424 FunctionTemplateDecl *ConvTemplate;
3425 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3426 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3427 else
3428 Conv = cast<CXXConversionDecl>(D);
3429
3430 if (AllowExplicit || !Conv->isExplicit()) {
3431 if (ConvTemplate)
3432 S.AddTemplateConversionCandidate(
3433 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3434 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3435 else
3436 S.AddConversionCandidate(
3437 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3438 AllowObjCConversionOnExplicit, AllowExplicit);
3439 }
3440 }
3441 }
3442 }
3443
3444 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3445
3446 OverloadCandidateSet::iterator Best;
3447 switch (auto Result =
3448 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3449 case OR_Success:
3450 case OR_Deleted:
3451 // Record the standard conversion we used and the conversion function.
3452 if (CXXConstructorDecl *Constructor
3453 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3454 // C++ [over.ics.user]p1:
3455 // If the user-defined conversion is specified by a
3456 // constructor (12.3.1), the initial standard conversion
3457 // sequence converts the source type to the type required by
3458 // the argument of the constructor.
3459 //
3460 QualType ThisType = Constructor->getThisType();
3461 if (isa<InitListExpr>(From)) {
3462 // Initializer lists don't have conversions as such.
3463 User.Before.setAsIdentityConversion();
3464 } else {
3465 if (Best->Conversions[0].isEllipsis())
3466 User.EllipsisConversion = true;
3467 else {
3468 User.Before = Best->Conversions[0].Standard;
3469 User.EllipsisConversion = false;
3470 }
3471 }
3472 User.HadMultipleCandidates = HadMultipleCandidates;
3473 User.ConversionFunction = Constructor;
3474 User.FoundConversionFunction = Best->FoundDecl;
3475 User.After.setAsIdentityConversion();
3476 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3477 User.After.setAllToTypes(ToType);
3478 return Result;
3479 }
3480 if (CXXConversionDecl *Conversion
3481 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3482 // C++ [over.ics.user]p1:
3483 //
3484 // [...] If the user-defined conversion is specified by a
3485 // conversion function (12.3.2), the initial standard
3486 // conversion sequence converts the source type to the
3487 // implicit object parameter of the conversion function.
3488 User.Before = Best->Conversions[0].Standard;
3489 User.HadMultipleCandidates = HadMultipleCandidates;
3490 User.ConversionFunction = Conversion;
3491 User.FoundConversionFunction = Best->FoundDecl;
3492 User.EllipsisConversion = false;
3493
3494 // C++ [over.ics.user]p2:
3495 // The second standard conversion sequence converts the
3496 // result of the user-defined conversion to the target type
3497 // for the sequence. Since an implicit conversion sequence
3498 // is an initialization, the special rules for
3499 // initialization by user-defined conversion apply when
3500 // selecting the best user-defined conversion for a
3501 // user-defined conversion sequence (see 13.3.3 and
3502 // 13.3.3.1).
3503 User.After = Best->FinalConversion;
3504 return Result;
3505 }
3506 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3506)
;
3507
3508 case OR_No_Viable_Function:
3509 return OR_No_Viable_Function;
3510
3511 case OR_Ambiguous:
3512 return OR_Ambiguous;
3513 }
3514
3515 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 3515)
;
3516}
3517
3518bool
3519Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3520 ImplicitConversionSequence ICS;
3521 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3522 OverloadCandidateSet::CSK_Normal);
3523 OverloadingResult OvResult =
3524 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3525 CandidateSet, false, false);
3526
3527 if (!(OvResult == OR_Ambiguous ||
3528 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3529 return false;
3530
3531 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
3532 if (OvResult == OR_Ambiguous)
3533 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3534 << From->getType() << ToType << From->getSourceRange();
3535 else { // OR_No_Viable_Function && !CandidateSet.empty()
3536 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3537 diag::err_typecheck_nonviable_condition_incomplete,
3538 From->getType(), From->getSourceRange()))
3539 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3540 << false << From->getType() << From->getSourceRange() << ToType;
3541 }
3542
3543 CandidateSet.NoteCandidates(
3544 *this, From, Cands);
3545 return true;
3546}
3547
3548/// Compare the user-defined conversion functions or constructors
3549/// of two user-defined conversion sequences to determine whether any ordering
3550/// is possible.
3551static ImplicitConversionSequence::CompareKind
3552compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3553 FunctionDecl *Function2) {
3554 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3555 return ImplicitConversionSequence::Indistinguishable;
3556
3557 // Objective-C++:
3558 // If both conversion functions are implicitly-declared conversions from
3559 // a lambda closure type to a function pointer and a block pointer,
3560 // respectively, always prefer the conversion to a function pointer,
3561 // because the function pointer is more lightweight and is more likely
3562 // to keep code working.
3563 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3564 if (!Conv1)
3565 return ImplicitConversionSequence::Indistinguishable;
3566
3567 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3568 if (!Conv2)
3569 return ImplicitConversionSequence::Indistinguishable;
3570
3571 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3572 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3573 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3574 if (Block1 != Block2)
3575 return Block1 ? ImplicitConversionSequence::Worse
3576 : ImplicitConversionSequence::Better;
3577 }
3578
3579 return ImplicitConversionSequence::Indistinguishable;
3580}
3581
3582static bool hasDeprecatedStringLiteralToCharPtrConversion(
3583 const ImplicitConversionSequence &ICS) {
3584 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3585 (ICS.isUserDefined() &&
3586 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3587}
3588
3589/// CompareImplicitConversionSequences - Compare two implicit
3590/// conversion sequences to determine whether one is better than the
3591/// other or if they are indistinguishable (C++ 13.3.3.2).
3592static ImplicitConversionSequence::CompareKind
3593CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3594 const ImplicitConversionSequence& ICS1,
3595 const ImplicitConversionSequence& ICS2)
3596{
3597 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3598 // conversion sequences (as defined in 13.3.3.1)
3599 // -- a standard conversion sequence (13.3.3.1.1) is a better
3600 // conversion sequence than a user-defined conversion sequence or
3601 // an ellipsis conversion sequence, and
3602 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3603 // conversion sequence than an ellipsis conversion sequence
3604 // (13.3.3.1.3).
3605 //
3606 // C++0x [over.best.ics]p10:
3607 // For the purpose of ranking implicit conversion sequences as
3608 // described in 13.3.3.2, the ambiguous conversion sequence is
3609 // treated as a user-defined sequence that is indistinguishable
3610 // from any other user-defined conversion sequence.
3611
3612 // String literal to 'char *' conversion has been deprecated in C++03. It has
3613 // been removed from C++11. We still accept this conversion, if it happens at
3614 // the best viable function. Otherwise, this conversion is considered worse
3615 // than ellipsis conversion. Consider this as an extension; this is not in the
3616 // standard. For example:
3617 //
3618 // int &f(...); // #1
3619 // void f(char*); // #2
3620 // void g() { int &r = f("foo"); }
3621 //
3622 // In C++03, we pick #2 as the best viable function.
3623 // In C++11, we pick #1 as the best viable function, because ellipsis
3624 // conversion is better than string-literal to char* conversion (since there
3625 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3626 // convert arguments, #2 would be the best viable function in C++11.
3627 // If the best viable function has this conversion, a warning will be issued
3628 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3629
3630 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3631 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3632 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3633 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3634 ? ImplicitConversionSequence::Worse
3635 : ImplicitConversionSequence::Better;
3636
3637 if (ICS1.getKindRank() < ICS2.getKindRank())
3638 return ImplicitConversionSequence::Better;
3639 if (ICS2.getKindRank() < ICS1.getKindRank())
3640 return ImplicitConversionSequence::Worse;
3641
3642 // The following checks require both conversion sequences to be of
3643 // the same kind.
3644 if (ICS1.getKind() != ICS2.getKind())
3645 return ImplicitConversionSequence::Indistinguishable;
3646
3647 ImplicitConversionSequence::CompareKind Result =
3648 ImplicitConversionSequence::Indistinguishable;
3649
3650 // Two implicit conversion sequences of the same form are
3651 // indistinguishable conversion sequences unless one of the
3652 // following rules apply: (C++ 13.3.3.2p3):
3653
3654 // List-initialization sequence L1 is a better conversion sequence than
3655 // list-initialization sequence L2 if:
3656 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3657 // if not that,
3658 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3659 // and N1 is smaller than N2.,
3660 // even if one of the other rules in this paragraph would otherwise apply.
3661 if (!ICS1.isBad()) {
3662 if (ICS1.isStdInitializerListElement() &&
3663 !ICS2.isStdInitializerListElement())
3664 return ImplicitConversionSequence::Better;
3665 if (!ICS1.isStdInitializerListElement() &&
3666 ICS2.isStdInitializerListElement())
3667 return ImplicitConversionSequence::Worse;
3668 }
3669
3670 if (ICS1.isStandard())
3671 // Standard conversion sequence S1 is a better conversion sequence than
3672 // standard conversion sequence S2 if [...]
3673 Result = CompareStandardConversionSequences(S, Loc,
3674 ICS1.Standard, ICS2.Standard);
3675 else if (ICS1.isUserDefined()) {
3676 // User-defined conversion sequence U1 is a better conversion
3677 // sequence than another user-defined conversion sequence U2 if
3678 // they contain the same user-defined conversion function or
3679 // constructor and if the second standard conversion sequence of
3680 // U1 is better than the second standard conversion sequence of
3681 // U2 (C++ 13.3.3.2p3).
3682 if (ICS1.UserDefined.ConversionFunction ==
3683 ICS2.UserDefined.ConversionFunction)
3684 Result = CompareStandardConversionSequences(S, Loc,
3685 ICS1.UserDefined.After,
3686 ICS2.UserDefined.After);
3687 else
3688 Result = compareConversionFunctions(S,
3689 ICS1.UserDefined.ConversionFunction,
3690 ICS2.UserDefined.ConversionFunction);
3691 }
3692
3693 return Result;
3694}
3695
3696// Per 13.3.3.2p3, compare the given standard conversion sequences to
3697// determine if one is a proper subset of the other.
3698static ImplicitConversionSequence::CompareKind
3699compareStandardConversionSubsets(ASTContext &Context,
3700 const StandardConversionSequence& SCS1,
3701 const StandardConversionSequence& SCS2) {
3702 ImplicitConversionSequence::CompareKind Result
3703 = ImplicitConversionSequence::Indistinguishable;
3704
3705 // the identity conversion sequence is considered to be a subsequence of
3706 // any non-identity conversion sequence
3707 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3708 return ImplicitConversionSequence::Better;
3709 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3710 return ImplicitConversionSequence::Worse;
3711
3712 if (SCS1.Second != SCS2.Second) {
3713 if (SCS1.Second == ICK_Identity)
3714 Result = ImplicitConversionSequence::Better;
3715 else if (SCS2.Second == ICK_Identity)
3716 Result = ImplicitConversionSequence::Worse;
3717 else
3718 return ImplicitConversionSequence::Indistinguishable;
3719 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3720 return ImplicitConversionSequence::Indistinguishable;
3721
3722 if (SCS1.Third == SCS2.Third) {
3723 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3724 : ImplicitConversionSequence::Indistinguishable;
3725 }
3726
3727 if (SCS1.Third == ICK_Identity)
3728 return Result == ImplicitConversionSequence::Worse
3729 ? ImplicitConversionSequence::Indistinguishable
3730 : ImplicitConversionSequence::Better;
3731
3732 if (SCS2.Third == ICK_Identity)
3733 return Result == ImplicitConversionSequence::Better
3734 ? ImplicitConversionSequence::Indistinguishable
3735 : ImplicitConversionSequence::Worse;
3736
3737 return ImplicitConversionSequence::Indistinguishable;
3738}
3739
3740/// Determine whether one of the given reference bindings is better
3741/// than the other based on what kind of bindings they are.
3742static bool
3743isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3744 const StandardConversionSequence &SCS2) {
3745 // C++0x [over.ics.rank]p3b4:
3746 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3747 // implicit object parameter of a non-static member function declared
3748 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3749 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3750 // lvalue reference to a function lvalue and S2 binds an rvalue
3751 // reference*.
3752 //
3753 // FIXME: Rvalue references. We're going rogue with the above edits,
3754 // because the semantics in the current C++0x working paper (N3225 at the
3755 // time of this writing) break the standard definition of std::forward
3756 // and std::reference_wrapper when dealing with references to functions.
3757 // Proposed wording changes submitted to CWG for consideration.
3758 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3759 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3760 return false;
3761
3762 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3763 SCS2.IsLvalueReference) ||
3764 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3765 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3766}
3767
3768/// CompareStandardConversionSequences - Compare two standard
3769/// conversion sequences to determine whether one is better than the
3770/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3771static ImplicitConversionSequence::CompareKind
3772CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3773 const StandardConversionSequence& SCS1,
3774 const StandardConversionSequence& SCS2)
3775{
3776 // Standard conversion sequence S1 is a better conversion sequence
3777 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3778
3779 // -- S1 is a proper subsequence of S2 (comparing the conversion
3780 // sequences in the canonical form defined by 13.3.3.1.1,
3781 // excluding any Lvalue Transformation; the identity conversion
3782 // sequence is considered to be a subsequence of any
3783 // non-identity conversion sequence) or, if not that,
3784 if (ImplicitConversionSequence::CompareKind CK
3785 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3786 return CK;
3787
3788 // -- the rank of S1 is better than the rank of S2 (by the rules
3789 // defined below), or, if not that,
3790 ImplicitConversionRank Rank1 = SCS1.getRank();
3791 ImplicitConversionRank Rank2 = SCS2.getRank();
3792 if (Rank1 < Rank2)
3793 return ImplicitConversionSequence::Better;
3794 else if (Rank2 < Rank1)
3795 return ImplicitConversionSequence::Worse;
3796
3797 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3798 // are indistinguishable unless one of the following rules
3799 // applies:
3800
3801 // A conversion that is not a conversion of a pointer, or
3802 // pointer to member, to bool is better than another conversion
3803 // that is such a conversion.
3804 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3805 return SCS2.isPointerConversionToBool()
3806 ? ImplicitConversionSequence::Better
3807 : ImplicitConversionSequence::Worse;
3808
3809 // C++ [over.ics.rank]p4b2:
3810 //
3811 // If class B is derived directly or indirectly from class A,
3812 // conversion of B* to A* is better than conversion of B* to
3813 // void*, and conversion of A* to void* is better than conversion
3814 // of B* to void*.
3815 bool SCS1ConvertsToVoid
3816 = SCS1.isPointerConversionToVoidPointer(S.Context);
3817 bool SCS2ConvertsToVoid
3818 = SCS2.isPointerConversionToVoidPointer(S.Context);
3819 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3820 // Exactly one of the conversion sequences is a conversion to
3821 // a void pointer; it's the worse conversion.
3822 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3823 : ImplicitConversionSequence::Worse;
3824 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3825 // Neither conversion sequence converts to a void pointer; compare
3826 // their derived-to-base conversions.
3827 if (ImplicitConversionSequence::CompareKind DerivedCK
3828 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3829 return DerivedCK;
3830 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3831 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3832 // Both conversion sequences are conversions to void
3833 // pointers. Compare the source types to determine if there's an
3834 // inheritance relationship in their sources.
3835 QualType FromType1 = SCS1.getFromType();
3836 QualType FromType2 = SCS2.getFromType();
3837
3838 // Adjust the types we're converting from via the array-to-pointer
3839 // conversion, if we need to.
3840 if (SCS1.First == ICK_Array_To_Pointer)
3841 FromType1 = S.Context.getArrayDecayedType(FromType1);
3842 if (SCS2.First == ICK_Array_To_Pointer)
3843 FromType2 = S.Context.getArrayDecayedType(FromType2);
3844
3845 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3846 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3847
3848 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3849 return ImplicitConversionSequence::Better;
3850 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3851 return ImplicitConversionSequence::Worse;
3852
3853 // Objective-C++: If one interface is more specific than the
3854 // other, it is the better one.
3855 const ObjCObjectPointerType* FromObjCPtr1
3856 = FromType1->getAs<ObjCObjectPointerType>();
3857 const ObjCObjectPointerType* FromObjCPtr2
3858 = FromType2->getAs<ObjCObjectPointerType>();
3859 if (FromObjCPtr1 && FromObjCPtr2) {
3860 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3861 FromObjCPtr2);
3862 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3863 FromObjCPtr1);
3864 if (AssignLeft != AssignRight) {
3865 return AssignLeft? ImplicitConversionSequence::Better
3866 : ImplicitConversionSequence::Worse;
3867 }
3868 }
3869 }
3870
3871 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3872 // bullet 3).
3873 if (ImplicitConversionSequence::CompareKind QualCK
3874 = CompareQualificationConversions(S, SCS1, SCS2))
3875 return QualCK;
3876
3877 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3878 // Check for a better reference binding based on the kind of bindings.
3879 if (isBetterReferenceBindingKind(SCS1, SCS2))
3880 return ImplicitConversionSequence::Better;
3881 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3882 return ImplicitConversionSequence::Worse;
3883
3884 // C++ [over.ics.rank]p3b4:
3885 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3886 // which the references refer are the same type except for
3887 // top-level cv-qualifiers, and the type to which the reference
3888 // initialized by S2 refers is more cv-qualified than the type
3889 // to which the reference initialized by S1 refers.
3890 QualType T1 = SCS1.getToType(2);
3891 QualType T2 = SCS2.getToType(2);
3892 T1 = S.Context.getCanonicalType(T1);
3893 T2 = S.Context.getCanonicalType(T2);
3894 Qualifiers T1Quals, T2Quals;
3895 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3896 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3897 if (UnqualT1 == UnqualT2) {
3898 // Objective-C++ ARC: If the references refer to objects with different
3899 // lifetimes, prefer bindings that don't change lifetime.
3900 if (SCS1.ObjCLifetimeConversionBinding !=
3901 SCS2.ObjCLifetimeConversionBinding) {
3902 return SCS1.ObjCLifetimeConversionBinding
3903 ? ImplicitConversionSequence::Worse
3904 : ImplicitConversionSequence::Better;
3905 }
3906
3907 // If the type is an array type, promote the element qualifiers to the
3908 // type for comparison.
3909 if (isa<ArrayType>(T1) && T1Quals)
3910 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3911 if (isa<ArrayType>(T2) && T2Quals)
3912 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3913 if (T2.isMoreQualifiedThan(T1))
3914 return ImplicitConversionSequence::Better;
3915 else if (T1.isMoreQualifiedThan(T2))
3916 return ImplicitConversionSequence::Worse;
3917 }
3918 }
3919
3920 // In Microsoft mode, prefer an integral conversion to a
3921 // floating-to-integral conversion if the integral conversion
3922 // is between types of the same size.
3923 // For example:
3924 // void f(float);
3925 // void f(int);
3926 // int main {
3927 // long a;
3928 // f(a);
3929 // }
3930 // Here, MSVC will call f(int) instead of generating a compile error
3931 // as clang will do in standard mode.
3932 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3933 SCS2.Second == ICK_Floating_Integral &&
3934 S.Context.getTypeSize(SCS1.getFromType()) ==
3935 S.Context.getTypeSize(SCS1.getToType(2)))
3936 return ImplicitConversionSequence::Better;
3937
3938 // Prefer a compatible vector conversion over a lax vector conversion
3939 // For example:
3940 //
3941 // typedef float __v4sf __attribute__((__vector_size__(16)));
3942 // void f(vector float);
3943 // void f(vector signed int);
3944 // int main() {
3945 // __v4sf a;
3946 // f(a);
3947 // }
3948 // Here, we'd like to choose f(vector float) and not
3949 // report an ambiguous call error
3950 if (SCS1.Second == ICK_Vector_Conversion &&
3951 SCS2.Second == ICK_Vector_Conversion) {
3952 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3953 SCS1.getFromType(), SCS1.getToType(2));
3954 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3955 SCS2.getFromType(), SCS2.getToType(2));
3956
3957 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
3958 return SCS1IsCompatibleVectorConversion
3959 ? ImplicitConversionSequence::Better
3960 : ImplicitConversionSequence::Worse;
3961 }
3962
3963 return ImplicitConversionSequence::Indistinguishable;
3964}
3965
3966/// CompareQualificationConversions - Compares two standard conversion
3967/// sequences to determine whether they can be ranked based on their
3968/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3969static ImplicitConversionSequence::CompareKind
3970CompareQualificationConversions(Sema &S,
3971 const StandardConversionSequence& SCS1,
3972 const StandardConversionSequence& SCS2) {
3973 // C++ 13.3.3.2p3:
3974 // -- S1 and S2 differ only in their qualification conversion and
3975 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3976 // cv-qualification signature of type T1 is a proper subset of
3977 // the cv-qualification signature of type T2, and S1 is not the
3978 // deprecated string literal array-to-pointer conversion (4.2).
3979 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3980 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3981 return ImplicitConversionSequence::Indistinguishable;
3982
3983 // FIXME: the example in the standard doesn't use a qualification
3984 // conversion (!)
3985 QualType T1 = SCS1.getToType(2);
3986 QualType T2 = SCS2.getToType(2);
3987 T1 = S.Context.getCanonicalType(T1);
3988 T2 = S.Context.getCanonicalType(T2);
3989 Qualifiers T1Quals, T2Quals;
3990 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3991 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3992
3993 // If the types are the same, we won't learn anything by unwrapped
3994 // them.
3995 if (UnqualT1 == UnqualT2)
3996 return ImplicitConversionSequence::Indistinguishable;
3997
3998 // If the type is an array type, promote the element qualifiers to the type
3999 // for comparison.
4000 if (isa<ArrayType>(T1) && T1Quals)
4001 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4002 if (isa<ArrayType>(T2) && T2Quals)
4003 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4004
4005 ImplicitConversionSequence::CompareKind Result
4006 = ImplicitConversionSequence::Indistinguishable;
4007
4008 // Objective-C++ ARC:
4009 // Prefer qualification conversions not involving a change in lifetime
4010 // to qualification conversions that do not change lifetime.
4011 if (SCS1.QualificationIncludesObjCLifetime !=
4012 SCS2.QualificationIncludesObjCLifetime) {
4013 Result = SCS1.QualificationIncludesObjCLifetime
4014 ? ImplicitConversionSequence::Worse
4015 : ImplicitConversionSequence::Better;
4016 }
4017
4018 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4019 // Within each iteration of the loop, we check the qualifiers to
4020 // determine if this still looks like a qualification
4021 // conversion. Then, if all is well, we unwrap one more level of
4022 // pointers or pointers-to-members and do it all again
4023 // until there are no more pointers or pointers-to-members left
4024 // to unwrap. This essentially mimics what
4025 // IsQualificationConversion does, but here we're checking for a
4026 // strict subset of qualifiers.
4027 if (T1.getQualifiers().withoutObjCLifetime() ==
4028 T2.getQualifiers().withoutObjCLifetime())
4029 // The qualifiers are the same, so this doesn't tell us anything
4030 // about how the sequences rank.
4031 // ObjC ownership quals are omitted above as they interfere with
4032 // the ARC overload rule.
4033 ;
4034 else if (T2.isMoreQualifiedThan(T1)) {
4035 // T1 has fewer qualifiers, so it could be the better sequence.
4036 if (Result == ImplicitConversionSequence::Worse)
4037 // Neither has qualifiers that are a subset of the other's
4038 // qualifiers.
4039 return ImplicitConversionSequence::Indistinguishable;
4040
4041 Result = ImplicitConversionSequence::Better;
4042 } else if (T1.isMoreQualifiedThan(T2)) {
4043 // T2 has fewer qualifiers, so it could be the better sequence.
4044 if (Result == ImplicitConversionSequence::Better)
4045 // Neither has qualifiers that are a subset of the other's
4046 // qualifiers.
4047 return ImplicitConversionSequence::Indistinguishable;
4048
4049 Result = ImplicitConversionSequence::Worse;
4050 } else {
4051 // Qualifiers are disjoint.
4052 return ImplicitConversionSequence::Indistinguishable;
4053 }
4054
4055 // If the types after this point are equivalent, we're done.
4056 if (S.Context.hasSameUnqualifiedType(T1, T2))
4057 break;
4058 }
4059
4060 // Check that the winning standard conversion sequence isn't using
4061 // the deprecated string literal array to pointer conversion.
4062 switch (Result) {
4063 case ImplicitConversionSequence::Better:
4064 if (SCS1.DeprecatedStringLiteralToCharPtr)
4065 Result = ImplicitConversionSequence::Indistinguishable;
4066 break;
4067
4068 case ImplicitConversionSequence::Indistinguishable:
4069 break;
4070
4071 case ImplicitConversionSequence::Worse:
4072 if (SCS2.DeprecatedStringLiteralToCharPtr)
4073 Result = ImplicitConversionSequence::Indistinguishable;
4074 break;
4075 }
4076
4077 return Result;
4078}
4079
4080/// CompareDerivedToBaseConversions - Compares two standard conversion
4081/// sequences to determine whether they can be ranked based on their
4082/// various kinds of derived-to-base conversions (C++
4083/// [over.ics.rank]p4b3). As part of these checks, we also look at
4084/// conversions between Objective-C interface types.
4085static ImplicitConversionSequence::CompareKind
4086CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4087 const StandardConversionSequence& SCS1,
4088 const StandardConversionSequence& SCS2) {
4089 QualType FromType1 = SCS1.getFromType();
4090 QualType ToType1 = SCS1.getToType(1);
4091 QualType FromType2 = SCS2.getFromType();
4092 QualType ToType2 = SCS2.getToType(1);
4093
4094 // Adjust the types we're converting from via the array-to-pointer
4095 // conversion, if we need to.
4096 if (SCS1.First == ICK_Array_To_Pointer)
4097 FromType1 = S.Context.getArrayDecayedType(FromType1);
4098 if (SCS2.First == ICK_Array_To_Pointer)
4099 FromType2 = S.Context.getArrayDecayedType(FromType2);
4100
4101 // Canonicalize all of the types.
4102 FromType1 = S.Context.getCanonicalType(FromType1);
4103 ToType1 = S.Context.getCanonicalType(ToType1);
4104 FromType2 = S.Context.getCanonicalType(FromType2);
4105 ToType2 = S.Context.getCanonicalType(ToType2);
4106
4107 // C++ [over.ics.rank]p4b3:
4108 //
4109 // If class B is derived directly or indirectly from class A and
4110 // class C is derived directly or indirectly from B,
4111 //
4112 // Compare based on pointer conversions.
4113 if (SCS1.Second == ICK_Pointer_Conversion &&
4114 SCS2.Second == ICK_Pointer_Conversion &&
4115 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4116 FromType1->isPointerType() && FromType2->isPointerType() &&
4117 ToType1->isPointerType() && ToType2->isPointerType()) {
4118 QualType FromPointee1 =
4119 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4120 QualType ToPointee1 =
4121 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4122 QualType FromPointee2 =
4123 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4124 QualType ToPointee2 =
4125 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4126
4127 // -- conversion of C* to B* is better than conversion of C* to A*,
4128 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4129 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4130 return ImplicitConversionSequence::Better;
4131 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4132 return ImplicitConversionSequence::Worse;
4133 }
4134
4135 // -- conversion of B* to A* is better than conversion of C* to A*,
4136 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4137 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4138 return ImplicitConversionSequence::Better;
4139 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4140 return ImplicitConversionSequence::Worse;
4141 }
4142 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4143 SCS2.Second == ICK_Pointer_Conversion) {
4144 const ObjCObjectPointerType *FromPtr1
4145 = FromType1->getAs<ObjCObjectPointerType>();
4146 const ObjCObjectPointerType *FromPtr2
4147 = FromType2->getAs<ObjCObjectPointerType>();
4148 const ObjCObjectPointerType *ToPtr1
4149 = ToType1->getAs<ObjCObjectPointerType>();
4150 const ObjCObjectPointerType *ToPtr2
4151 = ToType2->getAs<ObjCObjectPointerType>();
4152
4153 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4154 // Apply the same conversion ranking rules for Objective-C pointer types
4155 // that we do for C++ pointers to class types. However, we employ the
4156 // Objective-C pseudo-subtyping relationship used for assignment of
4157 // Objective-C pointer types.
4158 bool FromAssignLeft
4159 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4160 bool FromAssignRight
4161 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4162 bool ToAssignLeft
4163 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4164 bool ToAssignRight
4165 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4166
4167 // A conversion to an a non-id object pointer type or qualified 'id'
4168 // type is better than a conversion to 'id'.
4169 if (ToPtr1->isObjCIdType() &&
4170 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4171 return ImplicitConversionSequence::Worse;
4172 if (ToPtr2->isObjCIdType() &&
4173 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4174 return ImplicitConversionSequence::Better;
4175
4176 // A conversion to a non-id object pointer type is better than a
4177 // conversion to a qualified 'id' type
4178 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4179 return ImplicitConversionSequence::Worse;
4180 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4181 return ImplicitConversionSequence::Better;
4182
4183 // A conversion to an a non-Class object pointer type or qualified 'Class'
4184 // type is better than a conversion to 'Class'.
4185 if (ToPtr1->isObjCClassType() &&
4186 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4187 return ImplicitConversionSequence::Worse;
4188 if (ToPtr2->isObjCClassType() &&
4189 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4190 return ImplicitConversionSequence::Better;
4191
4192 // A conversion to a non-Class object pointer type is better than a
4193 // conversion to a qualified 'Class' type.
4194 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4195 return ImplicitConversionSequence::Worse;
4196 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4197 return ImplicitConversionSequence::Better;
4198
4199 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4200 if (S.Context.hasSameType(FromType1, FromType2) &&
4201 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4202 (ToAssignLeft != ToAssignRight)) {
4203 if (FromPtr1->isSpecialized()) {
4204 // "conversion of B<A> * to B * is better than conversion of B * to
4205 // C *.
4206 bool IsFirstSame =
4207 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4208 bool IsSecondSame =
4209 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4210 if (IsFirstSame) {
4211 if (!IsSecondSame)
4212 return ImplicitConversionSequence::Better;
4213 } else if (IsSecondSame)
4214 return ImplicitConversionSequence::Worse;
4215 }
4216 return ToAssignLeft? ImplicitConversionSequence::Worse
4217 : ImplicitConversionSequence::Better;
4218 }
4219
4220 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4221 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4222 (FromAssignLeft != FromAssignRight))
4223 return FromAssignLeft? ImplicitConversionSequence::Better
4224 : ImplicitConversionSequence::Worse;
4225 }
4226 }
4227
4228 // Ranking of member-pointer types.
4229 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4230 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4231 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4232 const MemberPointerType * FromMemPointer1 =
4233 FromType1->getAs<MemberPointerType>();
4234 const MemberPointerType * ToMemPointer1 =
4235 ToType1->getAs<MemberPointerType>();
4236 const MemberPointerType * FromMemPointer2 =
4237 FromType2->getAs<MemberPointerType>();
4238 const MemberPointerType * ToMemPointer2 =
4239 ToType2->getAs<MemberPointerType>();
4240 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4241 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4242 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4243 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4244 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4245 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4246 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4247 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4248 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4249 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4250 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4251 return ImplicitConversionSequence::Worse;
4252 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4253 return ImplicitConversionSequence::Better;
4254 }
4255 // conversion of B::* to C::* is better than conversion of A::* to C::*
4256 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4257 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4258 return ImplicitConversionSequence::Better;
4259 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4260 return ImplicitConversionSequence::Worse;
4261 }
4262 }
4263
4264 if (SCS1.Second == ICK_Derived_To_Base) {
4265 // -- conversion of C to B is better than conversion of C to A,
4266 // -- binding of an expression of type C to a reference of type
4267 // B& is better than binding an expression of type C to a
4268 // reference of type A&,
4269 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4270 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4271 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4272 return ImplicitConversionSequence::Better;
4273 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4274 return ImplicitConversionSequence::Worse;
4275 }
4276
4277 // -- conversion of B to A is better than conversion of C to A.
4278 // -- binding of an expression of type B to a reference of type
4279 // A& is better than binding an expression of type C to a
4280 // reference of type A&,
4281 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4282 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4283 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4284 return ImplicitConversionSequence::Better;
4285 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4286 return ImplicitConversionSequence::Worse;
4287 }
4288 }
4289
4290 return ImplicitConversionSequence::Indistinguishable;
4291}
4292
4293/// Determine whether the given type is valid, e.g., it is not an invalid
4294/// C++ class.
4295static bool isTypeValid(QualType T) {
4296 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4297 return !Record->isInvalidDecl();
4298
4299 return true;
4300}
4301
4302/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4303/// determine whether they are reference-related,
4304/// reference-compatible, reference-compatible with added
4305/// qualification, or incompatible, for use in C++ initialization by
4306/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4307/// type, and the first type (T1) is the pointee type of the reference
4308/// type being initialized.
4309Sema::ReferenceCompareResult
4310Sema::CompareReferenceRelationship(SourceLocation Loc,
4311 QualType OrigT1, QualType OrigT2,
4312 bool &DerivedToBase,
4313 bool &ObjCConversion,
4314 bool &ObjCLifetimeConversion) {
4315 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4316, __PRETTY_FUNCTION__))
4316 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4316, __PRETTY_FUNCTION__))
;
4317 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4317, __PRETTY_FUNCTION__))
;
4318
4319 QualType T1 = Context.getCanonicalType(OrigT1);
4320 QualType T2 = Context.getCanonicalType(OrigT2);
4321 Qualifiers T1Quals, T2Quals;
4322 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4323 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4324
4325 // C++ [dcl.init.ref]p4:
4326 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4327 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4328 // T1 is a base class of T2.
4329 DerivedToBase = false;
4330 ObjCConversion = false;
4331 ObjCLifetimeConversion = false;
4332 QualType ConvertedT2;
4333 if (UnqualT1 == UnqualT2) {
4334 // Nothing to do.
4335 } else if (isCompleteType(Loc, OrigT2) &&
4336 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4337 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4338 DerivedToBase = true;
4339 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4340 UnqualT2->isObjCObjectOrInterfaceType() &&
4341 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4342 ObjCConversion = true;
4343 else if (UnqualT2->isFunctionType() &&
4344 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4345 // C++1z [dcl.init.ref]p4:
4346 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4347 // function" and T1 is "function"
4348 //
4349 // We extend this to also apply to 'noreturn', so allow any function
4350 // conversion between function types.
4351 return Ref_Compatible;
4352 else
4353 return Ref_Incompatible;
4354
4355 // At this point, we know that T1 and T2 are reference-related (at
4356 // least).
4357
4358 // If the type is an array type, promote the element qualifiers to the type
4359 // for comparison.
4360 if (isa<ArrayType>(T1) && T1Quals)
4361 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4362 if (isa<ArrayType>(T2) && T2Quals)
4363 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4364
4365 // C++ [dcl.init.ref]p4:
4366 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4367 // reference-related to T2 and cv1 is the same cv-qualification
4368 // as, or greater cv-qualification than, cv2. For purposes of
4369 // overload resolution, cases for which cv1 is greater
4370 // cv-qualification than cv2 are identified as
4371 // reference-compatible with added qualification (see 13.3.3.2).
4372 //
4373 // Note that we also require equivalence of Objective-C GC and address-space
4374 // qualifiers when performing these computations, so that e.g., an int in
4375 // address space 1 is not reference-compatible with an int in address
4376 // space 2.
4377 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4378 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4379 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4380 ObjCLifetimeConversion = true;
4381
4382 T1Quals.removeObjCLifetime();
4383 T2Quals.removeObjCLifetime();
4384 }
4385
4386 // MS compiler ignores __unaligned qualifier for references; do the same.
4387 T1Quals.removeUnaligned();
4388 T2Quals.removeUnaligned();
4389
4390 if (T1Quals.compatiblyIncludes(T2Quals))
4391 return Ref_Compatible;
4392 else
4393 return Ref_Related;
4394}
4395
4396/// Look for a user-defined conversion to a value reference-compatible
4397/// with DeclType. Return true if something definite is found.
4398static bool
4399FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4400 QualType DeclType, SourceLocation DeclLoc,
4401 Expr *Init, QualType T2, bool AllowRvalues,
4402 bool AllowExplicit) {
4403 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4403, __PRETTY_FUNCTION__))
;
4404 CXXRecordDecl *T2RecordDecl
4405 = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4406
4407 OverloadCandidateSet CandidateSet(
4408 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4409 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4410 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4411 NamedDecl *D = *I;
4412 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4413 if (isa<UsingShadowDecl>(D))
4414 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4415
4416 FunctionTemplateDecl *ConvTemplate
4417 = dyn_cast<FunctionTemplateDecl>(D);
4418 CXXConversionDecl *Conv;
4419 if (ConvTemplate)
4420 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4421 else
4422 Conv = cast<CXXConversionDecl>(D);
4423
4424 // If this is an explicit conversion, and we're not allowed to consider
4425 // explicit conversions, skip it.
4426 if (!AllowExplicit && Conv->isExplicit())
4427 continue;
4428
4429 if (AllowRvalues) {
4430 bool DerivedToBase = false;
4431 bool ObjCConversion = false;
4432 bool ObjCLifetimeConversion = false;
4433
4434 // If we are initializing an rvalue reference, don't permit conversion
4435 // functions that return lvalues.
4436 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4437 const ReferenceType *RefType
4438 = Conv->getConversionType()->getAs<LValueReferenceType>();
4439 if (RefType && !RefType->getPointeeType()->isFunctionType())
4440 continue;
4441 }
4442
4443 if (!ConvTemplate &&
4444 S.CompareReferenceRelationship(
4445 DeclLoc,
4446 Conv->getConversionType().getNonReferenceType()
4447 .getUnqualifiedType(),
4448 DeclType.getNonReferenceType().getUnqualifiedType(),
4449 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4450 Sema::Ref_Incompatible)
4451 continue;
4452 } else {
4453 // If the conversion function doesn't return a reference type,
4454 // it can't be considered for this conversion. An rvalue reference
4455 // is only acceptable if its referencee is a function type.
4456
4457 const ReferenceType *RefType =
4458 Conv->getConversionType()->getAs<ReferenceType>();
4459 if (!RefType ||
4460 (!RefType->isLValueReferenceType() &&
4461 !RefType->getPointeeType()->isFunctionType()))
4462 continue;
4463 }
4464
4465 if (ConvTemplate)
4466 S.AddTemplateConversionCandidate(
4467 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4468 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4469 else
4470 S.AddConversionCandidate(
4471 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4472 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4473 }
4474
4475 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4476
4477 OverloadCandidateSet::iterator Best;
4478 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4479 case OR_Success:
4480 // C++ [over.ics.ref]p1:
4481 //
4482 // [...] If the parameter binds directly to the result of
4483 // applying a conversion function to the argument
4484 // expression, the implicit conversion sequence is a
4485 // user-defined conversion sequence (13.3.3.1.2), with the
4486 // second standard conversion sequence either an identity
4487 // conversion or, if the conversion function returns an
4488 // entity of a type that is a derived class of the parameter
4489 // type, a derived-to-base Conversion.
4490 if (!Best->FinalConversion.DirectBinding)
4491 return false;
4492
4493 ICS.setUserDefined();
4494 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4495 ICS.UserDefined.After = Best->FinalConversion;
4496 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4497 ICS.UserDefined.ConversionFunction = Best->Function;
4498 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4499 ICS.UserDefined.EllipsisConversion = false;
4500 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4502, __PRETTY_FUNCTION__))
4501 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4502, __PRETTY_FUNCTION__))
4502 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4502, __PRETTY_FUNCTION__))
;
4503 return true;
4504
4505 case OR_Ambiguous:
4506 ICS.setAmbiguous();
4507 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4508 Cand != CandidateSet.end(); ++Cand)
4509 if (Cand->Viable)
4510 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4511 return true;
4512
4513 case OR_No_Viable_Function:
4514 case OR_Deleted:
4515 // There was no suitable conversion, or we found a deleted
4516 // conversion; continue with other checks.
4517 return false;
4518 }
4519
4520 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4520)
;
4521}
4522
4523/// Compute an implicit conversion sequence for reference
4524/// initialization.
4525static ImplicitConversionSequence
4526TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4527 SourceLocation DeclLoc,
4528 bool SuppressUserConversions,
4529 bool AllowExplicit) {
4530 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 4530, __PRETTY_FUNCTION__))
;
4531
4532 // Most paths end in a failed conversion.
4533 ImplicitConversionSequence ICS;
4534 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4535
4536 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4537 QualType T2 = Init->getType();
4538
4539 // If the initializer is the address of an overloaded function, try
4540 // to resolve the overloaded function. If all goes well, T2 is the
4541 // type of the resulting function.
4542 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4543 DeclAccessPair Found;
4544 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4545 false, Found))
4546 T2 = Fn->getType();
4547 }
4548
4549 // Compute some basic properties of the types and the initializer.
4550 bool isRValRef = DeclType->isRValueReferenceType();
4551 bool DerivedToBase = false;
4552 bool ObjCConversion = false;
4553 bool ObjCLifetimeConversion = false;
4554 Expr::Classification InitCategory = Init->Classify(S.Context);
4555 Sema::ReferenceCompareResult RefRelationship
4556 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4557 ObjCConversion, ObjCLifetimeConversion);
4558
4559
4560 // C++0x [dcl.init.ref]p5:
4561 // A reference to type "cv1 T1" is initialized by an expression
4562 // of type "cv2 T2" as follows:
4563
4564 // -- If reference is an lvalue reference and the initializer expression
4565 if (!isRValRef) {
4566 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4567 // reference-compatible with "cv2 T2," or
4568 //
4569 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4570 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4571 // C++ [over.ics.ref]p1:
4572 // When a parameter of reference type binds directly (8.5.3)
4573 // to an argument expression, the implicit conversion sequence
4574 // is the identity conversion, unless the argument expression
4575 // has a type that is a derived class of the parameter type,
4576 // in which case the implicit conversion sequence is a
4577 // derived-to-base Conversion (13.3.3.1).
4578 ICS.setStandard();
4579 ICS.Standard.First = ICK_Identity;
4580 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4581 : ObjCConversion? ICK_Compatible_Conversion
4582 : ICK_Identity;
4583 ICS.Standard.Third = ICK_Identity;
4584 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4585 ICS.Standard.setToType(0, T2);
4586 ICS.Standard.setToType(1, T1);
4587 ICS.Standard.setToType(2, T1);
4588 ICS.Standard.ReferenceBinding = true;
4589 ICS.Standard.DirectBinding = true;
4590 ICS.Standard.IsLvalueReference = !isRValRef;
4591 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4592 ICS.Standard.BindsToRvalue = false;
4593 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4594 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4595 ICS.Standard.CopyConstructor = nullptr;
4596 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4597
4598 // Nothing more to do: the inaccessibility/ambiguity check for
4599 // derived-to-base conversions is suppressed when we're
4600 // computing the implicit conversion sequence (C++
4601 // [over.best.ics]p2).
4602 return ICS;
4603 }
4604
4605 // -- has a class type (i.e., T2 is a class type), where T1 is
4606 // not reference-related to T2, and can be implicitly
4607 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4608 // is reference-compatible with "cv3 T3" 92) (this
4609 // conversion is selected by enumerating the applicable
4610 // conversion functions (13.3.1.6) and choosing the best
4611 // one through overload resolution (13.3)),
4612 if (!SuppressUserConversions && T2->isRecordType() &&
4613 S.isCompleteType(DeclLoc, T2) &&
4614 RefRelationship == Sema::Ref_Incompatible) {
4615 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4616 Init, T2, /*AllowRvalues=*/false,
4617 AllowExplicit))
4618 return ICS;
4619 }
4620 }
4621
4622 // -- Otherwise, the reference shall be an lvalue reference to a
4623 // non-volatile const type (i.e., cv1 shall be const), or the reference
4624 // shall be an rvalue reference.
4625 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4626 return ICS;
4627
4628 // -- If the initializer expression
4629 //
4630 // -- is an xvalue, class prvalue, array prvalue or function
4631 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4632 if (RefRelationship == Sema::Ref_Compatible &&
4633 (InitCategory.isXValue() ||
4634 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4635 (InitCategory.isLValue() && T2->isFunctionType()))) {
4636 ICS.setStandard();
4637 ICS.Standard.First = ICK_Identity;
4638 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4639 : ObjCConversion? ICK_Compatible_Conversion
4640 : ICK_Identity;
4641 ICS.Standard.Third = ICK_Identity;
4642 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4643 ICS.Standard.setToType(0, T2);
4644 ICS.Standard.setToType(1, T1);
4645 ICS.Standard.setToType(2, T1);
4646 ICS.Standard.ReferenceBinding = true;
4647 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4648 // binding unless we're binding to a class prvalue.
4649 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4650 // allow the use of rvalue references in C++98/03 for the benefit of
4651 // standard library implementors; therefore, we need the xvalue check here.
4652 ICS.Standard.DirectBinding =
4653 S.getLangOpts().CPlusPlus11 ||
4654 !(InitCategory.isPRValue() || T2->isRecordType());
4655 ICS.Standard.IsLvalueReference = !isRValRef;
4656 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4657 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4658 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4659 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4660 ICS.Standard.CopyConstructor = nullptr;
4661 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4662 return ICS;
4663 }
4664
4665 // -- has a class type (i.e., T2 is a class type), where T1 is not
4666 // reference-related to T2, and can be implicitly converted to
4667 // an xvalue, class prvalue, or function lvalue of type
4668 // "cv3 T3", where "cv1 T1" is reference-compatible with
4669 // "cv3 T3",
4670 //
4671 // then the reference is bound to the value of the initializer
4672 // expression in the first case and to the result of the conversion
4673 // in the second case (or, in either case, to an appropriate base
4674 // class subobject).
4675 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4676 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4677 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4678 Init, T2, /*AllowRvalues=*/true,
4679 AllowExplicit)) {
4680 // In the second case, if the reference is an rvalue reference
4681 // and the second standard conversion sequence of the
4682 // user-defined conversion sequence includes an lvalue-to-rvalue
4683 // conversion, the program is ill-formed.
4684 if (ICS.isUserDefined() && isRValRef &&
4685 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4686 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4687
4688 return ICS;
4689 }
4690
4691 // A temporary of function type cannot be created; don't even try.
4692 if (T1->isFunctionType())
4693 return ICS;
4694
4695 // -- Otherwise, a temporary of type "cv1 T1" is created and
4696 // initialized from the initializer expression using the
4697 // rules for a non-reference copy initialization (8.5). The
4698 // reference is then bound to the temporary. If T1 is
4699 // reference-related to T2, cv1 must be the same
4700 // cv-qualification as, or greater cv-qualification than,
4701 // cv2; otherwise, the program is ill-formed.
4702 if (RefRelationship == Sema::Ref_Related) {
4703 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4704 // we would be reference-compatible or reference-compatible with
4705 // added qualification. But that wasn't the case, so the reference
4706 // initialization fails.
4707 //
4708 // Note that we only want to check address spaces and cvr-qualifiers here.
4709 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4710 Qualifiers T1Quals = T1.getQualifiers();
4711 Qualifiers T2Quals = T2.getQualifiers();
4712 T1Quals.removeObjCGCAttr();
4713 T1Quals.removeObjCLifetime();
4714 T2Quals.removeObjCGCAttr();
4715 T2Quals.removeObjCLifetime();
4716 // MS compiler ignores __unaligned qualifier for references; do the same.
4717 T1Quals.removeUnaligned();
4718 T2Quals.removeUnaligned();
4719 if (!T1Quals.compatiblyIncludes(T2Quals))
4720 return ICS;
4721 }
4722
4723 // If at least one of the types is a class type, the types are not
4724 // related, and we aren't allowed any user conversions, the
4725 // reference binding fails. This case is important for breaking
4726 // recursion, since TryImplicitConversion below will attempt to
4727 // create a temporary through the use of a copy constructor.
4728 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4729 (T1->isRecordType() || T2->isRecordType()))
4730 return ICS;
4731
4732 // If T1 is reference-related to T2 and the reference is an rvalue
4733 // reference, the initializer expression shall not be an lvalue.
4734 if (RefRelationship >= Sema::Ref_Related &&
4735 isRValRef && Init->Classify(S.Context).isLValue())
4736 return ICS;
4737
4738 // C++ [over.ics.ref]p2:
4739 // When a parameter of reference type is not bound directly to
4740 // an argument expression, the conversion sequence is the one
4741 // required to convert the argument expression to the
4742 // underlying type of the reference according to
4743 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4744 // to copy-initializing a temporary of the underlying type with
4745 // the argument expression. Any difference in top-level
4746 // cv-qualification is subsumed by the initialization itself
4747 // and does not constitute a conversion.
4748 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4749 /*AllowExplicit=*/false,
4750 /*InOverloadResolution=*/false,
4751 /*CStyle=*/false,
4752 /*AllowObjCWritebackConversion=*/false,
4753 /*AllowObjCConversionOnExplicit=*/false);
4754
4755 // Of course, that's still a reference binding.
4756 if (ICS.isStandard()) {
4757 ICS.Standard.ReferenceBinding = true;
4758 ICS.Standard.IsLvalueReference = !isRValRef;
4759 ICS.Standard.BindsToFunctionLvalue = false;
4760 ICS.Standard.BindsToRvalue = true;
4761 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4762 ICS.Standard.ObjCLifetimeConversionBinding = false;
4763 } else if (ICS.isUserDefined()) {
4764 const ReferenceType *LValRefType =
4765 ICS.UserDefined.ConversionFunction->getReturnType()
4766 ->getAs<LValueReferenceType>();
4767
4768 // C++ [over.ics.ref]p3:
4769 // Except for an implicit object parameter, for which see 13.3.1, a
4770 // standard conversion sequence cannot be formed if it requires [...]
4771 // binding an rvalue reference to an lvalue other than a function
4772 // lvalue.
4773 // Note that the function case is not possible here.
4774 if (DeclType->isRValueReferenceType() && LValRefType) {
4775 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4776 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4777 // reference to an rvalue!
4778 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4779 return ICS;
4780 }
4781
4782 ICS.UserDefined.After.ReferenceBinding = true;
4783 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4784 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4785 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4786 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4787 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4788 }
4789
4790 return ICS;
4791}
4792
4793static ImplicitConversionSequence
4794TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4795 bool SuppressUserConversions,
4796 bool InOverloadResolution,
4797 bool AllowObjCWritebackConversion,
4798 bool AllowExplicit = false);
4799
4800/// TryListConversion - Try to copy-initialize a value of type ToType from the
4801/// initializer list From.
4802static ImplicitConversionSequence
4803TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4804 bool SuppressUserConversions,
4805 bool InOverloadResolution,
4806 bool AllowObjCWritebackConversion) {
4807 // C++11 [over.ics.list]p1:
4808 // When an argument is an initializer list, it is not an expression and
4809 // special rules apply for converting it to a parameter type.
4810
4811 ImplicitConversionSequence Result;
4812 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4813
4814 // We need a complete type for what follows. Incomplete types can never be
4815 // initialized from init lists.
4816 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4817 return Result;
4818
4819 // Per DR1467:
4820 // If the parameter type is a class X and the initializer list has a single
4821 // element of type cv U, where U is X or a class derived from X, the
4822 // implicit conversion sequence is the one required to convert the element
4823 // to the parameter type.
4824 //
4825 // Otherwise, if the parameter type is a character array [... ]
4826 // and the initializer list has a single element that is an
4827 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4828 // implicit conversion sequence is the identity conversion.
4829 if (From->getNumInits() == 1) {
4830 if (ToType->isRecordType()) {
4831 QualType InitType = From->getInit(0)->getType();
4832 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4833 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4834 return TryCopyInitialization(S, From->getInit(0), ToType,
4835 SuppressUserConversions,
4836 InOverloadResolution,
4837 AllowObjCWritebackConversion);
4838 }
4839 // FIXME: Check the other conditions here: array of character type,
4840 // initializer is a string literal.
4841 if (ToType->isArrayType()) {
4842 InitializedEntity Entity =
4843 InitializedEntity::InitializeParameter(S.Context, ToType,
4844 /*Consumed=*/false);
4845 if (S.CanPerformCopyInitialization(Entity, From)) {
4846 Result.setStandard();
4847 Result.Standard.setAsIdentityConversion();
4848 Result.Standard.setFromType(ToType);
4849 Result.Standard.setAllToTypes(ToType);
4850 return Result;
4851 }
4852 }
4853 }
4854
4855 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4856 // C++11 [over.ics.list]p2:
4857 // If the parameter type is std::initializer_list<X> or "array of X" and
4858 // all the elements can be implicitly converted to X, the implicit
4859 // conversion sequence is the worst conversion necessary to convert an
4860 // element of the list to X.
4861 //
4862 // C++14 [over.ics.list]p3:
4863 // Otherwise, if the parameter type is "array of N X", if the initializer
4864 // list has exactly N elements or if it has fewer than N elements and X is
4865 // default-constructible, and if all the elements of the initializer list
4866 // can be implicitly converted to X, the implicit conversion sequence is
4867 // the worst conversion necessary to convert an element of the list to X.
4868 //
4869 // FIXME: We're missing a lot of these checks.
4870 bool toStdInitializerList = false;
4871 QualType X;
4872 if (ToType->isArrayType())
4873 X = S.Context.getAsArrayType(ToType)->getElementType();
4874 else
4875 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4876 if (!X.isNull()) {
4877 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4878 Expr *Init = From->getInit(i);
4879 ImplicitConversionSequence ICS =
4880 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4881 InOverloadResolution,
4882 AllowObjCWritebackConversion);
4883 // If a single element isn't convertible, fail.
4884 if (ICS.isBad()) {
4885 Result = ICS;
4886 break;
4887 }
4888 // Otherwise, look for the worst conversion.
4889 if (Result.isBad() || CompareImplicitConversionSequences(
4890 S, From->getBeginLoc(), ICS, Result) ==
4891 ImplicitConversionSequence::Worse)
4892 Result = ICS;
4893 }
4894
4895 // For an empty list, we won't have computed any conversion sequence.
4896 // Introduce the identity conversion sequence.
4897 if (From->getNumInits() == 0) {
4898 Result.setStandard();
4899 Result.Standard.setAsIdentityConversion();
4900 Result.Standard.setFromType(ToType);
4901 Result.Standard.setAllToTypes(ToType);
4902 }
4903
4904 Result.setStdInitializerListElement(toStdInitializerList);
4905 return Result;
4906 }
4907
4908 // C++14 [over.ics.list]p4:
4909 // C++11 [over.ics.list]p3:
4910 // Otherwise, if the parameter is a non-aggregate class X and overload
4911 // resolution chooses a single best constructor [...] the implicit
4912 // conversion sequence is a user-defined conversion sequence. If multiple
4913 // constructors are viable but none is better than the others, the
4914 // implicit conversion sequence is a user-defined conversion sequence.
4915 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4916 // This function can deal with initializer lists.
4917 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4918 /*AllowExplicit=*/false,
4919 InOverloadResolution, /*CStyle=*/false,
4920 AllowObjCWritebackConversion,
4921 /*AllowObjCConversionOnExplicit=*/false);
4922 }
4923
4924 // C++14 [over.ics.list]p5:
4925 // C++11 [over.ics.list]p4:
4926 // Otherwise, if the parameter has an aggregate type which can be
4927 // initialized from the initializer list [...] the implicit conversion
4928 // sequence is a user-defined conversion sequence.
4929 if (ToType->isAggregateType()) {
4930 // Type is an aggregate, argument is an init list. At this point it comes
4931 // down to checking whether the initialization works.
4932 // FIXME: Find out whether this parameter is consumed or not.
4933 InitializedEntity Entity =
4934 InitializedEntity::InitializeParameter(S.Context, ToType,
4935 /*Consumed=*/false);
4936 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
4937 From)) {
4938 Result.setUserDefined();
4939 Result.UserDefined.Before.setAsIdentityConversion();
4940 // Initializer lists don't have a type.
4941 Result.UserDefined.Before.setFromType(QualType());
4942 Result.UserDefined.Before.setAllToTypes(QualType());
4943
4944 Result.UserDefined.After.setAsIdentityConversion();
4945 Result.UserDefined.After.setFromType(ToType);
4946 Result.UserDefined.After.setAllToTypes(ToType);
4947 Result.UserDefined.ConversionFunction = nullptr;
4948 }
4949 return Result;
4950 }
4951
4952 // C++14 [over.ics.list]p6:
4953 // C++11 [over.ics.list]p5:
4954 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4955 if (ToType->isReferenceType()) {
4956 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4957 // mention initializer lists in any way. So we go by what list-
4958 // initialization would do and try to extrapolate from that.
4959
4960 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
4961
4962 // If the initializer list has a single element that is reference-related
4963 // to the parameter type, we initialize the reference from that.
4964 if (From->getNumInits() == 1) {
4965 Expr *Init = From->getInit(0);
4966
4967 QualType T2 = Init->getType();
4968
4969 // If the initializer is the address of an overloaded function, try
4970 // to resolve the overloaded function. If all goes well, T2 is the
4971 // type of the resulting function.
4972 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4973 DeclAccessPair Found;
4974 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4975 Init, ToType, false, Found))
4976 T2 = Fn->getType();
4977 }
4978
4979 // Compute some basic properties of the types and the initializer.
4980 bool dummy1 = false;
4981 bool dummy2 = false;
4982 bool dummy3 = false;
4983 Sema::ReferenceCompareResult RefRelationship =
4984 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
4985 dummy2, dummy3);
4986
4987 if (RefRelationship >= Sema::Ref_Related) {
4988 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
4989 SuppressUserConversions,
4990 /*AllowExplicit=*/false);
4991 }
4992 }
4993
4994 // Otherwise, we bind the reference to a temporary created from the
4995 // initializer list.
4996 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4997 InOverloadResolution,
4998 AllowObjCWritebackConversion);
4999 if (Result.isFailure())
5000 return Result;
5001 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5002, __PRETTY_FUNCTION__))
5002 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5002, __PRETTY_FUNCTION__))
;
5003
5004 // Can we even bind to a temporary?
5005 if (ToType->isRValueReferenceType() ||
5006 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5007 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5008 Result.UserDefined.After;
5009 SCS.ReferenceBinding = true;
5010 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5011 SCS.BindsToRvalue = true;
5012 SCS.BindsToFunctionLvalue = false;
5013 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5014 SCS.ObjCLifetimeConversionBinding = false;
5015 } else
5016 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5017 From, ToType);
5018 return Result;
5019 }
5020
5021 // C++14 [over.ics.list]p7:
5022 // C++11 [over.ics.list]p6:
5023 // Otherwise, if the parameter type is not a class:
5024 if (!ToType->isRecordType()) {
5025 // - if the initializer list has one element that is not itself an
5026 // initializer list, the implicit conversion sequence is the one
5027 // required to convert the element to the parameter type.
5028 unsigned NumInits = From->getNumInits();
5029 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5030 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5031 SuppressUserConversions,
5032 InOverloadResolution,
5033 AllowObjCWritebackConversion);
5034 // - if the initializer list has no elements, the implicit conversion
5035 // sequence is the identity conversion.
5036 else if (NumInits == 0) {
5037 Result.setStandard();
5038 Result.Standard.setAsIdentityConversion();
5039 Result.Standard.setFromType(ToType);
5040 Result.Standard.setAllToTypes(ToType);
5041 }
5042 return Result;
5043 }
5044
5045 // C++14 [over.ics.list]p8:
5046 // C++11 [over.ics.list]p7:
5047 // In all cases other than those enumerated above, no conversion is possible
5048 return Result;
5049}
5050
5051/// TryCopyInitialization - Try to copy-initialize a value of type
5052/// ToType from the expression From. Return the implicit conversion
5053/// sequence required to pass this argument, which may be a bad
5054/// conversion sequence (meaning that the argument cannot be passed to
5055/// a parameter of this type). If @p SuppressUserConversions, then we
5056/// do not permit any user-defined conversion sequences.
5057static ImplicitConversionSequence
5058TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5059 bool SuppressUserConversions,
5060 bool InOverloadResolution,
5061 bool AllowObjCWritebackConversion,
5062 bool AllowExplicit) {
5063 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5064 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5065 InOverloadResolution,AllowObjCWritebackConversion);
5066
5067 if (ToType->isReferenceType())
5068 return TryReferenceInit(S, From, ToType,
5069 /*FIXME:*/ From->getBeginLoc(),
5070 SuppressUserConversions, AllowExplicit);
5071
5072 return TryImplicitConversion(S, From, ToType,
5073 SuppressUserConversions,
5074 /*AllowExplicit=*/false,
5075 InOverloadResolution,
5076 /*CStyle=*/false,
5077 AllowObjCWritebackConversion,
5078 /*AllowObjCConversionOnExplicit=*/false);
5079}
5080
5081static bool TryCopyInitialization(const CanQualType FromQTy,
5082 const CanQualType ToQTy,
5083 Sema &S,
5084 SourceLocation Loc,
5085 ExprValueKind FromVK) {
5086 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5087 ImplicitConversionSequence ICS =
5088 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5089
5090 return !ICS.isBad();
5091}
5092
5093/// TryObjectArgumentInitialization - Try to initialize the object
5094/// parameter of the given member function (@c Method) from the
5095/// expression @p From.
5096static ImplicitConversionSequence
5097TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5098 Expr::Classification FromClassification,
5099 CXXMethodDecl *Method,
5100 CXXRecordDecl *ActingContext) {
5101 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5102 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5103 // const volatile object.
5104 Qualifiers Quals = Method->getMethodQualifiers();
5105 if (isa<CXXDestructorDecl>(Method)) {
5106 Quals.addConst();
5107 Quals.addVolatile();
5108 }
5109
5110 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5111
5112 // Set up the conversion sequence as a "bad" conversion, to allow us
5113 // to exit early.
5114 ImplicitConversionSequence ICS;
5115
5116 // We need to have an object of class type.
5117 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5118 FromType = PT->getPointeeType();
5119
5120 // When we had a pointer, it's implicitly dereferenced, so we
5121 // better have an lvalue.
5122 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5122, __PRETTY_FUNCTION__))
;
5123 }
5124
5125 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5125, __PRETTY_FUNCTION__))
;
5126
5127 // C++0x [over.match.funcs]p4:
5128 // For non-static member functions, the type of the implicit object
5129 // parameter is
5130 //
5131 // - "lvalue reference to cv X" for functions declared without a
5132 // ref-qualifier or with the & ref-qualifier
5133 // - "rvalue reference to cv X" for functions declared with the &&
5134 // ref-qualifier
5135 //
5136 // where X is the class of which the function is a member and cv is the
5137 // cv-qualification on the member function declaration.
5138 //
5139 // However, when finding an implicit conversion sequence for the argument, we
5140 // are not allowed to perform user-defined conversions
5141 // (C++ [over.match.funcs]p5). We perform a simplified version of
5142 // reference binding here, that allows class rvalues to bind to
5143 // non-constant references.
5144
5145 // First check the qualifiers.
5146 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5147 if (ImplicitParamType.getCVRQualifiers()
5148 != FromTypeCanon.getLocalCVRQualifiers() &&
5149 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5150 ICS.setBad(BadConversionSequence::bad_qualifiers,
5151 FromType, ImplicitParamType);
5152 return ICS;
5153 }
5154
5155 if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5156 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5157 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5158 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5159 ICS.setBad(BadConversionSequence::bad_qualifiers,
5160 FromType, ImplicitParamType);
5161 return ICS;
5162 }
5163 }
5164
5165 // Check that we have either the same type or a derived type. It
5166 // affects the conversion rank.
5167 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5168 ImplicitConversionKind SecondKind;
5169 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5170 SecondKind = ICK_Identity;
5171 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5172 SecondKind = ICK_Derived_To_Base;
5173 else {
5174 ICS.setBad(BadConversionSequence::unrelated_class,
5175 FromType, ImplicitParamType);
5176 return ICS;
5177 }
5178
5179 // Check the ref-qualifier.
5180 switch (Method->getRefQualifier()) {
5181 case RQ_None:
5182 // Do nothing; we don't care about lvalueness or rvalueness.
5183 break;
5184
5185 case RQ_LValue:
5186 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5187 // non-const lvalue reference cannot bind to an rvalue
5188 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5189 ImplicitParamType);
5190 return ICS;
5191 }
5192 break;
5193
5194 case RQ_RValue:
5195 if (!FromClassification.isRValue()) {
5196 // rvalue reference cannot bind to an lvalue
5197 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5198 ImplicitParamType);
5199 return ICS;
5200 }
5201 break;
5202 }
5203
5204 // Success. Mark this as a reference binding.
5205 ICS.setStandard();
5206 ICS.Standard.setAsIdentityConversion();
5207 ICS.Standard.Second = SecondKind;
5208 ICS.Standard.setFromType(FromType);
5209 ICS.Standard.setAllToTypes(ImplicitParamType);
5210 ICS.Standard.ReferenceBinding = true;
5211 ICS.Standard.DirectBinding = true;
5212 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5213 ICS.Standard.BindsToFunctionLvalue = false;
5214 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5215 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5216 = (Method->getRefQualifier() == RQ_None);
5217 return ICS;
5218}
5219
5220/// PerformObjectArgumentInitialization - Perform initialization of
5221/// the implicit object parameter for the given Method with the given
5222/// expression.
5223ExprResult
5224Sema::PerformObjectArgumentInitialization(Expr *From,
5225 NestedNameSpecifier *Qualifier,
5226 NamedDecl *FoundDecl,
5227 CXXMethodDecl *Method) {
5228 QualType FromRecordType, DestType;
5229 QualType ImplicitParamRecordType =
5230 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5231
5232 Expr::Classification FromClassification;
5233 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5234 FromRecordType = PT->getPointeeType();
5235 DestType = Method->getThisType();
5236 FromClassification = Expr::Classification::makeSimpleLValue();
5237 } else {
5238 FromRecordType = From->getType();
5239 DestType = ImplicitParamRecordType;
5240 FromClassification = From->Classify(Context);
5241
5242 // When performing member access on an rvalue, materialize a temporary.
5243 if (From->isRValue()) {
5244 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5245 Method->getRefQualifier() !=
5246 RefQualifierKind::RQ_RValue);
5247 }
5248 }
5249
5250 // Note that we always use the true parent context when performing
5251 // the actual argument initialization.
5252 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5253 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5254 Method->getParent());
5255 if (ICS.isBad()) {
5256 switch (ICS.Bad.Kind) {
5257 case BadConversionSequence::bad_qualifiers: {
5258 Qualifiers FromQs = FromRecordType.getQualifiers();
5259 Qualifiers ToQs = DestType.getQualifiers();
5260 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5261 if (CVR) {
5262 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5263 << Method->getDeclName() << FromRecordType << (CVR - 1)
5264 << From->getSourceRange();
5265 Diag(Method->getLocation(), diag::note_previous_decl)
5266 << Method->getDeclName();
5267 return ExprError();
5268 }
5269 break;
5270 }
5271
5272 case BadConversionSequence::lvalue_ref_to_rvalue:
5273 case BadConversionSequence::rvalue_ref_to_lvalue: {
5274 bool IsRValueQualified =
5275 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5276 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5277 << Method->getDeclName() << FromClassification.isRValue()
5278 << IsRValueQualified;
5279 Diag(Method->getLocation(), diag::note_previous_decl)
5280 << Method->getDeclName();
5281 return ExprError();
5282 }
5283
5284 case BadConversionSequence::no_conversion:
5285 case BadConversionSequence::unrelated_class:
5286 break;
5287 }
5288
5289 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5290 << ImplicitParamRecordType << FromRecordType
5291 << From->getSourceRange();
5292 }
5293
5294 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5295 ExprResult FromRes =
5296 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5297 if (FromRes.isInvalid())
5298 return ExprError();
5299 From = FromRes.get();
5300 }
5301
5302 if (!Context.hasSameType(From->getType(), DestType)) {
5303 CastKind CK;
5304 if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5305 CK = CK_AddressSpaceConversion;
5306 else
5307 CK = CK_NoOp;
5308 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5309 }
5310 return From;
5311}
5312
5313/// TryContextuallyConvertToBool - Attempt to contextually convert the
5314/// expression From to bool (C++0x [conv]p3).
5315static ImplicitConversionSequence
5316TryContextuallyConvertToBool(Sema &S, Expr *From) {
5317 return TryImplicitConversion(S, From, S.Context.BoolTy,
5318 /*SuppressUserConversions=*/false,
5319 /*AllowExplicit=*/true,
5320 /*InOverloadResolution=*/false,
5321 /*CStyle=*/false,
5322 /*AllowObjCWritebackConversion=*/false,
5323 /*AllowObjCConversionOnExplicit=*/false);
5324}
5325
5326/// PerformContextuallyConvertToBool - Perform a contextual conversion
5327/// of the expression From to bool (C++0x [conv]p3).
5328ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5329 if (checkPlaceholderForOverload(*this, From))
5330 return ExprError();
5331
5332 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5333 if (!ICS.isBad())
5334 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5335
5336 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5337 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5338 << From->getType() << From->getSourceRange();
5339 return ExprError();
5340}
5341
5342/// Check that the specified conversion is permitted in a converted constant
5343/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5344/// is acceptable.
5345static bool CheckConvertedConstantConversions(Sema &S,
5346 StandardConversionSequence &SCS) {
5347 // Since we know that the target type is an integral or unscoped enumeration
5348 // type, most conversion kinds are impossible. All possible First and Third
5349 // conversions are fine.
5350 switch (SCS.Second) {
5351 case ICK_Identity:
5352 case ICK_Function_Conversion:
5353 case ICK_Integral_Promotion:
5354 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5355 case ICK_Zero_Queue_Conversion:
5356 return true;
5357
5358 case ICK_Boolean_Conversion:
5359 // Conversion from an integral or unscoped enumeration type to bool is
5360 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5361 // conversion, so we allow it in a converted constant expression.
5362 //
5363 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5364 // a lot of popular code. We should at least add a warning for this
5365 // (non-conforming) extension.
5366 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5367 SCS.getToType(2)->isBooleanType();
5368
5369 case ICK_Pointer_Conversion:
5370 case ICK_Pointer_Member:
5371 // C++1z: null pointer conversions and null member pointer conversions are
5372 // only permitted if the source type is std::nullptr_t.
5373 return SCS.getFromType()->isNullPtrType();
5374
5375 case ICK_Floating_Promotion:
5376 case ICK_Complex_Promotion:
5377 case ICK_Floating_Conversion:
5378 case ICK_Complex_Conversion:
5379 case ICK_Floating_Integral:
5380 case ICK_Compatible_Conversion:
5381 case ICK_Derived_To_Base:
5382 case ICK_Vector_Conversion:
5383 case ICK_Vector_Splat:
5384 case ICK_Complex_Real:
5385 case ICK_Block_Pointer_Conversion:
5386 case ICK_TransparentUnionConversion:
5387 case ICK_Writeback_Conversion:
5388 case ICK_Zero_Event_Conversion:
5389 case ICK_C_Only_Conversion:
5390 case ICK_Incompatible_Pointer_Conversion:
5391 return false;
5392
5393 case ICK_Lvalue_To_Rvalue:
5394 case ICK_Array_To_Pointer:
5395 case ICK_Function_To_Pointer:
5396 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5396)
;
5397
5398 case ICK_Qualification:
5399 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5399)
;
5400
5401 case ICK_Num_Conversion_Kinds:
5402 break;
5403 }
5404
5405 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5405)
;
5406}
5407
5408/// CheckConvertedConstantExpression - Check that the expression From is a
5409/// converted constant expression of type T, perform the conversion and produce
5410/// the converted expression, per C++11 [expr.const]p3.
5411static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5412 QualType T, APValue &Value,
5413 Sema::CCEKind CCE,
5414 bool RequireInt) {
5415 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5416, __PRETTY_FUNCTION__))
5416 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5416, __PRETTY_FUNCTION__))
;
5417
5418 if (checkPlaceholderForOverload(S, From))
5419 return ExprError();
5420
5421 // C++1z [expr.const]p3:
5422 // A converted constant expression of type T is an expression,
5423 // implicitly converted to type T, where the converted
5424 // expression is a constant expression and the implicit conversion
5425 // sequence contains only [... list of conversions ...].
5426 // C++1z [stmt.if]p2:
5427 // If the if statement is of the form if constexpr, the value of the
5428 // condition shall be a contextually converted constant expression of type
5429 // bool.
5430 ImplicitConversionSequence ICS =
5431 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5432 ? TryContextuallyConvertToBool(S, From)
5433 : TryCopyInitialization(S, From, T,
5434 /*SuppressUserConversions=*/false,
5435 /*InOverloadResolution=*/false,
5436 /*AllowObjCWritebackConversion=*/false,
5437 /*AllowExplicit=*/false);
5438 StandardConversionSequence *SCS = nullptr;
5439 switch (ICS.getKind()) {
5440 case ImplicitConversionSequence::StandardConversion:
5441 SCS = &ICS.Standard;
5442 break;
5443 case ImplicitConversionSequence::UserDefinedConversion:
5444 // We are converting to a non-class type, so the Before sequence
5445 // must be trivial.
5446 SCS = &ICS.UserDefined.After;
5447 break;
5448 case ImplicitConversionSequence::AmbiguousConversion:
5449 case ImplicitConversionSequence::BadConversion:
5450 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5451 return S.Diag(From->getBeginLoc(),
5452 diag::err_typecheck_converted_constant_expression)
5453 << From->getType() << From->getSourceRange() << T;
5454 return ExprError();
5455
5456 case ImplicitConversionSequence::EllipsisConversion:
5457 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5457)
;
5458 }
5459
5460 // Check that we would only use permitted conversions.
5461 if (!CheckConvertedConstantConversions(S, *SCS)) {
5462 return S.Diag(From->getBeginLoc(),
5463 diag::err_typecheck_converted_constant_expression_disallowed)
5464 << From->getType() << From->getSourceRange() << T;
5465 }
5466 // [...] and where the reference binding (if any) binds directly.
5467 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5468 return S.Diag(From->getBeginLoc(),
5469 diag::err_typecheck_converted_constant_expression_indirect)
5470 << From->getType() << From->getSourceRange() << T;
5471 }
5472
5473 ExprResult Result =
5474 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5475 if (Result.isInvalid())
5476 return Result;
5477
5478 // C++2a [intro.execution]p5:
5479 // A full-expression is [...] a constant-expression [...]
5480 Result =
5481 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5482 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5483 if (Result.isInvalid())
5484 return Result;
5485
5486 // Check for a narrowing implicit conversion.
5487 APValue PreNarrowingValue;
5488 QualType PreNarrowingType;
5489 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5490 PreNarrowingType)) {
5491 case NK_Dependent_Narrowing:
5492 // Implicit conversion to a narrower type, but the expression is
5493 // value-dependent so we can't tell whether it's actually narrowing.
5494 case NK_Variable_Narrowing:
5495 // Implicit conversion to a narrower type, and the value is not a constant
5496 // expression. We'll diagnose this in a moment.
5497 case NK_Not_Narrowing:
5498 break;
5499
5500 case NK_Constant_Narrowing:
5501 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5502 << CCE << /*Constant*/ 1
5503 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5504 break;
5505
5506 case NK_Type_Narrowing:
5507 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5508 << CCE << /*Constant*/ 0 << From->getType() << T;
5509 break;
5510 }
5511
5512 if (Result.get()->isValueDependent()) {
5513 Value = APValue();
5514 return Result;
5515 }
5516
5517 // Check the expression is a constant expression.
5518 SmallVector<PartialDiagnosticAt, 8> Notes;
5519 Expr::EvalResult Eval;
5520 Eval.Diag = &Notes;
5521 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5522 ? Expr::EvaluateForMangling
5523 : Expr::EvaluateForCodeGen;
5524
5525 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5526 (RequireInt && !Eval.Val.isInt())) {
5527 // The expression can't be folded, so we can't keep it at this position in
5528 // the AST.
5529 Result = ExprError();
5530 } else {
5531 Value = Eval.Val;
5532
5533 if (Notes.empty()) {
5534 // It's a constant expression.
5535 return ConstantExpr::Create(S.Context, Result.get(), Value);
5536 }
5537 }
5538
5539 // It's not a constant expression. Produce an appropriate diagnostic.
5540 if (Notes.size() == 1 &&
5541 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5542 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5543 else {
5544 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5545 << CCE << From->getSourceRange();
5546 for (unsigned I = 0; I < Notes.size(); ++I)
5547 S.Diag(Notes[I].first, Notes[I].second);
5548 }
5549 return ExprError();
5550}
5551
5552ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5553 APValue &Value, CCEKind CCE) {
5554 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5555}
5556
5557ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5558 llvm::APSInt &Value,
5559 CCEKind CCE) {
5560 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5560, __PRETTY_FUNCTION__))
;
5561
5562 APValue V;
5563 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5564 if (!R.isInvalid() && !R.get()->isValueDependent())
5565 Value = V.getInt();
5566 return R;
5567}
5568
5569
5570/// dropPointerConversions - If the given standard conversion sequence
5571/// involves any pointer conversions, remove them. This may change
5572/// the result type of the conversion sequence.
5573static void dropPointerConversion(StandardConversionSequence &SCS) {
5574 if (SCS.Second == ICK_Pointer_Conversion) {
5575 SCS.Second = ICK_Identity;
5576 SCS.Third = ICK_Identity;
5577 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5578 }
5579}
5580
5581/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5582/// convert the expression From to an Objective-C pointer type.
5583static ImplicitConversionSequence
5584TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5585 // Do an implicit conversion to 'id'.
5586 QualType Ty = S.Context.getObjCIdType();
5587 ImplicitConversionSequence ICS
5588 = TryImplicitConversion(S, From, Ty,
5589 // FIXME: Are these flags correct?
5590 /*SuppressUserConversions=*/false,
5591 /*AllowExplicit=*/true,
5592 /*InOverloadResolution=*/false,
5593 /*CStyle=*/false,
5594 /*AllowObjCWritebackConversion=*/false,
5595 /*AllowObjCConversionOnExplicit=*/true);
5596
5597 // Strip off any final conversions to 'id'.
5598 switch (ICS.getKind()) {
5599 case ImplicitConversionSequence::BadConversion:
5600 case ImplicitConversionSequence::AmbiguousConversion:
5601 case ImplicitConversionSequence::EllipsisConversion:
5602 break;
5603
5604 case ImplicitConversionSequence::UserDefinedConversion:
5605 dropPointerConversion(ICS.UserDefined.After);
5606 break;
5607
5608 case ImplicitConversionSequence::StandardConversion:
5609 dropPointerConversion(ICS.Standard);
5610 break;
5611 }
5612
5613 return ICS;
5614}
5615
5616/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5617/// conversion of the expression From to an Objective-C pointer type.
5618/// Returns a valid but null ExprResult if no conversion sequence exists.
5619ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5620 if (checkPlaceholderForOverload(*this, From))
5621 return ExprError();
5622
5623 QualType Ty = Context.getObjCIdType();
5624 ImplicitConversionSequence ICS =
5625 TryContextuallyConvertToObjCPointer(*this, From);
5626 if (!ICS.isBad())
5627 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5628 return ExprResult();
5629}
5630
5631/// Determine whether the provided type is an integral type, or an enumeration
5632/// type of a permitted flavor.
5633bool Sema::ICEConvertDiagnoser::match(QualType T) {
5634 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5635 : T->isIntegralOrUnscopedEnumerationType();
5636}
5637
5638static ExprResult
5639diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5640 Sema::ContextualImplicitConverter &Converter,
5641 QualType T, UnresolvedSetImpl &ViableConversions) {
5642
5643 if (Converter.Suppress)
5644 return ExprError();
5645
5646 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5647 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5648 CXXConversionDecl *Conv =
5649 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5650 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5651 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5652 }
5653 return From;
5654}
5655
5656static bool
5657diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5658 Sema::ContextualImplicitConverter &Converter,
5659 QualType T, bool HadMultipleCandidates,
5660 UnresolvedSetImpl &ExplicitConversions) {
5661 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5662 DeclAccessPair Found = ExplicitConversions[0];
5663 CXXConversionDecl *Conversion =
5664 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5665
5666 // The user probably meant to invoke the given explicit
5667 // conversion; use it.
5668 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5669 std::string TypeStr;
5670 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5671
5672 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5673 << FixItHint::CreateInsertion(From->getBeginLoc(),
5674 "static_cast<" + TypeStr + ">(")
5675 << FixItHint::CreateInsertion(
5676 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5677 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5678
5679 // If we aren't in a SFINAE context, build a call to the
5680 // explicit conversion function.
5681 if (SemaRef.isSFINAEContext())
5682 return true;
5683
5684 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5685 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5686 HadMultipleCandidates);
5687 if (Result.isInvalid())
5688 return true;
5689 // Record usage of conversion in an implicit cast.
5690 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5691 CK_UserDefinedConversion, Result.get(),
5692 nullptr, Result.get()->getValueKind());
5693 }
5694 return false;
5695}
5696
5697static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5698 Sema::ContextualImplicitConverter &Converter,
5699 QualType T, bool HadMultipleCandidates,
5700 DeclAccessPair &Found) {
5701 CXXConversionDecl *Conversion =
5702 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5703 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5704
5705 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5706 if (!Converter.SuppressConversion) {
5707 if (SemaRef.isSFINAEContext())
5708 return true;
5709
5710 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5711 << From->getSourceRange();
5712 }
5713
5714 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5715 HadMultipleCandidates);
5716 if (Result.isInvalid())
5717 return true;
5718 // Record usage of conversion in an implicit cast.
5719 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5720 CK_UserDefinedConversion, Result.get(),
5721 nullptr, Result.get()->getValueKind());
5722 return false;
5723}
5724
5725static ExprResult finishContextualImplicitConversion(
5726 Sema &SemaRef, SourceLocation Loc, Expr *From,
5727 Sema::ContextualImplicitConverter &Converter) {
5728 if (!Converter.match(From->getType()) && !Converter.Suppress)
5729 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5730 << From->getSourceRange();
5731
5732 return SemaRef.DefaultLvalueConversion(From);
5733}
5734
5735static void
5736collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5737 UnresolvedSetImpl &ViableConversions,
5738 OverloadCandidateSet &CandidateSet) {
5739 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5740 DeclAccessPair FoundDecl = ViableConversions[I];
5741 NamedDecl *D = FoundDecl.getDecl();
5742 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5743 if (isa<UsingShadowDecl>(D))
5744 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5745
5746 CXXConversionDecl *Conv;
5747 FunctionTemplateDecl *ConvTemplate;
5748 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5749 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5750 else
5751 Conv = cast<CXXConversionDecl>(D);
5752
5753 if (ConvTemplate)
5754 SemaRef.AddTemplateConversionCandidate(
5755 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5756 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5757 else
5758 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5759 ToType, CandidateSet,
5760 /*AllowObjCConversionOnExplicit=*/false,
5761 /*AllowExplicit*/ true);
5762 }
5763}
5764
5765/// Attempt to convert the given expression to a type which is accepted
5766/// by the given converter.
5767///
5768/// This routine will attempt to convert an expression of class type to a
5769/// type accepted by the specified converter. In C++11 and before, the class
5770/// must have a single non-explicit conversion function converting to a matching
5771/// type. In C++1y, there can be multiple such conversion functions, but only
5772/// one target type.
5773///
5774/// \param Loc The source location of the construct that requires the
5775/// conversion.
5776///
5777/// \param From The expression we're converting from.
5778///
5779/// \param Converter Used to control and diagnose the conversion process.
5780///
5781/// \returns The expression, converted to an integral or enumeration type if
5782/// successful.
5783ExprResult Sema::PerformContextualImplicitConversion(
5784 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5785 // We can't perform any more checking for type-dependent expressions.
5786 if (From->isTypeDependent())
5787 return From;
5788
5789 // Process placeholders immediately.
5790 if (From->hasPlaceholderType()) {
5791 ExprResult result = CheckPlaceholderExpr(From);
5792 if (result.isInvalid())
5793 return result;
5794 From = result.get();
5795 }
5796
5797 // If the expression already has a matching type, we're golden.
5798 QualType T = From->getType();
5799 if (Converter.match(T))
5800 return DefaultLvalueConversion(From);
5801
5802 // FIXME: Check for missing '()' if T is a function type?
5803
5804 // We can only perform contextual implicit conversions on objects of class
5805 // type.
5806 const RecordType *RecordTy = T->getAs<RecordType>();
5807 if (!RecordTy || !getLangOpts().CPlusPlus) {
5808 if (!Converter.Suppress)
5809 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5810 return From;
5811 }
5812
5813 // We must have a complete class type.
5814 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5815 ContextualImplicitConverter &Converter;
5816 Expr *From;
5817
5818 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5819 : Converter(Converter), From(From) {}
5820
5821 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5822 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5823 }
5824 } IncompleteDiagnoser(Converter, From);
5825
5826 if (Converter.Suppress ? !isCompleteType(Loc, T)
5827 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5828 return From;
5829
5830 // Look for a conversion to an integral or enumeration type.
5831 UnresolvedSet<4>
5832 ViableConversions; // These are *potentially* viable in C++1y.
5833 UnresolvedSet<4> ExplicitConversions;
5834 const auto &Conversions =
5835 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5836
5837 bool HadMultipleCandidates =
5838 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5839
5840 // To check that there is only one target type, in C++1y:
5841 QualType ToType;
5842 bool HasUniqueTargetType = true;
5843
5844 // Collect explicit or viable (potentially in C++1y) conversions.
5845 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5846 NamedDecl *D = (*I)->getUnderlyingDecl();
5847 CXXConversionDecl *Conversion;
5848 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5849 if (ConvTemplate) {
5850 if (getLangOpts().CPlusPlus14)
5851 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5852 else
5853 continue; // C++11 does not consider conversion operator templates(?).
5854 } else
5855 Conversion = cast<CXXConversionDecl>(D);
5856
5857 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5859, __PRETTY_FUNCTION__))
5858 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5859, __PRETTY_FUNCTION__))
5859 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 5859, __PRETTY_FUNCTION__))
;
5860
5861 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5862 if (Converter.match(CurToType) || ConvTemplate) {
5863
5864 if (Conversion->isExplicit()) {
5865 // FIXME: For C++1y, do we need this restriction?
5866 // cf. diagnoseNoViableConversion()
5867 if (!ConvTemplate)
5868 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5869 } else {
5870 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5871 if (ToType.isNull())
5872 ToType = CurToType.getUnqualifiedType();
5873 else if (HasUniqueTargetType &&
5874 (CurToType.getUnqualifiedType() != ToType))
5875 HasUniqueTargetType = false;
5876 }
5877 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5878 }
5879 }
5880 }
5881
5882 if (getLangOpts().CPlusPlus14) {
5883 // C++1y [conv]p6:
5884 // ... An expression e of class type E appearing in such a context
5885 // is said to be contextually implicitly converted to a specified
5886 // type T and is well-formed if and only if e can be implicitly
5887 // converted to a type T that is determined as follows: E is searched
5888 // for conversion functions whose return type is cv T or reference to
5889 // cv T such that T is allowed by the context. There shall be
5890 // exactly one such T.
5891
5892 // If no unique T is found:
5893 if (ToType.isNull()) {
5894 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5895 HadMultipleCandidates,
5896 ExplicitConversions))
5897 return ExprError();
5898 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5899 }
5900
5901 // If more than one unique Ts are found:
5902 if (!HasUniqueTargetType)
5903 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5904 ViableConversions);
5905
5906 // If one unique T is found:
5907 // First, build a candidate set from the previously recorded
5908 // potentially viable conversions.
5909 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5910 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5911 CandidateSet);
5912
5913 // Then, perform overload resolution over the candidate set.
5914 OverloadCandidateSet::iterator Best;
5915 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5916 case OR_Success: {
5917 // Apply this conversion.
5918 DeclAccessPair Found =
5919 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5920 if (recordConversion(*this, Loc, From, Converter, T,
5921 HadMultipleCandidates, Found))
5922 return ExprError();
5923 break;
5924 }
5925 case OR_Ambiguous:
5926 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5927 ViableConversions);
5928 case OR_No_Viable_Function:
5929 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5930 HadMultipleCandidates,
5931 ExplicitConversions))
5932 return ExprError();
5933 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5934 case OR_Deleted:
5935 // We'll complain below about a non-integral condition type.
5936 break;
5937 }
5938 } else {
5939 switch (ViableConversions.size()) {
5940 case 0: {
5941 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5942 HadMultipleCandidates,
5943 ExplicitConversions))
5944 return ExprError();
5945
5946 // We'll complain below about a non-integral condition type.
5947 break;
5948 }
5949 case 1: {
5950 // Apply this conversion.
5951 DeclAccessPair Found = ViableConversions[0];
5952 if (recordConversion(*this, Loc, From, Converter, T,
5953 HadMultipleCandidates, Found))
5954 return ExprError();
5955 break;
5956 }
5957 default:
5958 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5959 ViableConversions);
5960 }
5961 }
5962
5963 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5964}
5965
5966/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5967/// an acceptable non-member overloaded operator for a call whose
5968/// arguments have types T1 (and, if non-empty, T2). This routine
5969/// implements the check in C++ [over.match.oper]p3b2 concerning
5970/// enumeration types.
5971static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5972 FunctionDecl *Fn,
5973 ArrayRef<Expr *> Args) {
5974 QualType T1 = Args[0]->getType();
5975 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5976
5977 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5978 return true;
5979
5980 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5981 return true;
5982
5983 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5984 if (Proto->getNumParams() < 1)
5985 return false;
5986
5987 if (T1->isEnumeralType()) {
5988 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5989 if (Context.hasSameUnqualifiedType(T1, ArgType))
5990 return true;
5991 }
5992
5993 if (Proto->getNumParams() < 2)
5994 return false;
5995
5996 if (!T2.isNull() && T2->isEnumeralType()) {
5997 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5998 if (Context.hasSameUnqualifiedType(T2, ArgType))
5999 return true;
6000 }
6001
6002 return false;
6003}
6004
6005/// AddOverloadCandidate - Adds the given function to the set of
6006/// candidate functions, using the given function call arguments. If
6007/// @p SuppressUserConversions, then don't allow user-defined
6008/// conversions via constructors or conversion operators.
6009///
6010/// \param PartialOverloading true if we are performing "partial" overloading
6011/// based on an incomplete set of function arguments. This feature is used by
6012/// code completion.
6013void Sema::AddOverloadCandidate(
6014 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6015 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6016 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6017 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions) {
6018 const FunctionProtoType *Proto
6019 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6020 assert(Proto && "Functions without a prototype cannot be overloaded")((Proto && "Functions without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6020, __PRETTY_FUNCTION__))
;
6021 assert(!Function->getDescribedFunctionTemplate() &&((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6022, __PRETTY_FUNCTION__))
6022 "Use AddTemplateOverloadCandidate for function templates")((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6022, __PRETTY_FUNCTION__))
;
6023
6024 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6025 if (!isa<CXXConstructorDecl>(Method)) {
6026 // If we get here, it's because we're calling a member function
6027 // that is named without a member access expression (e.g.,
6028 // "this->f") that was either written explicitly or created
6029 // implicitly. This can happen with a qualified call to a member
6030 // function, e.g., X::f(). We use an empty type for the implied
6031 // object argument (C++ [over.call.func]p3), and the acting context
6032 // is irrelevant.
6033 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6034 Expr::Classification::makeSimpleLValue(), Args,
6035 CandidateSet, SuppressUserConversions,
6036 PartialOverloading, EarlyConversions);
6037 return;
6038 }
6039 // We treat a constructor like a non-member function, since its object
6040 // argument doesn't participate in overload resolution.
6041 }
6042
6043 if (!CandidateSet.isNewCandidate(Function))
6044 return;
6045
6046 // C++ [over.match.oper]p3:
6047 // if no operand has a class type, only those non-member functions in the
6048 // lookup set that have a first parameter of type T1 or "reference to
6049 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6050 // is a right operand) a second parameter of type T2 or "reference to
6051 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6052 // candidate functions.
6053 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6054 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6055 return;
6056
6057 // C++11 [class.copy]p11: [DR1402]
6058 // A defaulted move constructor that is defined as deleted is ignored by
6059 // overload resolution.
6060 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6061 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6062 Constructor->isMoveConstructor())
6063 return;
6064
6065 // Overload resolution is always an unevaluated context.
6066 EnterExpressionEvaluationContext Unevaluated(
6067 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6068
6069 // Add this candidate
6070 OverloadCandidate &Candidate =
6071 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6072 Candidate.FoundDecl = FoundDecl;
6073 Candidate.Function = Function;
6074 Candidate.Viable = true;
6075 Candidate.IsSurrogate = false;
6076 Candidate.IsADLCandidate = IsADLCandidate;
6077 Candidate.IgnoreObjectArgument = false;
6078 Candidate.ExplicitCallArguments = Args.size();
6079
6080 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6081 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6082 Candidate.Viable = false;
6083 Candidate.FailureKind = ovl_non_default_multiversion_function;
6084 return;
6085 }
6086
6087 if (Constructor) {
6088 // C++ [class.copy]p3:
6089 // A member function template is never instantiated to perform the copy
6090 // of a class object to an object of its class type.
6091 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6092 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6093 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6094 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6095 ClassType))) {
6096 Candidate.Viable = false;
6097 Candidate.FailureKind = ovl_fail_illegal_constructor;
6098 return;
6099 }
6100
6101 // C++ [over.match.funcs]p8: (proposed DR resolution)
6102 // A constructor inherited from class type C that has a first parameter
6103 // of type "reference to P" (including such a constructor instantiated
6104 // from a template) is excluded from the set of candidate functions when
6105 // constructing an object of type cv D if the argument list has exactly
6106 // one argument and D is reference-related to P and P is reference-related
6107 // to C.
6108 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6109 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6110 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6111 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6112 QualType C = Context.getRecordType(Constructor->getParent());
6113 QualType D = Context.getRecordType(Shadow->getParent());
6114 SourceLocation Loc = Args.front()->getExprLoc();
6115 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6116 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6117 Candidate.Viable = false;
6118 Candidate.FailureKind = ovl_fail_inhctor_slice;
6119 return;
6120 }
6121 }
6122
6123 // Check that the constructor is capable of constructing an object in the
6124 // destination address space.
6125 if (!Qualifiers::isAddressSpaceSupersetOf(
6126 Constructor->getMethodQualifiers().getAddressSpace(),
6127 CandidateSet.getDestAS())) {
6128 Candidate.Viable = false;
6129 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6130 }
6131 }
6132
6133 unsigned NumParams = Proto->getNumParams();
6134
6135 // (C++ 13.3.2p2): A candidate function having fewer than m
6136 // parameters is viable only if it has an ellipsis in its parameter
6137 // list (8.3.5).
6138 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6139 !Proto->isVariadic()) {
6140 Candidate.Viable = false;
6141 Candidate.FailureKind = ovl_fail_too_many_arguments;
6142 return;
6143 }
6144
6145 // (C++ 13.3.2p2): A candidate function having more than m parameters
6146 // is viable only if the (m+1)st parameter has a default argument
6147 // (8.3.6). For the purposes of overload resolution, the
6148 // parameter list is truncated on the right, so that there are
6149 // exactly m parameters.
6150 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6151 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6152 // Not enough arguments.
6153 Candidate.Viable = false;
6154 Candidate.FailureKind = ovl_fail_too_few_arguments;
6155 return;
6156 }
6157
6158 // (CUDA B.1): Check for invalid calls between targets.
6159 if (getLangOpts().CUDA)
6160 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6161 // Skip the check for callers that are implicit members, because in this
6162 // case we may not yet know what the member's target is; the target is
6163 // inferred for the member automatically, based on the bases and fields of
6164 // the class.
6165 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6166 Candidate.Viable = false;
6167 Candidate.FailureKind = ovl_fail_bad_target;
6168 return;
6169 }
6170
6171 // Determine the implicit conversion sequences for each of the
6172 // arguments.
6173 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6174 if (Candidate.Conversions[ArgIdx].isInitialized()) {
6175 // We already formed a conversion sequence for this parameter during
6176 // template argument deduction.
6177 } else if (ArgIdx < NumParams) {
6178 // (C++ 13.3.2p3): for F to be a viable function, there shall
6179 // exist for each argument an implicit conversion sequence
6180 // (13.3.3.1) that converts that argument to the corresponding
6181 // parameter of F.
6182 QualType ParamType = Proto->getParamType(ArgIdx);
6183 Candidate.Conversions[ArgIdx] = TryCopyInitialization(
6184 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6185 /*InOverloadResolution=*/true,
6186 /*AllowObjCWritebackConversion=*/
6187 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6188 if (Candidate.Conversions[ArgIdx].isBad()) {
6189 Candidate.Viable = false;
6190 Candidate.FailureKind = ovl_fail_bad_conversion;
6191 return;
6192 }
6193 } else {
6194 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6195 // argument for which there is no corresponding parameter is
6196 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6197 Candidate.Conversions[ArgIdx].setEllipsis();
6198 }
6199 }
6200
6201 if (!AllowExplicit) {
6202 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6203 if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6204 Candidate.Viable = false;
6205 Candidate.FailureKind = ovl_fail_explicit_resolved;
6206 return;
6207 }
6208 }
6209
6210 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6211 Candidate.Viable = false;
6212 Candidate.FailureKind = ovl_fail_enable_if;
6213 Candidate.DeductionFailure.Data = FailedAttr;
6214 return;
6215 }
6216
6217 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6218 Candidate.Viable = false;
6219 Candidate.FailureKind = ovl_fail_ext_disabled;
6220 return;
6221 }
6222}
6223
6224ObjCMethodDecl *
6225Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6226 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6227 if (Methods.size() <= 1)
6228 return nullptr;
6229
6230 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6231 bool Match = true;
6232 ObjCMethodDecl *Method = Methods[b];
6233 unsigned NumNamedArgs = Sel.getNumArgs();
6234 // Method might have more arguments than selector indicates. This is due
6235 // to addition of c-style arguments in method.
6236 if (Method->param_size() > NumNamedArgs)
6237 NumNamedArgs = Method->param_size();
6238 if (Args.size() < NumNamedArgs)
6239 continue;
6240
6241 for (unsigned i = 0; i < NumNamedArgs; i++) {
6242 // We can't do any type-checking on a type-dependent argument.
6243 if (Args[i]->isTypeDependent()) {
6244 Match = false;
6245 break;
6246 }
6247
6248 ParmVarDecl *param = Method->parameters()[i];
6249 Expr *argExpr = Args[i];
6250 assert(argExpr && "SelectBestMethod(): missing expression")((argExpr && "SelectBestMethod(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6250, __PRETTY_FUNCTION__))
;
6251
6252 // Strip the unbridged-cast placeholder expression off unless it's
6253 // a consumed argument.
6254 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6255 !param->hasAttr<CFConsumedAttr>())
6256 argExpr = stripARCUnbridgedCast(argExpr);
6257
6258 // If the parameter is __unknown_anytype, move on to the next method.
6259 if (param->getType() == Context.UnknownAnyTy) {
6260 Match = false;
6261 break;
6262 }
6263
6264 ImplicitConversionSequence ConversionState
6265 = TryCopyInitialization(*this, argExpr, param->getType(),
6266 /*SuppressUserConversions*/false,
6267 /*InOverloadResolution=*/true,
6268 /*AllowObjCWritebackConversion=*/
6269 getLangOpts().ObjCAutoRefCount,
6270 /*AllowExplicit*/false);
6271 // This function looks for a reasonably-exact match, so we consider
6272 // incompatible pointer conversions to be a failure here.
6273 if (ConversionState.isBad() ||
6274 (ConversionState.isStandard() &&
6275 ConversionState.Standard.Second ==
6276 ICK_Incompatible_Pointer_Conversion)) {
6277 Match = false;
6278 break;
6279 }
6280 }
6281 // Promote additional arguments to variadic methods.
6282 if (Match && Method->isVariadic()) {
6283 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6284 if (Args[i]->isTypeDependent()) {
6285 Match = false;
6286 break;
6287 }
6288 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6289 nullptr);
6290 if (Arg.isInvalid()) {
6291 Match = false;
6292 break;
6293 }
6294 }
6295 } else {
6296 // Check for extra arguments to non-variadic methods.
6297 if (Args.size() != NumNamedArgs)
6298 Match = false;
6299 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6300 // Special case when selectors have no argument. In this case, select
6301 // one with the most general result type of 'id'.
6302 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6303 QualType ReturnT = Methods[b]->getReturnType();
6304 if (ReturnT->isObjCIdType())
6305 return Methods[b];
6306 }
6307 }
6308 }
6309
6310 if (Match)
6311 return Method;
6312 }
6313 return nullptr;
6314}
6315
6316static bool
6317convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6318 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6319 bool MissingImplicitThis, Expr *&ConvertedThis,
6320 SmallVectorImpl<Expr *> &ConvertedArgs) {
6321 if (ThisArg) {
6322 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6323 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6324, __PRETTY_FUNCTION__))
6324 "Shouldn't have `this` for ctors!")((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6324, __PRETTY_FUNCTION__))
;
6325 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? static_cast<void> (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6325, __PRETTY_FUNCTION__))
;
6326 ExprResult R = S.PerformObjectArgumentInitialization(
6327 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6328 if (R.isInvalid())
6329 return false;
6330 ConvertedThis = R.get();
6331 } else {
6332 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6333 (void)MD;
6334 assert((MissingImplicitThis || MD->isStatic() ||(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6336, __PRETTY_FUNCTION__))
6335 isa<CXXConstructorDecl>(MD)) &&(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6336, __PRETTY_FUNCTION__))
6336 "Expected `this` for non-ctor instance methods")(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6336, __PRETTY_FUNCTION__))
;
6337 }
6338 ConvertedThis = nullptr;
6339 }
6340
6341 // Ignore any variadic arguments. Converting them is pointless, since the
6342 // user can't refer to them in the function condition.
6343 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6344
6345 // Convert the arguments.
6346 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6347 ExprResult R;
6348 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6349 S.Context, Function->getParamDecl(I)),
6350 SourceLocation(), Args[I]);
6351
6352 if (R.isInvalid())
6353 return false;
6354
6355 ConvertedArgs.push_back(R.get());
6356 }
6357
6358 if (Trap.hasErrorOccurred())
6359 return false;
6360
6361 // Push default arguments if needed.
6362 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6363 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6364 ParmVarDecl *P = Function->getParamDecl(i);
6365 Expr *DefArg = P->hasUninstantiatedDefaultArg()
6366 ? P->getUninstantiatedDefaultArg()
6367 : P->getDefaultArg();
6368 // This can only happen in code completion, i.e. when PartialOverloading
6369 // is true.
6370 if (!DefArg)
6371 return false;
6372 ExprResult R =
6373 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6374 S.Context, Function->getParamDecl(i)),
6375 SourceLocation(), DefArg);
6376 if (R.isInvalid())
6377 return false;
6378 ConvertedArgs.push_back(R.get());
6379 }
6380
6381 if (Trap.hasErrorOccurred())
6382 return false;
6383 }
6384 return true;
6385}
6386
6387EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6388 bool MissingImplicitThis) {
6389 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6390 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6391 return nullptr;
6392
6393 SFINAETrap Trap(*this);
6394 SmallVector<Expr *, 16> ConvertedArgs;
6395 // FIXME: We should look into making enable_if late-parsed.
6396 Expr *DiscardedThis;
6397 if (!convertArgsForAvailabilityChecks(
6398 *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6399 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6400 return *EnableIfAttrs.begin();
6401
6402 for (auto *EIA : EnableIfAttrs) {
6403 APValue Result;
6404 // FIXME: This doesn't consider value-dependent cases, because doing so is
6405 // very difficult. Ideally, we should handle them more gracefully.
6406 if (EIA->getCond()->isValueDependent() ||
6407 !EIA->getCond()->EvaluateWithSubstitution(
6408 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6409 return EIA;
6410
6411 if (!Result.isInt() || !Result.getInt().getBoolValue())
6412 return EIA;
6413 }
6414 return nullptr;
6415}
6416
6417template <typename CheckFn>
6418static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6419 bool ArgDependent, SourceLocation Loc,
6420 CheckFn &&IsSuccessful) {
6421 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6422 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6423 if (ArgDependent == DIA->getArgDependent())
6424 Attrs.push_back(DIA);
6425 }
6426
6427 // Common case: No diagnose_if attributes, so we can quit early.
6428 if (Attrs.empty())
6429 return false;
6430
6431 auto WarningBegin = std::stable_partition(
6432 Attrs.begin(), Attrs.end(),
6433 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6434
6435 // Note that diagnose_if attributes are late-parsed, so they appear in the
6436 // correct order (unlike enable_if attributes).
6437 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6438 IsSuccessful);
6439 if (ErrAttr != WarningBegin) {
6440 const DiagnoseIfAttr *DIA = *ErrAttr;
6441 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6442 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6443 << DIA->getParent() << DIA->getCond()->getSourceRange();
6444 return true;
6445 }
6446
6447 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6448 if (IsSuccessful(DIA)) {
6449 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6450 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6451 << DIA->getParent() << DIA->getCond()->getSourceRange();
6452 }
6453
6454 return false;
6455}
6456
6457bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6458 const Expr *ThisArg,
6459 ArrayRef<const Expr *> Args,
6460 SourceLocation Loc) {
6461 return diagnoseDiagnoseIfAttrsWith(
6462 *this, Function, /*ArgDependent=*/true, Loc,
6463 [&](const DiagnoseIfAttr *DIA) {
6464 APValue Result;
6465 // It's sane to use the same Args for any redecl of this function, since
6466 // EvaluateWithSubstitution only cares about the position of each
6467 // argument in the arg list, not the ParmVarDecl* it maps to.
6468 if (!DIA->getCond()->EvaluateWithSubstitution(
6469 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6470 return false;
6471 return Result.isInt() && Result.getInt().getBoolValue();
6472 });
6473}
6474
6475bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6476 SourceLocation Loc) {
6477 return diagnoseDiagnoseIfAttrsWith(
6478 *this, ND, /*ArgDependent=*/false, Loc,
6479 [&](const DiagnoseIfAttr *DIA) {
6480 bool Result;
6481 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6482 Result;
6483 });
6484}
6485
6486/// Add all of the function declarations in the given function set to
6487/// the overload candidate set.
6488void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6489 ArrayRef<Expr *> Args,
6490 OverloadCandidateSet &CandidateSet,
6491 TemplateArgumentListInfo *ExplicitTemplateArgs,
6492 bool SuppressUserConversions,
6493 bool PartialOverloading,
6494 bool FirstArgumentIsBase) {
6495 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6496 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6497 ArrayRef<Expr *> FunctionArgs = Args;
6498
6499 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6500 FunctionDecl *FD =
6501 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6502
6503 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6504 QualType ObjectType;
6505 Expr::Classification ObjectClassification;
6506 if (Args.size() > 0) {
6507 if (Expr *E = Args[0]) {
6508 // Use the explicit base to restrict the lookup:
6509 ObjectType = E->getType();
6510 // Pointers in the object arguments are implicitly dereferenced, so we
6511 // always classify them as l-values.
6512 if (!ObjectType.isNull() && ObjectType->isPointerType())
6513 ObjectClassification = Expr::Classification::makeSimpleLValue();
6514 else
6515 ObjectClassification = E->Classify(Context);
6516 } // .. else there is an implicit base.
6517 FunctionArgs = Args.slice(1);
6518 }
6519 if (FunTmpl) {
6520 AddMethodTemplateCandidate(
6521 FunTmpl, F.getPair(),
6522 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6523 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6524 FunctionArgs, CandidateSet, SuppressUserConversions,
6525 PartialOverloading);
6526 } else {
6527 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6528 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6529 ObjectClassification, FunctionArgs, CandidateSet,
6530 SuppressUserConversions, PartialOverloading);
6531 }
6532 } else {
6533 // This branch handles both standalone functions and static methods.
6534
6535 // Slice the first argument (which is the base) when we access
6536 // static method as non-static.
6537 if (Args.size() > 0 &&
6538 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6539 !isa<CXXConstructorDecl>(FD)))) {
6540 assert(cast<CXXMethodDecl>(FD)->isStatic())((cast<CXXMethodDecl>(FD)->isStatic()) ? static_cast
<void> (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6540, __PRETTY_FUNCTION__))
;
6541 FunctionArgs = Args.slice(1);
6542 }
6543 if (FunTmpl) {
6544 AddTemplateOverloadCandidate(
6545 FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs,
6546 CandidateSet, SuppressUserConversions, PartialOverloading);
6547 } else {
6548 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6549 SuppressUserConversions, PartialOverloading);
6550 }
6551 }
6552 }
6553}
6554
6555/// AddMethodCandidate - Adds a named decl (which is some kind of
6556/// method) as a method candidate to the given overload set.
6557void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6558 QualType ObjectType,
6559 Expr::Classification ObjectClassification,
6560 ArrayRef<Expr *> Args,
6561 OverloadCandidateSet& CandidateSet,
6562 bool SuppressUserConversions) {
6563 NamedDecl *Decl = FoundDecl.getDecl();
6564 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6565
6566 if (isa<UsingShadowDecl>(Decl))
6567 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6568
6569 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6570 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6571, __PRETTY_FUNCTION__))
6571 "Expected a member function template")((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6571, __PRETTY_FUNCTION__))
;
6572 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6573 /*ExplicitArgs*/ nullptr, ObjectType,
6574 ObjectClassification, Args, CandidateSet,
6575 SuppressUserConversions);
6576 } else {
6577 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6578 ObjectType, ObjectClassification, Args, CandidateSet,
6579 SuppressUserConversions);
6580 }
6581}
6582
6583/// AddMethodCandidate - Adds the given C++ member function to the set
6584/// of candidate functions, using the given function call arguments
6585/// and the object argument (@c Object). For example, in a call
6586/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6587/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6588/// allow user-defined conversions via constructors or conversion
6589/// operators.
6590void
6591Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6592 CXXRecordDecl *ActingContext, QualType ObjectType,
6593 Expr::Classification ObjectClassification,
6594 ArrayRef<Expr *> Args,
6595 OverloadCandidateSet &CandidateSet,
6596 bool SuppressUserConversions,
6597 bool PartialOverloading,
6598 ConversionSequenceList EarlyConversions) {
6599 const FunctionProtoType *Proto
6600 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6601 assert(Proto && "Methods without a prototype cannot be overloaded")((Proto && "Methods without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6601, __PRETTY_FUNCTION__))
;
6602 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6603, __PRETTY_FUNCTION__))
6603 "Use AddOverloadCandidate for constructors")((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6603, __PRETTY_FUNCTION__))
;
6604
6605 if (!CandidateSet.isNewCandidate(Method))
6606 return;
6607
6608 // C++11 [class.copy]p23: [DR1402]
6609 // A defaulted move assignment operator that is defined as deleted is
6610 // ignored by overload resolution.
6611 if (Method->isDefaulted() && Method->isDeleted() &&
6612 Method->isMoveAssignmentOperator())
6613 return;
6614
6615 // Overload resolution is always an unevaluated context.
6616 EnterExpressionEvaluationContext Unevaluated(
6617 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6618
6619 // Add this candidate
6620 OverloadCandidate &Candidate =
6621 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6622 Candidate.FoundDecl = FoundDecl;
6623 Candidate.Function = Method;
6624 Candidate.IsSurrogate = false;
6625 Candidate.IgnoreObjectArgument = false;
6626 Candidate.ExplicitCallArguments = Args.size();
6627
6628 unsigned NumParams = Proto->getNumParams();
6629
6630 // (C++ 13.3.2p2): A candidate function having fewer than m
6631 // parameters is viable only if it has an ellipsis in its parameter
6632 // list (8.3.5).
6633 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6634 !Proto->isVariadic()) {
6635 Candidate.Viable = false;
6636 Candidate.FailureKind = ovl_fail_too_many_arguments;
6637 return;
6638 }
6639
6640 // (C++ 13.3.2p2): A candidate function having more than m parameters
6641 // is viable only if the (m+1)st parameter has a default argument
6642 // (8.3.6). For the purposes of overload resolution, the
6643 // parameter list is truncated on the right, so that there are
6644 // exactly m parameters.
6645 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6646 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6647 // Not enough arguments.
6648 Candidate.Viable = false;
6649 Candidate.FailureKind = ovl_fail_too_few_arguments;
6650 return;
6651 }
6652
6653 Candidate.Viable = true;
6654
6655 if (Method->isStatic() || ObjectType.isNull())
6656 // The implicit object argument is ignored.
6657 Candidate.IgnoreObjectArgument = true;
6658 else {
6659 // Determine the implicit conversion sequence for the object
6660 // parameter.
6661 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6662 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6663 Method, ActingContext);
6664 if (Candidate.Conversions[0].isBad()) {
6665 Candidate.Viable = false;
6666 Candidate.FailureKind = ovl_fail_bad_conversion;
6667 return;
6668 }
6669 }
6670
6671 // (CUDA B.1): Check for invalid calls between targets.
6672 if (getLangOpts().CUDA)
6673 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6674 if (!IsAllowedCUDACall(Caller, Method)) {
6675 Candidate.Viable = false;
6676 Candidate.FailureKind = ovl_fail_bad_target;
6677 return;
6678 }
6679
6680 // Determine the implicit conversion sequences for each of the
6681 // arguments.
6682 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6683 if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6684 // We already formed a conversion sequence for this parameter during
6685 // template argument deduction.
6686 } else if (ArgIdx < NumParams) {
6687 // (C++ 13.3.2p3): for F to be a viable function, there shall
6688 // exist for each argument an implicit conversion sequence
6689 // (13.3.3.1) that converts that argument to the corresponding
6690 // parameter of F.
6691 QualType ParamType = Proto->getParamType(ArgIdx);
6692 Candidate.Conversions[ArgIdx + 1]
6693 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6694 SuppressUserConversions,
6695 /*InOverloadResolution=*/true,
6696 /*AllowObjCWritebackConversion=*/
6697 getLangOpts().ObjCAutoRefCount);
6698 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6699 Candidate.Viable = false;
6700 Candidate.FailureKind = ovl_fail_bad_conversion;
6701 return;
6702 }
6703 } else {
6704 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6705 // argument for which there is no corresponding parameter is
6706 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6707 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6708 }
6709 }
6710
6711 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6712 Candidate.Viable = false;
6713 Candidate.FailureKind = ovl_fail_enable_if;
6714 Candidate.DeductionFailure.Data = FailedAttr;
6715 return;
6716 }
6717
6718 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6719 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6720 Candidate.Viable = false;
6721 Candidate.FailureKind = ovl_non_default_multiversion_function;
6722 }
6723}
6724
6725/// Add a C++ member function template as a candidate to the candidate
6726/// set, using template argument deduction to produce an appropriate member
6727/// function template specialization.
6728void
6729Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6730 DeclAccessPair FoundDecl,
6731 CXXRecordDecl *ActingContext,
6732 TemplateArgumentListInfo *ExplicitTemplateArgs,
6733 QualType ObjectType,
6734 Expr::Classification ObjectClassification,
6735 ArrayRef<Expr *> Args,
6736 OverloadCandidateSet& CandidateSet,
6737 bool SuppressUserConversions,
6738 bool PartialOverloading) {
6739 if (!CandidateSet.isNewCandidate(MethodTmpl))
6740 return;
6741
6742 // C++ [over.match.funcs]p7:
6743 // In each case where a candidate is a function template, candidate
6744 // function template specializations are generated using template argument
6745 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6746 // candidate functions in the usual way.113) A given name can refer to one
6747 // or more function templates and also to a set of overloaded non-template
6748 // functions. In such a case, the candidate functions generated from each
6749 // function template are combined with the set of non-template candidate
6750 // functions.
6751 TemplateDeductionInfo Info(CandidateSet.getLocation());
6752 FunctionDecl *Specialization = nullptr;
6753 ConversionSequenceList Conversions;
6754 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6755 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6756 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6757 return CheckNonDependentConversions(
6758 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6759 SuppressUserConversions, ActingContext, ObjectType,
6760 ObjectClassification);
6761 })) {
6762 OverloadCandidate &Candidate =
6763 CandidateSet.addCandidate(Conversions.size(), Conversions);
6764 Candidate.FoundDecl = FoundDecl;
6765 Candidate.Function = MethodTmpl->getTemplatedDecl();
6766 Candidate.Viable = false;
6767 Candidate.IsSurrogate = false;
6768 Candidate.IgnoreObjectArgument =
6769 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6770 ObjectType.isNull();
6771 Candidate.ExplicitCallArguments = Args.size();
6772 if (Result == TDK_NonDependentConversionFailure)
6773 Candidate.FailureKind = ovl_fail_bad_conversion;
6774 else {
6775 Candidate.FailureKind = ovl_fail_bad_deduction;
6776 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6777 Info);
6778 }
6779 return;
6780 }
6781
6782 // Add the function template specialization produced by template argument
6783 // deduction as a candidate.
6784 assert(Specialization && "Missing member function template specialization?")((Specialization && "Missing member function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6784, __PRETTY_FUNCTION__))
;
6785 assert(isa<CXXMethodDecl>(Specialization) &&((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6786, __PRETTY_FUNCTION__))
6786 "Specialization is not a member function?")((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6786, __PRETTY_FUNCTION__))
;
6787 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6788 ActingContext, ObjectType, ObjectClassification, Args,
6789 CandidateSet, SuppressUserConversions, PartialOverloading,
6790 Conversions);
6791}
6792
6793/// Add a C++ function template specialization as a candidate
6794/// in the candidate set, using template argument deduction to produce
6795/// an appropriate function template specialization.
6796void Sema::AddTemplateOverloadCandidate(
6797 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6798 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6799 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6800 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate) {
6801 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6802 return;
6803
6804 // C++ [over.match.funcs]p7:
6805 // In each case where a candidate is a function template, candidate
6806 // function template specializations are generated using template argument
6807 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6808 // candidate functions in the usual way.113) A given name can refer to one
6809 // or more function templates and also to a set of overloaded non-template
6810 // functions. In such a case, the candidate functions generated from each
6811 // function template are combined with the set of non-template candidate
6812 // functions.
6813 TemplateDeductionInfo Info(CandidateSet.getLocation());
6814 FunctionDecl *Specialization = nullptr;
6815 ConversionSequenceList Conversions;
6816 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6817 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6818 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6819 return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6820 Args, CandidateSet, Conversions,
6821 SuppressUserConversions);
6822 })) {
6823 OverloadCandidate &Candidate =
6824 CandidateSet.addCandidate(Conversions.size(), Conversions);
6825 Candidate.FoundDecl = FoundDecl;
6826 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6827 Candidate.Viable = false;
6828 Candidate.IsSurrogate = false;
6829 Candidate.IsADLCandidate = IsADLCandidate;
6830 // Ignore the object argument if there is one, since we don't have an object
6831 // type.
6832 Candidate.IgnoreObjectArgument =
6833 isa<CXXMethodDecl>(Candidate.Function) &&
6834 !isa<CXXConstructorDecl>(Candidate.Function);
6835 Candidate.ExplicitCallArguments = Args.size();
6836 if (Result == TDK_NonDependentConversionFailure)
6837 Candidate.FailureKind = ovl_fail_bad_conversion;
6838 else {
6839 Candidate.FailureKind = ovl_fail_bad_deduction;
6840 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6841 Info);
6842 }
6843 return;
6844 }
6845
6846 // Add the function template specialization produced by template argument
6847 // deduction as a candidate.
6848 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6848, __PRETTY_FUNCTION__))
;
6849 AddOverloadCandidate(
6850 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6851 PartialOverloading, AllowExplicit,
6852 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions);
6853}
6854
6855/// Check that implicit conversion sequences can be formed for each argument
6856/// whose corresponding parameter has a non-dependent type, per DR1391's
6857/// [temp.deduct.call]p10.
6858bool Sema::CheckNonDependentConversions(
6859 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6860 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6861 ConversionSequenceList &Conversions, bool SuppressUserConversions,
6862 CXXRecordDecl *ActingContext, QualType ObjectType,
6863 Expr::Classification ObjectClassification) {
6864 // FIXME: The cases in which we allow explicit conversions for constructor
6865 // arguments never consider calling a constructor template. It's not clear
6866 // that is correct.
6867 const bool AllowExplicit = false;
6868
6869 auto *FD = FunctionTemplate->getTemplatedDecl();
6870 auto *Method = dyn_cast<CXXMethodDecl>(FD);
6871 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6872 unsigned ThisConversions = HasThisConversion ? 1 : 0;
6873
6874 Conversions =
6875 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6876
6877 // Overload resolution is always an unevaluated context.
6878 EnterExpressionEvaluationContext Unevaluated(
6879 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6880
6881 // For a method call, check the 'this' conversion here too. DR1391 doesn't
6882 // require that, but this check should never result in a hard error, and
6883 // overload resolution is permitted to sidestep instantiations.
6884 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6885 !ObjectType.isNull()) {
6886 Conversions[0] = TryObjectArgumentInitialization(
6887 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6888 Method, ActingContext);
6889 if (Conversions[0].isBad())
6890 return true;
6891 }
6892
6893 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6894 ++I) {
6895 QualType ParamType = ParamTypes[I];
6896 if (!ParamType->isDependentType()) {
6897 Conversions[ThisConversions + I]
6898 = TryCopyInitialization(*this, Args[I], ParamType,
6899 SuppressUserConversions,
6900 /*InOverloadResolution=*/true,
6901 /*AllowObjCWritebackConversion=*/
6902 getLangOpts().ObjCAutoRefCount,
6903 AllowExplicit);
6904 if (Conversions[ThisConversions + I].isBad())
6905 return true;
6906 }
6907 }
6908
6909 return false;
6910}
6911
6912/// Determine whether this is an allowable conversion from the result
6913/// of an explicit conversion operator to the expected type, per C++
6914/// [over.match.conv]p1 and [over.match.ref]p1.
6915///
6916/// \param ConvType The return type of the conversion function.
6917///
6918/// \param ToType The type we are converting to.
6919///
6920/// \param AllowObjCPointerConversion Allow a conversion from one
6921/// Objective-C pointer to another.
6922///
6923/// \returns true if the conversion is allowable, false otherwise.
6924static bool isAllowableExplicitConversion(Sema &S,
6925 QualType ConvType, QualType ToType,
6926 bool AllowObjCPointerConversion) {
6927 QualType ToNonRefType = ToType.getNonReferenceType();
6928
6929 // Easy case: the types are the same.
6930 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6931 return true;
6932
6933 // Allow qualification conversions.
6934 bool ObjCLifetimeConversion;
6935 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6936 ObjCLifetimeConversion))
6937 return true;
6938
6939 // If we're not allowed to consider Objective-C pointer conversions,
6940 // we're done.
6941 if (!AllowObjCPointerConversion)
6942 return false;
6943
6944 // Is this an Objective-C pointer conversion?
6945 bool IncompatibleObjC = false;
6946 QualType ConvertedType;
6947 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6948 IncompatibleObjC);
6949}
6950
6951/// AddConversionCandidate - Add a C++ conversion function as a
6952/// candidate in the candidate set (C++ [over.match.conv],
6953/// C++ [over.match.copy]). From is the expression we're converting from,
6954/// and ToType is the type that we're eventually trying to convert to
6955/// (which may or may not be the same type as the type that the
6956/// conversion function produces).
6957void Sema::AddConversionCandidate(
6958 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
6959 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
6960 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
6961 bool AllowExplicit, bool AllowResultConversion) {
6962 assert(!Conversion->getDescribedFunctionTemplate() &&((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6963, __PRETTY_FUNCTION__))
6963 "Conversion function templates use AddTemplateConversionCandidate")((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 6963, __PRETTY_FUNCTION__))
;
6964 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6965 if (!CandidateSet.isNewCandidate(Conversion))
6966 return;
6967
6968 // If the conversion function has an undeduced return type, trigger its
6969 // deduction now.
6970 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6971 if (DeduceReturnType(Conversion, From->getExprLoc()))
6972 return;
6973 ConvType = Conversion->getConversionType().getNonReferenceType();
6974 }
6975
6976 // If we don't allow any conversion of the result type, ignore conversion
6977 // functions that don't convert to exactly (possibly cv-qualified) T.
6978 if (!AllowResultConversion &&
6979 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6980 return;
6981
6982 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6983 // operator is only a candidate if its return type is the target type or
6984 // can be converted to the target type with a qualification conversion.
6985 if (Conversion->isExplicit() &&
6986 !isAllowableExplicitConversion(*this, ConvType, ToType,
6987 AllowObjCConversionOnExplicit))
6988 return;
6989
6990 // Overload resolution is always an unevaluated context.
6991 EnterExpressionEvaluationContext Unevaluated(
6992 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6993
6994 // Add this candidate
6995 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6996 Candidate.FoundDecl = FoundDecl;
6997 Candidate.Function = Conversion;
6998 Candidate.IsSurrogate = false;
6999 Candidate.IgnoreObjectArgument = false;
7000 Candidate.FinalConversion.setAsIdentityConversion();
7001 Candidate.FinalConversion.setFromType(ConvType);
7002 Candidate.FinalConversion.setAllToTypes(ToType);
7003 Candidate.Viable = true;
7004 Candidate.ExplicitCallArguments = 1;
7005
7006 // C++ [over.match.funcs]p4:
7007 // For conversion functions, the function is considered to be a member of
7008 // the class of the implicit implied object argument for the purpose of
7009 // defining the type of the implicit object parameter.
7010 //
7011 // Determine the implicit conversion sequence for the implicit
7012 // object parameter.
7013 QualType ImplicitParamType = From->getType();
7014 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7015 ImplicitParamType = FromPtrType->getPointeeType();
7016 CXXRecordDecl *ConversionContext
7017 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7018
7019 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7020 *this, CandidateSet.getLocation(), From->getType(),
7021 From->Classify(Context), Conversion, ConversionContext);
7022
7023 if (Candidate.Conversions[0].isBad()) {
7024 Candidate.Viable = false;
7025 Candidate.FailureKind = ovl_fail_bad_conversion;
7026 return;
7027 }
7028
7029 // We won't go through a user-defined type conversion function to convert a
7030 // derived to base as such conversions are given Conversion Rank. They only
7031 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7032 QualType FromCanon
7033 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7034 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7035 if (FromCanon == ToCanon ||
7036 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7037 Candidate.Viable = false;
7038 Candidate.FailureKind = ovl_fail_trivial_conversion;
7039 return;
7040 }
7041
7042 // To determine what the conversion from the result of calling the
7043 // conversion function to the type we're eventually trying to
7044 // convert to (ToType), we need to synthesize a call to the
7045 // conversion function and attempt copy initialization from it. This
7046 // makes sure that we get the right semantics with respect to
7047 // lvalues/rvalues and the type. Fortunately, we can allocate this
7048 // call on the stack and we don't need its arguments to be
7049 // well-formed.
7050 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7051 VK_LValue, From->getBeginLoc());
7052 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7053 Context.getPointerType(Conversion->getType()),
7054 CK_FunctionToPointerDecay,
7055 &ConversionRef, VK_RValue);
7056
7057 QualType ConversionType = Conversion->getConversionType();
7058 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7059 Candidate.Viable = false;
7060 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7061 return;
7062 }
7063
7064 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7065
7066 // Note that it is safe to allocate CallExpr on the stack here because
7067 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7068 // allocator).
7069 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7070
7071 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7072 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7073 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7074
7075 ImplicitConversionSequence ICS =
7076 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7077 /*SuppressUserConversions=*/true,
7078 /*InOverloadResolution=*/false,
7079 /*AllowObjCWritebackConversion=*/false);
7080
7081 switch (ICS.getKind()) {
7082 case ImplicitConversionSequence::StandardConversion:
7083 Candidate.FinalConversion = ICS.Standard;
7084
7085 // C++ [over.ics.user]p3:
7086 // If the user-defined conversion is specified by a specialization of a
7087 // conversion function template, the second standard conversion sequence
7088 // shall have exact match rank.
7089 if (Conversion->getPrimaryTemplate() &&
7090 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7091 Candidate.Viable = false;
7092 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7093 return;
7094 }
7095
7096 // C++0x [dcl.init.ref]p5:
7097 // In the second case, if the reference is an rvalue reference and
7098 // the second standard conversion sequence of the user-defined
7099 // conversion sequence includes an lvalue-to-rvalue conversion, the
7100 // program is ill-formed.
7101 if (ToType->isRValueReferenceType() &&
7102 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7103 Candidate.Viable = false;
7104 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7105 return;
7106 }
7107 break;
7108
7109 case ImplicitConversionSequence::BadConversion:
7110 Candidate.Viable = false;
7111 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7112 return;
7113
7114 default:
7115 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7116)
7116 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7116)
;
7117 }
7118
7119 if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7120 ExplicitSpecKind::ResolvedFalse) {
7121 Candidate.Viable = false;
7122 Candidate.FailureKind = ovl_fail_explicit_resolved;
7123 return;
7124 }
7125
7126 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7127 Candidate.Viable = false;
7128 Candidate.FailureKind = ovl_fail_enable_if;
7129 Candidate.DeductionFailure.Data = FailedAttr;
7130 return;
7131 }
7132
7133 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7134 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7135 Candidate.Viable = false;
7136 Candidate.FailureKind = ovl_non_default_multiversion_function;
7137 }
7138}
7139
7140/// Adds a conversion function template specialization
7141/// candidate to the overload set, using template argument deduction
7142/// to deduce the template arguments of the conversion function
7143/// template from the type that we are converting to (C++
7144/// [temp.deduct.conv]).
7145void Sema::AddTemplateConversionCandidate(
7146 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7147 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7148 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7149 bool AllowExplicit, bool AllowResultConversion) {
7150 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7151, __PRETTY_FUNCTION__))
7151 "Only conversion function templates permitted here")((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7151, __PRETTY_FUNCTION__))
;
7152
7153 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7154 return;
7155
7156 TemplateDeductionInfo Info(CandidateSet.getLocation());
7157 CXXConversionDecl *Specialization = nullptr;
7158 if (TemplateDeductionResult Result
7159 = DeduceTemplateArguments(FunctionTemplate, ToType,
7160 Specialization, Info)) {
7161 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7162 Candidate.FoundDecl = FoundDecl;
7163 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7164 Candidate.Viable = false;
7165 Candidate.FailureKind = ovl_fail_bad_deduction;
7166 Candidate.IsSurrogate = false;
7167 Candidate.IgnoreObjectArgument = false;
7168 Candidate.ExplicitCallArguments = 1;
7169 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7170 Info);
7171 return;
7172 }
7173
7174 // Add the conversion function template specialization produced by
7175 // template argument deduction as a candidate.
7176 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7176, __PRETTY_FUNCTION__))
;
7177 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7178 CandidateSet, AllowObjCConversionOnExplicit,
7179 AllowExplicit, AllowResultConversion);
7180}
7181
7182/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7183/// converts the given @c Object to a function pointer via the
7184/// conversion function @c Conversion, and then attempts to call it
7185/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7186/// the type of function that we'll eventually be calling.
7187void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7188 DeclAccessPair FoundDecl,
7189 CXXRecordDecl *ActingContext,
7190 const FunctionProtoType *Proto,
7191 Expr *Object,
7192 ArrayRef<Expr *> Args,
7193 OverloadCandidateSet& CandidateSet) {
7194 if (!CandidateSet.isNewCandidate(Conversion))
7195 return;
7196
7197 // Overload resolution is always an unevaluated context.
7198 EnterExpressionEvaluationContext Unevaluated(
7199 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7200
7201 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7202 Candidate.FoundDecl = FoundDecl;
7203 Candidate.Function = nullptr;
7204 Candidate.Surrogate = Conversion;
7205 Candidate.Viable = true;
7206 Candidate.IsSurrogate = true;
7207 Candidate.IgnoreObjectArgument = false;
7208 Candidate.ExplicitCallArguments = Args.size();
7209
7210 // Determine the implicit conversion sequence for the implicit
7211 // object parameter.
7212 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7213 *this, CandidateSet.getLocation(), Object->getType(),
7214 Object->Classify(Context), Conversion, ActingContext);
7215 if (ObjectInit.isBad()) {
7216 Candidate.Viable = false;
7217 Candidate.FailureKind = ovl_fail_bad_conversion;
7218 Candidate.Conversions[0] = ObjectInit;
7219 return;
7220 }
7221
7222 // The first conversion is actually a user-defined conversion whose
7223 // first conversion is ObjectInit's standard conversion (which is
7224 // effectively a reference binding). Record it as such.
7225 Candidate.Conversions[0].setUserDefined();
7226 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7227 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7228 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7229 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7230 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7231 Candidate.Conversions[0].UserDefined.After
7232 = Candidate.Conversions[0].UserDefined.Before;
7233 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7234
7235 // Find the
7236 unsigned NumParams = Proto->getNumParams();
7237
7238 // (C++ 13.3.2p2): A candidate function having fewer than m
7239 // parameters is viable only if it has an ellipsis in its parameter
7240 // list (8.3.5).
7241 if (Args.size() > NumParams && !Proto->isVariadic()) {
7242 Candidate.Viable = false;
7243 Candidate.FailureKind = ovl_fail_too_many_arguments;
7244 return;
7245 }
7246
7247 // Function types don't have any default arguments, so just check if
7248 // we have enough arguments.
7249 if (Args.size() < NumParams) {
7250 // Not enough arguments.
7251 Candidate.Viable = false;
7252 Candidate.FailureKind = ovl_fail_too_few_arguments;
7253 return;
7254 }
7255
7256 // Determine the implicit conversion sequences for each of the
7257 // arguments.
7258 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7259 if (ArgIdx < NumParams) {
7260 // (C++ 13.3.2p3): for F to be a viable function, there shall
7261 // exist for each argument an implicit conversion sequence
7262 // (13.3.3.1) that converts that argument to the corresponding
7263 // parameter of F.
7264 QualType ParamType = Proto->getParamType(ArgIdx);
7265 Candidate.Conversions[ArgIdx + 1]
7266 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7267 /*SuppressUserConversions=*/false,
7268 /*InOverloadResolution=*/false,
7269 /*AllowObjCWritebackConversion=*/
7270 getLangOpts().ObjCAutoRefCount);
7271 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7272 Candidate.Viable = false;
7273 Candidate.FailureKind = ovl_fail_bad_conversion;
7274 return;
7275 }
7276 } else {
7277 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7278 // argument for which there is no corresponding parameter is
7279 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7280 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7281 }
7282 }
7283
7284 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7285 Candidate.Viable = false;
7286 Candidate.FailureKind = ovl_fail_enable_if;
7287 Candidate.DeductionFailure.Data = FailedAttr;
7288 return;
7289 }
7290}
7291
7292/// Add overload candidates for overloaded operators that are
7293/// member functions.
7294///
7295/// Add the overloaded operator candidates that are member functions
7296/// for the operator Op that was used in an operator expression such
7297/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7298/// CandidateSet will store the added overload candidates. (C++
7299/// [over.match.oper]).
7300void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7301 SourceLocation OpLoc,
7302 ArrayRef<Expr *> Args,
7303 OverloadCandidateSet& CandidateSet,
7304 SourceRange OpRange) {
7305 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7306
7307 // C++ [over.match.oper]p3:
7308 // For a unary operator @ with an operand of a type whose
7309 // cv-unqualified version is T1, and for a binary operator @ with
7310 // a left operand of a type whose cv-unqualified version is T1 and
7311 // a right operand of a type whose cv-unqualified version is T2,
7312 // three sets of candidate functions, designated member
7313 // candidates, non-member candidates and built-in candidates, are
7314 // constructed as follows:
7315 QualType T1 = Args[0]->getType();
7316
7317 // -- If T1 is a complete class type or a class currently being
7318 // defined, the set of member candidates is the result of the
7319 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7320 // the set of member candidates is empty.
7321 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7322 // Complete the type if it can be completed.
7323 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7324 return;
7325 // If the type is neither complete nor being defined, bail out now.
7326 if (!T1Rec->getDecl()->getDefinition())
7327 return;
7328
7329 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7330 LookupQualifiedName(Operators, T1Rec->getDecl());
7331 Operators.suppressDiagnostics();
7332
7333 for (LookupResult::iterator Oper = Operators.begin(),
7334 OperEnd = Operators.end();
7335 Oper != OperEnd;
7336 ++Oper)
7337 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7338 Args[0]->Classify(Context), Args.slice(1),
7339 CandidateSet, /*SuppressUserConversion=*/false);
7340 }
7341}
7342
7343/// AddBuiltinCandidate - Add a candidate for a built-in
7344/// operator. ResultTy and ParamTys are the result and parameter types
7345/// of the built-in candidate, respectively. Args and NumArgs are the
7346/// arguments being passed to the candidate. IsAssignmentOperator
7347/// should be true when this built-in candidate is an assignment
7348/// operator. NumContextualBoolArguments is the number of arguments
7349/// (at the beginning of the argument list) that will be contextually
7350/// converted to bool.
7351void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7352 OverloadCandidateSet& CandidateSet,
7353 bool IsAssignmentOperator,
7354 unsigned NumContextualBoolArguments) {
7355 // Overload resolution is always an unevaluated context.
7356 EnterExpressionEvaluationContext Unevaluated(
7357 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7358
7359 // Add this candidate
7360 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7361 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7362 Candidate.Function = nullptr;
7363 Candidate.IsSurrogate = false;
7364 Candidate.IgnoreObjectArgument = false;
7365 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7366
7367 // Determine the implicit conversion sequences for each of the
7368 // arguments.
7369 Candidate.Viable = true;
7370 Candidate.ExplicitCallArguments = Args.size();
7371 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7372 // C++ [over.match.oper]p4:
7373 // For the built-in assignment operators, conversions of the
7374 // left operand are restricted as follows:
7375 // -- no temporaries are introduced to hold the left operand, and
7376 // -- no user-defined conversions are applied to the left
7377 // operand to achieve a type match with the left-most
7378 // parameter of a built-in candidate.
7379 //
7380 // We block these conversions by turning off user-defined
7381 // conversions, since that is the only way that initialization of
7382 // a reference to a non-class type can occur from something that
7383 // is not of the same type.
7384 if (ArgIdx < NumContextualBoolArguments) {
7385 assert(ParamTys[ArgIdx] == Context.BoolTy &&((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7386, __PRETTY_FUNCTION__))
7386 "Contextual conversion to bool requires bool type")((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7386, __PRETTY_FUNCTION__))
;
7387 Candidate.Conversions[ArgIdx]
7388 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7389 } else {
7390 Candidate.Conversions[ArgIdx]
7391 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7392 ArgIdx == 0 && IsAssignmentOperator,
7393 /*InOverloadResolution=*/false,
7394 /*AllowObjCWritebackConversion=*/
7395 getLangOpts().ObjCAutoRefCount);
7396 }
7397 if (Candidate.Conversions[ArgIdx].isBad()) {
7398 Candidate.Viable = false;
7399 Candidate.FailureKind = ovl_fail_bad_conversion;
7400 break;
7401 }
7402 }
7403}
7404
7405namespace {
7406
7407/// BuiltinCandidateTypeSet - A set of types that will be used for the
7408/// candidate operator functions for built-in operators (C++
7409/// [over.built]). The types are separated into pointer types and
7410/// enumeration types.
7411class BuiltinCandidateTypeSet {
7412 /// TypeSet - A set of types.
7413 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7414 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7415
7416 /// PointerTypes - The set of pointer types that will be used in the
7417 /// built-in candidates.
7418 TypeSet PointerTypes;
7419
7420 /// MemberPointerTypes - The set of member pointer types that will be
7421 /// used in the built-in candidates.
7422 TypeSet MemberPointerTypes;
7423
7424 /// EnumerationTypes - The set of enumeration types that will be
7425 /// used in the built-in candidates.
7426 TypeSet EnumerationTypes;
7427
7428 /// The set of vector types that will be used in the built-in
7429 /// candidates.
7430 TypeSet VectorTypes;
7431
7432 /// A flag indicating non-record types are viable candidates
7433 bool HasNonRecordTypes;
7434
7435 /// A flag indicating whether either arithmetic or enumeration types
7436 /// were present in the candidate set.
7437 bool HasArithmeticOrEnumeralTypes;
7438
7439 /// A flag indicating whether the nullptr type was present in the
7440 /// candidate set.
7441 bool HasNullPtrType;
7442
7443 /// Sema - The semantic analysis instance where we are building the
7444 /// candidate type set.
7445 Sema &SemaRef;
7446
7447 /// Context - The AST context in which we will build the type sets.
7448 ASTContext &Context;
7449
7450 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7451 const Qualifiers &VisibleQuals);
7452 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7453
7454public:
7455 /// iterator - Iterates through the types that are part of the set.
7456 typedef TypeSet::iterator iterator;
7457
7458 BuiltinCandidateTypeSet(Sema &SemaRef)
7459 : HasNonRecordTypes(false),
7460 HasArithmeticOrEnumeralTypes(false),
7461 HasNullPtrType(false),
7462 SemaRef(SemaRef),
7463 Context(SemaRef.Context) { }
7464
7465 void AddTypesConvertedFrom(QualType Ty,
7466 SourceLocation Loc,
7467 bool AllowUserConversions,
7468 bool AllowExplicitConversions,
7469 const Qualifiers &VisibleTypeConversionsQuals);
7470
7471 /// pointer_begin - First pointer type found;
7472 iterator pointer_begin() { return PointerTypes.begin(); }
7473
7474 /// pointer_end - Past the last pointer type found;
7475 iterator pointer_end() { return PointerTypes.end(); }
7476
7477 /// member_pointer_begin - First member pointer type found;
7478 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7479
7480 /// member_pointer_end - Past the last member pointer type found;
7481 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7482
7483 /// enumeration_begin - First enumeration type found;
7484 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7485
7486 /// enumeration_end - Past the last enumeration type found;
7487 iterator enumeration_end() { return EnumerationTypes.end(); }
7488
7489 iterator vector_begin() { return VectorTypes.begin(); }
7490 iterator vector_end() { return VectorTypes.end(); }
7491
7492 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7493 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7494 bool hasNullPtrType() const { return HasNullPtrType; }
7495};
7496
7497} // end anonymous namespace
7498
7499/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7500/// the set of pointer types along with any more-qualified variants of
7501/// that type. For example, if @p Ty is "int const *", this routine
7502/// will add "int const *", "int const volatile *", "int const
7503/// restrict *", and "int const volatile restrict *" to the set of
7504/// pointer types. Returns true if the add of @p Ty itself succeeded,
7505/// false otherwise.
7506///
7507/// FIXME: what to do about extended qualifiers?
7508bool
7509BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7510 const Qualifiers &VisibleQuals) {
7511
7512 // Insert this type.
7513 if (!PointerTypes.insert(Ty))
7514 return false;
7515
7516 QualType PointeeTy;
7517 const PointerType *PointerTy = Ty->getAs<PointerType>();
7518 bool buildObjCPtr = false;
7519 if (!PointerTy) {
7520 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7521 PointeeTy = PTy->getPointeeType();
7522 buildObjCPtr = true;
7523 } else {
7524 PointeeTy = PointerTy->getPointeeType();
7525 }
7526
7527 // Don't add qualified variants of arrays. For one, they're not allowed
7528 // (the qualifier would sink to the element type), and for another, the
7529 // only overload situation where it matters is subscript or pointer +- int,
7530 // and those shouldn't have qualifier variants anyway.
7531 if (PointeeTy->isArrayType())
7532 return true;
7533
7534 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7535 bool hasVolatile = VisibleQuals.hasVolatile();
7536 bool hasRestrict = VisibleQuals.hasRestrict();
7537
7538 // Iterate through all strict supersets of BaseCVR.
7539 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7540 if ((CVR | BaseCVR) != CVR) continue;
7541 // Skip over volatile if no volatile found anywhere in the types.
7542 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7543
7544 // Skip over restrict if no restrict found anywhere in the types, or if
7545 // the type cannot be restrict-qualified.
7546 if ((CVR & Qualifiers::Restrict) &&
7547 (!hasRestrict ||
7548 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7549 continue;
7550
7551 // Build qualified pointee type.
7552 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7553
7554 // Build qualified pointer type.
7555 QualType QPointerTy;
7556 if (!buildObjCPtr)
7557 QPointerTy = Context.getPointerType(QPointeeTy);
7558 else
7559 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7560
7561 // Insert qualified pointer type.
7562 PointerTypes.insert(QPointerTy);
7563 }
7564
7565 return true;
7566}
7567
7568/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7569/// to the set of pointer types along with any more-qualified variants of
7570/// that type. For example, if @p Ty is "int const *", this routine
7571/// will add "int const *", "int const volatile *", "int const
7572/// restrict *", and "int const volatile restrict *" to the set of
7573/// pointer types. Returns true if the add of @p Ty itself succeeded,
7574/// false otherwise.
7575///
7576/// FIXME: what to do about extended qualifiers?
7577bool
7578BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7579 QualType Ty) {
7580 // Insert this type.
7581 if (!MemberPointerTypes.insert(Ty))
7582 return false;
7583
7584 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7585 assert(PointerTy && "type was not a member pointer type!")((PointerTy && "type was not a member pointer type!")
? static_cast<void> (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7585, __PRETTY_FUNCTION__))
;
7586
7587 QualType PointeeTy = PointerTy->getPointeeType();
7588 // Don't add qualified variants of arrays. For one, they're not allowed
7589 // (the qualifier would sink to the element type), and for another, the
7590 // only overload situation where it matters is subscript or pointer +- int,
7591 // and those shouldn't have qualifier variants anyway.
7592 if (PointeeTy->isArrayType())
7593 return true;
7594 const Type *ClassTy = PointerTy->getClass();
7595
7596 // Iterate through all strict supersets of the pointee type's CVR
7597 // qualifiers.
7598 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7599 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7600 if ((CVR | BaseCVR) != CVR) continue;
7601
7602 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7603 MemberPointerTypes.insert(
7604 Context.getMemberPointerType(QPointeeTy, ClassTy));
7605 }
7606
7607 return true;
7608}
7609
7610/// AddTypesConvertedFrom - Add each of the types to which the type @p
7611/// Ty can be implicit converted to the given set of @p Types. We're
7612/// primarily interested in pointer types and enumeration types. We also
7613/// take member pointer types, for the conditional operator.
7614/// AllowUserConversions is true if we should look at the conversion
7615/// functions of a class type, and AllowExplicitConversions if we
7616/// should also include the explicit conversion functions of a class
7617/// type.
7618void
7619BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7620 SourceLocation Loc,
7621 bool AllowUserConversions,
7622 bool AllowExplicitConversions,
7623 const Qualifiers &VisibleQuals) {
7624 // Only deal with canonical types.
7625 Ty = Context.getCanonicalType(Ty);
7626
7627 // Look through reference types; they aren't part of the type of an
7628 // expression for the purposes of conversions.
7629 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7630 Ty = RefTy->getPointeeType();
7631
7632 // If we're dealing with an array type, decay to the pointer.
7633 if (Ty->isArrayType())
7634 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7635
7636 // Otherwise, we don't care about qualifiers on the type.
7637 Ty = Ty.getLocalUnqualifiedType();
7638
7639 // Flag if we ever add a non-record type.
7640 const RecordType *TyRec = Ty->getAs<RecordType>();
7641 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7642
7643 // Flag if we encounter an arithmetic type.
7644 HasArithmeticOrEnumeralTypes =
7645 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7646
7647 if (Ty->isObjCIdType() || Ty->isObjCClassType())
7648 PointerTypes.insert(Ty);
7649 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7650 // Insert our type, and its more-qualified variants, into the set
7651 // of types.
7652 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7653 return;
7654 } else if (Ty->isMemberPointerType()) {
7655 // Member pointers are far easier, since the pointee can't be converted.
7656 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7657 return;
7658 } else if (Ty->isEnumeralType()) {
7659 HasArithmeticOrEnumeralTypes = true;
7660 EnumerationTypes.insert(Ty);
7661 } else if (Ty->isVectorType()) {
7662 // We treat vector types as arithmetic types in many contexts as an
7663 // extension.
7664 HasArithmeticOrEnumeralTypes = true;
7665 VectorTypes.insert(Ty);
7666 } else if (Ty->isNullPtrType()) {
7667 HasNullPtrType = true;
7668 } else if (AllowUserConversions && TyRec) {
7669 // No conversion functions in incomplete types.
7670 if (!SemaRef.isCompleteType(Loc, Ty))
7671 return;
7672
7673 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7674 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7675 if (isa<UsingShadowDecl>(D))
7676 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7677
7678 // Skip conversion function templates; they don't tell us anything
7679 // about which builtin types we can convert to.
7680 if (isa<FunctionTemplateDecl>(D))
7681 continue;
7682
7683 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7684 if (AllowExplicitConversions || !Conv->isExplicit()) {
7685 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7686 VisibleQuals);
7687 }
7688 }
7689 }
7690}
7691/// Helper function for adjusting address spaces for the pointer or reference
7692/// operands of builtin operators depending on the argument.
7693static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7694 Expr *Arg) {
7695 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7696}
7697
7698/// Helper function for AddBuiltinOperatorCandidates() that adds
7699/// the volatile- and non-volatile-qualified assignment operators for the
7700/// given type to the candidate set.
7701static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7702 QualType T,
7703 ArrayRef<Expr *> Args,
7704 OverloadCandidateSet &CandidateSet) {
7705 QualType ParamTypes[2];
7706
7707 // T& operator=(T&, T)
7708 ParamTypes[0] = S.Context.getLValueReferenceType(
7709 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7710 ParamTypes[1] = T;
7711 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7712 /*IsAssignmentOperator=*/true);
7713
7714 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7715 // volatile T& operator=(volatile T&, T)
7716 ParamTypes[0] = S.Context.getLValueReferenceType(
7717 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7718 Args[0]));
7719 ParamTypes[1] = T;
7720 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7721 /*IsAssignmentOperator=*/true);
7722 }
7723}
7724
7725/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7726/// if any, found in visible type conversion functions found in ArgExpr's type.
7727static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7728 Qualifiers VRQuals;
7729 const RecordType *TyRec;
7730 if (const MemberPointerType *RHSMPType =
7731 ArgExpr->getType()->getAs<MemberPointerType>())
7732 TyRec = RHSMPType->getClass()->getAs<RecordType>();
7733 else
7734 TyRec = ArgExpr->getType()->getAs<RecordType>();
7735 if (!TyRec) {
7736 // Just to be safe, assume the worst case.
7737 VRQuals.addVolatile();
7738 VRQuals.addRestrict();
7739 return VRQuals;
7740 }
7741
7742 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7743 if (!ClassDecl->hasDefinition())
7744 return VRQuals;
7745
7746 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7747 if (isa<UsingShadowDecl>(D))
7748 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7749 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7750 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7751 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7752 CanTy = ResTypeRef->getPointeeType();
7753 // Need to go down the pointer/mempointer chain and add qualifiers
7754 // as see them.
7755 bool done = false;
7756 while (!done) {
7757 if (CanTy.isRestrictQualified())
7758 VRQuals.addRestrict();
7759 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7760 CanTy = ResTypePtr->getPointeeType();
7761 else if (const MemberPointerType *ResTypeMPtr =
7762 CanTy->getAs<MemberPointerType>())
7763 CanTy = ResTypeMPtr->getPointeeType();
7764 else
7765 done = true;
7766 if (CanTy.isVolatileQualified())
7767 VRQuals.addVolatile();
7768 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7769 return VRQuals;
7770 }
7771 }
7772 }
7773 return VRQuals;
7774}
7775
7776namespace {
7777
7778/// Helper class to manage the addition of builtin operator overload
7779/// candidates. It provides shared state and utility methods used throughout
7780/// the process, as well as a helper method to add each group of builtin
7781/// operator overloads from the standard to a candidate set.
7782class BuiltinOperatorOverloadBuilder {
7783 // Common instance state available to all overload candidate addition methods.
7784 Sema &S;
7785 ArrayRef<Expr *> Args;
7786 Qualifiers VisibleTypeConversionsQuals;
7787 bool HasArithmeticOrEnumeralCandidateType;
7788 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7789 OverloadCandidateSet &CandidateSet;
7790
7791 static constexpr int ArithmeticTypesCap = 24;
7792 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7793
7794 // Define some indices used to iterate over the arithmetic types in
7795 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
7796 // types are that preserved by promotion (C++ [over.built]p2).
7797 unsigned FirstIntegralType,
7798 LastIntegralType;
7799 unsigned FirstPromotedIntegralType,
7800 LastPromotedIntegralType;
7801 unsigned FirstPromotedArithmeticType,
7802 LastPromotedArithmeticType;
7803 unsigned NumArithmeticTypes;
7804
7805 void InitArithmeticTypes() {
7806 // Start of promoted types.
7807 FirstPromotedArithmeticType = 0;
7808 ArithmeticTypes.push_back(S.Context.FloatTy);
7809 ArithmeticTypes.push_back(S.Context.DoubleTy);
7810 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7811 if (S.Context.getTargetInfo().hasFloat128Type())
7812 ArithmeticTypes.push_back(S.Context.Float128Ty);
7813
7814 // Start of integral types.
7815 FirstIntegralType = ArithmeticTypes.size();
7816 FirstPromotedIntegralType = ArithmeticTypes.size();
7817 ArithmeticTypes.push_back(S.Context.IntTy);
7818 ArithmeticTypes.push_back(S.Context.LongTy);
7819 ArithmeticTypes.push_back(S.Context.LongLongTy);
7820 if (S.Context.getTargetInfo().hasInt128Type())
7821 ArithmeticTypes.push_back(S.Context.Int128Ty);
7822 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7823 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7824 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7825 if (S.Context.getTargetInfo().hasInt128Type())
7826 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7827 LastPromotedIntegralType = ArithmeticTypes.size();
7828 LastPromotedArithmeticType = ArithmeticTypes.size();
7829 // End of promoted types.
7830
7831 ArithmeticTypes.push_back(S.Context.BoolTy);
7832 ArithmeticTypes.push_back(S.Context.CharTy);
7833 ArithmeticTypes.push_back(S.Context.WCharTy);
7834 if (S.Context.getLangOpts().Char8)
7835 ArithmeticTypes.push_back(S.Context.Char8Ty);
7836 ArithmeticTypes.push_back(S.Context.Char16Ty);
7837 ArithmeticTypes.push_back(S.Context.Char32Ty);
7838 ArithmeticTypes.push_back(S.Context.SignedCharTy);
7839 ArithmeticTypes.push_back(S.Context.ShortTy);
7840 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7841 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7842 LastIntegralType = ArithmeticTypes.size();
7843 NumArithmeticTypes = ArithmeticTypes.size();
7844 // End of integral types.
7845 // FIXME: What about complex? What about half?
7846
7847 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7848, __PRETTY_FUNCTION__))
7848 "Enough inline storage for all arithmetic types.")((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 7848, __PRETTY_FUNCTION__))
;
7849 }
7850
7851 /// Helper method to factor out the common pattern of adding overloads
7852 /// for '++' and '--' builtin operators.
7853 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7854 bool HasVolatile,
7855 bool HasRestrict) {
7856 QualType ParamTypes[2] = {
7857 S.Context.getLValueReferenceType(CandidateTy),
7858 S.Context.IntTy
7859 };
7860
7861 // Non-volatile version.
7862 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7863
7864 // Use a heuristic to reduce number of builtin candidates in the set:
7865 // add volatile version only if there are conversions to a volatile type.
7866 if (HasVolatile) {
7867 ParamTypes[0] =
7868 S.Context.getLValueReferenceType(
7869 S.Context.getVolatileType(CandidateTy));
7870 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7871 }
7872
7873 // Add restrict version only if there are conversions to a restrict type
7874 // and our candidate type is a non-restrict-qualified pointer.
7875 if (HasRestrict && CandidateTy->isAnyPointerType() &&
7876 !CandidateTy.isRestrictQualified()) {
7877 ParamTypes[0]
7878 = S.Context.getLValueReferenceType(
7879 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7880 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7881
7882 if (HasVolatile) {
7883 ParamTypes[0]
7884 = S.Context.getLValueReferenceType(
7885 S.Context.getCVRQualifiedType(CandidateTy,
7886 (Qualifiers::Volatile |
7887 Qualifiers::Restrict)));
7888 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7889 }
7890 }
7891
7892 }
7893
7894public:
7895 BuiltinOperatorOverloadBuilder(
7896 Sema &S, ArrayRef<Expr *> Args,
7897 Qualifiers VisibleTypeConversionsQuals,
7898 bool HasArithmeticOrEnumeralCandidateType,
7899 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7900 OverloadCandidateSet &CandidateSet)
7901 : S(S), Args(Args),
7902 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7903 HasArithmeticOrEnumeralCandidateType(
7904 HasArithmeticOrEnumeralCandidateType),
7905 CandidateTypes(CandidateTypes),
7906 CandidateSet(CandidateSet) {
7907
7908 InitArithmeticTypes();
7909 }
7910
7911 // Increment is deprecated for bool since C++17.
7912 //
7913 // C++ [over.built]p3:
7914 //
7915 // For every pair (T, VQ), where T is an arithmetic type other
7916 // than bool, and VQ is either volatile or empty, there exist
7917 // candidate operator functions of the form
7918 //
7919 // VQ T& operator++(VQ T&);
7920 // T operator++(VQ T&, int);
7921 //
7922 // C++ [over.built]p4:
7923 //
7924 // For every pair (T, VQ), where T is an arithmetic type other
7925 // than bool, and VQ is either volatile or empty, there exist
7926 // candidate operator functions of the form
7927 //
7928 // VQ T& operator--(VQ T&);
7929 // T operator--(VQ T&, int);
7930 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7931 if (!HasArithmeticOrEnumeralCandidateType)
7932 return;
7933
7934 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
7935 const auto TypeOfT = ArithmeticTypes[Arith];
7936 if (TypeOfT == S.Context.BoolTy) {
7937 if (Op == OO_MinusMinus)
7938 continue;
7939 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
7940 continue;
7941 }
7942 addPlusPlusMinusMinusStyleOverloads(
7943 TypeOfT,
7944 VisibleTypeConversionsQuals.hasVolatile(),
7945 VisibleTypeConversionsQuals.hasRestrict());
7946 }
7947 }
7948
7949 // C++ [over.built]p5:
7950 //
7951 // For every pair (T, VQ), where T is a cv-qualified or
7952 // cv-unqualified object type, and VQ is either volatile or
7953 // empty, there exist candidate operator functions of the form
7954 //
7955 // T*VQ& operator++(T*VQ&);
7956 // T*VQ& operator--(T*VQ&);
7957 // T* operator++(T*VQ&, int);
7958 // T* operator--(T*VQ&, int);
7959 void addPlusPlusMinusMinusPointerOverloads() {
7960 for (BuiltinCandidateTypeSet::iterator
7961 Ptr = CandidateTypes[0].pointer_begin(),
7962 PtrEnd = CandidateTypes[0].pointer_end();
7963 Ptr != PtrEnd; ++Ptr) {
7964 // Skip pointer types that aren't pointers to object types.
7965 if (!(*Ptr)->getPointeeType()->isObjectType())
7966 continue;
7967
7968 addPlusPlusMinusMinusStyleOverloads(*Ptr,
7969 (!(*Ptr).isVolatileQualified() &&
7970 VisibleTypeConversionsQuals.hasVolatile()),
7971 (!(*Ptr).isRestrictQualified() &&
7972 VisibleTypeConversionsQuals.hasRestrict()));
7973 }
7974 }
7975
7976 // C++ [over.built]p6:
7977 // For every cv-qualified or cv-unqualified object type T, there
7978 // exist candidate operator functions of the form
7979 //
7980 // T& operator*(T*);
7981 //
7982 // C++ [over.built]p7:
7983 // For every function type T that does not have cv-qualifiers or a
7984 // ref-qualifier, there exist candidate operator functions of the form
7985 // T& operator*(T*);
7986 void addUnaryStarPointerOverloads() {
7987 for (BuiltinCandidateTypeSet::iterator
7988 Ptr = CandidateTypes[0].pointer_begin(),
7989 PtrEnd = CandidateTypes[0].pointer_end();
7990 Ptr != PtrEnd; ++Ptr) {
7991 QualType ParamTy = *Ptr;
7992 QualType PointeeTy = ParamTy->getPointeeType();
7993 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7994 continue;
7995
7996 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7997 if (Proto->getMethodQuals() || Proto->getRefQualifier())
7998 continue;
7999
8000 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8001 }
8002 }
8003
8004 // C++ [over.built]p9:
8005 // For every promoted arithmetic type T, there exist candidate
8006 // operator functions of the form
8007 //
8008 // T operator+(T);
8009 // T operator-(T);
8010 void addUnaryPlusOrMinusArithmeticOverloads() {
8011 if (!HasArithmeticOrEnumeralCandidateType)
8012 return;
8013
8014 for (unsigned Arith = FirstPromotedArithmeticType;
8015 Arith < LastPromotedArithmeticType; ++Arith) {
8016 QualType ArithTy = ArithmeticTypes[Arith];
8017 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8018 }
8019
8020 // Extension: We also add these operators for vector types.
8021 for (BuiltinCandidateTypeSet::iterator
8022 Vec = CandidateTypes[0].vector_begin(),
8023 VecEnd = CandidateTypes[0].vector_end();
8024 Vec != VecEnd; ++Vec) {
8025 QualType VecTy = *Vec;
8026 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8027 }
8028 }
8029
8030 // C++ [over.built]p8:
8031 // For every type T, there exist candidate operator functions of
8032 // the form
8033 //
8034 // T* operator+(T*);
8035 void addUnaryPlusPointerOverloads() {
8036 for (BuiltinCandidateTypeSet::iterator
8037 Ptr = CandidateTypes[0].pointer_begin(),
8038 PtrEnd = CandidateTypes[0].pointer_end();
8039 Ptr != PtrEnd; ++Ptr) {
8040 QualType ParamTy = *Ptr;
8041 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8042 }
8043 }
8044
8045 // C++ [over.built]p10:
8046 // For every promoted integral type T, there exist candidate
8047 // operator functions of the form
8048 //
8049 // T operator~(T);
8050 void addUnaryTildePromotedIntegralOverloads() {
8051 if (!HasArithmeticOrEnumeralCandidateType)
8052 return;
8053
8054 for (unsigned Int = FirstPromotedIntegralType;
8055 Int < LastPromotedIntegralType; ++Int) {
8056 QualType IntTy = ArithmeticTypes[Int];
8057 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8058 }
8059
8060 // Extension: We also add this operator for vector types.
8061 for (BuiltinCandidateTypeSet::iterator
8062 Vec = CandidateTypes[0].vector_begin(),
8063 VecEnd = CandidateTypes[0].vector_end();
8064 Vec != VecEnd; ++Vec) {
8065 QualType VecTy = *Vec;
8066 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8067 }
8068 }
8069
8070 // C++ [over.match.oper]p16:
8071 // For every pointer to member type T or type std::nullptr_t, there
8072 // exist candidate operator functions of the form
8073 //
8074 // bool operator==(T,T);
8075 // bool operator!=(T,T);
8076 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8077 /// Set of (canonical) types that we've already handled.
8078 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8079
8080 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8081 for (BuiltinCandidateTypeSet::iterator
8082 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8083 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8084 MemPtr != MemPtrEnd;
8085 ++MemPtr) {
8086 // Don't add the same builtin candidate twice.
8087 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8088 continue;
8089
8090 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8091 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8092 }
8093
8094 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8095 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8096 if (AddedTypes.insert(NullPtrTy).second) {
8097 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8098 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8099 }
8100 }
8101 }
8102 }
8103
8104 // C++ [over.built]p15:
8105 //
8106 // For every T, where T is an enumeration type or a pointer type,
8107 // there exist candidate operator functions of the form
8108 //
8109 // bool operator<(T, T);
8110 // bool operator>(T, T);
8111 // bool operator<=(T, T);
8112 // bool operator>=(T, T);
8113 // bool operator==(T, T);
8114 // bool operator!=(T, T);
8115 // R operator<=>(T, T)
8116 void addGenericBinaryPointerOrEnumeralOverloads() {
8117 // C++ [over.match.oper]p3:
8118 // [...]the built-in candidates include all of the candidate operator
8119 // functions defined in 13.6 that, compared to the given operator, [...]
8120 // do not have the same parameter-type-list as any non-template non-member
8121 // candidate.
8122 //
8123 // Note that in practice, this only affects enumeration types because there
8124 // aren't any built-in candidates of record type, and a user-defined operator
8125 // must have an operand of record or enumeration type. Also, the only other
8126 // overloaded operator with enumeration arguments, operator=,
8127 // cannot be overloaded for enumeration types, so this is the only place
8128 // where we must suppress candidates like this.
8129 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8130 UserDefinedBinaryOperators;
8131
8132 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8133 if (CandidateTypes[ArgIdx].enumeration_begin() !=
8134 CandidateTypes[ArgIdx].enumeration_end()) {
8135 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8136 CEnd = CandidateSet.end();
8137 C != CEnd; ++C) {
8138 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8139 continue;
8140
8141 if (C->Function->isFunctionTemplateSpecialization())
8142 continue;
8143
8144 QualType FirstParamType =
8145 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8146 QualType SecondParamType =
8147 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8148
8149 // Skip if either parameter isn't of enumeral type.
8150 if (!FirstParamType->isEnumeralType() ||
8151 !SecondParamType->isEnumeralType())
8152 continue;
8153
8154 // Add this operator to the set of known user-defined operators.
8155 UserDefinedBinaryOperators.insert(
8156 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8157 S.Context.getCanonicalType(SecondParamType)));
8158 }
8159 }
8160 }
8161
8162 /// Set of (canonical) types that we've already handled.
8163 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8164
8165 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8166 for (BuiltinCandidateTypeSet::iterator
8167 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8168 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8169 Ptr != PtrEnd; ++Ptr) {
8170 // Don't add the same builtin candidate twice.
8171 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8172 continue;
8173
8174 QualType ParamTypes[2] = { *Ptr, *Ptr };
8175 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8176 }
8177 for (BuiltinCandidateTypeSet::iterator
8178 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8179 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8180 Enum != EnumEnd; ++Enum) {
8181 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8182
8183 // Don't add the same builtin candidate twice, or if a user defined
8184 // candidate exists.
8185 if (!AddedTypes.insert(CanonType).second ||
8186 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8187 CanonType)))
8188 continue;
8189 QualType ParamTypes[2] = { *Enum, *Enum };
8190 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8191 }
8192 }
8193 }
8194
8195 // C++ [over.built]p13:
8196 //
8197 // For every cv-qualified or cv-unqualified object type T
8198 // there exist candidate operator functions of the form
8199 //
8200 // T* operator+(T*, ptrdiff_t);
8201 // T& operator[](T*, ptrdiff_t); [BELOW]
8202 // T* operator-(T*, ptrdiff_t);
8203 // T* operator+(ptrdiff_t, T*);
8204 // T& operator[](ptrdiff_t, T*); [BELOW]
8205 //
8206 // C++ [over.built]p14:
8207 //
8208 // For every T, where T is a pointer to object type, there
8209 // exist candidate operator functions of the form
8210 //
8211 // ptrdiff_t operator-(T, T);
8212 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8213 /// Set of (canonical) types that we've already handled.
8214 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8215
8216 for (int Arg = 0; Arg < 2; ++Arg) {
8217 QualType AsymmetricParamTypes[2] = {
8218 S.Context.getPointerDiffType(),
8219 S.Context.getPointerDiffType(),
8220 };
8221 for (BuiltinCandidateTypeSet::iterator
8222 Ptr = CandidateTypes[Arg].pointer_begin(),
8223 PtrEnd = CandidateTypes[Arg].pointer_end();
8224 Ptr != PtrEnd; ++Ptr) {
8225 QualType PointeeTy = (*Ptr)->getPointeeType();
8226 if (!PointeeTy->isObjectType())
8227 continue;
8228
8229 AsymmetricParamTypes[Arg] = *Ptr;
8230 if (Arg == 0 || Op == OO_Plus) {
8231 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8232 // T* operator+(ptrdiff_t, T*);
8233 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8234 }
8235 if (Op == OO_Minus) {
8236 // ptrdiff_t operator-(T, T);
8237 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8238 continue;
8239
8240 QualType ParamTypes[2] = { *Ptr, *Ptr };
8241 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8242 }
8243 }
8244 }
8245 }
8246
8247 // C++ [over.built]p12:
8248 //
8249 // For every pair of promoted arithmetic types L and R, there
8250 // exist candidate operator functions of the form
8251 //
8252 // LR operator*(L, R);
8253 // LR operator/(L, R);
8254 // LR operator+(L, R);
8255 // LR operator-(L, R);
8256 // bool operator<(L, R);
8257 // bool operator>(L, R);
8258 // bool operator<=(L, R);
8259 // bool operator>=(L, R);
8260 // bool operator==(L, R);
8261 // bool operator!=(L, R);
8262 //
8263 // where LR is the result of the usual arithmetic conversions
8264 // between types L and R.
8265 //
8266 // C++ [over.built]p24:
8267 //
8268 // For every pair of promoted arithmetic types L and R, there exist
8269 // candidate operator functions of the form
8270 //
8271 // LR operator?(bool, L, R);
8272 //
8273 // where LR is the result of the usual arithmetic conversions
8274 // between types L and R.
8275 // Our candidates ignore the first parameter.
8276 void addGenericBinaryArithmeticOverloads() {
8277 if (!HasArithmeticOrEnumeralCandidateType)
8278 return;
8279
8280 for (unsigned Left = FirstPromotedArithmeticType;
8281 Left < LastPromotedArithmeticType; ++Left) {
8282 for (unsigned Right = FirstPromotedArithmeticType;
8283 Right < LastPromotedArithmeticType; ++Right) {
8284 QualType LandR[2] = { ArithmeticTypes[Left],
8285 ArithmeticTypes[Right] };
8286 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8287 }
8288 }
8289
8290 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8291 // conditional operator for vector types.
8292 for (BuiltinCandidateTypeSet::iterator
8293 Vec1 = CandidateTypes[0].vector_begin(),
8294 Vec1End = CandidateTypes[0].vector_end();
8295 Vec1 != Vec1End; ++Vec1) {
8296 for (BuiltinCandidateTypeSet::iterator
8297 Vec2 = CandidateTypes[1].vector_begin(),
8298 Vec2End = CandidateTypes[1].vector_end();
8299 Vec2 != Vec2End; ++Vec2) {
8300 QualType LandR[2] = { *Vec1, *Vec2 };
8301 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8302 }
8303 }
8304 }
8305
8306 // C++2a [over.built]p14:
8307 //
8308 // For every integral type T there exists a candidate operator function
8309 // of the form
8310 //
8311 // std::strong_ordering operator<=>(T, T)
8312 //
8313 // C++2a [over.built]p15:
8314 //
8315 // For every pair of floating-point types L and R, there exists a candidate
8316 // operator function of the form
8317 //
8318 // std::partial_ordering operator<=>(L, R);
8319 //
8320 // FIXME: The current specification for integral types doesn't play nice with
8321 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8322 // comparisons. Under the current spec this can lead to ambiguity during
8323 // overload resolution. For example:
8324 //
8325 // enum A : int {a};
8326 // auto x = (a <=> (long)42);
8327 //
8328 // error: call is ambiguous for arguments 'A' and 'long'.
8329 // note: candidate operator<=>(int, int)
8330 // note: candidate operator<=>(long, long)
8331 //
8332 // To avoid this error, this function deviates from the specification and adds
8333 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8334 // arithmetic types (the same as the generic relational overloads).
8335 //
8336 // For now this function acts as a placeholder.
8337 void addThreeWayArithmeticOverloads() {
8338 addGenericBinaryArithmeticOverloads();
8339 }
8340
8341 // C++ [over.built]p17:
8342 //
8343 // For every pair of promoted integral types L and R, there
8344 // exist candidate operator functions of the form
8345 //
8346 // LR operator%(L, R);
8347 // LR operator&(L, R);
8348 // LR operator^(L, R);
8349 // LR operator|(L, R);
8350 // L operator<<(L, R);
8351 // L operator>>(L, R);
8352 //
8353 // where LR is the result of the usual arithmetic conversions
8354 // between types L and R.
8355 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8356 if (!HasArithmeticOrEnumeralCandidateType)
8357 return;
8358
8359 for (unsigned Left = FirstPromotedIntegralType;
8360 Left < LastPromotedIntegralType; ++Left) {
8361 for (unsigned Right = FirstPromotedIntegralType;
8362 Right < LastPromotedIntegralType; ++Right) {
8363 QualType LandR[2] = { ArithmeticTypes[Left],
8364 ArithmeticTypes[Right] };
8365 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8366 }
8367 }
8368 }
8369
8370 // C++ [over.built]p20:
8371 //
8372 // For every pair (T, VQ), where T is an enumeration or
8373 // pointer to member type and VQ is either volatile or
8374 // empty, there exist candidate operator functions of the form
8375 //
8376 // VQ T& operator=(VQ T&, T);
8377 void addAssignmentMemberPointerOrEnumeralOverloads() {
8378 /// Set of (canonical) types that we've already handled.
8379 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8380
8381 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8382 for (BuiltinCandidateTypeSet::iterator
8383 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8384 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8385 Enum != EnumEnd; ++Enum) {
8386 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8387 continue;
8388
8389 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8390 }
8391
8392 for (BuiltinCandidateTypeSet::iterator
8393 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8394 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8395 MemPtr != MemPtrEnd; ++MemPtr) {
8396 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8397 continue;
8398
8399 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8400 }
8401 }
8402 }
8403
8404 // C++ [over.built]p19:
8405 //
8406 // For every pair (T, VQ), where T is any type and VQ is either
8407 // volatile or empty, there exist candidate operator functions
8408 // of the form
8409 //
8410 // T*VQ& operator=(T*VQ&, T*);
8411 //
8412 // C++ [over.built]p21:
8413 //
8414 // For every pair (T, VQ), where T is a cv-qualified or
8415 // cv-unqualified object type and VQ is either volatile or
8416 // empty, there exist candidate operator functions of the form
8417 //
8418 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8419 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8420 void addAssignmentPointerOverloads(bool isEqualOp) {
8421 /// Set of (canonical) types that we've already handled.
8422 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8423
8424 for (BuiltinCandidateTypeSet::iterator
8425 Ptr = CandidateTypes[0].pointer_begin(),
8426 PtrEnd = CandidateTypes[0].pointer_end();
8427 Ptr != PtrEnd; ++Ptr) {
8428 // If this is operator=, keep track of the builtin candidates we added.
8429 if (isEqualOp)
8430 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8431 else if (!(*Ptr)->getPointeeType()->isObjectType())
8432 continue;
8433
8434 // non-volatile version
8435 QualType ParamTypes[2] = {
8436 S.Context.getLValueReferenceType(*Ptr),
8437 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8438 };
8439 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8440 /*IsAssignmentOperator=*/ isEqualOp);
8441
8442 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8443 VisibleTypeConversionsQuals.hasVolatile();
8444 if (NeedVolatile) {
8445 // volatile version
8446 ParamTypes[0] =
8447 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8448 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8449 /*IsAssignmentOperator=*/isEqualOp);
8450 }
8451
8452 if (!(*Ptr).isRestrictQualified() &&
8453 VisibleTypeConversionsQuals.hasRestrict()) {
8454 // restrict version
8455 ParamTypes[0]
8456 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8457 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8458 /*IsAssignmentOperator=*/isEqualOp);
8459
8460 if (NeedVolatile) {
8461 // volatile restrict version
8462 ParamTypes[0]
8463 = S.Context.getLValueReferenceType(
8464 S.Context.getCVRQualifiedType(*Ptr,
8465 (Qualifiers::Volatile |
8466 Qualifiers::Restrict)));
8467 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8468 /*IsAssignmentOperator=*/isEqualOp);
8469 }
8470 }
8471 }
8472
8473 if (isEqualOp) {
8474 for (BuiltinCandidateTypeSet::iterator
8475 Ptr = CandidateTypes[1].pointer_begin(),
8476 PtrEnd = CandidateTypes[1].pointer_end();
8477 Ptr != PtrEnd; ++Ptr) {
8478 // Make sure we don't add the same candidate twice.
8479 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8480 continue;
8481
8482 QualType ParamTypes[2] = {
8483 S.Context.getLValueReferenceType(*Ptr),
8484 *Ptr,
8485 };
8486
8487 // non-volatile version
8488 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8489 /*IsAssignmentOperator=*/true);
8490
8491 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8492 VisibleTypeConversionsQuals.hasVolatile();
8493 if (NeedVolatile) {
8494 // volatile version
8495 ParamTypes[0] =
8496 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8497 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8498 /*IsAssignmentOperator=*/true);
8499 }
8500
8501 if (!(*Ptr).isRestrictQualified() &&
8502 VisibleTypeConversionsQuals.hasRestrict()) {
8503 // restrict version
8504 ParamTypes[0]
8505 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8506 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8507 /*IsAssignmentOperator=*/true);
8508
8509 if (NeedVolatile) {
8510 // volatile restrict version
8511 ParamTypes[0]
8512 = S.Context.getLValueReferenceType(
8513 S.Context.getCVRQualifiedType(*Ptr,
8514 (Qualifiers::Volatile |
8515 Qualifiers::Restrict)));
8516 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8517 /*IsAssignmentOperator=*/true);
8518 }
8519 }
8520 }
8521 }
8522 }
8523
8524 // C++ [over.built]p18:
8525 //
8526 // For every triple (L, VQ, R), where L is an arithmetic type,
8527 // VQ is either volatile or empty, and R is a promoted
8528 // arithmetic type, there exist candidate operator functions of
8529 // the form
8530 //
8531 // VQ L& operator=(VQ L&, R);
8532 // VQ L& operator*=(VQ L&, R);
8533 // VQ L& operator/=(VQ L&, R);
8534 // VQ L& operator+=(VQ L&, R);
8535 // VQ L& operator-=(VQ L&, R);
8536 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8537 if (!HasArithmeticOrEnumeralCandidateType)
8538 return;
8539
8540 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8541 for (unsigned Right = FirstPromotedArithmeticType;
8542 Right < LastPromotedArithmeticType; ++Right) {
8543 QualType ParamTypes[2];
8544 ParamTypes[1] = ArithmeticTypes[Right];
8545 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8546 S, ArithmeticTypes[Left], Args[0]);
8547 // Add this built-in operator as a candidate (VQ is empty).
8548 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8549 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8550 /*IsAssignmentOperator=*/isEqualOp);
8551
8552 // Add this built-in operator as a candidate (VQ is 'volatile').
8553 if (VisibleTypeConversionsQuals.hasVolatile()) {
8554 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8555 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8556 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8557 /*IsAssignmentOperator=*/isEqualOp);
8558 }
8559 }
8560 }
8561
8562 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8563 for (BuiltinCandidateTypeSet::iterator
8564 Vec1 = CandidateTypes[0].vector_begin(),
8565 Vec1End = CandidateTypes[0].vector_end();
8566 Vec1 != Vec1End; ++Vec1) {
8567 for (BuiltinCandidateTypeSet::iterator
8568 Vec2 = CandidateTypes[1].vector_begin(),
8569 Vec2End = CandidateTypes[1].vector_end();
8570 Vec2 != Vec2End; ++Vec2) {
8571 QualType ParamTypes[2];
8572 ParamTypes[1] = *Vec2;
8573 // Add this built-in operator as a candidate (VQ is empty).
8574 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8575 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8576 /*IsAssignmentOperator=*/isEqualOp);
8577
8578 // Add this built-in operator as a candidate (VQ is 'volatile').
8579 if (VisibleTypeConversionsQuals.hasVolatile()) {
8580 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8581 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8582 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8583 /*IsAssignmentOperator=*/isEqualOp);
8584 }
8585 }
8586 }
8587 }
8588
8589 // C++ [over.built]p22:
8590 //
8591 // For every triple (L, VQ, R), where L is an integral type, VQ
8592 // is either volatile or empty, and R is a promoted integral
8593 // type, there exist candidate operator functions of the form
8594 //
8595 // VQ L& operator%=(VQ L&, R);
8596 // VQ L& operator<<=(VQ L&, R);
8597 // VQ L& operator>>=(VQ L&, R);
8598 // VQ L& operator&=(VQ L&, R);
8599 // VQ L& operator^=(VQ L&, R);
8600 // VQ L& operator|=(VQ L&, R);
8601 void addAssignmentIntegralOverloads() {
8602 if (!HasArithmeticOrEnumeralCandidateType)
8603 return;
8604
8605 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8606 for (unsigned Right = FirstPromotedIntegralType;
8607 Right < LastPromotedIntegralType; ++Right) {
8608 QualType ParamTypes[2];
8609 ParamTypes[1] = ArithmeticTypes[Right];
8610 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8611 S, ArithmeticTypes[Left], Args[0]);
8612 // Add this built-in operator as a candidate (VQ is empty).
8613 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8614 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8615 if (VisibleTypeConversionsQuals.hasVolatile()) {
8616 // Add this built-in operator as a candidate (VQ is 'volatile').
8617 ParamTypes[0] = LeftBaseTy;
8618 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8619 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8620 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8621 }
8622 }
8623 }
8624 }
8625
8626 // C++ [over.operator]p23:
8627 //
8628 // There also exist candidate operator functions of the form
8629 //
8630 // bool operator!(bool);
8631 // bool operator&&(bool, bool);
8632 // bool operator||(bool, bool);
8633 void addExclaimOverload() {
8634 QualType ParamTy = S.Context.BoolTy;
8635 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8636 /*IsAssignmentOperator=*/false,
8637 /*NumContextualBoolArguments=*/1);
8638 }
8639 void addAmpAmpOrPipePipeOverload() {
8640 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8641 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8642 /*IsAssignmentOperator=*/false,
8643 /*NumContextualBoolArguments=*/2);
8644 }
8645
8646 // C++ [over.built]p13:
8647 //
8648 // For every cv-qualified or cv-unqualified object type T there
8649 // exist candidate operator functions of the form
8650 //
8651 // T* operator+(T*, ptrdiff_t); [ABOVE]
8652 // T& operator[](T*, ptrdiff_t);
8653 // T* operator-(T*, ptrdiff_t); [ABOVE]
8654 // T* operator+(ptrdiff_t, T*); [ABOVE]
8655 // T& operator[](ptrdiff_t, T*);
8656 void addSubscriptOverloads() {
8657 for (BuiltinCandidateTypeSet::iterator
8658 Ptr = CandidateTypes[0].pointer_begin(),
8659 PtrEnd = CandidateTypes[0].pointer_end();
8660 Ptr != PtrEnd; ++Ptr) {
8661 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8662 QualType PointeeType = (*Ptr)->getPointeeType();
8663 if (!PointeeType->isObjectType())
8664 continue;
8665
8666 // T& operator[](T*, ptrdiff_t)
8667 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8668 }
8669
8670 for (BuiltinCandidateTypeSet::iterator
8671 Ptr = CandidateTypes[1].pointer_begin(),
8672 PtrEnd = CandidateTypes[1].pointer_end();
8673 Ptr != PtrEnd; ++Ptr) {
8674 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8675 QualType PointeeType = (*Ptr)->getPointeeType();
8676 if (!PointeeType->isObjectType())
8677 continue;
8678
8679 // T& operator[](ptrdiff_t, T*)
8680 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8681 }
8682 }
8683
8684 // C++ [over.built]p11:
8685 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8686 // C1 is the same type as C2 or is a derived class of C2, T is an object
8687 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8688 // there exist candidate operator functions of the form
8689 //
8690 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8691 //
8692 // where CV12 is the union of CV1 and CV2.
8693 void addArrowStarOverloads() {
8694 for (BuiltinCandidateTypeSet::iterator
8695 Ptr = CandidateTypes[0].pointer_begin(),
8696 PtrEnd = CandidateTypes[0].pointer_end();
8697 Ptr != PtrEnd; ++Ptr) {
8698 QualType C1Ty = (*Ptr);
8699 QualType C1;
8700 QualifierCollector Q1;
8701 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8702 if (!isa<RecordType>(C1))
8703 continue;
8704 // heuristic to reduce number of builtin candidates in the set.
8705 // Add volatile/restrict version only if there are conversions to a
8706 // volatile/restrict type.
8707 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8708 continue;
8709 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8710 continue;
8711 for (BuiltinCandidateTypeSet::iterator
8712 MemPtr = CandidateTypes[1].member_pointer_begin(),
8713 MemPtrEnd = CandidateTypes[1].member_pointer_end();
8714 MemPtr != MemPtrEnd; ++MemPtr) {
8715 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8716 QualType C2 = QualType(mptr->getClass(), 0);
8717 C2 = C2.getUnqualifiedType();
8718 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8719 break;
8720 QualType ParamTypes[2] = { *Ptr, *MemPtr };
8721 // build CV12 T&
8722 QualType T = mptr->getPointeeType();
8723 if (!VisibleTypeConversionsQuals.hasVolatile() &&
8724 T.isVolatileQualified())
8725 continue;
8726 if (!VisibleTypeConversionsQuals.hasRestrict() &&
8727 T.isRestrictQualified())
8728 continue;
8729 T = Q1.apply(S.Context, T);
8730 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8731 }
8732 }
8733 }
8734
8735 // Note that we don't consider the first argument, since it has been
8736 // contextually converted to bool long ago. The candidates below are
8737 // therefore added as binary.
8738 //
8739 // C++ [over.built]p25:
8740 // For every type T, where T is a pointer, pointer-to-member, or scoped
8741 // enumeration type, there exist candidate operator functions of the form
8742 //
8743 // T operator?(bool, T, T);
8744 //
8745 void addConditionalOperatorOverloads() {
8746 /// Set of (canonical) types that we've already handled.
8747 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8748
8749 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8750 for (BuiltinCandidateTypeSet::iterator
8751 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8752 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8753 Ptr != PtrEnd; ++Ptr) {
8754 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8755 continue;
8756
8757 QualType ParamTypes[2] = { *Ptr, *Ptr };
8758 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8759 }
8760
8761 for (BuiltinCandidateTypeSet::iterator
8762 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8763 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8764 MemPtr != MemPtrEnd; ++MemPtr) {
8765 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8766 continue;
8767
8768 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8769 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8770 }
8771
8772 if (S.getLangOpts().CPlusPlus11) {
8773 for (BuiltinCandidateTypeSet::iterator
8774 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8775 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8776 Enum != EnumEnd; ++Enum) {
8777 if (!(*Enum)->castAs<EnumType>()->getDecl()->isScoped())
8778 continue;
8779
8780 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8781 continue;
8782
8783 QualType ParamTypes[2] = { *Enum, *Enum };
8784 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8785 }
8786 }
8787 }
8788 }
8789};
8790
8791} // end anonymous namespace
8792
8793/// AddBuiltinOperatorCandidates - Add the appropriate built-in
8794/// operator overloads to the candidate set (C++ [over.built]), based
8795/// on the operator @p Op and the arguments given. For example, if the
8796/// operator is a binary '+', this routine might add "int
8797/// operator+(int, int)" to cover integer addition.
8798void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8799 SourceLocation OpLoc,
8800 ArrayRef<Expr *> Args,
8801 OverloadCandidateSet &CandidateSet) {
8802 // Find all of the types that the arguments can convert to, but only
8803 // if the operator we're looking at has built-in operator candidates
8804 // that make use of these types. Also record whether we encounter non-record
8805 // candidate types or either arithmetic or enumeral candidate types.
8806 Qualifiers VisibleTypeConversionsQuals;
8807 VisibleTypeConversionsQuals.addConst();
8808 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8809 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8810
8811 bool HasNonRecordCandidateType = false;
8812 bool HasArithmeticOrEnumeralCandidateType = false;
8813 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8814 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8815 CandidateTypes.emplace_back(*this);
8816 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8817 OpLoc,
8818 true,
8819 (Op == OO_Exclaim ||
8820 Op == OO_AmpAmp ||
8821 Op == OO_PipePipe),
8822 VisibleTypeConversionsQuals);
8823 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8824 CandidateTypes[ArgIdx].hasNonRecordTypes();
8825 HasArithmeticOrEnumeralCandidateType =
8826 HasArithmeticOrEnumeralCandidateType ||
8827 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8828 }
8829
8830 // Exit early when no non-record types have been added to the candidate set
8831 // for any of the arguments to the operator.
8832 //
8833 // We can't exit early for !, ||, or &&, since there we have always have
8834 // 'bool' overloads.
8835 if (!HasNonRecordCandidateType &&
8836 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8837 return;
8838
8839 // Setup an object to manage the common state for building overloads.
8840 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8841 VisibleTypeConversionsQuals,
8842 HasArithmeticOrEnumeralCandidateType,
8843 CandidateTypes, CandidateSet);
8844
8845 // Dispatch over the operation to add in only those overloads which apply.
8846 switch (Op) {
8847 case OO_None:
8848 case NUM_OVERLOADED_OPERATORS:
8849 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 8849)
;
8850
8851 case OO_New:
8852 case OO_Delete:
8853 case OO_Array_New:
8854 case OO_Array_Delete:
8855 case OO_Call:
8856 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 8857)
8857 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 8857)
;
8858
8859 case OO_Comma:
8860 case OO_Arrow:
8861 case OO_Coawait:
8862 // C++ [over.match.oper]p3:
8863 // -- For the operator ',', the unary operator '&', the
8864 // operator '->', or the operator 'co_await', the
8865 // built-in candidates set is empty.
8866 break;
8867
8868 case OO_Plus: // '+' is either unary or binary
8869 if (Args.size() == 1)
8870 OpBuilder.addUnaryPlusPointerOverloads();
8871 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8872
8873 case OO_Minus: // '-' is either unary or binary
8874 if (Args.size() == 1) {
8875 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8876 } else {
8877 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8878 OpBuilder.addGenericBinaryArithmeticOverloads();
8879 }
8880 break;
8881
8882 case OO_Star: // '*' is either unary or binary
8883 if (Args.size() == 1)
8884 OpBuilder.addUnaryStarPointerOverloads();
8885 else
8886 OpBuilder.addGenericBinaryArithmeticOverloads();
8887 break;
8888
8889 case OO_Slash:
8890 OpBuilder.addGenericBinaryArithmeticOverloads();
8891 break;
8892
8893 case OO_PlusPlus:
8894 case OO_MinusMinus:
8895 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8896 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8897 break;
8898
8899 case OO_EqualEqual:
8900 case OO_ExclaimEqual:
8901 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8902 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8903
8904 case OO_Less:
8905 case OO_Greater:
8906 case OO_LessEqual:
8907 case OO_GreaterEqual:
8908 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8909 OpBuilder.addGenericBinaryArithmeticOverloads();
8910 break;
8911
8912 case OO_Spaceship:
8913 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8914 OpBuilder.addThreeWayArithmeticOverloads();
8915 break;
8916
8917 case OO_Percent:
8918 case OO_Caret:
8919 case OO_Pipe:
8920 case OO_LessLess:
8921 case OO_GreaterGreater:
8922 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8923 break;
8924
8925 case OO_Amp: // '&' is either unary or binary
8926 if (Args.size() == 1)
8927 // C++ [over.match.oper]p3:
8928 // -- For the operator ',', the unary operator '&', or the
8929 // operator '->', the built-in candidates set is empty.
8930 break;
8931
8932 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8933 break;
8934
8935 case OO_Tilde:
8936 OpBuilder.addUnaryTildePromotedIntegralOverloads();
8937 break;
8938
8939 case OO_Equal:
8940 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8941 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8942
8943 case OO_PlusEqual:
8944 case OO_MinusEqual:
8945 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8946 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8947
8948 case OO_StarEqual:
8949 case OO_SlashEqual:
8950 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8951 break;
8952
8953 case OO_PercentEqual:
8954 case OO_LessLessEqual:
8955 case OO_GreaterGreaterEqual:
8956 case OO_AmpEqual:
8957 case OO_CaretEqual:
8958 case OO_PipeEqual:
8959 OpBuilder.addAssignmentIntegralOverloads();
8960 break;
8961
8962 case OO_Exclaim:
8963 OpBuilder.addExclaimOverload();
8964 break;
8965
8966 case OO_AmpAmp:
8967 case OO_PipePipe:
8968 OpBuilder.addAmpAmpOrPipePipeOverload();
8969 break;
8970
8971 case OO_Subscript:
8972 OpBuilder.addSubscriptOverloads();
8973 break;
8974
8975 case OO_ArrowStar:
8976 OpBuilder.addArrowStarOverloads();
8977 break;
8978
8979 case OO_Conditional:
8980 OpBuilder.addConditionalOperatorOverloads();
8981 OpBuilder.addGenericBinaryArithmeticOverloads();
8982 break;
8983 }
8984}
8985
8986/// Add function candidates found via argument-dependent lookup
8987/// to the set of overloading candidates.
8988///
8989/// This routine performs argument-dependent name lookup based on the
8990/// given function name (which may also be an operator name) and adds
8991/// all of the overload candidates found by ADL to the overload
8992/// candidate set (C++ [basic.lookup.argdep]).
8993void
8994Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8995 SourceLocation Loc,
8996 ArrayRef<Expr *> Args,
8997 TemplateArgumentListInfo *ExplicitTemplateArgs,
8998 OverloadCandidateSet& CandidateSet,
8999 bool PartialOverloading) {
9000 ADLResult Fns;
9001
9002 // FIXME: This approach for uniquing ADL results (and removing
9003 // redundant candidates from the set) relies on pointer-equality,
9004 // which means we need to key off the canonical decl. However,
9005 // always going back to the canonical decl might not get us the
9006 // right set of default arguments. What default arguments are
9007 // we supposed to consider on ADL candidates, anyway?
9008
9009 // FIXME: Pass in the explicit template arguments?
9010 ArgumentDependentLookup(Name, Loc, Args, Fns);
9011
9012 // Erase all of the candidates we already knew about.
9013 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9014 CandEnd = CandidateSet.end();
9015 Cand != CandEnd; ++Cand)
9016 if (Cand->Function) {
9017 Fns.erase(Cand->Function);
9018 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9019 Fns.erase(FunTmpl);
9020 }
9021
9022 // For each of the ADL candidates we found, add it to the overload
9023 // set.
9024 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9025 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9026
9027 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9028 if (ExplicitTemplateArgs)
9029 continue;
9030
9031 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9032 /*SuppressUserConversions=*/false, PartialOverloading,
9033 /*AllowExplicit*/ true,
9034 /*AllowExplicitConversions*/ false,
9035 ADLCallKind::UsesADL);
9036 } else {
9037 AddTemplateOverloadCandidate(
9038 cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9039 CandidateSet,
9040 /*SuppressUserConversions=*/false, PartialOverloading,
9041 /*AllowExplicit*/true, ADLCallKind::UsesADL);
9042 }
9043 }
9044}
9045
9046namespace {
9047enum class Comparison { Equal, Better, Worse };
9048}
9049
9050/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9051/// overload resolution.
9052///
9053/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9054/// Cand1's first N enable_if attributes have precisely the same conditions as
9055/// Cand2's first N enable_if attributes (where N = the number of enable_if
9056/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9057///
9058/// Note that you can have a pair of candidates such that Cand1's enable_if
9059/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9060/// worse than Cand1's.
9061static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9062 const FunctionDecl *Cand2) {
9063 // Common case: One (or both) decls don't have enable_if attrs.
9064 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9065 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9066 if (!Cand1Attr || !Cand2Attr) {
9067 if (Cand1Attr == Cand2Attr)
9068 return Comparison::Equal;
9069 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9070 }
9071
9072 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9073 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9074
9075 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9076 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9077 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9078 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9079
9080 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9081 // has fewer enable_if attributes than Cand2, and vice versa.
9082 if (!Cand1A)
9083 return Comparison::Worse;
9084 if (!Cand2A)
9085 return Comparison::Better;
9086
9087 Cand1ID.clear();
9088 Cand2ID.clear();
9089
9090 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9091 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9092 if (Cand1ID != Cand2ID)
9093 return Comparison::Worse;
9094 }
9095
9096 return Comparison::Equal;
9097}
9098
9099static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9100 const OverloadCandidate &Cand2) {
9101 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9102 !Cand2.Function->isMultiVersion())
9103 return false;
9104
9105 // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9106 // is obviously better.
9107 if (Cand1.Function->isInvalidDecl()) return false;
9108 if (Cand2.Function->isInvalidDecl()) return true;
9109
9110 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9111 // cpu_dispatch, else arbitrarily based on the identifiers.
9112 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9113 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9114 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9115 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9116
9117 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9118 return false;
9119
9120 if (Cand1CPUDisp && !Cand2CPUDisp)
9121 return true;
9122 if (Cand2CPUDisp && !Cand1CPUDisp)
9123 return false;
9124
9125 if (Cand1CPUSpec && Cand2CPUSpec) {
9126 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9127 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9128
9129 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9130 FirstDiff = std::mismatch(
9131 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9132 Cand2CPUSpec->cpus_begin(),
9133 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9134 return LHS->getName() == RHS->getName();
9135 });
9136
9137 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9139, __PRETTY_FUNCTION__))
9138 "Two different cpu-specific versions should not have the same "((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9139, __PRETTY_FUNCTION__))
9139 "identifier list, otherwise they'd be the same decl!")((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9139, __PRETTY_FUNCTION__))
;
9140 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9141 }
9142 llvm_unreachable("No way to get here unless both had cpu_dispatch")::llvm::llvm_unreachable_internal("No way to get here unless both had cpu_dispatch"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9142)
;
9143}
9144
9145/// isBetterOverloadCandidate - Determines whether the first overload
9146/// candidate is a better candidate than the second (C++ 13.3.3p1).
9147bool clang::isBetterOverloadCandidate(
9148 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9149 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9150 // Define viable functions to be better candidates than non-viable
9151 // functions.
9152 if (!Cand2.Viable)
9153 return Cand1.Viable;
9154 else if (!Cand1.Viable)
9155 return false;
9156
9157 // C++ [over.match.best]p1:
9158 //
9159 // -- if F is a static member function, ICS1(F) is defined such
9160 // that ICS1(F) is neither better nor worse than ICS1(G) for
9161 // any function G, and, symmetrically, ICS1(G) is neither
9162 // better nor worse than ICS1(F).
9163 unsigned StartArg = 0;
9164 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9165 StartArg = 1;
9166
9167 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9168 // We don't allow incompatible pointer conversions in C++.
9169 if (!S.getLangOpts().CPlusPlus)
9170 return ICS.isStandard() &&
9171 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9172
9173 // The only ill-formed conversion we allow in C++ is the string literal to
9174 // char* conversion, which is only considered ill-formed after C++11.
9175 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9176 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9177 };
9178
9179 // Define functions that don't require ill-formed conversions for a given
9180 // argument to be better candidates than functions that do.
9181 unsigned NumArgs = Cand1.Conversions.size();
9182 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"
) ? static_cast<void> (0) : __assert_fail ("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9182, __PRETTY_FUNCTION__))
;
9183 bool HasBetterConversion = false;
9184 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9185 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9186 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9187 if (Cand1Bad != Cand2Bad) {
9188 if (Cand1Bad)
9189 return false;
9190 HasBetterConversion = true;
9191 }
9192 }
9193
9194 if (HasBetterConversion)
9195 return true;
9196
9197 // C++ [over.match.best]p1:
9198 // A viable function F1 is defined to be a better function than another
9199 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9200 // conversion sequence than ICSi(F2), and then...
9201 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9202 switch (CompareImplicitConversionSequences(S, Loc,
9203 Cand1.Conversions[ArgIdx],
9204 Cand2.Conversions[ArgIdx])) {
9205 case ImplicitConversionSequence::Better:
9206 // Cand1 has a better conversion sequence.
9207 HasBetterConversion = true;
9208 break;
9209
9210 case ImplicitConversionSequence::Worse:
9211 // Cand1 can't be better than Cand2.
9212 return false;
9213
9214 case ImplicitConversionSequence::Indistinguishable:
9215 // Do nothing.
9216 break;
9217 }
9218 }
9219
9220 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9221 // ICSj(F2), or, if not that,
9222 if (HasBetterConversion)
9223 return true;
9224
9225 // -- the context is an initialization by user-defined conversion
9226 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9227 // from the return type of F1 to the destination type (i.e.,
9228 // the type of the entity being initialized) is a better
9229 // conversion sequence than the standard conversion sequence
9230 // from the return type of F2 to the destination type.
9231 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9232 Cand1.Function && Cand2.Function &&
9233 isa<CXXConversionDecl>(Cand1.Function) &&
9234 isa<CXXConversionDecl>(Cand2.Function)) {
9235 // First check whether we prefer one of the conversion functions over the
9236 // other. This only distinguishes the results in non-standard, extension
9237 // cases such as the conversion from a lambda closure type to a function
9238 // pointer or block.
9239 ImplicitConversionSequence::CompareKind Result =
9240 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9241 if (Result == ImplicitConversionSequence::Indistinguishable)
9242 Result = CompareStandardConversionSequences(S, Loc,
9243 Cand1.FinalConversion,
9244 Cand2.FinalConversion);
9245
9246 if (Result != ImplicitConversionSequence::Indistinguishable)
9247 return Result == ImplicitConversionSequence::Better;
9248
9249 // FIXME: Compare kind of reference binding if conversion functions
9250 // convert to a reference type used in direct reference binding, per
9251 // C++14 [over.match.best]p1 section 2 bullet 3.
9252 }
9253
9254 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9255 // as combined with the resolution to CWG issue 243.
9256 //
9257 // When the context is initialization by constructor ([over.match.ctor] or
9258 // either phase of [over.match.list]), a constructor is preferred over
9259 // a conversion function.
9260 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9261 Cand1.Function && Cand2.Function &&
9262 isa<CXXConstructorDecl>(Cand1.Function) !=
9263 isa<CXXConstructorDecl>(Cand2.Function))
9264 return isa<CXXConstructorDecl>(Cand1.Function);
9265
9266 // -- F1 is a non-template function and F2 is a function template
9267 // specialization, or, if not that,
9268 bool Cand1IsSpecialization = Cand1.Function &&
9269 Cand1.Function->getPrimaryTemplate();
9270 bool Cand2IsSpecialization = Cand2.Function &&
9271 Cand2.Function->getPrimaryTemplate();
9272 if (Cand1IsSpecialization != Cand2IsSpecialization)
9273 return Cand2IsSpecialization;
9274
9275 // -- F1 and F2 are function template specializations, and the function
9276 // template for F1 is more specialized than the template for F2
9277 // according to the partial ordering rules described in 14.5.5.2, or,
9278 // if not that,
9279 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9280 if (FunctionTemplateDecl *BetterTemplate
9281 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9282 Cand2.Function->getPrimaryTemplate(),
9283 Loc,
9284 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9285 : TPOC_Call,
9286 Cand1.ExplicitCallArguments,
9287 Cand2.ExplicitCallArguments))
9288 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9289 }
9290
9291 // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9292 // A derived-class constructor beats an (inherited) base class constructor.
9293 bool Cand1IsInherited =
9294 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9295 bool Cand2IsInherited =
9296 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9297 if (Cand1IsInherited != Cand2IsInherited)
9298 return Cand2IsInherited;
9299 else if (Cand1IsInherited) {
9300 assert(Cand2IsInherited)((Cand2IsInherited) ? static_cast<void> (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9300, __PRETTY_FUNCTION__))
;
9301 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9302 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9303 if (Cand1Class->isDerivedFrom(Cand2Class))
9304 return true;
9305 if (Cand2Class->isDerivedFrom(Cand1Class))
9306 return false;
9307 // Inherited from sibling base classes: still ambiguous.
9308 }
9309
9310 // Check C++17 tie-breakers for deduction guides.
9311 {
9312 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9313 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9314 if (Guide1 && Guide2) {
9315 // -- F1 is generated from a deduction-guide and F2 is not
9316 if (Guide1->isImplicit() != Guide2->isImplicit())
9317 return Guide2->isImplicit();
9318
9319 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9320 if (Guide1->isCopyDeductionCandidate())
9321 return true;
9322 }
9323 }
9324
9325 // Check for enable_if value-based overload resolution.
9326 if (Cand1.Function && Cand2.Function) {
9327 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9328 if (Cmp != Comparison::Equal)
9329 return Cmp == Comparison::Better;
9330 }
9331
9332 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9333 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9334 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9335 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9336 }
9337
9338 bool HasPS1 = Cand1.Function != nullptr &&
9339 functionHasPassObjectSizeParams(Cand1.Function);
9340 bool HasPS2 = Cand2.Function != nullptr &&
9341 functionHasPassObjectSizeParams(Cand2.Function);
9342 if (HasPS1 != HasPS2 && HasPS1)
9343 return true;
9344
9345 return isBetterMultiversionCandidate(Cand1, Cand2);
9346}
9347
9348/// Determine whether two declarations are "equivalent" for the purposes of
9349/// name lookup and overload resolution. This applies when the same internal/no
9350/// linkage entity is defined by two modules (probably by textually including
9351/// the same header). In such a case, we don't consider the declarations to
9352/// declare the same entity, but we also don't want lookups with both
9353/// declarations visible to be ambiguous in some cases (this happens when using
9354/// a modularized libstdc++).
9355bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9356 const NamedDecl *B) {
9357 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9358 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9359 if (!VA || !VB)
9360 return false;
9361
9362 // The declarations must be declaring the same name as an internal linkage
9363 // entity in different modules.
9364 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9365 VB->getDeclContext()->getRedeclContext()) ||
9366 getOwningModule(const_cast<ValueDecl *>(VA)) ==
9367 getOwningModule(const_cast<ValueDecl *>(VB)) ||
9368 VA->isExternallyVisible() || VB->isExternallyVisible())
9369 return false;
9370
9371 // Check that the declarations appear to be equivalent.
9372 //
9373 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9374 // For constants and functions, we should check the initializer or body is
9375 // the same. For non-constant variables, we shouldn't allow it at all.
9376 if (Context.hasSameType(VA->getType(), VB->getType()))
9377 return true;
9378
9379 // Enum constants within unnamed enumerations will have different types, but
9380 // may still be similar enough to be interchangeable for our purposes.
9381 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9382 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9383 // Only handle anonymous enums. If the enumerations were named and
9384 // equivalent, they would have been merged to the same type.
9385 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9386 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9387 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9388 !Context.hasSameType(EnumA->getIntegerType(),
9389 EnumB->getIntegerType()))
9390 return false;
9391 // Allow this only if the value is the same for both enumerators.
9392 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9393 }
9394 }
9395
9396 // Nothing else is sufficiently similar.
9397 return false;
9398}
9399
9400void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9401 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9402 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9403
9404 Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9405 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9406 << !M << (M ? M->getFullModuleName() : "");
9407
9408 for (auto *E : Equiv) {
9409 Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9410 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9411 << !M << (M ? M->getFullModuleName() : "");
9412 }
9413}
9414
9415/// Computes the best viable function (C++ 13.3.3)
9416/// within an overload candidate set.
9417///
9418/// \param Loc The location of the function name (or operator symbol) for
9419/// which overload resolution occurs.
9420///
9421/// \param Best If overload resolution was successful or found a deleted
9422/// function, \p Best points to the candidate function found.
9423///
9424/// \returns The result of overload resolution.
9425OverloadingResult
9426OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9427 iterator &Best) {
9428 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9429 std::transform(begin(), end(), std::back_inserter(Candidates),
9430 [](OverloadCandidate &Cand) { return &Cand; });
9431
9432 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9433 // are accepted by both clang and NVCC. However, during a particular
9434 // compilation mode only one call variant is viable. We need to
9435 // exclude non-viable overload candidates from consideration based
9436 // only on their host/device attributes. Specifically, if one
9437 // candidate call is WrongSide and the other is SameSide, we ignore
9438 // the WrongSide candidate.
9439 if (S.getLangOpts().CUDA) {
9440 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9441 bool ContainsSameSideCandidate =
9442 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9443 // Check viable function only.
9444 return Cand->Viable && Cand->Function &&
9445 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9446 Sema::CFP_SameSide;
9447 });
9448 if (ContainsSameSideCandidate) {
9449 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9450 // Check viable function only to avoid unnecessary data copying/moving.
9451 return Cand->Viable && Cand->Function &&
9452 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9453 Sema::CFP_WrongSide;
9454 };
9455 llvm::erase_if(Candidates, IsWrongSideCandidate);
9456 }
9457 }
9458
9459 // Find the best viable function.
9460 Best = end();
9461 for (auto *Cand : Candidates)
9462 if (Cand->Viable)
9463 if (Best == end() ||
9464 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9465 Best = Cand;
9466
9467 // If we didn't find any viable functions, abort.
9468 if (Best == end())
9469 return OR_No_Viable_Function;
9470
9471 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9472
9473 // Make sure that this function is better than every other viable
9474 // function. If not, we have an ambiguity.
9475 for (auto *Cand : Candidates) {
9476 if (Cand->Viable && Cand != Best &&
9477 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9478 if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9479 Cand->Function)) {
9480 EquivalentCands.push_back(Cand->Function);
9481 continue;
9482 }
9483
9484 Best = end();
9485 return OR_Ambiguous;
9486 }
9487 }
9488
9489 // Best is the best viable function.
9490 if (Best->Function && Best->Function->isDeleted())
9491 return OR_Deleted;
9492
9493 if (!EquivalentCands.empty())
9494 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9495 EquivalentCands);
9496
9497 return OR_Success;
9498}
9499
9500namespace {
9501
9502enum OverloadCandidateKind {
9503 oc_function,
9504 oc_method,
9505 oc_constructor,
9506 oc_implicit_default_constructor,
9507 oc_implicit_copy_constructor,
9508 oc_implicit_move_constructor,
9509 oc_implicit_copy_assignment,
9510 oc_implicit_move_assignment,
9511 oc_inherited_constructor
9512};
9513
9514enum OverloadCandidateSelect {
9515 ocs_non_template,
9516 ocs_template,
9517 ocs_described_template,
9518};
9519
9520static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9521ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9522 std::string &Description) {
9523
9524 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9525 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9526 isTemplate = true;
9527 Description = S.getTemplateArgumentBindingsText(
9528 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9529 }
9530
9531 OverloadCandidateSelect Select = [&]() {
9532 if (!Description.empty())
9533 return ocs_described_template;
9534 return isTemplate ? ocs_template : ocs_non_template;
9535 }();
9536
9537 OverloadCandidateKind Kind = [&]() {
9538 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9539 if (!Ctor->isImplicit()) {
9540 if (isa<ConstructorUsingShadowDecl>(Found))
9541 return oc_inherited_constructor;
9542 else
9543 return oc_constructor;
9544 }
9545
9546 if (Ctor->isDefaultConstructor())
9547 return oc_implicit_default_constructor;
9548
9549 if (Ctor->isMoveConstructor())
9550 return oc_implicit_move_constructor;
9551
9552 assert(Ctor->isCopyConstructor() &&((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9553, __PRETTY_FUNCTION__))
9553 "unexpected sort of implicit constructor")((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9553, __PRETTY_FUNCTION__))
;
9554 return oc_implicit_copy_constructor;
9555 }
9556
9557 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9558 // This actually gets spelled 'candidate function' for now, but
9559 // it doesn't hurt to split it out.
9560 if (!Meth->isImplicit())
9561 return oc_method;
9562
9563 if (Meth->isMoveAssignmentOperator())
9564 return oc_implicit_move_assignment;
9565
9566 if (Meth->isCopyAssignmentOperator())
9567 return oc_implicit_copy_assignment;
9568
9569 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((isa<CXXConversionDecl>(Meth) && "expected conversion"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9569, __PRETTY_FUNCTION__))
;
9570 return oc_method;
9571 }
9572
9573 return oc_function;
9574 }();
9575
9576 return std::make_pair(Kind, Select);
9577}
9578
9579void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9580 // FIXME: It'd be nice to only emit a note once per using-decl per overload
9581 // set.
9582 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9583 S.Diag(FoundDecl->getLocation(),
9584 diag::note_ovl_candidate_inherited_constructor)
9585 << Shadow->getNominatedBaseClass();
9586}
9587
9588} // end anonymous namespace
9589
9590static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9591 const FunctionDecl *FD) {
9592 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9593 bool AlwaysTrue;
9594 if (EnableIf->getCond()->isValueDependent() ||
9595 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9596 return false;
9597 if (!AlwaysTrue)
9598 return false;
9599 }
9600 return true;
9601}
9602
9603/// Returns true if we can take the address of the function.
9604///
9605/// \param Complain - If true, we'll emit a diagnostic
9606/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9607/// we in overload resolution?
9608/// \param Loc - The location of the statement we're complaining about. Ignored
9609/// if we're not complaining, or if we're in overload resolution.
9610static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9611 bool Complain,
9612 bool InOverloadResolution,
9613 SourceLocation Loc) {
9614 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9615 if (Complain) {
9616 if (InOverloadResolution)
9617 S.Diag(FD->getBeginLoc(),
9618 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9619 else
9620 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9621 }
9622 return false;
9623 }
9624
9625 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9626 return P->hasAttr<PassObjectSizeAttr>();
9627 });
9628 if (I == FD->param_end())
9629 return true;
9630
9631 if (Complain) {
9632 // Add one to ParamNo because it's user-facing
9633 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9634 if (InOverloadResolution)
9635 S.Diag(FD->getLocation(),
9636 diag::note_ovl_candidate_has_pass_object_size_params)
9637 << ParamNo;
9638 else
9639 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9640 << FD << ParamNo;
9641 }
9642 return false;
9643}
9644
9645static bool checkAddressOfCandidateIsAvailable(Sema &S,
9646 const FunctionDecl *FD) {
9647 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9648 /*InOverloadResolution=*/true,
9649 /*Loc=*/SourceLocation());
9650}
9651
9652bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9653 bool Complain,
9654 SourceLocation Loc) {
9655 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9656 /*InOverloadResolution=*/false,
9657 Loc);
9658}
9659
9660// Notes the location of an overload candidate.
9661void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9662 QualType DestType, bool TakingAddress) {
9663 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9664 return;
9665 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9666 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9667 return;
9668
9669 std::string FnDesc;
9670 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9671 ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9672 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9673 << (unsigned)KSPair.first << (unsigned)KSPair.second
9674 << Fn << FnDesc;
9675
9676 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9677 Diag(Fn->getLocation(), PD);
9678 MaybeEmitInheritedConstructorNote(*this, Found);
9679}
9680
9681// Notes the location of all overload candidates designated through
9682// OverloadedExpr
9683void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9684 bool TakingAddress) {
9685 assert(OverloadedExpr->getType() == Context.OverloadTy)((OverloadedExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9685, __PRETTY_FUNCTION__))
;
9686
9687 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9688 OverloadExpr *OvlExpr = Ovl.Expression;
9689
9690 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9691 IEnd = OvlExpr->decls_end();
9692 I != IEnd; ++I) {
9693 if (FunctionTemplateDecl *FunTmpl =
9694 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9695 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9696 TakingAddress);
9697 } else if (FunctionDecl *Fun
9698 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9699 NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9700 }
9701 }
9702}
9703
9704/// Diagnoses an ambiguous conversion. The partial diagnostic is the
9705/// "lead" diagnostic; it will be given two arguments, the source and
9706/// target types of the conversion.
9707void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9708 Sema &S,
9709 SourceLocation CaretLoc,
9710 const PartialDiagnostic &PDiag) const {
9711 S.Diag(CaretLoc, PDiag)
9712 << Ambiguous.getFromType() << Ambiguous.getToType();
9713 // FIXME: The note limiting machinery is borrowed from
9714 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9715 // refactoring here.
9716 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9717 unsigned CandsShown = 0;
9718 AmbiguousConversionSequence::const_iterator I, E;
9719 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9720 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9721 break;
9722 ++CandsShown;
9723 S.NoteOverloadCandidate(I->first, I->second);
9724 }
9725 if (I != E)
9726 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9727}
9728
9729static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9730 unsigned I, bool TakingCandidateAddress) {
9731 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9732 assert(Conv.isBad())((Conv.isBad()) ? static_cast<void> (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9732, __PRETTY_FUNCTION__))
;
9733 assert(Cand->Function && "for now, candidate must be a function")((Cand->Function && "for now, candidate must be a function"
) ? static_cast<void> (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9733, __PRETTY_FUNCTION__))
;
9734 FunctionDecl *Fn = Cand->Function;
9735
9736 // There's a conversion slot for the object argument if this is a
9737 // non-constructor method. Note that 'I' corresponds the
9738 // conversion-slot index.
9739 bool isObjectArgument = false;
9740 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9741 if (I == 0)
9742 isObjectArgument = true;
9743 else
9744 I--;
9745 }
9746
9747 std::string FnDesc;
9748 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9749 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9750
9751 Expr *FromExpr = Conv.Bad.FromExpr;
9752 QualType FromTy = Conv.Bad.getFromType();
9753 QualType ToTy = Conv.Bad.getToType();
9754
9755 if (FromTy == S.Context.OverloadTy) {
9756 assert(FromExpr && "overload set argument came from implicit argument?")((FromExpr && "overload set argument came from implicit argument?"
) ? static_cast<void> (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9756, __PRETTY_FUNCTION__))
;
9757 Expr *E = FromExpr->IgnoreParens();
9758 if (isa<UnaryOperator>(E))
9759 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9760 DeclarationName Name = cast<OverloadExpr>(E)->getName();
9761
9762 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9763 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9764 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9765 << Name << I + 1;
9766 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9767 return;
9768 }
9769
9770 // Do some hand-waving analysis to see if the non-viability is due
9771 // to a qualifier mismatch.
9772 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9773 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9774 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9775 CToTy = RT->getPointeeType();
9776 else {
9777 // TODO: detect and diagnose the full richness of const mismatches.
9778 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9779 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9780 CFromTy = FromPT->getPointeeType();
9781 CToTy = ToPT->getPointeeType();
9782 }
9783 }
9784
9785 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9786 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9787 Qualifiers FromQs = CFromTy.getQualifiers();
9788 Qualifiers ToQs = CToTy.getQualifiers();
9789
9790 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9791 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9792 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9793 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9794 << ToTy << (unsigned)isObjectArgument << I + 1;
9795 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9796 return;
9797 }
9798
9799 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9800 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9801 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9802 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9803 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9804 << (unsigned)isObjectArgument << I + 1;
9805 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9806 return;
9807 }
9808
9809 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9810 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9811 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9812 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9813 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9814 << (unsigned)isObjectArgument << I + 1;
9815 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9816 return;
9817 }
9818
9819 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9820 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9821 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9822 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9823 << FromQs.hasUnaligned() << I + 1;
9824 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9825 return;
9826 }
9827
9828 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9829 assert(CVR && "unexpected qualifiers mismatch")((CVR && "unexpected qualifiers mismatch") ? static_cast
<void> (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9829, __PRETTY_FUNCTION__))
;
9830
9831 if (isObjectArgument) {
9832 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9833 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9834 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9835 << (CVR - 1);
9836 } else {
9837 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9838 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9839 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9840 << (CVR - 1) << I + 1;
9841 }
9842 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9843 return;
9844 }
9845
9846 // Special diagnostic for failure to convert an initializer list, since
9847 // telling the user that it has type void is not useful.
9848 if (FromExpr && isa<InitListExpr>(FromExpr)) {
9849 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9850 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9851 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9852 << ToTy << (unsigned)isObjectArgument << I + 1;
9853 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9854 return;
9855 }
9856
9857 // Diagnose references or pointers to incomplete types differently,
9858 // since it's far from impossible that the incompleteness triggered
9859 // the failure.
9860 QualType TempFromTy = FromTy.getNonReferenceType();
9861 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9862 TempFromTy = PTy->getPointeeType();
9863 if (TempFromTy->isIncompleteType()) {
9864 // Emit the generic diagnostic and, optionally, add the hints to it.
9865 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9866 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9867 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9868 << ToTy << (unsigned)isObjectArgument << I + 1
9869 << (unsigned)(Cand->Fix.Kind);
9870
9871 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9872 return;
9873 }
9874
9875 // Diagnose base -> derived pointer conversions.
9876 unsigned BaseToDerivedConversion = 0;
9877 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9878 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9879 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9880 FromPtrTy->getPointeeType()) &&
9881 !FromPtrTy->getPointeeType()->isIncompleteType() &&
9882 !ToPtrTy->getPointeeType()->isIncompleteType() &&
9883 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9884 FromPtrTy->getPointeeType()))
9885 BaseToDerivedConversion = 1;
9886 }
9887 } else if (const ObjCObjectPointerType *FromPtrTy
9888 = FromTy->getAs<ObjCObjectPointerType>()) {
9889 if (const ObjCObjectPointerType *ToPtrTy
9890 = ToTy->getAs<ObjCObjectPointerType>())
9891 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9892 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9893 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9894 FromPtrTy->getPointeeType()) &&
9895 FromIface->isSuperClassOf(ToIface))
9896 BaseToDerivedConversion = 2;
9897 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9898 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9899 !FromTy->isIncompleteType() &&
9900 !ToRefTy->getPointeeType()->isIncompleteType() &&
9901 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9902 BaseToDerivedConversion = 3;
9903 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9904 ToTy.getNonReferenceType().getCanonicalType() ==
9905 FromTy.getNonReferenceType().getCanonicalType()) {
9906 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9907 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9908 << (unsigned)isObjectArgument << I + 1
9909 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
9910 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9911 return;
9912 }
9913 }
9914
9915 if (BaseToDerivedConversion) {
9916 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
9917 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9918 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9919 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
9920 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9921 return;
9922 }
9923
9924 if (isa<ObjCObjectPointerType>(CFromTy) &&
9925 isa<PointerType>(CToTy)) {
9926 Qualifiers FromQs = CFromTy.getQualifiers();
9927 Qualifiers ToQs = CToTy.getQualifiers();
9928 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9929 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9930 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9931 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9932 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
9933 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9934 return;
9935 }
9936 }
9937
9938 if (TakingCandidateAddress &&
9939 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9940 return;
9941
9942 // Emit the generic diagnostic and, optionally, add the hints to it.
9943 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9944 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9945 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9946 << ToTy << (unsigned)isObjectArgument << I + 1
9947 << (unsigned)(Cand->Fix.Kind);
9948
9949 // If we can fix the conversion, suggest the FixIts.
9950 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9951 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9952 FDiag << *HI;
9953 S.Diag(Fn->getLocation(), FDiag);
9954
9955 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9956}
9957
9958/// Additional arity mismatch diagnosis specific to a function overload
9959/// candidates. This is not covered by the more general DiagnoseArityMismatch()
9960/// over a candidate in any candidate set.
9961static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9962 unsigned NumArgs) {
9963 FunctionDecl *Fn = Cand->Function;
9964 unsigned MinParams = Fn->getMinRequiredArguments();
9965
9966 // With invalid overloaded operators, it's possible that we think we
9967 // have an arity mismatch when in fact it looks like we have the
9968 // right number of arguments, because only overloaded operators have
9969 // the weird behavior of overloading member and non-member functions.
9970 // Just don't report anything.
9971 if (Fn->isInvalidDecl() &&
9972 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9973 return true;
9974
9975 if (NumArgs < MinParams) {
9976 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9978, __PRETTY_FUNCTION__))
9977 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9978, __PRETTY_FUNCTION__))
9978 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9978, __PRETTY_FUNCTION__))
;
9979 } else {
9980 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9982, __PRETTY_FUNCTION__))
9981 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9982, __PRETTY_FUNCTION__))
9982 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9982, __PRETTY_FUNCTION__))
;
9983 }
9984
9985 return false;
9986}
9987
9988/// General arity mismatch diagnosis over a candidate in a candidate set.
9989static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9990 unsigned NumFormalArgs) {
9991 assert(isa<FunctionDecl>(D) &&((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9994, __PRETTY_FUNCTION__))
9992 "The templated declaration should at least be a function"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9994, __PRETTY_FUNCTION__))
9993 " when diagnosing bad template argument deduction due to too many"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9994, __PRETTY_FUNCTION__))
9994 " or too few arguments")((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 9994, __PRETTY_FUNCTION__))
;
9995
9996 FunctionDecl *Fn = cast<FunctionDecl>(D);
9997
9998 // TODO: treat calls to a missing default constructor as a special case
9999 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
10000 unsigned MinParams = Fn->getMinRequiredArguments();
10001
10002 // at least / at most / exactly
10003 unsigned mode, modeCount;
10004 if (NumFormalArgs < MinParams) {
10005 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10006 FnTy->isTemplateVariadic())
10007 mode = 0; // "at least"
10008 else
10009 mode = 2; // "exactly"
10010 modeCount = MinParams;
10011 } else {
10012 if (MinParams != FnTy->getNumParams())
10013 mode = 1; // "at most"
10014 else
10015 mode = 2; // "exactly"
10016 modeCount = FnTy->getNumParams();
10017 }
10018
10019 std::string Description;
10020 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10021 ClassifyOverloadCandidate(S, Found, Fn, Description);
10022
10023 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10024 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10025 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10026 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10027 else
10028 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10029 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10030 << Description << mode << modeCount << NumFormalArgs;
10031
10032 MaybeEmitInheritedConstructorNote(S, Found);
10033}
10034
10035/// Arity mismatch diagnosis specific to a function overload candidate.
10036static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10037 unsigned NumFormalArgs) {
10038 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10039 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10040}
10041
10042static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10043 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10044 return TD;
10045 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10046)
10046 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10046)
;
10047}
10048
10049/// Diagnose a failed template-argument deduction.
10050static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10051 DeductionFailureInfo &DeductionFailure,
10052 unsigned NumArgs,
10053 bool TakingCandidateAddress) {
10054 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10055 NamedDecl *ParamD;
10056 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10057 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10058 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10059 switch (DeductionFailure.Result) {
10060 case Sema::TDK_Success:
10061 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10061)
;
10062
10063 case Sema::TDK_Incomplete: {
10064 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10064, __PRETTY_FUNCTION__))
;
10065 S.Diag(Templated->getLocation(),
10066 diag::note_ovl_candidate_incomplete_deduction)
10067 << ParamD->getDeclName();
10068 MaybeEmitInheritedConstructorNote(S, Found);
10069 return;
10070 }
10071
10072 case Sema::TDK_IncompletePack: {
10073 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10073, __PRETTY_FUNCTION__))
;
10074 S.Diag(Templated->getLocation(),
10075 diag::note_ovl_candidate_incomplete_deduction_pack)
10076 << ParamD->getDeclName()
10077 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10078 << *DeductionFailure.getFirstArg();
10079 MaybeEmitInheritedConstructorNote(S, Found);
10080 return;
10081 }
10082
10083 case Sema::TDK_Underqualified: {
10084 assert(ParamD && "no parameter found for bad qualifiers deduction result")((ParamD && "no parameter found for bad qualifiers deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10084, __PRETTY_FUNCTION__))
;
10085 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10086
10087 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10088
10089 // Param will have been canonicalized, but it should just be a
10090 // qualified version of ParamD, so move the qualifiers to that.
10091 QualifierCollector Qs;
10092 Qs.strip(Param);
10093 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10094 assert(S.Context.hasSameType(Param, NonCanonParam))((S.Context.hasSameType(Param, NonCanonParam)) ? static_cast<
void> (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10094, __PRETTY_FUNCTION__))
;
10095
10096 // Arg has also been canonicalized, but there's nothing we can do
10097 // about that. It also doesn't matter as much, because it won't
10098 // have any template parameters in it (because deduction isn't
10099 // done on dependent types).
10100 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10101
10102 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10103 << ParamD->getDeclName() << Arg << NonCanonParam;
10104 MaybeEmitInheritedConstructorNote(S, Found);
10105 return;
10106 }
10107
10108 case Sema::TDK_Inconsistent: {
10109 assert(ParamD && "no parameter found for inconsistent deduction result")((ParamD && "no parameter found for inconsistent deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10109, __PRETTY_FUNCTION__))
;
10110 int which = 0;
10111 if (isa<TemplateTypeParmDecl>(ParamD))
10112 which = 0;
10113 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10114 // Deduction might have failed because we deduced arguments of two
10115 // different types for a non-type template parameter.
10116 // FIXME: Use a different TDK value for this.
10117 QualType T1 =
10118 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10119 QualType T2 =
10120 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10121 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10122 S.Diag(Templated->getLocation(),
10123 diag::note_ovl_candidate_inconsistent_deduction_types)
10124 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10125 << *DeductionFailure.getSecondArg() << T2;
10126 MaybeEmitInheritedConstructorNote(S, Found);
10127 return;
10128 }
10129
10130 which = 1;
10131 } else {
10132 which = 2;
10133 }
10134
10135 S.Diag(Templated->getLocation(),
10136 diag::note_ovl_candidate_inconsistent_deduction)
10137 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10138 << *DeductionFailure.getSecondArg();
10139 MaybeEmitInheritedConstructorNote(S, Found);
10140 return;
10141 }
10142
10143 case Sema::TDK_InvalidExplicitArguments:
10144 assert(ParamD && "no parameter found for invalid explicit arguments")((ParamD && "no parameter found for invalid explicit arguments"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10144, __PRETTY_FUNCTION__))
;
10145 if (ParamD->getDeclName())
10146 S.Diag(Templated->getLocation(),
10147 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10148 << ParamD->getDeclName();
10149 else {
10150 int index = 0;
10151 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10152 index = TTP->getIndex();
10153 else if (NonTypeTemplateParmDecl *NTTP
10154 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10155 index = NTTP->getIndex();
10156 else
10157 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10158 S.Diag(Templated->getLocation(),
10159 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10160 << (index + 1);
10161 }
10162 MaybeEmitInheritedConstructorNote(S, Found);
10163 return;
10164
10165 case Sema::TDK_TooManyArguments:
10166 case Sema::TDK_TooFewArguments:
10167 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10168 return;
10169
10170 case Sema::TDK_InstantiationDepth:
10171 S.Diag(Templated->getLocation(),
10172 diag::note_ovl_candidate_instantiation_depth);
10173 MaybeEmitInheritedConstructorNote(S, Found);
10174 return;
10175
10176 case Sema::TDK_SubstitutionFailure: {
10177 // Format the template argument list into the argument string.
10178 SmallString<128> TemplateArgString;
10179 if (TemplateArgumentList *Args =
10180 DeductionFailure.getTemplateArgumentList()) {
10181 TemplateArgString = " ";
10182 TemplateArgString += S.getTemplateArgumentBindingsText(
10183 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10184 }
10185
10186 // If this candidate was disabled by enable_if, say so.
10187 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10188 if (PDiag && PDiag->second.getDiagID() ==
10189 diag::err_typename_nested_not_found_enable_if) {
10190 // FIXME: Use the source range of the condition, and the fully-qualified
10191 // name of the enable_if template. These are both present in PDiag.
10192 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10193 << "'enable_if'" << TemplateArgString;
10194 return;
10195 }
10196
10197 // We found a specific requirement that disabled the enable_if.
10198 if (PDiag && PDiag->second.getDiagID() ==
10199 diag::err_typename_nested_not_found_requirement) {
10200 S.Diag(Templated->getLocation(),
10201 diag::note_ovl_candidate_disabled_by_requirement)
10202 << PDiag->second.getStringArg(0) << TemplateArgString;
10203 return;
10204 }
10205
10206 // Format the SFINAE diagnostic into the argument string.
10207 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10208 // formatted message in another diagnostic.
10209 SmallString<128> SFINAEArgString;
10210 SourceRange R;
10211 if (PDiag) {
10212 SFINAEArgString = ": ";
10213 R = SourceRange(PDiag->first, PDiag->first);
10214 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10215 }
10216
10217 S.Diag(Templated->getLocation(),
10218 diag::note_ovl_candidate_substitution_failure)
10219 << TemplateArgString << SFINAEArgString << R;
10220 MaybeEmitInheritedConstructorNote(S, Found);
10221 return;
10222 }
10223
10224 case Sema::TDK_DeducedMismatch:
10225 case Sema::TDK_DeducedMismatchNested: {
10226 // Format the template argument list into the argument string.
10227 SmallString<128> TemplateArgString;
10228 if (TemplateArgumentList *Args =
10229 DeductionFailure.getTemplateArgumentList()) {
10230 TemplateArgString = " ";
10231 TemplateArgString += S.getTemplateArgumentBindingsText(
10232 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10233 }
10234
10235 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10236 << (*DeductionFailure.getCallArgIndex() + 1)
10237 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10238 << TemplateArgString
10239 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10240 break;
10241 }
10242
10243 case Sema::TDK_NonDeducedMismatch: {
10244 // FIXME: Provide a source location to indicate what we couldn't match.
10245 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10246 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10247 if (FirstTA.getKind() == TemplateArgument::Template &&
10248 SecondTA.getKind() == TemplateArgument::Template) {
10249 TemplateName FirstTN = FirstTA.getAsTemplate();
10250 TemplateName SecondTN = SecondTA.getAsTemplate();
10251 if (FirstTN.getKind() == TemplateName::Template &&
10252 SecondTN.getKind() == TemplateName::Template) {
10253 if (FirstTN.getAsTemplateDecl()->getName() ==
10254 SecondTN.getAsTemplateDecl()->getName()) {
10255 // FIXME: This fixes a bad diagnostic where both templates are named
10256 // the same. This particular case is a bit difficult since:
10257 // 1) It is passed as a string to the diagnostic printer.
10258 // 2) The diagnostic printer only attempts to find a better
10259 // name for types, not decls.
10260 // Ideally, this should folded into the diagnostic printer.
10261 S.Diag(Templated->getLocation(),
10262 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10263 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10264 return;
10265 }
10266 }
10267 }
10268
10269 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10270 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10271 return;
10272
10273 // FIXME: For generic lambda parameters, check if the function is a lambda
10274 // call operator, and if so, emit a prettier and more informative
10275 // diagnostic that mentions 'auto' and lambda in addition to
10276 // (or instead of?) the canonical template type parameters.
10277 S.Diag(Templated->getLocation(),
10278 diag::note_ovl_candidate_non_deduced_mismatch)
10279 << FirstTA << SecondTA;
10280 return;
10281 }
10282 // TODO: diagnose these individually, then kill off
10283 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10284 case Sema::TDK_MiscellaneousDeductionFailure:
10285 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10286 MaybeEmitInheritedConstructorNote(S, Found);
10287 return;
10288 case Sema::TDK_CUDATargetMismatch:
10289 S.Diag(Templated->getLocation(),
10290 diag::note_cuda_ovl_candidate_target_mismatch);
10291 return;
10292 }
10293}
10294
10295/// Diagnose a failed template-argument deduction, for function calls.
10296static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10297 unsigned NumArgs,
10298 bool TakingCandidateAddress) {
10299 unsigned TDK = Cand->DeductionFailure.Result;
10300 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10301 if (CheckArityMismatch(S, Cand, NumArgs))
10302 return;
10303 }
10304 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10305 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10306}
10307
10308/// CUDA: diagnose an invalid call across targets.
10309static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10310 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10311 FunctionDecl *Callee = Cand->Function;
10312
10313 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10314 CalleeTarget = S.IdentifyCUDATarget(Callee);
10315
10316 std::string FnDesc;
10317 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10318 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10319
10320 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10321 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10322 << FnDesc /* Ignored */
10323 << CalleeTarget << CallerTarget;
10324
10325 // This could be an implicit constructor for which we could not infer the
10326 // target due to a collsion. Diagnose that case.
10327 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10328 if (Meth != nullptr && Meth->isImplicit()) {
10329 CXXRecordDecl *ParentClass = Meth->getParent();
10330 Sema::CXXSpecialMember CSM;
10331
10332 switch (FnKindPair.first) {
10333 default:
10334 return;
10335 case oc_implicit_default_constructor:
10336 CSM = Sema::CXXDefaultConstructor;
10337 break;
10338 case oc_implicit_copy_constructor:
10339 CSM = Sema::CXXCopyConstructor;
10340 break;
10341 case oc_implicit_move_constructor:
10342 CSM = Sema::CXXMoveConstructor;
10343 break;
10344 case oc_implicit_copy_assignment:
10345 CSM = Sema::CXXCopyAssignment;
10346 break;
10347 case oc_implicit_move_assignment:
10348 CSM = Sema::CXXMoveAssignment;
10349 break;
10350 };
10351
10352 bool ConstRHS = false;
10353 if (Meth->getNumParams()) {
10354 if (const ReferenceType *RT =
10355 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10356 ConstRHS = RT->getPointeeType().isConstQualified();
10357 }
10358 }
10359
10360 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10361 /* ConstRHS */ ConstRHS,
10362 /* Diagnose */ true);
10363 }
10364}
10365
10366static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10367 FunctionDecl *Callee = Cand->Function;
10368 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10369
10370 S.Diag(Callee->getLocation(),
10371 diag::note_ovl_candidate_disabled_by_function_cond_attr)
10372 << Attr->getCond()->getSourceRange() << Attr->getMessage();
10373}
10374
10375static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10376 ExplicitSpecifier ES;
10377 const char *DeclName;
10378 switch (Cand->Function->getDeclKind()) {
10379 case Decl::Kind::CXXConstructor:
10380 ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10381 DeclName = "constructor";
10382 break;
10383 case Decl::Kind::CXXConversion:
10384 ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10385 DeclName = "conversion operator";
10386 break;
10387 case Decl::Kind::CXXDeductionGuide:
10388 ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10389 DeclName = "deductiong guide";
10390 break;
10391 default:
10392 llvm_unreachable("invalid Decl")::llvm::llvm_unreachable_internal("invalid Decl", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10392)
;
10393 }
10394 assert(ES.getExpr() && "null expression should be handled before")((ES.getExpr() && "null expression should be handled before"
) ? static_cast<void> (0) : __assert_fail ("ES.getExpr() && \"null expression should be handled before\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10394, __PRETTY_FUNCTION__))
;
10395 S.Diag(Cand->Function->getLocation(),
10396 diag::note_ovl_candidate_explicit_forbidden)
10397 << DeclName;
10398 S.Diag(ES.getExpr()->getBeginLoc(),
10399 diag::note_explicit_bool_resolved_to_true);
10400}
10401
10402static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10403 FunctionDecl *Callee = Cand->Function;
10404
10405 S.Diag(Callee->getLocation(),
10406 diag::note_ovl_candidate_disabled_by_extension)
10407 << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10408}
10409
10410/// Generates a 'note' diagnostic for an overload candidate. We've
10411/// already generated a primary error at the call site.
10412///
10413/// It really does need to be a single diagnostic with its caret
10414/// pointed at the candidate declaration. Yes, this creates some
10415/// major challenges of technical writing. Yes, this makes pointing
10416/// out problems with specific arguments quite awkward. It's still
10417/// better than generating twenty screens of text for every failed
10418/// overload.
10419///
10420/// It would be great to be able to express per-candidate problems
10421/// more richly for those diagnostic clients that cared, but we'd
10422/// still have to be just as careful with the default diagnostics.
10423/// \param CtorDestAS Addr space of object being constructed (for ctor
10424/// candidates only).
10425static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10426 unsigned NumArgs,
10427 bool TakingCandidateAddress,
10428 LangAS CtorDestAS = LangAS::Default) {
10429 FunctionDecl *Fn = Cand->Function;
10430
10431 // Note deleted candidates, but only if they're viable.
10432 if (Cand->Viable) {
10433 if (Fn->isDeleted()) {
10434 std::string FnDesc;
10435 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10436 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10437
10438 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10439 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10440 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10441 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10442 return;
10443 }
10444
10445 // We don't really have anything else to say about viable candidates.
10446 S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10447 return;
10448 }
10449
10450 switch (Cand->FailureKind) {
10451 case ovl_fail_too_many_arguments:
10452 case ovl_fail_too_few_arguments:
10453 return DiagnoseArityMismatch(S, Cand, NumArgs);
10454
10455 case ovl_fail_bad_deduction:
10456 return DiagnoseBadDeduction(S, Cand, NumArgs,
10457 TakingCandidateAddress);
10458
10459 case ovl_fail_illegal_constructor: {
10460 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10461 << (Fn->getPrimaryTemplate() ? 1 : 0);
10462 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10463 return;
10464 }
10465
10466 case ovl_fail_object_addrspace_mismatch: {
10467 Qualifiers QualsForPrinting;
10468 QualsForPrinting.setAddressSpace(CtorDestAS);
10469 S.Diag(Fn->getLocation(),
10470 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
10471 << QualsForPrinting;
10472 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10473 return;
10474 }
10475
10476 case ovl_fail_trivial_conversion:
10477 case ovl_fail_bad_final_conversion:
10478 case ovl_fail_final_conversion_not_exact:
10479 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10480
10481 case ovl_fail_bad_conversion: {
10482 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10483 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10484 if (Cand->Conversions[I].isBad())
10485 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10486
10487 // FIXME: this currently happens when we're called from SemaInit
10488 // when user-conversion overload fails. Figure out how to handle
10489 // those conditions and diagnose them well.
10490 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10491 }
10492
10493 case ovl_fail_bad_target:
10494 return DiagnoseBadTarget(S, Cand);
10495
10496 case ovl_fail_enable_if:
10497 return DiagnoseFailedEnableIfAttr(S, Cand);
10498
10499 case ovl_fail_explicit_resolved:
10500 return DiagnoseFailedExplicitSpec(S, Cand);
10501
10502 case ovl_fail_ext_disabled:
10503 return DiagnoseOpenCLExtensionDisabled(S, Cand);
10504
10505 case ovl_fail_inhctor_slice:
10506 // It's generally not interesting to note copy/move constructors here.
10507 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10508 return;
10509 S.Diag(Fn->getLocation(),
10510 diag::note_ovl_candidate_inherited_constructor_slice)
10511 << (Fn->getPrimaryTemplate() ? 1 : 0)
10512 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10513 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10514 return;
10515
10516 case ovl_fail_addr_not_available: {
10517 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10518 (void)Available;
10519 assert(!Available)((!Available) ? static_cast<void> (0) : __assert_fail (
"!Available", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10519, __PRETTY_FUNCTION__))
;
10520 break;
10521 }
10522 case ovl_non_default_multiversion_function:
10523 // Do nothing, these should simply be ignored.
10524 break;
10525 }
10526}
10527
10528static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10529 // Desugar the type of the surrogate down to a function type,
10530 // retaining as many typedefs as possible while still showing
10531 // the function type (and, therefore, its parameter types).
10532 QualType FnType = Cand->Surrogate->getConversionType();
10533 bool isLValueReference = false;
10534 bool isRValueReference = false;
10535 bool isPointer = false;
10536 if (const LValueReferenceType *FnTypeRef =
10537 FnType->getAs<LValueReferenceType>()) {
10538 FnType = FnTypeRef->getPointeeType();
10539 isLValueReference = true;
10540 } else if (const RValueReferenceType *FnTypeRef =
10541 FnType->getAs<RValueReferenceType>()) {
10542 FnType = FnTypeRef->getPointeeType();
10543 isRValueReference = true;
10544 }
10545 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10546 FnType = FnTypePtr->getPointeeType();
10547 isPointer = true;
10548 }
10549 // Desugar down to a function type.
10550 FnType = QualType(FnType->getAs<FunctionType>(), 0);
10551 // Reconstruct the pointer/reference as appropriate.
10552 if (isPointer) FnType = S.Context.getPointerType(FnType);
10553 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10554 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10555
10556 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10557 << FnType;
10558}
10559
10560static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10561 SourceLocation OpLoc,
10562 OverloadCandidate *Cand) {
10563 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((Cand->Conversions.size() <= 2 && "builtin operator is not binary"
) ? static_cast<void> (0) : __assert_fail ("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10563, __PRETTY_FUNCTION__))
;
10564 std::string TypeStr("operator");
10565 TypeStr += Opc;
10566 TypeStr += "(";
10567 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10568 if (Cand->Conversions.size() == 1) {
10569 TypeStr += ")";
10570 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10571 } else {
10572 TypeStr += ", ";
10573 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10574 TypeStr += ")";
10575 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10576 }
10577}
10578
10579static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10580 OverloadCandidate *Cand) {
10581 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10582 if (ICS.isBad()) break; // all meaningless after first invalid
10583 if (!ICS.isAmbiguous()) continue;
10584
10585 ICS.DiagnoseAmbiguousConversion(
10586 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10587 }
10588}
10589
10590static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10591 if (Cand->Function)
10592 return Cand->Function->getLocation();
10593 if (Cand->IsSurrogate)
10594 return Cand->Surrogate->getLocation();
10595 return SourceLocation();
10596}
10597
10598static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10599 switch ((Sema::TemplateDeductionResult)DFI.Result) {
10600 case Sema::TDK_Success:
10601 case Sema::TDK_NonDependentConversionFailure:
10602 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10602)
;
10603
10604 case Sema::TDK_Invalid:
10605 case Sema::TDK_Incomplete:
10606 case Sema::TDK_IncompletePack:
10607 return 1;
10608
10609 case Sema::TDK_Underqualified:
10610 case Sema::TDK_Inconsistent:
10611 return 2;
10612
10613 case Sema::TDK_SubstitutionFailure:
10614 case Sema::TDK_DeducedMismatch:
10615 case Sema::TDK_DeducedMismatchNested:
10616 case Sema::TDK_NonDeducedMismatch:
10617 case Sema::TDK_MiscellaneousDeductionFailure:
10618 case Sema::TDK_CUDATargetMismatch:
10619 return 3;
10620
10621 case Sema::TDK_InstantiationDepth:
10622 return 4;
10623
10624 case Sema::TDK_InvalidExplicitArguments:
10625 return 5;
10626
10627 case Sema::TDK_TooManyArguments:
10628 case Sema::TDK_TooFewArguments:
10629 return 6;
10630 }
10631 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10631)
;
10632}
10633
10634namespace {
10635struct CompareOverloadCandidatesForDisplay {
10636 Sema &S;
10637 SourceLocation Loc;
10638 size_t NumArgs;
10639 OverloadCandidateSet::CandidateSetKind CSK;
10640
10641 CompareOverloadCandidatesForDisplay(
10642 Sema &S, SourceLocation Loc, size_t NArgs,
10643 OverloadCandidateSet::CandidateSetKind CSK)
10644 : S(S), NumArgs(NArgs), CSK(CSK) {}
10645
10646 bool operator()(const OverloadCandidate *L,
10647 const OverloadCandidate *R) {
10648 // Fast-path this check.
10649 if (L == R) return false;
1
Assuming 'L' is not equal to 'R'
2
Taking false branch
10650
10651 // Order first by viability.
10652 if (L->Viable) {
3
Assuming field 'Viable' is false
4
Taking false branch
10653 if (!R->Viable) return true;
10654
10655 // TODO: introduce a tri-valued comparison for overload
10656 // candidates. Would be more worthwhile if we had a sort
10657 // that could exploit it.
10658 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10659 return true;
10660 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10661 return false;
10662 } else if (R->Viable)
5
Assuming field 'Viable' is false
6
Taking false branch
10663 return false;
10664
10665 assert
6.1
'L->Viable' is equal to 'R->Viable'
6.1
'L->Viable' is equal to 'R->Viable'
(L->Viable == R->Viable)((L->Viable == R->Viable) ? static_cast<void> (0)
: __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10665, __PRETTY_FUNCTION__))
;
7
'?' condition is true
10666
10667 // Criteria by which we can sort non-viable candidates:
10668 if (!L->Viable
7.1
Field 'Viable' is false
7.1
Field 'Viable' is false
) {
8
Taking true branch
10669 // 1. Arity mismatches come after other candidates.
10670 if (L->FailureKind == ovl_fail_too_many_arguments ||
9
Assuming field 'FailureKind' is equal to ovl_fail_too_many_arguments
10671 L->FailureKind == ovl_fail_too_few_arguments) {
10672 if (R->FailureKind == ovl_fail_too_many_arguments ||
10
Assuming field 'FailureKind' is equal to ovl_fail_too_many_arguments
10673 R->FailureKind == ovl_fail_too_few_arguments) {
10674 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11
Calling 'OverloadCandidate::getNumParams'
10675 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10676 if (LDist == RDist) {
10677 if (L->FailureKind == R->FailureKind)
10678 // Sort non-surrogates before surrogates.
10679 return !L->IsSurrogate && R->IsSurrogate;
10680 // Sort candidates requiring fewer parameters than there were
10681 // arguments given after candidates requiring more parameters
10682 // than there were arguments given.
10683 return L->FailureKind == ovl_fail_too_many_arguments;
10684 }
10685 return LDist < RDist;
10686 }
10687 return false;
10688 }
10689 if (R->FailureKind == ovl_fail_too_many_arguments ||
10690 R->FailureKind == ovl_fail_too_few_arguments)
10691 return true;
10692
10693 // 2. Bad conversions come first and are ordered by the number
10694 // of bad conversions and quality of good conversions.
10695 if (L->FailureKind == ovl_fail_bad_conversion) {
10696 if (R->FailureKind != ovl_fail_bad_conversion)
10697 return true;
10698
10699 // The conversion that can be fixed with a smaller number of changes,
10700 // comes first.
10701 unsigned numLFixes = L->Fix.NumConversionsFixed;
10702 unsigned numRFixes = R->Fix.NumConversionsFixed;
10703 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
10704 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
10705 if (numLFixes != numRFixes) {
10706 return numLFixes < numRFixes;
10707 }
10708
10709 // If there's any ordering between the defined conversions...
10710 // FIXME: this might not be transitive.
10711 assert(L->Conversions.size() == R->Conversions.size())((L->Conversions.size() == R->Conversions.size()) ? static_cast
<void> (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10711, __PRETTY_FUNCTION__))
;
10712
10713 int leftBetter = 0;
10714 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10715 for (unsigned E = L->Conversions.size(); I != E; ++I) {
10716 switch (CompareImplicitConversionSequences(S, Loc,
10717 L->Conversions[I],
10718 R->Conversions[I])) {
10719 case ImplicitConversionSequence::Better:
10720 leftBetter++;
10721 break;
10722
10723 case ImplicitConversionSequence::Worse:
10724 leftBetter--;
10725 break;
10726
10727 case ImplicitConversionSequence::Indistinguishable:
10728 break;
10729 }
10730 }
10731 if (leftBetter > 0) return true;
10732 if (leftBetter < 0) return false;
10733
10734 } else if (R->FailureKind == ovl_fail_bad_conversion)
10735 return false;
10736
10737 if (L->FailureKind == ovl_fail_bad_deduction) {
10738 if (R->FailureKind != ovl_fail_bad_deduction)
10739 return true;
10740
10741 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10742 return RankDeductionFailure(L->DeductionFailure)
10743 < RankDeductionFailure(R->DeductionFailure);
10744 } else if (R->FailureKind == ovl_fail_bad_deduction)
10745 return false;
10746
10747 // TODO: others?
10748 }
10749
10750 // Sort everything else by location.
10751 SourceLocation LLoc = GetLocationForCandidate(L);
10752 SourceLocation RLoc = GetLocationForCandidate(R);
10753
10754 // Put candidates without locations (e.g. builtins) at the end.
10755 if (LLoc.isInvalid()) return false;
10756 if (RLoc.isInvalid()) return true;
10757
10758 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10759 }
10760};
10761}
10762
10763/// CompleteNonViableCandidate - Normally, overload resolution only
10764/// computes up to the first bad conversion. Produces the FixIt set if
10765/// possible.
10766static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10767 ArrayRef<Expr *> Args) {
10768 assert(!Cand->Viable)((!Cand->Viable) ? static_cast<void> (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10768, __PRETTY_FUNCTION__))
;
10769
10770 // Don't do anything on failures other than bad conversion.
10771 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10772
10773 // We only want the FixIts if all the arguments can be corrected.
10774 bool Unfixable = false;
10775 // Use a implicit copy initialization to check conversion fixes.
10776 Cand->Fix.setConversionChecker(TryCopyInitialization);
10777
10778 // Attempt to fix the bad conversion.
10779 unsigned ConvCount = Cand->Conversions.size();
10780 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10781 ++ConvIdx) {
10782 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((ConvIdx != ConvCount && "no bad conversion in candidate"
) ? static_cast<void> (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10782, __PRETTY_FUNCTION__))
;
10783 if (Cand->Conversions[ConvIdx].isInitialized() &&
10784 Cand->Conversions[ConvIdx].isBad()) {
10785 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10786 break;
10787 }
10788 }
10789
10790 // FIXME: this should probably be preserved from the overload
10791 // operation somehow.
10792 bool SuppressUserConversions = false;
10793
10794 unsigned ConvIdx = 0;
10795 ArrayRef<QualType> ParamTypes;
10796
10797 if (Cand->IsSurrogate) {
10798 QualType ConvType
10799 = Cand->Surrogate->getConversionType().getNonReferenceType();
10800 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10801 ConvType = ConvPtrType->getPointeeType();
10802 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
10803 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10804 ConvIdx = 1;
10805 } else if (Cand->Function) {
10806 ParamTypes =
10807 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
10808 if (isa<CXXMethodDecl>(Cand->Function) &&
10809 !isa<CXXConstructorDecl>(Cand->Function)) {
10810 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10811 ConvIdx = 1;
10812 }
10813 } else {
10814 // Builtin operator.
10815 assert(ConvCount <= 3)((ConvCount <= 3) ? static_cast<void> (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10815, __PRETTY_FUNCTION__))
;
10816 ParamTypes = Cand->BuiltinParamTypes;
10817 }
10818
10819 // Fill in the rest of the conversions.
10820 for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10821 if (Cand->Conversions[ConvIdx].isInitialized()) {
10822 // We've already checked this conversion.
10823 } else if (ArgIdx < ParamTypes.size()) {
10824 if (ParamTypes[ArgIdx]->isDependentType())
10825 Cand->Conversions[ConvIdx].setAsIdentityConversion(
10826 Args[ArgIdx]->getType());
10827 else {
10828 Cand->Conversions[ConvIdx] =
10829 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10830 SuppressUserConversions,
10831 /*InOverloadResolution=*/true,
10832 /*AllowObjCWritebackConversion=*/
10833 S.getLangOpts().ObjCAutoRefCount);
10834 // Store the FixIt in the candidate if it exists.
10835 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10836 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10837 }
10838 } else
10839 Cand->Conversions[ConvIdx].setEllipsis();
10840 }
10841}
10842
10843SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
10844 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10845 SourceLocation OpLoc,
10846 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10847 // Sort the candidates by viability and position. Sorting directly would
10848 // be prohibitive, so we make a set of pointers and sort those.
10849 SmallVector<OverloadCandidate*, 32> Cands;
10850 if (OCD == OCD_AllCandidates) Cands.reserve(size());
10851 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10852 if (!Filter(*Cand))
10853 continue;
10854 if (Cand->Viable)
10855 Cands.push_back(Cand);
10856 else if (OCD == OCD_AllCandidates) {
10857 CompleteNonViableCandidate(S, Cand, Args);
10858 if (Cand->Function || Cand->IsSurrogate)
10859 Cands.push_back(Cand);
10860 // Otherwise, this a non-viable builtin candidate. We do not, in general,
10861 // want to list every possible builtin candidate.
10862 }
10863 }
10864
10865 llvm::stable_sort(
10866 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10867
10868 return Cands;
10869}
10870
10871/// When overload resolution fails, prints diagnostic messages containing the
10872/// candidates in the candidate set.
10873void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
10874 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10875 StringRef Opc, SourceLocation OpLoc,
10876 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10877
10878 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
10879
10880 S.Diag(PD.first, PD.second);
10881
10882 NoteCandidates(S, Args, Cands, Opc, OpLoc);
10883}
10884
10885void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
10886 ArrayRef<OverloadCandidate *> Cands,
10887 StringRef Opc, SourceLocation OpLoc) {
10888 bool ReportedAmbiguousConversions = false;
10889
10890 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10891 unsigned CandsShown = 0;
10892 auto I = Cands.begin(), E = Cands.end();
10893 for (; I != E; ++I) {
10894 OverloadCandidate *Cand = *I;
10895
10896 // Set an arbitrary limit on the number of candidate functions we'll spam
10897 // the user with. FIXME: This limit should depend on details of the
10898 // candidate list.
10899 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10900 break;
10901 }
10902 ++CandsShown;
10903
10904 if (Cand->Function)
10905 NoteFunctionCandidate(S, Cand, Args.size(),
10906 /*TakingCandidateAddress=*/false, DestAS);
10907 else if (Cand->IsSurrogate)
10908 NoteSurrogateCandidate(S, Cand);
10909 else {
10910 assert(Cand->Viable &&((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10911, __PRETTY_FUNCTION__))
10911 "Non-viable built-in candidates are not added to Cands.")((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 10911, __PRETTY_FUNCTION__))
;
10912 // Generally we only see ambiguities including viable builtin
10913 // operators if overload resolution got screwed up by an
10914 // ambiguous user-defined conversion.
10915 //
10916 // FIXME: It's quite possible for different conversions to see
10917 // different ambiguities, though.
10918 if (!ReportedAmbiguousConversions) {
10919 NoteAmbiguousUserConversions(S, OpLoc, Cand);
10920 ReportedAmbiguousConversions = true;
10921 }
10922
10923 // If this is a viable builtin, print it.
10924 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10925 }
10926 }
10927
10928 if (I != E)
10929 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10930}
10931
10932static SourceLocation
10933GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10934 return Cand->Specialization ? Cand->Specialization->getLocation()
10935 : SourceLocation();
10936}
10937
10938namespace {
10939struct CompareTemplateSpecCandidatesForDisplay {
10940 Sema &S;
10941 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10942
10943 bool operator()(const TemplateSpecCandidate *L,
10944 const TemplateSpecCandidate *R) {
10945 // Fast-path this check.
10946 if (L == R)
10947 return false;
10948
10949 // Assuming that both candidates are not matches...
10950
10951 // Sort by the ranking of deduction failures.
10952 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10953 return RankDeductionFailure(L->DeductionFailure) <
10954 RankDeductionFailure(R->DeductionFailure);
10955
10956 // Sort everything else by location.
10957 SourceLocation LLoc = GetLocationForCandidate(L);
10958 SourceLocation RLoc = GetLocationForCandidate(R);
10959
10960 // Put candidates without locations (e.g. builtins) at the end.
10961 if (LLoc.isInvalid())
10962 return false;
10963 if (RLoc.isInvalid())
10964 return true;
10965
10966 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10967 }
10968};
10969}
10970
10971/// Diagnose a template argument deduction failure.
10972/// We are treating these failures as overload failures due to bad
10973/// deductions.
10974void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10975 bool ForTakingAddress) {
10976 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10977 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10978}
10979
10980void TemplateSpecCandidateSet::destroyCandidates() {
10981 for (iterator i = begin(), e = end(); i != e; ++i) {
10982 i->DeductionFailure.Destroy();
10983 }
10984}
10985
10986void TemplateSpecCandidateSet::clear() {
10987 destroyCandidates();
10988 Candidates.clear();
10989}
10990
10991/// NoteCandidates - When no template specialization match is found, prints
10992/// diagnostic messages containing the non-matching specializations that form
10993/// the candidate set.
10994/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10995/// OCD == OCD_AllCandidates and Cand->Viable == false.
10996void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10997 // Sort the candidates by position (assuming no candidate is a match).
10998 // Sorting directly would be prohibitive, so we make a set of pointers
10999 // and sort those.
11000 SmallVector<TemplateSpecCandidate *, 32> Cands;
11001 Cands.reserve(size());
11002 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11003 if (Cand->Specialization)
11004 Cands.push_back(Cand);
11005 // Otherwise, this is a non-matching builtin candidate. We do not,
11006 // in general, want to list every possible builtin candidate.
11007 }
11008
11009 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11010
11011 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11012 // for generalization purposes (?).
11013 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11014
11015 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11016 unsigned CandsShown = 0;
11017 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11018 TemplateSpecCandidate *Cand = *I;
11019
11020 // Set an arbitrary limit on the number of candidates we'll spam
11021 // the user with. FIXME: This limit should depend on details of the
11022 // candidate list.
11023 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11024 break;
11025 ++CandsShown;
11026
11027 assert(Cand->Specialization &&((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11028, __PRETTY_FUNCTION__))
11028 "Non-matching built-in candidates are not added to Cands.")((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11028, __PRETTY_FUNCTION__))
;
11029 Cand->NoteDeductionFailure(S, ForTakingAddress);
11030 }
11031
11032 if (I != E)
11033 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11034}
11035
11036// [PossiblyAFunctionType] --> [Return]
11037// NonFunctionType --> NonFunctionType
11038// R (A) --> R(A)
11039// R (*)(A) --> R (A)
11040// R (&)(A) --> R (A)
11041// R (S::*)(A) --> R (A)
11042QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11043 QualType Ret = PossiblyAFunctionType;
11044 if (const PointerType *ToTypePtr =
11045 PossiblyAFunctionType->getAs<PointerType>())
11046 Ret = ToTypePtr->getPointeeType();
11047 else if (const ReferenceType *ToTypeRef =
11048 PossiblyAFunctionType->getAs<ReferenceType>())
11049 Ret = ToTypeRef->getPointeeType();
11050 else if (const MemberPointerType *MemTypePtr =
11051 PossiblyAFunctionType->getAs<MemberPointerType>())
11052 Ret = MemTypePtr->getPointeeType();
11053 Ret =
11054 Context.getCanonicalType(Ret).getUnqualifiedType();
11055 return Ret;
11056}
11057
11058static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11059 bool Complain = true) {
11060 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11061 S.DeduceReturnType(FD, Loc, Complain))
11062 return true;
11063
11064 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11065 if (S.getLangOpts().CPlusPlus17 &&
11066 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11067 !S.ResolveExceptionSpec(Loc, FPT))
11068 return true;
11069
11070 return false;
11071}
11072
11073namespace {
11074// A helper class to help with address of function resolution
11075// - allows us to avoid passing around all those ugly parameters
11076class AddressOfFunctionResolver {
11077 Sema& S;
11078 Expr* SourceExpr;
11079 const QualType& TargetType;
11080 QualType TargetFunctionType; // Extracted function type from target type
11081
11082 bool Complain;
11083 //DeclAccessPair& ResultFunctionAccessPair;
11084 ASTContext& Context;
11085
11086 bool TargetTypeIsNonStaticMemberFunction;
11087 bool FoundNonTemplateFunction;
11088 bool StaticMemberFunctionFromBoundPointer;
11089 bool HasComplained;
11090
11091 OverloadExpr::FindResult OvlExprInfo;
11092 OverloadExpr *OvlExpr;
11093 TemplateArgumentListInfo OvlExplicitTemplateArgs;
11094 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11095 TemplateSpecCandidateSet FailedCandidates;
11096
11097public:
11098 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11099 const QualType &TargetType, bool Complain)
11100 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11101 Complain(Complain), Context(S.getASTContext()),
11102 TargetTypeIsNonStaticMemberFunction(
11103 !!TargetType->getAs<MemberPointerType>()),
11104 FoundNonTemplateFunction(false),
11105 StaticMemberFunctionFromBoundPointer(false),
11106 HasComplained(false),
11107 OvlExprInfo(OverloadExpr::find(SourceExpr)),
11108 OvlExpr(OvlExprInfo.Expression),
11109 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11110 ExtractUnqualifiedFunctionTypeFromTargetType();
11111
11112 if (TargetFunctionType->isFunctionType()) {
11113 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11114 if (!UME->isImplicitAccess() &&
11115 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11116 StaticMemberFunctionFromBoundPointer = true;
11117 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11118 DeclAccessPair dap;
11119 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11120 OvlExpr, false, &dap)) {
11121 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11122 if (!Method->isStatic()) {
11123 // If the target type is a non-function type and the function found
11124 // is a non-static member function, pretend as if that was the
11125 // target, it's the only possible type to end up with.
11126 TargetTypeIsNonStaticMemberFunction = true;
11127
11128 // And skip adding the function if its not in the proper form.
11129 // We'll diagnose this due to an empty set of functions.
11130 if (!OvlExprInfo.HasFormOfMemberPointer)
11131 return;
11132 }
11133
11134 Matches.push_back(std::make_pair(dap, Fn));
11135 }
11136 return;
11137 }
11138
11139 if (OvlExpr->hasExplicitTemplateArgs())
11140 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11141
11142 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11143 // C++ [over.over]p4:
11144 // If more than one function is selected, [...]
11145 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11146 if (FoundNonTemplateFunction)
11147 EliminateAllTemplateMatches();
11148 else
11149 EliminateAllExceptMostSpecializedTemplate();
11150 }
11151 }
11152
11153 if (S.getLangOpts().CUDA && Matches.size() > 1)
11154 EliminateSuboptimalCudaMatches();
11155 }
11156
11157 bool hasComplained() const { return HasComplained; }
11158
11159private:
11160 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11161 QualType Discard;
11162 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11163 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11164 }
11165
11166 /// \return true if A is considered a better overload candidate for the
11167 /// desired type than B.
11168 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11169 // If A doesn't have exactly the correct type, we don't want to classify it
11170 // as "better" than anything else. This way, the user is required to
11171 // disambiguate for us if there are multiple candidates and no exact match.
11172 return candidateHasExactlyCorrectType(A) &&
11173 (!candidateHasExactlyCorrectType(B) ||
11174 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11175 }
11176
11177 /// \return true if we were able to eliminate all but one overload candidate,
11178 /// false otherwise.
11179 bool eliminiateSuboptimalOverloadCandidates() {
11180 // Same algorithm as overload resolution -- one pass to pick the "best",
11181 // another pass to be sure that nothing is better than the best.
11182 auto Best = Matches.begin();
11183 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11184 if (isBetterCandidate(I->second, Best->second))
11185 Best = I;
11186
11187 const FunctionDecl *BestFn = Best->second;
11188 auto IsBestOrInferiorToBest = [this, BestFn](
11189 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11190 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11191 };
11192
11193 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11194 // option, so we can potentially give the user a better error
11195 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11196 return false;
11197 Matches[0] = *Best;
11198 Matches.resize(1);
11199 return true;
11200 }
11201
11202 bool isTargetTypeAFunction() const {
11203 return TargetFunctionType->isFunctionType();
11204 }
11205
11206 // [ToType] [Return]
11207
11208 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11209 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11210 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11211 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11212 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11213 }
11214
11215 // return true if any matching specializations were found
11216 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11217 const DeclAccessPair& CurAccessFunPair) {
11218 if (CXXMethodDecl *Method
11219 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11220 // Skip non-static function templates when converting to pointer, and
11221 // static when converting to member pointer.
11222 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11223 return false;
11224 }
11225 else if (TargetTypeIsNonStaticMemberFunction)
11226 return false;
11227
11228 // C++ [over.over]p2:
11229 // If the name is a function template, template argument deduction is
11230 // done (14.8.2.2), and if the argument deduction succeeds, the
11231 // resulting template argument list is used to generate a single
11232 // function template specialization, which is added to the set of
11233 // overloaded functions considered.
11234 FunctionDecl *Specialization = nullptr;
11235 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11236 if (Sema::TemplateDeductionResult Result
11237 = S.DeduceTemplateArguments(FunctionTemplate,
11238 &OvlExplicitTemplateArgs,
11239 TargetFunctionType, Specialization,
11240 Info, /*IsAddressOfFunction*/true)) {
11241 // Make a note of the failed deduction for diagnostics.
11242 FailedCandidates.addCandidate()
11243 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11244 MakeDeductionFailureInfo(Context, Result, Info));
11245 return false;
11246 }
11247
11248 // Template argument deduction ensures that we have an exact match or
11249 // compatible pointer-to-function arguments that would be adjusted by ICS.
11250 // This function template specicalization works.
11251 assert(S.isSameOrCompatibleFunctionType(((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11253, __PRETTY_FUNCTION__))
11252 Context.getCanonicalType(Specialization->getType()),((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11253, __PRETTY_FUNCTION__))
11253 Context.getCanonicalType(TargetFunctionType)))((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11253, __PRETTY_FUNCTION__))
;
11254
11255 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11256 return false;
11257
11258 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11259 return true;
11260 }
11261
11262 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11263 const DeclAccessPair& CurAccessFunPair) {
11264 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11265 // Skip non-static functions when converting to pointer, and static
11266 // when converting to member pointer.
11267 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11268 return false;
11269 }
11270 else if (TargetTypeIsNonStaticMemberFunction)
11271 return false;
11272
11273 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11274 if (S.getLangOpts().CUDA)
11275 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11276 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11277 return false;
11278 if (FunDecl->isMultiVersion()) {
11279 const auto *TA = FunDecl->getAttr<TargetAttr>();
11280 if (TA && !TA->isDefaultVersion())
11281 return false;
11282 }
11283
11284 // If any candidate has a placeholder return type, trigger its deduction
11285 // now.
11286 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11287 Complain)) {
11288 HasComplained |= Complain;
11289 return false;
11290 }
11291
11292 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11293 return false;
11294
11295 // If we're in C, we need to support types that aren't exactly identical.
11296 if (!S.getLangOpts().CPlusPlus ||
11297 candidateHasExactlyCorrectType(FunDecl)) {
11298 Matches.push_back(std::make_pair(
11299 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11300 FoundNonTemplateFunction = true;
11301 return true;
11302 }
11303 }
11304
11305 return false;
11306 }
11307
11308 bool FindAllFunctionsThatMatchTargetTypeExactly() {
11309 bool Ret = false;
11310
11311 // If the overload expression doesn't have the form of a pointer to
11312 // member, don't try to convert it to a pointer-to-member type.
11313 if (IsInvalidFormOfPointerToMemberFunction())
11314 return false;
11315
11316 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11317 E = OvlExpr->decls_end();
11318 I != E; ++I) {
11319 // Look through any using declarations to find the underlying function.
11320 NamedDecl *Fn = (*I)->getUnderlyingDecl();
11321
11322 // C++ [over.over]p3:
11323 // Non-member functions and static member functions match
11324 // targets of type "pointer-to-function" or "reference-to-function."
11325 // Nonstatic member functions match targets of
11326 // type "pointer-to-member-function."
11327 // Note that according to DR 247, the containing class does not matter.
11328 if (FunctionTemplateDecl *FunctionTemplate
11329 = dyn_cast<FunctionTemplateDecl>(Fn)) {
11330 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11331 Ret = true;
11332 }
11333 // If we have explicit template arguments supplied, skip non-templates.
11334 else if (!OvlExpr->hasExplicitTemplateArgs() &&
11335 AddMatchingNonTemplateFunction(Fn, I.getPair()))
11336 Ret = true;
11337 }
11338 assert(Ret || Matches.empty())((Ret || Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11338, __PRETTY_FUNCTION__))
;
11339 return Ret;
11340 }
11341
11342 void EliminateAllExceptMostSpecializedTemplate() {
11343 // [...] and any given function template specialization F1 is
11344 // eliminated if the set contains a second function template
11345 // specialization whose function template is more specialized
11346 // than the function template of F1 according to the partial
11347 // ordering rules of 14.5.5.2.
11348
11349 // The algorithm specified above is quadratic. We instead use a
11350 // two-pass algorithm (similar to the one used to identify the
11351 // best viable function in an overload set) that identifies the
11352 // best function template (if it exists).
11353
11354 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11355 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11356 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11357
11358 // TODO: It looks like FailedCandidates does not serve much purpose
11359 // here, since the no_viable diagnostic has index 0.
11360 UnresolvedSetIterator Result = S.getMostSpecialized(
11361 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11362 SourceExpr->getBeginLoc(), S.PDiag(),
11363 S.PDiag(diag::err_addr_ovl_ambiguous)
11364 << Matches[0].second->getDeclName(),
11365 S.PDiag(diag::note_ovl_candidate)
11366 << (unsigned)oc_function << (unsigned)ocs_described_template,
11367 Complain, TargetFunctionType);
11368
11369 if (Result != MatchesCopy.end()) {
11370 // Make it the first and only element
11371 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11372 Matches[0].second = cast<FunctionDecl>(*Result);
11373 Matches.resize(1);
11374 } else
11375 HasComplained |= Complain;
11376 }
11377
11378 void EliminateAllTemplateMatches() {
11379 // [...] any function template specializations in the set are
11380 // eliminated if the set also contains a non-template function, [...]
11381 for (unsigned I = 0, N = Matches.size(); I != N; ) {
11382 if (Matches[I].second->getPrimaryTemplate() == nullptr)
11383 ++I;
11384 else {
11385 Matches[I] = Matches[--N];
11386 Matches.resize(N);
11387 }
11388 }
11389 }
11390
11391 void EliminateSuboptimalCudaMatches() {
11392 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11393 }
11394
11395public:
11396 void ComplainNoMatchesFound() const {
11397 assert(Matches.empty())((Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11397, __PRETTY_FUNCTION__))
;
11398 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11399 << OvlExpr->getName() << TargetFunctionType
11400 << OvlExpr->getSourceRange();
11401 if (FailedCandidates.empty())
11402 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11403 /*TakingAddress=*/true);
11404 else {
11405 // We have some deduction failure messages. Use them to diagnose
11406 // the function templates, and diagnose the non-template candidates
11407 // normally.
11408 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11409 IEnd = OvlExpr->decls_end();
11410 I != IEnd; ++I)
11411 if (FunctionDecl *Fun =
11412 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11413 if (!functionHasPassObjectSizeParams(Fun))
11414 S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11415 /*TakingAddress=*/true);
11416 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11417 }
11418 }
11419
11420 bool IsInvalidFormOfPointerToMemberFunction() const {
11421 return TargetTypeIsNonStaticMemberFunction &&
11422 !OvlExprInfo.HasFormOfMemberPointer;
11423 }
11424
11425 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11426 // TODO: Should we condition this on whether any functions might
11427 // have matched, or is it more appropriate to do that in callers?
11428 // TODO: a fixit wouldn't hurt.
11429 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11430 << TargetType << OvlExpr->getSourceRange();
11431 }
11432
11433 bool IsStaticMemberFunctionFromBoundPointer() const {
11434 return StaticMemberFunctionFromBoundPointer;
11435 }
11436
11437 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11438 S.Diag(OvlExpr->getBeginLoc(),
11439 diag::err_invalid_form_pointer_member_function)
11440 << OvlExpr->getSourceRange();
11441 }
11442
11443 void ComplainOfInvalidConversion() const {
11444 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11445 << OvlExpr->getName() << TargetType;
11446 }
11447
11448 void ComplainMultipleMatchesFound() const {
11449 assert(Matches.size() > 1)((Matches.size() > 1) ? static_cast<void> (0) : __assert_fail
("Matches.size() > 1", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11449, __PRETTY_FUNCTION__))
;
11450 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11451 << OvlExpr->getName() << OvlExpr->getSourceRange();
11452 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11453 /*TakingAddress=*/true);
11454 }
11455
11456 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11457
11458 int getNumMatches() const { return Matches.size(); }
11459
11460 FunctionDecl* getMatchingFunctionDecl() const {
11461 if (Matches.size() != 1) return nullptr;
11462 return Matches[0].second;
11463 }
11464
11465 const DeclAccessPair* getMatchingFunctionAccessPair() const {
11466 if (Matches.size() != 1) return nullptr;
11467 return &Matches[0].first;
11468 }
11469};
11470}
11471
11472/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11473/// an overloaded function (C++ [over.over]), where @p From is an
11474/// expression with overloaded function type and @p ToType is the type
11475/// we're trying to resolve to. For example:
11476///
11477/// @code
11478/// int f(double);
11479/// int f(int);
11480///
11481/// int (*pfd)(double) = f; // selects f(double)
11482/// @endcode
11483///
11484/// This routine returns the resulting FunctionDecl if it could be
11485/// resolved, and NULL otherwise. When @p Complain is true, this
11486/// routine will emit diagnostics if there is an error.
11487FunctionDecl *
11488Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11489 QualType TargetType,
11490 bool Complain,
11491 DeclAccessPair &FoundResult,
11492 bool *pHadMultipleCandidates) {
11493 assert(AddressOfExpr->getType() == Context.OverloadTy)((AddressOfExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11493, __PRETTY_FUNCTION__))
;
11494
11495 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11496 Complain);
11497 int NumMatches = Resolver.getNumMatches();
11498 FunctionDecl *Fn = nullptr;
11499 bool ShouldComplain = Complain && !Resolver.hasComplained();
11500 if (NumMatches == 0 && ShouldComplain) {
11501 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11502 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11503 else
11504 Resolver.ComplainNoMatchesFound();
11505 }
11506 else if (NumMatches > 1 && ShouldComplain)
11507 Resolver.ComplainMultipleMatchesFound();
11508 else if (NumMatches == 1) {
11509 Fn = Resolver.getMatchingFunctionDecl();
11510 assert(Fn)((Fn) ? static_cast<void> (0) : __assert_fail ("Fn", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11510, __PRETTY_FUNCTION__))
;
11511 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11512 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11513 FoundResult = *Resolver.getMatchingFunctionAccessPair();
11514 if (Complain) {
11515 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11516 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11517 else
11518 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11519 }
11520 }
11521
11522 if (pHadMultipleCandidates)
11523 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11524 return Fn;
11525}
11526
11527/// Given an expression that refers to an overloaded function, try to
11528/// resolve that function to a single function that can have its address taken.
11529/// This will modify `Pair` iff it returns non-null.
11530///
11531/// This routine can only realistically succeed if all but one candidates in the
11532/// overload set for SrcExpr cannot have their addresses taken.
11533FunctionDecl *
11534Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11535 DeclAccessPair &Pair) {
11536 OverloadExpr::FindResult R = OverloadExpr::find(E);
11537 OverloadExpr *Ovl = R.Expression;
11538 FunctionDecl *Result = nullptr;
11539 DeclAccessPair DAP;
11540 // Don't use the AddressOfResolver because we're specifically looking for
11541 // cases where we have one overload candidate that lacks
11542 // enable_if/pass_object_size/...
11543 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11544 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11545 if (!FD)
11546 return nullptr;
11547
11548 if (!checkAddressOfFunctionIsAvailable(FD))
11549 continue;
11550
11551 // We have more than one result; quit.
11552 if (Result)
11553 return nullptr;
11554 DAP = I.getPair();
11555 Result = FD;
11556 }
11557
11558 if (Result)
11559 Pair = DAP;
11560 return Result;
11561}
11562
11563/// Given an overloaded function, tries to turn it into a non-overloaded
11564/// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11565/// will perform access checks, diagnose the use of the resultant decl, and, if
11566/// requested, potentially perform a function-to-pointer decay.
11567///
11568/// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11569/// Otherwise, returns true. This may emit diagnostics and return true.
11570bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11571 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11572 Expr *E = SrcExpr.get();
11573 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((E->getType() == Context.OverloadTy && "SrcExpr must be an overload"
) ? static_cast<void> (0) : __assert_fail ("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11573, __PRETTY_FUNCTION__))
;
11574
11575 DeclAccessPair DAP;
11576 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11577 if (!Found || Found->isCPUDispatchMultiVersion() ||
11578 Found->isCPUSpecificMultiVersion())
11579 return false;
11580
11581 // Emitting multiple diagnostics for a function that is both inaccessible and
11582 // unavailable is consistent with our behavior elsewhere. So, always check
11583 // for both.
11584 DiagnoseUseOfDecl(Found, E->getExprLoc());
11585 CheckAddressOfMemberAccess(E, DAP);
11586 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11587 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11588 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11589 else
11590 SrcExpr = Fixed;
11591 return true;
11592}
11593
11594/// Given an expression that refers to an overloaded function, try to
11595/// resolve that overloaded function expression down to a single function.
11596///
11597/// This routine can only resolve template-ids that refer to a single function
11598/// template, where that template-id refers to a single template whose template
11599/// arguments are either provided by the template-id or have defaults,
11600/// as described in C++0x [temp.arg.explicit]p3.
11601///
11602/// If no template-ids are found, no diagnostics are emitted and NULL is
11603/// returned.
11604FunctionDecl *
11605Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11606 bool Complain,
11607 DeclAccessPair *FoundResult) {
11608 // C++ [over.over]p1:
11609 // [...] [Note: any redundant set of parentheses surrounding the
11610 // overloaded function name is ignored (5.1). ]
11611 // C++ [over.over]p1:
11612 // [...] The overloaded function name can be preceded by the &
11613 // operator.
11614
11615 // If we didn't actually find any template-ids, we're done.
11616 if (!ovl->hasExplicitTemplateArgs())
11617 return nullptr;
11618
11619 TemplateArgumentListInfo ExplicitTemplateArgs;
11620 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11621 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11622
11623 // Look through all of the overloaded functions, searching for one
11624 // whose type matches exactly.
11625 FunctionDecl *Matched = nullptr;
11626 for (UnresolvedSetIterator I = ovl->decls_begin(),
11627 E = ovl->decls_end(); I != E; ++I) {
11628 // C++0x [temp.arg.explicit]p3:
11629 // [...] In contexts where deduction is done and fails, or in contexts
11630 // where deduction is not done, if a template argument list is
11631 // specified and it, along with any default template arguments,
11632 // identifies a single function template specialization, then the
11633 // template-id is an lvalue for the function template specialization.
11634 FunctionTemplateDecl *FunctionTemplate
11635 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11636
11637 // C++ [over.over]p2:
11638 // If the name is a function template, template argument deduction is
11639 // done (14.8.2.2), and if the argument deduction succeeds, the
11640 // resulting template argument list is used to generate a single
11641 // function template specialization, which is added to the set of
11642 // overloaded functions considered.
11643 FunctionDecl *Specialization = nullptr;
11644 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11645 if (TemplateDeductionResult Result
11646 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11647 Specialization, Info,
11648 /*IsAddressOfFunction*/true)) {
11649 // Make a note of the failed deduction for diagnostics.
11650 // TODO: Actually use the failed-deduction info?
11651 FailedCandidates.addCandidate()
11652 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11653 MakeDeductionFailureInfo(Context, Result, Info));
11654 continue;
11655 }
11656
11657 assert(Specialization && "no specialization and no error?")((Specialization && "no specialization and no error?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11657, __PRETTY_FUNCTION__))
;
11658
11659 // Multiple matches; we can't resolve to a single declaration.
11660 if (Matched) {
11661 if (Complain) {
11662 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11663 << ovl->getName();
11664 NoteAllOverloadCandidates(ovl);
11665 }
11666 return nullptr;
11667 }
11668
11669 Matched = Specialization;
11670 if (FoundResult) *FoundResult = I.getPair();
11671 }
11672
11673 if (Matched &&
11674 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11675 return nullptr;
11676
11677 return Matched;
11678}
11679
11680// Resolve and fix an overloaded expression that can be resolved
11681// because it identifies a single function template specialization.
11682//
11683// Last three arguments should only be supplied if Complain = true
11684//
11685// Return true if it was logically possible to so resolve the
11686// expression, regardless of whether or not it succeeded. Always
11687// returns true if 'complain' is set.
11688bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11689 ExprResult &SrcExpr, bool doFunctionPointerConverion,
11690 bool complain, SourceRange OpRangeForComplaining,
11691 QualType DestTypeForComplaining,
11692 unsigned DiagIDForComplaining) {
11693 assert(SrcExpr.get()->getType() == Context.OverloadTy)((SrcExpr.get()->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11693, __PRETTY_FUNCTION__))
;
11694
11695 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11696
11697 DeclAccessPair found;
11698 ExprResult SingleFunctionExpression;
11699 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11700 ovl.Expression, /*complain*/ false, &found)) {
11701 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11702 SrcExpr = ExprError();
11703 return true;
11704 }
11705
11706 // It is only correct to resolve to an instance method if we're
11707 // resolving a form that's permitted to be a pointer to member.
11708 // Otherwise we'll end up making a bound member expression, which
11709 // is illegal in all the contexts we resolve like this.
11710 if (!ovl.HasFormOfMemberPointer &&
11711 isa<CXXMethodDecl>(fn) &&
11712 cast<CXXMethodDecl>(fn)->isInstance()) {
11713 if (!complain) return false;
11714
11715 Diag(ovl.Expression->getExprLoc(),
11716 diag::err_bound_member_function)
11717 << 0 << ovl.Expression->getSourceRange();
11718
11719 // TODO: I believe we only end up here if there's a mix of
11720 // static and non-static candidates (otherwise the expression
11721 // would have 'bound member' type, not 'overload' type).
11722 // Ideally we would note which candidate was chosen and why
11723 // the static candidates were rejected.
11724 SrcExpr = ExprError();
11725 return true;
11726 }
11727
11728 // Fix the expression to refer to 'fn'.
11729 SingleFunctionExpression =
11730 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11731
11732 // If desired, do function-to-pointer decay.
11733 if (doFunctionPointerConverion) {
11734 SingleFunctionExpression =
11735 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11736 if (SingleFunctionExpression.isInvalid()) {
11737 SrcExpr = ExprError();
11738 return true;
11739 }
11740 }
11741 }
11742
11743 if (!SingleFunctionExpression.isUsable()) {
11744 if (complain) {
11745 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11746 << ovl.Expression->getName()
11747 << DestTypeForComplaining
11748 << OpRangeForComplaining
11749 << ovl.Expression->getQualifierLoc().getSourceRange();
11750 NoteAllOverloadCandidates(SrcExpr.get());
11751
11752 SrcExpr = ExprError();
11753 return true;
11754 }
11755
11756 return false;
11757 }
11758
11759 SrcExpr = SingleFunctionExpression;
11760 return true;
11761}
11762
11763/// Add a single candidate to the overload set.
11764static void AddOverloadedCallCandidate(Sema &S,
11765 DeclAccessPair FoundDecl,
11766 TemplateArgumentListInfo *ExplicitTemplateArgs,
11767 ArrayRef<Expr *> Args,
11768 OverloadCandidateSet &CandidateSet,
11769 bool PartialOverloading,
11770 bool KnownValid) {
11771 NamedDecl *Callee = FoundDecl.getDecl();
11772 if (isa<UsingShadowDecl>(Callee))
11773 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11774
11775 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11776 if (ExplicitTemplateArgs) {
11777 assert(!KnownValid && "Explicit template arguments?")((!KnownValid && "Explicit template arguments?") ? static_cast
<void> (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11777, __PRETTY_FUNCTION__))
;
11778 return;
11779 }
11780 // Prevent ill-formed function decls to be added as overload candidates.
11781 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11782 return;
11783
11784 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11785 /*SuppressUserConversions=*/false,
11786 PartialOverloading);
11787 return;
11788 }
11789
11790 if (FunctionTemplateDecl *FuncTemplate
11791 = dyn_cast<FunctionTemplateDecl>(Callee)) {
11792 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11793 ExplicitTemplateArgs, Args, CandidateSet,
11794 /*SuppressUserConversions=*/false,
11795 PartialOverloading);
11796 return;
11797 }
11798
11799 assert(!KnownValid && "unhandled case in overloaded call candidate")((!KnownValid && "unhandled case in overloaded call candidate"
) ? static_cast<void> (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11799, __PRETTY_FUNCTION__))
;
11800}
11801
11802/// Add the overload candidates named by callee and/or found by argument
11803/// dependent lookup to the given overload set.
11804void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11805 ArrayRef<Expr *> Args,
11806 OverloadCandidateSet &CandidateSet,
11807 bool PartialOverloading) {
11808
11809#ifndef NDEBUG
11810 // Verify that ArgumentDependentLookup is consistent with the rules
11811 // in C++0x [basic.lookup.argdep]p3:
11812 //
11813 // Let X be the lookup set produced by unqualified lookup (3.4.1)
11814 // and let Y be the lookup set produced by argument dependent
11815 // lookup (defined as follows). If X contains
11816 //
11817 // -- a declaration of a class member, or
11818 //
11819 // -- a block-scope function declaration that is not a
11820 // using-declaration, or
11821 //
11822 // -- a declaration that is neither a function or a function
11823 // template
11824 //
11825 // then Y is empty.
11826
11827 if (ULE->requiresADL()) {
11828 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11829 E = ULE->decls_end(); I != E; ++I) {
11830 assert(!(*I)->getDeclContext()->isRecord())((!(*I)->getDeclContext()->isRecord()) ? static_cast<
void> (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11830, __PRETTY_FUNCTION__))
;
11831 assert(isa<UsingShadowDecl>(*I) ||((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11832, __PRETTY_FUNCTION__))
11832 !(*I)->getDeclContext()->isFunctionOrMethod())((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11832, __PRETTY_FUNCTION__))
;
11833 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? static_cast<void> (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11833, __PRETTY_FUNCTION__))
;
11834 }
11835 }
11836#endif
11837
11838 // It would be nice to avoid this copy.
11839 TemplateArgumentListInfo TABuffer;
11840 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11841 if (ULE->hasExplicitTemplateArgs()) {
11842 ULE->copyTemplateArgumentsInto(TABuffer);
11843 ExplicitTemplateArgs = &TABuffer;
11844 }
11845
11846 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11847 E = ULE->decls_end(); I != E; ++I)
11848 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11849 CandidateSet, PartialOverloading,
11850 /*KnownValid*/ true);
11851
11852 if (ULE->requiresADL())
11853 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11854 Args, ExplicitTemplateArgs,
11855 CandidateSet, PartialOverloading);
11856}
11857
11858/// Determine whether a declaration with the specified name could be moved into
11859/// a different namespace.
11860static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11861 switch (Name.getCXXOverloadedOperator()) {
11862 case OO_New: case OO_Array_New:
11863 case OO_Delete: case OO_Array_Delete:
11864 return false;
11865
11866 default:
11867 return true;
11868 }
11869}
11870
11871/// Attempt to recover from an ill-formed use of a non-dependent name in a
11872/// template, where the non-dependent name was declared after the template
11873/// was defined. This is common in code written for a compilers which do not
11874/// correctly implement two-stage name lookup.
11875///
11876/// Returns true if a viable candidate was found and a diagnostic was issued.
11877static bool
11878DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11879 const CXXScopeSpec &SS, LookupResult &R,
11880 OverloadCandidateSet::CandidateSetKind CSK,
11881 TemplateArgumentListInfo *ExplicitTemplateArgs,
11882 ArrayRef<Expr *> Args,
11883 bool *DoDiagnoseEmptyLookup = nullptr) {
11884 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11885 return false;
11886
11887 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11888 if (DC->isTransparentContext())
11889 continue;
11890
11891 SemaRef.LookupQualifiedName(R, DC);
11892
11893 if (!R.empty()) {
11894 R.suppressDiagnostics();
11895
11896 if (isa<CXXRecordDecl>(DC)) {
11897 // Don't diagnose names we find in classes; we get much better
11898 // diagnostics for these from DiagnoseEmptyLookup.
11899 R.clear();
11900 if (DoDiagnoseEmptyLookup)
11901 *DoDiagnoseEmptyLookup = true;
11902 return false;
11903 }
11904
11905 OverloadCandidateSet Candidates(FnLoc, CSK);
11906 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11907 AddOverloadedCallCandidate(SemaRef, I.getPair(),
11908 ExplicitTemplateArgs, Args,
11909 Candidates, false, /*KnownValid*/ false);
11910
11911 OverloadCandidateSet::iterator Best;
11912 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11913 // No viable functions. Don't bother the user with notes for functions
11914 // which don't work and shouldn't be found anyway.
11915 R.clear();
11916 return false;
11917 }
11918
11919 // Find the namespaces where ADL would have looked, and suggest
11920 // declaring the function there instead.
11921 Sema::AssociatedNamespaceSet AssociatedNamespaces;
11922 Sema::AssociatedClassSet AssociatedClasses;
11923 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11924 AssociatedNamespaces,
11925 AssociatedClasses);
11926 Sema::AssociatedNamespaceSet SuggestedNamespaces;
11927 if (canBeDeclaredInNamespace(R.getLookupName())) {
11928 DeclContext *Std = SemaRef.getStdNamespace();
11929 for (Sema::AssociatedNamespaceSet::iterator
11930 it = AssociatedNamespaces.begin(),
11931 end = AssociatedNamespaces.end(); it != end; ++it) {
11932 // Never suggest declaring a function within namespace 'std'.
11933 if (Std && Std->Encloses(*it))
11934 continue;
11935
11936 // Never suggest declaring a function within a namespace with a
11937 // reserved name, like __gnu_cxx.
11938 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11939 if (NS &&
11940 NS->getQualifiedNameAsString().find("__") != std::string::npos)
11941 continue;
11942
11943 SuggestedNamespaces.insert(*it);
11944 }
11945 }
11946
11947 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11948 << R.getLookupName();
11949 if (SuggestedNamespaces.empty()) {
11950 SemaRef.Diag(Best->Function->getLocation(),
11951 diag::note_not_found_by_two_phase_lookup)
11952 << R.getLookupName() << 0;
11953 } else if (SuggestedNamespaces.size() == 1) {
11954 SemaRef.Diag(Best->Function->getLocation(),
11955 diag::note_not_found_by_two_phase_lookup)
11956 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11957 } else {
11958 // FIXME: It would be useful to list the associated namespaces here,
11959 // but the diagnostics infrastructure doesn't provide a way to produce
11960 // a localized representation of a list of items.
11961 SemaRef.Diag(Best->Function->getLocation(),
11962 diag::note_not_found_by_two_phase_lookup)
11963 << R.getLookupName() << 2;
11964 }
11965
11966 // Try to recover by calling this function.
11967 return true;
11968 }
11969
11970 R.clear();
11971 }
11972
11973 return false;
11974}
11975
11976/// Attempt to recover from ill-formed use of a non-dependent operator in a
11977/// template, where the non-dependent operator was declared after the template
11978/// was defined.
11979///
11980/// Returns true if a viable candidate was found and a diagnostic was issued.
11981static bool
11982DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11983 SourceLocation OpLoc,
11984 ArrayRef<Expr *> Args) {
11985 DeclarationName OpName =
11986 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11987 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11988 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11989 OverloadCandidateSet::CSK_Operator,
11990 /*ExplicitTemplateArgs=*/nullptr, Args);
11991}
11992
11993namespace {
11994class BuildRecoveryCallExprRAII {
11995 Sema &SemaRef;
11996public:
11997 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11998 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((SemaRef.IsBuildingRecoveryCallExpr == false) ? static_cast<
void> (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 11998, __PRETTY_FUNCTION__))
;
11999 SemaRef.IsBuildingRecoveryCallExpr = true;
12000 }
12001
12002 ~BuildRecoveryCallExprRAII() {
12003 SemaRef.IsBuildingRecoveryCallExpr = false;
12004 }
12005};
12006
12007}
12008
12009/// Attempts to recover from a call where no functions were found.
12010///
12011/// Returns true if new candidates were found.
12012static ExprResult
12013BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12014 UnresolvedLookupExpr *ULE,
12015 SourceLocation LParenLoc,
12016 MutableArrayRef<Expr *> Args,
12017 SourceLocation RParenLoc,
12018 bool EmptyLookup, bool AllowTypoCorrection) {
12019 // Do not try to recover if it is already building a recovery call.
12020 // This stops infinite loops for template instantiations like
12021 //
12022 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12023 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12024 //
12025 if (SemaRef.IsBuildingRecoveryCallExpr)
12026 return ExprError();
12027 BuildRecoveryCallExprRAII RCE(SemaRef);
12028
12029 CXXScopeSpec SS;
12030 SS.Adopt(ULE->getQualifierLoc());
12031 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12032
12033 TemplateArgumentListInfo TABuffer;
12034 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12035 if (ULE->hasExplicitTemplateArgs()) {
12036 ULE->copyTemplateArgumentsInto(TABuffer);
12037 ExplicitTemplateArgs = &TABuffer;
12038 }
12039
12040 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12041 Sema::LookupOrdinaryName);
12042 bool DoDiagnoseEmptyLookup = EmptyLookup;
12043 if (!DiagnoseTwoPhaseLookup(
12044 SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12045 ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12046 NoTypoCorrectionCCC NoTypoValidator{};
12047 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12048 ExplicitTemplateArgs != nullptr,
12049 dyn_cast<MemberExpr>(Fn));
12050 CorrectionCandidateCallback &Validator =
12051 AllowTypoCorrection
12052 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12053 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12054 if (!DoDiagnoseEmptyLookup ||
12055 SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12056 Args))
12057 return ExprError();
12058 }
12059
12060 assert(!R.empty() && "lookup results empty despite recovery")((!R.empty() && "lookup results empty despite recovery"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12060, __PRETTY_FUNCTION__))
;
12061
12062 // If recovery created an ambiguity, just bail out.
12063 if (R.isAmbiguous()) {
12064 R.suppressDiagnostics();
12065 return ExprError();
12066 }
12067
12068 // Build an implicit member call if appropriate. Just drop the
12069 // casts and such from the call, we don't really care.
12070 ExprResult NewFn = ExprError();
12071 if ((*R.begin())->isCXXClassMember())
12072 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12073 ExplicitTemplateArgs, S);
12074 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12075 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12076 ExplicitTemplateArgs);
12077 else
12078 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12079
12080 if (NewFn.isInvalid())
12081 return ExprError();
12082
12083 // This shouldn't cause an infinite loop because we're giving it
12084 // an expression with viable lookup results, which should never
12085 // end up here.
12086 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12087 MultiExprArg(Args.data(), Args.size()),
12088 RParenLoc);
12089}
12090
12091/// Constructs and populates an OverloadedCandidateSet from
12092/// the given function.
12093/// \returns true when an the ExprResult output parameter has been set.
12094bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12095 UnresolvedLookupExpr *ULE,
12096 MultiExprArg Args,
12097 SourceLocation RParenLoc,
12098 OverloadCandidateSet *CandidateSet,
12099 ExprResult *Result) {
12100#ifndef NDEBUG
12101 if (ULE->requiresADL()) {
12102 // To do ADL, we must have found an unqualified name.
12103 assert(!ULE->getQualifier() && "qualified name with ADL")((!ULE->getQualifier() && "qualified name with ADL"
) ? static_cast<void> (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12103, __PRETTY_FUNCTION__))
;
12104
12105 // We don't perform ADL for implicit declarations of builtins.
12106 // Verify that this was correctly set up.
12107 FunctionDecl *F;
12108 if (ULE->decls_begin() != ULE->decls_end() &&
12109 ULE->decls_begin() + 1 == ULE->decls_end() &&
12110 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12111 F->getBuiltinID() && F->isImplicit())
12112 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12112)
;
12113
12114 // We don't perform ADL in C.
12115 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((getLangOpts().CPlusPlus && "ADL enabled in C") ? static_cast
<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12115, __PRETTY_FUNCTION__))
;
12116 }
12117#endif
12118
12119 UnbridgedCastsSet UnbridgedCasts;
12120 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12121 *Result = ExprError();
12122 return true;
12123 }
12124
12125 // Add the functions denoted by the callee to the set of candidate
12126 // functions, including those from argument-dependent lookup.
12127 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12128
12129 if (getLangOpts().MSVCCompat &&
12130 CurContext->isDependentContext() && !isSFINAEContext() &&
12131 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12132
12133 OverloadCandidateSet::iterator Best;
12134 if (CandidateSet->empty() ||
12135 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12136 OR_No_Viable_Function) {
12137 // In Microsoft mode, if we are inside a template class member function
12138 // then create a type dependent CallExpr. The goal is to postpone name
12139 // lookup to instantiation time to be able to search into type dependent
12140 // base classes.
12141 CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12142 VK_RValue, RParenLoc);
12143 CE->setTypeDependent(true);
12144 CE->setValueDependent(true);
12145 CE->setInstantiationDependent(true);
12146 *Result = CE;
12147 return true;
12148 }
12149 }
12150
12151 if (CandidateSet->empty())
12152 return false;
12153
12154 UnbridgedCasts.restore();
12155 return false;
12156}
12157
12158/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12159/// the completed call expression. If overload resolution fails, emits
12160/// diagnostics and returns ExprError()
12161static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12162 UnresolvedLookupExpr *ULE,
12163 SourceLocation LParenLoc,
12164 MultiExprArg Args,
12165 SourceLocation RParenLoc,
12166 Expr *ExecConfig,
12167 OverloadCandidateSet *CandidateSet,
12168 OverloadCandidateSet::iterator *Best,
12169 OverloadingResult OverloadResult,
12170 bool AllowTypoCorrection) {
12171 if (CandidateSet->empty())
12172 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12173 RParenLoc, /*EmptyLookup=*/true,
12174 AllowTypoCorrection);
12175
12176 switch (OverloadResult) {
12177 case OR_Success: {
12178 FunctionDecl *FDecl = (*Best)->Function;
12179 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12180 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12181 return ExprError();
12182 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12183 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12184 ExecConfig, /*IsExecConfig=*/false,
12185 (*Best)->IsADLCandidate);
12186 }
12187
12188 case OR_No_Viable_Function: {
12189 // Try to recover by looking for viable functions which the user might
12190 // have meant to call.
12191 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12192 Args, RParenLoc,
12193 /*EmptyLookup=*/false,
12194 AllowTypoCorrection);
12195 if (!Recovery.isInvalid())
12196 return Recovery;
12197
12198 // If the user passes in a function that we can't take the address of, we
12199 // generally end up emitting really bad error messages. Here, we attempt to
12200 // emit better ones.
12201 for (const Expr *Arg : Args) {
12202 if (!Arg->getType()->isFunctionType())
12203 continue;
12204 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12205 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12206 if (FD &&
12207 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12208 Arg->getExprLoc()))
12209 return ExprError();
12210 }
12211 }
12212
12213 CandidateSet->NoteCandidates(
12214 PartialDiagnosticAt(
12215 Fn->getBeginLoc(),
12216 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12217 << ULE->getName() << Fn->getSourceRange()),
12218 SemaRef, OCD_AllCandidates, Args);
12219 break;
12220 }
12221
12222 case OR_Ambiguous:
12223 CandidateSet->NoteCandidates(
12224 PartialDiagnosticAt(Fn->getBeginLoc(),
12225 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12226 << ULE->getName() << Fn->getSourceRange()),
12227 SemaRef, OCD_ViableCandidates, Args);
12228 break;
12229
12230 case OR_Deleted: {
12231 CandidateSet->NoteCandidates(
12232 PartialDiagnosticAt(Fn->getBeginLoc(),
12233 SemaRef.PDiag(diag::err_ovl_deleted_call)
12234 << ULE->getName() << Fn->getSourceRange()),
12235 SemaRef, OCD_AllCandidates, Args);
12236
12237 // We emitted an error for the unavailable/deleted function call but keep
12238 // the call in the AST.
12239 FunctionDecl *FDecl = (*Best)->Function;
12240 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12241 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12242 ExecConfig, /*IsExecConfig=*/false,
12243 (*Best)->IsADLCandidate);
12244 }
12245 }
12246
12247 // Overload resolution failed.
12248 return ExprError();
12249}
12250
12251static void markUnaddressableCandidatesUnviable(Sema &S,
12252 OverloadCandidateSet &CS) {
12253 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12254 if (I->Viable &&
12255 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12256 I->Viable = false;
12257 I->FailureKind = ovl_fail_addr_not_available;
12258 }
12259 }
12260}
12261
12262/// BuildOverloadedCallExpr - Given the call expression that calls Fn
12263/// (which eventually refers to the declaration Func) and the call
12264/// arguments Args/NumArgs, attempt to resolve the function call down
12265/// to a specific function. If overload resolution succeeds, returns
12266/// the call expression produced by overload resolution.
12267/// Otherwise, emits diagnostics and returns ExprError.
12268ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12269 UnresolvedLookupExpr *ULE,
12270 SourceLocation LParenLoc,
12271 MultiExprArg Args,
12272 SourceLocation RParenLoc,
12273 Expr *ExecConfig,
12274 bool AllowTypoCorrection,
12275 bool CalleesAddressIsTaken) {
12276 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12277 OverloadCandidateSet::CSK_Normal);
12278 ExprResult result;
12279
12280 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12281 &result))
12282 return result;
12283
12284 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12285 // functions that aren't addressible are considered unviable.
12286 if (CalleesAddressIsTaken)
12287 markUnaddressableCandidatesUnviable(*this, CandidateSet);
12288
12289 OverloadCandidateSet::iterator Best;
12290 OverloadingResult OverloadResult =
12291 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12292
12293 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12294 ExecConfig, &CandidateSet, &Best,
12295 OverloadResult, AllowTypoCorrection);
12296}
12297
12298static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12299 return Functions.size() > 1 ||
12300 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12301}
12302
12303/// Create a unary operation that may resolve to an overloaded
12304/// operator.
12305///
12306/// \param OpLoc The location of the operator itself (e.g., '*').
12307///
12308/// \param Opc The UnaryOperatorKind that describes this operator.
12309///
12310/// \param Fns The set of non-member functions that will be
12311/// considered by overload resolution. The caller needs to build this
12312/// set based on the context using, e.g.,
12313/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12314/// set should not contain any member functions; those will be added
12315/// by CreateOverloadedUnaryOp().
12316///
12317/// \param Input The input argument.
12318ExprResult
12319Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12320 const UnresolvedSetImpl &Fns,
12321 Expr *Input, bool PerformADL) {
12322 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12323 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? static_cast<void> (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12323, __PRETTY_FUNCTION__))
;
12324 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12325 // TODO: provide better source location info.
12326 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12327
12328 if (checkPlaceholderForOverload(*this, Input))
12329 return ExprError();
12330
12331 Expr *Args[2] = { Input, nullptr };
12332 unsigned NumArgs = 1;
12333
12334 // For post-increment and post-decrement, add the implicit '0' as
12335 // the second argument, so that we know this is a post-increment or
12336 // post-decrement.
12337 if (Opc == UO_PostInc || Opc == UO_PostDec) {
12338 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12339 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12340 SourceLocation());
12341 NumArgs = 2;
12342 }
12343
12344 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12345
12346 if (Input->isTypeDependent()) {
12347 if (Fns.empty())
12348 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12349 VK_RValue, OK_Ordinary, OpLoc, false);
12350
12351 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12352 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12353 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12354 /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12355 return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12356 Context.DependentTy, VK_RValue, OpLoc,
12357 FPOptions());
12358 }
12359
12360 // Build an empty overload set.
12361 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12362
12363 // Add the candidates from the given function set.
12364 AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12365
12366 // Add operator candidates that are member functions.
12367 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12368
12369 // Add candidates from ADL.
12370 if (PerformADL) {
12371 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12372 /*ExplicitTemplateArgs*/nullptr,
12373 CandidateSet);
12374 }
12375
12376 // Add builtin operator candidates.
12377 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12378
12379 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12380
12381 // Perform overload resolution.
12382 OverloadCandidateSet::iterator Best;
12383 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12384 case OR_Success: {
12385 // We found a built-in operator or an overloaded operator.
12386 FunctionDecl *FnDecl = Best->Function;
12387
12388 if (FnDecl) {
12389 Expr *Base = nullptr;
12390 // We matched an overloaded operator. Build a call to that
12391 // operator.
12392
12393 // Convert the arguments.
12394 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12395 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12396
12397 ExprResult InputRes =
12398 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12399 Best->FoundDecl, Method);
12400 if (InputRes.isInvalid())
12401 return ExprError();
12402 Base = Input = InputRes.get();
12403 } else {
12404 // Convert the arguments.
12405 ExprResult InputInit
12406 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12407 Context,
12408 FnDecl->getParamDecl(0)),
12409 SourceLocation(),
12410 Input);
12411 if (InputInit.isInvalid())
12412 return ExprError();
12413 Input = InputInit.get();
12414 }
12415
12416 // Build the actual expression node.
12417 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12418 Base, HadMultipleCandidates,
12419 OpLoc);
12420 if (FnExpr.isInvalid())
12421 return ExprError();
12422
12423 // Determine the result type.
12424 QualType ResultTy = FnDecl->getReturnType();
12425 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12426 ResultTy = ResultTy.getNonLValueExprType(Context);
12427
12428 Args[0] = Input;
12429 CallExpr *TheCall = CXXOperatorCallExpr::Create(
12430 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12431 FPOptions(), Best->IsADLCandidate);
12432
12433 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12434 return ExprError();
12435
12436 if (CheckFunctionCall(FnDecl, TheCall,
12437 FnDecl->getType()->castAs<FunctionProtoType>()))
12438 return ExprError();
12439
12440 return MaybeBindToTemporary(TheCall);
12441 } else {
12442 // We matched a built-in operator. Convert the arguments, then
12443 // break out so that we will build the appropriate built-in
12444 // operator node.
12445 ExprResult InputRes = PerformImplicitConversion(
12446 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12447 CCK_ForBuiltinOverloadedOp);
12448 if (InputRes.isInvalid())
12449 return ExprError();
12450 Input = InputRes.get();
12451 break;
12452 }
12453 }
12454
12455 case OR_No_Viable_Function:
12456 // This is an erroneous use of an operator which can be overloaded by
12457 // a non-member function. Check for non-member operators which were
12458 // defined too late to be candidates.
12459 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12460 // FIXME: Recover by calling the found function.
12461 return ExprError();
12462
12463 // No viable function; fall through to handling this as a
12464 // built-in operator, which will produce an error message for us.
12465 break;
12466
12467 case OR_Ambiguous:
12468 CandidateSet.NoteCandidates(
12469 PartialDiagnosticAt(OpLoc,
12470 PDiag(diag::err_ovl_ambiguous_oper_unary)
12471 << UnaryOperator::getOpcodeStr(Opc)
12472 << Input->getType() << Input->getSourceRange()),
12473 *this, OCD_ViableCandidates, ArgsArray,
12474 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12475 return ExprError();
12476
12477 case OR_Deleted:
12478 CandidateSet.NoteCandidates(
12479 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12480 << UnaryOperator::getOpcodeStr(Opc)
12481 << Input->getSourceRange()),
12482 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12483 OpLoc);
12484 return ExprError();
12485 }
12486
12487 // Either we found no viable overloaded operator or we matched a
12488 // built-in operator. In either case, fall through to trying to
12489 // build a built-in operation.
12490 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12491}
12492
12493/// Create a binary operation that may resolve to an overloaded
12494/// operator.
12495///
12496/// \param OpLoc The location of the operator itself (e.g., '+').
12497///
12498/// \param Opc The BinaryOperatorKind that describes this operator.
12499///
12500/// \param Fns The set of non-member functions that will be
12501/// considered by overload resolution. The caller needs to build this
12502/// set based on the context using, e.g.,
12503/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12504/// set should not contain any member functions; those will be added
12505/// by CreateOverloadedBinOp().
12506///
12507/// \param LHS Left-hand argument.
12508/// \param RHS Right-hand argument.
12509ExprResult
12510Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12511 BinaryOperatorKind Opc,
12512 const UnresolvedSetImpl &Fns,
12513 Expr *LHS, Expr *RHS, bool PerformADL) {
12514 Expr *Args[2] = { LHS, RHS };
12515 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12516
12517 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12518 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12519
12520 // If either side is type-dependent, create an appropriate dependent
12521 // expression.
12522 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12523 if (Fns.empty()) {
12524 // If there are no functions to store, just build a dependent
12525 // BinaryOperator or CompoundAssignment.
12526 if (Opc <= BO_Assign || Opc > BO_OrAssign)
12527 return new (Context) BinaryOperator(
12528 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12529 OpLoc, FPFeatures);
12530
12531 return new (Context) CompoundAssignOperator(
12532 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12533 Context.DependentTy, Context.DependentTy, OpLoc,
12534 FPFeatures);
12535 }
12536
12537 // FIXME: save results of ADL from here?
12538 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12539 // TODO: provide better source location info in DNLoc component.
12540 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12541 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12542 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12543 /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12544 return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12545 Context.DependentTy, VK_RValue, OpLoc,
12546 FPFeatures);
12547 }
12548
12549 // Always do placeholder-like conversions on the RHS.
12550 if (checkPlaceholderForOverload(*this, Args[1]))
12551 return ExprError();
12552
12553 // Do placeholder-like conversion on the LHS; note that we should
12554 // not get here with a PseudoObject LHS.
12555 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((Args[0]->getObjectKind() != OK_ObjCProperty) ? static_cast
<void> (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12555, __PRETTY_FUNCTION__))
;
12556 if (checkPlaceholderForOverload(*this, Args[0]))
12557 return ExprError();
12558
12559 // If this is the assignment operator, we only perform overload resolution
12560 // if the left-hand side is a class or enumeration type. This is actually
12561 // a hack. The standard requires that we do overload resolution between the
12562 // various built-in candidates, but as DR507 points out, this can lead to
12563 // problems. So we do it this way, which pretty much follows what GCC does.
12564 // Note that we go the traditional code path for compound assignment forms.
12565 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12566 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12567
12568 // If this is the .* operator, which is not overloadable, just
12569 // create a built-in binary operator.
12570 if (Opc == BO_PtrMemD)
12571 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12572
12573 // Build an empty overload set.
12574 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12575
12576 // Add the candidates from the given function set.
12577 AddFunctionCandidates(Fns, Args, CandidateSet);
12578
12579 // Add operator candidates that are member functions.
12580 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12581
12582 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12583 // performed for an assignment operator (nor for operator[] nor operator->,
12584 // which don't get here).
12585 if (Opc != BO_Assign && PerformADL)
12586 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12587 /*ExplicitTemplateArgs*/ nullptr,
12588 CandidateSet);
12589
12590 // Add builtin operator candidates.
12591 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12592
12593 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12594
12595 // Perform overload resolution.
12596 OverloadCandidateSet::iterator Best;
12597 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12598 case OR_Success: {
12599 // We found a built-in operator or an overloaded operator.
12600 FunctionDecl *FnDecl = Best->Function;
12601
12602 if (FnDecl) {
12603 Expr *Base = nullptr;
12604 // We matched an overloaded operator. Build a call to that
12605 // operator.
12606
12607 // Convert the arguments.
12608 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12609 // Best->Access is only meaningful for class members.
12610 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12611
12612 ExprResult Arg1 =
12613 PerformCopyInitialization(
12614 InitializedEntity::InitializeParameter(Context,
12615 FnDecl->getParamDecl(0)),
12616 SourceLocation(), Args[1]);
12617 if (Arg1.isInvalid())
12618 return ExprError();
12619
12620 ExprResult Arg0 =
12621 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12622 Best->FoundDecl, Method);
12623 if (Arg0.isInvalid())
12624 return ExprError();
12625 Base = Args[0] = Arg0.getAs<Expr>();
12626 Args[1] = RHS = Arg1.getAs<Expr>();
12627 } else {
12628 // Convert the arguments.
12629 ExprResult Arg0 = PerformCopyInitialization(
12630 InitializedEntity::InitializeParameter(Context,
12631 FnDecl->getParamDecl(0)),
12632 SourceLocation(), Args[0]);
12633 if (Arg0.isInvalid())
12634 return ExprError();
12635
12636 ExprResult Arg1 =
12637 PerformCopyInitialization(
12638 InitializedEntity::InitializeParameter(Context,
12639 FnDecl->getParamDecl(1)),
12640 SourceLocation(), Args[1]);
12641 if (Arg1.isInvalid())
12642 return ExprError();
12643 Args[0] = LHS = Arg0.getAs<Expr>();
12644 Args[1] = RHS = Arg1.getAs<Expr>();
12645 }
12646
12647 // Build the actual expression node.
12648 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12649 Best->FoundDecl, Base,
12650 HadMultipleCandidates, OpLoc);
12651 if (FnExpr.isInvalid())
12652 return ExprError();
12653
12654 // Determine the result type.
12655 QualType ResultTy = FnDecl->getReturnType();
12656 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12657 ResultTy = ResultTy.getNonLValueExprType(Context);
12658
12659 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12660 Context, Op, FnExpr.get(), Args, ResultTy, VK, OpLoc, FPFeatures,
12661 Best->IsADLCandidate);
12662
12663 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12664 FnDecl))
12665 return ExprError();
12666
12667 ArrayRef<const Expr *> ArgsArray(Args, 2);
12668 const Expr *ImplicitThis = nullptr;
12669 // Cut off the implicit 'this'.
12670 if (isa<CXXMethodDecl>(FnDecl)) {
12671 ImplicitThis = ArgsArray[0];
12672 ArgsArray = ArgsArray.slice(1);
12673 }
12674
12675 // Check for a self move.
12676 if (Op == OO_Equal)
12677 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12678
12679 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12680 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12681 VariadicDoesNotApply);
12682
12683 return MaybeBindToTemporary(TheCall);
12684 } else {
12685 // We matched a built-in operator. Convert the arguments, then
12686 // break out so that we will build the appropriate built-in
12687 // operator node.
12688 ExprResult ArgsRes0 = PerformImplicitConversion(
12689 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12690 AA_Passing, CCK_ForBuiltinOverloadedOp);
12691 if (ArgsRes0.isInvalid())
12692 return ExprError();
12693 Args[0] = ArgsRes0.get();
12694
12695 ExprResult ArgsRes1 = PerformImplicitConversion(
12696 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12697 AA_Passing, CCK_ForBuiltinOverloadedOp);
12698 if (ArgsRes1.isInvalid())
12699 return ExprError();
12700 Args[1] = ArgsRes1.get();
12701 break;
12702 }
12703 }
12704
12705 case OR_No_Viable_Function: {
12706 // C++ [over.match.oper]p9:
12707 // If the operator is the operator , [...] and there are no
12708 // viable functions, then the operator is assumed to be the
12709 // built-in operator and interpreted according to clause 5.
12710 if (Opc == BO_Comma)
12711 break;
12712
12713 // For class as left operand for assignment or compound assignment
12714 // operator do not fall through to handling in built-in, but report that
12715 // no overloaded assignment operator found
12716 ExprResult Result = ExprError();
12717 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
12718 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
12719 Args, OpLoc);
12720 if (Args[0]->getType()->isRecordType() &&
12721 Opc >= BO_Assign && Opc <= BO_OrAssign) {
12722 Diag(OpLoc, diag::err_ovl_no_viable_oper)
12723 << BinaryOperator::getOpcodeStr(Opc)
12724 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12725 if (Args[0]->getType()->isIncompleteType()) {
12726 Diag(OpLoc, diag::note_assign_lhs_incomplete)
12727 << Args[0]->getType()
12728 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12729 }
12730 } else {
12731 // This is an erroneous use of an operator which can be overloaded by
12732 // a non-member function. Check for non-member operators which were
12733 // defined too late to be candidates.
12734 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12735 // FIXME: Recover by calling the found function.
12736 return ExprError();
12737
12738 // No viable function; try to create a built-in operation, which will
12739 // produce an error. Then, show the non-viable candidates.
12740 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12741 }
12742 assert(Result.isInvalid() &&((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12743, __PRETTY_FUNCTION__))
12743 "C++ binary operator overloading is missing candidates!")((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12743, __PRETTY_FUNCTION__))
;
12744 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
12745 return Result;
12746 }
12747
12748 case OR_Ambiguous:
12749 CandidateSet.NoteCandidates(
12750 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12751 << BinaryOperator::getOpcodeStr(Opc)
12752 << Args[0]->getType()
12753 << Args[1]->getType()
12754 << Args[0]->getSourceRange()
12755 << Args[1]->getSourceRange()),
12756 *this, OCD_ViableCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12757 OpLoc);
12758 return ExprError();
12759
12760 case OR_Deleted:
12761 if (isImplicitlyDeleted(Best->Function)) {
12762 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12763 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12764 << Context.getRecordType(Method->getParent())
12765 << getSpecialMember(Method);
12766
12767 // The user probably meant to call this special member. Just
12768 // explain why it's deleted.
12769 NoteDeletedFunction(Method);
12770 return ExprError();
12771 }
12772 CandidateSet.NoteCandidates(
12773 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12774 << BinaryOperator::getOpcodeStr(Opc)
12775 << Args[0]->getSourceRange()
12776 << Args[1]->getSourceRange()),
12777 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12778 OpLoc);
12779 return ExprError();
12780 }
12781
12782 // We matched a built-in operator; build it.
12783 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12784}
12785
12786ExprResult
12787Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12788 SourceLocation RLoc,
12789 Expr *Base, Expr *Idx) {
12790 Expr *Args[2] = { Base, Idx };
12791 DeclarationName OpName =
12792 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12793
12794 // If either side is type-dependent, create an appropriate dependent
12795 // expression.
12796 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12797
12798 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12799 // CHECKME: no 'operator' keyword?
12800 DeclarationNameInfo OpNameInfo(OpName, LLoc);
12801 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12802 UnresolvedLookupExpr *Fn
12803 = UnresolvedLookupExpr::Create(Context, NamingClass,
12804 NestedNameSpecifierLoc(), OpNameInfo,
12805 /*ADL*/ true, /*Overloaded*/ false,
12806 UnresolvedSetIterator(),
12807 UnresolvedSetIterator());
12808 // Can't add any actual overloads yet
12809
12810 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
12811 Context.DependentTy, VK_RValue, RLoc,
12812 FPOptions());
12813 }
12814
12815 // Handle placeholders on both operands.
12816 if (checkPlaceholderForOverload(*this, Args[0]))
12817 return ExprError();
12818 if (checkPlaceholderForOverload(*this, Args[1]))
12819 return ExprError();
12820
12821 // Build an empty overload set.
12822 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12823
12824 // Subscript can only be overloaded as a member function.
12825
12826 // Add operator candidates that are member functions.
12827 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12828
12829 // Add builtin operator candidates.
12830 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12831
12832 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12833
12834 // Perform overload resolution.
12835 OverloadCandidateSet::iterator Best;
12836 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12837 case OR_Success: {
12838 // We found a built-in operator or an overloaded operator.
12839 FunctionDecl *FnDecl = Best->Function;
12840
12841 if (FnDecl) {
12842 // We matched an overloaded operator. Build a call to that
12843 // operator.
12844
12845 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12846
12847 // Convert the arguments.
12848 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12849 ExprResult Arg0 =
12850 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12851 Best->FoundDecl, Method);
12852 if (Arg0.isInvalid())
12853 return ExprError();
12854 Args[0] = Arg0.get();
12855
12856 // Convert the arguments.
12857 ExprResult InputInit
12858 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12859 Context,
12860 FnDecl->getParamDecl(0)),
12861 SourceLocation(),
12862 Args[1]);
12863 if (InputInit.isInvalid())
12864 return ExprError();
12865
12866 Args[1] = InputInit.getAs<Expr>();
12867
12868 // Build the actual expression node.
12869 DeclarationNameInfo OpLocInfo(OpName, LLoc);
12870 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12871 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12872 Best->FoundDecl,
12873 Base,
12874 HadMultipleCandidates,
12875 OpLocInfo.getLoc(),
12876 OpLocInfo.getInfo());
12877 if (FnExpr.isInvalid())
12878 return ExprError();
12879
12880 // Determine the result type
12881 QualType ResultTy = FnDecl->getReturnType();
12882 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12883 ResultTy = ResultTy.getNonLValueExprType(Context);
12884
12885 CXXOperatorCallExpr *TheCall =
12886 CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
12887 Args, ResultTy, VK, RLoc, FPOptions());
12888
12889 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12890 return ExprError();
12891
12892 if (CheckFunctionCall(Method, TheCall,
12893 Method->getType()->castAs<FunctionProtoType>()))
12894 return ExprError();
12895
12896 return MaybeBindToTemporary(TheCall);
12897 } else {
12898 // We matched a built-in operator. Convert the arguments, then
12899 // break out so that we will build the appropriate built-in
12900 // operator node.
12901 ExprResult ArgsRes0 = PerformImplicitConversion(
12902 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12903 AA_Passing, CCK_ForBuiltinOverloadedOp);
12904 if (ArgsRes0.isInvalid())
12905 return ExprError();
12906 Args[0] = ArgsRes0.get();
12907
12908 ExprResult ArgsRes1 = PerformImplicitConversion(
12909 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12910 AA_Passing, CCK_ForBuiltinOverloadedOp);
12911 if (ArgsRes1.isInvalid())
12912 return ExprError();
12913 Args[1] = ArgsRes1.get();
12914
12915 break;
12916 }
12917 }
12918
12919 case OR_No_Viable_Function: {
12920 PartialDiagnostic PD = CandidateSet.empty()
12921 ? (PDiag(diag::err_ovl_no_oper)
12922 << Args[0]->getType() << /*subscript*/ 0
12923 << Args[0]->getSourceRange() << Args[1]->getSourceRange())
12924 : (PDiag(diag::err_ovl_no_viable_subscript)
12925 << Args[0]->getType() << Args[0]->getSourceRange()
12926 << Args[1]->getSourceRange());
12927 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
12928 OCD_AllCandidates, Args, "[]", LLoc);
12929 return ExprError();
12930 }
12931
12932 case OR_Ambiguous:
12933 CandidateSet.NoteCandidates(
12934 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12935 << "[]" << Args[0]->getType()
12936 << Args[1]->getType()
12937 << Args[0]->getSourceRange()
12938 << Args[1]->getSourceRange()),
12939 *this, OCD_ViableCandidates, Args, "[]", LLoc);
12940 return ExprError();
12941
12942 case OR_Deleted:
12943 CandidateSet.NoteCandidates(
12944 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
12945 << "[]" << Args[0]->getSourceRange()
12946 << Args[1]->getSourceRange()),
12947 *this, OCD_AllCandidates, Args, "[]", LLoc);
12948 return ExprError();
12949 }
12950
12951 // We matched a built-in operator; build it.
12952 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12953}
12954
12955/// BuildCallToMemberFunction - Build a call to a member
12956/// function. MemExpr is the expression that refers to the member
12957/// function (and includes the object parameter), Args/NumArgs are the
12958/// arguments to the function call (not including the object
12959/// parameter). The caller needs to validate that the member
12960/// expression refers to a non-static member function or an overloaded
12961/// member function.
12962ExprResult
12963Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12964 SourceLocation LParenLoc,
12965 MultiExprArg Args,
12966 SourceLocation RParenLoc) {
12967 assert(MemExprE->getType() == Context.BoundMemberTy ||((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12968, __PRETTY_FUNCTION__))
12968 MemExprE->getType() == Context.OverloadTy)((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12968, __PRETTY_FUNCTION__))
;
12969
12970 // Dig out the member expression. This holds both the object
12971 // argument and the member function we're referring to.
12972 Expr *NakedMemExpr = MemExprE->IgnoreParens();
12973
12974 // Determine whether this is a call to a pointer-to-member function.
12975 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12976 assert(op->getType() == Context.BoundMemberTy)((op->getType() == Context.BoundMemberTy) ? static_cast<
void> (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12976, __PRETTY_FUNCTION__))
;
12977 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 12977, __PRETTY_FUNCTION__))
;
12978
12979 QualType fnType =
12980 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12981
12982 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12983 QualType resultType = proto->getCallResultType(Context);
12984 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12985
12986 // Check that the object type isn't more qualified than the
12987 // member function we're calling.
12988 Qualifiers funcQuals = proto->getMethodQuals();
12989
12990 QualType objectType = op->getLHS()->getType();
12991 if (op->getOpcode() == BO_PtrMemI)
12992 objectType = objectType->castAs<PointerType>()->getPointeeType();
12993 Qualifiers objectQuals = objectType.getQualifiers();
12994
12995 Qualifiers difference = objectQuals - funcQuals;
12996 difference.removeObjCGCAttr();
12997 difference.removeAddressSpace();
12998 if (difference) {
12999 std::string qualsString = difference.getAsString();
13000 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
13001 << fnType.getUnqualifiedType()
13002 << qualsString
13003 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
13004 }
13005
13006 CXXMemberCallExpr *call =
13007 CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
13008 valueKind, RParenLoc, proto->getNumParams());
13009
13010 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
13011 call, nullptr))
13012 return ExprError();
13013
13014 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
13015 return ExprError();
13016
13017 if (CheckOtherCall(call, proto))
13018 return ExprError();
13019
13020 return MaybeBindToTemporary(call);
13021 }
13022
13023 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
13024 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
13025 RParenLoc);
13026
13027 UnbridgedCastsSet UnbridgedCasts;
13028 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13029 return ExprError();
13030
13031 MemberExpr *MemExpr;
13032 CXXMethodDecl *Method = nullptr;
13033 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
13034 NestedNameSpecifier *Qualifier = nullptr;
13035 if (isa<MemberExpr>(NakedMemExpr)) {
13036 MemExpr = cast<MemberExpr>(NakedMemExpr);
13037 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
13038 FoundDecl = MemExpr->getFoundDecl();
13039 Qualifier = MemExpr->getQualifier();
13040 UnbridgedCasts.restore();
13041 } else {
13042 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
13043 Qualifier = UnresExpr->getQualifier();
13044
13045 QualType ObjectType = UnresExpr->getBaseType();
13046 Expr::Classification ObjectClassification
13047 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13048 : UnresExpr->getBase()->Classify(Context);
13049
13050 // Add overload candidates
13051 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13052 OverloadCandidateSet::CSK_Normal);
13053
13054 // FIXME: avoid copy.
13055 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13056 if (UnresExpr->hasExplicitTemplateArgs()) {
13057 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13058 TemplateArgs = &TemplateArgsBuffer;
13059 }
13060
13061 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13062 E = UnresExpr->decls_end(); I != E; ++I) {
13063
13064 NamedDecl *Func = *I;
13065 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13066 if (isa<UsingShadowDecl>(Func))
13067 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13068
13069
13070 // Microsoft supports direct constructor calls.
13071 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13072 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13073 CandidateSet,
13074 /*SuppressUserConversions*/ false);
13075 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13076 // If explicit template arguments were provided, we can't call a
13077 // non-template member function.
13078 if (TemplateArgs)
13079 continue;
13080
13081 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13082 ObjectClassification, Args, CandidateSet,
13083 /*SuppressUserConversions=*/false);
13084 } else {
13085 AddMethodTemplateCandidate(
13086 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13087 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13088 /*SuppressUserConversions=*/false);
13089 }
13090 }
13091
13092 DeclarationName DeclName = UnresExpr->getMemberName();
13093
13094 UnbridgedCasts.restore();
13095
13096 OverloadCandidateSet::iterator Best;
13097 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13098 Best)) {
13099 case OR_Success:
13100 Method = cast<CXXMethodDecl>(Best->Function);
13101 FoundDecl = Best->FoundDecl;
13102 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13103 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13104 return ExprError();
13105 // If FoundDecl is different from Method (such as if one is a template
13106 // and the other a specialization), make sure DiagnoseUseOfDecl is
13107 // called on both.
13108 // FIXME: This would be more comprehensively addressed by modifying
13109 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13110 // being used.
13111 if (Method != FoundDecl.getDecl() &&
13112 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13113 return ExprError();
13114 break;
13115
13116 case OR_No_Viable_Function:
13117 CandidateSet.NoteCandidates(
13118 PartialDiagnosticAt(
13119 UnresExpr->getMemberLoc(),
13120 PDiag(diag::err_ovl_no_viable_member_function_in_call)
13121 << DeclName << MemExprE->getSourceRange()),
13122 *this, OCD_AllCandidates, Args);
13123 // FIXME: Leaking incoming expressions!
13124 return ExprError();
13125
13126 case OR_Ambiguous:
13127 CandidateSet.NoteCandidates(
13128 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13129 PDiag(diag::err_ovl_ambiguous_member_call)
13130 << DeclName << MemExprE->getSourceRange()),
13131 *this, OCD_AllCandidates, Args);
13132 // FIXME: Leaking incoming expressions!
13133 return ExprError();
13134
13135 case OR_Deleted:
13136 CandidateSet.NoteCandidates(
13137 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13138 PDiag(diag::err_ovl_deleted_member_call)
13139 << DeclName << MemExprE->getSourceRange()),
13140 *this, OCD_AllCandidates, Args);
13141 // FIXME: Leaking incoming expressions!
13142 return ExprError();
13143 }
13144
13145 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13146
13147 // If overload resolution picked a static member, build a
13148 // non-member call based on that function.
13149 if (Method->isStatic()) {
13150 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13151 RParenLoc);
13152 }
13153
13154 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13155 }
13156
13157 QualType ResultType = Method->getReturnType();
13158 ExprValueKind VK = Expr::getValueKindForType(ResultType);
13159 ResultType = ResultType.getNonLValueExprType(Context);
13160
13161 assert(Method && "Member call to something that isn't a method?")((Method && "Member call to something that isn't a method?"
) ? static_cast<void> (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13161, __PRETTY_FUNCTION__))
;
13162 const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13163 CXXMemberCallExpr *TheCall =
13164 CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13165 RParenLoc, Proto->getNumParams());
13166
13167 // Check for a valid return type.
13168 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13169 TheCall, Method))
13170 return ExprError();
13171
13172 // Convert the object argument (for a non-static member function call).
13173 // We only need to do this if there was actually an overload; otherwise
13174 // it was done at lookup.
13175 if (!Method->isStatic()) {
13176 ExprResult ObjectArg =
13177 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13178 FoundDecl, Method);
13179 if (ObjectArg.isInvalid())
13180 return ExprError();
13181 MemExpr->setBase(ObjectArg.get());
13182 }
13183
13184 // Convert the rest of the arguments
13185 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13186 RParenLoc))
13187 return ExprError();
13188
13189 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13190
13191 if (CheckFunctionCall(Method, TheCall, Proto))
13192 return ExprError();
13193
13194 // In the case the method to call was not selected by the overloading
13195 // resolution process, we still need to handle the enable_if attribute. Do
13196 // that here, so it will not hide previous -- and more relevant -- errors.
13197 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13198 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13199 Diag(MemE->getMemberLoc(),
13200 diag::err_ovl_no_viable_member_function_in_call)
13201 << Method << Method->getSourceRange();
13202 Diag(Method->getLocation(),
13203 diag::note_ovl_candidate_disabled_by_function_cond_attr)
13204 << Attr->getCond()->getSourceRange() << Attr->getMessage();
13205 return ExprError();
13206 }
13207 }
13208
13209 if ((isa<CXXConstructorDecl>(CurContext) ||
13210 isa<CXXDestructorDecl>(CurContext)) &&
13211 TheCall->getMethodDecl()->isPure()) {
13212 const CXXMethodDecl *MD = TheCall->getMethodDecl();
13213
13214 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13215 MemExpr->performsVirtualDispatch(getLangOpts())) {
13216 Diag(MemExpr->getBeginLoc(),
13217 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13218 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13219 << MD->getParent()->getDeclName();
13220
13221 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13222 if (getLangOpts().AppleKext)
13223 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13224 << MD->getParent()->getDeclName() << MD->getDeclName();
13225 }
13226 }
13227
13228 if (CXXDestructorDecl *DD =
13229 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13230 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13231 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13232 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13233 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13234 MemExpr->getMemberLoc());
13235 }
13236
13237 return MaybeBindToTemporary(TheCall);
13238}
13239
13240/// BuildCallToObjectOfClassType - Build a call to an object of class
13241/// type (C++ [over.call.object]), which can end up invoking an
13242/// overloaded function call operator (@c operator()) or performing a
13243/// user-defined conversion on the object argument.
13244ExprResult
13245Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13246 SourceLocation LParenLoc,
13247 MultiExprArg Args,
13248 SourceLocation RParenLoc) {
13249 if (checkPlaceholderForOverload(*this, Obj))
13250 return ExprError();
13251 ExprResult Object = Obj;
13252
13253 UnbridgedCastsSet UnbridgedCasts;
13254 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13255 return ExprError();
13256
13257 assert(Object.get()->getType()->isRecordType() &&((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13258, __PRETTY_FUNCTION__))
13258 "Requires object type argument")((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13258, __PRETTY_FUNCTION__))
;
13259 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13260
13261 // C++ [over.call.object]p1:
13262 // If the primary-expression E in the function call syntax
13263 // evaluates to a class object of type "cv T", then the set of
13264 // candidate functions includes at least the function call
13265 // operators of T. The function call operators of T are obtained by
13266 // ordinary lookup of the name operator() in the context of
13267 // (E).operator().
13268 OverloadCandidateSet CandidateSet(LParenLoc,
13269 OverloadCandidateSet::CSK_Operator);
13270 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13271
13272 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13273 diag::err_incomplete_object_call, Object.get()))
13274 return true;
13275
13276 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13277 LookupQualifiedName(R, Record->getDecl());
13278 R.suppressDiagnostics();
13279
13280 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13281 Oper != OperEnd; ++Oper) {
13282 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13283 Object.get()->Classify(Context), Args, CandidateSet,
13284 /*SuppressUserConversion=*/false);
13285 }
13286
13287 // C++ [over.call.object]p2:
13288 // In addition, for each (non-explicit in C++0x) conversion function
13289 // declared in T of the form
13290 //
13291 // operator conversion-type-id () cv-qualifier;
13292 //
13293 // where cv-qualifier is the same cv-qualification as, or a
13294 // greater cv-qualification than, cv, and where conversion-type-id
13295 // denotes the type "pointer to function of (P1,...,Pn) returning
13296 // R", or the type "reference to pointer to function of
13297 // (P1,...,Pn) returning R", or the type "reference to function
13298 // of (P1,...,Pn) returning R", a surrogate call function [...]
13299 // is also considered as a candidate function. Similarly,
13300 // surrogate call functions are added to the set of candidate
13301 // functions for each conversion function declared in an
13302 // accessible base class provided the function is not hidden
13303 // within T by another intervening declaration.
13304 const auto &Conversions =
13305 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13306 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13307 NamedDecl *D = *I;
13308 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13309 if (isa<UsingShadowDecl>(D))
13310 D = cast<UsingShadowDecl>(D)->getTargetDecl();
13311
13312 // Skip over templated conversion functions; they aren't
13313 // surrogates.
13314 if (isa<FunctionTemplateDecl>(D))
13315 continue;
13316
13317 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13318 if (!Conv->isExplicit()) {
13319 // Strip the reference type (if any) and then the pointer type (if
13320 // any) to get down to what might be a function type.
13321 QualType ConvType = Conv->getConversionType().getNonReferenceType();
13322 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13323 ConvType = ConvPtrType->getPointeeType();
13324
13325 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13326 {
13327 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13328 Object.get(), Args, CandidateSet);
13329 }
13330 }
13331 }
13332
13333 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13334
13335 // Perform overload resolution.
13336 OverloadCandidateSet::iterator Best;
13337 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13338 Best)) {
13339 case OR_Success:
13340 // Overload resolution succeeded; we'll build the appropriate call
13341 // below.
13342 break;
13343
13344 case OR_No_Viable_Function: {
13345 PartialDiagnostic PD =
13346 CandidateSet.empty()
13347 ? (PDiag(diag::err_ovl_no_oper)
13348 << Object.get()->getType() << /*call*/ 1
13349 << Object.get()->getSourceRange())
13350 : (PDiag(diag::err_ovl_no_viable_object_call)
13351 << Object.get()->getType() << Object.get()->getSourceRange());
13352 CandidateSet.NoteCandidates(
13353 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13354 OCD_AllCandidates, Args);
13355 break;
13356 }
13357 case OR_Ambiguous:
13358 CandidateSet.NoteCandidates(
13359 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13360 PDiag(diag::err_ovl_ambiguous_object_call)
13361 << Object.get()->getType()
13362 << Object.get()->getSourceRange()),
13363 *this, OCD_ViableCandidates, Args);
13364 break;
13365
13366 case OR_Deleted:
13367 CandidateSet.NoteCandidates(
13368 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13369 PDiag(diag::err_ovl_deleted_object_call)
13370 << Object.get()->getType()
13371 << Object.get()->getSourceRange()),
13372 *this, OCD_AllCandidates, Args);
13373 break;
13374 }
13375
13376 if (Best == CandidateSet.end())
13377 return true;
13378
13379 UnbridgedCasts.restore();
13380
13381 if (Best->Function == nullptr) {
13382 // Since there is no function declaration, this is one of the
13383 // surrogate candidates. Dig out the conversion function.
13384 CXXConversionDecl *Conv
13385 = cast<CXXConversionDecl>(
13386 Best->Conversions[0].UserDefined.ConversionFunction);
13387
13388 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13389 Best->FoundDecl);
13390 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13391 return ExprError();
13392 assert(Conv == Best->FoundDecl.getDecl() &&((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13393, __PRETTY_FUNCTION__))
13393 "Found Decl & conversion-to-functionptr should be same, right?!")((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13393, __PRETTY_FUNCTION__))
;
13394 // We selected one of the surrogate functions that converts the
13395 // object parameter to a function pointer. Perform the conversion
13396 // on the object argument, then let BuildCallExpr finish the job.
13397
13398 // Create an implicit member expr to refer to the conversion operator.
13399 // and then call it.
13400 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13401 Conv, HadMultipleCandidates);
13402 if (Call.isInvalid())
13403 return ExprError();
13404 // Record usage of conversion in an implicit cast.
13405 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13406 CK_UserDefinedConversion, Call.get(),
13407 nullptr, VK_RValue);
13408
13409 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13410 }
13411
13412 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13413
13414 // We found an overloaded operator(). Build a CXXOperatorCallExpr
13415 // that calls this method, using Object for the implicit object
13416 // parameter and passing along the remaining arguments.
13417 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13418
13419 // An error diagnostic has already been printed when parsing the declaration.
13420 if (Method->isInvalidDecl())
13421 return ExprError();
13422
13423 const FunctionProtoType *Proto =
13424 Method->getType()->getAs<FunctionProtoType>();
13425
13426 unsigned NumParams = Proto->getNumParams();
13427
13428 DeclarationNameInfo OpLocInfo(
13429 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13430 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13431 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13432 Obj, HadMultipleCandidates,
13433 OpLocInfo.getLoc(),
13434 OpLocInfo.getInfo());
13435 if (NewFn.isInvalid())
13436 return true;
13437
13438 // The number of argument slots to allocate in the call. If we have default
13439 // arguments we need to allocate space for them as well. We additionally
13440 // need one more slot for the object parameter.
13441 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13442
13443 // Build the full argument list for the method call (the implicit object
13444 // parameter is placed at the beginning of the list).
13445 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13446
13447 bool IsError = false;
13448
13449 // Initialize the implicit object parameter.
13450 ExprResult ObjRes =
13451 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13452 Best->FoundDecl, Method);
13453 if (ObjRes.isInvalid())
13454 IsError = true;
13455 else
13456 Object = ObjRes;
13457 MethodArgs[0] = Object.get();
13458
13459 // Check the argument types.
13460 for (unsigned i = 0; i != NumParams; i++) {
13461 Expr *Arg;
13462 if (i < Args.size()) {
13463 Arg = Args[i];
13464
13465 // Pass the argument.
13466
13467 ExprResult InputInit
13468 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13469 Context,
13470 Method->getParamDecl(i)),
13471 SourceLocation(), Arg);
13472
13473 IsError |= InputInit.isInvalid();
13474 Arg = InputInit.getAs<Expr>();
13475 } else {
13476 ExprResult DefArg
13477 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13478 if (DefArg.isInvalid()) {
13479 IsError = true;
13480 break;
13481 }
13482
13483 Arg = DefArg.getAs<Expr>();
13484 }
13485
13486 MethodArgs[i + 1] = Arg;
13487 }
13488
13489 // If this is a variadic call, handle args passed through "...".
13490 if (Proto->isVariadic()) {
13491 // Promote the arguments (C99 6.5.2.2p7).
13492 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13493 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13494 nullptr);
13495 IsError |= Arg.isInvalid();
13496 MethodArgs[i + 1] = Arg.get();
13497 }
13498 }
13499
13500 if (IsError)
13501 return true;
13502
13503 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13504
13505 // Once we've built TheCall, all of the expressions are properly owned.
13506 QualType ResultTy = Method->getReturnType();
13507 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13508 ResultTy = ResultTy.getNonLValueExprType(Context);
13509
13510 CXXOperatorCallExpr *TheCall =
13511 CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13512 ResultTy, VK, RParenLoc, FPOptions());
13513
13514 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13515 return true;
13516
13517 if (CheckFunctionCall(Method, TheCall, Proto))
13518 return true;
13519
13520 return MaybeBindToTemporary(TheCall);
13521}
13522
13523/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13524/// (if one exists), where @c Base is an expression of class type and
13525/// @c Member is the name of the member we're trying to find.
13526ExprResult
13527Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13528 bool *NoArrowOperatorFound) {
13529 assert(Base->getType()->isRecordType() &&((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13530, __PRETTY_FUNCTION__))
13530 "left-hand side must have class type")((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13530, __PRETTY_FUNCTION__))
;
13531
13532 if (checkPlaceholderForOverload(*this, Base))
13533 return ExprError();
13534
13535 SourceLocation Loc = Base->getExprLoc();
13536
13537 // C++ [over.ref]p1:
13538 //
13539 // [...] An expression x->m is interpreted as (x.operator->())->m
13540 // for a class object x of type T if T::operator->() exists and if
13541 // the operator is selected as the best match function by the
13542 // overload resolution mechanism (13.3).
13543 DeclarationName OpName =
13544 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13545 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13546 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13547
13548 if (RequireCompleteType(Loc, Base->getType(),
13549 diag::err_typecheck_incomplete_tag, Base))
13550 return ExprError();
13551
13552 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13553 LookupQualifiedName(R, BaseRecord->getDecl());
13554 R.suppressDiagnostics();
13555
13556 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13557 Oper != OperEnd; ++Oper) {
13558 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13559 None, CandidateSet, /*SuppressUserConversion=*/false);
13560 }
13561
13562 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13563
13564 // Perform overload resolution.
13565 OverloadCandidateSet::iterator Best;
13566 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13567 case OR_Success:
13568 // Overload resolution succeeded; we'll build the call below.
13569 break;
13570
13571 case OR_No_Viable_Function: {
13572 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
13573 if (CandidateSet.empty()) {
13574 QualType BaseType = Base->getType();
13575 if (NoArrowOperatorFound) {
13576 // Report this specific error to the caller instead of emitting a
13577 // diagnostic, as requested.
13578 *NoArrowOperatorFound = true;
13579 return ExprError();
13580 }
13581 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13582 << BaseType << Base->getSourceRange();
13583 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13584 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13585 << FixItHint::CreateReplacement(OpLoc, ".");
13586 }
13587 } else
13588 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13589 << "operator->" << Base->getSourceRange();
13590 CandidateSet.NoteCandidates(*this, Base, Cands);
13591 return ExprError();
13592 }
13593 case OR_Ambiguous:
13594 CandidateSet.NoteCandidates(
13595 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
13596 << "->" << Base->getType()
13597 << Base->getSourceRange()),
13598 *this, OCD_ViableCandidates, Base);
13599 return ExprError();
13600
13601 case OR_Deleted:
13602 CandidateSet.NoteCandidates(
13603 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13604 << "->" << Base->getSourceRange()),
13605 *this, OCD_AllCandidates, Base);
13606 return ExprError();
13607 }
13608
13609 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13610
13611 // Convert the object parameter.
13612 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13613 ExprResult BaseResult =
13614 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13615 Best->FoundDecl, Method);
13616 if (BaseResult.isInvalid())
13617 return ExprError();
13618 Base = BaseResult.get();
13619
13620 // Build the operator call.
13621 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13622 Base, HadMultipleCandidates, OpLoc);
13623 if (FnExpr.isInvalid())
13624 return ExprError();
13625
13626 QualType ResultTy = Method->getReturnType();
13627 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13628 ResultTy = ResultTy.getNonLValueExprType(Context);
13629 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13630 Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13631
13632 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13633 return ExprError();
13634
13635 if (CheckFunctionCall(Method, TheCall,
13636 Method->getType()->castAs<FunctionProtoType>()))
13637 return ExprError();
13638
13639 return MaybeBindToTemporary(TheCall);
13640}
13641
13642/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13643/// a literal operator described by the provided lookup results.
13644ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13645 DeclarationNameInfo &SuffixInfo,
13646 ArrayRef<Expr*> Args,
13647 SourceLocation LitEndLoc,
13648 TemplateArgumentListInfo *TemplateArgs) {
13649 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13650
13651 OverloadCandidateSet CandidateSet(UDSuffixLoc,
13652 OverloadCandidateSet::CSK_Normal);
13653 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13654 /*SuppressUserConversions=*/true);
13655
13656 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13657
13658 // Perform overload resolution. This will usually be trivial, but might need
13659 // to perform substitutions for a literal operator template.
13660 OverloadCandidateSet::iterator Best;
13661 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13662 case OR_Success:
13663 case OR_Deleted:
13664 break;
13665
13666 case OR_No_Viable_Function:
13667 CandidateSet.NoteCandidates(
13668 PartialDiagnosticAt(UDSuffixLoc,
13669 PDiag(diag::err_ovl_no_viable_function_in_call)
13670 << R.getLookupName()),
13671 *this, OCD_AllCandidates, Args);
13672 return ExprError();
13673
13674 case OR_Ambiguous:
13675 CandidateSet.NoteCandidates(
13676 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
13677 << R.getLookupName()),
13678 *this, OCD_ViableCandidates, Args);
13679 return ExprError();
13680 }
13681
13682 FunctionDecl *FD = Best->Function;
13683 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13684 nullptr, HadMultipleCandidates,
13685 SuffixInfo.getLoc(),
13686 SuffixInfo.getInfo());
13687 if (Fn.isInvalid())
13688 return true;
13689
13690 // Check the argument types. This should almost always be a no-op, except
13691 // that array-to-pointer decay is applied to string literals.
13692 Expr *ConvArgs[2];
13693 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13694 ExprResult InputInit = PerformCopyInitialization(
13695 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13696 SourceLocation(), Args[ArgIdx]);
13697 if (InputInit.isInvalid())
13698 return true;
13699 ConvArgs[ArgIdx] = InputInit.get();
13700 }
13701
13702 QualType ResultTy = FD->getReturnType();
13703 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13704 ResultTy = ResultTy.getNonLValueExprType(Context);
13705
13706 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
13707 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
13708 VK, LitEndLoc, UDSuffixLoc);
13709
13710 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13711 return ExprError();
13712
13713 if (CheckFunctionCall(FD, UDL, nullptr))
13714 return ExprError();
13715
13716 return MaybeBindToTemporary(UDL);
13717}
13718
13719/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13720/// given LookupResult is non-empty, it is assumed to describe a member which
13721/// will be invoked. Otherwise, the function will be found via argument
13722/// dependent lookup.
13723/// CallExpr is set to a valid expression and FRS_Success returned on success,
13724/// otherwise CallExpr is set to ExprError() and some non-success value
13725/// is returned.
13726Sema::ForRangeStatus
13727Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13728 SourceLocation RangeLoc,
13729 const DeclarationNameInfo &NameInfo,
13730 LookupResult &MemberLookup,
13731 OverloadCandidateSet *CandidateSet,
13732 Expr *Range, ExprResult *CallExpr) {
13733 Scope *S = nullptr;
13734
13735 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13736 if (!MemberLookup.empty()) {
13737 ExprResult MemberRef =
13738 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13739 /*IsPtr=*/false, CXXScopeSpec(),
13740 /*TemplateKWLoc=*/SourceLocation(),
13741 /*FirstQualifierInScope=*/nullptr,
13742 MemberLookup,
13743 /*TemplateArgs=*/nullptr, S);
13744 if (MemberRef.isInvalid()) {
13745 *CallExpr = ExprError();
13746 return FRS_DiagnosticIssued;
13747 }
13748 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13749 if (CallExpr->isInvalid()) {
13750 *CallExpr = ExprError();
13751 return FRS_DiagnosticIssued;
13752 }
13753 } else {
13754 UnresolvedSet<0> FoundNames;
13755 UnresolvedLookupExpr *Fn =
13756 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13757 NestedNameSpecifierLoc(), NameInfo,
13758 /*NeedsADL=*/true, /*Overloaded=*/false,
13759 FoundNames.begin(), FoundNames.end());
13760
13761 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13762 CandidateSet, CallExpr);
13763 if (CandidateSet->empty() || CandidateSetError) {
13764 *CallExpr = ExprError();
13765 return FRS_NoViableFunction;
13766 }
13767 OverloadCandidateSet::iterator Best;
13768 OverloadingResult OverloadResult =
13769 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
13770
13771 if (OverloadResult == OR_No_Viable_Function) {
13772 *CallExpr = ExprError();
13773 return FRS_NoViableFunction;
13774 }
13775 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13776 Loc, nullptr, CandidateSet, &Best,
13777 OverloadResult,
13778 /*AllowTypoCorrection=*/false);
13779 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13780 *CallExpr = ExprError();
13781 return FRS_DiagnosticIssued;
13782 }
13783 }
13784 return FRS_Success;
13785}
13786
13787
13788/// FixOverloadedFunctionReference - E is an expression that refers to
13789/// a C++ overloaded function (possibly with some parentheses and
13790/// perhaps a '&' around it). We have resolved the overloaded function
13791/// to the function declaration Fn, so patch up the expression E to
13792/// refer (possibly indirectly) to Fn. Returns the new expr.
13793Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13794 FunctionDecl *Fn) {
13795 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13796 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13797 Found, Fn);
13798 if (SubExpr == PE->getSubExpr())
13799 return PE;
13800
13801 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13802 }
13803
13804 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13805 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13806 Found, Fn);
13807 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13809, __PRETTY_FUNCTION__))
13808 SubExpr->getType()) &&((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13809, __PRETTY_FUNCTION__))
13809 "Implicit cast type cannot be determined from overload")((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13809, __PRETTY_FUNCTION__))
;
13810 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((ICE->path_empty() && "fixing up hierarchy conversion?"
) ? static_cast<void> (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13810, __PRETTY_FUNCTION__))
;
13811 if (SubExpr == ICE->getSubExpr())
13812 return ICE;
13813
13814 return ImplicitCastExpr::Create(Context, ICE->getType(),
13815 ICE->getCastKind(),
13816 SubExpr, nullptr,
13817 ICE->getValueKind());
13818 }
13819
13820 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13821 if (!GSE->isResultDependent()) {
13822 Expr *SubExpr =
13823 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13824 if (SubExpr == GSE->getResultExpr())
13825 return GSE;
13826
13827 // Replace the resulting type information before rebuilding the generic
13828 // selection expression.
13829 ArrayRef<Expr *> A = GSE->getAssocExprs();
13830 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13831 unsigned ResultIdx = GSE->getResultIndex();
13832 AssocExprs[ResultIdx] = SubExpr;
13833
13834 return GenericSelectionExpr::Create(
13835 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13836 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13837 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13838 ResultIdx);
13839 }
13840 // Rather than fall through to the unreachable, return the original generic
13841 // selection expression.
13842 return GSE;
13843 }
13844
13845 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13846 assert(UnOp->getOpcode() == UO_AddrOf &&((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13847, __PRETTY_FUNCTION__))
13847 "Can only take the address of an overloaded function")((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13847, __PRETTY_FUNCTION__))
;
13848 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13849 if (Method->isStatic()) {
13850 // Do nothing: static member functions aren't any different
13851 // from non-member functions.
13852 } else {
13853 // Fix the subexpression, which really has to be an
13854 // UnresolvedLookupExpr holding an overloaded member function
13855 // or template.
13856 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13857 Found, Fn);
13858 if (SubExpr == UnOp->getSubExpr())
13859 return UnOp;
13860
13861 assert(isa<DeclRefExpr>(SubExpr)((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13862, __PRETTY_FUNCTION__))
13862 && "fixed to something other than a decl ref")((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13862, __PRETTY_FUNCTION__))
;
13863 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13864, __PRETTY_FUNCTION__))
13864 && "fixed to a member ref with no nested name qualifier")((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13864, __PRETTY_FUNCTION__))
;
13865
13866 // We have taken the address of a pointer to member
13867 // function. Perform the computation here so that we get the
13868 // appropriate pointer to member type.
13869 QualType ClassType
13870 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13871 QualType MemPtrType
13872 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13873 // Under the MS ABI, lock down the inheritance model now.
13874 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13875 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13876
13877 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13878 VK_RValue, OK_Ordinary,
13879 UnOp->getOperatorLoc(), false);
13880 }
13881 }
13882 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13883 Found, Fn);
13884 if (SubExpr == UnOp->getSubExpr())
13885 return UnOp;
13886
13887 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13888 Context.getPointerType(SubExpr->getType()),
13889 VK_RValue, OK_Ordinary,
13890 UnOp->getOperatorLoc(), false);
13891 }
13892
13893 // C++ [except.spec]p17:
13894 // An exception-specification is considered to be needed when:
13895 // - in an expression the function is the unique lookup result or the
13896 // selected member of a set of overloaded functions
13897 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13898 ResolveExceptionSpec(E->getExprLoc(), FPT);
13899
13900 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13901 // FIXME: avoid copy.
13902 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13903 if (ULE->hasExplicitTemplateArgs()) {
13904 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13905 TemplateArgs = &TemplateArgsBuffer;
13906 }
13907
13908 DeclRefExpr *DRE =
13909 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
13910 ULE->getQualifierLoc(), Found.getDecl(),
13911 ULE->getTemplateKeywordLoc(), TemplateArgs);
13912 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13913 return DRE;
13914 }
13915
13916 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13917 // FIXME: avoid copy.
13918 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13919 if (MemExpr->hasExplicitTemplateArgs()) {
13920 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13921 TemplateArgs = &TemplateArgsBuffer;
13922 }
13923
13924 Expr *Base;
13925
13926 // If we're filling in a static method where we used to have an
13927 // implicit member access, rewrite to a simple decl ref.
13928 if (MemExpr->isImplicitAccess()) {
13929 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13930 DeclRefExpr *DRE = BuildDeclRefExpr(
13931 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
13932 MemExpr->getQualifierLoc(), Found.getDecl(),
13933 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
13934 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13935 return DRE;
13936 } else {
13937 SourceLocation Loc = MemExpr->getMemberLoc();
13938 if (MemExpr->getQualifier())
13939 Loc = MemExpr->getQualifierLoc().getBeginLoc();
13940 Base =
13941 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
13942 }
13943 } else
13944 Base = MemExpr->getBase();
13945
13946 ExprValueKind valueKind;
13947 QualType type;
13948 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13949 valueKind = VK_LValue;
13950 type = Fn->getType();
13951 } else {
13952 valueKind = VK_RValue;
13953 type = Context.BoundMemberTy;
13954 }
13955
13956 return BuildMemberExpr(
13957 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13958 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13959 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
13960 type, valueKind, OK_Ordinary, TemplateArgs);
13961 }
13962
13963 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaOverload.cpp"
, 13963)
;
13964}
13965
13966ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13967 DeclAccessPair Found,
13968 FunctionDecl *Fn) {
13969 return FixOverloadedFunctionReference(E.get(), Found, Fn);
13970}

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h

1//===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the data structures and types used in C++
10// overload resolution.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_OVERLOAD_H
15#define LLVM_CLANG_SEMA_OVERLOAD_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/LLVM.h"
25#include "clang/Basic/SourceLocation.h"
26#include "clang/Sema/SemaFixItUtils.h"
27#include "clang/Sema/TemplateDeduction.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/None.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/Support/AlignOf.h"
35#include "llvm/Support/Allocator.h"
36#include "llvm/Support/Casting.h"
37#include "llvm/Support/ErrorHandling.h"
38#include <cassert>
39#include <cstddef>
40#include <cstdint>
41#include <utility>
42
43namespace clang {
44
45class APValue;
46class ASTContext;
47class Sema;
48
49 /// OverloadingResult - Capture the result of performing overload
50 /// resolution.
51 enum OverloadingResult {
52 /// Overload resolution succeeded.
53 OR_Success,
54
55 /// No viable function found.
56 OR_No_Viable_Function,
57
58 /// Ambiguous candidates found.
59 OR_Ambiguous,
60
61 /// Succeeded, but refers to a deleted function.
62 OR_Deleted
63 };
64
65 enum OverloadCandidateDisplayKind {
66 /// Requests that all candidates be shown. Viable candidates will
67 /// be printed first.
68 OCD_AllCandidates,
69
70 /// Requests that only viable candidates be shown.
71 OCD_ViableCandidates
72 };
73
74 /// ImplicitConversionKind - The kind of implicit conversion used to
75 /// convert an argument to a parameter's type. The enumerator values
76 /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
77 /// such that better conversion kinds have smaller values.
78 enum ImplicitConversionKind {
79 /// Identity conversion (no conversion)
80 ICK_Identity = 0,
81
82 /// Lvalue-to-rvalue conversion (C++ [conv.lval])
83 ICK_Lvalue_To_Rvalue,
84
85 /// Array-to-pointer conversion (C++ [conv.array])
86 ICK_Array_To_Pointer,
87
88 /// Function-to-pointer (C++ [conv.array])
89 ICK_Function_To_Pointer,
90
91 /// Function pointer conversion (C++17 [conv.fctptr])
92 ICK_Function_Conversion,
93
94 /// Qualification conversions (C++ [conv.qual])
95 ICK_Qualification,
96
97 /// Integral promotions (C++ [conv.prom])
98 ICK_Integral_Promotion,
99
100 /// Floating point promotions (C++ [conv.fpprom])
101 ICK_Floating_Promotion,
102
103 /// Complex promotions (Clang extension)
104 ICK_Complex_Promotion,
105
106 /// Integral conversions (C++ [conv.integral])
107 ICK_Integral_Conversion,
108
109 /// Floating point conversions (C++ [conv.double]
110 ICK_Floating_Conversion,
111
112 /// Complex conversions (C99 6.3.1.6)
113 ICK_Complex_Conversion,
114
115 /// Floating-integral conversions (C++ [conv.fpint])
116 ICK_Floating_Integral,
117
118 /// Pointer conversions (C++ [conv.ptr])
119 ICK_Pointer_Conversion,
120
121 /// Pointer-to-member conversions (C++ [conv.mem])
122 ICK_Pointer_Member,
123
124 /// Boolean conversions (C++ [conv.bool])
125 ICK_Boolean_Conversion,
126
127 /// Conversions between compatible types in C99
128 ICK_Compatible_Conversion,
129
130 /// Derived-to-base (C++ [over.best.ics])
131 ICK_Derived_To_Base,
132
133 /// Vector conversions
134 ICK_Vector_Conversion,
135
136 /// A vector splat from an arithmetic type
137 ICK_Vector_Splat,
138
139 /// Complex-real conversions (C99 6.3.1.7)
140 ICK_Complex_Real,
141
142 /// Block Pointer conversions
143 ICK_Block_Pointer_Conversion,
144
145 /// Transparent Union Conversions
146 ICK_TransparentUnionConversion,
147
148 /// Objective-C ARC writeback conversion
149 ICK_Writeback_Conversion,
150
151 /// Zero constant to event (OpenCL1.2 6.12.10)
152 ICK_Zero_Event_Conversion,
153
154 /// Zero constant to queue
155 ICK_Zero_Queue_Conversion,
156
157 /// Conversions allowed in C, but not C++
158 ICK_C_Only_Conversion,
159
160 /// C-only conversion between pointers with incompatible types
161 ICK_Incompatible_Pointer_Conversion,
162
163 /// The number of conversion kinds
164 ICK_Num_Conversion_Kinds,
165 };
166
167 /// ImplicitConversionRank - The rank of an implicit conversion
168 /// kind. The enumerator values match with Table 9 of (C++
169 /// 13.3.3.1.1) and are listed such that better conversion ranks
170 /// have smaller values.
171 enum ImplicitConversionRank {
172 /// Exact Match
173 ICR_Exact_Match = 0,
174
175 /// Promotion
176 ICR_Promotion,
177
178 /// Conversion
179 ICR_Conversion,
180
181 /// OpenCL Scalar Widening
182 ICR_OCL_Scalar_Widening,
183
184 /// Complex <-> Real conversion
185 ICR_Complex_Real_Conversion,
186
187 /// ObjC ARC writeback conversion
188 ICR_Writeback_Conversion,
189
190 /// Conversion only allowed in the C standard (e.g. void* to char*).
191 ICR_C_Conversion,
192
193 /// Conversion not allowed by the C standard, but that we accept as an
194 /// extension anyway.
195 ICR_C_Conversion_Extension
196 };
197
198 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
199
200 /// NarrowingKind - The kind of narrowing conversion being performed by a
201 /// standard conversion sequence according to C++11 [dcl.init.list]p7.
202 enum NarrowingKind {
203 /// Not a narrowing conversion.
204 NK_Not_Narrowing,
205
206 /// A narrowing conversion by virtue of the source and destination types.
207 NK_Type_Narrowing,
208
209 /// A narrowing conversion, because a constant expression got narrowed.
210 NK_Constant_Narrowing,
211
212 /// A narrowing conversion, because a non-constant-expression variable might
213 /// have got narrowed.
214 NK_Variable_Narrowing,
215
216 /// Cannot tell whether this is a narrowing conversion because the
217 /// expression is value-dependent.
218 NK_Dependent_Narrowing,
219 };
220
221 /// StandardConversionSequence - represents a standard conversion
222 /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
223 /// contains between zero and three conversions. If a particular
224 /// conversion is not needed, it will be set to the identity conversion
225 /// (ICK_Identity). Note that the three conversions are
226 /// specified as separate members (rather than in an array) so that
227 /// we can keep the size of a standard conversion sequence to a
228 /// single word.
229 class StandardConversionSequence {
230 public:
231 /// First -- The first conversion can be an lvalue-to-rvalue
232 /// conversion, array-to-pointer conversion, or
233 /// function-to-pointer conversion.
234 ImplicitConversionKind First : 8;
235
236 /// Second - The second conversion can be an integral promotion,
237 /// floating point promotion, integral conversion, floating point
238 /// conversion, floating-integral conversion, pointer conversion,
239 /// pointer-to-member conversion, or boolean conversion.
240 ImplicitConversionKind Second : 8;
241
242 /// Third - The third conversion can be a qualification conversion
243 /// or a function conversion.
244 ImplicitConversionKind Third : 8;
245
246 /// Whether this is the deprecated conversion of a
247 /// string literal to a pointer to non-const character data
248 /// (C++ 4.2p2).
249 unsigned DeprecatedStringLiteralToCharPtr : 1;
250
251 /// Whether the qualification conversion involves a change in the
252 /// Objective-C lifetime (for automatic reference counting).
253 unsigned QualificationIncludesObjCLifetime : 1;
254
255 /// IncompatibleObjC - Whether this is an Objective-C conversion
256 /// that we should warn about (if we actually use it).
257 unsigned IncompatibleObjC : 1;
258
259 /// ReferenceBinding - True when this is a reference binding
260 /// (C++ [over.ics.ref]).
261 unsigned ReferenceBinding : 1;
262
263 /// DirectBinding - True when this is a reference binding that is a
264 /// direct binding (C++ [dcl.init.ref]).
265 unsigned DirectBinding : 1;
266
267 /// Whether this is an lvalue reference binding (otherwise, it's
268 /// an rvalue reference binding).
269 unsigned IsLvalueReference : 1;
270
271 /// Whether we're binding to a function lvalue.
272 unsigned BindsToFunctionLvalue : 1;
273
274 /// Whether we're binding to an rvalue.
275 unsigned BindsToRvalue : 1;
276
277 /// Whether this binds an implicit object argument to a
278 /// non-static member function without a ref-qualifier.
279 unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
280
281 /// Whether this binds a reference to an object with a different
282 /// Objective-C lifetime qualifier.
283 unsigned ObjCLifetimeConversionBinding : 1;
284
285 /// FromType - The type that this conversion is converting
286 /// from. This is an opaque pointer that can be translated into a
287 /// QualType.
288 void *FromTypePtr;
289
290 /// ToType - The types that this conversion is converting to in
291 /// each step. This is an opaque pointer that can be translated
292 /// into a QualType.
293 void *ToTypePtrs[3];
294
295 /// CopyConstructor - The copy constructor that is used to perform
296 /// this conversion, when the conversion is actually just the
297 /// initialization of an object via copy constructor. Such
298 /// conversions are either identity conversions or derived-to-base
299 /// conversions.
300 CXXConstructorDecl *CopyConstructor;
301 DeclAccessPair FoundCopyConstructor;
302
303 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
304
305 void setToType(unsigned Idx, QualType T) {
306 assert(Idx < 3 && "To type index is out of range")((Idx < 3 && "To type index is out of range") ? static_cast
<void> (0) : __assert_fail ("Idx < 3 && \"To type index is out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 306, __PRETTY_FUNCTION__))
;
307 ToTypePtrs[Idx] = T.getAsOpaquePtr();
308 }
309
310 void setAllToTypes(QualType T) {
311 ToTypePtrs[0] = T.getAsOpaquePtr();
312 ToTypePtrs[1] = ToTypePtrs[0];
313 ToTypePtrs[2] = ToTypePtrs[0];
314 }
315
316 QualType getFromType() const {
317 return QualType::getFromOpaquePtr(FromTypePtr);
318 }
319
320 QualType getToType(unsigned Idx) const {
321 assert(Idx < 3 && "To type index is out of range")((Idx < 3 && "To type index is out of range") ? static_cast
<void> (0) : __assert_fail ("Idx < 3 && \"To type index is out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 321, __PRETTY_FUNCTION__))
;
322 return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
323 }
324
325 void setAsIdentityConversion();
326
327 bool isIdentityConversion() const {
328 return Second == ICK_Identity && Third == ICK_Identity;
329 }
330
331 ImplicitConversionRank getRank() const;
332 NarrowingKind
333 getNarrowingKind(ASTContext &Context, const Expr *Converted,
334 APValue &ConstantValue, QualType &ConstantType,
335 bool IgnoreFloatToIntegralConversion = false) const;
336 bool isPointerConversionToBool() const;
337 bool isPointerConversionToVoidPointer(ASTContext& Context) const;
338 void dump() const;
339 };
340
341 /// UserDefinedConversionSequence - Represents a user-defined
342 /// conversion sequence (C++ 13.3.3.1.2).
343 struct UserDefinedConversionSequence {
344 /// Represents the standard conversion that occurs before
345 /// the actual user-defined conversion.
346 ///
347 /// C++11 13.3.3.1.2p1:
348 /// If the user-defined conversion is specified by a constructor
349 /// (12.3.1), the initial standard conversion sequence converts
350 /// the source type to the type required by the argument of the
351 /// constructor. If the user-defined conversion is specified by
352 /// a conversion function (12.3.2), the initial standard
353 /// conversion sequence converts the source type to the implicit
354 /// object parameter of the conversion function.
355 StandardConversionSequence Before;
356
357 /// EllipsisConversion - When this is true, it means user-defined
358 /// conversion sequence starts with a ... (ellipsis) conversion, instead of
359 /// a standard conversion. In this case, 'Before' field must be ignored.
360 // FIXME. I much rather put this as the first field. But there seems to be
361 // a gcc code gen. bug which causes a crash in a test. Putting it here seems
362 // to work around the crash.
363 bool EllipsisConversion : 1;
364
365 /// HadMultipleCandidates - When this is true, it means that the
366 /// conversion function was resolved from an overloaded set having
367 /// size greater than 1.
368 bool HadMultipleCandidates : 1;
369
370 /// After - Represents the standard conversion that occurs after
371 /// the actual user-defined conversion.
372 StandardConversionSequence After;
373
374 /// ConversionFunction - The function that will perform the
375 /// user-defined conversion. Null if the conversion is an
376 /// aggregate initialization from an initializer list.
377 FunctionDecl* ConversionFunction;
378
379 /// The declaration that we found via name lookup, which might be
380 /// the same as \c ConversionFunction or it might be a using declaration
381 /// that refers to \c ConversionFunction.
382 DeclAccessPair FoundConversionFunction;
383
384 void dump() const;
385 };
386
387 /// Represents an ambiguous user-defined conversion sequence.
388 struct AmbiguousConversionSequence {
389 using ConversionSet =
390 SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
391
392 void *FromTypePtr;
393 void *ToTypePtr;
394 char Buffer[sizeof(ConversionSet)];
395
396 QualType getFromType() const {
397 return QualType::getFromOpaquePtr(FromTypePtr);
398 }
399
400 QualType getToType() const {
401 return QualType::getFromOpaquePtr(ToTypePtr);
402 }
403
404 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
405 void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
406
407 ConversionSet &conversions() {
408 return *reinterpret_cast<ConversionSet*>(Buffer);
409 }
410
411 const ConversionSet &conversions() const {
412 return *reinterpret_cast<const ConversionSet*>(Buffer);
413 }
414
415 void addConversion(NamedDecl *Found, FunctionDecl *D) {
416 conversions().push_back(std::make_pair(Found, D));
417 }
418
419 using iterator = ConversionSet::iterator;
420
421 iterator begin() { return conversions().begin(); }
422 iterator end() { return conversions().end(); }
423
424 using const_iterator = ConversionSet::const_iterator;
425
426 const_iterator begin() const { return conversions().begin(); }
427 const_iterator end() const { return conversions().end(); }
428
429 void construct();
430 void destruct();
431 void copyFrom(const AmbiguousConversionSequence &);
432 };
433
434 /// BadConversionSequence - Records information about an invalid
435 /// conversion sequence.
436 struct BadConversionSequence {
437 enum FailureKind {
438 no_conversion,
439 unrelated_class,
440 bad_qualifiers,
441 lvalue_ref_to_rvalue,
442 rvalue_ref_to_lvalue
443 };
444
445 // This can be null, e.g. for implicit object arguments.
446 Expr *FromExpr;
447
448 FailureKind Kind;
449
450 private:
451 // The type we're converting from (an opaque QualType).
452 void *FromTy;
453
454 // The type we're converting to (an opaque QualType).
455 void *ToTy;
456
457 public:
458 void init(FailureKind K, Expr *From, QualType To) {
459 init(K, From->getType(), To);
460 FromExpr = From;
461 }
462
463 void init(FailureKind K, QualType From, QualType To) {
464 Kind = K;
465 FromExpr = nullptr;
466 setFromType(From);
467 setToType(To);
468 }
469
470 QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
471 QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
472
473 void setFromExpr(Expr *E) {
474 FromExpr = E;
475 setFromType(E->getType());
476 }
477
478 void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
479 void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
480 };
481
482 /// ImplicitConversionSequence - Represents an implicit conversion
483 /// sequence, which may be a standard conversion sequence
484 /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
485 /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
486 class ImplicitConversionSequence {
487 public:
488 /// Kind - The kind of implicit conversion sequence. BadConversion
489 /// specifies that there is no conversion from the source type to
490 /// the target type. AmbiguousConversion represents the unique
491 /// ambiguous conversion (C++0x [over.best.ics]p10).
492 enum Kind {
493 StandardConversion = 0,
494 UserDefinedConversion,
495 AmbiguousConversion,
496 EllipsisConversion,
497 BadConversion
498 };
499
500 private:
501 enum {
502 Uninitialized = BadConversion + 1
503 };
504
505 /// ConversionKind - The kind of implicit conversion sequence.
506 unsigned ConversionKind : 30;
507
508 /// Whether the target is really a std::initializer_list, and the
509 /// sequence only represents the worst element conversion.
510 unsigned StdInitializerListElement : 1;
511
512 void setKind(Kind K) {
513 destruct();
514 ConversionKind = K;
515 }
516
517 void destruct() {
518 if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
519 }
520
521 public:
522 union {
523 /// When ConversionKind == StandardConversion, provides the
524 /// details of the standard conversion sequence.
525 StandardConversionSequence Standard;
526
527 /// When ConversionKind == UserDefinedConversion, provides the
528 /// details of the user-defined conversion sequence.
529 UserDefinedConversionSequence UserDefined;
530
531 /// When ConversionKind == AmbiguousConversion, provides the
532 /// details of the ambiguous conversion.
533 AmbiguousConversionSequence Ambiguous;
534
535 /// When ConversionKind == BadConversion, provides the details
536 /// of the bad conversion.
537 BadConversionSequence Bad;
538 };
539
540 ImplicitConversionSequence()
541 : ConversionKind(Uninitialized), StdInitializerListElement(false) {
542 Standard.setAsIdentityConversion();
543 }
544
545 ImplicitConversionSequence(const ImplicitConversionSequence &Other)
546 : ConversionKind(Other.ConversionKind),
547 StdInitializerListElement(Other.StdInitializerListElement) {
548 switch (ConversionKind) {
549 case Uninitialized: break;
550 case StandardConversion: Standard = Other.Standard; break;
551 case UserDefinedConversion: UserDefined = Other.UserDefined; break;
552 case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
553 case EllipsisConversion: break;
554 case BadConversion: Bad = Other.Bad; break;
555 }
556 }
557
558 ImplicitConversionSequence &
559 operator=(const ImplicitConversionSequence &Other) {
560 destruct();
561 new (this) ImplicitConversionSequence(Other);
562 return *this;
563 }
564
565 ~ImplicitConversionSequence() {
566 destruct();
567 }
568
569 Kind getKind() const {
570 assert(isInitialized() && "querying uninitialized conversion")((isInitialized() && "querying uninitialized conversion"
) ? static_cast<void> (0) : __assert_fail ("isInitialized() && \"querying uninitialized conversion\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 570, __PRETTY_FUNCTION__))
;
571 return Kind(ConversionKind);
572 }
573
574 /// Return a ranking of the implicit conversion sequence
575 /// kind, where smaller ranks represent better conversion
576 /// sequences.
577 ///
578 /// In particular, this routine gives user-defined conversion
579 /// sequences and ambiguous conversion sequences the same rank,
580 /// per C++ [over.best.ics]p10.
581 unsigned getKindRank() const {
582 switch (getKind()) {
583 case StandardConversion:
584 return 0;
585
586 case UserDefinedConversion:
587 case AmbiguousConversion:
588 return 1;
589
590 case EllipsisConversion:
591 return 2;
592
593 case BadConversion:
594 return 3;
595 }
596
597 llvm_unreachable("Invalid ImplicitConversionSequence::Kind!")::llvm::llvm_unreachable_internal("Invalid ImplicitConversionSequence::Kind!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 597)
;
598 }
599
600 bool isBad() const { return getKind() == BadConversion; }
601 bool isStandard() const { return getKind() == StandardConversion; }
602 bool isEllipsis() const { return getKind() == EllipsisConversion; }
603 bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
604 bool isUserDefined() const { return getKind() == UserDefinedConversion; }
605 bool isFailure() const { return isBad() || isAmbiguous(); }
606
607 /// Determines whether this conversion sequence has been
608 /// initialized. Most operations should never need to query
609 /// uninitialized conversions and should assert as above.
610 bool isInitialized() const { return ConversionKind != Uninitialized; }
611
612 /// Sets this sequence as a bad conversion for an explicit argument.
613 void setBad(BadConversionSequence::FailureKind Failure,
614 Expr *FromExpr, QualType ToType) {
615 setKind(BadConversion);
616 Bad.init(Failure, FromExpr, ToType);
617 }
618
619 /// Sets this sequence as a bad conversion for an implicit argument.
620 void setBad(BadConversionSequence::FailureKind Failure,
621 QualType FromType, QualType ToType) {
622 setKind(BadConversion);
623 Bad.init(Failure, FromType, ToType);
624 }
625
626 void setStandard() { setKind(StandardConversion); }
627 void setEllipsis() { setKind(EllipsisConversion); }
628 void setUserDefined() { setKind(UserDefinedConversion); }
629
630 void setAmbiguous() {
631 if (ConversionKind == AmbiguousConversion) return;
632 ConversionKind = AmbiguousConversion;
633 Ambiguous.construct();
634 }
635
636 void setAsIdentityConversion(QualType T) {
637 setStandard();
638 Standard.setAsIdentityConversion();
639 Standard.setFromType(T);
640 Standard.setAllToTypes(T);
641 }
642
643 /// Whether the target is really a std::initializer_list, and the
644 /// sequence only represents the worst element conversion.
645 bool isStdInitializerListElement() const {
646 return StdInitializerListElement;
647 }
648
649 void setStdInitializerListElement(bool V = true) {
650 StdInitializerListElement = V;
651 }
652
653 // The result of a comparison between implicit conversion
654 // sequences. Use Sema::CompareImplicitConversionSequences to
655 // actually perform the comparison.
656 enum CompareKind {
657 Better = -1,
658 Indistinguishable = 0,
659 Worse = 1
660 };
661
662 void DiagnoseAmbiguousConversion(Sema &S,
663 SourceLocation CaretLoc,
664 const PartialDiagnostic &PDiag) const;
665
666 void dump() const;
667 };
668
669 enum OverloadFailureKind {
670 ovl_fail_too_many_arguments,
671 ovl_fail_too_few_arguments,
672 ovl_fail_bad_conversion,
673 ovl_fail_bad_deduction,
674
675 /// This conversion candidate was not considered because it
676 /// duplicates the work of a trivial or derived-to-base
677 /// conversion.
678 ovl_fail_trivial_conversion,
679
680 /// This conversion candidate was not considered because it is
681 /// an illegal instantiation of a constructor temploid: it is
682 /// callable with one argument, we only have one argument, and
683 /// its first parameter type is exactly the type of the class.
684 ///
685 /// Defining such a constructor directly is illegal, and
686 /// template-argument deduction is supposed to ignore such
687 /// instantiations, but we can still get one with the right
688 /// kind of implicit instantiation.
689 ovl_fail_illegal_constructor,
690
691 /// This conversion candidate is not viable because its result
692 /// type is not implicitly convertible to the desired type.
693 ovl_fail_bad_final_conversion,
694
695 /// This conversion function template specialization candidate is not
696 /// viable because the final conversion was not an exact match.
697 ovl_fail_final_conversion_not_exact,
698
699 /// (CUDA) This candidate was not viable because the callee
700 /// was not accessible from the caller's target (i.e. host->device,
701 /// global->host, device->host).
702 ovl_fail_bad_target,
703
704 /// This candidate function was not viable because an enable_if
705 /// attribute disabled it.
706 ovl_fail_enable_if,
707
708 /// This candidate constructor or conversion fonction
709 /// is used implicitly but the explicit(bool) specifier
710 /// was resolved to true
711 ovl_fail_explicit_resolved,
712
713 /// This candidate was not viable because its address could not be taken.
714 ovl_fail_addr_not_available,
715
716 /// This candidate was not viable because its OpenCL extension is disabled.
717 ovl_fail_ext_disabled,
718
719 /// This inherited constructor is not viable because it would slice the
720 /// argument.
721 ovl_fail_inhctor_slice,
722
723 /// This candidate was not viable because it is a non-default multiversioned
724 /// function.
725 ovl_non_default_multiversion_function,
726
727 /// This constructor/conversion candidate fail due to an address space
728 /// mismatch between the object being constructed and the overload
729 /// candidate.
730 ovl_fail_object_addrspace_mismatch
731 };
732
733 /// A list of implicit conversion sequences for the arguments of an
734 /// OverloadCandidate.
735 using ConversionSequenceList =
736 llvm::MutableArrayRef<ImplicitConversionSequence>;
737
738 /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
739 struct OverloadCandidate {
740 /// Function - The actual function that this candidate
741 /// represents. When NULL, this is a built-in candidate
742 /// (C++ [over.oper]) or a surrogate for a conversion to a
743 /// function pointer or reference (C++ [over.call.object]).
744 FunctionDecl *Function;
745
746 /// FoundDecl - The original declaration that was looked up /
747 /// invented / otherwise found, together with its access.
748 /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
749 DeclAccessPair FoundDecl;
750
751 /// BuiltinParamTypes - Provides the parameter types of a built-in overload
752 /// candidate. Only valid when Function is NULL.
753 QualType BuiltinParamTypes[3];
754
755 /// Surrogate - The conversion function for which this candidate
756 /// is a surrogate, but only if IsSurrogate is true.
757 CXXConversionDecl *Surrogate;
758
759 /// The conversion sequences used to convert the function arguments
760 /// to the function parameters.
761 ConversionSequenceList Conversions;
762
763 /// The FixIt hints which can be used to fix the Bad candidate.
764 ConversionFixItGenerator Fix;
765
766 /// Viable - True to indicate that this overload candidate is viable.
767 bool Viable : 1;
768
769 /// IsSurrogate - True to indicate that this candidate is a
770 /// surrogate for a conversion to a function pointer or reference
771 /// (C++ [over.call.object]).
772 bool IsSurrogate : 1;
773
774 /// IgnoreObjectArgument - True to indicate that the first
775 /// argument's conversion, which for this function represents the
776 /// implicit object argument, should be ignored. This will be true
777 /// when the candidate is a static member function (where the
778 /// implicit object argument is just a placeholder) or a
779 /// non-static member function when the call doesn't have an
780 /// object argument.
781 bool IgnoreObjectArgument : 1;
782
783 /// True if the candidate was found using ADL.
784 CallExpr::ADLCallKind IsADLCandidate : 1;
785
786 /// FailureKind - The reason why this candidate is not viable.
787 /// Actually an OverloadFailureKind.
788 unsigned char FailureKind;
789
790 /// The number of call arguments that were explicitly provided,
791 /// to be used while performing partial ordering of function templates.
792 unsigned ExplicitCallArguments;
793
794 union {
795 DeductionFailureInfo DeductionFailure;
796
797 /// FinalConversion - For a conversion function (where Function is
798 /// a CXXConversionDecl), the standard conversion that occurs
799 /// after the call to the overload candidate to convert the result
800 /// of calling the conversion function to the required type.
801 StandardConversionSequence FinalConversion;
802 };
803
804 /// hasAmbiguousConversion - Returns whether this overload
805 /// candidate requires an ambiguous conversion or not.
806 bool hasAmbiguousConversion() const {
807 for (auto &C : Conversions) {
808 if (!C.isInitialized()) return false;
809 if (C.isAmbiguous()) return true;
810 }
811 return false;
812 }
813
814 bool TryToFixBadConversion(unsigned Idx, Sema &S) {
815 bool CanFix = Fix.tryToFixConversion(
816 Conversions[Idx].Bad.FromExpr,
817 Conversions[Idx].Bad.getFromType(),
818 Conversions[Idx].Bad.getToType(), S);
819
820 // If at least one conversion fails, the candidate cannot be fixed.
821 if (!CanFix)
822 Fix.clear();
823
824 return CanFix;
825 }
826
827 unsigned getNumParams() const {
828 if (IsSurrogate) {
12
Assuming field 'IsSurrogate' is true
13
Taking true branch
829 auto STy = Surrogate->getConversionType();
830 while (STy->isPointerType() || STy->isReferenceType())
14
Loop condition is false. Execution continues on line 832
831 STy = STy->getPointeeType();
832 return STy->getAs<FunctionProtoType>()->getNumParams();
15
Assuming the object is not a 'FunctionProtoType'
16
Called C++ object pointer is null
833 }
834 if (Function)
835 return Function->getNumParams();
836 return ExplicitCallArguments;
837 }
838
839 private:
840 friend class OverloadCandidateSet;
841 OverloadCandidate() : IsADLCandidate(CallExpr::NotADL) {}
842 };
843
844 /// OverloadCandidateSet - A set of overload candidates, used in C++
845 /// overload resolution (C++ 13.3).
846 class OverloadCandidateSet {
847 public:
848 enum CandidateSetKind {
849 /// Normal lookup.
850 CSK_Normal,
851
852 /// C++ [over.match.oper]:
853 /// Lookup of operator function candidates in a call using operator
854 /// syntax. Candidates that have no parameters of class type will be
855 /// skipped unless there is a parameter of (reference to) enum type and
856 /// the corresponding argument is of the same enum type.
857 CSK_Operator,
858
859 /// C++ [over.match.copy]:
860 /// Copy-initialization of an object of class type by user-defined
861 /// conversion.
862 CSK_InitByUserDefinedConversion,
863
864 /// C++ [over.match.ctor], [over.match.list]
865 /// Initialization of an object of class type by constructor,
866 /// using either a parenthesized or braced list of arguments.
867 CSK_InitByConstructor,
868 };
869
870 private:
871 SmallVector<OverloadCandidate, 16> Candidates;
872 llvm::SmallPtrSet<Decl *, 16> Functions;
873
874 // Allocator for ConversionSequenceLists. We store the first few of these
875 // inline to avoid allocation for small sets.
876 llvm::BumpPtrAllocator SlabAllocator;
877
878 SourceLocation Loc;
879 CandidateSetKind Kind;
880
881 constexpr static unsigned NumInlineBytes =
882 24 * sizeof(ImplicitConversionSequence);
883 unsigned NumInlineBytesUsed = 0;
884 alignas(void *) char InlineSpace[NumInlineBytes];
885
886 // Address space of the object being constructed.
887 LangAS DestAS = LangAS::Default;
888
889 /// If we have space, allocates from inline storage. Otherwise, allocates
890 /// from the slab allocator.
891 /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
892 /// instead.
893 /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
894 /// want to un-generalize this?
895 template <typename T>
896 T *slabAllocate(unsigned N) {
897 // It's simpler if this doesn't need to consider alignment.
898 static_assert(alignof(T) == alignof(void *),
899 "Only works for pointer-aligned types.");
900 static_assert(std::is_trivial<T>::value ||
901 std::is_same<ImplicitConversionSequence, T>::value,
902 "Add destruction logic to OverloadCandidateSet::clear().");
903
904 unsigned NBytes = sizeof(T) * N;
905 if (NBytes > NumInlineBytes - NumInlineBytesUsed)
906 return SlabAllocator.Allocate<T>(N);
907 char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
908 assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&((uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
"Misaligned storage!") ? static_cast<void> (0) : __assert_fail
("uintptr_t(FreeSpaceStart) % alignof(void *) == 0 && \"Misaligned storage!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 909, __PRETTY_FUNCTION__))
909 "Misaligned storage!")((uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
"Misaligned storage!") ? static_cast<void> (0) : __assert_fail
("uintptr_t(FreeSpaceStart) % alignof(void *) == 0 && \"Misaligned storage!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 909, __PRETTY_FUNCTION__))
;
910
911 NumInlineBytesUsed += NBytes;
912 return reinterpret_cast<T *>(FreeSpaceStart);
913 }
914
915 void destroyCandidates();
916
917 public:
918 OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK)
919 : Loc(Loc), Kind(CSK) {}
920 OverloadCandidateSet(const OverloadCandidateSet &) = delete;
921 OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
922 ~OverloadCandidateSet() { destroyCandidates(); }
923
924 SourceLocation getLocation() const { return Loc; }
925 CandidateSetKind getKind() const { return Kind; }
926
927 /// Determine when this overload candidate will be new to the
928 /// overload set.
929 bool isNewCandidate(Decl *F) {
930 return Functions.insert(F->getCanonicalDecl()).second;
931 }
932
933 /// Clear out all of the candidates.
934 void clear(CandidateSetKind CSK);
935
936 using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
937
938 iterator begin() { return Candidates.begin(); }
939 iterator end() { return Candidates.end(); }
940
941 size_t size() const { return Candidates.size(); }
942 bool empty() const { return Candidates.empty(); }
943
944 /// Allocate storage for conversion sequences for NumConversions
945 /// conversions.
946 ConversionSequenceList
947 allocateConversionSequences(unsigned NumConversions) {
948 ImplicitConversionSequence *Conversions =
949 slabAllocate<ImplicitConversionSequence>(NumConversions);
950
951 // Construct the new objects.
952 for (unsigned I = 0; I != NumConversions; ++I)
953 new (&Conversions[I]) ImplicitConversionSequence();
954
955 return ConversionSequenceList(Conversions, NumConversions);
956 }
957
958 /// Add a new candidate with NumConversions conversion sequence slots
959 /// to the overload set.
960 OverloadCandidate &addCandidate(unsigned NumConversions = 0,
961 ConversionSequenceList Conversions = None) {
962 assert((Conversions.empty() || Conversions.size() == NumConversions) &&(((Conversions.empty() || Conversions.size() == NumConversions
) && "preallocated conversion sequence has wrong length"
) ? static_cast<void> (0) : __assert_fail ("(Conversions.empty() || Conversions.size() == NumConversions) && \"preallocated conversion sequence has wrong length\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 963, __PRETTY_FUNCTION__))
963 "preallocated conversion sequence has wrong length")(((Conversions.empty() || Conversions.size() == NumConversions
) && "preallocated conversion sequence has wrong length"
) ? static_cast<void> (0) : __assert_fail ("(Conversions.empty() || Conversions.size() == NumConversions) && \"preallocated conversion sequence has wrong length\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 963, __PRETTY_FUNCTION__))
;
964
965 Candidates.push_back(OverloadCandidate());
966 OverloadCandidate &C = Candidates.back();
967 C.Conversions = Conversions.empty()
968 ? allocateConversionSequences(NumConversions)
969 : Conversions;
970 return C;
971 }
972
973 /// Find the best viable function on this overload set, if it exists.
974 OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
975 OverloadCandidateSet::iterator& Best);
976
977 SmallVector<OverloadCandidate *, 32> CompleteCandidates(
978 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
979 SourceLocation OpLoc = SourceLocation(),
980 llvm::function_ref<bool(OverloadCandidate &)> Filter =
981 [](OverloadCandidate &) { return true; });
982
983 void NoteCandidates(
984 PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
985 ArrayRef<Expr *> Args, StringRef Opc = "",
986 SourceLocation Loc = SourceLocation(),
987 llvm::function_ref<bool(OverloadCandidate &)> Filter =
988 [](OverloadCandidate &) { return true; });
989
990 void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
991 ArrayRef<OverloadCandidate *> Cands,
992 StringRef Opc = "",
993 SourceLocation OpLoc = SourceLocation());
994
995 LangAS getDestAS() { return DestAS; }
996
997 void setDestAS(LangAS AS) {
998 assert((Kind == CSK_InitByConstructor ||(((Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion
) && "can't set the destination address space when not constructing an "
"object") ? static_cast<void> (0) : __assert_fail ("(Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion) && \"can't set the destination address space when not constructing an \" \"object\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 1001, __PRETTY_FUNCTION__))
999 Kind == CSK_InitByUserDefinedConversion) &&(((Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion
) && "can't set the destination address space when not constructing an "
"object") ? static_cast<void> (0) : __assert_fail ("(Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion) && \"can't set the destination address space when not constructing an \" \"object\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 1001, __PRETTY_FUNCTION__))
1000 "can't set the destination address space when not constructing an "(((Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion
) && "can't set the destination address space when not constructing an "
"object") ? static_cast<void> (0) : __assert_fail ("(Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion) && \"can't set the destination address space when not constructing an \" \"object\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 1001, __PRETTY_FUNCTION__))
1001 "object")(((Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion
) && "can't set the destination address space when not constructing an "
"object") ? static_cast<void> (0) : __assert_fail ("(Kind == CSK_InitByConstructor || Kind == CSK_InitByUserDefinedConversion) && \"can't set the destination address space when not constructing an \" \"object\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/Sema/Overload.h"
, 1001, __PRETTY_FUNCTION__))
;
1002 DestAS = AS;
1003 }
1004
1005 };
1006
1007 bool isBetterOverloadCandidate(Sema &S,
1008 const OverloadCandidate &Cand1,
1009 const OverloadCandidate &Cand2,
1010 SourceLocation Loc,
1011 OverloadCandidateSet::CandidateSetKind Kind);
1012
1013 struct ConstructorInfo {
1014 DeclAccessPair FoundDecl;
1015 CXXConstructorDecl *Constructor;
1016 FunctionTemplateDecl *ConstructorTmpl;
1017
1018 explicit operator bool() const { return Constructor; }
1019 };
1020
1021 // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
1022 // that takes one of these.
1023 inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
1024 if (isa<UsingDecl>(ND))
1025 return ConstructorInfo{};
1026
1027 // For constructors, the access check is performed against the underlying
1028 // declaration, not the found declaration.
1029 auto *D = ND->getUnderlyingDecl();
1030 ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
1031 nullptr};
1032 Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
1033 if (Info.ConstructorTmpl)
1034 D = Info.ConstructorTmpl->getTemplatedDecl();
1035 Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
1036 return Info;
1037 }
1038
1039} // namespace clang
1040
1041#endif // LLVM_CLANG_SEMA_OVERLOAD_H