Bug Summary

File:clang/lib/Sema/SemaOverload.cpp
Warning:line 9476, column 44
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/include -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-09-163500-17580-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 DeclRefExpr *DRE = new (S.Context)
64 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
65 if (HadMultipleCandidates)
66 DRE->setHadMultipleCandidates(true);
67
68 S.MarkDeclRefReferenced(DRE, Base);
69 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
70 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
71 S.ResolveExceptionSpec(Loc, FPT);
72 DRE->setType(Fn->getType());
73 }
74 }
75 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
76 CK_FunctionToPointerDecay);
77}
78
79static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
80 bool InOverloadResolution,
81 StandardConversionSequence &SCS,
82 bool CStyle,
83 bool AllowObjCWritebackConversion);
84
85static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
86 QualType &ToType,
87 bool InOverloadResolution,
88 StandardConversionSequence &SCS,
89 bool CStyle);
90static OverloadingResult
91IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
92 UserDefinedConversionSequence& User,
93 OverloadCandidateSet& Conversions,
94 bool AllowExplicit,
95 bool AllowObjCConversionOnExplicit);
96
97
98static ImplicitConversionSequence::CompareKind
99CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
100 const StandardConversionSequence& SCS1,
101 const StandardConversionSequence& SCS2);
102
103static ImplicitConversionSequence::CompareKind
104CompareQualificationConversions(Sema &S,
105 const StandardConversionSequence& SCS1,
106 const StandardConversionSequence& SCS2);
107
108static ImplicitConversionSequence::CompareKind
109CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
110 const StandardConversionSequence& SCS1,
111 const StandardConversionSequence& SCS2);
112
113/// GetConversionRank - Retrieve the implicit conversion rank
114/// corresponding to the given implicit conversion kind.
115ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
116 static const ImplicitConversionRank
117 Rank[(int)ICK_Num_Conversion_Kinds] = {
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Exact_Match,
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Promotion,
125 ICR_Promotion,
126 ICR_Promotion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_OCL_Scalar_Widening,
138 ICR_Complex_Real_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Writeback_Conversion,
142 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
143 // it was omitted by the patch that added
144 // ICK_Zero_Event_Conversion
145 ICR_C_Conversion,
146 ICR_C_Conversion_Extension
147 };
148 return Rank[(int)Kind];
149}
150
151/// GetImplicitConversionName - Return the name of this kind of
152/// implicit conversion.
153static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
154 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
155 "No conversion",
156 "Lvalue-to-rvalue",
157 "Array-to-pointer",
158 "Function-to-pointer",
159 "Function pointer conversion",
160 "Qualification",
161 "Integral promotion",
162 "Floating point promotion",
163 "Complex promotion",
164 "Integral conversion",
165 "Floating conversion",
166 "Complex conversion",
167 "Floating-integral conversion",
168 "Pointer conversion",
169 "Pointer-to-member conversion",
170 "Boolean conversion",
171 "Compatible-types conversion",
172 "Derived-to-base conversion",
173 "Vector conversion",
174 "Vector splat",
175 "Complex-real conversion",
176 "Block Pointer conversion",
177 "Transparent Union Conversion",
178 "Writeback conversion",
179 "OpenCL Zero Event Conversion",
180 "C specific type conversion",
181 "Incompatible pointer conversion"
182 };
183 return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189 First = ICK_Identity;
190 Second = ICK_Identity;
191 Third = ICK_Identity;
192 DeprecatedStringLiteralToCharPtr = false;
193 QualificationIncludesObjCLifetime = false;
194 ReferenceBinding = false;
195 DirectBinding = false;
196 IsLvalueReference = true;
197 BindsToFunctionLvalue = false;
198 BindsToRvalue = false;
199 BindsImplicitObjectArgumentWithoutRefQualifier = false;
200 ObjCLifetimeConversionBinding = false;
201 CopyConstructor = nullptr;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208 ImplicitConversionRank Rank = ICR_Exact_Match;
209 if (GetConversionRank(First) > Rank)
210 Rank = GetConversionRank(First);
211 if (GetConversionRank(Second) > Rank)
212 Rank = GetConversionRank(Second);
213 if (GetConversionRank(Third) > Rank)
214 Rank = GetConversionRank(Third);
215 return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223 // Note that FromType has not necessarily been transformed by the
224 // array-to-pointer or function-to-pointer implicit conversions, so
225 // check for their presence as well as checking whether FromType is
226 // a pointer.
227 if (getToType(1)->isBooleanType() &&
228 (getFromType()->isPointerType() ||
229 getFromType()->isMemberPointerType() ||
230 getFromType()->isObjCObjectPointerType() ||
231 getFromType()->isBlockPointerType() ||
232 getFromType()->isNullPtrType() ||
233 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234 return true;
235
236 return false;
237}
238
239/// isPointerConversionToVoidPointer - Determines whether this
240/// conversion is a conversion of a pointer to a void pointer. This is
241/// used as part of the ranking of standard conversion sequences (C++
242/// 13.3.3.2p4).
243bool
244StandardConversionSequence::
245isPointerConversionToVoidPointer(ASTContext& Context) const {
246 QualType FromType = getFromType();
247 QualType ToType = getToType(1);
248
249 // Note that FromType has not necessarily been transformed by the
250 // array-to-pointer implicit conversion, so check for its presence
251 // and redo the conversion to get a pointer.
252 if (First == ICK_Array_To_Pointer)
253 FromType = Context.getArrayDecayedType(FromType);
254
255 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257 return ToPtrType->getPointeeType()->isVoidType();
258
259 return false;
260}
261
262/// Skip any implicit casts which could be either part of a narrowing conversion
263/// or after one in an implicit conversion.
264static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
265 const Expr *Converted) {
266 // We can have cleanups wrapping the converted expression; these need to be
267 // preserved so that destructors run if necessary.
268 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
269 Expr *Inner =
270 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
271 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
272 EWC->getObjects());
273 }
274
275 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
276 switch (ICE->getCastKind()) {
277 case CK_NoOp:
278 case CK_IntegralCast:
279 case CK_IntegralToBoolean:
280 case CK_IntegralToFloating:
281 case CK_BooleanToSignedIntegral:
282 case CK_FloatingToIntegral:
283 case CK_FloatingToBoolean:
284 case CK_FloatingCast:
285 Converted = ICE->getSubExpr();
286 continue;
287
288 default:
289 return Converted;
290 }
291 }
292
293 return Converted;
294}
295
296/// Check if this standard conversion sequence represents a narrowing
297/// conversion, according to C++11 [dcl.init.list]p7.
298///
299/// \param Ctx The AST context.
300/// \param Converted The result of applying this standard conversion sequence.
301/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
302/// value of the expression prior to the narrowing conversion.
303/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
304/// type of the expression prior to the narrowing conversion.
305/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
306/// from floating point types to integral types should be ignored.
307NarrowingKind StandardConversionSequence::getNarrowingKind(
308 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
309 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
310 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 // C++11 [dcl.init.list]p7:
313 // A narrowing conversion is an implicit conversion ...
314 QualType FromType = getToType(0);
315 QualType ToType = getToType(1);
316
317 // A conversion to an enumeration type is narrowing if the conversion to
318 // the underlying type is narrowing. This only arises for expressions of
319 // the form 'Enum{init}'.
320 if (auto *ET = ToType->getAs<EnumType>())
321 ToType = ET->getDecl()->getIntegerType();
322
323 switch (Second) {
324 // 'bool' is an integral type; dispatch to the right place to handle it.
325 case ICK_Boolean_Conversion:
326 if (FromType->isRealFloatingType())
327 goto FloatingIntegralConversion;
328 if (FromType->isIntegralOrUnscopedEnumerationType())
329 goto IntegralConversion;
330 // Boolean conversions can be from pointers and pointers to members
331 // [conv.bool], and those aren't considered narrowing conversions.
332 return NK_Not_Narrowing;
333
334 // -- from a floating-point type to an integer type, or
335 //
336 // -- from an integer type or unscoped enumeration type to a floating-point
337 // type, except where the source is a constant expression and the actual
338 // value after conversion will fit into the target type and will produce
339 // the original value when converted back to the original type, or
340 case ICK_Floating_Integral:
341 FloatingIntegralConversion:
342 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
343 return NK_Type_Narrowing;
344 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
345 ToType->isRealFloatingType()) {
346 if (IgnoreFloatToIntegralConversion)
347 return NK_Not_Narrowing;
348 llvm::APSInt IntConstantValue;
349 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
350 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 350, __PRETTY_FUNCTION__))
;
351
352 // If it's value-dependent, we can't tell whether it's narrowing.
353 if (Initializer->isValueDependent())
354 return NK_Dependent_Narrowing;
355
356 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
357 // Convert the integer to the floating type.
358 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
359 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
360 llvm::APFloat::rmNearestTiesToEven);
361 // And back.
362 llvm::APSInt ConvertedValue = IntConstantValue;
363 bool ignored;
364 Result.convertToInteger(ConvertedValue,
365 llvm::APFloat::rmTowardZero, &ignored);
366 // If the resulting value is different, this was a narrowing conversion.
367 if (IntConstantValue != ConvertedValue) {
368 ConstantValue = APValue(IntConstantValue);
369 ConstantType = Initializer->getType();
370 return NK_Constant_Narrowing;
371 }
372 } else {
373 // Variables are always narrowings.
374 return NK_Variable_Narrowing;
375 }
376 }
377 return NK_Not_Narrowing;
378
379 // -- from long double to double or float, or from double to float, except
380 // where the source is a constant expression and the actual value after
381 // conversion is within the range of values that can be represented (even
382 // if it cannot be represented exactly), or
383 case ICK_Floating_Conversion:
384 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
385 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
386 // FromType is larger than ToType.
387 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
388
389 // If it's value-dependent, we can't tell whether it's narrowing.
390 if (Initializer->isValueDependent())
391 return NK_Dependent_Narrowing;
392
393 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
394 // Constant!
395 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 395, __PRETTY_FUNCTION__))
;
396 llvm::APFloat FloatVal = ConstantValue.getFloat();
397 // Convert the source value into the target type.
398 bool ignored;
399 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
400 Ctx.getFloatTypeSemantics(ToType),
401 llvm::APFloat::rmNearestTiesToEven, &ignored);
402 // If there was no overflow, the source value is within the range of
403 // values that can be represented.
404 if (ConvertStatus & llvm::APFloat::opOverflow) {
405 ConstantType = Initializer->getType();
406 return NK_Constant_Narrowing;
407 }
408 } else {
409 return NK_Variable_Narrowing;
410 }
411 }
412 return NK_Not_Narrowing;
413
414 // -- from an integer type or unscoped enumeration type to an integer type
415 // that cannot represent all the values of the original type, except where
416 // the source is a constant expression and the actual value after
417 // conversion will fit into the target type and will produce the original
418 // value when converted back to the original type.
419 case ICK_Integral_Conversion:
420 IntegralConversion: {
421 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 421, __PRETTY_FUNCTION__))
;
422 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 422, __PRETTY_FUNCTION__))
;
423 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
424 const unsigned FromWidth = Ctx.getIntWidth(FromType);
425 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
426 const unsigned ToWidth = Ctx.getIntWidth(ToType);
427
428 if (FromWidth > ToWidth ||
429 (FromWidth == ToWidth && FromSigned != ToSigned) ||
430 (FromSigned && !ToSigned)) {
431 // Not all values of FromType can be represented in ToType.
432 llvm::APSInt InitializerValue;
433 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
434
435 // If it's value-dependent, we can't tell whether it's narrowing.
436 if (Initializer->isValueDependent())
437 return NK_Dependent_Narrowing;
438
439 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
440 // Such conversions on variables are always narrowing.
441 return NK_Variable_Narrowing;
442 }
443 bool Narrowing = false;
444 if (FromWidth < ToWidth) {
445 // Negative -> unsigned is narrowing. Otherwise, more bits is never
446 // narrowing.
447 if (InitializerValue.isSigned() && InitializerValue.isNegative())
448 Narrowing = true;
449 } else {
450 // Add a bit to the InitializerValue so we don't have to worry about
451 // signed vs. unsigned comparisons.
452 InitializerValue = InitializerValue.extend(
453 InitializerValue.getBitWidth() + 1);
454 // Convert the initializer to and from the target width and signed-ness.
455 llvm::APSInt ConvertedValue = InitializerValue;
456 ConvertedValue = ConvertedValue.trunc(ToWidth);
457 ConvertedValue.setIsSigned(ToSigned);
458 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
459 ConvertedValue.setIsSigned(InitializerValue.isSigned());
460 // If the result is different, this was a narrowing conversion.
461 if (ConvertedValue != InitializerValue)
462 Narrowing = true;
463 }
464 if (Narrowing) {
465 ConstantType = Initializer->getType();
466 ConstantValue = APValue(InitializerValue);
467 return NK_Constant_Narrowing;
468 }
469 }
470 return NK_Not_Narrowing;
471 }
472
473 default:
474 // Other kinds of conversions are not narrowings.
475 return NK_Not_Narrowing;
476 }
477}
478
479/// dump - Print this standard conversion sequence to standard
480/// error. Useful for debugging overloading issues.
481LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
482 raw_ostream &OS = llvm::errs();
483 bool PrintedSomething = false;
484 if (First != ICK_Identity) {
485 OS << GetImplicitConversionName(First);
486 PrintedSomething = true;
487 }
488
489 if (Second != ICK_Identity) {
490 if (PrintedSomething) {
491 OS << " -> ";
492 }
493 OS << GetImplicitConversionName(Second);
494
495 if (CopyConstructor) {
496 OS << " (by copy constructor)";
497 } else if (DirectBinding) {
498 OS << " (direct reference binding)";
499 } else if (ReferenceBinding) {
500 OS << " (reference binding)";
501 }
502 PrintedSomething = true;
503 }
504
505 if (Third != ICK_Identity) {
506 if (PrintedSomething) {
507 OS << " -> ";
508 }
509 OS << GetImplicitConversionName(Third);
510 PrintedSomething = true;
511 }
512
513 if (!PrintedSomething) {
514 OS << "No conversions required";
515 }
516}
517
518/// dump - Print this user-defined conversion sequence to standard
519/// error. Useful for debugging overloading issues.
520void UserDefinedConversionSequence::dump() const {
521 raw_ostream &OS = llvm::errs();
522 if (Before.First || Before.Second || Before.Third) {
523 Before.dump();
524 OS << " -> ";
525 }
526 if (ConversionFunction)
527 OS << '\'' << *ConversionFunction << '\'';
528 else
529 OS << "aggregate initialization";
530 if (After.First || After.Second || After.Third) {
531 OS << " -> ";
532 After.dump();
533 }
534}
535
536/// dump - Print this implicit conversion sequence to standard
537/// error. Useful for debugging overloading issues.
538void ImplicitConversionSequence::dump() const {
539 raw_ostream &OS = llvm::errs();
540 if (isStdInitializerListElement())
541 OS << "Worst std::initializer_list element conversion: ";
542 switch (ConversionKind) {
543 case StandardConversion:
544 OS << "Standard conversion: ";
545 Standard.dump();
546 break;
547 case UserDefinedConversion:
548 OS << "User-defined conversion: ";
549 UserDefined.dump();
550 break;
551 case EllipsisConversion:
552 OS << "Ellipsis conversion";
553 break;
554 case AmbiguousConversion:
555 OS << "Ambiguous conversion";
556 break;
557 case BadConversion:
558 OS << "Bad conversion";
559 break;
560 }
561
562 OS << "\n";
563}
564
565void AmbiguousConversionSequence::construct() {
566 new (&conversions()) ConversionSet();
567}
568
569void AmbiguousConversionSequence::destruct() {
570 conversions().~ConversionSet();
571}
572
573void
574AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
575 FromTypePtr = O.FromTypePtr;
576 ToTypePtr = O.ToTypePtr;
577 new (&conversions()) ConversionSet(O.conversions());
578}
579
580namespace {
581 // Structure used by DeductionFailureInfo to store
582 // template argument information.
583 struct DFIArguments {
584 TemplateArgument FirstArg;
585 TemplateArgument SecondArg;
586 };
587 // Structure used by DeductionFailureInfo to store
588 // template parameter and template argument information.
589 struct DFIParamWithArguments : DFIArguments {
590 TemplateParameter Param;
591 };
592 // Structure used by DeductionFailureInfo to store template argument
593 // information and the index of the problematic call argument.
594 struct DFIDeducedMismatchArgs : DFIArguments {
595 TemplateArgumentList *TemplateArgs;
596 unsigned CallArgIndex;
597 };
598 // Structure used by DeductionFailureInfo to store information about
599 // unsatisfied constraints.
600 struct CNSInfo {
601 TemplateArgumentList *TemplateArgs;
602 ConstraintSatisfaction Satisfaction;
603 };
604}
605
606/// Convert from Sema's representation of template deduction information
607/// to the form used in overload-candidate information.
608DeductionFailureInfo
609clang::MakeDeductionFailureInfo(ASTContext &Context,
610 Sema::TemplateDeductionResult TDK,
611 TemplateDeductionInfo &Info) {
612 DeductionFailureInfo Result;
613 Result.Result = static_cast<unsigned>(TDK);
614 Result.HasDiagnostic = false;
615 switch (TDK) {
616 case Sema::TDK_Invalid:
617 case Sema::TDK_InstantiationDepth:
618 case Sema::TDK_TooManyArguments:
619 case Sema::TDK_TooFewArguments:
620 case Sema::TDK_MiscellaneousDeductionFailure:
621 case Sema::TDK_CUDATargetMismatch:
622 Result.Data = nullptr;
623 break;
624
625 case Sema::TDK_Incomplete:
626 case Sema::TDK_InvalidExplicitArguments:
627 Result.Data = Info.Param.getOpaqueValue();
628 break;
629
630 case Sema::TDK_DeducedMismatch:
631 case Sema::TDK_DeducedMismatchNested: {
632 // FIXME: Should allocate from normal heap so that we can free this later.
633 auto *Saved = new (Context) DFIDeducedMismatchArgs;
634 Saved->FirstArg = Info.FirstArg;
635 Saved->SecondArg = Info.SecondArg;
636 Saved->TemplateArgs = Info.take();
637 Saved->CallArgIndex = Info.CallArgIndex;
638 Result.Data = Saved;
639 break;
640 }
641
642 case Sema::TDK_NonDeducedMismatch: {
643 // FIXME: Should allocate from normal heap so that we can free this later.
644 DFIArguments *Saved = new (Context) DFIArguments;
645 Saved->FirstArg = Info.FirstArg;
646 Saved->SecondArg = Info.SecondArg;
647 Result.Data = Saved;
648 break;
649 }
650
651 case Sema::TDK_IncompletePack:
652 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
653 case Sema::TDK_Inconsistent:
654 case Sema::TDK_Underqualified: {
655 // FIXME: Should allocate from normal heap so that we can free this later.
656 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
657 Saved->Param = Info.Param;
658 Saved->FirstArg = Info.FirstArg;
659 Saved->SecondArg = Info.SecondArg;
660 Result.Data = Saved;
661 break;
662 }
663
664 case Sema::TDK_SubstitutionFailure:
665 Result.Data = Info.take();
666 if (Info.hasSFINAEDiagnostic()) {
667 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
668 SourceLocation(), PartialDiagnostic::NullDiagnostic());
669 Info.takeSFINAEDiagnostic(*Diag);
670 Result.HasDiagnostic = true;
671 }
672 break;
673
674 case Sema::TDK_ConstraintsNotSatisfied: {
675 CNSInfo *Saved = new (Context) CNSInfo;
676 Saved->TemplateArgs = Info.take();
677 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
678 Result.Data = Saved;
679 break;
680 }
681
682 case Sema::TDK_Success:
683 case Sema::TDK_NonDependentConversionFailure:
684 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 684)
;
685 }
686
687 return Result;
688}
689
690void DeductionFailureInfo::Destroy() {
691 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
692 case Sema::TDK_Success:
693 case Sema::TDK_Invalid:
694 case Sema::TDK_InstantiationDepth:
695 case Sema::TDK_Incomplete:
696 case Sema::TDK_TooManyArguments:
697 case Sema::TDK_TooFewArguments:
698 case Sema::TDK_InvalidExplicitArguments:
699 case Sema::TDK_CUDATargetMismatch:
700 case Sema::TDK_NonDependentConversionFailure:
701 break;
702
703 case Sema::TDK_IncompletePack:
704 case Sema::TDK_Inconsistent:
705 case Sema::TDK_Underqualified:
706 case Sema::TDK_DeducedMismatch:
707 case Sema::TDK_DeducedMismatchNested:
708 case Sema::TDK_NonDeducedMismatch:
709 // FIXME: Destroy the data?
710 Data = nullptr;
711 break;
712
713 case Sema::TDK_SubstitutionFailure:
714 // FIXME: Destroy the template argument list?
715 Data = nullptr;
716 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
717 Diag->~PartialDiagnosticAt();
718 HasDiagnostic = false;
719 }
720 break;
721
722 case Sema::TDK_ConstraintsNotSatisfied:
723 // FIXME: Destroy the template argument list?
724 Data = nullptr;
725 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
726 Diag->~PartialDiagnosticAt();
727 HasDiagnostic = false;
728 }
729 break;
730
731 // Unhandled
732 case Sema::TDK_MiscellaneousDeductionFailure:
733 break;
734 }
735}
736
737PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
738 if (HasDiagnostic)
739 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
740 return nullptr;
741}
742
743TemplateParameter DeductionFailureInfo::getTemplateParameter() {
744 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
745 case Sema::TDK_Success:
746 case Sema::TDK_Invalid:
747 case Sema::TDK_InstantiationDepth:
748 case Sema::TDK_TooManyArguments:
749 case Sema::TDK_TooFewArguments:
750 case Sema::TDK_SubstitutionFailure:
751 case Sema::TDK_DeducedMismatch:
752 case Sema::TDK_DeducedMismatchNested:
753 case Sema::TDK_NonDeducedMismatch:
754 case Sema::TDK_CUDATargetMismatch:
755 case Sema::TDK_NonDependentConversionFailure:
756 case Sema::TDK_ConstraintsNotSatisfied:
757 return TemplateParameter();
758
759 case Sema::TDK_Incomplete:
760 case Sema::TDK_InvalidExplicitArguments:
761 return TemplateParameter::getFromOpaqueValue(Data);
762
763 case Sema::TDK_IncompletePack:
764 case Sema::TDK_Inconsistent:
765 case Sema::TDK_Underqualified:
766 return static_cast<DFIParamWithArguments*>(Data)->Param;
767
768 // Unhandled
769 case Sema::TDK_MiscellaneousDeductionFailure:
770 break;
771 }
772
773 return TemplateParameter();
774}
775
776TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
777 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
778 case Sema::TDK_Success:
779 case Sema::TDK_Invalid:
780 case Sema::TDK_InstantiationDepth:
781 case Sema::TDK_TooManyArguments:
782 case Sema::TDK_TooFewArguments:
783 case Sema::TDK_Incomplete:
784 case Sema::TDK_IncompletePack:
785 case Sema::TDK_InvalidExplicitArguments:
786 case Sema::TDK_Inconsistent:
787 case Sema::TDK_Underqualified:
788 case Sema::TDK_NonDeducedMismatch:
789 case Sema::TDK_CUDATargetMismatch:
790 case Sema::TDK_NonDependentConversionFailure:
791 return nullptr;
792
793 case Sema::TDK_DeducedMismatch:
794 case Sema::TDK_DeducedMismatchNested:
795 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
796
797 case Sema::TDK_SubstitutionFailure:
798 return static_cast<TemplateArgumentList*>(Data);
799
800 case Sema::TDK_ConstraintsNotSatisfied:
801 return static_cast<CNSInfo*>(Data)->TemplateArgs;
802
803 // Unhandled
804 case Sema::TDK_MiscellaneousDeductionFailure:
805 break;
806 }
807
808 return nullptr;
809}
810
811const TemplateArgument *DeductionFailureInfo::getFirstArg() {
812 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
813 case Sema::TDK_Success:
814 case Sema::TDK_Invalid:
815 case Sema::TDK_InstantiationDepth:
816 case Sema::TDK_Incomplete:
817 case Sema::TDK_TooManyArguments:
818 case Sema::TDK_TooFewArguments:
819 case Sema::TDK_InvalidExplicitArguments:
820 case Sema::TDK_SubstitutionFailure:
821 case Sema::TDK_CUDATargetMismatch:
822 case Sema::TDK_NonDependentConversionFailure:
823 case Sema::TDK_ConstraintsNotSatisfied:
824 return nullptr;
825
826 case Sema::TDK_IncompletePack:
827 case Sema::TDK_Inconsistent:
828 case Sema::TDK_Underqualified:
829 case Sema::TDK_DeducedMismatch:
830 case Sema::TDK_DeducedMismatchNested:
831 case Sema::TDK_NonDeducedMismatch:
832 return &static_cast<DFIArguments*>(Data)->FirstArg;
833
834 // Unhandled
835 case Sema::TDK_MiscellaneousDeductionFailure:
836 break;
837 }
838
839 return nullptr;
840}
841
842const TemplateArgument *DeductionFailureInfo::getSecondArg() {
843 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
844 case Sema::TDK_Success:
845 case Sema::TDK_Invalid:
846 case Sema::TDK_InstantiationDepth:
847 case Sema::TDK_Incomplete:
848 case Sema::TDK_IncompletePack:
849 case Sema::TDK_TooManyArguments:
850 case Sema::TDK_TooFewArguments:
851 case Sema::TDK_InvalidExplicitArguments:
852 case Sema::TDK_SubstitutionFailure:
853 case Sema::TDK_CUDATargetMismatch:
854 case Sema::TDK_NonDependentConversionFailure:
855 case Sema::TDK_ConstraintsNotSatisfied:
856 return nullptr;
857
858 case Sema::TDK_Inconsistent:
859 case Sema::TDK_Underqualified:
860 case Sema::TDK_DeducedMismatch:
861 case Sema::TDK_DeducedMismatchNested:
862 case Sema::TDK_NonDeducedMismatch:
863 return &static_cast<DFIArguments*>(Data)->SecondArg;
864
865 // Unhandled
866 case Sema::TDK_MiscellaneousDeductionFailure:
867 break;
868 }
869
870 return nullptr;
871}
872
873llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
874 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
875 case Sema::TDK_DeducedMismatch:
876 case Sema::TDK_DeducedMismatchNested:
877 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
878
879 default:
880 return llvm::None;
881 }
882}
883
884bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
885 OverloadedOperatorKind Op) {
886 if (!AllowRewrittenCandidates)
887 return false;
888 return Op == OO_EqualEqual || Op == OO_Spaceship;
889}
890
891bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
892 ASTContext &Ctx, const FunctionDecl *FD) {
893 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
894 return false;
895 // Don't bother adding a reversed candidate that can never be a better
896 // match than the non-reversed version.
897 return FD->getNumParams() != 2 ||
898 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
899 FD->getParamDecl(1)->getType()) ||
900 FD->hasAttr<EnableIfAttr>();
901}
902
903void OverloadCandidateSet::destroyCandidates() {
904 for (iterator i = begin(), e = end(); i != e; ++i) {
905 for (auto &C : i->Conversions)
906 C.~ImplicitConversionSequence();
907 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
908 i->DeductionFailure.Destroy();
909 }
910}
911
912void OverloadCandidateSet::clear(CandidateSetKind CSK) {
913 destroyCandidates();
914 SlabAllocator.Reset();
915 NumInlineBytesUsed = 0;
916 Candidates.clear();
917 Functions.clear();
918 Kind = CSK;
919}
920
921namespace {
922 class UnbridgedCastsSet {
923 struct Entry {
924 Expr **Addr;
925 Expr *Saved;
926 };
927 SmallVector<Entry, 2> Entries;
928
929 public:
930 void save(Sema &S, Expr *&E) {
931 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 931, __PRETTY_FUNCTION__))
;
932 Entry entry = { &E, E };
933 Entries.push_back(entry);
934 E = S.stripARCUnbridgedCast(E);
935 }
936
937 void restore() {
938 for (SmallVectorImpl<Entry>::iterator
939 i = Entries.begin(), e = Entries.end(); i != e; ++i)
940 *i->Addr = i->Saved;
941 }
942 };
943}
944
945/// checkPlaceholderForOverload - Do any interesting placeholder-like
946/// preprocessing on the given expression.
947///
948/// \param unbridgedCasts a collection to which to add unbridged casts;
949/// without this, they will be immediately diagnosed as errors
950///
951/// Return true on unrecoverable error.
952static bool
953checkPlaceholderForOverload(Sema &S, Expr *&E,
954 UnbridgedCastsSet *unbridgedCasts = nullptr) {
955 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
956 // We can't handle overloaded expressions here because overload
957 // resolution might reasonably tweak them.
958 if (placeholder->getKind() == BuiltinType::Overload) return false;
959
960 // If the context potentially accepts unbridged ARC casts, strip
961 // the unbridged cast and add it to the collection for later restoration.
962 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
963 unbridgedCasts) {
964 unbridgedCasts->save(S, E);
965 return false;
966 }
967
968 // Go ahead and check everything else.
969 ExprResult result = S.CheckPlaceholderExpr(E);
970 if (result.isInvalid())
971 return true;
972
973 E = result.get();
974 return false;
975 }
976
977 // Nothing to do.
978 return false;
979}
980
981/// checkArgPlaceholdersForOverload - Check a set of call operands for
982/// placeholders.
983static bool checkArgPlaceholdersForOverload(Sema &S,
984 MultiExprArg Args,
985 UnbridgedCastsSet &unbridged) {
986 for (unsigned i = 0, e = Args.size(); i != e; ++i)
987 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
988 return true;
989
990 return false;
991}
992
993/// Determine whether the given New declaration is an overload of the
994/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
995/// New and Old cannot be overloaded, e.g., if New has the same signature as
996/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
997/// functions (or function templates) at all. When it does return Ovl_Match or
998/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
999/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1000/// declaration.
1001///
1002/// Example: Given the following input:
1003///
1004/// void f(int, float); // #1
1005/// void f(int, int); // #2
1006/// int f(int, int); // #3
1007///
1008/// When we process #1, there is no previous declaration of "f", so IsOverload
1009/// will not be used.
1010///
1011/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1012/// the parameter types, we see that #1 and #2 are overloaded (since they have
1013/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1014/// unchanged.
1015///
1016/// When we process #3, Old is an overload set containing #1 and #2. We compare
1017/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1018/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1019/// functions are not part of the signature), IsOverload returns Ovl_Match and
1020/// MatchedDecl will be set to point to the FunctionDecl for #2.
1021///
1022/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1023/// by a using declaration. The rules for whether to hide shadow declarations
1024/// ignore some properties which otherwise figure into a function template's
1025/// signature.
1026Sema::OverloadKind
1027Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1028 NamedDecl *&Match, bool NewIsUsingDecl) {
1029 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1030 I != E; ++I) {
1031 NamedDecl *OldD = *I;
1032
1033 bool OldIsUsingDecl = false;
1034 if (isa<UsingShadowDecl>(OldD)) {
1035 OldIsUsingDecl = true;
1036
1037 // We can always introduce two using declarations into the same
1038 // context, even if they have identical signatures.
1039 if (NewIsUsingDecl) continue;
1040
1041 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1042 }
1043
1044 // A using-declaration does not conflict with another declaration
1045 // if one of them is hidden.
1046 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1047 continue;
1048
1049 // If either declaration was introduced by a using declaration,
1050 // we'll need to use slightly different rules for matching.
1051 // Essentially, these rules are the normal rules, except that
1052 // function templates hide function templates with different
1053 // return types or template parameter lists.
1054 bool UseMemberUsingDeclRules =
1055 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1056 !New->getFriendObjectKind();
1057
1058 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1059 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1060 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1061 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1062 continue;
1063 }
1064
1065 if (!isa<FunctionTemplateDecl>(OldD) &&
1066 !shouldLinkPossiblyHiddenDecl(*I, New))
1067 continue;
1068
1069 Match = *I;
1070 return Ovl_Match;
1071 }
1072
1073 // Builtins that have custom typechecking or have a reference should
1074 // not be overloadable or redeclarable.
1075 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1076 Match = *I;
1077 return Ovl_NonFunction;
1078 }
1079 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1080 // We can overload with these, which can show up when doing
1081 // redeclaration checks for UsingDecls.
1082 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1082, __PRETTY_FUNCTION__))
;
1083 } else if (isa<TagDecl>(OldD)) {
1084 // We can always overload with tags by hiding them.
1085 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1086 // Optimistically assume that an unresolved using decl will
1087 // overload; if it doesn't, we'll have to diagnose during
1088 // template instantiation.
1089 //
1090 // Exception: if the scope is dependent and this is not a class
1091 // member, the using declaration can only introduce an enumerator.
1092 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1093 Match = *I;
1094 return Ovl_NonFunction;
1095 }
1096 } else {
1097 // (C++ 13p1):
1098 // Only function declarations can be overloaded; object and type
1099 // declarations cannot be overloaded.
1100 Match = *I;
1101 return Ovl_NonFunction;
1102 }
1103 }
1104
1105 // C++ [temp.friend]p1:
1106 // For a friend function declaration that is not a template declaration:
1107 // -- if the name of the friend is a qualified or unqualified template-id,
1108 // [...], otherwise
1109 // -- if the name of the friend is a qualified-id and a matching
1110 // non-template function is found in the specified class or namespace,
1111 // the friend declaration refers to that function, otherwise,
1112 // -- if the name of the friend is a qualified-id and a matching function
1113 // template is found in the specified class or namespace, the friend
1114 // declaration refers to the deduced specialization of that function
1115 // template, otherwise
1116 // -- the name shall be an unqualified-id [...]
1117 // If we get here for a qualified friend declaration, we've just reached the
1118 // third bullet. If the type of the friend is dependent, skip this lookup
1119 // until instantiation.
1120 if (New->getFriendObjectKind() && New->getQualifier() &&
1121 !New->getDescribedFunctionTemplate() &&
1122 !New->getDependentSpecializationInfo() &&
1123 !New->getType()->isDependentType()) {
1124 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1125 TemplateSpecResult.addAllDecls(Old);
1126 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1127 /*QualifiedFriend*/true)) {
1128 New->setInvalidDecl();
1129 return Ovl_Overload;
1130 }
1131
1132 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1133 return Ovl_Match;
1134 }
1135
1136 return Ovl_Overload;
1137}
1138
1139bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1140 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1141 // C++ [basic.start.main]p2: This function shall not be overloaded.
1142 if (New->isMain())
1143 return false;
1144
1145 // MSVCRT user defined entry points cannot be overloaded.
1146 if (New->isMSVCRTEntryPoint())
1147 return false;
1148
1149 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1150 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1151
1152 // C++ [temp.fct]p2:
1153 // A function template can be overloaded with other function templates
1154 // and with normal (non-template) functions.
1155 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1156 return true;
1157
1158 // Is the function New an overload of the function Old?
1159 QualType OldQType = Context.getCanonicalType(Old->getType());
1160 QualType NewQType = Context.getCanonicalType(New->getType());
1161
1162 // Compare the signatures (C++ 1.3.10) of the two functions to
1163 // determine whether they are overloads. If we find any mismatch
1164 // in the signature, they are overloads.
1165
1166 // If either of these functions is a K&R-style function (no
1167 // prototype), then we consider them to have matching signatures.
1168 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1169 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1170 return false;
1171
1172 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1173 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1174
1175 // The signature of a function includes the types of its
1176 // parameters (C++ 1.3.10), which includes the presence or absence
1177 // of the ellipsis; see C++ DR 357).
1178 if (OldQType != NewQType &&
1179 (OldType->getNumParams() != NewType->getNumParams() ||
1180 OldType->isVariadic() != NewType->isVariadic() ||
1181 !FunctionParamTypesAreEqual(OldType, NewType)))
1182 return true;
1183
1184 // C++ [temp.over.link]p4:
1185 // The signature of a function template consists of its function
1186 // signature, its return type and its template parameter list. The names
1187 // of the template parameters are significant only for establishing the
1188 // relationship between the template parameters and the rest of the
1189 // signature.
1190 //
1191 // We check the return type and template parameter lists for function
1192 // templates first; the remaining checks follow.
1193 //
1194 // However, we don't consider either of these when deciding whether
1195 // a member introduced by a shadow declaration is hidden.
1196 if (!UseMemberUsingDeclRules && NewTemplate &&
1197 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1198 OldTemplate->getTemplateParameters(),
1199 false, TPL_TemplateMatch) ||
1200 !Context.hasSameType(Old->getDeclaredReturnType(),
1201 New->getDeclaredReturnType())))
1202 return true;
1203
1204 // If the function is a class member, its signature includes the
1205 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1206 //
1207 // As part of this, also check whether one of the member functions
1208 // is static, in which case they are not overloads (C++
1209 // 13.1p2). While not part of the definition of the signature,
1210 // this check is important to determine whether these functions
1211 // can be overloaded.
1212 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1213 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1214 if (OldMethod && NewMethod &&
1215 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1216 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1217 if (!UseMemberUsingDeclRules &&
1218 (OldMethod->getRefQualifier() == RQ_None ||
1219 NewMethod->getRefQualifier() == RQ_None)) {
1220 // C++0x [over.load]p2:
1221 // - Member function declarations with the same name and the same
1222 // parameter-type-list as well as member function template
1223 // declarations with the same name, the same parameter-type-list, and
1224 // the same template parameter lists cannot be overloaded if any of
1225 // them, but not all, have a ref-qualifier (8.3.5).
1226 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1227 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1228 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1229 }
1230 return true;
1231 }
1232
1233 // We may not have applied the implicit const for a constexpr member
1234 // function yet (because we haven't yet resolved whether this is a static
1235 // or non-static member function). Add it now, on the assumption that this
1236 // is a redeclaration of OldMethod.
1237 auto OldQuals = OldMethod->getMethodQualifiers();
1238 auto NewQuals = NewMethod->getMethodQualifiers();
1239 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1240 !isa<CXXConstructorDecl>(NewMethod))
1241 NewQuals.addConst();
1242 // We do not allow overloading based off of '__restrict'.
1243 OldQuals.removeRestrict();
1244 NewQuals.removeRestrict();
1245 if (OldQuals != NewQuals)
1246 return true;
1247 }
1248
1249 // Though pass_object_size is placed on parameters and takes an argument, we
1250 // consider it to be a function-level modifier for the sake of function
1251 // identity. Either the function has one or more parameters with
1252 // pass_object_size or it doesn't.
1253 if (functionHasPassObjectSizeParams(New) !=
1254 functionHasPassObjectSizeParams(Old))
1255 return true;
1256
1257 // enable_if attributes are an order-sensitive part of the signature.
1258 for (specific_attr_iterator<EnableIfAttr>
1259 NewI = New->specific_attr_begin<EnableIfAttr>(),
1260 NewE = New->specific_attr_end<EnableIfAttr>(),
1261 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1262 OldE = Old->specific_attr_end<EnableIfAttr>();
1263 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1264 if (NewI == NewE || OldI == OldE)
1265 return true;
1266 llvm::FoldingSetNodeID NewID, OldID;
1267 NewI->getCond()->Profile(NewID, Context, true);
1268 OldI->getCond()->Profile(OldID, Context, true);
1269 if (NewID != OldID)
1270 return true;
1271 }
1272
1273 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1274 // Don't allow overloading of destructors. (In theory we could, but it
1275 // would be a giant change to clang.)
1276 if (isa<CXXDestructorDecl>(New))
1277 return false;
1278
1279 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1280 OldTarget = IdentifyCUDATarget(Old);
1281 if (NewTarget == CFT_InvalidTarget)
1282 return false;
1283
1284 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1284, __PRETTY_FUNCTION__))
;
1285
1286 // Allow overloading of functions with same signature and different CUDA
1287 // target attributes.
1288 return NewTarget != OldTarget;
1289 }
1290
1291 // TODO: Concepts: Check function trailing requires clauses here.
1292
1293 // The signatures match; this is not an overload.
1294 return false;
1295}
1296
1297/// Tries a user-defined conversion from From to ToType.
1298///
1299/// Produces an implicit conversion sequence for when a standard conversion
1300/// is not an option. See TryImplicitConversion for more information.
1301static ImplicitConversionSequence
1302TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1303 bool SuppressUserConversions,
1304 bool AllowExplicit,
1305 bool InOverloadResolution,
1306 bool CStyle,
1307 bool AllowObjCWritebackConversion,
1308 bool AllowObjCConversionOnExplicit) {
1309 ImplicitConversionSequence ICS;
1310
1311 if (SuppressUserConversions) {
1312 // We're not in the case above, so there is no conversion that
1313 // we can perform.
1314 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1315 return ICS;
1316 }
1317
1318 // Attempt user-defined conversion.
1319 OverloadCandidateSet Conversions(From->getExprLoc(),
1320 OverloadCandidateSet::CSK_Normal);
1321 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1322 Conversions, AllowExplicit,
1323 AllowObjCConversionOnExplicit)) {
1324 case OR_Success:
1325 case OR_Deleted:
1326 ICS.setUserDefined();
1327 // C++ [over.ics.user]p4:
1328 // A conversion of an expression of class type to the same class
1329 // type is given Exact Match rank, and a conversion of an
1330 // expression of class type to a base class of that type is
1331 // given Conversion rank, in spite of the fact that a copy
1332 // constructor (i.e., a user-defined conversion function) is
1333 // called for those cases.
1334 if (CXXConstructorDecl *Constructor
1335 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1336 QualType FromCanon
1337 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1338 QualType ToCanon
1339 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1340 if (Constructor->isCopyConstructor() &&
1341 (FromCanon == ToCanon ||
1342 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1343 // Turn this into a "standard" conversion sequence, so that it
1344 // gets ranked with standard conversion sequences.
1345 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1346 ICS.setStandard();
1347 ICS.Standard.setAsIdentityConversion();
1348 ICS.Standard.setFromType(From->getType());
1349 ICS.Standard.setAllToTypes(ToType);
1350 ICS.Standard.CopyConstructor = Constructor;
1351 ICS.Standard.FoundCopyConstructor = Found;
1352 if (ToCanon != FromCanon)
1353 ICS.Standard.Second = ICK_Derived_To_Base;
1354 }
1355 }
1356 break;
1357
1358 case OR_Ambiguous:
1359 ICS.setAmbiguous();
1360 ICS.Ambiguous.setFromType(From->getType());
1361 ICS.Ambiguous.setToType(ToType);
1362 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1363 Cand != Conversions.end(); ++Cand)
1364 if (Cand->Best)
1365 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1366 break;
1367
1368 // Fall through.
1369 case OR_No_Viable_Function:
1370 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1371 break;
1372 }
1373
1374 return ICS;
1375}
1376
1377/// TryImplicitConversion - Attempt to perform an implicit conversion
1378/// from the given expression (Expr) to the given type (ToType). This
1379/// function returns an implicit conversion sequence that can be used
1380/// to perform the initialization. Given
1381///
1382/// void f(float f);
1383/// void g(int i) { f(i); }
1384///
1385/// this routine would produce an implicit conversion sequence to
1386/// describe the initialization of f from i, which will be a standard
1387/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1388/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1389//
1390/// Note that this routine only determines how the conversion can be
1391/// performed; it does not actually perform the conversion. As such,
1392/// it will not produce any diagnostics if no conversion is available,
1393/// but will instead return an implicit conversion sequence of kind
1394/// "BadConversion".
1395///
1396/// If @p SuppressUserConversions, then user-defined conversions are
1397/// not permitted.
1398/// If @p AllowExplicit, then explicit user-defined conversions are
1399/// permitted.
1400///
1401/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1402/// writeback conversion, which allows __autoreleasing id* parameters to
1403/// be initialized with __strong id* or __weak id* arguments.
1404static ImplicitConversionSequence
1405TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1406 bool SuppressUserConversions,
1407 bool AllowExplicit,
1408 bool InOverloadResolution,
1409 bool CStyle,
1410 bool AllowObjCWritebackConversion,
1411 bool AllowObjCConversionOnExplicit) {
1412 ImplicitConversionSequence ICS;
1413 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1414 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1415 ICS.setStandard();
1416 return ICS;
1417 }
1418
1419 if (!S.getLangOpts().CPlusPlus) {
1420 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1421 return ICS;
1422 }
1423
1424 // C++ [over.ics.user]p4:
1425 // A conversion of an expression of class type to the same class
1426 // type is given Exact Match rank, and a conversion of an
1427 // expression of class type to a base class of that type is
1428 // given Conversion rank, in spite of the fact that a copy/move
1429 // constructor (i.e., a user-defined conversion function) is
1430 // called for those cases.
1431 QualType FromType = From->getType();
1432 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1433 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1434 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1435 ICS.setStandard();
1436 ICS.Standard.setAsIdentityConversion();
1437 ICS.Standard.setFromType(FromType);
1438 ICS.Standard.setAllToTypes(ToType);
1439
1440 // We don't actually check at this point whether there is a valid
1441 // copy/move constructor, since overloading just assumes that it
1442 // exists. When we actually perform initialization, we'll find the
1443 // appropriate constructor to copy the returned object, if needed.
1444 ICS.Standard.CopyConstructor = nullptr;
1445
1446 // Determine whether this is considered a derived-to-base conversion.
1447 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1448 ICS.Standard.Second = ICK_Derived_To_Base;
1449
1450 return ICS;
1451 }
1452
1453 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1454 AllowExplicit, InOverloadResolution, CStyle,
1455 AllowObjCWritebackConversion,
1456 AllowObjCConversionOnExplicit);
1457}
1458
1459ImplicitConversionSequence
1460Sema::TryImplicitConversion(Expr *From, QualType ToType,
1461 bool SuppressUserConversions,
1462 bool AllowExplicit,
1463 bool InOverloadResolution,
1464 bool CStyle,
1465 bool AllowObjCWritebackConversion) {
1466 return ::TryImplicitConversion(*this, From, ToType,
1467 SuppressUserConversions, AllowExplicit,
1468 InOverloadResolution, CStyle,
1469 AllowObjCWritebackConversion,
1470 /*AllowObjCConversionOnExplicit=*/false);
1471}
1472
1473/// PerformImplicitConversion - Perform an implicit conversion of the
1474/// expression From to the type ToType. Returns the
1475/// converted expression. Flavor is the kind of conversion we're
1476/// performing, used in the error message. If @p AllowExplicit,
1477/// explicit user-defined conversions are permitted.
1478ExprResult
1479Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1480 AssignmentAction Action, bool AllowExplicit) {
1481 ImplicitConversionSequence ICS;
1482 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1483}
1484
1485ExprResult
1486Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1487 AssignmentAction Action, bool AllowExplicit,
1488 ImplicitConversionSequence& ICS) {
1489 if (checkPlaceholderForOverload(*this, From))
1490 return ExprError();
1491
1492 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1493 bool AllowObjCWritebackConversion
1494 = getLangOpts().ObjCAutoRefCount &&
1495 (Action == AA_Passing || Action == AA_Sending);
1496 if (getLangOpts().ObjC)
1497 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1498 From->getType(), From);
1499 ICS = ::TryImplicitConversion(*this, From, ToType,
1500 /*SuppressUserConversions=*/false,
1501 AllowExplicit,
1502 /*InOverloadResolution=*/false,
1503 /*CStyle=*/false,
1504 AllowObjCWritebackConversion,
1505 /*AllowObjCConversionOnExplicit=*/false);
1506 return PerformImplicitConversion(From, ToType, ICS, Action);
1507}
1508
1509/// Determine whether the conversion from FromType to ToType is a valid
1510/// conversion that strips "noexcept" or "noreturn" off the nested function
1511/// type.
1512bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1513 QualType &ResultTy) {
1514 if (Context.hasSameUnqualifiedType(FromType, ToType))
1515 return false;
1516
1517 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1518 // or F(t noexcept) -> F(t)
1519 // where F adds one of the following at most once:
1520 // - a pointer
1521 // - a member pointer
1522 // - a block pointer
1523 // Changes here need matching changes in FindCompositePointerType.
1524 CanQualType CanTo = Context.getCanonicalType(ToType);
1525 CanQualType CanFrom = Context.getCanonicalType(FromType);
1526 Type::TypeClass TyClass = CanTo->getTypeClass();
1527 if (TyClass != CanFrom->getTypeClass()) return false;
1528 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1529 if (TyClass == Type::Pointer) {
1530 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1531 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1532 } else if (TyClass == Type::BlockPointer) {
1533 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1534 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1535 } else if (TyClass == Type::MemberPointer) {
1536 auto ToMPT = CanTo.castAs<MemberPointerType>();
1537 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1538 // A function pointer conversion cannot change the class of the function.
1539 if (ToMPT->getClass() != FromMPT->getClass())
1540 return false;
1541 CanTo = ToMPT->getPointeeType();
1542 CanFrom = FromMPT->getPointeeType();
1543 } else {
1544 return false;
1545 }
1546
1547 TyClass = CanTo->getTypeClass();
1548 if (TyClass != CanFrom->getTypeClass()) return false;
1549 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1550 return false;
1551 }
1552
1553 const auto *FromFn = cast<FunctionType>(CanFrom);
1554 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1555
1556 const auto *ToFn = cast<FunctionType>(CanTo);
1557 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1558
1559 bool Changed = false;
1560
1561 // Drop 'noreturn' if not present in target type.
1562 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1563 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1564 Changed = true;
1565 }
1566
1567 // Drop 'noexcept' if not present in target type.
1568 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1569 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1570 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1571 FromFn = cast<FunctionType>(
1572 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1573 EST_None)
1574 .getTypePtr());
1575 Changed = true;
1576 }
1577
1578 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1579 // only if the ExtParameterInfo lists of the two function prototypes can be
1580 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1581 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1582 bool CanUseToFPT, CanUseFromFPT;
1583 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1584 CanUseFromFPT, NewParamInfos) &&
1585 CanUseToFPT && !CanUseFromFPT) {
1586 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1587 ExtInfo.ExtParameterInfos =
1588 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1589 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1590 FromFPT->getParamTypes(), ExtInfo);
1591 FromFn = QT->getAs<FunctionType>();
1592 Changed = true;
1593 }
1594 }
1595
1596 if (!Changed)
1597 return false;
1598
1599 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1599, __PRETTY_FUNCTION__))
;
1600 if (QualType(FromFn, 0) != CanTo) return false;
1601
1602 ResultTy = ToType;
1603 return true;
1604}
1605
1606/// Determine whether the conversion from FromType to ToType is a valid
1607/// vector conversion.
1608///
1609/// \param ICK Will be set to the vector conversion kind, if this is a vector
1610/// conversion.
1611static bool IsVectorConversion(Sema &S, QualType FromType,
1612 QualType ToType, ImplicitConversionKind &ICK) {
1613 // We need at least one of these types to be a vector type to have a vector
1614 // conversion.
1615 if (!ToType->isVectorType() && !FromType->isVectorType())
1616 return false;
1617
1618 // Identical types require no conversions.
1619 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1620 return false;
1621
1622 // There are no conversions between extended vector types, only identity.
1623 if (ToType->isExtVectorType()) {
1624 // There are no conversions between extended vector types other than the
1625 // identity conversion.
1626 if (FromType->isExtVectorType())
1627 return false;
1628
1629 // Vector splat from any arithmetic type to a vector.
1630 if (FromType->isArithmeticType()) {
1631 ICK = ICK_Vector_Splat;
1632 return true;
1633 }
1634 }
1635
1636 // We can perform the conversion between vector types in the following cases:
1637 // 1)vector types are equivalent AltiVec and GCC vector types
1638 // 2)lax vector conversions are permitted and the vector types are of the
1639 // same size
1640 if (ToType->isVectorType() && FromType->isVectorType()) {
1641 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1642 S.isLaxVectorConversion(FromType, ToType)) {
1643 ICK = ICK_Vector_Conversion;
1644 return true;
1645 }
1646 }
1647
1648 return false;
1649}
1650
1651static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1652 bool InOverloadResolution,
1653 StandardConversionSequence &SCS,
1654 bool CStyle);
1655
1656/// IsStandardConversion - Determines whether there is a standard
1657/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1658/// expression From to the type ToType. Standard conversion sequences
1659/// only consider non-class types; for conversions that involve class
1660/// types, use TryImplicitConversion. If a conversion exists, SCS will
1661/// contain the standard conversion sequence required to perform this
1662/// conversion and this routine will return true. Otherwise, this
1663/// routine will return false and the value of SCS is unspecified.
1664static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1665 bool InOverloadResolution,
1666 StandardConversionSequence &SCS,
1667 bool CStyle,
1668 bool AllowObjCWritebackConversion) {
1669 QualType FromType = From->getType();
1670
1671 // Standard conversions (C++ [conv])
1672 SCS.setAsIdentityConversion();
1673 SCS.IncompatibleObjC = false;
1674 SCS.setFromType(FromType);
1675 SCS.CopyConstructor = nullptr;
1676
1677 // There are no standard conversions for class types in C++, so
1678 // abort early. When overloading in C, however, we do permit them.
1679 if (S.getLangOpts().CPlusPlus &&
1680 (FromType->isRecordType() || ToType->isRecordType()))
1681 return false;
1682
1683 // The first conversion can be an lvalue-to-rvalue conversion,
1684 // array-to-pointer conversion, or function-to-pointer conversion
1685 // (C++ 4p1).
1686
1687 if (FromType == S.Context.OverloadTy) {
1688 DeclAccessPair AccessPair;
1689 if (FunctionDecl *Fn
1690 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1691 AccessPair)) {
1692 // We were able to resolve the address of the overloaded function,
1693 // so we can convert to the type of that function.
1694 FromType = Fn->getType();
1695 SCS.setFromType(FromType);
1696
1697 // we can sometimes resolve &foo<int> regardless of ToType, so check
1698 // if the type matches (identity) or we are converting to bool
1699 if (!S.Context.hasSameUnqualifiedType(
1700 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1701 QualType resultTy;
1702 // if the function type matches except for [[noreturn]], it's ok
1703 if (!S.IsFunctionConversion(FromType,
1704 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1705 // otherwise, only a boolean conversion is standard
1706 if (!ToType->isBooleanType())
1707 return false;
1708 }
1709
1710 // Check if the "from" expression is taking the address of an overloaded
1711 // function and recompute the FromType accordingly. Take advantage of the
1712 // fact that non-static member functions *must* have such an address-of
1713 // expression.
1714 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1715 if (Method && !Method->isStatic()) {
1716 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1717, __PRETTY_FUNCTION__))
1717 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1717, __PRETTY_FUNCTION__))
;
1718 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1720, __PRETTY_FUNCTION__))
1719 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1720, __PRETTY_FUNCTION__))
1720 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1720, __PRETTY_FUNCTION__))
;
1721 const Type *ClassType
1722 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1723 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1724 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1725 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1727, __PRETTY_FUNCTION__))
1726 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1727, __PRETTY_FUNCTION__))
1727 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1727, __PRETTY_FUNCTION__))
;
1728 FromType = S.Context.getPointerType(FromType);
1729 }
1730
1731 // Check that we've computed the proper type after overload resolution.
1732 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1733 // be calling it from within an NDEBUG block.
1734 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
1735 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
1736 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 1736, __PRETTY_FUNCTION__))
;
1737 } else {
1738 return false;
1739 }
1740 }
1741 // Lvalue-to-rvalue conversion (C++11 4.1):
1742 // A glvalue (3.10) of a non-function, non-array type T can
1743 // be converted to a prvalue.
1744 bool argIsLValue = From->isGLValue();
1745 if (argIsLValue &&
1746 !FromType->isFunctionType() && !FromType->isArrayType() &&
1747 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1748 SCS.First = ICK_Lvalue_To_Rvalue;
1749
1750 // C11 6.3.2.1p2:
1751 // ... if the lvalue has atomic type, the value has the non-atomic version
1752 // of the type of the lvalue ...
1753 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1754 FromType = Atomic->getValueType();
1755
1756 // If T is a non-class type, the type of the rvalue is the
1757 // cv-unqualified version of T. Otherwise, the type of the rvalue
1758 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1759 // just strip the qualifiers because they don't matter.
1760 FromType = FromType.getUnqualifiedType();
1761 } else if (FromType->isArrayType()) {
1762 // Array-to-pointer conversion (C++ 4.2)
1763 SCS.First = ICK_Array_To_Pointer;
1764
1765 // An lvalue or rvalue of type "array of N T" or "array of unknown
1766 // bound of T" can be converted to an rvalue of type "pointer to
1767 // T" (C++ 4.2p1).
1768 FromType = S.Context.getArrayDecayedType(FromType);
1769
1770 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1771 // This conversion is deprecated in C++03 (D.4)
1772 SCS.DeprecatedStringLiteralToCharPtr = true;
1773
1774 // For the purpose of ranking in overload resolution
1775 // (13.3.3.1.1), this conversion is considered an
1776 // array-to-pointer conversion followed by a qualification
1777 // conversion (4.4). (C++ 4.2p2)
1778 SCS.Second = ICK_Identity;
1779 SCS.Third = ICK_Qualification;
1780 SCS.QualificationIncludesObjCLifetime = false;
1781 SCS.setAllToTypes(FromType);
1782 return true;
1783 }
1784 } else if (FromType->isFunctionType() && argIsLValue) {
1785 // Function-to-pointer conversion (C++ 4.3).
1786 SCS.First = ICK_Function_To_Pointer;
1787
1788 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1789 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1790 if (!S.checkAddressOfFunctionIsAvailable(FD))
1791 return false;
1792
1793 // An lvalue of function type T can be converted to an rvalue of
1794 // type "pointer to T." The result is a pointer to the
1795 // function. (C++ 4.3p1).
1796 FromType = S.Context.getPointerType(FromType);
1797 } else {
1798 // We don't require any conversions for the first step.
1799 SCS.First = ICK_Identity;
1800 }
1801 SCS.setToType(0, FromType);
1802
1803 // The second conversion can be an integral promotion, floating
1804 // point promotion, integral conversion, floating point conversion,
1805 // floating-integral conversion, pointer conversion,
1806 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1807 // For overloading in C, this can also be a "compatible-type"
1808 // conversion.
1809 bool IncompatibleObjC = false;
1810 ImplicitConversionKind SecondICK = ICK_Identity;
1811 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1812 // The unqualified versions of the types are the same: there's no
1813 // conversion to do.
1814 SCS.Second = ICK_Identity;
1815 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1816 // Integral promotion (C++ 4.5).
1817 SCS.Second = ICK_Integral_Promotion;
1818 FromType = ToType.getUnqualifiedType();
1819 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1820 // Floating point promotion (C++ 4.6).
1821 SCS.Second = ICK_Floating_Promotion;
1822 FromType = ToType.getUnqualifiedType();
1823 } else if (S.IsComplexPromotion(FromType, ToType)) {
1824 // Complex promotion (Clang extension)
1825 SCS.Second = ICK_Complex_Promotion;
1826 FromType = ToType.getUnqualifiedType();
1827 } else if (ToType->isBooleanType() &&
1828 (FromType->isArithmeticType() ||
1829 FromType->isAnyPointerType() ||
1830 FromType->isBlockPointerType() ||
1831 FromType->isMemberPointerType() ||
1832 FromType->isNullPtrType())) {
1833 // Boolean conversions (C++ 4.12).
1834 SCS.Second = ICK_Boolean_Conversion;
1835 FromType = S.Context.BoolTy;
1836 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1837 ToType->isIntegralType(S.Context)) {
1838 // Integral conversions (C++ 4.7).
1839 SCS.Second = ICK_Integral_Conversion;
1840 FromType = ToType.getUnqualifiedType();
1841 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1842 // Complex conversions (C99 6.3.1.6)
1843 SCS.Second = ICK_Complex_Conversion;
1844 FromType = ToType.getUnqualifiedType();
1845 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1846 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1847 // Complex-real conversions (C99 6.3.1.7)
1848 SCS.Second = ICK_Complex_Real;
1849 FromType = ToType.getUnqualifiedType();
1850 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1851 // FIXME: disable conversions between long double and __float128 if
1852 // their representation is different until there is back end support
1853 // We of course allow this conversion if long double is really double.
1854 if (&S.Context.getFloatTypeSemantics(FromType) !=
1855 &S.Context.getFloatTypeSemantics(ToType)) {
1856 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1857 ToType == S.Context.LongDoubleTy) ||
1858 (FromType == S.Context.LongDoubleTy &&
1859 ToType == S.Context.Float128Ty));
1860 if (Float128AndLongDouble &&
1861 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1862 &llvm::APFloat::PPCDoubleDouble()))
1863 return false;
1864 }
1865 // Floating point conversions (C++ 4.8).
1866 SCS.Second = ICK_Floating_Conversion;
1867 FromType = ToType.getUnqualifiedType();
1868 } else if ((FromType->isRealFloatingType() &&
1869 ToType->isIntegralType(S.Context)) ||
1870 (FromType->isIntegralOrUnscopedEnumerationType() &&
1871 ToType->isRealFloatingType())) {
1872 // Floating-integral conversions (C++ 4.9).
1873 SCS.Second = ICK_Floating_Integral;
1874 FromType = ToType.getUnqualifiedType();
1875 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1876 SCS.Second = ICK_Block_Pointer_Conversion;
1877 } else if (AllowObjCWritebackConversion &&
1878 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1879 SCS.Second = ICK_Writeback_Conversion;
1880 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1881 FromType, IncompatibleObjC)) {
1882 // Pointer conversions (C++ 4.10).
1883 SCS.Second = ICK_Pointer_Conversion;
1884 SCS.IncompatibleObjC = IncompatibleObjC;
1885 FromType = FromType.getUnqualifiedType();
1886 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1887 InOverloadResolution, FromType)) {
1888 // Pointer to member conversions (4.11).
1889 SCS.Second = ICK_Pointer_Member;
1890 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1891 SCS.Second = SecondICK;
1892 FromType = ToType.getUnqualifiedType();
1893 } else if (!S.getLangOpts().CPlusPlus &&
1894 S.Context.typesAreCompatible(ToType, FromType)) {
1895 // Compatible conversions (Clang extension for C function overloading)
1896 SCS.Second = ICK_Compatible_Conversion;
1897 FromType = ToType.getUnqualifiedType();
1898 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1899 InOverloadResolution,
1900 SCS, CStyle)) {
1901 SCS.Second = ICK_TransparentUnionConversion;
1902 FromType = ToType;
1903 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1904 CStyle)) {
1905 // tryAtomicConversion has updated the standard conversion sequence
1906 // appropriately.
1907 return true;
1908 } else if (ToType->isEventT() &&
1909 From->isIntegerConstantExpr(S.getASTContext()) &&
1910 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1911 SCS.Second = ICK_Zero_Event_Conversion;
1912 FromType = ToType;
1913 } else if (ToType->isQueueT() &&
1914 From->isIntegerConstantExpr(S.getASTContext()) &&
1915 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1916 SCS.Second = ICK_Zero_Queue_Conversion;
1917 FromType = ToType;
1918 } else if (ToType->isSamplerT() &&
1919 From->isIntegerConstantExpr(S.getASTContext())) {
1920 SCS.Second = ICK_Compatible_Conversion;
1921 FromType = ToType;
1922 } else {
1923 // No second conversion required.
1924 SCS.Second = ICK_Identity;
1925 }
1926 SCS.setToType(1, FromType);
1927
1928 // The third conversion can be a function pointer conversion or a
1929 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1930 bool ObjCLifetimeConversion;
1931 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1932 // Function pointer conversions (removing 'noexcept') including removal of
1933 // 'noreturn' (Clang extension).
1934 SCS.Third = ICK_Function_Conversion;
1935 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1936 ObjCLifetimeConversion)) {
1937 SCS.Third = ICK_Qualification;
1938 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1939 FromType = ToType;
1940 } else {
1941 // No conversion required
1942 SCS.Third = ICK_Identity;
1943 }
1944
1945 // C++ [over.best.ics]p6:
1946 // [...] Any difference in top-level cv-qualification is
1947 // subsumed by the initialization itself and does not constitute
1948 // a conversion. [...]
1949 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1950 QualType CanonTo = S.Context.getCanonicalType(ToType);
1951 if (CanonFrom.getLocalUnqualifiedType()
1952 == CanonTo.getLocalUnqualifiedType() &&
1953 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1954 FromType = ToType;
1955 CanonFrom = CanonTo;
1956 }
1957
1958 SCS.setToType(2, FromType);
1959
1960 if (CanonFrom == CanonTo)
1961 return true;
1962
1963 // If we have not converted the argument type to the parameter type,
1964 // this is a bad conversion sequence, unless we're resolving an overload in C.
1965 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1966 return false;
1967
1968 ExprResult ER = ExprResult{From};
1969 Sema::AssignConvertType Conv =
1970 S.CheckSingleAssignmentConstraints(ToType, ER,
1971 /*Diagnose=*/false,
1972 /*DiagnoseCFAudited=*/false,
1973 /*ConvertRHS=*/false);
1974 ImplicitConversionKind SecondConv;
1975 switch (Conv) {
1976 case Sema::Compatible:
1977 SecondConv = ICK_C_Only_Conversion;
1978 break;
1979 // For our purposes, discarding qualifiers is just as bad as using an
1980 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1981 // qualifiers, as well.
1982 case Sema::CompatiblePointerDiscardsQualifiers:
1983 case Sema::IncompatiblePointer:
1984 case Sema::IncompatiblePointerSign:
1985 SecondConv = ICK_Incompatible_Pointer_Conversion;
1986 break;
1987 default:
1988 return false;
1989 }
1990
1991 // First can only be an lvalue conversion, so we pretend that this was the
1992 // second conversion. First should already be valid from earlier in the
1993 // function.
1994 SCS.Second = SecondConv;
1995 SCS.setToType(1, ToType);
1996
1997 // Third is Identity, because Second should rank us worse than any other
1998 // conversion. This could also be ICK_Qualification, but it's simpler to just
1999 // lump everything in with the second conversion, and we don't gain anything
2000 // from making this ICK_Qualification.
2001 SCS.Third = ICK_Identity;
2002 SCS.setToType(2, ToType);
2003 return true;
2004}
2005
2006static bool
2007IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2008 QualType &ToType,
2009 bool InOverloadResolution,
2010 StandardConversionSequence &SCS,
2011 bool CStyle) {
2012
2013 const RecordType *UT = ToType->getAsUnionType();
2014 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2015 return false;
2016 // The field to initialize within the transparent union.
2017 RecordDecl *UD = UT->getDecl();
2018 // It's compatible if the expression matches any of the fields.
2019 for (const auto *it : UD->fields()) {
2020 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2021 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2022 ToType = it->getType();
2023 return true;
2024 }
2025 }
2026 return false;
2027}
2028
2029/// IsIntegralPromotion - Determines whether the conversion from the
2030/// expression From (whose potentially-adjusted type is FromType) to
2031/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2032/// sets PromotedType to the promoted type.
2033bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2034 const BuiltinType *To = ToType->getAs<BuiltinType>();
2035 // All integers are built-in.
2036 if (!To) {
2037 return false;
2038 }
2039
2040 // An rvalue of type char, signed char, unsigned char, short int, or
2041 // unsigned short int can be converted to an rvalue of type int if
2042 // int can represent all the values of the source type; otherwise,
2043 // the source rvalue can be converted to an rvalue of type unsigned
2044 // int (C++ 4.5p1).
2045 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2046 !FromType->isEnumeralType()) {
2047 if (// We can promote any signed, promotable integer type to an int
2048 (FromType->isSignedIntegerType() ||
2049 // We can promote any unsigned integer type whose size is
2050 // less than int to an int.
2051 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2052 return To->getKind() == BuiltinType::Int;
2053 }
2054
2055 return To->getKind() == BuiltinType::UInt;
2056 }
2057
2058 // C++11 [conv.prom]p3:
2059 // A prvalue of an unscoped enumeration type whose underlying type is not
2060 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2061 // following types that can represent all the values of the enumeration
2062 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2063 // unsigned int, long int, unsigned long int, long long int, or unsigned
2064 // long long int. If none of the types in that list can represent all the
2065 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2066 // type can be converted to an rvalue a prvalue of the extended integer type
2067 // with lowest integer conversion rank (4.13) greater than the rank of long
2068 // long in which all the values of the enumeration can be represented. If
2069 // there are two such extended types, the signed one is chosen.
2070 // C++11 [conv.prom]p4:
2071 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2072 // can be converted to a prvalue of its underlying type. Moreover, if
2073 // integral promotion can be applied to its underlying type, a prvalue of an
2074 // unscoped enumeration type whose underlying type is fixed can also be
2075 // converted to a prvalue of the promoted underlying type.
2076 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2077 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2078 // provided for a scoped enumeration.
2079 if (FromEnumType->getDecl()->isScoped())
2080 return false;
2081
2082 // We can perform an integral promotion to the underlying type of the enum,
2083 // even if that's not the promoted type. Note that the check for promoting
2084 // the underlying type is based on the type alone, and does not consider
2085 // the bitfield-ness of the actual source expression.
2086 if (FromEnumType->getDecl()->isFixed()) {
2087 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2088 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2089 IsIntegralPromotion(nullptr, Underlying, ToType);
2090 }
2091
2092 // We have already pre-calculated the promotion type, so this is trivial.
2093 if (ToType->isIntegerType() &&
2094 isCompleteType(From->getBeginLoc(), FromType))
2095 return Context.hasSameUnqualifiedType(
2096 ToType, FromEnumType->getDecl()->getPromotionType());
2097
2098 // C++ [conv.prom]p5:
2099 // If the bit-field has an enumerated type, it is treated as any other
2100 // value of that type for promotion purposes.
2101 //
2102 // ... so do not fall through into the bit-field checks below in C++.
2103 if (getLangOpts().CPlusPlus)
2104 return false;
2105 }
2106
2107 // C++0x [conv.prom]p2:
2108 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2109 // to an rvalue a prvalue of the first of the following types that can
2110 // represent all the values of its underlying type: int, unsigned int,
2111 // long int, unsigned long int, long long int, or unsigned long long int.
2112 // If none of the types in that list can represent all the values of its
2113 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2114 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2115 // type.
2116 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2117 ToType->isIntegerType()) {
2118 // Determine whether the type we're converting from is signed or
2119 // unsigned.
2120 bool FromIsSigned = FromType->isSignedIntegerType();
2121 uint64_t FromSize = Context.getTypeSize(FromType);
2122
2123 // The types we'll try to promote to, in the appropriate
2124 // order. Try each of these types.
2125 QualType PromoteTypes[6] = {
2126 Context.IntTy, Context.UnsignedIntTy,
2127 Context.LongTy, Context.UnsignedLongTy ,
2128 Context.LongLongTy, Context.UnsignedLongLongTy
2129 };
2130 for (int Idx = 0; Idx < 6; ++Idx) {
2131 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2132 if (FromSize < ToSize ||
2133 (FromSize == ToSize &&
2134 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2135 // We found the type that we can promote to. If this is the
2136 // type we wanted, we have a promotion. Otherwise, no
2137 // promotion.
2138 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2139 }
2140 }
2141 }
2142
2143 // An rvalue for an integral bit-field (9.6) can be converted to an
2144 // rvalue of type int if int can represent all the values of the
2145 // bit-field; otherwise, it can be converted to unsigned int if
2146 // unsigned int can represent all the values of the bit-field. If
2147 // the bit-field is larger yet, no integral promotion applies to
2148 // it. If the bit-field has an enumerated type, it is treated as any
2149 // other value of that type for promotion purposes (C++ 4.5p3).
2150 // FIXME: We should delay checking of bit-fields until we actually perform the
2151 // conversion.
2152 //
2153 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2154 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2155 // bit-fields and those whose underlying type is larger than int) for GCC
2156 // compatibility.
2157 if (From) {
2158 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2159 llvm::APSInt BitWidth;
2160 if (FromType->isIntegralType(Context) &&
2161 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2162 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2163 ToSize = Context.getTypeSize(ToType);
2164
2165 // Are we promoting to an int from a bitfield that fits in an int?
2166 if (BitWidth < ToSize ||
2167 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2168 return To->getKind() == BuiltinType::Int;
2169 }
2170
2171 // Are we promoting to an unsigned int from an unsigned bitfield
2172 // that fits into an unsigned int?
2173 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2174 return To->getKind() == BuiltinType::UInt;
2175 }
2176
2177 return false;
2178 }
2179 }
2180 }
2181
2182 // An rvalue of type bool can be converted to an rvalue of type int,
2183 // with false becoming zero and true becoming one (C++ 4.5p4).
2184 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2185 return true;
2186 }
2187
2188 return false;
2189}
2190
2191/// IsFloatingPointPromotion - Determines whether the conversion from
2192/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2193/// returns true and sets PromotedType to the promoted type.
2194bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2195 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2196 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2197 /// An rvalue of type float can be converted to an rvalue of type
2198 /// double. (C++ 4.6p1).
2199 if (FromBuiltin->getKind() == BuiltinType::Float &&
2200 ToBuiltin->getKind() == BuiltinType::Double)
2201 return true;
2202
2203 // C99 6.3.1.5p1:
2204 // When a float is promoted to double or long double, or a
2205 // double is promoted to long double [...].
2206 if (!getLangOpts().CPlusPlus &&
2207 (FromBuiltin->getKind() == BuiltinType::Float ||
2208 FromBuiltin->getKind() == BuiltinType::Double) &&
2209 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2210 ToBuiltin->getKind() == BuiltinType::Float128))
2211 return true;
2212
2213 // Half can be promoted to float.
2214 if (!getLangOpts().NativeHalfType &&
2215 FromBuiltin->getKind() == BuiltinType::Half &&
2216 ToBuiltin->getKind() == BuiltinType::Float)
2217 return true;
2218 }
2219
2220 return false;
2221}
2222
2223/// Determine if a conversion is a complex promotion.
2224///
2225/// A complex promotion is defined as a complex -> complex conversion
2226/// where the conversion between the underlying real types is a
2227/// floating-point or integral promotion.
2228bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2229 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2230 if (!FromComplex)
2231 return false;
2232
2233 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2234 if (!ToComplex)
2235 return false;
2236
2237 return IsFloatingPointPromotion(FromComplex->getElementType(),
2238 ToComplex->getElementType()) ||
2239 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2240 ToComplex->getElementType());
2241}
2242
2243/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2244/// the pointer type FromPtr to a pointer to type ToPointee, with the
2245/// same type qualifiers as FromPtr has on its pointee type. ToType,
2246/// if non-empty, will be a pointer to ToType that may or may not have
2247/// the right set of qualifiers on its pointee.
2248///
2249static QualType
2250BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2251 QualType ToPointee, QualType ToType,
2252 ASTContext &Context,
2253 bool StripObjCLifetime = false) {
2254 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 2256, __PRETTY_FUNCTION__))
2255 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 2256, __PRETTY_FUNCTION__))
2256 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 2256, __PRETTY_FUNCTION__))
;
2257
2258 /// Conversions to 'id' subsume cv-qualifier conversions.
2259 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2260 return ToType.getUnqualifiedType();
2261
2262 QualType CanonFromPointee
2263 = Context.getCanonicalType(FromPtr->getPointeeType());
2264 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2265 Qualifiers Quals = CanonFromPointee.getQualifiers();
2266
2267 if (StripObjCLifetime)
2268 Quals.removeObjCLifetime();
2269
2270 // Exact qualifier match -> return the pointer type we're converting to.
2271 if (CanonToPointee.getLocalQualifiers() == Quals) {
2272 // ToType is exactly what we need. Return it.
2273 if (!ToType.isNull())
2274 return ToType.getUnqualifiedType();
2275
2276 // Build a pointer to ToPointee. It has the right qualifiers
2277 // already.
2278 if (isa<ObjCObjectPointerType>(ToType))
2279 return Context.getObjCObjectPointerType(ToPointee);
2280 return Context.getPointerType(ToPointee);
2281 }
2282
2283 // Just build a canonical type that has the right qualifiers.
2284 QualType QualifiedCanonToPointee
2285 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2286
2287 if (isa<ObjCObjectPointerType>(ToType))
2288 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2289 return Context.getPointerType(QualifiedCanonToPointee);
2290}
2291
2292static bool isNullPointerConstantForConversion(Expr *Expr,
2293 bool InOverloadResolution,
2294 ASTContext &Context) {
2295 // Handle value-dependent integral null pointer constants correctly.
2296 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2297 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2298 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2299 return !InOverloadResolution;
2300
2301 return Expr->isNullPointerConstant(Context,
2302 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2303 : Expr::NPC_ValueDependentIsNull);
2304}
2305
2306/// IsPointerConversion - Determines whether the conversion of the
2307/// expression From, which has the (possibly adjusted) type FromType,
2308/// can be converted to the type ToType via a pointer conversion (C++
2309/// 4.10). If so, returns true and places the converted type (that
2310/// might differ from ToType in its cv-qualifiers at some level) into
2311/// ConvertedType.
2312///
2313/// This routine also supports conversions to and from block pointers
2314/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2315/// pointers to interfaces. FIXME: Once we've determined the
2316/// appropriate overloading rules for Objective-C, we may want to
2317/// split the Objective-C checks into a different routine; however,
2318/// GCC seems to consider all of these conversions to be pointer
2319/// conversions, so for now they live here. IncompatibleObjC will be
2320/// set if the conversion is an allowed Objective-C conversion that
2321/// should result in a warning.
2322bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2323 bool InOverloadResolution,
2324 QualType& ConvertedType,
2325 bool &IncompatibleObjC) {
2326 IncompatibleObjC = false;
2327 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2328 IncompatibleObjC))
2329 return true;
2330
2331 // Conversion from a null pointer constant to any Objective-C pointer type.
2332 if (ToType->isObjCObjectPointerType() &&
2333 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2334 ConvertedType = ToType;
2335 return true;
2336 }
2337
2338 // Blocks: Block pointers can be converted to void*.
2339 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2340 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2341 ConvertedType = ToType;
2342 return true;
2343 }
2344 // Blocks: A null pointer constant can be converted to a block
2345 // pointer type.
2346 if (ToType->isBlockPointerType() &&
2347 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2348 ConvertedType = ToType;
2349 return true;
2350 }
2351
2352 // If the left-hand-side is nullptr_t, the right side can be a null
2353 // pointer constant.
2354 if (ToType->isNullPtrType() &&
2355 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2356 ConvertedType = ToType;
2357 return true;
2358 }
2359
2360 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2361 if (!ToTypePtr)
2362 return false;
2363
2364 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2365 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2366 ConvertedType = ToType;
2367 return true;
2368 }
2369
2370 // Beyond this point, both types need to be pointers
2371 // , including objective-c pointers.
2372 QualType ToPointeeType = ToTypePtr->getPointeeType();
2373 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2374 !getLangOpts().ObjCAutoRefCount) {
2375 ConvertedType = BuildSimilarlyQualifiedPointerType(
2376 FromType->getAs<ObjCObjectPointerType>(),
2377 ToPointeeType,
2378 ToType, Context);
2379 return true;
2380 }
2381 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2382 if (!FromTypePtr)
2383 return false;
2384
2385 QualType FromPointeeType = FromTypePtr->getPointeeType();
2386
2387 // If the unqualified pointee types are the same, this can't be a
2388 // pointer conversion, so don't do all of the work below.
2389 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2390 return false;
2391
2392 // An rvalue of type "pointer to cv T," where T is an object type,
2393 // can be converted to an rvalue of type "pointer to cv void" (C++
2394 // 4.10p2).
2395 if (FromPointeeType->isIncompleteOrObjectType() &&
2396 ToPointeeType->isVoidType()) {
2397 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2398 ToPointeeType,
2399 ToType, Context,
2400 /*StripObjCLifetime=*/true);
2401 return true;
2402 }
2403
2404 // MSVC allows implicit function to void* type conversion.
2405 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2406 ToPointeeType->isVoidType()) {
2407 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2408 ToPointeeType,
2409 ToType, Context);
2410 return true;
2411 }
2412
2413 // When we're overloading in C, we allow a special kind of pointer
2414 // conversion for compatible-but-not-identical pointee types.
2415 if (!getLangOpts().CPlusPlus &&
2416 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2417 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2418 ToPointeeType,
2419 ToType, Context);
2420 return true;
2421 }
2422
2423 // C++ [conv.ptr]p3:
2424 //
2425 // An rvalue of type "pointer to cv D," where D is a class type,
2426 // can be converted to an rvalue of type "pointer to cv B," where
2427 // B is a base class (clause 10) of D. If B is an inaccessible
2428 // (clause 11) or ambiguous (10.2) base class of D, a program that
2429 // necessitates this conversion is ill-formed. The result of the
2430 // conversion is a pointer to the base class sub-object of the
2431 // derived class object. The null pointer value is converted to
2432 // the null pointer value of the destination type.
2433 //
2434 // Note that we do not check for ambiguity or inaccessibility
2435 // here. That is handled by CheckPointerConversion.
2436 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2437 ToPointeeType->isRecordType() &&
2438 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2439 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2440 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2441 ToPointeeType,
2442 ToType, Context);
2443 return true;
2444 }
2445
2446 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2447 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2448 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2449 ToPointeeType,
2450 ToType, Context);
2451 return true;
2452 }
2453
2454 return false;
2455}
2456
2457/// Adopt the given qualifiers for the given type.
2458static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2459 Qualifiers TQs = T.getQualifiers();
2460
2461 // Check whether qualifiers already match.
2462 if (TQs == Qs)
2463 return T;
2464
2465 if (Qs.compatiblyIncludes(TQs))
2466 return Context.getQualifiedType(T, Qs);
2467
2468 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2469}
2470
2471/// isObjCPointerConversion - Determines whether this is an
2472/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2473/// with the same arguments and return values.
2474bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2475 QualType& ConvertedType,
2476 bool &IncompatibleObjC) {
2477 if (!getLangOpts().ObjC)
2478 return false;
2479
2480 // The set of qualifiers on the type we're converting from.
2481 Qualifiers FromQualifiers = FromType.getQualifiers();
2482
2483 // First, we handle all conversions on ObjC object pointer types.
2484 const ObjCObjectPointerType* ToObjCPtr =
2485 ToType->getAs<ObjCObjectPointerType>();
2486 const ObjCObjectPointerType *FromObjCPtr =
2487 FromType->getAs<ObjCObjectPointerType>();
2488
2489 if (ToObjCPtr && FromObjCPtr) {
2490 // If the pointee types are the same (ignoring qualifications),
2491 // then this is not a pointer conversion.
2492 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2493 FromObjCPtr->getPointeeType()))
2494 return false;
2495
2496 // Conversion between Objective-C pointers.
2497 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2498 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2499 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2500 if (getLangOpts().CPlusPlus && LHS && RHS &&
2501 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2502 FromObjCPtr->getPointeeType()))
2503 return false;
2504 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2505 ToObjCPtr->getPointeeType(),
2506 ToType, Context);
2507 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2508 return true;
2509 }
2510
2511 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2512 // Okay: this is some kind of implicit downcast of Objective-C
2513 // interfaces, which is permitted. However, we're going to
2514 // complain about it.
2515 IncompatibleObjC = true;
2516 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2517 ToObjCPtr->getPointeeType(),
2518 ToType, Context);
2519 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2520 return true;
2521 }
2522 }
2523 // Beyond this point, both types need to be C pointers or block pointers.
2524 QualType ToPointeeType;
2525 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2526 ToPointeeType = ToCPtr->getPointeeType();
2527 else if (const BlockPointerType *ToBlockPtr =
2528 ToType->getAs<BlockPointerType>()) {
2529 // Objective C++: We're able to convert from a pointer to any object
2530 // to a block pointer type.
2531 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2532 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2533 return true;
2534 }
2535 ToPointeeType = ToBlockPtr->getPointeeType();
2536 }
2537 else if (FromType->getAs<BlockPointerType>() &&
2538 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2539 // Objective C++: We're able to convert from a block pointer type to a
2540 // pointer to any object.
2541 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2542 return true;
2543 }
2544 else
2545 return false;
2546
2547 QualType FromPointeeType;
2548 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2549 FromPointeeType = FromCPtr->getPointeeType();
2550 else if (const BlockPointerType *FromBlockPtr =
2551 FromType->getAs<BlockPointerType>())
2552 FromPointeeType = FromBlockPtr->getPointeeType();
2553 else
2554 return false;
2555
2556 // If we have pointers to pointers, recursively check whether this
2557 // is an Objective-C conversion.
2558 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2559 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2560 IncompatibleObjC)) {
2561 // We always complain about this conversion.
2562 IncompatibleObjC = true;
2563 ConvertedType = Context.getPointerType(ConvertedType);
2564 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2565 return true;
2566 }
2567 // Allow conversion of pointee being objective-c pointer to another one;
2568 // as in I* to id.
2569 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2570 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2571 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2572 IncompatibleObjC)) {
2573
2574 ConvertedType = Context.getPointerType(ConvertedType);
2575 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2576 return true;
2577 }
2578
2579 // If we have pointers to functions or blocks, check whether the only
2580 // differences in the argument and result types are in Objective-C
2581 // pointer conversions. If so, we permit the conversion (but
2582 // complain about it).
2583 const FunctionProtoType *FromFunctionType
2584 = FromPointeeType->getAs<FunctionProtoType>();
2585 const FunctionProtoType *ToFunctionType
2586 = ToPointeeType->getAs<FunctionProtoType>();
2587 if (FromFunctionType && ToFunctionType) {
2588 // If the function types are exactly the same, this isn't an
2589 // Objective-C pointer conversion.
2590 if (Context.getCanonicalType(FromPointeeType)
2591 == Context.getCanonicalType(ToPointeeType))
2592 return false;
2593
2594 // Perform the quick checks that will tell us whether these
2595 // function types are obviously different.
2596 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2597 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2598 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2599 return false;
2600
2601 bool HasObjCConversion = false;
2602 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2603 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2604 // Okay, the types match exactly. Nothing to do.
2605 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2606 ToFunctionType->getReturnType(),
2607 ConvertedType, IncompatibleObjC)) {
2608 // Okay, we have an Objective-C pointer conversion.
2609 HasObjCConversion = true;
2610 } else {
2611 // Function types are too different. Abort.
2612 return false;
2613 }
2614
2615 // Check argument types.
2616 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2617 ArgIdx != NumArgs; ++ArgIdx) {
2618 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2619 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2620 if (Context.getCanonicalType(FromArgType)
2621 == Context.getCanonicalType(ToArgType)) {
2622 // Okay, the types match exactly. Nothing to do.
2623 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2624 ConvertedType, IncompatibleObjC)) {
2625 // Okay, we have an Objective-C pointer conversion.
2626 HasObjCConversion = true;
2627 } else {
2628 // Argument types are too different. Abort.
2629 return false;
2630 }
2631 }
2632
2633 if (HasObjCConversion) {
2634 // We had an Objective-C conversion. Allow this pointer
2635 // conversion, but complain about it.
2636 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2637 IncompatibleObjC = true;
2638 return true;
2639 }
2640 }
2641
2642 return false;
2643}
2644
2645/// Determine whether this is an Objective-C writeback conversion,
2646/// used for parameter passing when performing automatic reference counting.
2647///
2648/// \param FromType The type we're converting form.
2649///
2650/// \param ToType The type we're converting to.
2651///
2652/// \param ConvertedType The type that will be produced after applying
2653/// this conversion.
2654bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2655 QualType &ConvertedType) {
2656 if (!getLangOpts().ObjCAutoRefCount ||
2657 Context.hasSameUnqualifiedType(FromType, ToType))
2658 return false;
2659
2660 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2661 QualType ToPointee;
2662 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2663 ToPointee = ToPointer->getPointeeType();
2664 else
2665 return false;
2666
2667 Qualifiers ToQuals = ToPointee.getQualifiers();
2668 if (!ToPointee->isObjCLifetimeType() ||
2669 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2670 !ToQuals.withoutObjCLifetime().empty())
2671 return false;
2672
2673 // Argument must be a pointer to __strong to __weak.
2674 QualType FromPointee;
2675 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2676 FromPointee = FromPointer->getPointeeType();
2677 else
2678 return false;
2679
2680 Qualifiers FromQuals = FromPointee.getQualifiers();
2681 if (!FromPointee->isObjCLifetimeType() ||
2682 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2683 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2684 return false;
2685
2686 // Make sure that we have compatible qualifiers.
2687 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2688 if (!ToQuals.compatiblyIncludes(FromQuals))
2689 return false;
2690
2691 // Remove qualifiers from the pointee type we're converting from; they
2692 // aren't used in the compatibility check belong, and we'll be adding back
2693 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2694 FromPointee = FromPointee.getUnqualifiedType();
2695
2696 // The unqualified form of the pointee types must be compatible.
2697 ToPointee = ToPointee.getUnqualifiedType();
2698 bool IncompatibleObjC;
2699 if (Context.typesAreCompatible(FromPointee, ToPointee))
2700 FromPointee = ToPointee;
2701 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2702 IncompatibleObjC))
2703 return false;
2704
2705 /// Construct the type we're converting to, which is a pointer to
2706 /// __autoreleasing pointee.
2707 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2708 ConvertedType = Context.getPointerType(FromPointee);
2709 return true;
2710}
2711
2712bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2713 QualType& ConvertedType) {
2714 QualType ToPointeeType;
2715 if (const BlockPointerType *ToBlockPtr =
2716 ToType->getAs<BlockPointerType>())
2717 ToPointeeType = ToBlockPtr->getPointeeType();
2718 else
2719 return false;
2720
2721 QualType FromPointeeType;
2722 if (const BlockPointerType *FromBlockPtr =
2723 FromType->getAs<BlockPointerType>())
2724 FromPointeeType = FromBlockPtr->getPointeeType();
2725 else
2726 return false;
2727 // We have pointer to blocks, check whether the only
2728 // differences in the argument and result types are in Objective-C
2729 // pointer conversions. If so, we permit the conversion.
2730
2731 const FunctionProtoType *FromFunctionType
2732 = FromPointeeType->getAs<FunctionProtoType>();
2733 const FunctionProtoType *ToFunctionType
2734 = ToPointeeType->getAs<FunctionProtoType>();
2735
2736 if (!FromFunctionType || !ToFunctionType)
2737 return false;
2738
2739 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2740 return true;
2741
2742 // Perform the quick checks that will tell us whether these
2743 // function types are obviously different.
2744 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2745 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2746 return false;
2747
2748 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2749 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2750 if (FromEInfo != ToEInfo)
2751 return false;
2752
2753 bool IncompatibleObjC = false;
2754 if (Context.hasSameType(FromFunctionType->getReturnType(),
2755 ToFunctionType->getReturnType())) {
2756 // Okay, the types match exactly. Nothing to do.
2757 } else {
2758 QualType RHS = FromFunctionType->getReturnType();
2759 QualType LHS = ToFunctionType->getReturnType();
2760 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2761 !RHS.hasQualifiers() && LHS.hasQualifiers())
2762 LHS = LHS.getUnqualifiedType();
2763
2764 if (Context.hasSameType(RHS,LHS)) {
2765 // OK exact match.
2766 } else if (isObjCPointerConversion(RHS, LHS,
2767 ConvertedType, IncompatibleObjC)) {
2768 if (IncompatibleObjC)
2769 return false;
2770 // Okay, we have an Objective-C pointer conversion.
2771 }
2772 else
2773 return false;
2774 }
2775
2776 // Check argument types.
2777 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2778 ArgIdx != NumArgs; ++ArgIdx) {
2779 IncompatibleObjC = false;
2780 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2781 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2782 if (Context.hasSameType(FromArgType, ToArgType)) {
2783 // Okay, the types match exactly. Nothing to do.
2784 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2785 ConvertedType, IncompatibleObjC)) {
2786 if (IncompatibleObjC)
2787 return false;
2788 // Okay, we have an Objective-C pointer conversion.
2789 } else
2790 // Argument types are too different. Abort.
2791 return false;
2792 }
2793
2794 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2795 bool CanUseToFPT, CanUseFromFPT;
2796 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2797 CanUseToFPT, CanUseFromFPT,
2798 NewParamInfos))
2799 return false;
2800
2801 ConvertedType = ToType;
2802 return true;
2803}
2804
2805enum {
2806 ft_default,
2807 ft_different_class,
2808 ft_parameter_arity,
2809 ft_parameter_mismatch,
2810 ft_return_type,
2811 ft_qualifer_mismatch,
2812 ft_noexcept
2813};
2814
2815/// Attempts to get the FunctionProtoType from a Type. Handles
2816/// MemberFunctionPointers properly.
2817static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2818 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2819 return FPT;
2820
2821 if (auto *MPT = FromType->getAs<MemberPointerType>())
2822 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2823
2824 return nullptr;
2825}
2826
2827/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2828/// function types. Catches different number of parameter, mismatch in
2829/// parameter types, and different return types.
2830void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2831 QualType FromType, QualType ToType) {
2832 // If either type is not valid, include no extra info.
2833 if (FromType.isNull() || ToType.isNull()) {
2834 PDiag << ft_default;
2835 return;
2836 }
2837
2838 // Get the function type from the pointers.
2839 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2840 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2841 *ToMember = ToType->getAs<MemberPointerType>();
2842 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2843 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2844 << QualType(FromMember->getClass(), 0);
2845 return;
2846 }
2847 FromType = FromMember->getPointeeType();
2848 ToType = ToMember->getPointeeType();
2849 }
2850
2851 if (FromType->isPointerType())
2852 FromType = FromType->getPointeeType();
2853 if (ToType->isPointerType())
2854 ToType = ToType->getPointeeType();
2855
2856 // Remove references.
2857 FromType = FromType.getNonReferenceType();
2858 ToType = ToType.getNonReferenceType();
2859
2860 // Don't print extra info for non-specialized template functions.
2861 if (FromType->isInstantiationDependentType() &&
2862 !FromType->getAs<TemplateSpecializationType>()) {
2863 PDiag << ft_default;
2864 return;
2865 }
2866
2867 // No extra info for same types.
2868 if (Context.hasSameType(FromType, ToType)) {
2869 PDiag << ft_default;
2870 return;
2871 }
2872
2873 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2874 *ToFunction = tryGetFunctionProtoType(ToType);
2875
2876 // Both types need to be function types.
2877 if (!FromFunction || !ToFunction) {
2878 PDiag << ft_default;
2879 return;
2880 }
2881
2882 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2883 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2884 << FromFunction->getNumParams();
2885 return;
2886 }
2887
2888 // Handle different parameter types.
2889 unsigned ArgPos;
2890 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2891 PDiag << ft_parameter_mismatch << ArgPos + 1
2892 << ToFunction->getParamType(ArgPos)
2893 << FromFunction->getParamType(ArgPos);
2894 return;
2895 }
2896
2897 // Handle different return type.
2898 if (!Context.hasSameType(FromFunction->getReturnType(),
2899 ToFunction->getReturnType())) {
2900 PDiag << ft_return_type << ToFunction->getReturnType()
2901 << FromFunction->getReturnType();
2902 return;
2903 }
2904
2905 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2906 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2907 << FromFunction->getMethodQuals();
2908 return;
2909 }
2910
2911 // Handle exception specification differences on canonical type (in C++17
2912 // onwards).
2913 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2914 ->isNothrow() !=
2915 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2916 ->isNothrow()) {
2917 PDiag << ft_noexcept;
2918 return;
2919 }
2920
2921 // Unable to find a difference, so add no extra info.
2922 PDiag << ft_default;
2923}
2924
2925/// FunctionParamTypesAreEqual - This routine checks two function proto types
2926/// for equality of their argument types. Caller has already checked that
2927/// they have same number of arguments. If the parameters are different,
2928/// ArgPos will have the parameter index of the first different parameter.
2929bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2930 const FunctionProtoType *NewType,
2931 unsigned *ArgPos) {
2932 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2933 N = NewType->param_type_begin(),
2934 E = OldType->param_type_end();
2935 O && (O != E); ++O, ++N) {
2936 // Ignore address spaces in pointee type. This is to disallow overloading
2937 // on __ptr32/__ptr64 address spaces.
2938 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2939 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2940
2941 if (!Context.hasSameType(Old, New)) {
2942 if (ArgPos)
2943 *ArgPos = O - OldType->param_type_begin();
2944 return false;
2945 }
2946 }
2947 return true;
2948}
2949
2950/// CheckPointerConversion - Check the pointer conversion from the
2951/// expression From to the type ToType. This routine checks for
2952/// ambiguous or inaccessible derived-to-base pointer
2953/// conversions for which IsPointerConversion has already returned
2954/// true. It returns true and produces a diagnostic if there was an
2955/// error, or returns false otherwise.
2956bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2957 CastKind &Kind,
2958 CXXCastPath& BasePath,
2959 bool IgnoreBaseAccess,
2960 bool Diagnose) {
2961 QualType FromType = From->getType();
2962 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2963
2964 Kind = CK_BitCast;
2965
2966 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2967 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2968 Expr::NPCK_ZeroExpression) {
2969 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2970 DiagRuntimeBehavior(From->getExprLoc(), From,
2971 PDiag(diag::warn_impcast_bool_to_null_pointer)
2972 << ToType << From->getSourceRange());
2973 else if (!isUnevaluatedContext())
2974 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2975 << ToType << From->getSourceRange();
2976 }
2977 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2978 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2979 QualType FromPointeeType = FromPtrType->getPointeeType(),
2980 ToPointeeType = ToPtrType->getPointeeType();
2981
2982 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2983 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2984 // We must have a derived-to-base conversion. Check an
2985 // ambiguous or inaccessible conversion.
2986 unsigned InaccessibleID = 0;
2987 unsigned AmbigiousID = 0;
2988 if (Diagnose) {
2989 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2990 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2991 }
2992 if (CheckDerivedToBaseConversion(
2993 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2994 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2995 &BasePath, IgnoreBaseAccess))
2996 return true;
2997
2998 // The conversion was successful.
2999 Kind = CK_DerivedToBase;
3000 }
3001
3002 if (Diagnose && !IsCStyleOrFunctionalCast &&
3003 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3004 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3005, __PRETTY_FUNCTION__))
3005 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3005, __PRETTY_FUNCTION__))
;
3006 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3007 << From->getSourceRange();
3008 }
3009 }
3010 } else if (const ObjCObjectPointerType *ToPtrType =
3011 ToType->getAs<ObjCObjectPointerType>()) {
3012 if (const ObjCObjectPointerType *FromPtrType =
3013 FromType->getAs<ObjCObjectPointerType>()) {
3014 // Objective-C++ conversions are always okay.
3015 // FIXME: We should have a different class of conversions for the
3016 // Objective-C++ implicit conversions.
3017 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3018 return false;
3019 } else if (FromType->isBlockPointerType()) {
3020 Kind = CK_BlockPointerToObjCPointerCast;
3021 } else {
3022 Kind = CK_CPointerToObjCPointerCast;
3023 }
3024 } else if (ToType->isBlockPointerType()) {
3025 if (!FromType->isBlockPointerType())
3026 Kind = CK_AnyPointerToBlockPointerCast;
3027 }
3028
3029 // We shouldn't fall into this case unless it's valid for other
3030 // reasons.
3031 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3032 Kind = CK_NullToPointer;
3033
3034 return false;
3035}
3036
3037/// IsMemberPointerConversion - Determines whether the conversion of the
3038/// expression From, which has the (possibly adjusted) type FromType, can be
3039/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3040/// If so, returns true and places the converted type (that might differ from
3041/// ToType in its cv-qualifiers at some level) into ConvertedType.
3042bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3043 QualType ToType,
3044 bool InOverloadResolution,
3045 QualType &ConvertedType) {
3046 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3047 if (!ToTypePtr)
3048 return false;
3049
3050 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3051 if (From->isNullPointerConstant(Context,
3052 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3053 : Expr::NPC_ValueDependentIsNull)) {
3054 ConvertedType = ToType;
3055 return true;
3056 }
3057
3058 // Otherwise, both types have to be member pointers.
3059 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3060 if (!FromTypePtr)
3061 return false;
3062
3063 // A pointer to member of B can be converted to a pointer to member of D,
3064 // where D is derived from B (C++ 4.11p2).
3065 QualType FromClass(FromTypePtr->getClass(), 0);
3066 QualType ToClass(ToTypePtr->getClass(), 0);
3067
3068 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3069 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3070 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3071 ToClass.getTypePtr());
3072 return true;
3073 }
3074
3075 return false;
3076}
3077
3078/// CheckMemberPointerConversion - Check the member pointer conversion from the
3079/// expression From to the type ToType. This routine checks for ambiguous or
3080/// virtual or inaccessible base-to-derived member pointer conversions
3081/// for which IsMemberPointerConversion has already returned true. It returns
3082/// true and produces a diagnostic if there was an error, or returns false
3083/// otherwise.
3084bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3085 CastKind &Kind,
3086 CXXCastPath &BasePath,
3087 bool IgnoreBaseAccess) {
3088 QualType FromType = From->getType();
3089 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3090 if (!FromPtrType) {
3091 // This must be a null pointer to member pointer conversion
3092 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3094, __PRETTY_FUNCTION__))
3093 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3094, __PRETTY_FUNCTION__))
3094 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3094, __PRETTY_FUNCTION__))
;
3095 Kind = CK_NullToMemberPointer;
3096 return false;
3097 }
3098
3099 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3100 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3101, __PRETTY_FUNCTION__))
3101 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3101, __PRETTY_FUNCTION__))
;
3102
3103 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3104 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3105
3106 // FIXME: What about dependent types?
3107 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3107, __PRETTY_FUNCTION__))
;
3108 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3108, __PRETTY_FUNCTION__))
;
3109
3110 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3111 /*DetectVirtual=*/true);
3112 bool DerivationOkay =
3113 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3114 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3115, __PRETTY_FUNCTION__))
3115 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3115, __PRETTY_FUNCTION__))
;
3116 (void)DerivationOkay;
3117
3118 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3119 getUnqualifiedType())) {
3120 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3121 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3122 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3123 return true;
3124 }
3125
3126 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3127 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3128 << FromClass << ToClass << QualType(VBase, 0)
3129 << From->getSourceRange();
3130 return true;
3131 }
3132
3133 if (!IgnoreBaseAccess)
3134 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3135 Paths.front(),
3136 diag::err_downcast_from_inaccessible_base);
3137
3138 // Must be a base to derived member conversion.
3139 BuildBasePathArray(Paths, BasePath);
3140 Kind = CK_BaseToDerivedMemberPointer;
3141 return false;
3142}
3143
3144/// Determine whether the lifetime conversion between the two given
3145/// qualifiers sets is nontrivial.
3146static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3147 Qualifiers ToQuals) {
3148 // Converting anything to const __unsafe_unretained is trivial.
3149 if (ToQuals.hasConst() &&
3150 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3151 return false;
3152
3153 return true;
3154}
3155
3156/// IsQualificationConversion - Determines whether the conversion from
3157/// an rvalue of type FromType to ToType is a qualification conversion
3158/// (C++ 4.4).
3159///
3160/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3161/// when the qualification conversion involves a change in the Objective-C
3162/// object lifetime.
3163bool
3164Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3165 bool CStyle, bool &ObjCLifetimeConversion) {
3166 FromType = Context.getCanonicalType(FromType);
3167 ToType = Context.getCanonicalType(ToType);
3168 ObjCLifetimeConversion = false;
3169
3170 // If FromType and ToType are the same type, this is not a
3171 // qualification conversion.
3172 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3173 return false;
3174
3175 // (C++ 4.4p4):
3176 // A conversion can add cv-qualifiers at levels other than the first
3177 // in multi-level pointers, subject to the following rules: [...]
3178 bool PreviousToQualsIncludeConst = true;
3179 bool UnwrappedAnyPointer = false;
3180 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3181 // Within each iteration of the loop, we check the qualifiers to
3182 // determine if this still looks like a qualification
3183 // conversion. Then, if all is well, we unwrap one more level of
3184 // pointers or pointers-to-members and do it all again
3185 // until there are no more pointers or pointers-to-members left to
3186 // unwrap.
3187 UnwrappedAnyPointer = true;
3188
3189 Qualifiers FromQuals = FromType.getQualifiers();
3190 Qualifiers ToQuals = ToType.getQualifiers();
3191
3192 // Ignore __unaligned qualifier if this type is void.
3193 if (ToType.getUnqualifiedType()->isVoidType())
3194 FromQuals.removeUnaligned();
3195
3196 // Objective-C ARC:
3197 // Check Objective-C lifetime conversions.
3198 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3199 UnwrappedAnyPointer) {
3200 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3201 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3202 ObjCLifetimeConversion = true;
3203 FromQuals.removeObjCLifetime();
3204 ToQuals.removeObjCLifetime();
3205 } else {
3206 // Qualification conversions cannot cast between different
3207 // Objective-C lifetime qualifiers.
3208 return false;
3209 }
3210 }
3211
3212 // Allow addition/removal of GC attributes but not changing GC attributes.
3213 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3214 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3215 FromQuals.removeObjCGCAttr();
3216 ToQuals.removeObjCGCAttr();
3217 }
3218
3219 // -- for every j > 0, if const is in cv 1,j then const is in cv
3220 // 2,j, and similarly for volatile.
3221 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3222 return false;
3223
3224 // -- if the cv 1,j and cv 2,j are different, then const is in
3225 // every cv for 0 < k < j.
3226 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3227 && !PreviousToQualsIncludeConst)
3228 return false;
3229
3230 // Keep track of whether all prior cv-qualifiers in the "to" type
3231 // include const.
3232 PreviousToQualsIncludeConst
3233 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3234 }
3235
3236 // Allows address space promotion by language rules implemented in
3237 // Type::Qualifiers::isAddressSpaceSupersetOf.
3238 Qualifiers FromQuals = FromType.getQualifiers();
3239 Qualifiers ToQuals = ToType.getQualifiers();
3240 if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3241 !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3242 return false;
3243 }
3244
3245 // We are left with FromType and ToType being the pointee types
3246 // after unwrapping the original FromType and ToType the same number
3247 // of types. If we unwrapped any pointers, and if FromType and
3248 // ToType have the same unqualified type (since we checked
3249 // qualifiers above), then this is a qualification conversion.
3250 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3251}
3252
3253/// - Determine whether this is a conversion from a scalar type to an
3254/// atomic type.
3255///
3256/// If successful, updates \c SCS's second and third steps in the conversion
3257/// sequence to finish the conversion.
3258static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3259 bool InOverloadResolution,
3260 StandardConversionSequence &SCS,
3261 bool CStyle) {
3262 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3263 if (!ToAtomic)
3264 return false;
3265
3266 StandardConversionSequence InnerSCS;
3267 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3268 InOverloadResolution, InnerSCS,
3269 CStyle, /*AllowObjCWritebackConversion=*/false))
3270 return false;
3271
3272 SCS.Second = InnerSCS.Second;
3273 SCS.setToType(1, InnerSCS.getToType(1));
3274 SCS.Third = InnerSCS.Third;
3275 SCS.QualificationIncludesObjCLifetime
3276 = InnerSCS.QualificationIncludesObjCLifetime;
3277 SCS.setToType(2, InnerSCS.getToType(2));
3278 return true;
3279}
3280
3281static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3282 CXXConstructorDecl *Constructor,
3283 QualType Type) {
3284 const FunctionProtoType *CtorType =
3285 Constructor->getType()->getAs<FunctionProtoType>();
3286 if (CtorType->getNumParams() > 0) {
3287 QualType FirstArg = CtorType->getParamType(0);
3288 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3289 return true;
3290 }
3291 return false;
3292}
3293
3294static OverloadingResult
3295IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3296 CXXRecordDecl *To,
3297 UserDefinedConversionSequence &User,
3298 OverloadCandidateSet &CandidateSet,
3299 bool AllowExplicit) {
3300 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3301 for (auto *D : S.LookupConstructors(To)) {
3302 auto Info = getConstructorInfo(D);
3303 if (!Info)
3304 continue;
3305
3306 bool Usable = !Info.Constructor->isInvalidDecl() &&
3307 S.isInitListConstructor(Info.Constructor) &&
3308 (AllowExplicit || !Info.Constructor->isExplicit());
3309 if (Usable) {
3310 // If the first argument is (a reference to) the target type,
3311 // suppress conversions.
3312 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3313 S.Context, Info.Constructor, ToType);
3314 if (Info.ConstructorTmpl)
3315 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3316 /*ExplicitArgs*/ nullptr, From,
3317 CandidateSet, SuppressUserConversions,
3318 /*PartialOverloading*/ false,
3319 AllowExplicit);
3320 else
3321 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3322 CandidateSet, SuppressUserConversions,
3323 /*PartialOverloading*/ false, AllowExplicit);
3324 }
3325 }
3326
3327 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3328
3329 OverloadCandidateSet::iterator Best;
3330 switch (auto Result =
3331 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3332 case OR_Deleted:
3333 case OR_Success: {
3334 // Record the standard conversion we used and the conversion function.
3335 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3336 QualType ThisType = Constructor->getThisType();
3337 // Initializer lists don't have conversions as such.
3338 User.Before.setAsIdentityConversion();
3339 User.HadMultipleCandidates = HadMultipleCandidates;
3340 User.ConversionFunction = Constructor;
3341 User.FoundConversionFunction = Best->FoundDecl;
3342 User.After.setAsIdentityConversion();
3343 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3344 User.After.setAllToTypes(ToType);
3345 return Result;
3346 }
3347
3348 case OR_No_Viable_Function:
3349 return OR_No_Viable_Function;
3350 case OR_Ambiguous:
3351 return OR_Ambiguous;
3352 }
3353
3354 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3354)
;
3355}
3356
3357/// Determines whether there is a user-defined conversion sequence
3358/// (C++ [over.ics.user]) that converts expression From to the type
3359/// ToType. If such a conversion exists, User will contain the
3360/// user-defined conversion sequence that performs such a conversion
3361/// and this routine will return true. Otherwise, this routine returns
3362/// false and User is unspecified.
3363///
3364/// \param AllowExplicit true if the conversion should consider C++0x
3365/// "explicit" conversion functions as well as non-explicit conversion
3366/// functions (C++0x [class.conv.fct]p2).
3367///
3368/// \param AllowObjCConversionOnExplicit true if the conversion should
3369/// allow an extra Objective-C pointer conversion on uses of explicit
3370/// constructors. Requires \c AllowExplicit to also be set.
3371static OverloadingResult
3372IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3373 UserDefinedConversionSequence &User,
3374 OverloadCandidateSet &CandidateSet,
3375 bool AllowExplicit,
3376 bool AllowObjCConversionOnExplicit) {
3377 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3377, __PRETTY_FUNCTION__))
;
3378 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3379
3380 // Whether we will only visit constructors.
3381 bool ConstructorsOnly = false;
3382
3383 // If the type we are conversion to is a class type, enumerate its
3384 // constructors.
3385 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3386 // C++ [over.match.ctor]p1:
3387 // When objects of class type are direct-initialized (8.5), or
3388 // copy-initialized from an expression of the same or a
3389 // derived class type (8.5), overload resolution selects the
3390 // constructor. [...] For copy-initialization, the candidate
3391 // functions are all the converting constructors (12.3.1) of
3392 // that class. The argument list is the expression-list within
3393 // the parentheses of the initializer.
3394 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3395 (From->getType()->getAs<RecordType>() &&
3396 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3397 ConstructorsOnly = true;
3398
3399 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3400 // We're not going to find any constructors.
3401 } else if (CXXRecordDecl *ToRecordDecl
3402 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3403
3404 Expr **Args = &From;
3405 unsigned NumArgs = 1;
3406 bool ListInitializing = false;
3407 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3408 // But first, see if there is an init-list-constructor that will work.
3409 OverloadingResult Result = IsInitializerListConstructorConversion(
3410 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3411 if (Result != OR_No_Viable_Function)
3412 return Result;
3413 // Never mind.
3414 CandidateSet.clear(
3415 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3416
3417 // If we're list-initializing, we pass the individual elements as
3418 // arguments, not the entire list.
3419 Args = InitList->getInits();
3420 NumArgs = InitList->getNumInits();
3421 ListInitializing = true;
3422 }
3423
3424 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3425 auto Info = getConstructorInfo(D);
3426 if (!Info)
3427 continue;
3428
3429 bool Usable = !Info.Constructor->isInvalidDecl();
3430 if (ListInitializing)
3431 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3432 else
3433 Usable = Usable &&
3434 Info.Constructor->isConvertingConstructor(AllowExplicit);
3435 if (Usable) {
3436 bool SuppressUserConversions = !ConstructorsOnly;
3437 if (SuppressUserConversions && ListInitializing) {
3438 SuppressUserConversions = false;
3439 if (NumArgs == 1) {
3440 // If the first argument is (a reference to) the target type,
3441 // suppress conversions.
3442 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3443 S.Context, Info.Constructor, ToType);
3444 }
3445 }
3446 if (Info.ConstructorTmpl)
3447 S.AddTemplateOverloadCandidate(
3448 Info.ConstructorTmpl, Info.FoundDecl,
3449 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3450 CandidateSet, SuppressUserConversions,
3451 /*PartialOverloading*/ false, AllowExplicit);
3452 else
3453 // Allow one user-defined conversion when user specifies a
3454 // From->ToType conversion via an static cast (c-style, etc).
3455 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3456 llvm::makeArrayRef(Args, NumArgs),
3457 CandidateSet, SuppressUserConversions,
3458 /*PartialOverloading*/ false, AllowExplicit);
3459 }
3460 }
3461 }
3462 }
3463
3464 // Enumerate conversion functions, if we're allowed to.
3465 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3466 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3467 // No conversion functions from incomplete types.
3468 } else if (const RecordType *FromRecordType =
3469 From->getType()->getAs<RecordType>()) {
3470 if (CXXRecordDecl *FromRecordDecl
3471 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3472 // Add all of the conversion functions as candidates.
3473 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3474 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3475 DeclAccessPair FoundDecl = I.getPair();
3476 NamedDecl *D = FoundDecl.getDecl();
3477 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3478 if (isa<UsingShadowDecl>(D))
3479 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3480
3481 CXXConversionDecl *Conv;
3482 FunctionTemplateDecl *ConvTemplate;
3483 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3484 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3485 else
3486 Conv = cast<CXXConversionDecl>(D);
3487
3488 if (AllowExplicit || !Conv->isExplicit()) {
3489 if (ConvTemplate)
3490 S.AddTemplateConversionCandidate(
3491 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3492 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3493 else
3494 S.AddConversionCandidate(
3495 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3496 AllowObjCConversionOnExplicit, AllowExplicit);
3497 }
3498 }
3499 }
3500 }
3501
3502 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3503
3504 OverloadCandidateSet::iterator Best;
3505 switch (auto Result =
3506 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3507 case OR_Success:
3508 case OR_Deleted:
3509 // Record the standard conversion we used and the conversion function.
3510 if (CXXConstructorDecl *Constructor
3511 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3512 // C++ [over.ics.user]p1:
3513 // If the user-defined conversion is specified by a
3514 // constructor (12.3.1), the initial standard conversion
3515 // sequence converts the source type to the type required by
3516 // the argument of the constructor.
3517 //
3518 QualType ThisType = Constructor->getThisType();
3519 if (isa<InitListExpr>(From)) {
3520 // Initializer lists don't have conversions as such.
3521 User.Before.setAsIdentityConversion();
3522 } else {
3523 if (Best->Conversions[0].isEllipsis())
3524 User.EllipsisConversion = true;
3525 else {
3526 User.Before = Best->Conversions[0].Standard;
3527 User.EllipsisConversion = false;
3528 }
3529 }
3530 User.HadMultipleCandidates = HadMultipleCandidates;
3531 User.ConversionFunction = Constructor;
3532 User.FoundConversionFunction = Best->FoundDecl;
3533 User.After.setAsIdentityConversion();
3534 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3535 User.After.setAllToTypes(ToType);
3536 return Result;
3537 }
3538 if (CXXConversionDecl *Conversion
3539 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3540 // C++ [over.ics.user]p1:
3541 //
3542 // [...] If the user-defined conversion is specified by a
3543 // conversion function (12.3.2), the initial standard
3544 // conversion sequence converts the source type to the
3545 // implicit object parameter of the conversion function.
3546 User.Before = Best->Conversions[0].Standard;
3547 User.HadMultipleCandidates = HadMultipleCandidates;
3548 User.ConversionFunction = Conversion;
3549 User.FoundConversionFunction = Best->FoundDecl;
3550 User.EllipsisConversion = false;
3551
3552 // C++ [over.ics.user]p2:
3553 // The second standard conversion sequence converts the
3554 // result of the user-defined conversion to the target type
3555 // for the sequence. Since an implicit conversion sequence
3556 // is an initialization, the special rules for
3557 // initialization by user-defined conversion apply when
3558 // selecting the best user-defined conversion for a
3559 // user-defined conversion sequence (see 13.3.3 and
3560 // 13.3.3.1).
3561 User.After = Best->FinalConversion;
3562 return Result;
3563 }
3564 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3564)
;
3565
3566 case OR_No_Viable_Function:
3567 return OR_No_Viable_Function;
3568
3569 case OR_Ambiguous:
3570 return OR_Ambiguous;
3571 }
3572
3573 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 3573)
;
3574}
3575
3576bool
3577Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3578 ImplicitConversionSequence ICS;
3579 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3580 OverloadCandidateSet::CSK_Normal);
3581 OverloadingResult OvResult =
3582 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3583 CandidateSet, false, false);
3584
3585 if (!(OvResult == OR_Ambiguous ||
3586 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3587 return false;
3588
3589 auto Cands = CandidateSet.CompleteCandidates(
3590 *this,
3591 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3592 From);
3593 if (OvResult == OR_Ambiguous)
3594 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3595 << From->getType() << ToType << From->getSourceRange();
3596 else { // OR_No_Viable_Function && !CandidateSet.empty()
3597 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3598 diag::err_typecheck_nonviable_condition_incomplete,
3599 From->getType(), From->getSourceRange()))
3600 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3601 << false << From->getType() << From->getSourceRange() << ToType;
3602 }
3603
3604 CandidateSet.NoteCandidates(
3605 *this, From, Cands);
3606 return true;
3607}
3608
3609/// Compare the user-defined conversion functions or constructors
3610/// of two user-defined conversion sequences to determine whether any ordering
3611/// is possible.
3612static ImplicitConversionSequence::CompareKind
3613compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3614 FunctionDecl *Function2) {
3615 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3616 return ImplicitConversionSequence::Indistinguishable;
3617
3618 // Objective-C++:
3619 // If both conversion functions are implicitly-declared conversions from
3620 // a lambda closure type to a function pointer and a block pointer,
3621 // respectively, always prefer the conversion to a function pointer,
3622 // because the function pointer is more lightweight and is more likely
3623 // to keep code working.
3624 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3625 if (!Conv1)
3626 return ImplicitConversionSequence::Indistinguishable;
3627
3628 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3629 if (!Conv2)
3630 return ImplicitConversionSequence::Indistinguishable;
3631
3632 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3633 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3634 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3635 if (Block1 != Block2)
3636 return Block1 ? ImplicitConversionSequence::Worse
3637 : ImplicitConversionSequence::Better;
3638 }
3639
3640 return ImplicitConversionSequence::Indistinguishable;
3641}
3642
3643static bool hasDeprecatedStringLiteralToCharPtrConversion(
3644 const ImplicitConversionSequence &ICS) {
3645 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3646 (ICS.isUserDefined() &&
3647 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3648}
3649
3650/// CompareImplicitConversionSequences - Compare two implicit
3651/// conversion sequences to determine whether one is better than the
3652/// other or if they are indistinguishable (C++ 13.3.3.2).
3653static ImplicitConversionSequence::CompareKind
3654CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3655 const ImplicitConversionSequence& ICS1,
3656 const ImplicitConversionSequence& ICS2)
3657{
3658 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3659 // conversion sequences (as defined in 13.3.3.1)
3660 // -- a standard conversion sequence (13.3.3.1.1) is a better
3661 // conversion sequence than a user-defined conversion sequence or
3662 // an ellipsis conversion sequence, and
3663 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3664 // conversion sequence than an ellipsis conversion sequence
3665 // (13.3.3.1.3).
3666 //
3667 // C++0x [over.best.ics]p10:
3668 // For the purpose of ranking implicit conversion sequences as
3669 // described in 13.3.3.2, the ambiguous conversion sequence is
3670 // treated as a user-defined sequence that is indistinguishable
3671 // from any other user-defined conversion sequence.
3672
3673 // String literal to 'char *' conversion has been deprecated in C++03. It has
3674 // been removed from C++11. We still accept this conversion, if it happens at
3675 // the best viable function. Otherwise, this conversion is considered worse
3676 // than ellipsis conversion. Consider this as an extension; this is not in the
3677 // standard. For example:
3678 //
3679 // int &f(...); // #1
3680 // void f(char*); // #2
3681 // void g() { int &r = f("foo"); }
3682 //
3683 // In C++03, we pick #2 as the best viable function.
3684 // In C++11, we pick #1 as the best viable function, because ellipsis
3685 // conversion is better than string-literal to char* conversion (since there
3686 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3687 // convert arguments, #2 would be the best viable function in C++11.
3688 // If the best viable function has this conversion, a warning will be issued
3689 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3690
3691 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3692 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3693 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3694 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3695 ? ImplicitConversionSequence::Worse
3696 : ImplicitConversionSequence::Better;
3697
3698 if (ICS1.getKindRank() < ICS2.getKindRank())
3699 return ImplicitConversionSequence::Better;
3700 if (ICS2.getKindRank() < ICS1.getKindRank())
3701 return ImplicitConversionSequence::Worse;
3702
3703 // The following checks require both conversion sequences to be of
3704 // the same kind.
3705 if (ICS1.getKind() != ICS2.getKind())
3706 return ImplicitConversionSequence::Indistinguishable;
3707
3708 ImplicitConversionSequence::CompareKind Result =
3709 ImplicitConversionSequence::Indistinguishable;
3710
3711 // Two implicit conversion sequences of the same form are
3712 // indistinguishable conversion sequences unless one of the
3713 // following rules apply: (C++ 13.3.3.2p3):
3714
3715 // List-initialization sequence L1 is a better conversion sequence than
3716 // list-initialization sequence L2 if:
3717 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3718 // if not that,
3719 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3720 // and N1 is smaller than N2.,
3721 // even if one of the other rules in this paragraph would otherwise apply.
3722 if (!ICS1.isBad()) {
3723 if (ICS1.isStdInitializerListElement() &&
3724 !ICS2.isStdInitializerListElement())
3725 return ImplicitConversionSequence::Better;
3726 if (!ICS1.isStdInitializerListElement() &&
3727 ICS2.isStdInitializerListElement())
3728 return ImplicitConversionSequence::Worse;
3729 }
3730
3731 if (ICS1.isStandard())
3732 // Standard conversion sequence S1 is a better conversion sequence than
3733 // standard conversion sequence S2 if [...]
3734 Result = CompareStandardConversionSequences(S, Loc,
3735 ICS1.Standard, ICS2.Standard);
3736 else if (ICS1.isUserDefined()) {
3737 // User-defined conversion sequence U1 is a better conversion
3738 // sequence than another user-defined conversion sequence U2 if
3739 // they contain the same user-defined conversion function or
3740 // constructor and if the second standard conversion sequence of
3741 // U1 is better than the second standard conversion sequence of
3742 // U2 (C++ 13.3.3.2p3).
3743 if (ICS1.UserDefined.ConversionFunction ==
3744 ICS2.UserDefined.ConversionFunction)
3745 Result = CompareStandardConversionSequences(S, Loc,
3746 ICS1.UserDefined.After,
3747 ICS2.UserDefined.After);
3748 else
3749 Result = compareConversionFunctions(S,
3750 ICS1.UserDefined.ConversionFunction,
3751 ICS2.UserDefined.ConversionFunction);
3752 }
3753
3754 return Result;
3755}
3756
3757// Per 13.3.3.2p3, compare the given standard conversion sequences to
3758// determine if one is a proper subset of the other.
3759static ImplicitConversionSequence::CompareKind
3760compareStandardConversionSubsets(ASTContext &Context,
3761 const StandardConversionSequence& SCS1,
3762 const StandardConversionSequence& SCS2) {
3763 ImplicitConversionSequence::CompareKind Result
3764 = ImplicitConversionSequence::Indistinguishable;
3765
3766 // the identity conversion sequence is considered to be a subsequence of
3767 // any non-identity conversion sequence
3768 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3769 return ImplicitConversionSequence::Better;
3770 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3771 return ImplicitConversionSequence::Worse;
3772
3773 if (SCS1.Second != SCS2.Second) {
3774 if (SCS1.Second == ICK_Identity)
3775 Result = ImplicitConversionSequence::Better;
3776 else if (SCS2.Second == ICK_Identity)
3777 Result = ImplicitConversionSequence::Worse;
3778 else
3779 return ImplicitConversionSequence::Indistinguishable;
3780 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3781 return ImplicitConversionSequence::Indistinguishable;
3782
3783 if (SCS1.Third == SCS2.Third) {
3784 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3785 : ImplicitConversionSequence::Indistinguishable;
3786 }
3787
3788 if (SCS1.Third == ICK_Identity)
3789 return Result == ImplicitConversionSequence::Worse
3790 ? ImplicitConversionSequence::Indistinguishable
3791 : ImplicitConversionSequence::Better;
3792
3793 if (SCS2.Third == ICK_Identity)
3794 return Result == ImplicitConversionSequence::Better
3795 ? ImplicitConversionSequence::Indistinguishable
3796 : ImplicitConversionSequence::Worse;
3797
3798 return ImplicitConversionSequence::Indistinguishable;
3799}
3800
3801/// Determine whether one of the given reference bindings is better
3802/// than the other based on what kind of bindings they are.
3803static bool
3804isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3805 const StandardConversionSequence &SCS2) {
3806 // C++0x [over.ics.rank]p3b4:
3807 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3808 // implicit object parameter of a non-static member function declared
3809 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3810 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3811 // lvalue reference to a function lvalue and S2 binds an rvalue
3812 // reference*.
3813 //
3814 // FIXME: Rvalue references. We're going rogue with the above edits,
3815 // because the semantics in the current C++0x working paper (N3225 at the
3816 // time of this writing) break the standard definition of std::forward
3817 // and std::reference_wrapper when dealing with references to functions.
3818 // Proposed wording changes submitted to CWG for consideration.
3819 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3820 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3821 return false;
3822
3823 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3824 SCS2.IsLvalueReference) ||
3825 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3826 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3827}
3828
3829enum class FixedEnumPromotion {
3830 None,
3831 ToUnderlyingType,
3832 ToPromotedUnderlyingType
3833};
3834
3835/// Returns kind of fixed enum promotion the \a SCS uses.
3836static FixedEnumPromotion
3837getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3838
3839 if (SCS.Second != ICK_Integral_Promotion)
3840 return FixedEnumPromotion::None;
3841
3842 QualType FromType = SCS.getFromType();
3843 if (!FromType->isEnumeralType())
3844 return FixedEnumPromotion::None;
3845
3846 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3847 if (!Enum->isFixed())
3848 return FixedEnumPromotion::None;
3849
3850 QualType UnderlyingType = Enum->getIntegerType();
3851 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3852 return FixedEnumPromotion::ToUnderlyingType;
3853
3854 return FixedEnumPromotion::ToPromotedUnderlyingType;
3855}
3856
3857/// CompareStandardConversionSequences - Compare two standard
3858/// conversion sequences to determine whether one is better than the
3859/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3860static ImplicitConversionSequence::CompareKind
3861CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3862 const StandardConversionSequence& SCS1,
3863 const StandardConversionSequence& SCS2)
3864{
3865 // Standard conversion sequence S1 is a better conversion sequence
3866 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3867
3868 // -- S1 is a proper subsequence of S2 (comparing the conversion
3869 // sequences in the canonical form defined by 13.3.3.1.1,
3870 // excluding any Lvalue Transformation; the identity conversion
3871 // sequence is considered to be a subsequence of any
3872 // non-identity conversion sequence) or, if not that,
3873 if (ImplicitConversionSequence::CompareKind CK
3874 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3875 return CK;
3876
3877 // -- the rank of S1 is better than the rank of S2 (by the rules
3878 // defined below), or, if not that,
3879 ImplicitConversionRank Rank1 = SCS1.getRank();
3880 ImplicitConversionRank Rank2 = SCS2.getRank();
3881 if (Rank1 < Rank2)
3882 return ImplicitConversionSequence::Better;
3883 else if (Rank2 < Rank1)
3884 return ImplicitConversionSequence::Worse;
3885
3886 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3887 // are indistinguishable unless one of the following rules
3888 // applies:
3889
3890 // A conversion that is not a conversion of a pointer, or
3891 // pointer to member, to bool is better than another conversion
3892 // that is such a conversion.
3893 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3894 return SCS2.isPointerConversionToBool()
3895 ? ImplicitConversionSequence::Better
3896 : ImplicitConversionSequence::Worse;
3897
3898 // C++14 [over.ics.rank]p4b2:
3899 // This is retroactively applied to C++11 by CWG 1601.
3900 //
3901 // A conversion that promotes an enumeration whose underlying type is fixed
3902 // to its underlying type is better than one that promotes to the promoted
3903 // underlying type, if the two are different.
3904 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3905 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3906 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3907 FEP1 != FEP2)
3908 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3909 ? ImplicitConversionSequence::Better
3910 : ImplicitConversionSequence::Worse;
3911
3912 // C++ [over.ics.rank]p4b2:
3913 //
3914 // If class B is derived directly or indirectly from class A,
3915 // conversion of B* to A* is better than conversion of B* to
3916 // void*, and conversion of A* to void* is better than conversion
3917 // of B* to void*.
3918 bool SCS1ConvertsToVoid
3919 = SCS1.isPointerConversionToVoidPointer(S.Context);
3920 bool SCS2ConvertsToVoid
3921 = SCS2.isPointerConversionToVoidPointer(S.Context);
3922 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3923 // Exactly one of the conversion sequences is a conversion to
3924 // a void pointer; it's the worse conversion.
3925 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3926 : ImplicitConversionSequence::Worse;
3927 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3928 // Neither conversion sequence converts to a void pointer; compare
3929 // their derived-to-base conversions.
3930 if (ImplicitConversionSequence::CompareKind DerivedCK
3931 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3932 return DerivedCK;
3933 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3934 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3935 // Both conversion sequences are conversions to void
3936 // pointers. Compare the source types to determine if there's an
3937 // inheritance relationship in their sources.
3938 QualType FromType1 = SCS1.getFromType();
3939 QualType FromType2 = SCS2.getFromType();
3940
3941 // Adjust the types we're converting from via the array-to-pointer
3942 // conversion, if we need to.
3943 if (SCS1.First == ICK_Array_To_Pointer)
3944 FromType1 = S.Context.getArrayDecayedType(FromType1);
3945 if (SCS2.First == ICK_Array_To_Pointer)
3946 FromType2 = S.Context.getArrayDecayedType(FromType2);
3947
3948 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3949 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3950
3951 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3952 return ImplicitConversionSequence::Better;
3953 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3954 return ImplicitConversionSequence::Worse;
3955
3956 // Objective-C++: If one interface is more specific than the
3957 // other, it is the better one.
3958 const ObjCObjectPointerType* FromObjCPtr1
3959 = FromType1->getAs<ObjCObjectPointerType>();
3960 const ObjCObjectPointerType* FromObjCPtr2
3961 = FromType2->getAs<ObjCObjectPointerType>();
3962 if (FromObjCPtr1 && FromObjCPtr2) {
3963 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3964 FromObjCPtr2);
3965 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3966 FromObjCPtr1);
3967 if (AssignLeft != AssignRight) {
3968 return AssignLeft? ImplicitConversionSequence::Better
3969 : ImplicitConversionSequence::Worse;
3970 }
3971 }
3972 }
3973
3974 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3975 // bullet 3).
3976 if (ImplicitConversionSequence::CompareKind QualCK
3977 = CompareQualificationConversions(S, SCS1, SCS2))
3978 return QualCK;
3979
3980 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3981 // Check for a better reference binding based on the kind of bindings.
3982 if (isBetterReferenceBindingKind(SCS1, SCS2))
3983 return ImplicitConversionSequence::Better;
3984 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3985 return ImplicitConversionSequence::Worse;
3986
3987 // C++ [over.ics.rank]p3b4:
3988 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3989 // which the references refer are the same type except for
3990 // top-level cv-qualifiers, and the type to which the reference
3991 // initialized by S2 refers is more cv-qualified than the type
3992 // to which the reference initialized by S1 refers.
3993 QualType T1 = SCS1.getToType(2);
3994 QualType T2 = SCS2.getToType(2);
3995 T1 = S.Context.getCanonicalType(T1);
3996 T2 = S.Context.getCanonicalType(T2);
3997 Qualifiers T1Quals, T2Quals;
3998 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3999 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4000 if (UnqualT1 == UnqualT2) {
4001 // Objective-C++ ARC: If the references refer to objects with different
4002 // lifetimes, prefer bindings that don't change lifetime.
4003 if (SCS1.ObjCLifetimeConversionBinding !=
4004 SCS2.ObjCLifetimeConversionBinding) {
4005 return SCS1.ObjCLifetimeConversionBinding
4006 ? ImplicitConversionSequence::Worse
4007 : ImplicitConversionSequence::Better;
4008 }
4009
4010 // If the type is an array type, promote the element qualifiers to the
4011 // type for comparison.
4012 if (isa<ArrayType>(T1) && T1Quals)
4013 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4014 if (isa<ArrayType>(T2) && T2Quals)
4015 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4016 if (T2.isMoreQualifiedThan(T1))
4017 return ImplicitConversionSequence::Better;
4018 else if (T1.isMoreQualifiedThan(T2))
4019 return ImplicitConversionSequence::Worse;
4020 }
4021 }
4022
4023 // In Microsoft mode, prefer an integral conversion to a
4024 // floating-to-integral conversion if the integral conversion
4025 // is between types of the same size.
4026 // For example:
4027 // void f(float);
4028 // void f(int);
4029 // int main {
4030 // long a;
4031 // f(a);
4032 // }
4033 // Here, MSVC will call f(int) instead of generating a compile error
4034 // as clang will do in standard mode.
4035 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
4036 SCS2.Second == ICK_Floating_Integral &&
4037 S.Context.getTypeSize(SCS1.getFromType()) ==
4038 S.Context.getTypeSize(SCS1.getToType(2)))
4039 return ImplicitConversionSequence::Better;
4040
4041 // Prefer a compatible vector conversion over a lax vector conversion
4042 // For example:
4043 //
4044 // typedef float __v4sf __attribute__((__vector_size__(16)));
4045 // void f(vector float);
4046 // void f(vector signed int);
4047 // int main() {
4048 // __v4sf a;
4049 // f(a);
4050 // }
4051 // Here, we'd like to choose f(vector float) and not
4052 // report an ambiguous call error
4053 if (SCS1.Second == ICK_Vector_Conversion &&
4054 SCS2.Second == ICK_Vector_Conversion) {
4055 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4056 SCS1.getFromType(), SCS1.getToType(2));
4057 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4058 SCS2.getFromType(), SCS2.getToType(2));
4059
4060 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4061 return SCS1IsCompatibleVectorConversion
4062 ? ImplicitConversionSequence::Better
4063 : ImplicitConversionSequence::Worse;
4064 }
4065
4066 return ImplicitConversionSequence::Indistinguishable;
4067}
4068
4069/// CompareQualificationConversions - Compares two standard conversion
4070/// sequences to determine whether they can be ranked based on their
4071/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4072static ImplicitConversionSequence::CompareKind
4073CompareQualificationConversions(Sema &S,
4074 const StandardConversionSequence& SCS1,
4075 const StandardConversionSequence& SCS2) {
4076 // C++ 13.3.3.2p3:
4077 // -- S1 and S2 differ only in their qualification conversion and
4078 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4079 // cv-qualification signature of type T1 is a proper subset of
4080 // the cv-qualification signature of type T2, and S1 is not the
4081 // deprecated string literal array-to-pointer conversion (4.2).
4082 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4083 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4084 return ImplicitConversionSequence::Indistinguishable;
4085
4086 // FIXME: the example in the standard doesn't use a qualification
4087 // conversion (!)
4088 QualType T1 = SCS1.getToType(2);
4089 QualType T2 = SCS2.getToType(2);
4090 T1 = S.Context.getCanonicalType(T1);
4091 T2 = S.Context.getCanonicalType(T2);
4092 Qualifiers T1Quals, T2Quals;
4093 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4094 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4095
4096 // If the types are the same, we won't learn anything by unwrapped
4097 // them.
4098 if (UnqualT1 == UnqualT2)
4099 return ImplicitConversionSequence::Indistinguishable;
4100
4101 // If the type is an array type, promote the element qualifiers to the type
4102 // for comparison.
4103 if (isa<ArrayType>(T1) && T1Quals)
4104 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4105 if (isa<ArrayType>(T2) && T2Quals)
4106 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4107
4108 ImplicitConversionSequence::CompareKind Result
4109 = ImplicitConversionSequence::Indistinguishable;
4110
4111 // Objective-C++ ARC:
4112 // Prefer qualification conversions not involving a change in lifetime
4113 // to qualification conversions that do not change lifetime.
4114 if (SCS1.QualificationIncludesObjCLifetime !=
4115 SCS2.QualificationIncludesObjCLifetime) {
4116 Result = SCS1.QualificationIncludesObjCLifetime
4117 ? ImplicitConversionSequence::Worse
4118 : ImplicitConversionSequence::Better;
4119 }
4120
4121 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4122 // Within each iteration of the loop, we check the qualifiers to
4123 // determine if this still looks like a qualification
4124 // conversion. Then, if all is well, we unwrap one more level of
4125 // pointers or pointers-to-members and do it all again
4126 // until there are no more pointers or pointers-to-members left
4127 // to unwrap. This essentially mimics what
4128 // IsQualificationConversion does, but here we're checking for a
4129 // strict subset of qualifiers.
4130 if (T1.getQualifiers().withoutObjCLifetime() ==
4131 T2.getQualifiers().withoutObjCLifetime())
4132 // The qualifiers are the same, so this doesn't tell us anything
4133 // about how the sequences rank.
4134 // ObjC ownership quals are omitted above as they interfere with
4135 // the ARC overload rule.
4136 ;
4137 else if (T2.isMoreQualifiedThan(T1)) {
4138 // T1 has fewer qualifiers, so it could be the better sequence.
4139 if (Result == ImplicitConversionSequence::Worse)
4140 // Neither has qualifiers that are a subset of the other's
4141 // qualifiers.
4142 return ImplicitConversionSequence::Indistinguishable;
4143
4144 Result = ImplicitConversionSequence::Better;
4145 } else if (T1.isMoreQualifiedThan(T2)) {
4146 // T2 has fewer qualifiers, so it could be the better sequence.
4147 if (Result == ImplicitConversionSequence::Better)
4148 // Neither has qualifiers that are a subset of the other's
4149 // qualifiers.
4150 return ImplicitConversionSequence::Indistinguishable;
4151
4152 Result = ImplicitConversionSequence::Worse;
4153 } else {
4154 // Qualifiers are disjoint.
4155 return ImplicitConversionSequence::Indistinguishable;
4156 }
4157
4158 // If the types after this point are equivalent, we're done.
4159 if (S.Context.hasSameUnqualifiedType(T1, T2))
4160 break;
4161 }
4162
4163 // Check that the winning standard conversion sequence isn't using
4164 // the deprecated string literal array to pointer conversion.
4165 switch (Result) {
4166 case ImplicitConversionSequence::Better:
4167 if (SCS1.DeprecatedStringLiteralToCharPtr)
4168 Result = ImplicitConversionSequence::Indistinguishable;
4169 break;
4170
4171 case ImplicitConversionSequence::Indistinguishable:
4172 break;
4173
4174 case ImplicitConversionSequence::Worse:
4175 if (SCS2.DeprecatedStringLiteralToCharPtr)
4176 Result = ImplicitConversionSequence::Indistinguishable;
4177 break;
4178 }
4179
4180 return Result;
4181}
4182
4183/// CompareDerivedToBaseConversions - Compares two standard conversion
4184/// sequences to determine whether they can be ranked based on their
4185/// various kinds of derived-to-base conversions (C++
4186/// [over.ics.rank]p4b3). As part of these checks, we also look at
4187/// conversions between Objective-C interface types.
4188static ImplicitConversionSequence::CompareKind
4189CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4190 const StandardConversionSequence& SCS1,
4191 const StandardConversionSequence& SCS2) {
4192 QualType FromType1 = SCS1.getFromType();
4193 QualType ToType1 = SCS1.getToType(1);
4194 QualType FromType2 = SCS2.getFromType();
4195 QualType ToType2 = SCS2.getToType(1);
4196
4197 // Adjust the types we're converting from via the array-to-pointer
4198 // conversion, if we need to.
4199 if (SCS1.First == ICK_Array_To_Pointer)
4200 FromType1 = S.Context.getArrayDecayedType(FromType1);
4201 if (SCS2.First == ICK_Array_To_Pointer)
4202 FromType2 = S.Context.getArrayDecayedType(FromType2);
4203
4204 // Canonicalize all of the types.
4205 FromType1 = S.Context.getCanonicalType(FromType1);
4206 ToType1 = S.Context.getCanonicalType(ToType1);
4207 FromType2 = S.Context.getCanonicalType(FromType2);
4208 ToType2 = S.Context.getCanonicalType(ToType2);
4209
4210 // C++ [over.ics.rank]p4b3:
4211 //
4212 // If class B is derived directly or indirectly from class A and
4213 // class C is derived directly or indirectly from B,
4214 //
4215 // Compare based on pointer conversions.
4216 if (SCS1.Second == ICK_Pointer_Conversion &&
4217 SCS2.Second == ICK_Pointer_Conversion &&
4218 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4219 FromType1->isPointerType() && FromType2->isPointerType() &&
4220 ToType1->isPointerType() && ToType2->isPointerType()) {
4221 QualType FromPointee1 =
4222 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4223 QualType ToPointee1 =
4224 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4225 QualType FromPointee2 =
4226 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4227 QualType ToPointee2 =
4228 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4229
4230 // -- conversion of C* to B* is better than conversion of C* to A*,
4231 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4232 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4233 return ImplicitConversionSequence::Better;
4234 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4235 return ImplicitConversionSequence::Worse;
4236 }
4237
4238 // -- conversion of B* to A* is better than conversion of C* to A*,
4239 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4240 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4241 return ImplicitConversionSequence::Better;
4242 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4243 return ImplicitConversionSequence::Worse;
4244 }
4245 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4246 SCS2.Second == ICK_Pointer_Conversion) {
4247 const ObjCObjectPointerType *FromPtr1
4248 = FromType1->getAs<ObjCObjectPointerType>();
4249 const ObjCObjectPointerType *FromPtr2
4250 = FromType2->getAs<ObjCObjectPointerType>();
4251 const ObjCObjectPointerType *ToPtr1
4252 = ToType1->getAs<ObjCObjectPointerType>();
4253 const ObjCObjectPointerType *ToPtr2
4254 = ToType2->getAs<ObjCObjectPointerType>();
4255
4256 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4257 // Apply the same conversion ranking rules for Objective-C pointer types
4258 // that we do for C++ pointers to class types. However, we employ the
4259 // Objective-C pseudo-subtyping relationship used for assignment of
4260 // Objective-C pointer types.
4261 bool FromAssignLeft
4262 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4263 bool FromAssignRight
4264 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4265 bool ToAssignLeft
4266 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4267 bool ToAssignRight
4268 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4269
4270 // A conversion to an a non-id object pointer type or qualified 'id'
4271 // type is better than a conversion to 'id'.
4272 if (ToPtr1->isObjCIdType() &&
4273 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4274 return ImplicitConversionSequence::Worse;
4275 if (ToPtr2->isObjCIdType() &&
4276 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4277 return ImplicitConversionSequence::Better;
4278
4279 // A conversion to a non-id object pointer type is better than a
4280 // conversion to a qualified 'id' type
4281 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4282 return ImplicitConversionSequence::Worse;
4283 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4284 return ImplicitConversionSequence::Better;
4285
4286 // A conversion to an a non-Class object pointer type or qualified 'Class'
4287 // type is better than a conversion to 'Class'.
4288 if (ToPtr1->isObjCClassType() &&
4289 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4290 return ImplicitConversionSequence::Worse;
4291 if (ToPtr2->isObjCClassType() &&
4292 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4293 return ImplicitConversionSequence::Better;
4294
4295 // A conversion to a non-Class object pointer type is better than a
4296 // conversion to a qualified 'Class' type.
4297 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4298 return ImplicitConversionSequence::Worse;
4299 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4300 return ImplicitConversionSequence::Better;
4301
4302 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4303 if (S.Context.hasSameType(FromType1, FromType2) &&
4304 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4305 (ToAssignLeft != ToAssignRight)) {
4306 if (FromPtr1->isSpecialized()) {
4307 // "conversion of B<A> * to B * is better than conversion of B * to
4308 // C *.
4309 bool IsFirstSame =
4310 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4311 bool IsSecondSame =
4312 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4313 if (IsFirstSame) {
4314 if (!IsSecondSame)
4315 return ImplicitConversionSequence::Better;
4316 } else if (IsSecondSame)
4317 return ImplicitConversionSequence::Worse;
4318 }
4319 return ToAssignLeft? ImplicitConversionSequence::Worse
4320 : ImplicitConversionSequence::Better;
4321 }
4322
4323 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4324 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4325 (FromAssignLeft != FromAssignRight))
4326 return FromAssignLeft? ImplicitConversionSequence::Better
4327 : ImplicitConversionSequence::Worse;
4328 }
4329 }
4330
4331 // Ranking of member-pointer types.
4332 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4333 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4334 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4335 const MemberPointerType * FromMemPointer1 =
4336 FromType1->getAs<MemberPointerType>();
4337 const MemberPointerType * ToMemPointer1 =
4338 ToType1->getAs<MemberPointerType>();
4339 const MemberPointerType * FromMemPointer2 =
4340 FromType2->getAs<MemberPointerType>();
4341 const MemberPointerType * ToMemPointer2 =
4342 ToType2->getAs<MemberPointerType>();
4343 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4344 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4345 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4346 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4347 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4348 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4349 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4350 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4351 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4352 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4353 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4354 return ImplicitConversionSequence::Worse;
4355 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4356 return ImplicitConversionSequence::Better;
4357 }
4358 // conversion of B::* to C::* is better than conversion of A::* to C::*
4359 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4360 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4361 return ImplicitConversionSequence::Better;
4362 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4363 return ImplicitConversionSequence::Worse;
4364 }
4365 }
4366
4367 if (SCS1.Second == ICK_Derived_To_Base) {
4368 // -- conversion of C to B is better than conversion of C to A,
4369 // -- binding of an expression of type C to a reference of type
4370 // B& is better than binding an expression of type C to a
4371 // reference of type A&,
4372 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4373 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4374 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4375 return ImplicitConversionSequence::Better;
4376 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4377 return ImplicitConversionSequence::Worse;
4378 }
4379
4380 // -- conversion of B to A is better than conversion of C to A.
4381 // -- binding of an expression of type B to a reference of type
4382 // A& is better than binding an expression of type C to a
4383 // reference of type A&,
4384 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4385 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4386 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4387 return ImplicitConversionSequence::Better;
4388 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4389 return ImplicitConversionSequence::Worse;
4390 }
4391 }
4392
4393 return ImplicitConversionSequence::Indistinguishable;
4394}
4395
4396/// Determine whether the given type is valid, e.g., it is not an invalid
4397/// C++ class.
4398static bool isTypeValid(QualType T) {
4399 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4400 return !Record->isInvalidDecl();
4401
4402 return true;
4403}
4404
4405/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4406/// determine whether they are reference-related,
4407/// reference-compatible, reference-compatible with added
4408/// qualification, or incompatible, for use in C++ initialization by
4409/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4410/// type, and the first type (T1) is the pointee type of the reference
4411/// type being initialized.
4412Sema::ReferenceCompareResult
4413Sema::CompareReferenceRelationship(SourceLocation Loc,
4414 QualType OrigT1, QualType OrigT2,
4415 ReferenceConversions *ConvOut) {
4416 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4417, __PRETTY_FUNCTION__))
4417 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4417, __PRETTY_FUNCTION__))
;
4418 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4418, __PRETTY_FUNCTION__))
;
4419
4420 QualType T1 = Context.getCanonicalType(OrigT1);
4421 QualType T2 = Context.getCanonicalType(OrigT2);
4422 Qualifiers T1Quals, T2Quals;
4423 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4424 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4425
4426 ReferenceConversions ConvTmp;
4427 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4428 Conv = ReferenceConversions();
4429
4430 // C++ [dcl.init.ref]p4:
4431 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4432 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4433 // T1 is a base class of T2.
4434 QualType ConvertedT2;
4435 if (UnqualT1 == UnqualT2) {
4436 // Nothing to do.
4437 } else if (isCompleteType(Loc, OrigT2) &&
4438 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4439 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4440 Conv |= ReferenceConversions::DerivedToBase;
4441 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4442 UnqualT2->isObjCObjectOrInterfaceType() &&
4443 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4444 Conv |= ReferenceConversions::ObjC;
4445 else if (UnqualT2->isFunctionType() &&
4446 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4447 // C++1z [dcl.init.ref]p4:
4448 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4449 // function" and T1 is "function"
4450 //
4451 // We extend this to also apply to 'noreturn', so allow any function
4452 // conversion between function types.
4453 Conv |= ReferenceConversions::Function;
4454 return Ref_Compatible;
4455 } else
4456 return Ref_Incompatible;
4457
4458 // At this point, we know that T1 and T2 are reference-related (at
4459 // least).
4460
4461 // If the type is an array type, promote the element qualifiers to the type
4462 // for comparison.
4463 if (isa<ArrayType>(T1) && T1Quals)
4464 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4465 if (isa<ArrayType>(T2) && T2Quals)
4466 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4467
4468 // C++ [dcl.init.ref]p4:
4469 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4470 // reference-related to T2 and cv1 is the same cv-qualification
4471 // as, or greater cv-qualification than, cv2. For purposes of
4472 // overload resolution, cases for which cv1 is greater
4473 // cv-qualification than cv2 are identified as
4474 // reference-compatible with added qualification (see 13.3.3.2).
4475 //
4476 // Note that we also require equivalence of Objective-C GC and address-space
4477 // qualifiers when performing these computations, so that e.g., an int in
4478 // address space 1 is not reference-compatible with an int in address
4479 // space 2.
4480 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4481 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4482 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4483 Conv |= ReferenceConversions::ObjCLifetime;
4484
4485 T1Quals.removeObjCLifetime();
4486 T2Quals.removeObjCLifetime();
4487 }
4488
4489 // MS compiler ignores __unaligned qualifier for references; do the same.
4490 T1Quals.removeUnaligned();
4491 T2Quals.removeUnaligned();
4492
4493 if (T1Quals != T2Quals)
4494 Conv |= ReferenceConversions::Qualification;
4495
4496 if (T1Quals.compatiblyIncludes(T2Quals))
4497 return Ref_Compatible;
4498 else
4499 return Ref_Related;
4500}
4501
4502/// Look for a user-defined conversion to a value reference-compatible
4503/// with DeclType. Return true if something definite is found.
4504static bool
4505FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4506 QualType DeclType, SourceLocation DeclLoc,
4507 Expr *Init, QualType T2, bool AllowRvalues,
4508 bool AllowExplicit) {
4509 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4509, __PRETTY_FUNCTION__))
;
4510 CXXRecordDecl *T2RecordDecl
4511 = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4512
4513 OverloadCandidateSet CandidateSet(
4514 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4515 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4516 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4517 NamedDecl *D = *I;
4518 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4519 if (isa<UsingShadowDecl>(D))
4520 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4521
4522 FunctionTemplateDecl *ConvTemplate
4523 = dyn_cast<FunctionTemplateDecl>(D);
4524 CXXConversionDecl *Conv;
4525 if (ConvTemplate)
4526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4527 else
4528 Conv = cast<CXXConversionDecl>(D);
4529
4530 // If this is an explicit conversion, and we're not allowed to consider
4531 // explicit conversions, skip it.
4532 if (!AllowExplicit && Conv->isExplicit())
4533 continue;
4534
4535 if (AllowRvalues) {
4536 // If we are initializing an rvalue reference, don't permit conversion
4537 // functions that return lvalues.
4538 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4539 const ReferenceType *RefType
4540 = Conv->getConversionType()->getAs<LValueReferenceType>();
4541 if (RefType && !RefType->getPointeeType()->isFunctionType())
4542 continue;
4543 }
4544
4545 if (!ConvTemplate &&
4546 S.CompareReferenceRelationship(
4547 DeclLoc,
4548 Conv->getConversionType()
4549 .getNonReferenceType()
4550 .getUnqualifiedType(),
4551 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4552 Sema::Ref_Incompatible)
4553 continue;
4554 } else {
4555 // If the conversion function doesn't return a reference type,
4556 // it can't be considered for this conversion. An rvalue reference
4557 // is only acceptable if its referencee is a function type.
4558
4559 const ReferenceType *RefType =
4560 Conv->getConversionType()->getAs<ReferenceType>();
4561 if (!RefType ||
4562 (!RefType->isLValueReferenceType() &&
4563 !RefType->getPointeeType()->isFunctionType()))
4564 continue;
4565 }
4566
4567 if (ConvTemplate)
4568 S.AddTemplateConversionCandidate(
4569 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4570 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4571 else
4572 S.AddConversionCandidate(
4573 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4574 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4575 }
4576
4577 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4578
4579 OverloadCandidateSet::iterator Best;
4580 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4581 case OR_Success:
4582 // C++ [over.ics.ref]p1:
4583 //
4584 // [...] If the parameter binds directly to the result of
4585 // applying a conversion function to the argument
4586 // expression, the implicit conversion sequence is a
4587 // user-defined conversion sequence (13.3.3.1.2), with the
4588 // second standard conversion sequence either an identity
4589 // conversion or, if the conversion function returns an
4590 // entity of a type that is a derived class of the parameter
4591 // type, a derived-to-base Conversion.
4592 if (!Best->FinalConversion.DirectBinding)
4593 return false;
4594
4595 ICS.setUserDefined();
4596 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4597 ICS.UserDefined.After = Best->FinalConversion;
4598 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4599 ICS.UserDefined.ConversionFunction = Best->Function;
4600 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4601 ICS.UserDefined.EllipsisConversion = false;
4602 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4604, __PRETTY_FUNCTION__))
4603 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4604, __PRETTY_FUNCTION__))
4604 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4604, __PRETTY_FUNCTION__))
;
4605 return true;
4606
4607 case OR_Ambiguous:
4608 ICS.setAmbiguous();
4609 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4610 Cand != CandidateSet.end(); ++Cand)
4611 if (Cand->Best)
4612 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4613 return true;
4614
4615 case OR_No_Viable_Function:
4616 case OR_Deleted:
4617 // There was no suitable conversion, or we found a deleted
4618 // conversion; continue with other checks.
4619 return false;
4620 }
4621
4622 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4622)
;
4623}
4624
4625/// Compute an implicit conversion sequence for reference
4626/// initialization.
4627static ImplicitConversionSequence
4628TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4629 SourceLocation DeclLoc,
4630 bool SuppressUserConversions,
4631 bool AllowExplicit) {
4632 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 4632, __PRETTY_FUNCTION__))
;
4633
4634 // Most paths end in a failed conversion.
4635 ImplicitConversionSequence ICS;
4636 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4637
4638 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4639 QualType T2 = Init->getType();
4640
4641 // If the initializer is the address of an overloaded function, try
4642 // to resolve the overloaded function. If all goes well, T2 is the
4643 // type of the resulting function.
4644 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4645 DeclAccessPair Found;
4646 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4647 false, Found))
4648 T2 = Fn->getType();
4649 }
4650
4651 // Compute some basic properties of the types and the initializer.
4652 bool isRValRef = DeclType->isRValueReferenceType();
4653 Expr::Classification InitCategory = Init->Classify(S.Context);
4654
4655 Sema::ReferenceConversions RefConv;
4656 Sema::ReferenceCompareResult RefRelationship =
4657 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4658
4659 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4660 ICS.setStandard();
4661 ICS.Standard.First = ICK_Identity;
4662 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4663 ? ICK_Derived_To_Base
4664 : (RefConv & Sema::ReferenceConversions::ObjC)
4665 ? ICK_Compatible_Conversion
4666 : ICK_Identity;
4667 ICS.Standard.Third = ICK_Identity;
4668 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4669 ICS.Standard.setToType(0, T2);
4670 ICS.Standard.setToType(1, T1);
4671 ICS.Standard.setToType(2, T1);
4672 ICS.Standard.ReferenceBinding = true;
4673 ICS.Standard.DirectBinding = BindsDirectly;
4674 ICS.Standard.IsLvalueReference = !isRValRef;
4675 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4676 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4677 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4678 ICS.Standard.ObjCLifetimeConversionBinding =
4679 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4680 ICS.Standard.CopyConstructor = nullptr;
4681 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4682 };
4683
4684 // C++0x [dcl.init.ref]p5:
4685 // A reference to type "cv1 T1" is initialized by an expression
4686 // of type "cv2 T2" as follows:
4687
4688 // -- If reference is an lvalue reference and the initializer expression
4689 if (!isRValRef) {
4690 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4691 // reference-compatible with "cv2 T2," or
4692 //
4693 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4694 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4695 // C++ [over.ics.ref]p1:
4696 // When a parameter of reference type binds directly (8.5.3)
4697 // to an argument expression, the implicit conversion sequence
4698 // is the identity conversion, unless the argument expression
4699 // has a type that is a derived class of the parameter type,
4700 // in which case the implicit conversion sequence is a
4701 // derived-to-base Conversion (13.3.3.1).
4702 SetAsReferenceBinding(/*BindsDirectly=*/true);
4703
4704 // Nothing more to do: the inaccessibility/ambiguity check for
4705 // derived-to-base conversions is suppressed when we're
4706 // computing the implicit conversion sequence (C++
4707 // [over.best.ics]p2).
4708 return ICS;
4709 }
4710
4711 // -- has a class type (i.e., T2 is a class type), where T1 is
4712 // not reference-related to T2, and can be implicitly
4713 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4714 // is reference-compatible with "cv3 T3" 92) (this
4715 // conversion is selected by enumerating the applicable
4716 // conversion functions (13.3.1.6) and choosing the best
4717 // one through overload resolution (13.3)),
4718 if (!SuppressUserConversions && T2->isRecordType() &&
4719 S.isCompleteType(DeclLoc, T2) &&
4720 RefRelationship == Sema::Ref_Incompatible) {
4721 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4722 Init, T2, /*AllowRvalues=*/false,
4723 AllowExplicit))
4724 return ICS;
4725 }
4726 }
4727
4728 // -- Otherwise, the reference shall be an lvalue reference to a
4729 // non-volatile const type (i.e., cv1 shall be const), or the reference
4730 // shall be an rvalue reference.
4731 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4732 return ICS;
4733
4734 // -- If the initializer expression
4735 //
4736 // -- is an xvalue, class prvalue, array prvalue or function
4737 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4738 if (RefRelationship == Sema::Ref_Compatible &&
4739 (InitCategory.isXValue() ||
4740 (InitCategory.isPRValue() &&
4741 (T2->isRecordType() || T2->isArrayType())) ||
4742 (InitCategory.isLValue() && T2->isFunctionType()))) {
4743 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4744 // binding unless we're binding to a class prvalue.
4745 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4746 // allow the use of rvalue references in C++98/03 for the benefit of
4747 // standard library implementors; therefore, we need the xvalue check here.
4748 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4749 !(InitCategory.isPRValue() || T2->isRecordType()));
4750 return ICS;
4751 }
4752
4753 // -- has a class type (i.e., T2 is a class type), where T1 is not
4754 // reference-related to T2, and can be implicitly converted to
4755 // an xvalue, class prvalue, or function lvalue of type
4756 // "cv3 T3", where "cv1 T1" is reference-compatible with
4757 // "cv3 T3",
4758 //
4759 // then the reference is bound to the value of the initializer
4760 // expression in the first case and to the result of the conversion
4761 // in the second case (or, in either case, to an appropriate base
4762 // class subobject).
4763 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4764 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4765 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4766 Init, T2, /*AllowRvalues=*/true,
4767 AllowExplicit)) {
4768 // In the second case, if the reference is an rvalue reference
4769 // and the second standard conversion sequence of the
4770 // user-defined conversion sequence includes an lvalue-to-rvalue
4771 // conversion, the program is ill-formed.
4772 if (ICS.isUserDefined() && isRValRef &&
4773 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4774 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4775
4776 return ICS;
4777 }
4778
4779 // A temporary of function type cannot be created; don't even try.
4780 if (T1->isFunctionType())
4781 return ICS;
4782
4783 // -- Otherwise, a temporary of type "cv1 T1" is created and
4784 // initialized from the initializer expression using the
4785 // rules for a non-reference copy initialization (8.5). The
4786 // reference is then bound to the temporary. If T1 is
4787 // reference-related to T2, cv1 must be the same
4788 // cv-qualification as, or greater cv-qualification than,
4789 // cv2; otherwise, the program is ill-formed.
4790 if (RefRelationship == Sema::Ref_Related) {
4791 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4792 // we would be reference-compatible or reference-compatible with
4793 // added qualification. But that wasn't the case, so the reference
4794 // initialization fails.
4795 //
4796 // Note that we only want to check address spaces and cvr-qualifiers here.
4797 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4798 Qualifiers T1Quals = T1.getQualifiers();
4799 Qualifiers T2Quals = T2.getQualifiers();
4800 T1Quals.removeObjCGCAttr();
4801 T1Quals.removeObjCLifetime();
4802 T2Quals.removeObjCGCAttr();
4803 T2Quals.removeObjCLifetime();
4804 // MS compiler ignores __unaligned qualifier for references; do the same.
4805 T1Quals.removeUnaligned();
4806 T2Quals.removeUnaligned();
4807 if (!T1Quals.compatiblyIncludes(T2Quals))
4808 return ICS;
4809 }
4810
4811 // If at least one of the types is a class type, the types are not
4812 // related, and we aren't allowed any user conversions, the
4813 // reference binding fails. This case is important for breaking
4814 // recursion, since TryImplicitConversion below will attempt to
4815 // create a temporary through the use of a copy constructor.
4816 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4817 (T1->isRecordType() || T2->isRecordType()))
4818 return ICS;
4819
4820 // If T1 is reference-related to T2 and the reference is an rvalue
4821 // reference, the initializer expression shall not be an lvalue.
4822 if (RefRelationship >= Sema::Ref_Related &&
4823 isRValRef && Init->Classify(S.Context).isLValue())
4824 return ICS;
4825
4826 // C++ [over.ics.ref]p2:
4827 // When a parameter of reference type is not bound directly to
4828 // an argument expression, the conversion sequence is the one
4829 // required to convert the argument expression to the
4830 // underlying type of the reference according to
4831 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4832 // to copy-initializing a temporary of the underlying type with
4833 // the argument expression. Any difference in top-level
4834 // cv-qualification is subsumed by the initialization itself
4835 // and does not constitute a conversion.
4836 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4837 /*AllowExplicit=*/false,
4838 /*InOverloadResolution=*/false,
4839 /*CStyle=*/false,
4840 /*AllowObjCWritebackConversion=*/false,
4841 /*AllowObjCConversionOnExplicit=*/false);
4842
4843 // Of course, that's still a reference binding.
4844 if (ICS.isStandard()) {
4845 ICS.Standard.ReferenceBinding = true;
4846 ICS.Standard.IsLvalueReference = !isRValRef;
4847 ICS.Standard.BindsToFunctionLvalue = false;
4848 ICS.Standard.BindsToRvalue = true;
4849 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4850 ICS.Standard.ObjCLifetimeConversionBinding = false;
4851 } else if (ICS.isUserDefined()) {
4852 const ReferenceType *LValRefType =
4853 ICS.UserDefined.ConversionFunction->getReturnType()
4854 ->getAs<LValueReferenceType>();
4855
4856 // C++ [over.ics.ref]p3:
4857 // Except for an implicit object parameter, for which see 13.3.1, a
4858 // standard conversion sequence cannot be formed if it requires [...]
4859 // binding an rvalue reference to an lvalue other than a function
4860 // lvalue.
4861 // Note that the function case is not possible here.
4862 if (DeclType->isRValueReferenceType() && LValRefType) {
4863 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4864 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4865 // reference to an rvalue!
4866 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4867 return ICS;
4868 }
4869
4870 ICS.UserDefined.After.ReferenceBinding = true;
4871 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4872 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4873 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4874 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4875 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4876 }
4877
4878 return ICS;
4879}
4880
4881static ImplicitConversionSequence
4882TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4883 bool SuppressUserConversions,
4884 bool InOverloadResolution,
4885 bool AllowObjCWritebackConversion,
4886 bool AllowExplicit = false);
4887
4888/// TryListConversion - Try to copy-initialize a value of type ToType from the
4889/// initializer list From.
4890static ImplicitConversionSequence
4891TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4892 bool SuppressUserConversions,
4893 bool InOverloadResolution,
4894 bool AllowObjCWritebackConversion) {
4895 // C++11 [over.ics.list]p1:
4896 // When an argument is an initializer list, it is not an expression and
4897 // special rules apply for converting it to a parameter type.
4898
4899 ImplicitConversionSequence Result;
4900 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4901
4902 // We need a complete type for what follows. Incomplete types can never be
4903 // initialized from init lists.
4904 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4905 return Result;
4906
4907 // Per DR1467:
4908 // If the parameter type is a class X and the initializer list has a single
4909 // element of type cv U, where U is X or a class derived from X, the
4910 // implicit conversion sequence is the one required to convert the element
4911 // to the parameter type.
4912 //
4913 // Otherwise, if the parameter type is a character array [... ]
4914 // and the initializer list has a single element that is an
4915 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4916 // implicit conversion sequence is the identity conversion.
4917 if (From->getNumInits() == 1) {
4918 if (ToType->isRecordType()) {
4919 QualType InitType = From->getInit(0)->getType();
4920 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4921 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4922 return TryCopyInitialization(S, From->getInit(0), ToType,
4923 SuppressUserConversions,
4924 InOverloadResolution,
4925 AllowObjCWritebackConversion);
4926 }
4927 // FIXME: Check the other conditions here: array of character type,
4928 // initializer is a string literal.
4929 if (ToType->isArrayType()) {
4930 InitializedEntity Entity =
4931 InitializedEntity::InitializeParameter(S.Context, ToType,
4932 /*Consumed=*/false);
4933 if (S.CanPerformCopyInitialization(Entity, From)) {
4934 Result.setStandard();
4935 Result.Standard.setAsIdentityConversion();
4936 Result.Standard.setFromType(ToType);
4937 Result.Standard.setAllToTypes(ToType);
4938 return Result;
4939 }
4940 }
4941 }
4942
4943 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4944 // C++11 [over.ics.list]p2:
4945 // If the parameter type is std::initializer_list<X> or "array of X" and
4946 // all the elements can be implicitly converted to X, the implicit
4947 // conversion sequence is the worst conversion necessary to convert an
4948 // element of the list to X.
4949 //
4950 // C++14 [over.ics.list]p3:
4951 // Otherwise, if the parameter type is "array of N X", if the initializer
4952 // list has exactly N elements or if it has fewer than N elements and X is
4953 // default-constructible, and if all the elements of the initializer list
4954 // can be implicitly converted to X, the implicit conversion sequence is
4955 // the worst conversion necessary to convert an element of the list to X.
4956 //
4957 // FIXME: We're missing a lot of these checks.
4958 bool toStdInitializerList = false;
4959 QualType X;
4960 if (ToType->isArrayType())
4961 X = S.Context.getAsArrayType(ToType)->getElementType();
4962 else
4963 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4964 if (!X.isNull()) {
4965 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4966 Expr *Init = From->getInit(i);
4967 ImplicitConversionSequence ICS =
4968 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4969 InOverloadResolution,
4970 AllowObjCWritebackConversion);
4971 // If a single element isn't convertible, fail.
4972 if (ICS.isBad()) {
4973 Result = ICS;
4974 break;
4975 }
4976 // Otherwise, look for the worst conversion.
4977 if (Result.isBad() || CompareImplicitConversionSequences(
4978 S, From->getBeginLoc(), ICS, Result) ==
4979 ImplicitConversionSequence::Worse)
4980 Result = ICS;
4981 }
4982
4983 // For an empty list, we won't have computed any conversion sequence.
4984 // Introduce the identity conversion sequence.
4985 if (From->getNumInits() == 0) {
4986 Result.setStandard();
4987 Result.Standard.setAsIdentityConversion();
4988 Result.Standard.setFromType(ToType);
4989 Result.Standard.setAllToTypes(ToType);
4990 }
4991
4992 Result.setStdInitializerListElement(toStdInitializerList);
4993 return Result;
4994 }
4995
4996 // C++14 [over.ics.list]p4:
4997 // C++11 [over.ics.list]p3:
4998 // Otherwise, if the parameter is a non-aggregate class X and overload
4999 // resolution chooses a single best constructor [...] the implicit
5000 // conversion sequence is a user-defined conversion sequence. If multiple
5001 // constructors are viable but none is better than the others, the
5002 // implicit conversion sequence is a user-defined conversion sequence.
5003 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5004 // This function can deal with initializer lists.
5005 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5006 /*AllowExplicit=*/false,
5007 InOverloadResolution, /*CStyle=*/false,
5008 AllowObjCWritebackConversion,
5009 /*AllowObjCConversionOnExplicit=*/false);
5010 }
5011
5012 // C++14 [over.ics.list]p5:
5013 // C++11 [over.ics.list]p4:
5014 // Otherwise, if the parameter has an aggregate type which can be
5015 // initialized from the initializer list [...] the implicit conversion
5016 // sequence is a user-defined conversion sequence.
5017 if (ToType->isAggregateType()) {
5018 // Type is an aggregate, argument is an init list. At this point it comes
5019 // down to checking whether the initialization works.
5020 // FIXME: Find out whether this parameter is consumed or not.
5021 InitializedEntity Entity =
5022 InitializedEntity::InitializeParameter(S.Context, ToType,
5023 /*Consumed=*/false);
5024 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5025 From)) {
5026 Result.setUserDefined();
5027 Result.UserDefined.Before.setAsIdentityConversion();
5028 // Initializer lists don't have a type.
5029 Result.UserDefined.Before.setFromType(QualType());
5030 Result.UserDefined.Before.setAllToTypes(QualType());
5031
5032 Result.UserDefined.After.setAsIdentityConversion();
5033 Result.UserDefined.After.setFromType(ToType);
5034 Result.UserDefined.After.setAllToTypes(ToType);
5035 Result.UserDefined.ConversionFunction = nullptr;
5036 }
5037 return Result;
5038 }
5039
5040 // C++14 [over.ics.list]p6:
5041 // C++11 [over.ics.list]p5:
5042 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5043 if (ToType->isReferenceType()) {
5044 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5045 // mention initializer lists in any way. So we go by what list-
5046 // initialization would do and try to extrapolate from that.
5047
5048 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5049
5050 // If the initializer list has a single element that is reference-related
5051 // to the parameter type, we initialize the reference from that.
5052 if (From->getNumInits() == 1) {
5053 Expr *Init = From->getInit(0);
5054
5055 QualType T2 = Init->getType();
5056
5057 // If the initializer is the address of an overloaded function, try
5058 // to resolve the overloaded function. If all goes well, T2 is the
5059 // type of the resulting function.
5060 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5061 DeclAccessPair Found;
5062 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5063 Init, ToType, false, Found))
5064 T2 = Fn->getType();
5065 }
5066
5067 // Compute some basic properties of the types and the initializer.
5068 Sema::ReferenceCompareResult RefRelationship =
5069 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5070
5071 if (RefRelationship >= Sema::Ref_Related) {
5072 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5073 SuppressUserConversions,
5074 /*AllowExplicit=*/false);
5075 }
5076 }
5077
5078 // Otherwise, we bind the reference to a temporary created from the
5079 // initializer list.
5080 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5081 InOverloadResolution,
5082 AllowObjCWritebackConversion);
5083 if (Result.isFailure())
5084 return Result;
5085 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5086, __PRETTY_FUNCTION__))
5086 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5086, __PRETTY_FUNCTION__))
;
5087
5088 // Can we even bind to a temporary?
5089 if (ToType->isRValueReferenceType() ||
5090 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5091 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5092 Result.UserDefined.After;
5093 SCS.ReferenceBinding = true;
5094 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5095 SCS.BindsToRvalue = true;
5096 SCS.BindsToFunctionLvalue = false;
5097 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5098 SCS.ObjCLifetimeConversionBinding = false;
5099 } else
5100 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5101 From, ToType);
5102 return Result;
5103 }
5104
5105 // C++14 [over.ics.list]p7:
5106 // C++11 [over.ics.list]p6:
5107 // Otherwise, if the parameter type is not a class:
5108 if (!ToType->isRecordType()) {
5109 // - if the initializer list has one element that is not itself an
5110 // initializer list, the implicit conversion sequence is the one
5111 // required to convert the element to the parameter type.
5112 unsigned NumInits = From->getNumInits();
5113 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5114 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5115 SuppressUserConversions,
5116 InOverloadResolution,
5117 AllowObjCWritebackConversion);
5118 // - if the initializer list has no elements, the implicit conversion
5119 // sequence is the identity conversion.
5120 else if (NumInits == 0) {
5121 Result.setStandard();
5122 Result.Standard.setAsIdentityConversion();
5123 Result.Standard.setFromType(ToType);
5124 Result.Standard.setAllToTypes(ToType);
5125 }
5126 return Result;
5127 }
5128
5129 // C++14 [over.ics.list]p8:
5130 // C++11 [over.ics.list]p7:
5131 // In all cases other than those enumerated above, no conversion is possible
5132 return Result;
5133}
5134
5135/// TryCopyInitialization - Try to copy-initialize a value of type
5136/// ToType from the expression From. Return the implicit conversion
5137/// sequence required to pass this argument, which may be a bad
5138/// conversion sequence (meaning that the argument cannot be passed to
5139/// a parameter of this type). If @p SuppressUserConversions, then we
5140/// do not permit any user-defined conversion sequences.
5141static ImplicitConversionSequence
5142TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5143 bool SuppressUserConversions,
5144 bool InOverloadResolution,
5145 bool AllowObjCWritebackConversion,
5146 bool AllowExplicit) {
5147 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5148 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5149 InOverloadResolution,AllowObjCWritebackConversion);
5150
5151 if (ToType->isReferenceType())
5152 return TryReferenceInit(S, From, ToType,
5153 /*FIXME:*/ From->getBeginLoc(),
5154 SuppressUserConversions, AllowExplicit);
5155
5156 return TryImplicitConversion(S, From, ToType,
5157 SuppressUserConversions,
5158 /*AllowExplicit=*/false,
5159 InOverloadResolution,
5160 /*CStyle=*/false,
5161 AllowObjCWritebackConversion,
5162 /*AllowObjCConversionOnExplicit=*/false);
5163}
5164
5165static bool TryCopyInitialization(const CanQualType FromQTy,
5166 const CanQualType ToQTy,
5167 Sema &S,
5168 SourceLocation Loc,
5169 ExprValueKind FromVK) {
5170 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5171 ImplicitConversionSequence ICS =
5172 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5173
5174 return !ICS.isBad();
5175}
5176
5177/// TryObjectArgumentInitialization - Try to initialize the object
5178/// parameter of the given member function (@c Method) from the
5179/// expression @p From.
5180static ImplicitConversionSequence
5181TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5182 Expr::Classification FromClassification,
5183 CXXMethodDecl *Method,
5184 CXXRecordDecl *ActingContext) {
5185 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5186 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5187 // const volatile object.
5188 Qualifiers Quals = Method->getMethodQualifiers();
5189 if (isa<CXXDestructorDecl>(Method)) {
5190 Quals.addConst();
5191 Quals.addVolatile();
5192 }
5193
5194 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5195
5196 // Set up the conversion sequence as a "bad" conversion, to allow us
5197 // to exit early.
5198 ImplicitConversionSequence ICS;
5199
5200 // We need to have an object of class type.
5201 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5202 FromType = PT->getPointeeType();
5203
5204 // When we had a pointer, it's implicitly dereferenced, so we
5205 // better have an lvalue.
5206 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5206, __PRETTY_FUNCTION__))
;
5207 }
5208
5209 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5209, __PRETTY_FUNCTION__))
;
5210
5211 // C++0x [over.match.funcs]p4:
5212 // For non-static member functions, the type of the implicit object
5213 // parameter is
5214 //
5215 // - "lvalue reference to cv X" for functions declared without a
5216 // ref-qualifier or with the & ref-qualifier
5217 // - "rvalue reference to cv X" for functions declared with the &&
5218 // ref-qualifier
5219 //
5220 // where X is the class of which the function is a member and cv is the
5221 // cv-qualification on the member function declaration.
5222 //
5223 // However, when finding an implicit conversion sequence for the argument, we
5224 // are not allowed to perform user-defined conversions
5225 // (C++ [over.match.funcs]p5). We perform a simplified version of
5226 // reference binding here, that allows class rvalues to bind to
5227 // non-constant references.
5228
5229 // First check the qualifiers.
5230 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5231 if (ImplicitParamType.getCVRQualifiers()
5232 != FromTypeCanon.getLocalCVRQualifiers() &&
5233 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5234 ICS.setBad(BadConversionSequence::bad_qualifiers,
5235 FromType, ImplicitParamType);
5236 return ICS;
5237 }
5238
5239 if (FromTypeCanon.hasAddressSpace()) {
5240 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5241 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5242 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5243 ICS.setBad(BadConversionSequence::bad_qualifiers,
5244 FromType, ImplicitParamType);
5245 return ICS;
5246 }
5247 }
5248
5249 // Check that we have either the same type or a derived type. It
5250 // affects the conversion rank.
5251 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5252 ImplicitConversionKind SecondKind;
5253 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5254 SecondKind = ICK_Identity;
5255 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5256 SecondKind = ICK_Derived_To_Base;
5257 else {
5258 ICS.setBad(BadConversionSequence::unrelated_class,
5259 FromType, ImplicitParamType);
5260 return ICS;
5261 }
5262
5263 // Check the ref-qualifier.
5264 switch (Method->getRefQualifier()) {
5265 case RQ_None:
5266 // Do nothing; we don't care about lvalueness or rvalueness.
5267 break;
5268
5269 case RQ_LValue:
5270 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5271 // non-const lvalue reference cannot bind to an rvalue
5272 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5273 ImplicitParamType);
5274 return ICS;
5275 }
5276 break;
5277
5278 case RQ_RValue:
5279 if (!FromClassification.isRValue()) {
5280 // rvalue reference cannot bind to an lvalue
5281 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5282 ImplicitParamType);
5283 return ICS;
5284 }
5285 break;
5286 }
5287
5288 // Success. Mark this as a reference binding.
5289 ICS.setStandard();
5290 ICS.Standard.setAsIdentityConversion();
5291 ICS.Standard.Second = SecondKind;
5292 ICS.Standard.setFromType(FromType);
5293 ICS.Standard.setAllToTypes(ImplicitParamType);
5294 ICS.Standard.ReferenceBinding = true;
5295 ICS.Standard.DirectBinding = true;
5296 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5297 ICS.Standard.BindsToFunctionLvalue = false;
5298 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5299 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5300 = (Method->getRefQualifier() == RQ_None);
5301 return ICS;
5302}
5303
5304/// PerformObjectArgumentInitialization - Perform initialization of
5305/// the implicit object parameter for the given Method with the given
5306/// expression.
5307ExprResult
5308Sema::PerformObjectArgumentInitialization(Expr *From,
5309 NestedNameSpecifier *Qualifier,
5310 NamedDecl *FoundDecl,
5311 CXXMethodDecl *Method) {
5312 QualType FromRecordType, DestType;
5313 QualType ImplicitParamRecordType =
5314 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5315
5316 Expr::Classification FromClassification;
5317 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5318 FromRecordType = PT->getPointeeType();
5319 DestType = Method->getThisType();
5320 FromClassification = Expr::Classification::makeSimpleLValue();
5321 } else {
5322 FromRecordType = From->getType();
5323 DestType = ImplicitParamRecordType;
5324 FromClassification = From->Classify(Context);
5325
5326 // When performing member access on an rvalue, materialize a temporary.
5327 if (From->isRValue()) {
5328 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5329 Method->getRefQualifier() !=
5330 RefQualifierKind::RQ_RValue);
5331 }
5332 }
5333
5334 // Note that we always use the true parent context when performing
5335 // the actual argument initialization.
5336 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5337 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5338 Method->getParent());
5339 if (ICS.isBad()) {
5340 switch (ICS.Bad.Kind) {
5341 case BadConversionSequence::bad_qualifiers: {
5342 Qualifiers FromQs = FromRecordType.getQualifiers();
5343 Qualifiers ToQs = DestType.getQualifiers();
5344 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5345 if (CVR) {
5346 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5347 << Method->getDeclName() << FromRecordType << (CVR - 1)
5348 << From->getSourceRange();
5349 Diag(Method->getLocation(), diag::note_previous_decl)
5350 << Method->getDeclName();
5351 return ExprError();
5352 }
5353 break;
5354 }
5355
5356 case BadConversionSequence::lvalue_ref_to_rvalue:
5357 case BadConversionSequence::rvalue_ref_to_lvalue: {
5358 bool IsRValueQualified =
5359 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5360 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5361 << Method->getDeclName() << FromClassification.isRValue()
5362 << IsRValueQualified;
5363 Diag(Method->getLocation(), diag::note_previous_decl)
5364 << Method->getDeclName();
5365 return ExprError();
5366 }
5367
5368 case BadConversionSequence::no_conversion:
5369 case BadConversionSequence::unrelated_class:
5370 break;
5371 }
5372
5373 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5374 << ImplicitParamRecordType << FromRecordType
5375 << From->getSourceRange();
5376 }
5377
5378 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5379 ExprResult FromRes =
5380 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5381 if (FromRes.isInvalid())
5382 return ExprError();
5383 From = FromRes.get();
5384 }
5385
5386 if (!Context.hasSameType(From->getType(), DestType)) {
5387 CastKind CK;
5388 QualType PteeTy = DestType->getPointeeType();
5389 LangAS DestAS =
5390 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5391 if (FromRecordType.getAddressSpace() != DestAS)
5392 CK = CK_AddressSpaceConversion;
5393 else
5394 CK = CK_NoOp;
5395 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5396 }
5397 return From;
5398}
5399
5400/// TryContextuallyConvertToBool - Attempt to contextually convert the
5401/// expression From to bool (C++0x [conv]p3).
5402static ImplicitConversionSequence
5403TryContextuallyConvertToBool(Sema &S, Expr *From) {
5404 return TryImplicitConversion(S, From, S.Context.BoolTy,
5405 /*SuppressUserConversions=*/false,
5406 /*AllowExplicit=*/true,
5407 /*InOverloadResolution=*/false,
5408 /*CStyle=*/false,
5409 /*AllowObjCWritebackConversion=*/false,
5410 /*AllowObjCConversionOnExplicit=*/false);
5411}
5412
5413/// PerformContextuallyConvertToBool - Perform a contextual conversion
5414/// of the expression From to bool (C++0x [conv]p3).
5415ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5416 if (checkPlaceholderForOverload(*this, From))
5417 return ExprError();
5418
5419 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5420 if (!ICS.isBad())
5421 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5422
5423 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5424 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5425 << From->getType() << From->getSourceRange();
5426 return ExprError();
5427}
5428
5429/// Check that the specified conversion is permitted in a converted constant
5430/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5431/// is acceptable.
5432static bool CheckConvertedConstantConversions(Sema &S,
5433 StandardConversionSequence &SCS) {
5434 // Since we know that the target type is an integral or unscoped enumeration
5435 // type, most conversion kinds are impossible. All possible First and Third
5436 // conversions are fine.
5437 switch (SCS.Second) {
5438 case ICK_Identity:
5439 case ICK_Function_Conversion:
5440 case ICK_Integral_Promotion:
5441 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5442 case ICK_Zero_Queue_Conversion:
5443 return true;
5444
5445 case ICK_Boolean_Conversion:
5446 // Conversion from an integral or unscoped enumeration type to bool is
5447 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5448 // conversion, so we allow it in a converted constant expression.
5449 //
5450 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5451 // a lot of popular code. We should at least add a warning for this
5452 // (non-conforming) extension.
5453 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5454 SCS.getToType(2)->isBooleanType();
5455
5456 case ICK_Pointer_Conversion:
5457 case ICK_Pointer_Member:
5458 // C++1z: null pointer conversions and null member pointer conversions are
5459 // only permitted if the source type is std::nullptr_t.
5460 return SCS.getFromType()->isNullPtrType();
5461
5462 case ICK_Floating_Promotion:
5463 case ICK_Complex_Promotion:
5464 case ICK_Floating_Conversion:
5465 case ICK_Complex_Conversion:
5466 case ICK_Floating_Integral:
5467 case ICK_Compatible_Conversion:
5468 case ICK_Derived_To_Base:
5469 case ICK_Vector_Conversion:
5470 case ICK_Vector_Splat:
5471 case ICK_Complex_Real:
5472 case ICK_Block_Pointer_Conversion:
5473 case ICK_TransparentUnionConversion:
5474 case ICK_Writeback_Conversion:
5475 case ICK_Zero_Event_Conversion:
5476 case ICK_C_Only_Conversion:
5477 case ICK_Incompatible_Pointer_Conversion:
5478 return false;
5479
5480 case ICK_Lvalue_To_Rvalue:
5481 case ICK_Array_To_Pointer:
5482 case ICK_Function_To_Pointer:
5483 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5483)
;
5484
5485 case ICK_Qualification:
5486 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5486)
;
5487
5488 case ICK_Num_Conversion_Kinds:
5489 break;
5490 }
5491
5492 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5492)
;
5493}
5494
5495/// CheckConvertedConstantExpression - Check that the expression From is a
5496/// converted constant expression of type T, perform the conversion and produce
5497/// the converted expression, per C++11 [expr.const]p3.
5498static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5499 QualType T, APValue &Value,
5500 Sema::CCEKind CCE,
5501 bool RequireInt) {
5502 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5503, __PRETTY_FUNCTION__))
5503 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5503, __PRETTY_FUNCTION__))
;
5504
5505 if (checkPlaceholderForOverload(S, From))
5506 return ExprError();
5507
5508 // C++1z [expr.const]p3:
5509 // A converted constant expression of type T is an expression,
5510 // implicitly converted to type T, where the converted
5511 // expression is a constant expression and the implicit conversion
5512 // sequence contains only [... list of conversions ...].
5513 // C++1z [stmt.if]p2:
5514 // If the if statement is of the form if constexpr, the value of the
5515 // condition shall be a contextually converted constant expression of type
5516 // bool.
5517 ImplicitConversionSequence ICS =
5518 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5519 ? TryContextuallyConvertToBool(S, From)
5520 : TryCopyInitialization(S, From, T,
5521 /*SuppressUserConversions=*/false,
5522 /*InOverloadResolution=*/false,
5523 /*AllowObjCWritebackConversion=*/false,
5524 /*AllowExplicit=*/false);
5525 StandardConversionSequence *SCS = nullptr;
5526 switch (ICS.getKind()) {
5527 case ImplicitConversionSequence::StandardConversion:
5528 SCS = &ICS.Standard;
5529 break;
5530 case ImplicitConversionSequence::UserDefinedConversion:
5531 // We are converting to a non-class type, so the Before sequence
5532 // must be trivial.
5533 SCS = &ICS.UserDefined.After;
5534 break;
5535 case ImplicitConversionSequence::AmbiguousConversion:
5536 case ImplicitConversionSequence::BadConversion:
5537 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5538 return S.Diag(From->getBeginLoc(),
5539 diag::err_typecheck_converted_constant_expression)
5540 << From->getType() << From->getSourceRange() << T;
5541 return ExprError();
5542
5543 case ImplicitConversionSequence::EllipsisConversion:
5544 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5544)
;
5545 }
5546
5547 // Check that we would only use permitted conversions.
5548 if (!CheckConvertedConstantConversions(S, *SCS)) {
5549 return S.Diag(From->getBeginLoc(),
5550 diag::err_typecheck_converted_constant_expression_disallowed)
5551 << From->getType() << From->getSourceRange() << T;
5552 }
5553 // [...] and where the reference binding (if any) binds directly.
5554 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5555 return S.Diag(From->getBeginLoc(),
5556 diag::err_typecheck_converted_constant_expression_indirect)
5557 << From->getType() << From->getSourceRange() << T;
5558 }
5559
5560 ExprResult Result =
5561 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5562 if (Result.isInvalid())
5563 return Result;
5564
5565 // C++2a [intro.execution]p5:
5566 // A full-expression is [...] a constant-expression [...]
5567 Result =
5568 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5569 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5570 if (Result.isInvalid())
5571 return Result;
5572
5573 // Check for a narrowing implicit conversion.
5574 APValue PreNarrowingValue;
5575 QualType PreNarrowingType;
5576 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5577 PreNarrowingType)) {
5578 case NK_Dependent_Narrowing:
5579 // Implicit conversion to a narrower type, but the expression is
5580 // value-dependent so we can't tell whether it's actually narrowing.
5581 case NK_Variable_Narrowing:
5582 // Implicit conversion to a narrower type, and the value is not a constant
5583 // expression. We'll diagnose this in a moment.
5584 case NK_Not_Narrowing:
5585 break;
5586
5587 case NK_Constant_Narrowing:
5588 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5589 << CCE << /*Constant*/ 1
5590 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5591 break;
5592
5593 case NK_Type_Narrowing:
5594 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5595 << CCE << /*Constant*/ 0 << From->getType() << T;
5596 break;
5597 }
5598
5599 if (Result.get()->isValueDependent()) {
5600 Value = APValue();
5601 return Result;
5602 }
5603
5604 // Check the expression is a constant expression.
5605 SmallVector<PartialDiagnosticAt, 8> Notes;
5606 Expr::EvalResult Eval;
5607 Eval.Diag = &Notes;
5608 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5609 ? Expr::EvaluateForMangling
5610 : Expr::EvaluateForCodeGen;
5611
5612 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5613 (RequireInt && !Eval.Val.isInt())) {
5614 // The expression can't be folded, so we can't keep it at this position in
5615 // the AST.
5616 Result = ExprError();
5617 } else {
5618 Value = Eval.Val;
5619
5620 if (Notes.empty()) {
5621 // It's a constant expression.
5622 return ConstantExpr::Create(S.Context, Result.get(), Value);
5623 }
5624 }
5625
5626 // It's not a constant expression. Produce an appropriate diagnostic.
5627 if (Notes.size() == 1 &&
5628 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5629 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5630 else {
5631 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5632 << CCE << From->getSourceRange();
5633 for (unsigned I = 0; I < Notes.size(); ++I)
5634 S.Diag(Notes[I].first, Notes[I].second);
5635 }
5636 return ExprError();
5637}
5638
5639ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5640 APValue &Value, CCEKind CCE) {
5641 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5642}
5643
5644ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5645 llvm::APSInt &Value,
5646 CCEKind CCE) {
5647 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5647, __PRETTY_FUNCTION__))
;
5648
5649 APValue V;
5650 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5651 if (!R.isInvalid() && !R.get()->isValueDependent())
5652 Value = V.getInt();
5653 return R;
5654}
5655
5656
5657/// dropPointerConversions - If the given standard conversion sequence
5658/// involves any pointer conversions, remove them. This may change
5659/// the result type of the conversion sequence.
5660static void dropPointerConversion(StandardConversionSequence &SCS) {
5661 if (SCS.Second == ICK_Pointer_Conversion) {
5662 SCS.Second = ICK_Identity;
5663 SCS.Third = ICK_Identity;
5664 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5665 }
5666}
5667
5668/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5669/// convert the expression From to an Objective-C pointer type.
5670static ImplicitConversionSequence
5671TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5672 // Do an implicit conversion to 'id'.
5673 QualType Ty = S.Context.getObjCIdType();
5674 ImplicitConversionSequence ICS
5675 = TryImplicitConversion(S, From, Ty,
5676 // FIXME: Are these flags correct?
5677 /*SuppressUserConversions=*/false,
5678 /*AllowExplicit=*/true,
5679 /*InOverloadResolution=*/false,
5680 /*CStyle=*/false,
5681 /*AllowObjCWritebackConversion=*/false,
5682 /*AllowObjCConversionOnExplicit=*/true);
5683
5684 // Strip off any final conversions to 'id'.
5685 switch (ICS.getKind()) {
5686 case ImplicitConversionSequence::BadConversion:
5687 case ImplicitConversionSequence::AmbiguousConversion:
5688 case ImplicitConversionSequence::EllipsisConversion:
5689 break;
5690
5691 case ImplicitConversionSequence::UserDefinedConversion:
5692 dropPointerConversion(ICS.UserDefined.After);
5693 break;
5694
5695 case ImplicitConversionSequence::StandardConversion:
5696 dropPointerConversion(ICS.Standard);
5697 break;
5698 }
5699
5700 return ICS;
5701}
5702
5703/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5704/// conversion of the expression From to an Objective-C pointer type.
5705/// Returns a valid but null ExprResult if no conversion sequence exists.
5706ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5707 if (checkPlaceholderForOverload(*this, From))
5708 return ExprError();
5709
5710 QualType Ty = Context.getObjCIdType();
5711 ImplicitConversionSequence ICS =
5712 TryContextuallyConvertToObjCPointer(*this, From);
5713 if (!ICS.isBad())
5714 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5715 return ExprResult();
5716}
5717
5718/// Determine whether the provided type is an integral type, or an enumeration
5719/// type of a permitted flavor.
5720bool Sema::ICEConvertDiagnoser::match(QualType T) {
5721 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5722 : T->isIntegralOrUnscopedEnumerationType();
5723}
5724
5725static ExprResult
5726diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5727 Sema::ContextualImplicitConverter &Converter,
5728 QualType T, UnresolvedSetImpl &ViableConversions) {
5729
5730 if (Converter.Suppress)
5731 return ExprError();
5732
5733 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5734 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5735 CXXConversionDecl *Conv =
5736 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5737 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5738 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5739 }
5740 return From;
5741}
5742
5743static bool
5744diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5745 Sema::ContextualImplicitConverter &Converter,
5746 QualType T, bool HadMultipleCandidates,
5747 UnresolvedSetImpl &ExplicitConversions) {
5748 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5749 DeclAccessPair Found = ExplicitConversions[0];
5750 CXXConversionDecl *Conversion =
5751 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5752
5753 // The user probably meant to invoke the given explicit
5754 // conversion; use it.
5755 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5756 std::string TypeStr;
5757 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5758
5759 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5760 << FixItHint::CreateInsertion(From->getBeginLoc(),
5761 "static_cast<" + TypeStr + ">(")
5762 << FixItHint::CreateInsertion(
5763 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5764 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5765
5766 // If we aren't in a SFINAE context, build a call to the
5767 // explicit conversion function.
5768 if (SemaRef.isSFINAEContext())
5769 return true;
5770
5771 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5772 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5773 HadMultipleCandidates);
5774 if (Result.isInvalid())
5775 return true;
5776 // Record usage of conversion in an implicit cast.
5777 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5778 CK_UserDefinedConversion, Result.get(),
5779 nullptr, Result.get()->getValueKind());
5780 }
5781 return false;
5782}
5783
5784static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5785 Sema::ContextualImplicitConverter &Converter,
5786 QualType T, bool HadMultipleCandidates,
5787 DeclAccessPair &Found) {
5788 CXXConversionDecl *Conversion =
5789 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5790 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5791
5792 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5793 if (!Converter.SuppressConversion) {
5794 if (SemaRef.isSFINAEContext())
5795 return true;
5796
5797 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5798 << From->getSourceRange();
5799 }
5800
5801 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5802 HadMultipleCandidates);
5803 if (Result.isInvalid())
5804 return true;
5805 // Record usage of conversion in an implicit cast.
5806 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5807 CK_UserDefinedConversion, Result.get(),
5808 nullptr, Result.get()->getValueKind());
5809 return false;
5810}
5811
5812static ExprResult finishContextualImplicitConversion(
5813 Sema &SemaRef, SourceLocation Loc, Expr *From,
5814 Sema::ContextualImplicitConverter &Converter) {
5815 if (!Converter.match(From->getType()) && !Converter.Suppress)
5816 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5817 << From->getSourceRange();
5818
5819 return SemaRef.DefaultLvalueConversion(From);
5820}
5821
5822static void
5823collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5824 UnresolvedSetImpl &ViableConversions,
5825 OverloadCandidateSet &CandidateSet) {
5826 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5827 DeclAccessPair FoundDecl = ViableConversions[I];
5828 NamedDecl *D = FoundDecl.getDecl();
5829 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5830 if (isa<UsingShadowDecl>(D))
5831 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5832
5833 CXXConversionDecl *Conv;
5834 FunctionTemplateDecl *ConvTemplate;
5835 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5836 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5837 else
5838 Conv = cast<CXXConversionDecl>(D);
5839
5840 if (ConvTemplate)
5841 SemaRef.AddTemplateConversionCandidate(
5842 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5843 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5844 else
5845 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5846 ToType, CandidateSet,
5847 /*AllowObjCConversionOnExplicit=*/false,
5848 /*AllowExplicit*/ true);
5849 }
5850}
5851
5852/// Attempt to convert the given expression to a type which is accepted
5853/// by the given converter.
5854///
5855/// This routine will attempt to convert an expression of class type to a
5856/// type accepted by the specified converter. In C++11 and before, the class
5857/// must have a single non-explicit conversion function converting to a matching
5858/// type. In C++1y, there can be multiple such conversion functions, but only
5859/// one target type.
5860///
5861/// \param Loc The source location of the construct that requires the
5862/// conversion.
5863///
5864/// \param From The expression we're converting from.
5865///
5866/// \param Converter Used to control and diagnose the conversion process.
5867///
5868/// \returns The expression, converted to an integral or enumeration type if
5869/// successful.
5870ExprResult Sema::PerformContextualImplicitConversion(
5871 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5872 // We can't perform any more checking for type-dependent expressions.
5873 if (From->isTypeDependent())
5874 return From;
5875
5876 // Process placeholders immediately.
5877 if (From->hasPlaceholderType()) {
5878 ExprResult result = CheckPlaceholderExpr(From);
5879 if (result.isInvalid())
5880 return result;
5881 From = result.get();
5882 }
5883
5884 // If the expression already has a matching type, we're golden.
5885 QualType T = From->getType();
5886 if (Converter.match(T))
5887 return DefaultLvalueConversion(From);
5888
5889 // FIXME: Check for missing '()' if T is a function type?
5890
5891 // We can only perform contextual implicit conversions on objects of class
5892 // type.
5893 const RecordType *RecordTy = T->getAs<RecordType>();
5894 if (!RecordTy || !getLangOpts().CPlusPlus) {
5895 if (!Converter.Suppress)
5896 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5897 return From;
5898 }
5899
5900 // We must have a complete class type.
5901 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5902 ContextualImplicitConverter &Converter;
5903 Expr *From;
5904
5905 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5906 : Converter(Converter), From(From) {}
5907
5908 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5909 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5910 }
5911 } IncompleteDiagnoser(Converter, From);
5912
5913 if (Converter.Suppress ? !isCompleteType(Loc, T)
5914 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5915 return From;
5916
5917 // Look for a conversion to an integral or enumeration type.
5918 UnresolvedSet<4>
5919 ViableConversions; // These are *potentially* viable in C++1y.
5920 UnresolvedSet<4> ExplicitConversions;
5921 const auto &Conversions =
5922 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5923
5924 bool HadMultipleCandidates =
5925 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5926
5927 // To check that there is only one target type, in C++1y:
5928 QualType ToType;
5929 bool HasUniqueTargetType = true;
5930
5931 // Collect explicit or viable (potentially in C++1y) conversions.
5932 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5933 NamedDecl *D = (*I)->getUnderlyingDecl();
5934 CXXConversionDecl *Conversion;
5935 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5936 if (ConvTemplate) {
5937 if (getLangOpts().CPlusPlus14)
5938 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5939 else
5940 continue; // C++11 does not consider conversion operator templates(?).
5941 } else
5942 Conversion = cast<CXXConversionDecl>(D);
5943
5944 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5946, __PRETTY_FUNCTION__))
5945 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5946, __PRETTY_FUNCTION__))
5946 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 5946, __PRETTY_FUNCTION__))
;
5947
5948 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5949 if (Converter.match(CurToType) || ConvTemplate) {
5950
5951 if (Conversion->isExplicit()) {
5952 // FIXME: For C++1y, do we need this restriction?
5953 // cf. diagnoseNoViableConversion()
5954 if (!ConvTemplate)
5955 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5956 } else {
5957 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5958 if (ToType.isNull())
5959 ToType = CurToType.getUnqualifiedType();
5960 else if (HasUniqueTargetType &&
5961 (CurToType.getUnqualifiedType() != ToType))
5962 HasUniqueTargetType = false;
5963 }
5964 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5965 }
5966 }
5967 }
5968
5969 if (getLangOpts().CPlusPlus14) {
5970 // C++1y [conv]p6:
5971 // ... An expression e of class type E appearing in such a context
5972 // is said to be contextually implicitly converted to a specified
5973 // type T and is well-formed if and only if e can be implicitly
5974 // converted to a type T that is determined as follows: E is searched
5975 // for conversion functions whose return type is cv T or reference to
5976 // cv T such that T is allowed by the context. There shall be
5977 // exactly one such T.
5978
5979 // If no unique T is found:
5980 if (ToType.isNull()) {
5981 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5982 HadMultipleCandidates,
5983 ExplicitConversions))
5984 return ExprError();
5985 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5986 }
5987
5988 // If more than one unique Ts are found:
5989 if (!HasUniqueTargetType)
5990 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5991 ViableConversions);
5992
5993 // If one unique T is found:
5994 // First, build a candidate set from the previously recorded
5995 // potentially viable conversions.
5996 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5997 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5998 CandidateSet);
5999
6000 // Then, perform overload resolution over the candidate set.
6001 OverloadCandidateSet::iterator Best;
6002 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6003 case OR_Success: {
6004 // Apply this conversion.
6005 DeclAccessPair Found =
6006 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6007 if (recordConversion(*this, Loc, From, Converter, T,
6008 HadMultipleCandidates, Found))
6009 return ExprError();
6010 break;
6011 }
6012 case OR_Ambiguous:
6013 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6014 ViableConversions);
6015 case OR_No_Viable_Function:
6016 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6017 HadMultipleCandidates,
6018 ExplicitConversions))
6019 return ExprError();
6020 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6021 case OR_Deleted:
6022 // We'll complain below about a non-integral condition type.
6023 break;
6024 }
6025 } else {
6026 switch (ViableConversions.size()) {
6027 case 0: {
6028 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6029 HadMultipleCandidates,
6030 ExplicitConversions))
6031 return ExprError();
6032
6033 // We'll complain below about a non-integral condition type.
6034 break;
6035 }
6036 case 1: {
6037 // Apply this conversion.
6038 DeclAccessPair Found = ViableConversions[0];
6039 if (recordConversion(*this, Loc, From, Converter, T,
6040 HadMultipleCandidates, Found))
6041 return ExprError();
6042 break;
6043 }
6044 default:
6045 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6046 ViableConversions);
6047 }
6048 }
6049
6050 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6051}
6052
6053/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6054/// an acceptable non-member overloaded operator for a call whose
6055/// arguments have types T1 (and, if non-empty, T2). This routine
6056/// implements the check in C++ [over.match.oper]p3b2 concerning
6057/// enumeration types.
6058static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6059 FunctionDecl *Fn,
6060 ArrayRef<Expr *> Args) {
6061 QualType T1 = Args[0]->getType();
6062 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6063
6064 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6065 return true;
6066
6067 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6068 return true;
6069
6070 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
6071 if (Proto->getNumParams() < 1)
6072 return false;
6073
6074 if (T1->isEnumeralType()) {
6075 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6076 if (Context.hasSameUnqualifiedType(T1, ArgType))
6077 return true;
6078 }
6079
6080 if (Proto->getNumParams() < 2)
6081 return false;
6082
6083 if (!T2.isNull() && T2->isEnumeralType()) {
6084 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6085 if (Context.hasSameUnqualifiedType(T2, ArgType))
6086 return true;
6087 }
6088
6089 return false;
6090}
6091
6092/// AddOverloadCandidate - Adds the given function to the set of
6093/// candidate functions, using the given function call arguments. If
6094/// @p SuppressUserConversions, then don't allow user-defined
6095/// conversions via constructors or conversion operators.
6096///
6097/// \param PartialOverloading true if we are performing "partial" overloading
6098/// based on an incomplete set of function arguments. This feature is used by
6099/// code completion.
6100void Sema::AddOverloadCandidate(
6101 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6102 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6103 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6104 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6105 OverloadCandidateParamOrder PO) {
6106 const FunctionProtoType *Proto
6107 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6108 assert(Proto && "Functions without a prototype cannot be overloaded")((Proto && "Functions without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6108, __PRETTY_FUNCTION__))
;
6109 assert(!Function->getDescribedFunctionTemplate() &&((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6110, __PRETTY_FUNCTION__))
6110 "Use AddTemplateOverloadCandidate for function templates")((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6110, __PRETTY_FUNCTION__))
;
6111
6112 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6113 if (!isa<CXXConstructorDecl>(Method)) {
6114 // If we get here, it's because we're calling a member function
6115 // that is named without a member access expression (e.g.,
6116 // "this->f") that was either written explicitly or created
6117 // implicitly. This can happen with a qualified call to a member
6118 // function, e.g., X::f(). We use an empty type for the implied
6119 // object argument (C++ [over.call.func]p3), and the acting context
6120 // is irrelevant.
6121 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6122 Expr::Classification::makeSimpleLValue(), Args,
6123 CandidateSet, SuppressUserConversions,
6124 PartialOverloading, EarlyConversions, PO);
6125 return;
6126 }
6127 // We treat a constructor like a non-member function, since its object
6128 // argument doesn't participate in overload resolution.
6129 }
6130
6131 if (!CandidateSet.isNewCandidate(Function, PO))
6132 return;
6133
6134 // C++11 [class.copy]p11: [DR1402]
6135 // A defaulted move constructor that is defined as deleted is ignored by
6136 // overload resolution.
6137 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6138 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6139 Constructor->isMoveConstructor())
6140 return;
6141
6142 // Overload resolution is always an unevaluated context.
6143 EnterExpressionEvaluationContext Unevaluated(
6144 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6145
6146 // C++ [over.match.oper]p3:
6147 // if no operand has a class type, only those non-member functions in the
6148 // lookup set that have a first parameter of type T1 or "reference to
6149 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6150 // is a right operand) a second parameter of type T2 or "reference to
6151 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6152 // candidate functions.
6153 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6154 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6155 return;
6156
6157 // Add this candidate
6158 OverloadCandidate &Candidate =
6159 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6160 Candidate.FoundDecl = FoundDecl;
6161 Candidate.Function = Function;
6162 Candidate.Viable = true;
6163 Candidate.RewriteKind =
6164 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6165 Candidate.IsSurrogate = false;
6166 Candidate.IsADLCandidate = IsADLCandidate;
6167 Candidate.IgnoreObjectArgument = false;
6168 Candidate.ExplicitCallArguments = Args.size();
6169
6170 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6171 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6172 Candidate.Viable = false;
6173 Candidate.FailureKind = ovl_non_default_multiversion_function;
6174 return;
6175 }
6176
6177 if (Constructor) {
6178 // C++ [class.copy]p3:
6179 // A member function template is never instantiated to perform the copy
6180 // of a class object to an object of its class type.
6181 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6182 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6183 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6184 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6185 ClassType))) {
6186 Candidate.Viable = false;
6187 Candidate.FailureKind = ovl_fail_illegal_constructor;
6188 return;
6189 }
6190
6191 // C++ [over.match.funcs]p8: (proposed DR resolution)
6192 // A constructor inherited from class type C that has a first parameter
6193 // of type "reference to P" (including such a constructor instantiated
6194 // from a template) is excluded from the set of candidate functions when
6195 // constructing an object of type cv D if the argument list has exactly
6196 // one argument and D is reference-related to P and P is reference-related
6197 // to C.
6198 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6199 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6200 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6201 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6202 QualType C = Context.getRecordType(Constructor->getParent());
6203 QualType D = Context.getRecordType(Shadow->getParent());
6204 SourceLocation Loc = Args.front()->getExprLoc();
6205 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6206 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6207 Candidate.Viable = false;
6208 Candidate.FailureKind = ovl_fail_inhctor_slice;
6209 return;
6210 }
6211 }
6212
6213 // Check that the constructor is capable of constructing an object in the
6214 // destination address space.
6215 if (!Qualifiers::isAddressSpaceSupersetOf(
6216 Constructor->getMethodQualifiers().getAddressSpace(),
6217 CandidateSet.getDestAS())) {
6218 Candidate.Viable = false;
6219 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6220 }
6221 }
6222
6223 unsigned NumParams = Proto->getNumParams();
6224
6225 // (C++ 13.3.2p2): A candidate function having fewer than m
6226 // parameters is viable only if it has an ellipsis in its parameter
6227 // list (8.3.5).
6228 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6229 !Proto->isVariadic()) {
6230 Candidate.Viable = false;
6231 Candidate.FailureKind = ovl_fail_too_many_arguments;
6232 return;
6233 }
6234
6235 // (C++ 13.3.2p2): A candidate function having more than m parameters
6236 // is viable only if the (m+1)st parameter has a default argument
6237 // (8.3.6). For the purposes of overload resolution, the
6238 // parameter list is truncated on the right, so that there are
6239 // exactly m parameters.
6240 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6241 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6242 // Not enough arguments.
6243 Candidate.Viable = false;
6244 Candidate.FailureKind = ovl_fail_too_few_arguments;
6245 return;
6246 }
6247
6248 // (CUDA B.1): Check for invalid calls between targets.
6249 if (getLangOpts().CUDA)
6250 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6251 // Skip the check for callers that are implicit members, because in this
6252 // case we may not yet know what the member's target is; the target is
6253 // inferred for the member automatically, based on the bases and fields of
6254 // the class.
6255 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6256 Candidate.Viable = false;
6257 Candidate.FailureKind = ovl_fail_bad_target;
6258 return;
6259 }
6260
6261 // Determine the implicit conversion sequences for each of the
6262 // arguments.
6263 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6264 unsigned ConvIdx =
6265 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6266 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6267 // We already formed a conversion sequence for this parameter during
6268 // template argument deduction.
6269 } else if (ArgIdx < NumParams) {
6270 // (C++ 13.3.2p3): for F to be a viable function, there shall
6271 // exist for each argument an implicit conversion sequence
6272 // (13.3.3.1) that converts that argument to the corresponding
6273 // parameter of F.
6274 QualType ParamType = Proto->getParamType(ArgIdx);
6275 Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6276 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6277 /*InOverloadResolution=*/true,
6278 /*AllowObjCWritebackConversion=*/
6279 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6280 if (Candidate.Conversions[ConvIdx].isBad()) {
6281 Candidate.Viable = false;
6282 Candidate.FailureKind = ovl_fail_bad_conversion;
6283 return;
6284 }
6285 } else {
6286 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6287 // argument for which there is no corresponding parameter is
6288 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6289 Candidate.Conversions[ConvIdx].setEllipsis();
6290 }
6291 }
6292
6293 if (!AllowExplicit) {
6294 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6295 if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6296 Candidate.Viable = false;
6297 Candidate.FailureKind = ovl_fail_explicit_resolved;
6298 return;
6299 }
6300 }
6301
6302 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6303 Candidate.Viable = false;
6304 Candidate.FailureKind = ovl_fail_enable_if;
6305 Candidate.DeductionFailure.Data = FailedAttr;
6306 return;
6307 }
6308
6309 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6310 Candidate.Viable = false;
6311 Candidate.FailureKind = ovl_fail_ext_disabled;
6312 return;
6313 }
6314}
6315
6316ObjCMethodDecl *
6317Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6318 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6319 if (Methods.size() <= 1)
6320 return nullptr;
6321
6322 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6323 bool Match = true;
6324 ObjCMethodDecl *Method = Methods[b];
6325 unsigned NumNamedArgs = Sel.getNumArgs();
6326 // Method might have more arguments than selector indicates. This is due
6327 // to addition of c-style arguments in method.
6328 if (Method->param_size() > NumNamedArgs)
6329 NumNamedArgs = Method->param_size();
6330 if (Args.size() < NumNamedArgs)
6331 continue;
6332
6333 for (unsigned i = 0; i < NumNamedArgs; i++) {
6334 // We can't do any type-checking on a type-dependent argument.
6335 if (Args[i]->isTypeDependent()) {
6336 Match = false;
6337 break;
6338 }
6339
6340 ParmVarDecl *param = Method->parameters()[i];
6341 Expr *argExpr = Args[i];
6342 assert(argExpr && "SelectBestMethod(): missing expression")((argExpr && "SelectBestMethod(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6342, __PRETTY_FUNCTION__))
;
6343
6344 // Strip the unbridged-cast placeholder expression off unless it's
6345 // a consumed argument.
6346 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6347 !param->hasAttr<CFConsumedAttr>())
6348 argExpr = stripARCUnbridgedCast(argExpr);
6349
6350 // If the parameter is __unknown_anytype, move on to the next method.
6351 if (param->getType() == Context.UnknownAnyTy) {
6352 Match = false;
6353 break;
6354 }
6355
6356 ImplicitConversionSequence ConversionState
6357 = TryCopyInitialization(*this, argExpr, param->getType(),
6358 /*SuppressUserConversions*/false,
6359 /*InOverloadResolution=*/true,
6360 /*AllowObjCWritebackConversion=*/
6361 getLangOpts().ObjCAutoRefCount,
6362 /*AllowExplicit*/false);
6363 // This function looks for a reasonably-exact match, so we consider
6364 // incompatible pointer conversions to be a failure here.
6365 if (ConversionState.isBad() ||
6366 (ConversionState.isStandard() &&
6367 ConversionState.Standard.Second ==
6368 ICK_Incompatible_Pointer_Conversion)) {
6369 Match = false;
6370 break;
6371 }
6372 }
6373 // Promote additional arguments to variadic methods.
6374 if (Match && Method->isVariadic()) {
6375 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6376 if (Args[i]->isTypeDependent()) {
6377 Match = false;
6378 break;
6379 }
6380 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6381 nullptr);
6382 if (Arg.isInvalid()) {
6383 Match = false;
6384 break;
6385 }
6386 }
6387 } else {
6388 // Check for extra arguments to non-variadic methods.
6389 if (Args.size() != NumNamedArgs)
6390 Match = false;
6391 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6392 // Special case when selectors have no argument. In this case, select
6393 // one with the most general result type of 'id'.
6394 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6395 QualType ReturnT = Methods[b]->getReturnType();
6396 if (ReturnT->isObjCIdType())
6397 return Methods[b];
6398 }
6399 }
6400 }
6401
6402 if (Match)
6403 return Method;
6404 }
6405 return nullptr;
6406}
6407
6408static bool
6409convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6410 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6411 bool MissingImplicitThis, Expr *&ConvertedThis,
6412 SmallVectorImpl<Expr *> &ConvertedArgs) {
6413 if (ThisArg) {
6414 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6415 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6416, __PRETTY_FUNCTION__))
6416 "Shouldn't have `this` for ctors!")((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6416, __PRETTY_FUNCTION__))
;
6417 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? static_cast<void> (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6417, __PRETTY_FUNCTION__))
;
6418 ExprResult R = S.PerformObjectArgumentInitialization(
6419 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6420 if (R.isInvalid())
6421 return false;
6422 ConvertedThis = R.get();
6423 } else {
6424 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6425 (void)MD;
6426 assert((MissingImplicitThis || MD->isStatic() ||(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6428, __PRETTY_FUNCTION__))
6427 isa<CXXConstructorDecl>(MD)) &&(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6428, __PRETTY_FUNCTION__))
6428 "Expected `this` for non-ctor instance methods")(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6428, __PRETTY_FUNCTION__))
;
6429 }
6430 ConvertedThis = nullptr;
6431 }
6432
6433 // Ignore any variadic arguments. Converting them is pointless, since the
6434 // user can't refer to them in the function condition.
6435 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6436
6437 // Convert the arguments.
6438 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6439 ExprResult R;
6440 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6441 S.Context, Function->getParamDecl(I)),
6442 SourceLocation(), Args[I]);
6443
6444 if (R.isInvalid())
6445 return false;
6446
6447 ConvertedArgs.push_back(R.get());
6448 }
6449
6450 if (Trap.hasErrorOccurred())
6451 return false;
6452
6453 // Push default arguments if needed.
6454 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6455 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6456 ParmVarDecl *P = Function->getParamDecl(i);
6457 Expr *DefArg = P->hasUninstantiatedDefaultArg()
6458 ? P->getUninstantiatedDefaultArg()
6459 : P->getDefaultArg();
6460 // This can only happen in code completion, i.e. when PartialOverloading
6461 // is true.
6462 if (!DefArg)
6463 return false;
6464 ExprResult R =
6465 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6466 S.Context, Function->getParamDecl(i)),
6467 SourceLocation(), DefArg);
6468 if (R.isInvalid())
6469 return false;
6470 ConvertedArgs.push_back(R.get());
6471 }
6472
6473 if (Trap.hasErrorOccurred())
6474 return false;
6475 }
6476 return true;
6477}
6478
6479EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6480 bool MissingImplicitThis) {
6481 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6482 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6483 return nullptr;
6484
6485 SFINAETrap Trap(*this);
6486 SmallVector<Expr *, 16> ConvertedArgs;
6487 // FIXME: We should look into making enable_if late-parsed.
6488 Expr *DiscardedThis;
6489 if (!convertArgsForAvailabilityChecks(
6490 *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6491 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6492 return *EnableIfAttrs.begin();
6493
6494 for (auto *EIA : EnableIfAttrs) {
6495 APValue Result;
6496 // FIXME: This doesn't consider value-dependent cases, because doing so is
6497 // very difficult. Ideally, we should handle them more gracefully.
6498 if (EIA->getCond()->isValueDependent() ||
6499 !EIA->getCond()->EvaluateWithSubstitution(
6500 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6501 return EIA;
6502
6503 if (!Result.isInt() || !Result.getInt().getBoolValue())
6504 return EIA;
6505 }
6506 return nullptr;
6507}
6508
6509template <typename CheckFn>
6510static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6511 bool ArgDependent, SourceLocation Loc,
6512 CheckFn &&IsSuccessful) {
6513 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6514 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6515 if (ArgDependent == DIA->getArgDependent())
6516 Attrs.push_back(DIA);
6517 }
6518
6519 // Common case: No diagnose_if attributes, so we can quit early.
6520 if (Attrs.empty())
6521 return false;
6522
6523 auto WarningBegin = std::stable_partition(
6524 Attrs.begin(), Attrs.end(),
6525 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6526
6527 // Note that diagnose_if attributes are late-parsed, so they appear in the
6528 // correct order (unlike enable_if attributes).
6529 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6530 IsSuccessful);
6531 if (ErrAttr != WarningBegin) {
6532 const DiagnoseIfAttr *DIA = *ErrAttr;
6533 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6534 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6535 << DIA->getParent() << DIA->getCond()->getSourceRange();
6536 return true;
6537 }
6538
6539 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6540 if (IsSuccessful(DIA)) {
6541 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6542 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6543 << DIA->getParent() << DIA->getCond()->getSourceRange();
6544 }
6545
6546 return false;
6547}
6548
6549bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6550 const Expr *ThisArg,
6551 ArrayRef<const Expr *> Args,
6552 SourceLocation Loc) {
6553 return diagnoseDiagnoseIfAttrsWith(
6554 *this, Function, /*ArgDependent=*/true, Loc,
6555 [&](const DiagnoseIfAttr *DIA) {
6556 APValue Result;
6557 // It's sane to use the same Args for any redecl of this function, since
6558 // EvaluateWithSubstitution only cares about the position of each
6559 // argument in the arg list, not the ParmVarDecl* it maps to.
6560 if (!DIA->getCond()->EvaluateWithSubstitution(
6561 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6562 return false;
6563 return Result.isInt() && Result.getInt().getBoolValue();
6564 });
6565}
6566
6567bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6568 SourceLocation Loc) {
6569 return diagnoseDiagnoseIfAttrsWith(
6570 *this, ND, /*ArgDependent=*/false, Loc,
6571 [&](const DiagnoseIfAttr *DIA) {
6572 bool Result;
6573 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6574 Result;
6575 });
6576}
6577
6578/// Add all of the function declarations in the given function set to
6579/// the overload candidate set.
6580void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6581 ArrayRef<Expr *> Args,
6582 OverloadCandidateSet &CandidateSet,
6583 TemplateArgumentListInfo *ExplicitTemplateArgs,
6584 bool SuppressUserConversions,
6585 bool PartialOverloading,
6586 bool FirstArgumentIsBase) {
6587 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6588 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6589 ArrayRef<Expr *> FunctionArgs = Args;
6590
6591 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6592 FunctionDecl *FD =
6593 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6594
6595 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6596 QualType ObjectType;
6597 Expr::Classification ObjectClassification;
6598 if (Args.size() > 0) {
6599 if (Expr *E = Args[0]) {
6600 // Use the explicit base to restrict the lookup:
6601 ObjectType = E->getType();
6602 // Pointers in the object arguments are implicitly dereferenced, so we
6603 // always classify them as l-values.
6604 if (!ObjectType.isNull() && ObjectType->isPointerType())
6605 ObjectClassification = Expr::Classification::makeSimpleLValue();
6606 else
6607 ObjectClassification = E->Classify(Context);
6608 } // .. else there is an implicit base.
6609 FunctionArgs = Args.slice(1);
6610 }
6611 if (FunTmpl) {
6612 AddMethodTemplateCandidate(
6613 FunTmpl, F.getPair(),
6614 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6615 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6616 FunctionArgs, CandidateSet, SuppressUserConversions,
6617 PartialOverloading);
6618 } else {
6619 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6620 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6621 ObjectClassification, FunctionArgs, CandidateSet,
6622 SuppressUserConversions, PartialOverloading);
6623 }
6624 } else {
6625 // This branch handles both standalone functions and static methods.
6626
6627 // Slice the first argument (which is the base) when we access
6628 // static method as non-static.
6629 if (Args.size() > 0 &&
6630 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6631 !isa<CXXConstructorDecl>(FD)))) {
6632 assert(cast<CXXMethodDecl>(FD)->isStatic())((cast<CXXMethodDecl>(FD)->isStatic()) ? static_cast
<void> (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6632, __PRETTY_FUNCTION__))
;
6633 FunctionArgs = Args.slice(1);
6634 }
6635 if (FunTmpl) {
6636 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6637 ExplicitTemplateArgs, FunctionArgs,
6638 CandidateSet, SuppressUserConversions,
6639 PartialOverloading);
6640 } else {
6641 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6642 SuppressUserConversions, PartialOverloading);
6643 }
6644 }
6645 }
6646}
6647
6648/// AddMethodCandidate - Adds a named decl (which is some kind of
6649/// method) as a method candidate to the given overload set.
6650void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6651 Expr::Classification ObjectClassification,
6652 ArrayRef<Expr *> Args,
6653 OverloadCandidateSet &CandidateSet,
6654 bool SuppressUserConversions,
6655 OverloadCandidateParamOrder PO) {
6656 NamedDecl *Decl = FoundDecl.getDecl();
6657 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6658
6659 if (isa<UsingShadowDecl>(Decl))
6660 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6661
6662 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6663 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6664, __PRETTY_FUNCTION__))
6664 "Expected a member function template")((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6664, __PRETTY_FUNCTION__))
;
6665 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6666 /*ExplicitArgs*/ nullptr, ObjectType,
6667 ObjectClassification, Args, CandidateSet,
6668 SuppressUserConversions, false, PO);
6669 } else {
6670 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6671 ObjectType, ObjectClassification, Args, CandidateSet,
6672 SuppressUserConversions, false, None, PO);
6673 }
6674}
6675
6676/// AddMethodCandidate - Adds the given C++ member function to the set
6677/// of candidate functions, using the given function call arguments
6678/// and the object argument (@c Object). For example, in a call
6679/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6680/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6681/// allow user-defined conversions via constructors or conversion
6682/// operators.
6683void
6684Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6685 CXXRecordDecl *ActingContext, QualType ObjectType,
6686 Expr::Classification ObjectClassification,
6687 ArrayRef<Expr *> Args,
6688 OverloadCandidateSet &CandidateSet,
6689 bool SuppressUserConversions,
6690 bool PartialOverloading,
6691 ConversionSequenceList EarlyConversions,
6692 OverloadCandidateParamOrder PO) {
6693 const FunctionProtoType *Proto
6694 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6695 assert(Proto && "Methods without a prototype cannot be overloaded")((Proto && "Methods without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6695, __PRETTY_FUNCTION__))
;
6696 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6697, __PRETTY_FUNCTION__))
6697 "Use AddOverloadCandidate for constructors")((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6697, __PRETTY_FUNCTION__))
;
6698
6699 if (!CandidateSet.isNewCandidate(Method, PO))
6700 return;
6701
6702 // C++11 [class.copy]p23: [DR1402]
6703 // A defaulted move assignment operator that is defined as deleted is
6704 // ignored by overload resolution.
6705 if (Method->isDefaulted() && Method->isDeleted() &&
6706 Method->isMoveAssignmentOperator())
6707 return;
6708
6709 // Overload resolution is always an unevaluated context.
6710 EnterExpressionEvaluationContext Unevaluated(
6711 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6712
6713 // Add this candidate
6714 OverloadCandidate &Candidate =
6715 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6716 Candidate.FoundDecl = FoundDecl;
6717 Candidate.Function = Method;
6718 Candidate.RewriteKind =
6719 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6720 Candidate.IsSurrogate = false;
6721 Candidate.IgnoreObjectArgument = false;
6722 Candidate.ExplicitCallArguments = Args.size();
6723
6724 unsigned NumParams = Proto->getNumParams();
6725
6726 // (C++ 13.3.2p2): A candidate function having fewer than m
6727 // parameters is viable only if it has an ellipsis in its parameter
6728 // list (8.3.5).
6729 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6730 !Proto->isVariadic()) {
6731 Candidate.Viable = false;
6732 Candidate.FailureKind = ovl_fail_too_many_arguments;
6733 return;
6734 }
6735
6736 // (C++ 13.3.2p2): A candidate function having more than m parameters
6737 // is viable only if the (m+1)st parameter has a default argument
6738 // (8.3.6). For the purposes of overload resolution, the
6739 // parameter list is truncated on the right, so that there are
6740 // exactly m parameters.
6741 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6742 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6743 // Not enough arguments.
6744 Candidate.Viable = false;
6745 Candidate.FailureKind = ovl_fail_too_few_arguments;
6746 return;
6747 }
6748
6749 Candidate.Viable = true;
6750
6751 if (Method->isStatic() || ObjectType.isNull())
6752 // The implicit object argument is ignored.
6753 Candidate.IgnoreObjectArgument = true;
6754 else {
6755 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6756 // Determine the implicit conversion sequence for the object
6757 // parameter.
6758 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6759 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6760 Method, ActingContext);
6761 if (Candidate.Conversions[ConvIdx].isBad()) {
6762 Candidate.Viable = false;
6763 Candidate.FailureKind = ovl_fail_bad_conversion;
6764 return;
6765 }
6766 }
6767
6768 // (CUDA B.1): Check for invalid calls between targets.
6769 if (getLangOpts().CUDA)
6770 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6771 if (!IsAllowedCUDACall(Caller, Method)) {
6772 Candidate.Viable = false;
6773 Candidate.FailureKind = ovl_fail_bad_target;
6774 return;
6775 }
6776
6777 // Determine the implicit conversion sequences for each of the
6778 // arguments.
6779 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6780 unsigned ConvIdx =
6781 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6782 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6783 // We already formed a conversion sequence for this parameter during
6784 // template argument deduction.
6785 } else if (ArgIdx < NumParams) {
6786 // (C++ 13.3.2p3): for F to be a viable function, there shall
6787 // exist for each argument an implicit conversion sequence
6788 // (13.3.3.1) that converts that argument to the corresponding
6789 // parameter of F.
6790 QualType ParamType = Proto->getParamType(ArgIdx);
6791 Candidate.Conversions[ConvIdx]
6792 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6793 SuppressUserConversions,
6794 /*InOverloadResolution=*/true,
6795 /*AllowObjCWritebackConversion=*/
6796 getLangOpts().ObjCAutoRefCount);
6797 if (Candidate.Conversions[ConvIdx].isBad()) {
6798 Candidate.Viable = false;
6799 Candidate.FailureKind = ovl_fail_bad_conversion;
6800 return;
6801 }
6802 } else {
6803 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6804 // argument for which there is no corresponding parameter is
6805 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6806 Candidate.Conversions[ConvIdx].setEllipsis();
6807 }
6808 }
6809
6810 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6811 Candidate.Viable = false;
6812 Candidate.FailureKind = ovl_fail_enable_if;
6813 Candidate.DeductionFailure.Data = FailedAttr;
6814 return;
6815 }
6816
6817 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6818 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6819 Candidate.Viable = false;
6820 Candidate.FailureKind = ovl_non_default_multiversion_function;
6821 }
6822}
6823
6824/// Add a C++ member function template as a candidate to the candidate
6825/// set, using template argument deduction to produce an appropriate member
6826/// function template specialization.
6827void Sema::AddMethodTemplateCandidate(
6828 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
6829 CXXRecordDecl *ActingContext,
6830 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
6831 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
6832 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6833 bool PartialOverloading, OverloadCandidateParamOrder PO) {
6834 if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
6835 return;
6836
6837 // C++ [over.match.funcs]p7:
6838 // In each case where a candidate is a function template, candidate
6839 // function template specializations are generated using template argument
6840 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6841 // candidate functions in the usual way.113) A given name can refer to one
6842 // or more function templates and also to a set of overloaded non-template
6843 // functions. In such a case, the candidate functions generated from each
6844 // function template are combined with the set of non-template candidate
6845 // functions.
6846 TemplateDeductionInfo Info(CandidateSet.getLocation());
6847 FunctionDecl *Specialization = nullptr;
6848 ConversionSequenceList Conversions;
6849 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6850 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6851 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6852 return CheckNonDependentConversions(
6853 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6854 SuppressUserConversions, ActingContext, ObjectType,
6855 ObjectClassification, PO);
6856 })) {
6857 OverloadCandidate &Candidate =
6858 CandidateSet.addCandidate(Conversions.size(), Conversions);
6859 Candidate.FoundDecl = FoundDecl;
6860 Candidate.Function = MethodTmpl->getTemplatedDecl();
6861 Candidate.Viable = false;
6862 Candidate.RewriteKind =
6863 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
6864 Candidate.IsSurrogate = false;
6865 Candidate.IgnoreObjectArgument =
6866 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6867 ObjectType.isNull();
6868 Candidate.ExplicitCallArguments = Args.size();
6869 if (Result == TDK_NonDependentConversionFailure)
6870 Candidate.FailureKind = ovl_fail_bad_conversion;
6871 else {
6872 Candidate.FailureKind = ovl_fail_bad_deduction;
6873 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6874 Info);
6875 }
6876 return;
6877 }
6878
6879 // Add the function template specialization produced by template argument
6880 // deduction as a candidate.
6881 assert(Specialization && "Missing member function template specialization?")((Specialization && "Missing member function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6881, __PRETTY_FUNCTION__))
;
6882 assert(isa<CXXMethodDecl>(Specialization) &&((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6883, __PRETTY_FUNCTION__))
6883 "Specialization is not a member function?")((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6883, __PRETTY_FUNCTION__))
;
6884 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6885 ActingContext, ObjectType, ObjectClassification, Args,
6886 CandidateSet, SuppressUserConversions, PartialOverloading,
6887 Conversions, PO);
6888}
6889
6890/// Add a C++ function template specialization as a candidate
6891/// in the candidate set, using template argument deduction to produce
6892/// an appropriate function template specialization.
6893void Sema::AddTemplateOverloadCandidate(
6894 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6895 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6896 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6897 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
6898 OverloadCandidateParamOrder PO) {
6899 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
6900 return;
6901
6902 // C++ [over.match.funcs]p7:
6903 // In each case where a candidate is a function template, candidate
6904 // function template specializations are generated using template argument
6905 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6906 // candidate functions in the usual way.113) A given name can refer to one
6907 // or more function templates and also to a set of overloaded non-template
6908 // functions. In such a case, the candidate functions generated from each
6909 // function template are combined with the set of non-template candidate
6910 // functions.
6911 TemplateDeductionInfo Info(CandidateSet.getLocation());
6912 FunctionDecl *Specialization = nullptr;
6913 ConversionSequenceList Conversions;
6914 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6915 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6916 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6917 return CheckNonDependentConversions(
6918 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
6919 SuppressUserConversions, nullptr, QualType(), {}, PO);
6920 })) {
6921 OverloadCandidate &Candidate =
6922 CandidateSet.addCandidate(Conversions.size(), Conversions);
6923 Candidate.FoundDecl = FoundDecl;
6924 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6925 Candidate.Viable = false;
6926 Candidate.RewriteKind =
6927 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
6928 Candidate.IsSurrogate = false;
6929 Candidate.IsADLCandidate = IsADLCandidate;
6930 // Ignore the object argument if there is one, since we don't have an object
6931 // type.
6932 Candidate.IgnoreObjectArgument =
6933 isa<CXXMethodDecl>(Candidate.Function) &&
6934 !isa<CXXConstructorDecl>(Candidate.Function);
6935 Candidate.ExplicitCallArguments = Args.size();
6936 if (Result == TDK_NonDependentConversionFailure)
6937 Candidate.FailureKind = ovl_fail_bad_conversion;
6938 else {
6939 Candidate.FailureKind = ovl_fail_bad_deduction;
6940 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6941 Info);
6942 }
6943 return;
6944 }
6945
6946 // Add the function template specialization produced by template argument
6947 // deduction as a candidate.
6948 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 6948, __PRETTY_FUNCTION__))
;
6949 AddOverloadCandidate(
6950 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6951 PartialOverloading, AllowExplicit,
6952 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
6953}
6954
6955/// Check that implicit conversion sequences can be formed for each argument
6956/// whose corresponding parameter has a non-dependent type, per DR1391's
6957/// [temp.deduct.call]p10.
6958bool Sema::CheckNonDependentConversions(
6959 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6960 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6961 ConversionSequenceList &Conversions, bool SuppressUserConversions,
6962 CXXRecordDecl *ActingContext, QualType ObjectType,
6963 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
6964 // FIXME: The cases in which we allow explicit conversions for constructor
6965 // arguments never consider calling a constructor template. It's not clear
6966 // that is correct.
6967 const bool AllowExplicit = false;
6968
6969 auto *FD = FunctionTemplate->getTemplatedDecl();
6970 auto *Method = dyn_cast<CXXMethodDecl>(FD);
6971 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6972 unsigned ThisConversions = HasThisConversion ? 1 : 0;
6973
6974 Conversions =
6975 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6976
6977 // Overload resolution is always an unevaluated context.
6978 EnterExpressionEvaluationContext Unevaluated(
6979 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6980
6981 // For a method call, check the 'this' conversion here too. DR1391 doesn't
6982 // require that, but this check should never result in a hard error, and
6983 // overload resolution is permitted to sidestep instantiations.
6984 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6985 !ObjectType.isNull()) {
6986 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6987 Conversions[ConvIdx] = TryObjectArgumentInitialization(
6988 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6989 Method, ActingContext);
6990 if (Conversions[ConvIdx].isBad())
6991 return true;
6992 }
6993
6994 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6995 ++I) {
6996 QualType ParamType = ParamTypes[I];
6997 if (!ParamType->isDependentType()) {
6998 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
6999 ? 0
7000 : (ThisConversions + I);
7001 Conversions[ConvIdx]
7002 = TryCopyInitialization(*this, Args[I], ParamType,
7003 SuppressUserConversions,
7004 /*InOverloadResolution=*/true,
7005 /*AllowObjCWritebackConversion=*/
7006 getLangOpts().ObjCAutoRefCount,
7007 AllowExplicit);
7008 if (Conversions[ConvIdx].isBad())
7009 return true;
7010 }
7011 }
7012
7013 return false;
7014}
7015
7016/// Determine whether this is an allowable conversion from the result
7017/// of an explicit conversion operator to the expected type, per C++
7018/// [over.match.conv]p1 and [over.match.ref]p1.
7019///
7020/// \param ConvType The return type of the conversion function.
7021///
7022/// \param ToType The type we are converting to.
7023///
7024/// \param AllowObjCPointerConversion Allow a conversion from one
7025/// Objective-C pointer to another.
7026///
7027/// \returns true if the conversion is allowable, false otherwise.
7028static bool isAllowableExplicitConversion(Sema &S,
7029 QualType ConvType, QualType ToType,
7030 bool AllowObjCPointerConversion) {
7031 QualType ToNonRefType = ToType.getNonReferenceType();
7032
7033 // Easy case: the types are the same.
7034 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7035 return true;
7036
7037 // Allow qualification conversions.
7038 bool ObjCLifetimeConversion;
7039 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7040 ObjCLifetimeConversion))
7041 return true;
7042
7043 // If we're not allowed to consider Objective-C pointer conversions,
7044 // we're done.
7045 if (!AllowObjCPointerConversion)
7046 return false;
7047
7048 // Is this an Objective-C pointer conversion?
7049 bool IncompatibleObjC = false;
7050 QualType ConvertedType;
7051 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7052 IncompatibleObjC);
7053}
7054
7055/// AddConversionCandidate - Add a C++ conversion function as a
7056/// candidate in the candidate set (C++ [over.match.conv],
7057/// C++ [over.match.copy]). From is the expression we're converting from,
7058/// and ToType is the type that we're eventually trying to convert to
7059/// (which may or may not be the same type as the type that the
7060/// conversion function produces).
7061void Sema::AddConversionCandidate(
7062 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7063 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7064 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7065 bool AllowExplicit, bool AllowResultConversion) {
7066 assert(!Conversion->getDescribedFunctionTemplate() &&((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7067, __PRETTY_FUNCTION__))
7067 "Conversion function templates use AddTemplateConversionCandidate")((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7067, __PRETTY_FUNCTION__))
;
7068 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7069 if (!CandidateSet.isNewCandidate(Conversion))
7070 return;
7071
7072 // If the conversion function has an undeduced return type, trigger its
7073 // deduction now.
7074 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7075 if (DeduceReturnType(Conversion, From->getExprLoc()))
7076 return;
7077 ConvType = Conversion->getConversionType().getNonReferenceType();
7078 }
7079
7080 // If we don't allow any conversion of the result type, ignore conversion
7081 // functions that don't convert to exactly (possibly cv-qualified) T.
7082 if (!AllowResultConversion &&
7083 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7084 return;
7085
7086 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7087 // operator is only a candidate if its return type is the target type or
7088 // can be converted to the target type with a qualification conversion.
7089 if (Conversion->isExplicit() &&
7090 !isAllowableExplicitConversion(*this, ConvType, ToType,
7091 AllowObjCConversionOnExplicit))
7092 return;
7093
7094 // Overload resolution is always an unevaluated context.
7095 EnterExpressionEvaluationContext Unevaluated(
7096 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7097
7098 // Add this candidate
7099 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7100 Candidate.FoundDecl = FoundDecl;
7101 Candidate.Function = Conversion;
7102 Candidate.IsSurrogate = false;
7103 Candidate.IgnoreObjectArgument = false;
7104 Candidate.FinalConversion.setAsIdentityConversion();
7105 Candidate.FinalConversion.setFromType(ConvType);
7106 Candidate.FinalConversion.setAllToTypes(ToType);
7107 Candidate.Viable = true;
7108 Candidate.ExplicitCallArguments = 1;
7109
7110 // C++ [over.match.funcs]p4:
7111 // For conversion functions, the function is considered to be a member of
7112 // the class of the implicit implied object argument for the purpose of
7113 // defining the type of the implicit object parameter.
7114 //
7115 // Determine the implicit conversion sequence for the implicit
7116 // object parameter.
7117 QualType ImplicitParamType = From->getType();
7118 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7119 ImplicitParamType = FromPtrType->getPointeeType();
7120 CXXRecordDecl *ConversionContext
7121 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7122
7123 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7124 *this, CandidateSet.getLocation(), From->getType(),
7125 From->Classify(Context), Conversion, ConversionContext);
7126
7127 if (Candidate.Conversions[0].isBad()) {
7128 Candidate.Viable = false;
7129 Candidate.FailureKind = ovl_fail_bad_conversion;
7130 return;
7131 }
7132
7133 // We won't go through a user-defined type conversion function to convert a
7134 // derived to base as such conversions are given Conversion Rank. They only
7135 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7136 QualType FromCanon
7137 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7138 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7139 if (FromCanon == ToCanon ||
7140 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7141 Candidate.Viable = false;
7142 Candidate.FailureKind = ovl_fail_trivial_conversion;
7143 return;
7144 }
7145
7146 // To determine what the conversion from the result of calling the
7147 // conversion function to the type we're eventually trying to
7148 // convert to (ToType), we need to synthesize a call to the
7149 // conversion function and attempt copy initialization from it. This
7150 // makes sure that we get the right semantics with respect to
7151 // lvalues/rvalues and the type. Fortunately, we can allocate this
7152 // call on the stack and we don't need its arguments to be
7153 // well-formed.
7154 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7155 VK_LValue, From->getBeginLoc());
7156 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7157 Context.getPointerType(Conversion->getType()),
7158 CK_FunctionToPointerDecay,
7159 &ConversionRef, VK_RValue);
7160
7161 QualType ConversionType = Conversion->getConversionType();
7162 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7163 Candidate.Viable = false;
7164 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7165 return;
7166 }
7167
7168 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7169
7170 // Note that it is safe to allocate CallExpr on the stack here because
7171 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7172 // allocator).
7173 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7174
7175 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7176 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7177 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7178
7179 ImplicitConversionSequence ICS =
7180 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7181 /*SuppressUserConversions=*/true,
7182 /*InOverloadResolution=*/false,
7183 /*AllowObjCWritebackConversion=*/false);
7184
7185 switch (ICS.getKind()) {
7186 case ImplicitConversionSequence::StandardConversion:
7187 Candidate.FinalConversion = ICS.Standard;
7188
7189 // C++ [over.ics.user]p3:
7190 // If the user-defined conversion is specified by a specialization of a
7191 // conversion function template, the second standard conversion sequence
7192 // shall have exact match rank.
7193 if (Conversion->getPrimaryTemplate() &&
7194 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7195 Candidate.Viable = false;
7196 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7197 return;
7198 }
7199
7200 // C++0x [dcl.init.ref]p5:
7201 // In the second case, if the reference is an rvalue reference and
7202 // the second standard conversion sequence of the user-defined
7203 // conversion sequence includes an lvalue-to-rvalue conversion, the
7204 // program is ill-formed.
7205 if (ToType->isRValueReferenceType() &&
7206 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7207 Candidate.Viable = false;
7208 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7209 return;
7210 }
7211 break;
7212
7213 case ImplicitConversionSequence::BadConversion:
7214 Candidate.Viable = false;
7215 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7216 return;
7217
7218 default:
7219 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7220)
7220 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7220)
;
7221 }
7222
7223 if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7224 ExplicitSpecKind::ResolvedFalse) {
7225 Candidate.Viable = false;
7226 Candidate.FailureKind = ovl_fail_explicit_resolved;
7227 return;
7228 }
7229
7230 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7231 Candidate.Viable = false;
7232 Candidate.FailureKind = ovl_fail_enable_if;
7233 Candidate.DeductionFailure.Data = FailedAttr;
7234 return;
7235 }
7236
7237 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7238 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7239 Candidate.Viable = false;
7240 Candidate.FailureKind = ovl_non_default_multiversion_function;
7241 }
7242}
7243
7244/// Adds a conversion function template specialization
7245/// candidate to the overload set, using template argument deduction
7246/// to deduce the template arguments of the conversion function
7247/// template from the type that we are converting to (C++
7248/// [temp.deduct.conv]).
7249void Sema::AddTemplateConversionCandidate(
7250 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7251 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7252 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7253 bool AllowExplicit, bool AllowResultConversion) {
7254 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7255, __PRETTY_FUNCTION__))
7255 "Only conversion function templates permitted here")((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7255, __PRETTY_FUNCTION__))
;
7256
7257 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7258 return;
7259
7260 TemplateDeductionInfo Info(CandidateSet.getLocation());
7261 CXXConversionDecl *Specialization = nullptr;
7262 if (TemplateDeductionResult Result
7263 = DeduceTemplateArguments(FunctionTemplate, ToType,
7264 Specialization, Info)) {
7265 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7266 Candidate.FoundDecl = FoundDecl;
7267 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7268 Candidate.Viable = false;
7269 Candidate.FailureKind = ovl_fail_bad_deduction;
7270 Candidate.IsSurrogate = false;
7271 Candidate.IgnoreObjectArgument = false;
7272 Candidate.ExplicitCallArguments = 1;
7273 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7274 Info);
7275 return;
7276 }
7277
7278 // Add the conversion function template specialization produced by
7279 // template argument deduction as a candidate.
7280 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7280, __PRETTY_FUNCTION__))
;
7281 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7282 CandidateSet, AllowObjCConversionOnExplicit,
7283 AllowExplicit, AllowResultConversion);
7284}
7285
7286/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7287/// converts the given @c Object to a function pointer via the
7288/// conversion function @c Conversion, and then attempts to call it
7289/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7290/// the type of function that we'll eventually be calling.
7291void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7292 DeclAccessPair FoundDecl,
7293 CXXRecordDecl *ActingContext,
7294 const FunctionProtoType *Proto,
7295 Expr *Object,
7296 ArrayRef<Expr *> Args,
7297 OverloadCandidateSet& CandidateSet) {
7298 if (!CandidateSet.isNewCandidate(Conversion))
7299 return;
7300
7301 // Overload resolution is always an unevaluated context.
7302 EnterExpressionEvaluationContext Unevaluated(
7303 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7304
7305 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7306 Candidate.FoundDecl = FoundDecl;
7307 Candidate.Function = nullptr;
7308 Candidate.Surrogate = Conversion;
7309 Candidate.Viable = true;
7310 Candidate.IsSurrogate = true;
7311 Candidate.IgnoreObjectArgument = false;
7312 Candidate.ExplicitCallArguments = Args.size();
7313
7314 // Determine the implicit conversion sequence for the implicit
7315 // object parameter.
7316 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7317 *this, CandidateSet.getLocation(), Object->getType(),
7318 Object->Classify(Context), Conversion, ActingContext);
7319 if (ObjectInit.isBad()) {
7320 Candidate.Viable = false;
7321 Candidate.FailureKind = ovl_fail_bad_conversion;
7322 Candidate.Conversions[0] = ObjectInit;
7323 return;
7324 }
7325
7326 // The first conversion is actually a user-defined conversion whose
7327 // first conversion is ObjectInit's standard conversion (which is
7328 // effectively a reference binding). Record it as such.
7329 Candidate.Conversions[0].setUserDefined();
7330 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7331 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7332 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7333 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7334 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7335 Candidate.Conversions[0].UserDefined.After
7336 = Candidate.Conversions[0].UserDefined.Before;
7337 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7338
7339 // Find the
7340 unsigned NumParams = Proto->getNumParams();
7341
7342 // (C++ 13.3.2p2): A candidate function having fewer than m
7343 // parameters is viable only if it has an ellipsis in its parameter
7344 // list (8.3.5).
7345 if (Args.size() > NumParams && !Proto->isVariadic()) {
7346 Candidate.Viable = false;
7347 Candidate.FailureKind = ovl_fail_too_many_arguments;
7348 return;
7349 }
7350
7351 // Function types don't have any default arguments, so just check if
7352 // we have enough arguments.
7353 if (Args.size() < NumParams) {
7354 // Not enough arguments.
7355 Candidate.Viable = false;
7356 Candidate.FailureKind = ovl_fail_too_few_arguments;
7357 return;
7358 }
7359
7360 // Determine the implicit conversion sequences for each of the
7361 // arguments.
7362 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7363 if (ArgIdx < NumParams) {
7364 // (C++ 13.3.2p3): for F to be a viable function, there shall
7365 // exist for each argument an implicit conversion sequence
7366 // (13.3.3.1) that converts that argument to the corresponding
7367 // parameter of F.
7368 QualType ParamType = Proto->getParamType(ArgIdx);
7369 Candidate.Conversions[ArgIdx + 1]
7370 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7371 /*SuppressUserConversions=*/false,
7372 /*InOverloadResolution=*/false,
7373 /*AllowObjCWritebackConversion=*/
7374 getLangOpts().ObjCAutoRefCount);
7375 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7376 Candidate.Viable = false;
7377 Candidate.FailureKind = ovl_fail_bad_conversion;
7378 return;
7379 }
7380 } else {
7381 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7382 // argument for which there is no corresponding parameter is
7383 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7384 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7385 }
7386 }
7387
7388 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7389 Candidate.Viable = false;
7390 Candidate.FailureKind = ovl_fail_enable_if;
7391 Candidate.DeductionFailure.Data = FailedAttr;
7392 return;
7393 }
7394}
7395
7396/// Add all of the non-member operator function declarations in the given
7397/// function set to the overload candidate set.
7398void Sema::AddNonMemberOperatorCandidates(
7399 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7400 OverloadCandidateSet &CandidateSet,
7401 TemplateArgumentListInfo *ExplicitTemplateArgs) {
7402 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7403 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7404 ArrayRef<Expr *> FunctionArgs = Args;
7405
7406 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7407 FunctionDecl *FD =
7408 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7409
7410 // Don't consider rewritten functions if we're not rewriting.
7411 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7412 continue;
7413
7414 assert(!isa<CXXMethodDecl>(FD) &&((!isa<CXXMethodDecl>(FD) && "unqualified operator lookup found a member function"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXMethodDecl>(FD) && \"unqualified operator lookup found a member function\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7415, __PRETTY_FUNCTION__))
7415 "unqualified operator lookup found a member function")((!isa<CXXMethodDecl>(FD) && "unqualified operator lookup found a member function"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXMethodDecl>(FD) && \"unqualified operator lookup found a member function\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7415, __PRETTY_FUNCTION__))
;
7416
7417 if (FunTmpl) {
7418 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7419 FunctionArgs, CandidateSet);
7420 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7421 AddTemplateOverloadCandidate(
7422 FunTmpl, F.getPair(), ExplicitTemplateArgs,
7423 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7424 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7425 } else {
7426 if (ExplicitTemplateArgs)
7427 continue;
7428 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7429 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7430 AddOverloadCandidate(FD, F.getPair(),
7431 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7432 false, false, true, false, ADLCallKind::NotADL,
7433 None, OverloadCandidateParamOrder::Reversed);
7434 }
7435 }
7436}
7437
7438/// Add overload candidates for overloaded operators that are
7439/// member functions.
7440///
7441/// Add the overloaded operator candidates that are member functions
7442/// for the operator Op that was used in an operator expression such
7443/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7444/// CandidateSet will store the added overload candidates. (C++
7445/// [over.match.oper]).
7446void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7447 SourceLocation OpLoc,
7448 ArrayRef<Expr *> Args,
7449 OverloadCandidateSet &CandidateSet,
7450 OverloadCandidateParamOrder PO) {
7451 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7452
7453 // C++ [over.match.oper]p3:
7454 // For a unary operator @ with an operand of a type whose
7455 // cv-unqualified version is T1, and for a binary operator @ with
7456 // a left operand of a type whose cv-unqualified version is T1 and
7457 // a right operand of a type whose cv-unqualified version is T2,
7458 // three sets of candidate functions, designated member
7459 // candidates, non-member candidates and built-in candidates, are
7460 // constructed as follows:
7461 QualType T1 = Args[0]->getType();
7462
7463 // -- If T1 is a complete class type or a class currently being
7464 // defined, the set of member candidates is the result of the
7465 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7466 // the set of member candidates is empty.
7467 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7468 // Complete the type if it can be completed.
7469 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7470 return;
7471 // If the type is neither complete nor being defined, bail out now.
7472 if (!T1Rec->getDecl()->getDefinition())
7473 return;
7474
7475 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7476 LookupQualifiedName(Operators, T1Rec->getDecl());
7477 Operators.suppressDiagnostics();
7478
7479 for (LookupResult::iterator Oper = Operators.begin(),
7480 OperEnd = Operators.end();
7481 Oper != OperEnd;
7482 ++Oper)
7483 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7484 Args[0]->Classify(Context), Args.slice(1),
7485 CandidateSet, /*SuppressUserConversion=*/false, PO);
7486 }
7487}
7488
7489/// AddBuiltinCandidate - Add a candidate for a built-in
7490/// operator. ResultTy and ParamTys are the result and parameter types
7491/// of the built-in candidate, respectively. Args and NumArgs are the
7492/// arguments being passed to the candidate. IsAssignmentOperator
7493/// should be true when this built-in candidate is an assignment
7494/// operator. NumContextualBoolArguments is the number of arguments
7495/// (at the beginning of the argument list) that will be contextually
7496/// converted to bool.
7497void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7498 OverloadCandidateSet& CandidateSet,
7499 bool IsAssignmentOperator,
7500 unsigned NumContextualBoolArguments) {
7501 // Overload resolution is always an unevaluated context.
7502 EnterExpressionEvaluationContext Unevaluated(
7503 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7504
7505 // Add this candidate
7506 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7507 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7508 Candidate.Function = nullptr;
7509 Candidate.IsSurrogate = false;
7510 Candidate.IgnoreObjectArgument = false;
7511 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7512
7513 // Determine the implicit conversion sequences for each of the
7514 // arguments.
7515 Candidate.Viable = true;
7516 Candidate.ExplicitCallArguments = Args.size();
7517 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7518 // C++ [over.match.oper]p4:
7519 // For the built-in assignment operators, conversions of the
7520 // left operand are restricted as follows:
7521 // -- no temporaries are introduced to hold the left operand, and
7522 // -- no user-defined conversions are applied to the left
7523 // operand to achieve a type match with the left-most
7524 // parameter of a built-in candidate.
7525 //
7526 // We block these conversions by turning off user-defined
7527 // conversions, since that is the only way that initialization of
7528 // a reference to a non-class type can occur from something that
7529 // is not of the same type.
7530 if (ArgIdx < NumContextualBoolArguments) {
7531 assert(ParamTys[ArgIdx] == Context.BoolTy &&((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7532, __PRETTY_FUNCTION__))
7532 "Contextual conversion to bool requires bool type")((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7532, __PRETTY_FUNCTION__))
;
7533 Candidate.Conversions[ArgIdx]
7534 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7535 } else {
7536 Candidate.Conversions[ArgIdx]
7537 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7538 ArgIdx == 0 && IsAssignmentOperator,
7539 /*InOverloadResolution=*/false,
7540 /*AllowObjCWritebackConversion=*/
7541 getLangOpts().ObjCAutoRefCount);
7542 }
7543 if (Candidate.Conversions[ArgIdx].isBad()) {
7544 Candidate.Viable = false;
7545 Candidate.FailureKind = ovl_fail_bad_conversion;
7546 break;
7547 }
7548 }
7549}
7550
7551namespace {
7552
7553/// BuiltinCandidateTypeSet - A set of types that will be used for the
7554/// candidate operator functions for built-in operators (C++
7555/// [over.built]). The types are separated into pointer types and
7556/// enumeration types.
7557class BuiltinCandidateTypeSet {
7558 /// TypeSet - A set of types.
7559 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7560 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7561
7562 /// PointerTypes - The set of pointer types that will be used in the
7563 /// built-in candidates.
7564 TypeSet PointerTypes;
7565
7566 /// MemberPointerTypes - The set of member pointer types that will be
7567 /// used in the built-in candidates.
7568 TypeSet MemberPointerTypes;
7569
7570 /// EnumerationTypes - The set of enumeration types that will be
7571 /// used in the built-in candidates.
7572 TypeSet EnumerationTypes;
7573
7574 /// The set of vector types that will be used in the built-in
7575 /// candidates.
7576 TypeSet VectorTypes;
7577
7578 /// A flag indicating non-record types are viable candidates
7579 bool HasNonRecordTypes;
7580
7581 /// A flag indicating whether either arithmetic or enumeration types
7582 /// were present in the candidate set.
7583 bool HasArithmeticOrEnumeralTypes;
7584
7585 /// A flag indicating whether the nullptr type was present in the
7586 /// candidate set.
7587 bool HasNullPtrType;
7588
7589 /// Sema - The semantic analysis instance where we are building the
7590 /// candidate type set.
7591 Sema &SemaRef;
7592
7593 /// Context - The AST context in which we will build the type sets.
7594 ASTContext &Context;
7595
7596 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7597 const Qualifiers &VisibleQuals);
7598 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7599
7600public:
7601 /// iterator - Iterates through the types that are part of the set.
7602 typedef TypeSet::iterator iterator;
7603
7604 BuiltinCandidateTypeSet(Sema &SemaRef)
7605 : HasNonRecordTypes(false),
7606 HasArithmeticOrEnumeralTypes(false),
7607 HasNullPtrType(false),
7608 SemaRef(SemaRef),
7609 Context(SemaRef.Context) { }
7610
7611 void AddTypesConvertedFrom(QualType Ty,
7612 SourceLocation Loc,
7613 bool AllowUserConversions,
7614 bool AllowExplicitConversions,
7615 const Qualifiers &VisibleTypeConversionsQuals);
7616
7617 /// pointer_begin - First pointer type found;
7618 iterator pointer_begin() { return PointerTypes.begin(); }
7619
7620 /// pointer_end - Past the last pointer type found;
7621 iterator pointer_end() { return PointerTypes.end(); }
7622
7623 /// member_pointer_begin - First member pointer type found;
7624 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7625
7626 /// member_pointer_end - Past the last member pointer type found;
7627 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7628
7629 /// enumeration_begin - First enumeration type found;
7630 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7631
7632 /// enumeration_end - Past the last enumeration type found;
7633 iterator enumeration_end() { return EnumerationTypes.end(); }
7634
7635 iterator vector_begin() { return VectorTypes.begin(); }
7636 iterator vector_end() { return VectorTypes.end(); }
7637
7638 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7639 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7640 bool hasNullPtrType() const { return HasNullPtrType; }
7641};
7642
7643} // end anonymous namespace
7644
7645/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7646/// the set of pointer types along with any more-qualified variants of
7647/// that type. For example, if @p Ty is "int const *", this routine
7648/// will add "int const *", "int const volatile *", "int const
7649/// restrict *", and "int const volatile restrict *" to the set of
7650/// pointer types. Returns true if the add of @p Ty itself succeeded,
7651/// false otherwise.
7652///
7653/// FIXME: what to do about extended qualifiers?
7654bool
7655BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7656 const Qualifiers &VisibleQuals) {
7657
7658 // Insert this type.
7659 if (!PointerTypes.insert(Ty))
7660 return false;
7661
7662 QualType PointeeTy;
7663 const PointerType *PointerTy = Ty->getAs<PointerType>();
7664 bool buildObjCPtr = false;
7665 if (!PointerTy) {
7666 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7667 PointeeTy = PTy->getPointeeType();
7668 buildObjCPtr = true;
7669 } else {
7670 PointeeTy = PointerTy->getPointeeType();
7671 }
7672
7673 // Don't add qualified variants of arrays. For one, they're not allowed
7674 // (the qualifier would sink to the element type), and for another, the
7675 // only overload situation where it matters is subscript or pointer +- int,
7676 // and those shouldn't have qualifier variants anyway.
7677 if (PointeeTy->isArrayType())
7678 return true;
7679
7680 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7681 bool hasVolatile = VisibleQuals.hasVolatile();
7682 bool hasRestrict = VisibleQuals.hasRestrict();
7683
7684 // Iterate through all strict supersets of BaseCVR.
7685 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7686 if ((CVR | BaseCVR) != CVR) continue;
7687 // Skip over volatile if no volatile found anywhere in the types.
7688 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7689
7690 // Skip over restrict if no restrict found anywhere in the types, or if
7691 // the type cannot be restrict-qualified.
7692 if ((CVR & Qualifiers::Restrict) &&
7693 (!hasRestrict ||
7694 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7695 continue;
7696
7697 // Build qualified pointee type.
7698 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7699
7700 // Build qualified pointer type.
7701 QualType QPointerTy;
7702 if (!buildObjCPtr)
7703 QPointerTy = Context.getPointerType(QPointeeTy);
7704 else
7705 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7706
7707 // Insert qualified pointer type.
7708 PointerTypes.insert(QPointerTy);
7709 }
7710
7711 return true;
7712}
7713
7714/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7715/// to the set of pointer types along with any more-qualified variants of
7716/// that type. For example, if @p Ty is "int const *", this routine
7717/// will add "int const *", "int const volatile *", "int const
7718/// restrict *", and "int const volatile restrict *" to the set of
7719/// pointer types. Returns true if the add of @p Ty itself succeeded,
7720/// false otherwise.
7721///
7722/// FIXME: what to do about extended qualifiers?
7723bool
7724BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7725 QualType Ty) {
7726 // Insert this type.
7727 if (!MemberPointerTypes.insert(Ty))
7728 return false;
7729
7730 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7731 assert(PointerTy && "type was not a member pointer type!")((PointerTy && "type was not a member pointer type!")
? static_cast<void> (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7731, __PRETTY_FUNCTION__))
;
7732
7733 QualType PointeeTy = PointerTy->getPointeeType();
7734 // Don't add qualified variants of arrays. For one, they're not allowed
7735 // (the qualifier would sink to the element type), and for another, the
7736 // only overload situation where it matters is subscript or pointer +- int,
7737 // and those shouldn't have qualifier variants anyway.
7738 if (PointeeTy->isArrayType())
7739 return true;
7740 const Type *ClassTy = PointerTy->getClass();
7741
7742 // Iterate through all strict supersets of the pointee type's CVR
7743 // qualifiers.
7744 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7745 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7746 if ((CVR | BaseCVR) != CVR) continue;
7747
7748 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7749 MemberPointerTypes.insert(
7750 Context.getMemberPointerType(QPointeeTy, ClassTy));
7751 }
7752
7753 return true;
7754}
7755
7756/// AddTypesConvertedFrom - Add each of the types to which the type @p
7757/// Ty can be implicit converted to the given set of @p Types. We're
7758/// primarily interested in pointer types and enumeration types. We also
7759/// take member pointer types, for the conditional operator.
7760/// AllowUserConversions is true if we should look at the conversion
7761/// functions of a class type, and AllowExplicitConversions if we
7762/// should also include the explicit conversion functions of a class
7763/// type.
7764void
7765BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7766 SourceLocation Loc,
7767 bool AllowUserConversions,
7768 bool AllowExplicitConversions,
7769 const Qualifiers &VisibleQuals) {
7770 // Only deal with canonical types.
7771 Ty = Context.getCanonicalType(Ty);
7772
7773 // Look through reference types; they aren't part of the type of an
7774 // expression for the purposes of conversions.
7775 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7776 Ty = RefTy->getPointeeType();
7777
7778 // If we're dealing with an array type, decay to the pointer.
7779 if (Ty->isArrayType())
7780 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7781
7782 // Otherwise, we don't care about qualifiers on the type.
7783 Ty = Ty.getLocalUnqualifiedType();
7784
7785 // Flag if we ever add a non-record type.
7786 const RecordType *TyRec = Ty->getAs<RecordType>();
7787 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7788
7789 // Flag if we encounter an arithmetic type.
7790 HasArithmeticOrEnumeralTypes =
7791 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7792
7793 if (Ty->isObjCIdType() || Ty->isObjCClassType())
7794 PointerTypes.insert(Ty);
7795 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7796 // Insert our type, and its more-qualified variants, into the set
7797 // of types.
7798 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7799 return;
7800 } else if (Ty->isMemberPointerType()) {
7801 // Member pointers are far easier, since the pointee can't be converted.
7802 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7803 return;
7804 } else if (Ty->isEnumeralType()) {
7805 HasArithmeticOrEnumeralTypes = true;
7806 EnumerationTypes.insert(Ty);
7807 } else if (Ty->isVectorType()) {
7808 // We treat vector types as arithmetic types in many contexts as an
7809 // extension.
7810 HasArithmeticOrEnumeralTypes = true;
7811 VectorTypes.insert(Ty);
7812 } else if (Ty->isNullPtrType()) {
7813 HasNullPtrType = true;
7814 } else if (AllowUserConversions && TyRec) {
7815 // No conversion functions in incomplete types.
7816 if (!SemaRef.isCompleteType(Loc, Ty))
7817 return;
7818
7819 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7820 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7821 if (isa<UsingShadowDecl>(D))
7822 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7823
7824 // Skip conversion function templates; they don't tell us anything
7825 // about which builtin types we can convert to.
7826 if (isa<FunctionTemplateDecl>(D))
7827 continue;
7828
7829 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7830 if (AllowExplicitConversions || !Conv->isExplicit()) {
7831 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7832 VisibleQuals);
7833 }
7834 }
7835 }
7836}
7837/// Helper function for adjusting address spaces for the pointer or reference
7838/// operands of builtin operators depending on the argument.
7839static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7840 Expr *Arg) {
7841 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7842}
7843
7844/// Helper function for AddBuiltinOperatorCandidates() that adds
7845/// the volatile- and non-volatile-qualified assignment operators for the
7846/// given type to the candidate set.
7847static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7848 QualType T,
7849 ArrayRef<Expr *> Args,
7850 OverloadCandidateSet &CandidateSet) {
7851 QualType ParamTypes[2];
7852
7853 // T& operator=(T&, T)
7854 ParamTypes[0] = S.Context.getLValueReferenceType(
7855 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7856 ParamTypes[1] = T;
7857 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7858 /*IsAssignmentOperator=*/true);
7859
7860 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7861 // volatile T& operator=(volatile T&, T)
7862 ParamTypes[0] = S.Context.getLValueReferenceType(
7863 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7864 Args[0]));
7865 ParamTypes[1] = T;
7866 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7867 /*IsAssignmentOperator=*/true);
7868 }
7869}
7870
7871/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7872/// if any, found in visible type conversion functions found in ArgExpr's type.
7873static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7874 Qualifiers VRQuals;
7875 const RecordType *TyRec;
7876 if (const MemberPointerType *RHSMPType =
7877 ArgExpr->getType()->getAs<MemberPointerType>())
7878 TyRec = RHSMPType->getClass()->getAs<RecordType>();
7879 else
7880 TyRec = ArgExpr->getType()->getAs<RecordType>();
7881 if (!TyRec) {
7882 // Just to be safe, assume the worst case.
7883 VRQuals.addVolatile();
7884 VRQuals.addRestrict();
7885 return VRQuals;
7886 }
7887
7888 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7889 if (!ClassDecl->hasDefinition())
7890 return VRQuals;
7891
7892 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7893 if (isa<UsingShadowDecl>(D))
7894 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7895 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7896 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7897 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7898 CanTy = ResTypeRef->getPointeeType();
7899 // Need to go down the pointer/mempointer chain and add qualifiers
7900 // as see them.
7901 bool done = false;
7902 while (!done) {
7903 if (CanTy.isRestrictQualified())
7904 VRQuals.addRestrict();
7905 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7906 CanTy = ResTypePtr->getPointeeType();
7907 else if (const MemberPointerType *ResTypeMPtr =
7908 CanTy->getAs<MemberPointerType>())
7909 CanTy = ResTypeMPtr->getPointeeType();
7910 else
7911 done = true;
7912 if (CanTy.isVolatileQualified())
7913 VRQuals.addVolatile();
7914 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7915 return VRQuals;
7916 }
7917 }
7918 }
7919 return VRQuals;
7920}
7921
7922namespace {
7923
7924/// Helper class to manage the addition of builtin operator overload
7925/// candidates. It provides shared state and utility methods used throughout
7926/// the process, as well as a helper method to add each group of builtin
7927/// operator overloads from the standard to a candidate set.
7928class BuiltinOperatorOverloadBuilder {
7929 // Common instance state available to all overload candidate addition methods.
7930 Sema &S;
7931 ArrayRef<Expr *> Args;
7932 Qualifiers VisibleTypeConversionsQuals;
7933 bool HasArithmeticOrEnumeralCandidateType;
7934 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7935 OverloadCandidateSet &CandidateSet;
7936
7937 static constexpr int ArithmeticTypesCap = 24;
7938 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7939
7940 // Define some indices used to iterate over the arithmetic types in
7941 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
7942 // types are that preserved by promotion (C++ [over.built]p2).
7943 unsigned FirstIntegralType,
7944 LastIntegralType;
7945 unsigned FirstPromotedIntegralType,
7946 LastPromotedIntegralType;
7947 unsigned FirstPromotedArithmeticType,
7948 LastPromotedArithmeticType;
7949 unsigned NumArithmeticTypes;
7950
7951 void InitArithmeticTypes() {
7952 // Start of promoted types.
7953 FirstPromotedArithmeticType = 0;
7954 ArithmeticTypes.push_back(S.Context.FloatTy);
7955 ArithmeticTypes.push_back(S.Context.DoubleTy);
7956 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7957 if (S.Context.getTargetInfo().hasFloat128Type())
7958 ArithmeticTypes.push_back(S.Context.Float128Ty);
7959
7960 // Start of integral types.
7961 FirstIntegralType = ArithmeticTypes.size();
7962 FirstPromotedIntegralType = ArithmeticTypes.size();
7963 ArithmeticTypes.push_back(S.Context.IntTy);
7964 ArithmeticTypes.push_back(S.Context.LongTy);
7965 ArithmeticTypes.push_back(S.Context.LongLongTy);
7966 if (S.Context.getTargetInfo().hasInt128Type())
7967 ArithmeticTypes.push_back(S.Context.Int128Ty);
7968 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7969 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7970 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7971 if (S.Context.getTargetInfo().hasInt128Type())
7972 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7973 LastPromotedIntegralType = ArithmeticTypes.size();
7974 LastPromotedArithmeticType = ArithmeticTypes.size();
7975 // End of promoted types.
7976
7977 ArithmeticTypes.push_back(S.Context.BoolTy);
7978 ArithmeticTypes.push_back(S.Context.CharTy);
7979 ArithmeticTypes.push_back(S.Context.WCharTy);
7980 if (S.Context.getLangOpts().Char8)
7981 ArithmeticTypes.push_back(S.Context.Char8Ty);
7982 ArithmeticTypes.push_back(S.Context.Char16Ty);
7983 ArithmeticTypes.push_back(S.Context.Char32Ty);
7984 ArithmeticTypes.push_back(S.Context.SignedCharTy);
7985 ArithmeticTypes.push_back(S.Context.ShortTy);
7986 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7987 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7988 LastIntegralType = ArithmeticTypes.size();
7989 NumArithmeticTypes = ArithmeticTypes.size();
7990 // End of integral types.
7991 // FIXME: What about complex? What about half?
7992
7993 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7994, __PRETTY_FUNCTION__))
7994 "Enough inline storage for all arithmetic types.")((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 7994, __PRETTY_FUNCTION__))
;
7995 }
7996
7997 /// Helper method to factor out the common pattern of adding overloads
7998 /// for '++' and '--' builtin operators.
7999 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8000 bool HasVolatile,
8001 bool HasRestrict) {
8002 QualType ParamTypes[2] = {
8003 S.Context.getLValueReferenceType(CandidateTy),
8004 S.Context.IntTy
8005 };
8006
8007 // Non-volatile version.
8008 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8009
8010 // Use a heuristic to reduce number of builtin candidates in the set:
8011 // add volatile version only if there are conversions to a volatile type.
8012 if (HasVolatile) {
8013 ParamTypes[0] =
8014 S.Context.getLValueReferenceType(
8015 S.Context.getVolatileType(CandidateTy));
8016 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8017 }
8018
8019 // Add restrict version only if there are conversions to a restrict type
8020 // and our candidate type is a non-restrict-qualified pointer.
8021 if (HasRestrict && CandidateTy->isAnyPointerType() &&
8022 !CandidateTy.isRestrictQualified()) {
8023 ParamTypes[0]
8024 = S.Context.getLValueReferenceType(
8025 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8026 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8027
8028 if (HasVolatile) {
8029 ParamTypes[0]
8030 = S.Context.getLValueReferenceType(
8031 S.Context.getCVRQualifiedType(CandidateTy,
8032 (Qualifiers::Volatile |
8033 Qualifiers::Restrict)));
8034 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8035 }
8036 }
8037
8038 }
8039
8040public:
8041 BuiltinOperatorOverloadBuilder(
8042 Sema &S, ArrayRef<Expr *> Args,
8043 Qualifiers VisibleTypeConversionsQuals,
8044 bool HasArithmeticOrEnumeralCandidateType,
8045 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8046 OverloadCandidateSet &CandidateSet)
8047 : S(S), Args(Args),
8048 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8049 HasArithmeticOrEnumeralCandidateType(
8050 HasArithmeticOrEnumeralCandidateType),
8051 CandidateTypes(CandidateTypes),
8052 CandidateSet(CandidateSet) {
8053
8054 InitArithmeticTypes();
8055 }
8056
8057 // Increment is deprecated for bool since C++17.
8058 //
8059 // C++ [over.built]p3:
8060 //
8061 // For every pair (T, VQ), where T is an arithmetic type other
8062 // than bool, and VQ is either volatile or empty, there exist
8063 // candidate operator functions of the form
8064 //
8065 // VQ T& operator++(VQ T&);
8066 // T operator++(VQ T&, int);
8067 //
8068 // C++ [over.built]p4:
8069 //
8070 // For every pair (T, VQ), where T is an arithmetic type other
8071 // than bool, and VQ is either volatile or empty, there exist
8072 // candidate operator functions of the form
8073 //
8074 // VQ T& operator--(VQ T&);
8075 // T operator--(VQ T&, int);
8076 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8077 if (!HasArithmeticOrEnumeralCandidateType)
8078 return;
8079
8080 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8081 const auto TypeOfT = ArithmeticTypes[Arith];
8082 if (TypeOfT == S.Context.BoolTy) {
8083 if (Op == OO_MinusMinus)
8084 continue;
8085 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8086 continue;
8087 }
8088 addPlusPlusMinusMinusStyleOverloads(
8089 TypeOfT,
8090 VisibleTypeConversionsQuals.hasVolatile(),
8091 VisibleTypeConversionsQuals.hasRestrict());
8092 }
8093 }
8094
8095 // C++ [over.built]p5:
8096 //
8097 // For every pair (T, VQ), where T is a cv-qualified or
8098 // cv-unqualified object type, and VQ is either volatile or
8099 // empty, there exist candidate operator functions of the form
8100 //
8101 // T*VQ& operator++(T*VQ&);
8102 // T*VQ& operator--(T*VQ&);
8103 // T* operator++(T*VQ&, int);
8104 // T* operator--(T*VQ&, int);
8105 void addPlusPlusMinusMinusPointerOverloads() {
8106 for (BuiltinCandidateTypeSet::iterator
8107 Ptr = CandidateTypes[0].pointer_begin(),
8108 PtrEnd = CandidateTypes[0].pointer_end();
8109 Ptr != PtrEnd; ++Ptr) {
8110 // Skip pointer types that aren't pointers to object types.
8111 if (!(*Ptr)->getPointeeType()->isObjectType())
8112 continue;
8113
8114 addPlusPlusMinusMinusStyleOverloads(*Ptr,
8115 (!(*Ptr).isVolatileQualified() &&
8116 VisibleTypeConversionsQuals.hasVolatile()),
8117 (!(*Ptr).isRestrictQualified() &&
8118 VisibleTypeConversionsQuals.hasRestrict()));
8119 }
8120 }
8121
8122 // C++ [over.built]p6:
8123 // For every cv-qualified or cv-unqualified object type T, there
8124 // exist candidate operator functions of the form
8125 //
8126 // T& operator*(T*);
8127 //
8128 // C++ [over.built]p7:
8129 // For every function type T that does not have cv-qualifiers or a
8130 // ref-qualifier, there exist candidate operator functions of the form
8131 // T& operator*(T*);
8132 void addUnaryStarPointerOverloads() {
8133 for (BuiltinCandidateTypeSet::iterator
8134 Ptr = CandidateTypes[0].pointer_begin(),
8135 PtrEnd = CandidateTypes[0].pointer_end();
8136 Ptr != PtrEnd; ++Ptr) {
8137 QualType ParamTy = *Ptr;
8138 QualType PointeeTy = ParamTy->getPointeeType();
8139 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8140 continue;
8141
8142 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8143 if (Proto->getMethodQuals() || Proto->getRefQualifier())
8144 continue;
8145
8146 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8147 }
8148 }
8149
8150 // C++ [over.built]p9:
8151 // For every promoted arithmetic type T, there exist candidate
8152 // operator functions of the form
8153 //
8154 // T operator+(T);
8155 // T operator-(T);
8156 void addUnaryPlusOrMinusArithmeticOverloads() {
8157 if (!HasArithmeticOrEnumeralCandidateType)
8158 return;
8159
8160 for (unsigned Arith = FirstPromotedArithmeticType;
8161 Arith < LastPromotedArithmeticType; ++Arith) {
8162 QualType ArithTy = ArithmeticTypes[Arith];
8163 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8164 }
8165
8166 // Extension: We also add these operators for vector types.
8167 for (BuiltinCandidateTypeSet::iterator
8168 Vec = CandidateTypes[0].vector_begin(),
8169 VecEnd = CandidateTypes[0].vector_end();
8170 Vec != VecEnd; ++Vec) {
8171 QualType VecTy = *Vec;
8172 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8173 }
8174 }
8175
8176 // C++ [over.built]p8:
8177 // For every type T, there exist candidate operator functions of
8178 // the form
8179 //
8180 // T* operator+(T*);
8181 void addUnaryPlusPointerOverloads() {
8182 for (BuiltinCandidateTypeSet::iterator
8183 Ptr = CandidateTypes[0].pointer_begin(),
8184 PtrEnd = CandidateTypes[0].pointer_end();
8185 Ptr != PtrEnd; ++Ptr) {
8186 QualType ParamTy = *Ptr;
8187 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8188 }
8189 }
8190
8191 // C++ [over.built]p10:
8192 // For every promoted integral type T, there exist candidate
8193 // operator functions of the form
8194 //
8195 // T operator~(T);
8196 void addUnaryTildePromotedIntegralOverloads() {
8197 if (!HasArithmeticOrEnumeralCandidateType)
8198 return;
8199
8200 for (unsigned Int = FirstPromotedIntegralType;
8201 Int < LastPromotedIntegralType; ++Int) {
8202 QualType IntTy = ArithmeticTypes[Int];
8203 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8204 }
8205
8206 // Extension: We also add this operator for vector types.
8207 for (BuiltinCandidateTypeSet::iterator
8208 Vec = CandidateTypes[0].vector_begin(),
8209 VecEnd = CandidateTypes[0].vector_end();
8210 Vec != VecEnd; ++Vec) {
8211 QualType VecTy = *Vec;
8212 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8213 }
8214 }
8215
8216 // C++ [over.match.oper]p16:
8217 // For every pointer to member type T or type std::nullptr_t, there
8218 // exist candidate operator functions of the form
8219 //
8220 // bool operator==(T,T);
8221 // bool operator!=(T,T);
8222 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8223 /// Set of (canonical) types that we've already handled.
8224 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8225
8226 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8227 for (BuiltinCandidateTypeSet::iterator
8228 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8229 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8230 MemPtr != MemPtrEnd;
8231 ++MemPtr) {
8232 // Don't add the same builtin candidate twice.
8233 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8234 continue;
8235
8236 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8237 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8238 }
8239
8240 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8241 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8242 if (AddedTypes.insert(NullPtrTy).second) {
8243 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8244 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8245 }
8246 }
8247 }
8248 }
8249
8250 // C++ [over.built]p15:
8251 //
8252 // For every T, where T is an enumeration type or a pointer type,
8253 // there exist candidate operator functions of the form
8254 //
8255 // bool operator<(T, T);
8256 // bool operator>(T, T);
8257 // bool operator<=(T, T);
8258 // bool operator>=(T, T);
8259 // bool operator==(T, T);
8260 // bool operator!=(T, T);
8261 // R operator<=>(T, T)
8262 void addGenericBinaryPointerOrEnumeralOverloads() {
8263 // C++ [over.match.oper]p3:
8264 // [...]the built-in candidates include all of the candidate operator
8265 // functions defined in 13.6 that, compared to the given operator, [...]
8266 // do not have the same parameter-type-list as any non-template non-member
8267 // candidate.
8268 //
8269 // Note that in practice, this only affects enumeration types because there
8270 // aren't any built-in candidates of record type, and a user-defined operator
8271 // must have an operand of record or enumeration type. Also, the only other
8272 // overloaded operator with enumeration arguments, operator=,
8273 // cannot be overloaded for enumeration types, so this is the only place
8274 // where we must suppress candidates like this.
8275 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8276 UserDefinedBinaryOperators;
8277
8278 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8279 if (CandidateTypes[ArgIdx].enumeration_begin() !=
8280 CandidateTypes[ArgIdx].enumeration_end()) {
8281 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8282 CEnd = CandidateSet.end();
8283 C != CEnd; ++C) {
8284 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8285 continue;
8286
8287 if (C->Function->isFunctionTemplateSpecialization())
8288 continue;
8289
8290 // We interpret "same parameter-type-list" as applying to the
8291 // "synthesized candidate, with the order of the two parameters
8292 // reversed", not to the original function.
8293 bool Reversed = C->RewriteKind & CRK_Reversed;
8294 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8295 ->getType()
8296 .getUnqualifiedType();
8297 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8298 ->getType()
8299 .getUnqualifiedType();
8300
8301 // Skip if either parameter isn't of enumeral type.
8302 if (!FirstParamType->isEnumeralType() ||
8303 !SecondParamType->isEnumeralType())
8304 continue;
8305
8306 // Add this operator to the set of known user-defined operators.
8307 UserDefinedBinaryOperators.insert(
8308 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8309 S.Context.getCanonicalType(SecondParamType)));
8310 }
8311 }
8312 }
8313
8314 /// Set of (canonical) types that we've already handled.
8315 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8316
8317 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8318 for (BuiltinCandidateTypeSet::iterator
8319 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8320 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8321 Ptr != PtrEnd; ++Ptr) {
8322 // Don't add the same builtin candidate twice.
8323 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8324 continue;
8325
8326 QualType ParamTypes[2] = { *Ptr, *Ptr };
8327 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8328 }
8329 for (BuiltinCandidateTypeSet::iterator
8330 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8331 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8332 Enum != EnumEnd; ++Enum) {
8333 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8334
8335 // Don't add the same builtin candidate twice, or if a user defined
8336 // candidate exists.
8337 if (!AddedTypes.insert(CanonType).second ||
8338 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8339 CanonType)))
8340 continue;
8341 QualType ParamTypes[2] = { *Enum, *Enum };
8342 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8343 }
8344 }
8345 }
8346
8347 // C++ [over.built]p13:
8348 //
8349 // For every cv-qualified or cv-unqualified object type T
8350 // there exist candidate operator functions of the form
8351 //
8352 // T* operator+(T*, ptrdiff_t);
8353 // T& operator[](T*, ptrdiff_t); [BELOW]
8354 // T* operator-(T*, ptrdiff_t);
8355 // T* operator+(ptrdiff_t, T*);
8356 // T& operator[](ptrdiff_t, T*); [BELOW]
8357 //
8358 // C++ [over.built]p14:
8359 //
8360 // For every T, where T is a pointer to object type, there
8361 // exist candidate operator functions of the form
8362 //
8363 // ptrdiff_t operator-(T, T);
8364 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8365 /// Set of (canonical) types that we've already handled.
8366 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8367
8368 for (int Arg = 0; Arg < 2; ++Arg) {
8369 QualType AsymmetricParamTypes[2] = {
8370 S.Context.getPointerDiffType(),
8371 S.Context.getPointerDiffType(),
8372 };
8373 for (BuiltinCandidateTypeSet::iterator
8374 Ptr = CandidateTypes[Arg].pointer_begin(),
8375 PtrEnd = CandidateTypes[Arg].pointer_end();
8376 Ptr != PtrEnd; ++Ptr) {
8377 QualType PointeeTy = (*Ptr)->getPointeeType();
8378 if (!PointeeTy->isObjectType())
8379 continue;
8380
8381 AsymmetricParamTypes[Arg] = *Ptr;
8382 if (Arg == 0 || Op == OO_Plus) {
8383 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8384 // T* operator+(ptrdiff_t, T*);
8385 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8386 }
8387 if (Op == OO_Minus) {
8388 // ptrdiff_t operator-(T, T);
8389 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8390 continue;
8391
8392 QualType ParamTypes[2] = { *Ptr, *Ptr };
8393 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8394 }
8395 }
8396 }
8397 }
8398
8399 // C++ [over.built]p12:
8400 //
8401 // For every pair of promoted arithmetic types L and R, there
8402 // exist candidate operator functions of the form
8403 //
8404 // LR operator*(L, R);
8405 // LR operator/(L, R);
8406 // LR operator+(L, R);
8407 // LR operator-(L, R);
8408 // bool operator<(L, R);
8409 // bool operator>(L, R);
8410 // bool operator<=(L, R);
8411 // bool operator>=(L, R);
8412 // bool operator==(L, R);
8413 // bool operator!=(L, R);
8414 //
8415 // where LR is the result of the usual arithmetic conversions
8416 // between types L and R.
8417 //
8418 // C++ [over.built]p24:
8419 //
8420 // For every pair of promoted arithmetic types L and R, there exist
8421 // candidate operator functions of the form
8422 //
8423 // LR operator?(bool, L, R);
8424 //
8425 // where LR is the result of the usual arithmetic conversions
8426 // between types L and R.
8427 // Our candidates ignore the first parameter.
8428 void addGenericBinaryArithmeticOverloads() {
8429 if (!HasArithmeticOrEnumeralCandidateType)
8430 return;
8431
8432 for (unsigned Left = FirstPromotedArithmeticType;
8433 Left < LastPromotedArithmeticType; ++Left) {
8434 for (unsigned Right = FirstPromotedArithmeticType;
8435 Right < LastPromotedArithmeticType; ++Right) {
8436 QualType LandR[2] = { ArithmeticTypes[Left],
8437 ArithmeticTypes[Right] };
8438 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8439 }
8440 }
8441
8442 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8443 // conditional operator for vector types.
8444 for (BuiltinCandidateTypeSet::iterator
8445 Vec1 = CandidateTypes[0].vector_begin(),
8446 Vec1End = CandidateTypes[0].vector_end();
8447 Vec1 != Vec1End; ++Vec1) {
8448 for (BuiltinCandidateTypeSet::iterator
8449 Vec2 = CandidateTypes[1].vector_begin(),
8450 Vec2End = CandidateTypes[1].vector_end();
8451 Vec2 != Vec2End; ++Vec2) {
8452 QualType LandR[2] = { *Vec1, *Vec2 };
8453 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8454 }
8455 }
8456 }
8457
8458 // C++2a [over.built]p14:
8459 //
8460 // For every integral type T there exists a candidate operator function
8461 // of the form
8462 //
8463 // std::strong_ordering operator<=>(T, T)
8464 //
8465 // C++2a [over.built]p15:
8466 //
8467 // For every pair of floating-point types L and R, there exists a candidate
8468 // operator function of the form
8469 //
8470 // std::partial_ordering operator<=>(L, R);
8471 //
8472 // FIXME: The current specification for integral types doesn't play nice with
8473 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8474 // comparisons. Under the current spec this can lead to ambiguity during
8475 // overload resolution. For example:
8476 //
8477 // enum A : int {a};
8478 // auto x = (a <=> (long)42);
8479 //
8480 // error: call is ambiguous for arguments 'A' and 'long'.
8481 // note: candidate operator<=>(int, int)
8482 // note: candidate operator<=>(long, long)
8483 //
8484 // To avoid this error, this function deviates from the specification and adds
8485 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8486 // arithmetic types (the same as the generic relational overloads).
8487 //
8488 // For now this function acts as a placeholder.
8489 void addThreeWayArithmeticOverloads() {
8490 addGenericBinaryArithmeticOverloads();
8491 }
8492
8493 // C++ [over.built]p17:
8494 //
8495 // For every pair of promoted integral types L and R, there
8496 // exist candidate operator functions of the form
8497 //
8498 // LR operator%(L, R);
8499 // LR operator&(L, R);
8500 // LR operator^(L, R);
8501 // LR operator|(L, R);
8502 // L operator<<(L, R);
8503 // L operator>>(L, R);
8504 //
8505 // where LR is the result of the usual arithmetic conversions
8506 // between types L and R.
8507 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8508 if (!HasArithmeticOrEnumeralCandidateType)
8509 return;
8510
8511 for (unsigned Left = FirstPromotedIntegralType;
8512 Left < LastPromotedIntegralType; ++Left) {
8513 for (unsigned Right = FirstPromotedIntegralType;
8514 Right < LastPromotedIntegralType; ++Right) {
8515 QualType LandR[2] = { ArithmeticTypes[Left],
8516 ArithmeticTypes[Right] };
8517 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8518 }
8519 }
8520 }
8521
8522 // C++ [over.built]p20:
8523 //
8524 // For every pair (T, VQ), where T is an enumeration or
8525 // pointer to member type and VQ is either volatile or
8526 // empty, there exist candidate operator functions of the form
8527 //
8528 // VQ T& operator=(VQ T&, T);
8529 void addAssignmentMemberPointerOrEnumeralOverloads() {
8530 /// Set of (canonical) types that we've already handled.
8531 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8532
8533 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8534 for (BuiltinCandidateTypeSet::iterator
8535 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8536 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8537 Enum != EnumEnd; ++Enum) {
8538 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8539 continue;
8540
8541 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8542 }
8543
8544 for (BuiltinCandidateTypeSet::iterator
8545 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8546 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8547 MemPtr != MemPtrEnd; ++MemPtr) {
8548 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8549 continue;
8550
8551 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8552 }
8553 }
8554 }
8555
8556 // C++ [over.built]p19:
8557 //
8558 // For every pair (T, VQ), where T is any type and VQ is either
8559 // volatile or empty, there exist candidate operator functions
8560 // of the form
8561 //
8562 // T*VQ& operator=(T*VQ&, T*);
8563 //
8564 // C++ [over.built]p21:
8565 //
8566 // For every pair (T, VQ), where T is a cv-qualified or
8567 // cv-unqualified object type and VQ is either volatile or
8568 // empty, there exist candidate operator functions of the form
8569 //
8570 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8571 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8572 void addAssignmentPointerOverloads(bool isEqualOp) {
8573 /// Set of (canonical) types that we've already handled.
8574 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8575
8576 for (BuiltinCandidateTypeSet::iterator
8577 Ptr = CandidateTypes[0].pointer_begin(),
8578 PtrEnd = CandidateTypes[0].pointer_end();
8579 Ptr != PtrEnd; ++Ptr) {
8580 // If this is operator=, keep track of the builtin candidates we added.
8581 if (isEqualOp)
8582 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8583 else if (!(*Ptr)->getPointeeType()->isObjectType())
8584 continue;
8585
8586 // non-volatile version
8587 QualType ParamTypes[2] = {
8588 S.Context.getLValueReferenceType(*Ptr),
8589 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8590 };
8591 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8592 /*IsAssignmentOperator=*/ isEqualOp);
8593
8594 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8595 VisibleTypeConversionsQuals.hasVolatile();
8596 if (NeedVolatile) {
8597 // volatile version
8598 ParamTypes[0] =
8599 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8600 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8601 /*IsAssignmentOperator=*/isEqualOp);
8602 }
8603
8604 if (!(*Ptr).isRestrictQualified() &&
8605 VisibleTypeConversionsQuals.hasRestrict()) {
8606 // restrict version
8607 ParamTypes[0]
8608 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8609 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8610 /*IsAssignmentOperator=*/isEqualOp);
8611
8612 if (NeedVolatile) {
8613 // volatile restrict version
8614 ParamTypes[0]
8615 = S.Context.getLValueReferenceType(
8616 S.Context.getCVRQualifiedType(*Ptr,
8617 (Qualifiers::Volatile |
8618 Qualifiers::Restrict)));
8619 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8620 /*IsAssignmentOperator=*/isEqualOp);
8621 }
8622 }
8623 }
8624
8625 if (isEqualOp) {
8626 for (BuiltinCandidateTypeSet::iterator
8627 Ptr = CandidateTypes[1].pointer_begin(),
8628 PtrEnd = CandidateTypes[1].pointer_end();
8629 Ptr != PtrEnd; ++Ptr) {
8630 // Make sure we don't add the same candidate twice.
8631 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8632 continue;
8633
8634 QualType ParamTypes[2] = {
8635 S.Context.getLValueReferenceType(*Ptr),
8636 *Ptr,
8637 };
8638
8639 // non-volatile version
8640 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8641 /*IsAssignmentOperator=*/true);
8642
8643 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8644 VisibleTypeConversionsQuals.hasVolatile();
8645 if (NeedVolatile) {
8646 // volatile version
8647 ParamTypes[0] =
8648 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8649 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8650 /*IsAssignmentOperator=*/true);
8651 }
8652
8653 if (!(*Ptr).isRestrictQualified() &&
8654 VisibleTypeConversionsQuals.hasRestrict()) {
8655 // restrict version
8656 ParamTypes[0]
8657 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8658 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8659 /*IsAssignmentOperator=*/true);
8660
8661 if (NeedVolatile) {
8662 // volatile restrict version
8663 ParamTypes[0]
8664 = S.Context.getLValueReferenceType(
8665 S.Context.getCVRQualifiedType(*Ptr,
8666 (Qualifiers::Volatile |
8667 Qualifiers::Restrict)));
8668 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8669 /*IsAssignmentOperator=*/true);
8670 }
8671 }
8672 }
8673 }
8674 }
8675
8676 // C++ [over.built]p18:
8677 //
8678 // For every triple (L, VQ, R), where L is an arithmetic type,
8679 // VQ is either volatile or empty, and R is a promoted
8680 // arithmetic type, there exist candidate operator functions of
8681 // the form
8682 //
8683 // VQ L& operator=(VQ L&, R);
8684 // VQ L& operator*=(VQ L&, R);
8685 // VQ L& operator/=(VQ L&, R);
8686 // VQ L& operator+=(VQ L&, R);
8687 // VQ L& operator-=(VQ L&, R);
8688 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8689 if (!HasArithmeticOrEnumeralCandidateType)
8690 return;
8691
8692 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8693 for (unsigned Right = FirstPromotedArithmeticType;
8694 Right < LastPromotedArithmeticType; ++Right) {
8695 QualType ParamTypes[2];
8696 ParamTypes[1] = ArithmeticTypes[Right];
8697 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8698 S, ArithmeticTypes[Left], Args[0]);
8699 // Add this built-in operator as a candidate (VQ is empty).
8700 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8701 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8702 /*IsAssignmentOperator=*/isEqualOp);
8703
8704 // Add this built-in operator as a candidate (VQ is 'volatile').
8705 if (VisibleTypeConversionsQuals.hasVolatile()) {
8706 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8707 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8708 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8709 /*IsAssignmentOperator=*/isEqualOp);
8710 }
8711 }
8712 }
8713
8714 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8715 for (BuiltinCandidateTypeSet::iterator
8716 Vec1 = CandidateTypes[0].vector_begin(),
8717 Vec1End = CandidateTypes[0].vector_end();
8718 Vec1 != Vec1End; ++Vec1) {
8719 for (BuiltinCandidateTypeSet::iterator
8720 Vec2 = CandidateTypes[1].vector_begin(),
8721 Vec2End = CandidateTypes[1].vector_end();
8722 Vec2 != Vec2End; ++Vec2) {
8723 QualType ParamTypes[2];
8724 ParamTypes[1] = *Vec2;
8725 // Add this built-in operator as a candidate (VQ is empty).
8726 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8727 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8728 /*IsAssignmentOperator=*/isEqualOp);
8729
8730 // Add this built-in operator as a candidate (VQ is 'volatile').
8731 if (VisibleTypeConversionsQuals.hasVolatile()) {
8732 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8733 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8734 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8735 /*IsAssignmentOperator=*/isEqualOp);
8736 }
8737 }
8738 }
8739 }
8740
8741 // C++ [over.built]p22:
8742 //
8743 // For every triple (L, VQ, R), where L is an integral type, VQ
8744 // is either volatile or empty, and R is a promoted integral
8745 // type, there exist candidate operator functions of the form
8746 //
8747 // VQ L& operator%=(VQ L&, R);
8748 // VQ L& operator<<=(VQ L&, R);
8749 // VQ L& operator>>=(VQ L&, R);
8750 // VQ L& operator&=(VQ L&, R);
8751 // VQ L& operator^=(VQ L&, R);
8752 // VQ L& operator|=(VQ L&, R);
8753 void addAssignmentIntegralOverloads() {
8754 if (!HasArithmeticOrEnumeralCandidateType)
8755 return;
8756
8757 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8758 for (unsigned Right = FirstPromotedIntegralType;
8759 Right < LastPromotedIntegralType; ++Right) {
8760 QualType ParamTypes[2];
8761 ParamTypes[1] = ArithmeticTypes[Right];
8762 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8763 S, ArithmeticTypes[Left], Args[0]);
8764 // Add this built-in operator as a candidate (VQ is empty).
8765 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8766 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8767 if (VisibleTypeConversionsQuals.hasVolatile()) {
8768 // Add this built-in operator as a candidate (VQ is 'volatile').
8769 ParamTypes[0] = LeftBaseTy;
8770 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8771 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8772 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8773 }
8774 }
8775 }
8776 }
8777
8778 // C++ [over.operator]p23:
8779 //
8780 // There also exist candidate operator functions of the form
8781 //
8782 // bool operator!(bool);
8783 // bool operator&&(bool, bool);
8784 // bool operator||(bool, bool);
8785 void addExclaimOverload() {
8786 QualType ParamTy = S.Context.BoolTy;
8787 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8788 /*IsAssignmentOperator=*/false,
8789 /*NumContextualBoolArguments=*/1);
8790 }
8791 void addAmpAmpOrPipePipeOverload() {
8792 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8793 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8794 /*IsAssignmentOperator=*/false,
8795 /*NumContextualBoolArguments=*/2);
8796 }
8797
8798 // C++ [over.built]p13:
8799 //
8800 // For every cv-qualified or cv-unqualified object type T there
8801 // exist candidate operator functions of the form
8802 //
8803 // T* operator+(T*, ptrdiff_t); [ABOVE]
8804 // T& operator[](T*, ptrdiff_t);
8805 // T* operator-(T*, ptrdiff_t); [ABOVE]
8806 // T* operator+(ptrdiff_t, T*); [ABOVE]
8807 // T& operator[](ptrdiff_t, T*);
8808 void addSubscriptOverloads() {
8809 for (BuiltinCandidateTypeSet::iterator
8810 Ptr = CandidateTypes[0].pointer_begin(),
8811 PtrEnd = CandidateTypes[0].pointer_end();
8812 Ptr != PtrEnd; ++Ptr) {
8813 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8814 QualType PointeeType = (*Ptr)->getPointeeType();
8815 if (!PointeeType->isObjectType())
8816 continue;
8817
8818 // T& operator[](T*, ptrdiff_t)
8819 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8820 }
8821
8822 for (BuiltinCandidateTypeSet::iterator
8823 Ptr = CandidateTypes[1].pointer_begin(),
8824 PtrEnd = CandidateTypes[1].pointer_end();
8825 Ptr != PtrEnd; ++Ptr) {
8826 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8827 QualType PointeeType = (*Ptr)->getPointeeType();
8828 if (!PointeeType->isObjectType())
8829 continue;
8830
8831 // T& operator[](ptrdiff_t, T*)
8832 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8833 }
8834 }
8835
8836 // C++ [over.built]p11:
8837 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8838 // C1 is the same type as C2 or is a derived class of C2, T is an object
8839 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8840 // there exist candidate operator functions of the form
8841 //
8842 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8843 //
8844 // where CV12 is the union of CV1 and CV2.
8845 void addArrowStarOverloads() {
8846 for (BuiltinCandidateTypeSet::iterator
8847 Ptr = CandidateTypes[0].pointer_begin(),
8848 PtrEnd = CandidateTypes[0].pointer_end();
8849 Ptr != PtrEnd; ++Ptr) {
8850 QualType C1Ty = (*Ptr);
8851 QualType C1;
8852 QualifierCollector Q1;
8853 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8854 if (!isa<RecordType>(C1))
8855 continue;
8856 // heuristic to reduce number of builtin candidates in the set.
8857 // Add volatile/restrict version only if there are conversions to a
8858 // volatile/restrict type.
8859 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8860 continue;
8861 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8862 continue;
8863 for (BuiltinCandidateTypeSet::iterator
8864 MemPtr = CandidateTypes[1].member_pointer_begin(),
8865 MemPtrEnd = CandidateTypes[1].member_pointer_end();
8866 MemPtr != MemPtrEnd; ++MemPtr) {
8867 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8868 QualType C2 = QualType(mptr->getClass(), 0);
8869 C2 = C2.getUnqualifiedType();
8870 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8871 break;
8872 QualType ParamTypes[2] = { *Ptr, *MemPtr };
8873 // build CV12 T&
8874 QualType T = mptr->getPointeeType();
8875 if (!VisibleTypeConversionsQuals.hasVolatile() &&
8876 T.isVolatileQualified())
8877 continue;
8878 if (!VisibleTypeConversionsQuals.hasRestrict() &&
8879 T.isRestrictQualified())
8880 continue;
8881 T = Q1.apply(S.Context, T);
8882 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8883 }
8884 }
8885 }
8886
8887 // Note that we don't consider the first argument, since it has been
8888 // contextually converted to bool long ago. The candidates below are
8889 // therefore added as binary.
8890 //
8891 // C++ [over.built]p25:
8892 // For every type T, where T is a pointer, pointer-to-member, or scoped
8893 // enumeration type, there exist candidate operator functions of the form
8894 //
8895 // T operator?(bool, T, T);
8896 //
8897 void addConditionalOperatorOverloads() {
8898 /// Set of (canonical) types that we've already handled.
8899 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8900
8901 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8902 for (BuiltinCandidateTypeSet::iterator
8903 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8904 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8905 Ptr != PtrEnd; ++Ptr) {
8906 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8907 continue;
8908
8909 QualType ParamTypes[2] = { *Ptr, *Ptr };
8910 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8911 }
8912
8913 for (BuiltinCandidateTypeSet::iterator
8914 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8915 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8916 MemPtr != MemPtrEnd; ++MemPtr) {
8917 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8918 continue;
8919
8920 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8921 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8922 }
8923
8924 if (S.getLangOpts().CPlusPlus11) {
8925 for (BuiltinCandidateTypeSet::iterator
8926 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8927 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8928 Enum != EnumEnd; ++Enum) {
8929 if (!(*Enum)->castAs<EnumType>()->getDecl()->isScoped())
8930 continue;
8931
8932 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8933 continue;
8934
8935 QualType ParamTypes[2] = { *Enum, *Enum };
8936 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8937 }
8938 }
8939 }
8940 }
8941};
8942
8943} // end anonymous namespace
8944
8945/// AddBuiltinOperatorCandidates - Add the appropriate built-in
8946/// operator overloads to the candidate set (C++ [over.built]), based
8947/// on the operator @p Op and the arguments given. For example, if the
8948/// operator is a binary '+', this routine might add "int
8949/// operator+(int, int)" to cover integer addition.
8950void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8951 SourceLocation OpLoc,
8952 ArrayRef<Expr *> Args,
8953 OverloadCandidateSet &CandidateSet) {
8954 // Find all of the types that the arguments can convert to, but only
8955 // if the operator we're looking at has built-in operator candidates
8956 // that make use of these types. Also record whether we encounter non-record
8957 // candidate types or either arithmetic or enumeral candidate types.
8958 Qualifiers VisibleTypeConversionsQuals;
8959 VisibleTypeConversionsQuals.addConst();
8960 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8961 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8962
8963 bool HasNonRecordCandidateType = false;
8964 bool HasArithmeticOrEnumeralCandidateType = false;
8965 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8966 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8967 CandidateTypes.emplace_back(*this);
8968 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8969 OpLoc,
8970 true,
8971 (Op == OO_Exclaim ||
8972 Op == OO_AmpAmp ||
8973 Op == OO_PipePipe),
8974 VisibleTypeConversionsQuals);
8975 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8976 CandidateTypes[ArgIdx].hasNonRecordTypes();
8977 HasArithmeticOrEnumeralCandidateType =
8978 HasArithmeticOrEnumeralCandidateType ||
8979 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8980 }
8981
8982 // Exit early when no non-record types have been added to the candidate set
8983 // for any of the arguments to the operator.
8984 //
8985 // We can't exit early for !, ||, or &&, since there we have always have
8986 // 'bool' overloads.
8987 if (!HasNonRecordCandidateType &&
8988 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8989 return;
8990
8991 // Setup an object to manage the common state for building overloads.
8992 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8993 VisibleTypeConversionsQuals,
8994 HasArithmeticOrEnumeralCandidateType,
8995 CandidateTypes, CandidateSet);
8996
8997 // Dispatch over the operation to add in only those overloads which apply.
8998 switch (Op) {
8999 case OO_None:
9000 case NUM_OVERLOADED_OPERATORS:
9001 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9001)
;
9002
9003 case OO_New:
9004 case OO_Delete:
9005 case OO_Array_New:
9006 case OO_Array_Delete:
9007 case OO_Call:
9008 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9009)
9009 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9009)
;
9010
9011 case OO_Comma:
9012 case OO_Arrow:
9013 case OO_Coawait:
9014 // C++ [over.match.oper]p3:
9015 // -- For the operator ',', the unary operator '&', the
9016 // operator '->', or the operator 'co_await', the
9017 // built-in candidates set is empty.
9018 break;
9019
9020 case OO_Plus: // '+' is either unary or binary
9021 if (Args.size() == 1)
9022 OpBuilder.addUnaryPlusPointerOverloads();
9023 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9024
9025 case OO_Minus: // '-' is either unary or binary
9026 if (Args.size() == 1) {
9027 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9028 } else {
9029 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9030 OpBuilder.addGenericBinaryArithmeticOverloads();
9031 }
9032 break;
9033
9034 case OO_Star: // '*' is either unary or binary
9035 if (Args.size() == 1)
9036 OpBuilder.addUnaryStarPointerOverloads();
9037 else
9038 OpBuilder.addGenericBinaryArithmeticOverloads();
9039 break;
9040
9041 case OO_Slash:
9042 OpBuilder.addGenericBinaryArithmeticOverloads();
9043 break;
9044
9045 case OO_PlusPlus:
9046 case OO_MinusMinus:
9047 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9048 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9049 break;
9050
9051 case OO_EqualEqual:
9052 case OO_ExclaimEqual:
9053 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9054 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9055
9056 case OO_Less:
9057 case OO_Greater:
9058 case OO_LessEqual:
9059 case OO_GreaterEqual:
9060 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9061 OpBuilder.addGenericBinaryArithmeticOverloads();
9062 break;
9063
9064 case OO_Spaceship:
9065 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9066 OpBuilder.addThreeWayArithmeticOverloads();
9067 break;
9068
9069 case OO_Percent:
9070 case OO_Caret:
9071 case OO_Pipe:
9072 case OO_LessLess:
9073 case OO_GreaterGreater:
9074 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9075 break;
9076
9077 case OO_Amp: // '&' is either unary or binary
9078 if (Args.size() == 1)
9079 // C++ [over.match.oper]p3:
9080 // -- For the operator ',', the unary operator '&', or the
9081 // operator '->', the built-in candidates set is empty.
9082 break;
9083
9084 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9085 break;
9086
9087 case OO_Tilde:
9088 OpBuilder.addUnaryTildePromotedIntegralOverloads();
9089 break;
9090
9091 case OO_Equal:
9092 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9093 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9094
9095 case OO_PlusEqual:
9096 case OO_MinusEqual:
9097 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9098 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9099
9100 case OO_StarEqual:
9101 case OO_SlashEqual:
9102 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9103 break;
9104
9105 case OO_PercentEqual:
9106 case OO_LessLessEqual:
9107 case OO_GreaterGreaterEqual:
9108 case OO_AmpEqual:
9109 case OO_CaretEqual:
9110 case OO_PipeEqual:
9111 OpBuilder.addAssignmentIntegralOverloads();
9112 break;
9113
9114 case OO_Exclaim:
9115 OpBuilder.addExclaimOverload();
9116 break;
9117
9118 case OO_AmpAmp:
9119 case OO_PipePipe:
9120 OpBuilder.addAmpAmpOrPipePipeOverload();
9121 break;
9122
9123 case OO_Subscript:
9124 OpBuilder.addSubscriptOverloads();
9125 break;
9126
9127 case OO_ArrowStar:
9128 OpBuilder.addArrowStarOverloads();
9129 break;
9130
9131 case OO_Conditional:
9132 OpBuilder.addConditionalOperatorOverloads();
9133 OpBuilder.addGenericBinaryArithmeticOverloads();
9134 break;
9135 }
9136}
9137
9138/// Add function candidates found via argument-dependent lookup
9139/// to the set of overloading candidates.
9140///
9141/// This routine performs argument-dependent name lookup based on the
9142/// given function name (which may also be an operator name) and adds
9143/// all of the overload candidates found by ADL to the overload
9144/// candidate set (C++ [basic.lookup.argdep]).
9145void
9146Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9147 SourceLocation Loc,
9148 ArrayRef<Expr *> Args,
9149 TemplateArgumentListInfo *ExplicitTemplateArgs,
9150 OverloadCandidateSet& CandidateSet,
9151 bool PartialOverloading) {
9152 ADLResult Fns;
9153
9154 // FIXME: This approach for uniquing ADL results (and removing
9155 // redundant candidates from the set) relies on pointer-equality,
9156 // which means we need to key off the canonical decl. However,
9157 // always going back to the canonical decl might not get us the
9158 // right set of default arguments. What default arguments are
9159 // we supposed to consider on ADL candidates, anyway?
9160
9161 // FIXME: Pass in the explicit template arguments?
9162 ArgumentDependentLookup(Name, Loc, Args, Fns);
9163
9164 // Erase all of the candidates we already knew about.
9165 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9166 CandEnd = CandidateSet.end();
9167 Cand != CandEnd; ++Cand)
9168 if (Cand->Function) {
9169 Fns.erase(Cand->Function);
9170 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9171 Fns.erase(FunTmpl);
9172 }
9173
9174 // For each of the ADL candidates we found, add it to the overload
9175 // set.
9176 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9177 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9178
9179 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9180 if (ExplicitTemplateArgs)
9181 continue;
9182
9183 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9184 /*SuppressUserConversions=*/false, PartialOverloading,
9185 /*AllowExplicit*/ true,
9186 /*AllowExplicitConversions*/ false,
9187 ADLCallKind::UsesADL);
9188 } else {
9189 AddTemplateOverloadCandidate(
9190 cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9191 CandidateSet,
9192 /*SuppressUserConversions=*/false, PartialOverloading,
9193 /*AllowExplicit*/true, ADLCallKind::UsesADL);
9194 }
9195 }
9196}
9197
9198namespace {
9199enum class Comparison { Equal, Better, Worse };
9200}
9201
9202/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9203/// overload resolution.
9204///
9205/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9206/// Cand1's first N enable_if attributes have precisely the same conditions as
9207/// Cand2's first N enable_if attributes (where N = the number of enable_if
9208/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9209///
9210/// Note that you can have a pair of candidates such that Cand1's enable_if
9211/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9212/// worse than Cand1's.
9213static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9214 const FunctionDecl *Cand2) {
9215 // Common case: One (or both) decls don't have enable_if attrs.
9216 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9217 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9218 if (!Cand1Attr || !Cand2Attr) {
9219 if (Cand1Attr == Cand2Attr)
9220 return Comparison::Equal;
9221 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9222 }
9223
9224 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9225 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9226
9227 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9228 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9229 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9230 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9231
9232 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9233 // has fewer enable_if attributes than Cand2, and vice versa.
9234 if (!Cand1A)
9235 return Comparison::Worse;
9236 if (!Cand2A)
9237 return Comparison::Better;
9238
9239 Cand1ID.clear();
9240 Cand2ID.clear();
9241
9242 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9243 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9244 if (Cand1ID != Cand2ID)
9245 return Comparison::Worse;
9246 }
9247
9248 return Comparison::Equal;
9249}
9250
9251static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9252 const OverloadCandidate &Cand2) {
9253 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9254 !Cand2.Function->isMultiVersion())
9255 return false;
9256
9257 // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9258 // is obviously better.
9259 if (Cand1.Function->isInvalidDecl()) return false;
9260 if (Cand2.Function->isInvalidDecl()) return true;
9261
9262 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9263 // cpu_dispatch, else arbitrarily based on the identifiers.
9264 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9265 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9266 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9267 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9268
9269 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9270 return false;
9271
9272 if (Cand1CPUDisp && !Cand2CPUDisp)
9273 return true;
9274 if (Cand2CPUDisp && !Cand1CPUDisp)
9275 return false;
9276
9277 if (Cand1CPUSpec && Cand2CPUSpec) {
9278 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9279 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9280
9281 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9282 FirstDiff = std::mismatch(
9283 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9284 Cand2CPUSpec->cpus_begin(),
9285 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9286 return LHS->getName() == RHS->getName();
9287 });
9288
9289 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9291, __PRETTY_FUNCTION__))
9290 "Two different cpu-specific versions should not have the same "((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9291, __PRETTY_FUNCTION__))
9291 "identifier list, otherwise they'd be the same decl!")((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9291, __PRETTY_FUNCTION__))
;
9292 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9293 }
9294 llvm_unreachable("No way to get here unless both had cpu_dispatch")::llvm::llvm_unreachable_internal("No way to get here unless both had cpu_dispatch"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9294)
;
9295}
9296
9297/// isBetterOverloadCandidate - Determines whether the first overload
9298/// candidate is a better candidate than the second (C++ 13.3.3p1).
9299bool clang::isBetterOverloadCandidate(
9300 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9301 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9302 // Define viable functions to be better candidates than non-viable
9303 // functions.
9304 if (!Cand2.Viable)
13
Assuming field 'Viable' is true
14
Taking false branch
9305 return Cand1.Viable;
9306 else if (!Cand1.Viable
14.1
Field 'Viable' is true
)
15
Taking false branch
9307 return false;
9308
9309 // C++ [over.match.best]p1:
9310 //
9311 // -- if F is a static member function, ICS1(F) is defined such
9312 // that ICS1(F) is neither better nor worse than ICS1(G) for
9313 // any function G, and, symmetrically, ICS1(G) is neither
9314 // better nor worse than ICS1(F).
9315 unsigned StartArg = 0;
9316 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
16
Assuming field 'IgnoreObjectArgument' is false
17
Assuming field 'IgnoreObjectArgument' is false
18
Taking false branch
9317 StartArg = 1;
9318
9319 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9320 // We don't allow incompatible pointer conversions in C++.
9321 if (!S.getLangOpts().CPlusPlus)
9322 return ICS.isStandard() &&
9323 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9324
9325 // The only ill-formed conversion we allow in C++ is the string literal to
9326 // char* conversion, which is only considered ill-formed after C++11.
9327 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9328 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9329 };
9330
9331 // Define functions that don't require ill-formed conversions for a given
9332 // argument to be better candidates than functions that do.
9333 unsigned NumArgs = Cand1.Conversions.size();
9334 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"
) ? static_cast<void> (0) : __assert_fail ("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9334, __PRETTY_FUNCTION__))
;
19
Assuming the condition is true
20
'?' condition is true
9335 bool HasBetterConversion = false;
9336 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
21
Assuming 'ArgIdx' is >= 'NumArgs'
22
Loop condition is false. Execution continues on line 9346
9337 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9338 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9339 if (Cand1Bad != Cand2Bad) {
9340 if (Cand1Bad)
9341 return false;
9342 HasBetterConversion = true;
9343 }
9344 }
9345
9346 if (HasBetterConversion
22.1
'HasBetterConversion' is false
)
23
Taking false branch
9347 return true;
9348
9349 // C++ [over.match.best]p1:
9350 // A viable function F1 is defined to be a better function than another
9351 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9352 // conversion sequence than ICSi(F2), and then...
9353 bool HasWorseConversion = false;
9354 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
24
Loop condition is false. Execution continues on line 9393
9355 switch (CompareImplicitConversionSequences(S, Loc,
9356 Cand1.Conversions[ArgIdx],
9357 Cand2.Conversions[ArgIdx])) {
9358 case ImplicitConversionSequence::Better:
9359 // Cand1 has a better conversion sequence.
9360 HasBetterConversion = true;
9361 break;
9362
9363 case ImplicitConversionSequence::Worse:
9364 if (Cand1.Function && Cand1.Function == Cand2.Function &&
9365 (Cand2.RewriteKind & CRK_Reversed) != 0) {
9366 // Work around large-scale breakage caused by considering reversed
9367 // forms of operator== in C++20:
9368 //
9369 // When comparing a function against its reversed form, if we have a
9370 // better conversion for one argument and a worse conversion for the
9371 // other, we prefer the non-reversed form.
9372 //
9373 // This prevents a conversion function from being considered ambiguous
9374 // with its own reversed form in various where it's only incidentally
9375 // heterogeneous.
9376 //
9377 // We diagnose this as an extension from CreateOverloadedBinOp.
9378 HasWorseConversion = true;
9379 break;
9380 }
9381
9382 // Cand1 can't be better than Cand2.
9383 return false;
9384
9385 case ImplicitConversionSequence::Indistinguishable:
9386 // Do nothing.
9387 break;
9388 }
9389 }
9390
9391 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9392 // ICSj(F2), or, if not that,
9393 if (HasBetterConversion
24.1
'HasBetterConversion' is false
)
25
Taking false branch
9394 return true;
9395 if (HasWorseConversion
25.1
'HasWorseConversion' is false
)
26
Taking false branch
9396 return false;
9397
9398 // -- the context is an initialization by user-defined conversion
9399 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9400 // from the return type of F1 to the destination type (i.e.,
9401 // the type of the entity being initialized) is a better
9402 // conversion sequence than the standard conversion sequence
9403 // from the return type of F2 to the destination type.
9404 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
27
Assuming 'Kind' is not equal to CSK_InitByUserDefinedConversion
9405 Cand1.Function && Cand2.Function &&
9406 isa<CXXConversionDecl>(Cand1.Function) &&
9407 isa<CXXConversionDecl>(Cand2.Function)) {
9408 // First check whether we prefer one of the conversion functions over the
9409 // other. This only distinguishes the results in non-standard, extension
9410 // cases such as the conversion from a lambda closure type to a function
9411 // pointer or block.
9412 ImplicitConversionSequence::CompareKind Result =
9413 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9414 if (Result == ImplicitConversionSequence::Indistinguishable)
9415 Result = CompareStandardConversionSequences(S, Loc,
9416 Cand1.FinalConversion,
9417 Cand2.FinalConversion);
9418
9419 if (Result != ImplicitConversionSequence::Indistinguishable)
9420 return Result == ImplicitConversionSequence::Better;
9421
9422 // FIXME: Compare kind of reference binding if conversion functions
9423 // convert to a reference type used in direct reference binding, per
9424 // C++14 [over.match.best]p1 section 2 bullet 3.
9425 }
9426
9427 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9428 // as combined with the resolution to CWG issue 243.
9429 //
9430 // When the context is initialization by constructor ([over.match.ctor] or
9431 // either phase of [over.match.list]), a constructor is preferred over
9432 // a conversion function.
9433 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
28
Assuming 'Kind' is not equal to CSK_InitByConstructor
9434 Cand1.Function && Cand2.Function &&
9435 isa<CXXConstructorDecl>(Cand1.Function) !=
9436 isa<CXXConstructorDecl>(Cand2.Function))
9437 return isa<CXXConstructorDecl>(Cand1.Function);
9438
9439 // -- F1 is a non-template function and F2 is a function template
9440 // specialization, or, if not that,
9441 bool Cand1IsSpecialization = Cand1.Function &&
29
Assuming field 'Function' is null
9442 Cand1.Function->getPrimaryTemplate();
9443 bool Cand2IsSpecialization = Cand2.Function &&
30
Assuming field 'Function' is null
9444 Cand2.Function->getPrimaryTemplate();
9445 if (Cand1IsSpecialization
30.1
'Cand1IsSpecialization' is equal to 'Cand2IsSpecialization'
!= Cand2IsSpecialization)
31
Taking false branch
9446 return Cand2IsSpecialization;
9447
9448 // -- F1 and F2 are function template specializations, and the function
9449 // template for F1 is more specialized than the template for F2
9450 // according to the partial ordering rules described in 14.5.5.2, or,
9451 // if not that,
9452 if (Cand1IsSpecialization
31.1
'Cand1IsSpecialization' is false
&& Cand2IsSpecialization) {
9453 if (FunctionTemplateDecl *BetterTemplate
9454 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9455 Cand2.Function->getPrimaryTemplate(),
9456 Loc,
9457 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9458 : TPOC_Call,
9459 Cand1.ExplicitCallArguments,
9460 Cand2.ExplicitCallArguments))
9461 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9462 }
9463
9464 // -- F1 is a constructor for a class D, F2 is a constructor for a base
9465 // class B of D, and for all arguments the corresponding parameters of
9466 // F1 and F2 have the same type.
9467 // FIXME: Implement the "all parameters have the same type" check.
9468 bool Cand1IsInherited =
9469 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
32
Assuming the object is a 'ConstructorUsingShadowDecl'
9470 bool Cand2IsInherited =
9471 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
33
Assuming the object is a 'ConstructorUsingShadowDecl'
9472 if (Cand1IsInherited != Cand2IsInherited)
34
Assuming 'Cand1IsInherited' is equal to 'Cand2IsInherited'
35
Taking false branch
9473 return Cand2IsInherited;
9474 else if (Cand1IsInherited) {
36
Assuming 'Cand1IsInherited' is true
37
Taking true branch
9475 assert(Cand2IsInherited)((Cand2IsInherited) ? static_cast<void> (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9475, __PRETTY_FUNCTION__))
;
38
Assuming 'Cand2IsInherited' is true
39
'?' condition is true
9476 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
40
Called C++ object pointer is null
9477 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9478 if (Cand1Class->isDerivedFrom(Cand2Class))
9479 return true;
9480 if (Cand2Class->isDerivedFrom(Cand1Class))
9481 return false;
9482 // Inherited from sibling base classes: still ambiguous.
9483 }
9484
9485 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9486 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9487 // with reversed order of parameters and F1 is not
9488 //
9489 // We rank reversed + different operator as worse than just reversed, but
9490 // that comparison can never happen, because we only consider reversing for
9491 // the maximally-rewritten operator (== or <=>).
9492 if (Cand1.RewriteKind != Cand2.RewriteKind)
9493 return Cand1.RewriteKind < Cand2.RewriteKind;
9494
9495 // Check C++17 tie-breakers for deduction guides.
9496 {
9497 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9498 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9499 if (Guide1 && Guide2) {
9500 // -- F1 is generated from a deduction-guide and F2 is not
9501 if (Guide1->isImplicit() != Guide2->isImplicit())
9502 return Guide2->isImplicit();
9503
9504 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9505 if (Guide1->isCopyDeductionCandidate())
9506 return true;
9507 }
9508 }
9509
9510 // Check for enable_if value-based overload resolution.
9511 if (Cand1.Function && Cand2.Function) {
9512 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9513 if (Cmp != Comparison::Equal)
9514 return Cmp == Comparison::Better;
9515 }
9516
9517 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9518 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9519 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9520 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9521 }
9522
9523 bool HasPS1 = Cand1.Function != nullptr &&
9524 functionHasPassObjectSizeParams(Cand1.Function);
9525 bool HasPS2 = Cand2.Function != nullptr &&
9526 functionHasPassObjectSizeParams(Cand2.Function);
9527 if (HasPS1 != HasPS2 && HasPS1)
9528 return true;
9529
9530 return isBetterMultiversionCandidate(Cand1, Cand2);
9531}
9532
9533/// Determine whether two declarations are "equivalent" for the purposes of
9534/// name lookup and overload resolution. This applies when the same internal/no
9535/// linkage entity is defined by two modules (probably by textually including
9536/// the same header). In such a case, we don't consider the declarations to
9537/// declare the same entity, but we also don't want lookups with both
9538/// declarations visible to be ambiguous in some cases (this happens when using
9539/// a modularized libstdc++).
9540bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9541 const NamedDecl *B) {
9542 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9543 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9544 if (!VA || !VB)
9545 return false;
9546
9547 // The declarations must be declaring the same name as an internal linkage
9548 // entity in different modules.
9549 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9550 VB->getDeclContext()->getRedeclContext()) ||
9551 getOwningModule(const_cast<ValueDecl *>(VA)) ==
9552 getOwningModule(const_cast<ValueDecl *>(VB)) ||
9553 VA->isExternallyVisible() || VB->isExternallyVisible())
9554 return false;
9555
9556 // Check that the declarations appear to be equivalent.
9557 //
9558 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9559 // For constants and functions, we should check the initializer or body is
9560 // the same. For non-constant variables, we shouldn't allow it at all.
9561 if (Context.hasSameType(VA->getType(), VB->getType()))
9562 return true;
9563
9564 // Enum constants within unnamed enumerations will have different types, but
9565 // may still be similar enough to be interchangeable for our purposes.
9566 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9567 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9568 // Only handle anonymous enums. If the enumerations were named and
9569 // equivalent, they would have been merged to the same type.
9570 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9571 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9572 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9573 !Context.hasSameType(EnumA->getIntegerType(),
9574 EnumB->getIntegerType()))
9575 return false;
9576 // Allow this only if the value is the same for both enumerators.
9577 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9578 }
9579 }
9580
9581 // Nothing else is sufficiently similar.
9582 return false;
9583}
9584
9585void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9586 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9587 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9588
9589 Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9590 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9591 << !M << (M ? M->getFullModuleName() : "");
9592
9593 for (auto *E : Equiv) {
9594 Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9595 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9596 << !M << (M ? M->getFullModuleName() : "");
9597 }
9598}
9599
9600/// Computes the best viable function (C++ 13.3.3)
9601/// within an overload candidate set.
9602///
9603/// \param Loc The location of the function name (or operator symbol) for
9604/// which overload resolution occurs.
9605///
9606/// \param Best If overload resolution was successful or found a deleted
9607/// function, \p Best points to the candidate function found.
9608///
9609/// \returns The result of overload resolution.
9610OverloadingResult
9611OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9612 iterator &Best) {
9613 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9614 std::transform(begin(), end(), std::back_inserter(Candidates),
9615 [](OverloadCandidate &Cand) { return &Cand; });
9616
9617 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9618 // are accepted by both clang and NVCC. However, during a particular
9619 // compilation mode only one call variant is viable. We need to
9620 // exclude non-viable overload candidates from consideration based
9621 // only on their host/device attributes. Specifically, if one
9622 // candidate call is WrongSide and the other is SameSide, we ignore
9623 // the WrongSide candidate.
9624 if (S.getLangOpts().CUDA) {
6
Assuming field 'CUDA' is 0
7
Taking false branch
9625 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9626 bool ContainsSameSideCandidate =
9627 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9628 // Check viable function only.
9629 return Cand->Viable && Cand->Function &&
9630 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9631 Sema::CFP_SameSide;
9632 });
9633 if (ContainsSameSideCandidate) {
9634 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9635 // Check viable function only to avoid unnecessary data copying/moving.
9636 return Cand->Viable && Cand->Function &&
9637 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9638 Sema::CFP_WrongSide;
9639 };
9640 llvm::erase_if(Candidates, IsWrongSideCandidate);
9641 }
9642 }
9643
9644 // Find the best viable function.
9645 Best = end();
9646 for (auto *Cand : Candidates) {
8
Assuming '__begin1' is not equal to '__end1'
9647 Cand->Best = false;
9648 if (Cand->Viable)
9
Assuming field 'Viable' is true
10
Taking true branch
9649 if (Best == end() ||
11
Assuming the condition is false
9650 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
12
Calling 'isBetterOverloadCandidate'
9651 Best = Cand;
9652 }
9653
9654 // If we didn't find any viable functions, abort.
9655 if (Best == end())
9656 return OR_No_Viable_Function;
9657
9658 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9659
9660 llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
9661 PendingBest.push_back(&*Best);
9662 Best->Best = true;
9663
9664 // Make sure that this function is better than every other viable
9665 // function. If not, we have an ambiguity.
9666 while (!PendingBest.empty()) {
9667 auto *Curr = PendingBest.pop_back_val();
9668 for (auto *Cand : Candidates) {
9669 if (Cand->Viable && !Cand->Best &&
9670 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
9671 PendingBest.push_back(Cand);
9672 Cand->Best = true;
9673
9674 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
9675 Curr->Function))
9676 EquivalentCands.push_back(Cand->Function);
9677 else
9678 Best = end();
9679 }
9680 }
9681 }
9682
9683 // If we found more than one best candidate, this is ambiguous.
9684 if (Best == end())
9685 return OR_Ambiguous;
9686
9687 // Best is the best viable function.
9688 if (Best->Function && Best->Function->isDeleted())
9689 return OR_Deleted;
9690
9691 if (!EquivalentCands.empty())
9692 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9693 EquivalentCands);
9694
9695 return OR_Success;
9696}
9697
9698namespace {
9699
9700enum OverloadCandidateKind {
9701 oc_function,
9702 oc_method,
9703 oc_reversed_binary_operator,
9704 oc_constructor,
9705 oc_implicit_default_constructor,
9706 oc_implicit_copy_constructor,
9707 oc_implicit_move_constructor,
9708 oc_implicit_copy_assignment,
9709 oc_implicit_move_assignment,
9710 oc_implicit_equality_comparison,
9711 oc_inherited_constructor
9712};
9713
9714enum OverloadCandidateSelect {
9715 ocs_non_template,
9716 ocs_template,
9717 ocs_described_template,
9718};
9719
9720static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9721ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9722 OverloadCandidateRewriteKind CRK,
9723 std::string &Description) {
9724
9725 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9726 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9727 isTemplate = true;
9728 Description = S.getTemplateArgumentBindingsText(
9729 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9730 }
9731
9732 OverloadCandidateSelect Select = [&]() {
9733 if (!Description.empty())
9734 return ocs_described_template;
9735 return isTemplate ? ocs_template : ocs_non_template;
9736 }();
9737
9738 OverloadCandidateKind Kind = [&]() {
9739 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
9740 return oc_implicit_equality_comparison;
9741
9742 if (CRK & CRK_Reversed)
9743 return oc_reversed_binary_operator;
9744
9745 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9746 if (!Ctor->isImplicit()) {
9747 if (isa<ConstructorUsingShadowDecl>(Found))
9748 return oc_inherited_constructor;
9749 else
9750 return oc_constructor;
9751 }
9752
9753 if (Ctor->isDefaultConstructor())
9754 return oc_implicit_default_constructor;
9755
9756 if (Ctor->isMoveConstructor())
9757 return oc_implicit_move_constructor;
9758
9759 assert(Ctor->isCopyConstructor() &&((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9760, __PRETTY_FUNCTION__))
9760 "unexpected sort of implicit constructor")((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9760, __PRETTY_FUNCTION__))
;
9761 return oc_implicit_copy_constructor;
9762 }
9763
9764 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9765 // This actually gets spelled 'candidate function' for now, but
9766 // it doesn't hurt to split it out.
9767 if (!Meth->isImplicit())
9768 return oc_method;
9769
9770 if (Meth->isMoveAssignmentOperator())
9771 return oc_implicit_move_assignment;
9772
9773 if (Meth->isCopyAssignmentOperator())
9774 return oc_implicit_copy_assignment;
9775
9776 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((isa<CXXConversionDecl>(Meth) && "expected conversion"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9776, __PRETTY_FUNCTION__))
;
9777 return oc_method;
9778 }
9779
9780 return oc_function;
9781 }();
9782
9783 return std::make_pair(Kind, Select);
9784}
9785
9786void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9787 // FIXME: It'd be nice to only emit a note once per using-decl per overload
9788 // set.
9789 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9790 S.Diag(FoundDecl->getLocation(),
9791 diag::note_ovl_candidate_inherited_constructor)
9792 << Shadow->getNominatedBaseClass();
9793}
9794
9795} // end anonymous namespace
9796
9797static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9798 const FunctionDecl *FD) {
9799 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9800 bool AlwaysTrue;
9801 if (EnableIf->getCond()->isValueDependent() ||
9802 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9803 return false;
9804 if (!AlwaysTrue)
9805 return false;
9806 }
9807 return true;
9808}
9809
9810/// Returns true if we can take the address of the function.
9811///
9812/// \param Complain - If true, we'll emit a diagnostic
9813/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9814/// we in overload resolution?
9815/// \param Loc - The location of the statement we're complaining about. Ignored
9816/// if we're not complaining, or if we're in overload resolution.
9817static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9818 bool Complain,
9819 bool InOverloadResolution,
9820 SourceLocation Loc) {
9821 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9822 if (Complain) {
9823 if (InOverloadResolution)
9824 S.Diag(FD->getBeginLoc(),
9825 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9826 else
9827 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9828 }
9829 return false;
9830 }
9831
9832 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9833 return P->hasAttr<PassObjectSizeAttr>();
9834 });
9835 if (I == FD->param_end())
9836 return true;
9837
9838 if (Complain) {
9839 // Add one to ParamNo because it's user-facing
9840 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9841 if (InOverloadResolution)
9842 S.Diag(FD->getLocation(),
9843 diag::note_ovl_candidate_has_pass_object_size_params)
9844 << ParamNo;
9845 else
9846 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9847 << FD << ParamNo;
9848 }
9849 return false;
9850}
9851
9852static bool checkAddressOfCandidateIsAvailable(Sema &S,
9853 const FunctionDecl *FD) {
9854 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9855 /*InOverloadResolution=*/true,
9856 /*Loc=*/SourceLocation());
9857}
9858
9859bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9860 bool Complain,
9861 SourceLocation Loc) {
9862 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9863 /*InOverloadResolution=*/false,
9864 Loc);
9865}
9866
9867// Notes the location of an overload candidate.
9868void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9869 OverloadCandidateRewriteKind RewriteKind,
9870 QualType DestType, bool TakingAddress) {
9871 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9872 return;
9873 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9874 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9875 return;
9876
9877 std::string FnDesc;
9878 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9879 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
9880 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9881 << (unsigned)KSPair.first << (unsigned)KSPair.second
9882 << Fn << FnDesc;
9883
9884 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9885 Diag(Fn->getLocation(), PD);
9886 MaybeEmitInheritedConstructorNote(*this, Found);
9887}
9888
9889// Notes the location of all overload candidates designated through
9890// OverloadedExpr
9891void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9892 bool TakingAddress) {
9893 assert(OverloadedExpr->getType() == Context.OverloadTy)((OverloadedExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9893, __PRETTY_FUNCTION__))
;
9894
9895 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9896 OverloadExpr *OvlExpr = Ovl.Expression;
9897
9898 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9899 IEnd = OvlExpr->decls_end();
9900 I != IEnd; ++I) {
9901 if (FunctionTemplateDecl *FunTmpl =
9902 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9903 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
9904 TakingAddress);
9905 } else if (FunctionDecl *Fun
9906 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9907 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
9908 }
9909 }
9910}
9911
9912/// Diagnoses an ambiguous conversion. The partial diagnostic is the
9913/// "lead" diagnostic; it will be given two arguments, the source and
9914/// target types of the conversion.
9915void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9916 Sema &S,
9917 SourceLocation CaretLoc,
9918 const PartialDiagnostic &PDiag) const {
9919 S.Diag(CaretLoc, PDiag)
9920 << Ambiguous.getFromType() << Ambiguous.getToType();
9921 // FIXME: The note limiting machinery is borrowed from
9922 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9923 // refactoring here.
9924 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9925 unsigned CandsShown = 0;
9926 AmbiguousConversionSequence::const_iterator I, E;
9927 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9928 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9929 break;
9930 ++CandsShown;
9931 S.NoteOverloadCandidate(I->first, I->second);
9932 }
9933 if (I != E)
9934 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9935}
9936
9937static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9938 unsigned I, bool TakingCandidateAddress) {
9939 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9940 assert(Conv.isBad())((Conv.isBad()) ? static_cast<void> (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9940, __PRETTY_FUNCTION__))
;
9941 assert(Cand->Function && "for now, candidate must be a function")((Cand->Function && "for now, candidate must be a function"
) ? static_cast<void> (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9941, __PRETTY_FUNCTION__))
;
9942 FunctionDecl *Fn = Cand->Function;
9943
9944 // There's a conversion slot for the object argument if this is a
9945 // non-constructor method. Note that 'I' corresponds the
9946 // conversion-slot index.
9947 bool isObjectArgument = false;
9948 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9949 if (I == 0)
9950 isObjectArgument = true;
9951 else
9952 I--;
9953 }
9954
9955 std::string FnDesc;
9956 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9957 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
9958 FnDesc);
9959
9960 Expr *FromExpr = Conv.Bad.FromExpr;
9961 QualType FromTy = Conv.Bad.getFromType();
9962 QualType ToTy = Conv.Bad.getToType();
9963
9964 if (FromTy == S.Context.OverloadTy) {
9965 assert(FromExpr && "overload set argument came from implicit argument?")((FromExpr && "overload set argument came from implicit argument?"
) ? static_cast<void> (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 9965, __PRETTY_FUNCTION__))
;
9966 Expr *E = FromExpr->IgnoreParens();
9967 if (isa<UnaryOperator>(E))
9968 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9969 DeclarationName Name = cast<OverloadExpr>(E)->getName();
9970
9971 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9972 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9973 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9974 << Name << I + 1;
9975 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9976 return;
9977 }
9978
9979 // Do some hand-waving analysis to see if the non-viability is due
9980 // to a qualifier mismatch.
9981 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9982 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9983 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9984 CToTy = RT->getPointeeType();
9985 else {
9986 // TODO: detect and diagnose the full richness of const mismatches.
9987 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9988 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9989 CFromTy = FromPT->getPointeeType();
9990 CToTy = ToPT->getPointeeType();
9991 }
9992 }
9993
9994 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9995 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9996 Qualifiers FromQs = CFromTy.getQualifiers();
9997 Qualifiers ToQs = CToTy.getQualifiers();
9998
9999 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10000 if (isObjectArgument)
10001 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10002 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10003 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10004 << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10005 else
10006 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10007 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10008 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10009 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10010 << ToTy->isReferenceType() << I + 1;
10011 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10012 return;
10013 }
10014
10015 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10016 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10017 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10018 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10019 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10020 << (unsigned)isObjectArgument << I + 1;
10021 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10022 return;
10023 }
10024
10025 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10026 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10027 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10028 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10029 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10030 << (unsigned)isObjectArgument << I + 1;
10031 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10032 return;
10033 }
10034
10035 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10036 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10037 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10038 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10039 << FromQs.hasUnaligned() << I + 1;
10040 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10041 return;
10042 }
10043
10044 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10045 assert(CVR && "unexpected qualifiers mismatch")((CVR && "unexpected qualifiers mismatch") ? static_cast
<void> (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10045, __PRETTY_FUNCTION__))
;
10046
10047 if (isObjectArgument) {
10048 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10049 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10050 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10051 << (CVR - 1);
10052 } else {
10053 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10054 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10055 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10056 << (CVR - 1) << I + 1;
10057 }
10058 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10059 return;
10060 }
10061
10062 // Special diagnostic for failure to convert an initializer list, since
10063 // telling the user that it has type void is not useful.
10064 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10065 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10066 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10067 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10068 << ToTy << (unsigned)isObjectArgument << I + 1;
10069 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10070 return;
10071 }
10072
10073 // Diagnose references or pointers to incomplete types differently,
10074 // since it's far from impossible that the incompleteness triggered
10075 // the failure.
10076 QualType TempFromTy = FromTy.getNonReferenceType();
10077 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10078 TempFromTy = PTy->getPointeeType();
10079 if (TempFromTy->isIncompleteType()) {
10080 // Emit the generic diagnostic and, optionally, add the hints to it.
10081 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10082 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10083 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10084 << ToTy << (unsigned)isObjectArgument << I + 1
10085 << (unsigned)(Cand->Fix.Kind);
10086
10087 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10088 return;
10089 }
10090
10091 // Diagnose base -> derived pointer conversions.
10092 unsigned BaseToDerivedConversion = 0;
10093 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10094 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10095 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10096 FromPtrTy->getPointeeType()) &&
10097 !FromPtrTy->getPointeeType()->isIncompleteType() &&
10098 !ToPtrTy->getPointeeType()->isIncompleteType() &&
10099 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10100 FromPtrTy->getPointeeType()))
10101 BaseToDerivedConversion = 1;
10102 }
10103 } else if (const ObjCObjectPointerType *FromPtrTy
10104 = FromTy->getAs<ObjCObjectPointerType>()) {
10105 if (const ObjCObjectPointerType *ToPtrTy
10106 = ToTy->getAs<ObjCObjectPointerType>())
10107 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10108 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10109 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10110 FromPtrTy->getPointeeType()) &&
10111 FromIface->isSuperClassOf(ToIface))
10112 BaseToDerivedConversion = 2;
10113 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10114 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10115 !FromTy->isIncompleteType() &&
10116 !ToRefTy->getPointeeType()->isIncompleteType() &&
10117 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10118 BaseToDerivedConversion = 3;
10119 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
10120 ToTy.getNonReferenceType().getCanonicalType() ==
10121 FromTy.getNonReferenceType().getCanonicalType()) {
10122 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
10123 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10124 << (unsigned)isObjectArgument << I + 1
10125 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10126 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10127 return;
10128 }
10129 }
10130
10131 if (BaseToDerivedConversion) {
10132 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10133 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10134 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10135 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10136 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10137 return;
10138 }
10139
10140 if (isa<ObjCObjectPointerType>(CFromTy) &&
10141 isa<PointerType>(CToTy)) {
10142 Qualifiers FromQs = CFromTy.getQualifiers();
10143 Qualifiers ToQs = CToTy.getQualifiers();
10144 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10145 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10146 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10147 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10148 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10149 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10150 return;
10151 }
10152 }
10153
10154 if (TakingCandidateAddress &&
10155 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10156 return;
10157
10158 // Emit the generic diagnostic and, optionally, add the hints to it.
10159 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10160 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10161 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10162 << ToTy << (unsigned)isObjectArgument << I + 1
10163 << (unsigned)(Cand->Fix.Kind);
10164
10165 // If we can fix the conversion, suggest the FixIts.
10166 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10167 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10168 FDiag << *HI;
10169 S.Diag(Fn->getLocation(), FDiag);
10170
10171 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10172}
10173
10174/// Additional arity mismatch diagnosis specific to a function overload
10175/// candidates. This is not covered by the more general DiagnoseArityMismatch()
10176/// over a candidate in any candidate set.
10177static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10178 unsigned NumArgs) {
10179 FunctionDecl *Fn = Cand->Function;
10180 unsigned MinParams = Fn->getMinRequiredArguments();
10181
10182 // With invalid overloaded operators, it's possible that we think we
10183 // have an arity mismatch when in fact it looks like we have the
10184 // right number of arguments, because only overloaded operators have
10185 // the weird behavior of overloading member and non-member functions.
10186 // Just don't report anything.
10187 if (Fn->isInvalidDecl() &&
10188 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10189 return true;
10190
10191 if (NumArgs < MinParams) {
10192 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10194, __PRETTY_FUNCTION__))
10193 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10194, __PRETTY_FUNCTION__))
10194 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10194, __PRETTY_FUNCTION__))
;
10195 } else {
10196 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10198, __PRETTY_FUNCTION__))
10197 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10198, __PRETTY_FUNCTION__))
10198 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10198, __PRETTY_FUNCTION__))
;
10199 }
10200
10201 return false;
10202}
10203
10204/// General arity mismatch diagnosis over a candidate in a candidate set.
10205static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10206 unsigned NumFormalArgs) {
10207 assert(isa<FunctionDecl>(D) &&((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10210, __PRETTY_FUNCTION__))
10208 "The templated declaration should at least be a function"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10210, __PRETTY_FUNCTION__))
10209 " when diagnosing bad template argument deduction due to too many"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10210, __PRETTY_FUNCTION__))
10210 " or too few arguments")((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10210, __PRETTY_FUNCTION__))
;
10211
10212 FunctionDecl *Fn = cast<FunctionDecl>(D);
10213
10214 // TODO: treat calls to a missing default constructor as a special case
10215 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
10216 unsigned MinParams = Fn->getMinRequiredArguments();
10217
10218 // at least / at most / exactly
10219 unsigned mode, modeCount;
10220 if (NumFormalArgs < MinParams) {
10221 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10222 FnTy->isTemplateVariadic())
10223 mode = 0; // "at least"
10224 else
10225 mode = 2; // "exactly"
10226 modeCount = MinParams;
10227 } else {
10228 if (MinParams != FnTy->getNumParams())
10229 mode = 1; // "at most"
10230 else
10231 mode = 2; // "exactly"
10232 modeCount = FnTy->getNumParams();
10233 }
10234
10235 std::string Description;
10236 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10237 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10238
10239 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10240 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10241 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10242 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10243 else
10244 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10245 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10246 << Description << mode << modeCount << NumFormalArgs;
10247
10248 MaybeEmitInheritedConstructorNote(S, Found);
10249}
10250
10251/// Arity mismatch diagnosis specific to a function overload candidate.
10252static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10253 unsigned NumFormalArgs) {
10254 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10255 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10256}
10257
10258static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10259 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10260 return TD;
10261 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10262)
10262 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10262)
;
10263}
10264
10265/// Diagnose a failed template-argument deduction.
10266static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10267 DeductionFailureInfo &DeductionFailure,
10268 unsigned NumArgs,
10269 bool TakingCandidateAddress) {
10270 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10271 NamedDecl *ParamD;
10272 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10273 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10274 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10275 switch (DeductionFailure.Result) {
10276 case Sema::TDK_Success:
10277 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10277)
;
10278
10279 case Sema::TDK_Incomplete: {
10280 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10280, __PRETTY_FUNCTION__))
;
10281 S.Diag(Templated->getLocation(),
10282 diag::note_ovl_candidate_incomplete_deduction)
10283 << ParamD->getDeclName();
10284 MaybeEmitInheritedConstructorNote(S, Found);
10285 return;
10286 }
10287
10288 case Sema::TDK_IncompletePack: {
10289 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10289, __PRETTY_FUNCTION__))
;
10290 S.Diag(Templated->getLocation(),
10291 diag::note_ovl_candidate_incomplete_deduction_pack)
10292 << ParamD->getDeclName()
10293 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10294 << *DeductionFailure.getFirstArg();
10295 MaybeEmitInheritedConstructorNote(S, Found);
10296 return;
10297 }
10298
10299 case Sema::TDK_Underqualified: {
10300 assert(ParamD && "no parameter found for bad qualifiers deduction result")((ParamD && "no parameter found for bad qualifiers deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10300, __PRETTY_FUNCTION__))
;
10301 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10302
10303 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10304
10305 // Param will have been canonicalized, but it should just be a
10306 // qualified version of ParamD, so move the qualifiers to that.
10307 QualifierCollector Qs;
10308 Qs.strip(Param);
10309 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10310 assert(S.Context.hasSameType(Param, NonCanonParam))((S.Context.hasSameType(Param, NonCanonParam)) ? static_cast<
void> (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10310, __PRETTY_FUNCTION__))
;
10311
10312 // Arg has also been canonicalized, but there's nothing we can do
10313 // about that. It also doesn't matter as much, because it won't
10314 // have any template parameters in it (because deduction isn't
10315 // done on dependent types).
10316 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10317
10318 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10319 << ParamD->getDeclName() << Arg << NonCanonParam;
10320 MaybeEmitInheritedConstructorNote(S, Found);
10321 return;
10322 }
10323
10324 case Sema::TDK_Inconsistent: {
10325 assert(ParamD && "no parameter found for inconsistent deduction result")((ParamD && "no parameter found for inconsistent deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10325, __PRETTY_FUNCTION__))
;
10326 int which = 0;
10327 if (isa<TemplateTypeParmDecl>(ParamD))
10328 which = 0;
10329 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10330 // Deduction might have failed because we deduced arguments of two
10331 // different types for a non-type template parameter.
10332 // FIXME: Use a different TDK value for this.
10333 QualType T1 =
10334 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10335 QualType T2 =
10336 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10337 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10338 S.Diag(Templated->getLocation(),
10339 diag::note_ovl_candidate_inconsistent_deduction_types)
10340 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10341 << *DeductionFailure.getSecondArg() << T2;
10342 MaybeEmitInheritedConstructorNote(S, Found);
10343 return;
10344 }
10345
10346 which = 1;
10347 } else {
10348 which = 2;
10349 }
10350
10351 // Tweak the diagnostic if the problem is that we deduced packs of
10352 // different arities. We'll print the actual packs anyway in case that
10353 // includes additional useful information.
10354 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10355 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10356 DeductionFailure.getFirstArg()->pack_size() !=
10357 DeductionFailure.getSecondArg()->pack_size()) {
10358 which = 3;
10359 }
10360
10361 S.Diag(Templated->getLocation(),
10362 diag::note_ovl_candidate_inconsistent_deduction)
10363 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10364 << *DeductionFailure.getSecondArg();
10365 MaybeEmitInheritedConstructorNote(S, Found);
10366 return;
10367 }
10368
10369 case Sema::TDK_InvalidExplicitArguments:
10370 assert(ParamD && "no parameter found for invalid explicit arguments")((ParamD && "no parameter found for invalid explicit arguments"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10370, __PRETTY_FUNCTION__))
;
10371 if (ParamD->getDeclName())
10372 S.Diag(Templated->getLocation(),
10373 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10374 << ParamD->getDeclName();
10375 else {
10376 int index = 0;
10377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10378 index = TTP->getIndex();
10379 else if (NonTypeTemplateParmDecl *NTTP
10380 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10381 index = NTTP->getIndex();
10382 else
10383 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10384 S.Diag(Templated->getLocation(),
10385 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10386 << (index + 1);
10387 }
10388 MaybeEmitInheritedConstructorNote(S, Found);
10389 return;
10390
10391 case Sema::TDK_ConstraintsNotSatisfied: {
10392 // Format the template argument list into the argument string.
10393 SmallString<128> TemplateArgString;
10394 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10395 TemplateArgString = " ";
10396 TemplateArgString += S.getTemplateArgumentBindingsText(
10397 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10398 if (TemplateArgString.size() == 1)
10399 TemplateArgString.clear();
10400 S.Diag(Templated->getLocation(),
10401 diag::note_ovl_candidate_unsatisfied_constraints)
10402 << TemplateArgString;
10403
10404 S.DiagnoseUnsatisfiedConstraint(
10405 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10406 return;
10407 }
10408 case Sema::TDK_TooManyArguments:
10409 case Sema::TDK_TooFewArguments:
10410 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10411 return;
10412
10413 case Sema::TDK_InstantiationDepth:
10414 S.Diag(Templated->getLocation(),
10415 diag::note_ovl_candidate_instantiation_depth);
10416 MaybeEmitInheritedConstructorNote(S, Found);
10417 return;
10418
10419 case Sema::TDK_SubstitutionFailure: {
10420 // Format the template argument list into the argument string.
10421 SmallString<128> TemplateArgString;
10422 if (TemplateArgumentList *Args =
10423 DeductionFailure.getTemplateArgumentList()) {
10424 TemplateArgString = " ";
10425 TemplateArgString += S.getTemplateArgumentBindingsText(
10426 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10427 if (TemplateArgString.size() == 1)
10428 TemplateArgString.clear();
10429 }
10430
10431 // If this candidate was disabled by enable_if, say so.
10432 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10433 if (PDiag && PDiag->second.getDiagID() ==
10434 diag::err_typename_nested_not_found_enable_if) {
10435 // FIXME: Use the source range of the condition, and the fully-qualified
10436 // name of the enable_if template. These are both present in PDiag.
10437 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10438 << "'enable_if'" << TemplateArgString;
10439 return;
10440 }
10441
10442 // We found a specific requirement that disabled the enable_if.
10443 if (PDiag && PDiag->second.getDiagID() ==
10444 diag::err_typename_nested_not_found_requirement) {
10445 S.Diag(Templated->getLocation(),
10446 diag::note_ovl_candidate_disabled_by_requirement)
10447 << PDiag->second.getStringArg(0) << TemplateArgString;
10448 return;
10449 }
10450
10451 // Format the SFINAE diagnostic into the argument string.
10452 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10453 // formatted message in another diagnostic.
10454 SmallString<128> SFINAEArgString;
10455 SourceRange R;
10456 if (PDiag) {
10457 SFINAEArgString = ": ";
10458 R = SourceRange(PDiag->first, PDiag->first);
10459 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10460 }
10461
10462 S.Diag(Templated->getLocation(),
10463 diag::note_ovl_candidate_substitution_failure)
10464 << TemplateArgString << SFINAEArgString << R;
10465 MaybeEmitInheritedConstructorNote(S, Found);
10466 return;
10467 }
10468
10469 case Sema::TDK_DeducedMismatch:
10470 case Sema::TDK_DeducedMismatchNested: {
10471 // Format the template argument list into the argument string.
10472 SmallString<128> TemplateArgString;
10473 if (TemplateArgumentList *Args =
10474 DeductionFailure.getTemplateArgumentList()) {
10475 TemplateArgString = " ";
10476 TemplateArgString += S.getTemplateArgumentBindingsText(
10477 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10478 if (TemplateArgString.size() == 1)
10479 TemplateArgString.clear();
10480 }
10481
10482 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10483 << (*DeductionFailure.getCallArgIndex() + 1)
10484 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10485 << TemplateArgString
10486 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10487 break;
10488 }
10489
10490 case Sema::TDK_NonDeducedMismatch: {
10491 // FIXME: Provide a source location to indicate what we couldn't match.
10492 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10493 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10494 if (FirstTA.getKind() == TemplateArgument::Template &&
10495 SecondTA.getKind() == TemplateArgument::Template) {
10496 TemplateName FirstTN = FirstTA.getAsTemplate();
10497 TemplateName SecondTN = SecondTA.getAsTemplate();
10498 if (FirstTN.getKind() == TemplateName::Template &&
10499 SecondTN.getKind() == TemplateName::Template) {
10500 if (FirstTN.getAsTemplateDecl()->getName() ==
10501 SecondTN.getAsTemplateDecl()->getName()) {
10502 // FIXME: This fixes a bad diagnostic where both templates are named
10503 // the same. This particular case is a bit difficult since:
10504 // 1) It is passed as a string to the diagnostic printer.
10505 // 2) The diagnostic printer only attempts to find a better
10506 // name for types, not decls.
10507 // Ideally, this should folded into the diagnostic printer.
10508 S.Diag(Templated->getLocation(),
10509 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10510 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10511 return;
10512 }
10513 }
10514 }
10515
10516 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10517 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10518 return;
10519
10520 // FIXME: For generic lambda parameters, check if the function is a lambda
10521 // call operator, and if so, emit a prettier and more informative
10522 // diagnostic that mentions 'auto' and lambda in addition to
10523 // (or instead of?) the canonical template type parameters.
10524 S.Diag(Templated->getLocation(),
10525 diag::note_ovl_candidate_non_deduced_mismatch)
10526 << FirstTA << SecondTA;
10527 return;
10528 }
10529 // TODO: diagnose these individually, then kill off
10530 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10531 case Sema::TDK_MiscellaneousDeductionFailure:
10532 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10533 MaybeEmitInheritedConstructorNote(S, Found);
10534 return;
10535 case Sema::TDK_CUDATargetMismatch:
10536 S.Diag(Templated->getLocation(),
10537 diag::note_cuda_ovl_candidate_target_mismatch);
10538 return;
10539 }
10540}
10541
10542/// Diagnose a failed template-argument deduction, for function calls.
10543static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10544 unsigned NumArgs,
10545 bool TakingCandidateAddress) {
10546 unsigned TDK = Cand->DeductionFailure.Result;
10547 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10548 if (CheckArityMismatch(S, Cand, NumArgs))
10549 return;
10550 }
10551 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10552 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10553}
10554
10555/// CUDA: diagnose an invalid call across targets.
10556static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10557 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10558 FunctionDecl *Callee = Cand->Function;
10559
10560 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10561 CalleeTarget = S.IdentifyCUDATarget(Callee);
10562
10563 std::string FnDesc;
10564 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10565 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
10566 Cand->getRewriteKind(), FnDesc);
10567
10568 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10569 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10570 << FnDesc /* Ignored */
10571 << CalleeTarget << CallerTarget;
10572
10573 // This could be an implicit constructor for which we could not infer the
10574 // target due to a collsion. Diagnose that case.
10575 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10576 if (Meth != nullptr && Meth->isImplicit()) {
10577 CXXRecordDecl *ParentClass = Meth->getParent();
10578 Sema::CXXSpecialMember CSM;
10579
10580 switch (FnKindPair.first) {
10581 default:
10582 return;
10583 case oc_implicit_default_constructor:
10584 CSM = Sema::CXXDefaultConstructor;
10585 break;
10586 case oc_implicit_copy_constructor:
10587 CSM = Sema::CXXCopyConstructor;
10588 break;
10589 case oc_implicit_move_constructor:
10590 CSM = Sema::CXXMoveConstructor;
10591 break;
10592 case oc_implicit_copy_assignment:
10593 CSM = Sema::CXXCopyAssignment;
10594 break;
10595 case oc_implicit_move_assignment:
10596 CSM = Sema::CXXMoveAssignment;
10597 break;
10598 };
10599
10600 bool ConstRHS = false;
10601 if (Meth->getNumParams()) {
10602 if (const ReferenceType *RT =
10603 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10604 ConstRHS = RT->getPointeeType().isConstQualified();
10605 }
10606 }
10607
10608 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10609 /* ConstRHS */ ConstRHS,
10610 /* Diagnose */ true);
10611 }
10612}
10613
10614static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10615 FunctionDecl *Callee = Cand->Function;
10616 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10617
10618 S.Diag(Callee->getLocation(),
10619 diag::note_ovl_candidate_disabled_by_function_cond_attr)
10620 << Attr->getCond()->getSourceRange() << Attr->getMessage();
10621}
10622
10623static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10624 ExplicitSpecifier ES;
10625 const char *DeclName;
10626 switch (Cand->Function->getDeclKind()) {
10627 case Decl::Kind::CXXConstructor:
10628 ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10629 DeclName = "constructor";
10630 break;
10631 case Decl::Kind::CXXConversion:
10632 ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10633 DeclName = "conversion operator";
10634 break;
10635 case Decl::Kind::CXXDeductionGuide:
10636 ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10637 DeclName = "deductiong guide";
10638 break;
10639 default:
10640 llvm_unreachable("invalid Decl")::llvm::llvm_unreachable_internal("invalid Decl", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10640)
;
10641 }
10642 assert(ES.getExpr() && "null expression should be handled before")((ES.getExpr() && "null expression should be handled before"
) ? static_cast<void> (0) : __assert_fail ("ES.getExpr() && \"null expression should be handled before\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10642, __PRETTY_FUNCTION__))
;
10643 S.Diag(Cand->Function->getLocation(),
10644 diag::note_ovl_candidate_explicit_forbidden)
10645 << DeclName;
10646 S.Diag(ES.getExpr()->getBeginLoc(),
10647 diag::note_explicit_bool_resolved_to_true);
10648}
10649
10650static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10651 FunctionDecl *Callee = Cand->Function;
10652
10653 S.Diag(Callee->getLocation(),
10654 diag::note_ovl_candidate_disabled_by_extension)
10655 << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10656}
10657
10658/// Generates a 'note' diagnostic for an overload candidate. We've
10659/// already generated a primary error at the call site.
10660///
10661/// It really does need to be a single diagnostic with its caret
10662/// pointed at the candidate declaration. Yes, this creates some
10663/// major challenges of technical writing. Yes, this makes pointing
10664/// out problems with specific arguments quite awkward. It's still
10665/// better than generating twenty screens of text for every failed
10666/// overload.
10667///
10668/// It would be great to be able to express per-candidate problems
10669/// more richly for those diagnostic clients that cared, but we'd
10670/// still have to be just as careful with the default diagnostics.
10671/// \param CtorDestAS Addr space of object being constructed (for ctor
10672/// candidates only).
10673static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10674 unsigned NumArgs,
10675 bool TakingCandidateAddress,
10676 LangAS CtorDestAS = LangAS::Default) {
10677 FunctionDecl *Fn = Cand->Function;
10678
10679 // Note deleted candidates, but only if they're viable.
10680 if (Cand->Viable) {
10681 if (Fn->isDeleted()) {
10682 std::string FnDesc;
10683 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10684 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
10685 Cand->getRewriteKind(), FnDesc);
10686
10687 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10688 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10689 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10690 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10691 return;
10692 }
10693
10694 // We don't really have anything else to say about viable candidates.
10695 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
10696 return;
10697 }
10698
10699 switch (Cand->FailureKind) {
10700 case ovl_fail_too_many_arguments:
10701 case ovl_fail_too_few_arguments:
10702 return DiagnoseArityMismatch(S, Cand, NumArgs);
10703
10704 case ovl_fail_bad_deduction:
10705 return DiagnoseBadDeduction(S, Cand, NumArgs,
10706 TakingCandidateAddress);
10707
10708 case ovl_fail_illegal_constructor: {
10709 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10710 << (Fn->getPrimaryTemplate() ? 1 : 0);
10711 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10712 return;
10713 }
10714
10715 case ovl_fail_object_addrspace_mismatch: {
10716 Qualifiers QualsForPrinting;
10717 QualsForPrinting.setAddressSpace(CtorDestAS);
10718 S.Diag(Fn->getLocation(),
10719 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
10720 << QualsForPrinting;
10721 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10722 return;
10723 }
10724
10725 case ovl_fail_trivial_conversion:
10726 case ovl_fail_bad_final_conversion:
10727 case ovl_fail_final_conversion_not_exact:
10728 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
10729
10730 case ovl_fail_bad_conversion: {
10731 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10732 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10733 if (Cand->Conversions[I].isBad())
10734 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10735
10736 // FIXME: this currently happens when we're called from SemaInit
10737 // when user-conversion overload fails. Figure out how to handle
10738 // those conditions and diagnose them well.
10739 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
10740 }
10741
10742 case ovl_fail_bad_target:
10743 return DiagnoseBadTarget(S, Cand);
10744
10745 case ovl_fail_enable_if:
10746 return DiagnoseFailedEnableIfAttr(S, Cand);
10747
10748 case ovl_fail_explicit_resolved:
10749 return DiagnoseFailedExplicitSpec(S, Cand);
10750
10751 case ovl_fail_ext_disabled:
10752 return DiagnoseOpenCLExtensionDisabled(S, Cand);
10753
10754 case ovl_fail_inhctor_slice:
10755 // It's generally not interesting to note copy/move constructors here.
10756 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10757 return;
10758 S.Diag(Fn->getLocation(),
10759 diag::note_ovl_candidate_inherited_constructor_slice)
10760 << (Fn->getPrimaryTemplate() ? 1 : 0)
10761 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10762 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10763 return;
10764
10765 case ovl_fail_addr_not_available: {
10766 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10767 (void)Available;
10768 assert(!Available)((!Available) ? static_cast<void> (0) : __assert_fail (
"!Available", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10768, __PRETTY_FUNCTION__))
;
10769 break;
10770 }
10771 case ovl_non_default_multiversion_function:
10772 // Do nothing, these should simply be ignored.
10773 break;
10774 }
10775}
10776
10777static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10778 // Desugar the type of the surrogate down to a function type,
10779 // retaining as many typedefs as possible while still showing
10780 // the function type (and, therefore, its parameter types).
10781 QualType FnType = Cand->Surrogate->getConversionType();
10782 bool isLValueReference = false;
10783 bool isRValueReference = false;
10784 bool isPointer = false;
10785 if (const LValueReferenceType *FnTypeRef =
10786 FnType->getAs<LValueReferenceType>()) {
10787 FnType = FnTypeRef->getPointeeType();
10788 isLValueReference = true;
10789 } else if (const RValueReferenceType *FnTypeRef =
10790 FnType->getAs<RValueReferenceType>()) {
10791 FnType = FnTypeRef->getPointeeType();
10792 isRValueReference = true;
10793 }
10794 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10795 FnType = FnTypePtr->getPointeeType();
10796 isPointer = true;
10797 }
10798 // Desugar down to a function type.
10799 FnType = QualType(FnType->getAs<FunctionType>(), 0);
10800 // Reconstruct the pointer/reference as appropriate.
10801 if (isPointer) FnType = S.Context.getPointerType(FnType);
10802 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10803 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10804
10805 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10806 << FnType;
10807}
10808
10809static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10810 SourceLocation OpLoc,
10811 OverloadCandidate *Cand) {
10812 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((Cand->Conversions.size() <= 2 && "builtin operator is not binary"
) ? static_cast<void> (0) : __assert_fail ("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10812, __PRETTY_FUNCTION__))
;
10813 std::string TypeStr("operator");
10814 TypeStr += Opc;
10815 TypeStr += "(";
10816 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10817 if (Cand->Conversions.size() == 1) {
10818 TypeStr += ")";
10819 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10820 } else {
10821 TypeStr += ", ";
10822 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10823 TypeStr += ")";
10824 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10825 }
10826}
10827
10828static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10829 OverloadCandidate *Cand) {
10830 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10831 if (ICS.isBad()) break; // all meaningless after first invalid
10832 if (!ICS.isAmbiguous()) continue;
10833
10834 ICS.DiagnoseAmbiguousConversion(
10835 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10836 }
10837}
10838
10839static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10840 if (Cand->Function)
10841 return Cand->Function->getLocation();
10842 if (Cand->IsSurrogate)
10843 return Cand->Surrogate->getLocation();
10844 return SourceLocation();
10845}
10846
10847static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10848 switch ((Sema::TemplateDeductionResult)DFI.Result) {
10849 case Sema::TDK_Success:
10850 case Sema::TDK_NonDependentConversionFailure:
10851 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10851)
;
10852
10853 case Sema::TDK_Invalid:
10854 case Sema::TDK_Incomplete:
10855 case Sema::TDK_IncompletePack:
10856 return 1;
10857
10858 case Sema::TDK_Underqualified:
10859 case Sema::TDK_Inconsistent:
10860 return 2;
10861
10862 case Sema::TDK_SubstitutionFailure:
10863 case Sema::TDK_DeducedMismatch:
10864 case Sema::TDK_ConstraintsNotSatisfied:
10865 case Sema::TDK_DeducedMismatchNested:
10866 case Sema::TDK_NonDeducedMismatch:
10867 case Sema::TDK_MiscellaneousDeductionFailure:
10868 case Sema::TDK_CUDATargetMismatch:
10869 return 3;
10870
10871 case Sema::TDK_InstantiationDepth:
10872 return 4;
10873
10874 case Sema::TDK_InvalidExplicitArguments:
10875 return 5;
10876
10877 case Sema::TDK_TooManyArguments:
10878 case Sema::TDK_TooFewArguments:
10879 return 6;
10880 }
10881 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10881)
;
10882}
10883
10884namespace {
10885struct CompareOverloadCandidatesForDisplay {
10886 Sema &S;
10887 SourceLocation Loc;
10888 size_t NumArgs;
10889 OverloadCandidateSet::CandidateSetKind CSK;
10890
10891 CompareOverloadCandidatesForDisplay(
10892 Sema &S, SourceLocation Loc, size_t NArgs,
10893 OverloadCandidateSet::CandidateSetKind CSK)
10894 : S(S), NumArgs(NArgs), CSK(CSK) {}
10895
10896 bool operator()(const OverloadCandidate *L,
10897 const OverloadCandidate *R) {
10898 // Fast-path this check.
10899 if (L == R) return false;
10900
10901 // Order first by viability.
10902 if (L->Viable) {
10903 if (!R->Viable) return true;
10904
10905 // TODO: introduce a tri-valued comparison for overload
10906 // candidates. Would be more worthwhile if we had a sort
10907 // that could exploit it.
10908 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10909 return true;
10910 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10911 return false;
10912 } else if (R->Viable)
10913 return false;
10914
10915 assert(L->Viable == R->Viable)((L->Viable == R->Viable) ? static_cast<void> (0)
: __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10915, __PRETTY_FUNCTION__))
;
10916
10917 // Criteria by which we can sort non-viable candidates:
10918 if (!L->Viable) {
10919 // 1. Arity mismatches come after other candidates.
10920 if (L->FailureKind == ovl_fail_too_many_arguments ||
10921 L->FailureKind == ovl_fail_too_few_arguments) {
10922 if (R->FailureKind == ovl_fail_too_many_arguments ||
10923 R->FailureKind == ovl_fail_too_few_arguments) {
10924 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10925 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10926 if (LDist == RDist) {
10927 if (L->FailureKind == R->FailureKind)
10928 // Sort non-surrogates before surrogates.
10929 return !L->IsSurrogate && R->IsSurrogate;
10930 // Sort candidates requiring fewer parameters than there were
10931 // arguments given after candidates requiring more parameters
10932 // than there were arguments given.
10933 return L->FailureKind == ovl_fail_too_many_arguments;
10934 }
10935 return LDist < RDist;
10936 }
10937 return false;
10938 }
10939 if (R->FailureKind == ovl_fail_too_many_arguments ||
10940 R->FailureKind == ovl_fail_too_few_arguments)
10941 return true;
10942
10943 // 2. Bad conversions come first and are ordered by the number
10944 // of bad conversions and quality of good conversions.
10945 if (L->FailureKind == ovl_fail_bad_conversion) {
10946 if (R->FailureKind != ovl_fail_bad_conversion)
10947 return true;
10948
10949 // The conversion that can be fixed with a smaller number of changes,
10950 // comes first.
10951 unsigned numLFixes = L->Fix.NumConversionsFixed;
10952 unsigned numRFixes = R->Fix.NumConversionsFixed;
10953 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
10954 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
10955 if (numLFixes != numRFixes) {
10956 return numLFixes < numRFixes;
10957 }
10958
10959 // If there's any ordering between the defined conversions...
10960 // FIXME: this might not be transitive.
10961 assert(L->Conversions.size() == R->Conversions.size())((L->Conversions.size() == R->Conversions.size()) ? static_cast
<void> (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 10961, __PRETTY_FUNCTION__))
;
10962
10963 int leftBetter = 0;
10964 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10965 for (unsigned E = L->Conversions.size(); I != E; ++I) {
10966 switch (CompareImplicitConversionSequences(S, Loc,
10967 L->Conversions[I],
10968 R->Conversions[I])) {
10969 case ImplicitConversionSequence::Better:
10970 leftBetter++;
10971 break;
10972
10973 case ImplicitConversionSequence::Worse:
10974 leftBetter--;
10975 break;
10976
10977 case ImplicitConversionSequence::Indistinguishable:
10978 break;
10979 }
10980 }
10981 if (leftBetter > 0) return true;
10982 if (leftBetter < 0) return false;
10983
10984 } else if (R->FailureKind == ovl_fail_bad_conversion)
10985 return false;
10986
10987 if (L->FailureKind == ovl_fail_bad_deduction) {
10988 if (R->FailureKind != ovl_fail_bad_deduction)
10989 return true;
10990
10991 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10992 return RankDeductionFailure(L->DeductionFailure)
10993 < RankDeductionFailure(R->DeductionFailure);
10994 } else if (R->FailureKind == ovl_fail_bad_deduction)
10995 return false;
10996
10997 // TODO: others?
10998 }
10999
11000 // Sort everything else by location.
11001 SourceLocation LLoc = GetLocationForCandidate(L);
11002 SourceLocation RLoc = GetLocationForCandidate(R);
11003
11004 // Put candidates without locations (e.g. builtins) at the end.
11005 if (LLoc.isInvalid()) return false;
11006 if (RLoc.isInvalid()) return true;
11007
11008 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11009 }
11010};
11011}
11012
11013/// CompleteNonViableCandidate - Normally, overload resolution only
11014/// computes up to the first bad conversion. Produces the FixIt set if
11015/// possible.
11016static void
11017CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11018 ArrayRef<Expr *> Args,
11019 OverloadCandidateSet::CandidateSetKind CSK) {
11020 assert(!Cand->Viable)((!Cand->Viable) ? static_cast<void> (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11020, __PRETTY_FUNCTION__))
;
11021
11022 // Don't do anything on failures other than bad conversion.
11023 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
11024
11025 // We only want the FixIts if all the arguments can be corrected.
11026 bool Unfixable = false;
11027 // Use a implicit copy initialization to check conversion fixes.
11028 Cand->Fix.setConversionChecker(TryCopyInitialization);
11029
11030 // Attempt to fix the bad conversion.
11031 unsigned ConvCount = Cand->Conversions.size();
11032 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11033 ++ConvIdx) {
11034 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((ConvIdx != ConvCount && "no bad conversion in candidate"
) ? static_cast<void> (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11034, __PRETTY_FUNCTION__))
;
11035 if (Cand->Conversions[ConvIdx].isInitialized() &&
11036 Cand->Conversions[ConvIdx].isBad()) {
11037 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11038 break;
11039 }
11040 }
11041
11042 // FIXME: this should probably be preserved from the overload
11043 // operation somehow.
11044 bool SuppressUserConversions = false;
11045
11046 unsigned ConvIdx = 0;
11047 unsigned ArgIdx = 0;
11048 ArrayRef<QualType> ParamTypes;
11049 bool Reversed = Cand->RewriteKind & CRK_Reversed;
11050
11051 if (Cand->IsSurrogate) {
11052 QualType ConvType
11053 = Cand->Surrogate->getConversionType().getNonReferenceType();
11054 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11055 ConvType = ConvPtrType->getPointeeType();
11056 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11057 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11058 ConvIdx = 1;
11059 } else if (Cand->Function) {
11060 ParamTypes =
11061 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11062 if (isa<CXXMethodDecl>(Cand->Function) &&
11063 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11064 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11065 ConvIdx = 1;
11066 if (CSK == OverloadCandidateSet::CSK_Operator &&
11067 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11068 // Argument 0 is 'this', which doesn't have a corresponding parameter.
11069 ArgIdx = 1;
11070 }
11071 } else {
11072 // Builtin operator.
11073 assert(ConvCount <= 3)((ConvCount <= 3) ? static_cast<void> (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11073, __PRETTY_FUNCTION__))
;
11074 ParamTypes = Cand->BuiltinParamTypes;
11075 }
11076
11077 // Fill in the rest of the conversions.
11078 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11079 ConvIdx != ConvCount;
11080 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11081 assert(ArgIdx < Args.size() && "no argument for this arg conversion")((ArgIdx < Args.size() && "no argument for this arg conversion"
) ? static_cast<void> (0) : __assert_fail ("ArgIdx < Args.size() && \"no argument for this arg conversion\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11081, __PRETTY_FUNCTION__))
;
11082 if (Cand->Conversions[ConvIdx].isInitialized()) {
11083 // We've already checked this conversion.
11084 } else if (ParamIdx < ParamTypes.size()) {
11085 if (ParamTypes[ParamIdx]->isDependentType())
11086 Cand->Conversions[ConvIdx].setAsIdentityConversion(
11087 Args[ArgIdx]->getType());
11088 else {
11089 Cand->Conversions[ConvIdx] =
11090 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11091 SuppressUserConversions,
11092 /*InOverloadResolution=*/true,
11093 /*AllowObjCWritebackConversion=*/
11094 S.getLangOpts().ObjCAutoRefCount);
11095 // Store the FixIt in the candidate if it exists.
11096 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11097 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11098 }
11099 } else
11100 Cand->Conversions[ConvIdx].setEllipsis();
11101 }
11102}
11103
11104SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11105 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11106 SourceLocation OpLoc,
11107 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11108 // Sort the candidates by viability and position. Sorting directly would
11109 // be prohibitive, so we make a set of pointers and sort those.
11110 SmallVector<OverloadCandidate*, 32> Cands;
11111 if (OCD == OCD_AllCandidates) Cands.reserve(size());
11112 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11113 if (!Filter(*Cand))
11114 continue;
11115 switch (OCD) {
11116 case OCD_AllCandidates:
11117 if (!Cand->Viable) {
11118 if (!Cand->Function && !Cand->IsSurrogate) {
11119 // This a non-viable builtin candidate. We do not, in general,
11120 // want to list every possible builtin candidate.
11121 continue;
11122 }
11123 CompleteNonViableCandidate(S, Cand, Args, Kind);
11124 }
11125 break;
11126
11127 case OCD_ViableCandidates:
11128 if (!Cand->Viable)
11129 continue;
11130 break;
11131
11132 case OCD_AmbiguousCandidates:
11133 if (!Cand->Best)
11134 continue;
11135 break;
11136 }
11137
11138 Cands.push_back(Cand);
11139 }
11140
11141 llvm::stable_sort(
11142 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11143
11144 return Cands;
11145}
11146
11147/// When overload resolution fails, prints diagnostic messages containing the
11148/// candidates in the candidate set.
11149void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
11150 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11151 StringRef Opc, SourceLocation OpLoc,
11152 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11153
11154 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11155
11156 S.Diag(PD.first, PD.second);
11157
11158 NoteCandidates(S, Args, Cands, Opc, OpLoc);
11159}
11160
11161void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11162 ArrayRef<OverloadCandidate *> Cands,
11163 StringRef Opc, SourceLocation OpLoc) {
11164 bool ReportedAmbiguousConversions = false;
11165
11166 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11167 unsigned CandsShown = 0;
11168 auto I = Cands.begin(), E = Cands.end();
11169 for (; I != E; ++I) {
11170 OverloadCandidate *Cand = *I;
11171
11172 // Set an arbitrary limit on the number of candidate functions we'll spam
11173 // the user with. FIXME: This limit should depend on details of the
11174 // candidate list.
11175 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
11176 break;
11177 }
11178 ++CandsShown;
11179
11180 if (Cand->Function)
11181 NoteFunctionCandidate(S, Cand, Args.size(),
11182 /*TakingCandidateAddress=*/false, DestAS);
11183 else if (Cand->IsSurrogate)
11184 NoteSurrogateCandidate(S, Cand);
11185 else {
11186 assert(Cand->Viable &&((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11187, __PRETTY_FUNCTION__))
11187 "Non-viable built-in candidates are not added to Cands.")((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11187, __PRETTY_FUNCTION__))
;
11188 // Generally we only see ambiguities including viable builtin
11189 // operators if overload resolution got screwed up by an
11190 // ambiguous user-defined conversion.
11191 //
11192 // FIXME: It's quite possible for different conversions to see
11193 // different ambiguities, though.
11194 if (!ReportedAmbiguousConversions) {
11195 NoteAmbiguousUserConversions(S, OpLoc, Cand);
11196 ReportedAmbiguousConversions = true;
11197 }
11198
11199 // If this is a viable builtin, print it.
11200 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11201 }
11202 }
11203
11204 if (I != E)
11205 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
11206}
11207
11208static SourceLocation
11209GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11210 return Cand->Specialization ? Cand->Specialization->getLocation()
11211 : SourceLocation();
11212}
11213
11214namespace {
11215struct CompareTemplateSpecCandidatesForDisplay {
11216 Sema &S;
11217 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11218
11219 bool operator()(const TemplateSpecCandidate *L,
11220 const TemplateSpecCandidate *R) {
11221 // Fast-path this check.
11222 if (L == R)
11223 return false;
11224
11225 // Assuming that both candidates are not matches...
11226
11227 // Sort by the ranking of deduction failures.
11228 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11229 return RankDeductionFailure(L->DeductionFailure) <
11230 RankDeductionFailure(R->DeductionFailure);
11231
11232 // Sort everything else by location.
11233 SourceLocation LLoc = GetLocationForCandidate(L);
11234 SourceLocation RLoc = GetLocationForCandidate(R);
11235
11236 // Put candidates without locations (e.g. builtins) at the end.
11237 if (LLoc.isInvalid())
11238 return false;
11239 if (RLoc.isInvalid())
11240 return true;
11241
11242 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11243 }
11244};
11245}
11246
11247/// Diagnose a template argument deduction failure.
11248/// We are treating these failures as overload failures due to bad
11249/// deductions.
11250void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11251 bool ForTakingAddress) {
11252 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11253 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11254}
11255
11256void TemplateSpecCandidateSet::destroyCandidates() {
11257 for (iterator i = begin(), e = end(); i != e; ++i) {
11258 i->DeductionFailure.Destroy();
11259 }
11260}
11261
11262void TemplateSpecCandidateSet::clear() {
11263 destroyCandidates();
11264 Candidates.clear();
11265}
11266
11267/// NoteCandidates - When no template specialization match is found, prints
11268/// diagnostic messages containing the non-matching specializations that form
11269/// the candidate set.
11270/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11271/// OCD == OCD_AllCandidates and Cand->Viable == false.
11272void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11273 // Sort the candidates by position (assuming no candidate is a match).
11274 // Sorting directly would be prohibitive, so we make a set of pointers
11275 // and sort those.
11276 SmallVector<TemplateSpecCandidate *, 32> Cands;
11277 Cands.reserve(size());
11278 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11279 if (Cand->Specialization)
11280 Cands.push_back(Cand);
11281 // Otherwise, this is a non-matching builtin candidate. We do not,
11282 // in general, want to list every possible builtin candidate.
11283 }
11284
11285 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11286
11287 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11288 // for generalization purposes (?).
11289 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11290
11291 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11292 unsigned CandsShown = 0;
11293 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11294 TemplateSpecCandidate *Cand = *I;
11295
11296 // Set an arbitrary limit on the number of candidates we'll spam
11297 // the user with. FIXME: This limit should depend on details of the
11298 // candidate list.
11299 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11300 break;
11301 ++CandsShown;
11302
11303 assert(Cand->Specialization &&((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11304, __PRETTY_FUNCTION__))
11304 "Non-matching built-in candidates are not added to Cands.")((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11304, __PRETTY_FUNCTION__))
;
11305 Cand->NoteDeductionFailure(S, ForTakingAddress);
11306 }
11307
11308 if (I != E)
11309 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11310}
11311
11312// [PossiblyAFunctionType] --> [Return]
11313// NonFunctionType --> NonFunctionType
11314// R (A) --> R(A)
11315// R (*)(A) --> R (A)
11316// R (&)(A) --> R (A)
11317// R (S::*)(A) --> R (A)
11318QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11319 QualType Ret = PossiblyAFunctionType;
11320 if (const PointerType *ToTypePtr =
11321 PossiblyAFunctionType->getAs<PointerType>())
11322 Ret = ToTypePtr->getPointeeType();
11323 else if (const ReferenceType *ToTypeRef =
11324 PossiblyAFunctionType->getAs<ReferenceType>())
11325 Ret = ToTypeRef->getPointeeType();
11326 else if (const MemberPointerType *MemTypePtr =
11327 PossiblyAFunctionType->getAs<MemberPointerType>())
11328 Ret = MemTypePtr->getPointeeType();
11329 Ret =
11330 Context.getCanonicalType(Ret).getUnqualifiedType();
11331 return Ret;
11332}
11333
11334static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11335 bool Complain = true) {
11336 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11337 S.DeduceReturnType(FD, Loc, Complain))
11338 return true;
11339
11340 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11341 if (S.getLangOpts().CPlusPlus17 &&
11342 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11343 !S.ResolveExceptionSpec(Loc, FPT))
11344 return true;
11345
11346 return false;
11347}
11348
11349namespace {
11350// A helper class to help with address of function resolution
11351// - allows us to avoid passing around all those ugly parameters
11352class AddressOfFunctionResolver {
11353 Sema& S;
11354 Expr* SourceExpr;
11355 const QualType& TargetType;
11356 QualType TargetFunctionType; // Extracted function type from target type
11357
11358 bool Complain;
11359 //DeclAccessPair& ResultFunctionAccessPair;
11360 ASTContext& Context;
11361
11362 bool TargetTypeIsNonStaticMemberFunction;
11363 bool FoundNonTemplateFunction;
11364 bool StaticMemberFunctionFromBoundPointer;
11365 bool HasComplained;
11366
11367 OverloadExpr::FindResult OvlExprInfo;
11368 OverloadExpr *OvlExpr;
11369 TemplateArgumentListInfo OvlExplicitTemplateArgs;
11370 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11371 TemplateSpecCandidateSet FailedCandidates;
11372
11373public:
11374 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11375 const QualType &TargetType, bool Complain)
11376 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11377 Complain(Complain), Context(S.getASTContext()),
11378 TargetTypeIsNonStaticMemberFunction(
11379 !!TargetType->getAs<MemberPointerType>()),
11380 FoundNonTemplateFunction(false),
11381 StaticMemberFunctionFromBoundPointer(false),
11382 HasComplained(false),
11383 OvlExprInfo(OverloadExpr::find(SourceExpr)),
11384 OvlExpr(OvlExprInfo.Expression),
11385 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11386 ExtractUnqualifiedFunctionTypeFromTargetType();
11387
11388 if (TargetFunctionType->isFunctionType()) {
11389 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11390 if (!UME->isImplicitAccess() &&
11391 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11392 StaticMemberFunctionFromBoundPointer = true;
11393 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11394 DeclAccessPair dap;
11395 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11396 OvlExpr, false, &dap)) {
11397 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11398 if (!Method->isStatic()) {
11399 // If the target type is a non-function type and the function found
11400 // is a non-static member function, pretend as if that was the
11401 // target, it's the only possible type to end up with.
11402 TargetTypeIsNonStaticMemberFunction = true;
11403
11404 // And skip adding the function if its not in the proper form.
11405 // We'll diagnose this due to an empty set of functions.
11406 if (!OvlExprInfo.HasFormOfMemberPointer)
11407 return;
11408 }
11409
11410 Matches.push_back(std::make_pair(dap, Fn));
11411 }
11412 return;
11413 }
11414
11415 if (OvlExpr->hasExplicitTemplateArgs())
11416 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11417
11418 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11419 // C++ [over.over]p4:
11420 // If more than one function is selected, [...]
11421 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11422 if (FoundNonTemplateFunction)
11423 EliminateAllTemplateMatches();
11424 else
11425 EliminateAllExceptMostSpecializedTemplate();
11426 }
11427 }
11428
11429 if (S.getLangOpts().CUDA && Matches.size() > 1)
11430 EliminateSuboptimalCudaMatches();
11431 }
11432
11433 bool hasComplained() const { return HasComplained; }
11434
11435private:
11436 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11437 QualType Discard;
11438 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11439 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11440 }
11441
11442 /// \return true if A is considered a better overload candidate for the
11443 /// desired type than B.
11444 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11445 // If A doesn't have exactly the correct type, we don't want to classify it
11446 // as "better" than anything else. This way, the user is required to
11447 // disambiguate for us if there are multiple candidates and no exact match.
11448 return candidateHasExactlyCorrectType(A) &&
11449 (!candidateHasExactlyCorrectType(B) ||
11450 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11451 }
11452
11453 /// \return true if we were able to eliminate all but one overload candidate,
11454 /// false otherwise.
11455 bool eliminiateSuboptimalOverloadCandidates() {
11456 // Same algorithm as overload resolution -- one pass to pick the "best",
11457 // another pass to be sure that nothing is better than the best.
11458 auto Best = Matches.begin();
11459 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11460 if (isBetterCandidate(I->second, Best->second))
11461 Best = I;
11462
11463 const FunctionDecl *BestFn = Best->second;
11464 auto IsBestOrInferiorToBest = [this, BestFn](
11465 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11466 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11467 };
11468
11469 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11470 // option, so we can potentially give the user a better error
11471 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11472 return false;
11473 Matches[0] = *Best;
11474 Matches.resize(1);
11475 return true;
11476 }
11477
11478 bool isTargetTypeAFunction() const {
11479 return TargetFunctionType->isFunctionType();
11480 }
11481
11482 // [ToType] [Return]
11483
11484 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11485 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11486 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11487 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11488 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11489 }
11490
11491 // return true if any matching specializations were found
11492 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11493 const DeclAccessPair& CurAccessFunPair) {
11494 if (CXXMethodDecl *Method
11495 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11496 // Skip non-static function templates when converting to pointer, and
11497 // static when converting to member pointer.
11498 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11499 return false;
11500 }
11501 else if (TargetTypeIsNonStaticMemberFunction)
11502 return false;
11503
11504 // C++ [over.over]p2:
11505 // If the name is a function template, template argument deduction is
11506 // done (14.8.2.2), and if the argument deduction succeeds, the
11507 // resulting template argument list is used to generate a single
11508 // function template specialization, which is added to the set of
11509 // overloaded functions considered.
11510 FunctionDecl *Specialization = nullptr;
11511 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11512 if (Sema::TemplateDeductionResult Result
11513 = S.DeduceTemplateArguments(FunctionTemplate,
11514 &OvlExplicitTemplateArgs,
11515 TargetFunctionType, Specialization,
11516 Info, /*IsAddressOfFunction*/true)) {
11517 // Make a note of the failed deduction for diagnostics.
11518 FailedCandidates.addCandidate()
11519 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11520 MakeDeductionFailureInfo(Context, Result, Info));
11521 return false;
11522 }
11523
11524 // Template argument deduction ensures that we have an exact match or
11525 // compatible pointer-to-function arguments that would be adjusted by ICS.
11526 // This function template specicalization works.
11527 assert(S.isSameOrCompatibleFunctionType(((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11529, __PRETTY_FUNCTION__))
11528 Context.getCanonicalType(Specialization->getType()),((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11529, __PRETTY_FUNCTION__))
11529 Context.getCanonicalType(TargetFunctionType)))((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11529, __PRETTY_FUNCTION__))
;
11530
11531 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11532 return false;
11533
11534 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11535 return true;
11536 }
11537
11538 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11539 const DeclAccessPair& CurAccessFunPair) {
11540 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11541 // Skip non-static functions when converting to pointer, and static
11542 // when converting to member pointer.
11543 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11544 return false;
11545 }
11546 else if (TargetTypeIsNonStaticMemberFunction)
11547 return false;
11548
11549 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11550 if (S.getLangOpts().CUDA)
11551 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11552 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11553 return false;
11554 if (FunDecl->isMultiVersion()) {
11555 const auto *TA = FunDecl->getAttr<TargetAttr>();
11556 if (TA && !TA->isDefaultVersion())
11557 return false;
11558 }
11559
11560 // If any candidate has a placeholder return type, trigger its deduction
11561 // now.
11562 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11563 Complain)) {
11564 HasComplained |= Complain;
11565 return false;
11566 }
11567
11568 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11569 return false;
11570
11571 // If we're in C, we need to support types that aren't exactly identical.
11572 if (!S.getLangOpts().CPlusPlus ||
11573 candidateHasExactlyCorrectType(FunDecl)) {
11574 Matches.push_back(std::make_pair(
11575 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11576 FoundNonTemplateFunction = true;
11577 return true;
11578 }
11579 }
11580
11581 return false;
11582 }
11583
11584 bool FindAllFunctionsThatMatchTargetTypeExactly() {
11585 bool Ret = false;
11586
11587 // If the overload expression doesn't have the form of a pointer to
11588 // member, don't try to convert it to a pointer-to-member type.
11589 if (IsInvalidFormOfPointerToMemberFunction())
11590 return false;
11591
11592 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11593 E = OvlExpr->decls_end();
11594 I != E; ++I) {
11595 // Look through any using declarations to find the underlying function.
11596 NamedDecl *Fn = (*I)->getUnderlyingDecl();
11597
11598 // C++ [over.over]p3:
11599 // Non-member functions and static member functions match
11600 // targets of type "pointer-to-function" or "reference-to-function."
11601 // Nonstatic member functions match targets of
11602 // type "pointer-to-member-function."
11603 // Note that according to DR 247, the containing class does not matter.
11604 if (FunctionTemplateDecl *FunctionTemplate
11605 = dyn_cast<FunctionTemplateDecl>(Fn)) {
11606 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11607 Ret = true;
11608 }
11609 // If we have explicit template arguments supplied, skip non-templates.
11610 else if (!OvlExpr->hasExplicitTemplateArgs() &&
11611 AddMatchingNonTemplateFunction(Fn, I.getPair()))
11612 Ret = true;
11613 }
11614 assert(Ret || Matches.empty())((Ret || Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11614, __PRETTY_FUNCTION__))
;
11615 return Ret;
11616 }
11617
11618 void EliminateAllExceptMostSpecializedTemplate() {
11619 // [...] and any given function template specialization F1 is
11620 // eliminated if the set contains a second function template
11621 // specialization whose function template is more specialized
11622 // than the function template of F1 according to the partial
11623 // ordering rules of 14.5.5.2.
11624
11625 // The algorithm specified above is quadratic. We instead use a
11626 // two-pass algorithm (similar to the one used to identify the
11627 // best viable function in an overload set) that identifies the
11628 // best function template (if it exists).
11629
11630 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11631 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11632 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11633
11634 // TODO: It looks like FailedCandidates does not serve much purpose
11635 // here, since the no_viable diagnostic has index 0.
11636 UnresolvedSetIterator Result = S.getMostSpecialized(
11637 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11638 SourceExpr->getBeginLoc(), S.PDiag(),
11639 S.PDiag(diag::err_addr_ovl_ambiguous)
11640 << Matches[0].second->getDeclName(),
11641 S.PDiag(diag::note_ovl_candidate)
11642 << (unsigned)oc_function << (unsigned)ocs_described_template,
11643 Complain, TargetFunctionType);
11644
11645 if (Result != MatchesCopy.end()) {
11646 // Make it the first and only element
11647 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11648 Matches[0].second = cast<FunctionDecl>(*Result);
11649 Matches.resize(1);
11650 } else
11651 HasComplained |= Complain;
11652 }
11653
11654 void EliminateAllTemplateMatches() {
11655 // [...] any function template specializations in the set are
11656 // eliminated if the set also contains a non-template function, [...]
11657 for (unsigned I = 0, N = Matches.size(); I != N; ) {
11658 if (Matches[I].second->getPrimaryTemplate() == nullptr)
11659 ++I;
11660 else {
11661 Matches[I] = Matches[--N];
11662 Matches.resize(N);
11663 }
11664 }
11665 }
11666
11667 void EliminateSuboptimalCudaMatches() {
11668 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11669 }
11670
11671public:
11672 void ComplainNoMatchesFound() const {
11673 assert(Matches.empty())((Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11673, __PRETTY_FUNCTION__))
;
11674 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11675 << OvlExpr->getName() << TargetFunctionType
11676 << OvlExpr->getSourceRange();
11677 if (FailedCandidates.empty())
11678 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11679 /*TakingAddress=*/true);
11680 else {
11681 // We have some deduction failure messages. Use them to diagnose
11682 // the function templates, and diagnose the non-template candidates
11683 // normally.
11684 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11685 IEnd = OvlExpr->decls_end();
11686 I != IEnd; ++I)
11687 if (FunctionDecl *Fun =
11688 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11689 if (!functionHasPassObjectSizeParams(Fun))
11690 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
11691 /*TakingAddress=*/true);
11692 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11693 }
11694 }
11695
11696 bool IsInvalidFormOfPointerToMemberFunction() const {
11697 return TargetTypeIsNonStaticMemberFunction &&
11698 !OvlExprInfo.HasFormOfMemberPointer;
11699 }
11700
11701 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11702 // TODO: Should we condition this on whether any functions might
11703 // have matched, or is it more appropriate to do that in callers?
11704 // TODO: a fixit wouldn't hurt.
11705 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11706 << TargetType << OvlExpr->getSourceRange();
11707 }
11708
11709 bool IsStaticMemberFunctionFromBoundPointer() const {
11710 return StaticMemberFunctionFromBoundPointer;
11711 }
11712
11713 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11714 S.Diag(OvlExpr->getBeginLoc(),
11715 diag::err_invalid_form_pointer_member_function)
11716 << OvlExpr->getSourceRange();
11717 }
11718
11719 void ComplainOfInvalidConversion() const {
11720 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11721 << OvlExpr->getName() << TargetType;
11722 }
11723
11724 void ComplainMultipleMatchesFound() const {
11725 assert(Matches.size() > 1)((Matches.size() > 1) ? static_cast<void> (0) : __assert_fail
("Matches.size() > 1", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11725, __PRETTY_FUNCTION__))
;
11726 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11727 << OvlExpr->getName() << OvlExpr->getSourceRange();
11728 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11729 /*TakingAddress=*/true);
11730 }
11731
11732 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11733
11734 int getNumMatches() const { return Matches.size(); }
11735
11736 FunctionDecl* getMatchingFunctionDecl() const {
11737 if (Matches.size() != 1) return nullptr;
11738 return Matches[0].second;
11739 }
11740
11741 const DeclAccessPair* getMatchingFunctionAccessPair() const {
11742 if (Matches.size() != 1) return nullptr;
11743 return &Matches[0].first;
11744 }
11745};
11746}
11747
11748/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11749/// an overloaded function (C++ [over.over]), where @p From is an
11750/// expression with overloaded function type and @p ToType is the type
11751/// we're trying to resolve to. For example:
11752///
11753/// @code
11754/// int f(double);
11755/// int f(int);
11756///
11757/// int (*pfd)(double) = f; // selects f(double)
11758/// @endcode
11759///
11760/// This routine returns the resulting FunctionDecl if it could be
11761/// resolved, and NULL otherwise. When @p Complain is true, this
11762/// routine will emit diagnostics if there is an error.
11763FunctionDecl *
11764Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11765 QualType TargetType,
11766 bool Complain,
11767 DeclAccessPair &FoundResult,
11768 bool *pHadMultipleCandidates) {
11769 assert(AddressOfExpr->getType() == Context.OverloadTy)((AddressOfExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11769, __PRETTY_FUNCTION__))
;
11770
11771 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11772 Complain);
11773 int NumMatches = Resolver.getNumMatches();
11774 FunctionDecl *Fn = nullptr;
11775 bool ShouldComplain = Complain && !Resolver.hasComplained();
11776 if (NumMatches == 0 && ShouldComplain) {
11777 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11778 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11779 else
11780 Resolver.ComplainNoMatchesFound();
11781 }
11782 else if (NumMatches > 1 && ShouldComplain)
11783 Resolver.ComplainMultipleMatchesFound();
11784 else if (NumMatches == 1) {
11785 Fn = Resolver.getMatchingFunctionDecl();
11786 assert(Fn)((Fn) ? static_cast<void> (0) : __assert_fail ("Fn", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11786, __PRETTY_FUNCTION__))
;
11787 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11788 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11789 FoundResult = *Resolver.getMatchingFunctionAccessPair();
11790 if (Complain) {
11791 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11792 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11793 else
11794 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11795 }
11796 }
11797
11798 if (pHadMultipleCandidates)
11799 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11800 return Fn;
11801}
11802
11803/// Given an expression that refers to an overloaded function, try to
11804/// resolve that function to a single function that can have its address taken.
11805/// This will modify `Pair` iff it returns non-null.
11806///
11807/// This routine can only realistically succeed if all but one candidates in the
11808/// overload set for SrcExpr cannot have their addresses taken.
11809FunctionDecl *
11810Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11811 DeclAccessPair &Pair) {
11812 OverloadExpr::FindResult R = OverloadExpr::find(E);
11813 OverloadExpr *Ovl = R.Expression;
11814 FunctionDecl *Result = nullptr;
11815 DeclAccessPair DAP;
11816 // Don't use the AddressOfResolver because we're specifically looking for
11817 // cases where we have one overload candidate that lacks
11818 // enable_if/pass_object_size/...
11819 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11820 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11821 if (!FD)
11822 return nullptr;
11823
11824 if (!checkAddressOfFunctionIsAvailable(FD))
11825 continue;
11826
11827 // We have more than one result; quit.
11828 if (Result)
11829 return nullptr;
11830 DAP = I.getPair();
11831 Result = FD;
11832 }
11833
11834 if (Result)
11835 Pair = DAP;
11836 return Result;
11837}
11838
11839/// Given an overloaded function, tries to turn it into a non-overloaded
11840/// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11841/// will perform access checks, diagnose the use of the resultant decl, and, if
11842/// requested, potentially perform a function-to-pointer decay.
11843///
11844/// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11845/// Otherwise, returns true. This may emit diagnostics and return true.
11846bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11847 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11848 Expr *E = SrcExpr.get();
11849 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((E->getType() == Context.OverloadTy && "SrcExpr must be an overload"
) ? static_cast<void> (0) : __assert_fail ("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11849, __PRETTY_FUNCTION__))
;
11850
11851 DeclAccessPair DAP;
11852 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11853 if (!Found || Found->isCPUDispatchMultiVersion() ||
11854 Found->isCPUSpecificMultiVersion())
11855 return false;
11856
11857 // Emitting multiple diagnostics for a function that is both inaccessible and
11858 // unavailable is consistent with our behavior elsewhere. So, always check
11859 // for both.
11860 DiagnoseUseOfDecl(Found, E->getExprLoc());
11861 CheckAddressOfMemberAccess(E, DAP);
11862 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11863 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11864 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11865 else
11866 SrcExpr = Fixed;
11867 return true;
11868}
11869
11870/// Given an expression that refers to an overloaded function, try to
11871/// resolve that overloaded function expression down to a single function.
11872///
11873/// This routine can only resolve template-ids that refer to a single function
11874/// template, where that template-id refers to a single template whose template
11875/// arguments are either provided by the template-id or have defaults,
11876/// as described in C++0x [temp.arg.explicit]p3.
11877///
11878/// If no template-ids are found, no diagnostics are emitted and NULL is
11879/// returned.
11880FunctionDecl *
11881Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11882 bool Complain,
11883 DeclAccessPair *FoundResult) {
11884 // C++ [over.over]p1:
11885 // [...] [Note: any redundant set of parentheses surrounding the
11886 // overloaded function name is ignored (5.1). ]
11887 // C++ [over.over]p1:
11888 // [...] The overloaded function name can be preceded by the &
11889 // operator.
11890
11891 // If we didn't actually find any template-ids, we're done.
11892 if (!ovl->hasExplicitTemplateArgs())
11893 return nullptr;
11894
11895 TemplateArgumentListInfo ExplicitTemplateArgs;
11896 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11897 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11898
11899 // Look through all of the overloaded functions, searching for one
11900 // whose type matches exactly.
11901 FunctionDecl *Matched = nullptr;
11902 for (UnresolvedSetIterator I = ovl->decls_begin(),
11903 E = ovl->decls_end(); I != E; ++I) {
11904 // C++0x [temp.arg.explicit]p3:
11905 // [...] In contexts where deduction is done and fails, or in contexts
11906 // where deduction is not done, if a template argument list is
11907 // specified and it, along with any default template arguments,
11908 // identifies a single function template specialization, then the
11909 // template-id is an lvalue for the function template specialization.
11910 FunctionTemplateDecl *FunctionTemplate
11911 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11912
11913 // C++ [over.over]p2:
11914 // If the name is a function template, template argument deduction is
11915 // done (14.8.2.2), and if the argument deduction succeeds, the
11916 // resulting template argument list is used to generate a single
11917 // function template specialization, which is added to the set of
11918 // overloaded functions considered.
11919 FunctionDecl *Specialization = nullptr;
11920 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11921 if (TemplateDeductionResult Result
11922 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11923 Specialization, Info,
11924 /*IsAddressOfFunction*/true)) {
11925 // Make a note of the failed deduction for diagnostics.
11926 // TODO: Actually use the failed-deduction info?
11927 FailedCandidates.addCandidate()
11928 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11929 MakeDeductionFailureInfo(Context, Result, Info));
11930 continue;
11931 }
11932
11933 assert(Specialization && "no specialization and no error?")((Specialization && "no specialization and no error?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11933, __PRETTY_FUNCTION__))
;
11934
11935 // Multiple matches; we can't resolve to a single declaration.
11936 if (Matched) {
11937 if (Complain) {
11938 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11939 << ovl->getName();
11940 NoteAllOverloadCandidates(ovl);
11941 }
11942 return nullptr;
11943 }
11944
11945 Matched = Specialization;
11946 if (FoundResult) *FoundResult = I.getPair();
11947 }
11948
11949 if (Matched &&
11950 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11951 return nullptr;
11952
11953 return Matched;
11954}
11955
11956// Resolve and fix an overloaded expression that can be resolved
11957// because it identifies a single function template specialization.
11958//
11959// Last three arguments should only be supplied if Complain = true
11960//
11961// Return true if it was logically possible to so resolve the
11962// expression, regardless of whether or not it succeeded. Always
11963// returns true if 'complain' is set.
11964bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11965 ExprResult &SrcExpr, bool doFunctionPointerConverion,
11966 bool complain, SourceRange OpRangeForComplaining,
11967 QualType DestTypeForComplaining,
11968 unsigned DiagIDForComplaining) {
11969 assert(SrcExpr.get()->getType() == Context.OverloadTy)((SrcExpr.get()->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 11969, __PRETTY_FUNCTION__))
;
11970
11971 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11972
11973 DeclAccessPair found;
11974 ExprResult SingleFunctionExpression;
11975 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11976 ovl.Expression, /*complain*/ false, &found)) {
11977 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11978 SrcExpr = ExprError();
11979 return true;
11980 }
11981
11982 // It is only correct to resolve to an instance method if we're
11983 // resolving a form that's permitted to be a pointer to member.
11984 // Otherwise we'll end up making a bound member expression, which
11985 // is illegal in all the contexts we resolve like this.
11986 if (!ovl.HasFormOfMemberPointer &&
11987 isa<CXXMethodDecl>(fn) &&
11988 cast<CXXMethodDecl>(fn)->isInstance()) {
11989 if (!complain) return false;
11990
11991 Diag(ovl.Expression->getExprLoc(),
11992 diag::err_bound_member_function)
11993 << 0 << ovl.Expression->getSourceRange();
11994
11995 // TODO: I believe we only end up here if there's a mix of
11996 // static and non-static candidates (otherwise the expression
11997 // would have 'bound member' type, not 'overload' type).
11998 // Ideally we would note which candidate was chosen and why
11999 // the static candidates were rejected.
12000 SrcExpr = ExprError();
12001 return true;
12002 }
12003
12004 // Fix the expression to refer to 'fn'.
12005 SingleFunctionExpression =
12006 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12007
12008 // If desired, do function-to-pointer decay.
12009 if (doFunctionPointerConverion) {
12010 SingleFunctionExpression =
12011 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12012 if (SingleFunctionExpression.isInvalid()) {
12013 SrcExpr = ExprError();
12014 return true;
12015 }
12016 }
12017 }
12018
12019 if (!SingleFunctionExpression.isUsable()) {
12020 if (complain) {
12021 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12022 << ovl.Expression->getName()
12023 << DestTypeForComplaining
12024 << OpRangeForComplaining
12025 << ovl.Expression->getQualifierLoc().getSourceRange();
12026 NoteAllOverloadCandidates(SrcExpr.get());
12027
12028 SrcExpr = ExprError();
12029 return true;
12030 }
12031
12032 return false;
12033 }
12034
12035 SrcExpr = SingleFunctionExpression;
12036 return true;
12037}
12038
12039/// Add a single candidate to the overload set.
12040static void AddOverloadedCallCandidate(Sema &S,
12041 DeclAccessPair FoundDecl,
12042 TemplateArgumentListInfo *ExplicitTemplateArgs,
12043 ArrayRef<Expr *> Args,
12044 OverloadCandidateSet &CandidateSet,
12045 bool PartialOverloading,
12046 bool KnownValid) {
12047 NamedDecl *Callee = FoundDecl.getDecl();
12048 if (isa<UsingShadowDecl>(Callee))
12049 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12050
12051 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12052 if (ExplicitTemplateArgs) {
12053 assert(!KnownValid && "Explicit template arguments?")((!KnownValid && "Explicit template arguments?") ? static_cast
<void> (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12053, __PRETTY_FUNCTION__))
;
12054 return;
12055 }
12056 // Prevent ill-formed function decls to be added as overload candidates.
12057 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12058 return;
12059
12060 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12061 /*SuppressUserConversions=*/false,
12062 PartialOverloading);
12063 return;
12064 }
12065
12066 if (FunctionTemplateDecl *FuncTemplate
12067 = dyn_cast<FunctionTemplateDecl>(Callee)) {
12068 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12069 ExplicitTemplateArgs, Args, CandidateSet,
12070 /*SuppressUserConversions=*/false,
12071 PartialOverloading);
12072 return;
12073 }
12074
12075 assert(!KnownValid && "unhandled case in overloaded call candidate")((!KnownValid && "unhandled case in overloaded call candidate"
) ? static_cast<void> (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12075, __PRETTY_FUNCTION__))
;
12076}
12077
12078/// Add the overload candidates named by callee and/or found by argument
12079/// dependent lookup to the given overload set.
12080void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12081 ArrayRef<Expr *> Args,
12082 OverloadCandidateSet &CandidateSet,
12083 bool PartialOverloading) {
12084
12085#ifndef NDEBUG
12086 // Verify that ArgumentDependentLookup is consistent with the rules
12087 // in C++0x [basic.lookup.argdep]p3:
12088 //
12089 // Let X be the lookup set produced by unqualified lookup (3.4.1)
12090 // and let Y be the lookup set produced by argument dependent
12091 // lookup (defined as follows). If X contains
12092 //
12093 // -- a declaration of a class member, or
12094 //
12095 // -- a block-scope function declaration that is not a
12096 // using-declaration, or
12097 //
12098 // -- a declaration that is neither a function or a function
12099 // template
12100 //
12101 // then Y is empty.
12102
12103 if (ULE->requiresADL()) {
12104 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12105 E = ULE->decls_end(); I != E; ++I) {
12106 assert(!(*I)->getDeclContext()->isRecord())((!(*I)->getDeclContext()->isRecord()) ? static_cast<
void> (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12106, __PRETTY_FUNCTION__))
;
12107 assert(isa<UsingShadowDecl>(*I) ||((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12108, __PRETTY_FUNCTION__))
12108 !(*I)->getDeclContext()->isFunctionOrMethod())((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12108, __PRETTY_FUNCTION__))
;
12109 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? static_cast<void> (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12109, __PRETTY_FUNCTION__))
;
12110 }
12111 }
12112#endif
12113
12114 // It would be nice to avoid this copy.
12115 TemplateArgumentListInfo TABuffer;
12116 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12117 if (ULE->hasExplicitTemplateArgs()) {
12118 ULE->copyTemplateArgumentsInto(TABuffer);
12119 ExplicitTemplateArgs = &TABuffer;
12120 }
12121
12122 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12123 E = ULE->decls_end(); I != E; ++I)
12124 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12125 CandidateSet, PartialOverloading,
12126 /*KnownValid*/ true);
12127
12128 if (ULE->requiresADL())
12129 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12130 Args, ExplicitTemplateArgs,
12131 CandidateSet, PartialOverloading);
12132}
12133
12134/// Determine whether a declaration with the specified name could be moved into
12135/// a different namespace.
12136static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12137 switch (Name.getCXXOverloadedOperator()) {
12138 case OO_New: case OO_Array_New:
12139 case OO_Delete: case OO_Array_Delete:
12140 return false;
12141
12142 default:
12143 return true;
12144 }
12145}
12146
12147/// Attempt to recover from an ill-formed use of a non-dependent name in a
12148/// template, where the non-dependent name was declared after the template
12149/// was defined. This is common in code written for a compilers which do not
12150/// correctly implement two-stage name lookup.
12151///
12152/// Returns true if a viable candidate was found and a diagnostic was issued.
12153static bool
12154DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
12155 const CXXScopeSpec &SS, LookupResult &R,
12156 OverloadCandidateSet::CandidateSetKind CSK,
12157 TemplateArgumentListInfo *ExplicitTemplateArgs,
12158 ArrayRef<Expr *> Args,
12159 bool *DoDiagnoseEmptyLookup = nullptr) {
12160 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12161 return false;
12162
12163 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12164 if (DC->isTransparentContext())
12165 continue;
12166
12167 SemaRef.LookupQualifiedName(R, DC);
12168
12169 if (!R.empty()) {
12170 R.suppressDiagnostics();
12171
12172 if (isa<CXXRecordDecl>(DC)) {
12173 // Don't diagnose names we find in classes; we get much better
12174 // diagnostics for these from DiagnoseEmptyLookup.
12175 R.clear();
12176 if (DoDiagnoseEmptyLookup)
12177 *DoDiagnoseEmptyLookup = true;
12178 return false;
12179 }
12180
12181 OverloadCandidateSet Candidates(FnLoc, CSK);
12182 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12183 AddOverloadedCallCandidate(SemaRef, I.getPair(),
12184 ExplicitTemplateArgs, Args,
12185 Candidates, false, /*KnownValid*/ false);
12186
12187 OverloadCandidateSet::iterator Best;
12188 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
12189 // No viable functions. Don't bother the user with notes for functions
12190 // which don't work and shouldn't be found anyway.
12191 R.clear();
12192 return false;
12193 }
12194
12195 // Find the namespaces where ADL would have looked, and suggest
12196 // declaring the function there instead.
12197 Sema::AssociatedNamespaceSet AssociatedNamespaces;
12198 Sema::AssociatedClassSet AssociatedClasses;
12199 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12200 AssociatedNamespaces,
12201 AssociatedClasses);
12202 Sema::AssociatedNamespaceSet SuggestedNamespaces;
12203 if (canBeDeclaredInNamespace(R.getLookupName())) {
12204 DeclContext *Std = SemaRef.getStdNamespace();
12205 for (Sema::AssociatedNamespaceSet::iterator
12206 it = AssociatedNamespaces.begin(),
12207 end = AssociatedNamespaces.end(); it != end; ++it) {
12208 // Never suggest declaring a function within namespace 'std'.
12209 if (Std && Std->Encloses(*it))
12210 continue;
12211
12212 // Never suggest declaring a function within a namespace with a
12213 // reserved name, like __gnu_cxx.
12214 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12215 if (NS &&
12216 NS->getQualifiedNameAsString().find("__") != std::string::npos)
12217 continue;
12218
12219 SuggestedNamespaces.insert(*it);
12220 }
12221 }
12222
12223 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12224 << R.getLookupName();
12225 if (SuggestedNamespaces.empty()) {
12226 SemaRef.Diag(Best->Function->getLocation(),
12227 diag::note_not_found_by_two_phase_lookup)
12228 << R.getLookupName() << 0;
12229 } else if (SuggestedNamespaces.size() == 1) {
12230 SemaRef.Diag(Best->Function->getLocation(),
12231 diag::note_not_found_by_two_phase_lookup)
12232 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12233 } else {
12234 // FIXME: It would be useful to list the associated namespaces here,
12235 // but the diagnostics infrastructure doesn't provide a way to produce
12236 // a localized representation of a list of items.
12237 SemaRef.Diag(Best->Function->getLocation(),
12238 diag::note_not_found_by_two_phase_lookup)
12239 << R.getLookupName() << 2;
12240 }
12241
12242 // Try to recover by calling this function.
12243 return true;
12244 }
12245
12246 R.clear();
12247 }
12248
12249 return false;
12250}
12251
12252/// Attempt to recover from ill-formed use of a non-dependent operator in a
12253/// template, where the non-dependent operator was declared after the template
12254/// was defined.
12255///
12256/// Returns true if a viable candidate was found and a diagnostic was issued.
12257static bool
12258DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12259 SourceLocation OpLoc,
12260 ArrayRef<Expr *> Args) {
12261 DeclarationName OpName =
12262 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12263 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12264 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12265 OverloadCandidateSet::CSK_Operator,
12266 /*ExplicitTemplateArgs=*/nullptr, Args);
12267}
12268
12269namespace {
12270class BuildRecoveryCallExprRAII {
12271 Sema &SemaRef;
12272public:
12273 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12274 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((SemaRef.IsBuildingRecoveryCallExpr == false) ? static_cast<
void> (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12274, __PRETTY_FUNCTION__))
;
12275 SemaRef.IsBuildingRecoveryCallExpr = true;
12276 }
12277
12278 ~BuildRecoveryCallExprRAII() {
12279 SemaRef.IsBuildingRecoveryCallExpr = false;
12280 }
12281};
12282
12283}
12284
12285/// Attempts to recover from a call where no functions were found.
12286///
12287/// Returns true if new candidates were found.
12288static ExprResult
12289BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12290 UnresolvedLookupExpr *ULE,
12291 SourceLocation LParenLoc,
12292 MutableArrayRef<Expr *> Args,
12293 SourceLocation RParenLoc,
12294 bool EmptyLookup, bool AllowTypoCorrection) {
12295 // Do not try to recover if it is already building a recovery call.
12296 // This stops infinite loops for template instantiations like
12297 //
12298 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12299 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12300 //
12301 if (SemaRef.IsBuildingRecoveryCallExpr)
12302 return ExprError();
12303 BuildRecoveryCallExprRAII RCE(SemaRef);
12304
12305 CXXScopeSpec SS;
12306 SS.Adopt(ULE->getQualifierLoc());
12307 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12308
12309 TemplateArgumentListInfo TABuffer;
12310 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12311 if (ULE->hasExplicitTemplateArgs()) {
12312 ULE->copyTemplateArgumentsInto(TABuffer);
12313 ExplicitTemplateArgs = &TABuffer;
12314 }
12315
12316 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12317 Sema::LookupOrdinaryName);
12318 bool DoDiagnoseEmptyLookup = EmptyLookup;
12319 if (!DiagnoseTwoPhaseLookup(
12320 SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12321 ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12322 NoTypoCorrectionCCC NoTypoValidator{};
12323 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12324 ExplicitTemplateArgs != nullptr,
12325 dyn_cast<MemberExpr>(Fn));
12326 CorrectionCandidateCallback &Validator =
12327 AllowTypoCorrection
12328 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12329 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12330 if (!DoDiagnoseEmptyLookup ||
12331 SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12332 Args))
12333 return ExprError();
12334 }
12335
12336 assert(!R.empty() && "lookup results empty despite recovery")((!R.empty() && "lookup results empty despite recovery"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12336, __PRETTY_FUNCTION__))
;
12337
12338 // If recovery created an ambiguity, just bail out.
12339 if (R.isAmbiguous()) {
12340 R.suppressDiagnostics();
12341 return ExprError();
12342 }
12343
12344 // Build an implicit member call if appropriate. Just drop the
12345 // casts and such from the call, we don't really care.
12346 ExprResult NewFn = ExprError();
12347 if ((*R.begin())->isCXXClassMember())
12348 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12349 ExplicitTemplateArgs, S);
12350 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12351 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12352 ExplicitTemplateArgs);
12353 else
12354 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12355
12356 if (NewFn.isInvalid())
12357 return ExprError();
12358
12359 // This shouldn't cause an infinite loop because we're giving it
12360 // an expression with viable lookup results, which should never
12361 // end up here.
12362 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12363 MultiExprArg(Args.data(), Args.size()),
12364 RParenLoc);
12365}
12366
12367/// Constructs and populates an OverloadedCandidateSet from
12368/// the given function.
12369/// \returns true when an the ExprResult output parameter has been set.
12370bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12371 UnresolvedLookupExpr *ULE,
12372 MultiExprArg Args,
12373 SourceLocation RParenLoc,
12374 OverloadCandidateSet *CandidateSet,
12375 ExprResult *Result) {
12376#ifndef NDEBUG
12377 if (ULE->requiresADL()) {
12378 // To do ADL, we must have found an unqualified name.
12379 assert(!ULE->getQualifier() && "qualified name with ADL")((!ULE->getQualifier() && "qualified name with ADL"
) ? static_cast<void> (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12379, __PRETTY_FUNCTION__))
;
12380
12381 // We don't perform ADL for implicit declarations of builtins.
12382 // Verify that this was correctly set up.
12383 FunctionDecl *F;
12384 if (ULE->decls_begin() != ULE->decls_end() &&
12385 ULE->decls_begin() + 1 == ULE->decls_end() &&
12386 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12387 F->getBuiltinID() && F->isImplicit())
12388 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12388)
;
12389
12390 // We don't perform ADL in C.
12391 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((getLangOpts().CPlusPlus && "ADL enabled in C") ? static_cast
<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12391, __PRETTY_FUNCTION__))
;
12392 }
12393#endif
12394
12395 UnbridgedCastsSet UnbridgedCasts;
12396 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12397 *Result = ExprError();
12398 return true;
12399 }
12400
12401 // Add the functions denoted by the callee to the set of candidate
12402 // functions, including those from argument-dependent lookup.
12403 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12404
12405 if (getLangOpts().MSVCCompat &&
12406 CurContext->isDependentContext() && !isSFINAEContext() &&
12407 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12408
12409 OverloadCandidateSet::iterator Best;
12410 if (CandidateSet->empty() ||
12411 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12412 OR_No_Viable_Function) {
12413 // In Microsoft mode, if we are inside a template class member function
12414 // then create a type dependent CallExpr. The goal is to postpone name
12415 // lookup to instantiation time to be able to search into type dependent
12416 // base classes.
12417 CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12418 VK_RValue, RParenLoc);
12419 CE->setTypeDependent(true);
12420 CE->setValueDependent(true);
12421 CE->setInstantiationDependent(true);
12422 *Result = CE;
12423 return true;
12424 }
12425 }
12426
12427 if (CandidateSet->empty())
12428 return false;
12429
12430 UnbridgedCasts.restore();
12431 return false;
12432}
12433
12434/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12435/// the completed call expression. If overload resolution fails, emits
12436/// diagnostics and returns ExprError()
12437static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12438 UnresolvedLookupExpr *ULE,
12439 SourceLocation LParenLoc,
12440 MultiExprArg Args,
12441 SourceLocation RParenLoc,
12442 Expr *ExecConfig,
12443 OverloadCandidateSet *CandidateSet,
12444 OverloadCandidateSet::iterator *Best,
12445 OverloadingResult OverloadResult,
12446 bool AllowTypoCorrection) {
12447 if (CandidateSet->empty())
12448 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12449 RParenLoc, /*EmptyLookup=*/true,
12450 AllowTypoCorrection);
12451
12452 switch (OverloadResult) {
12453 case OR_Success: {
12454 FunctionDecl *FDecl = (*Best)->Function;
12455 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12456 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12457 return ExprError();
12458 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12459 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12460 ExecConfig, /*IsExecConfig=*/false,
12461 (*Best)->IsADLCandidate);
12462 }
12463
12464 case OR_No_Viable_Function: {
12465 // Try to recover by looking for viable functions which the user might
12466 // have meant to call.
12467 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12468 Args, RParenLoc,
12469 /*EmptyLookup=*/false,
12470 AllowTypoCorrection);
12471 if (!Recovery.isInvalid())
12472 return Recovery;
12473
12474 // If the user passes in a function that we can't take the address of, we
12475 // generally end up emitting really bad error messages. Here, we attempt to
12476 // emit better ones.
12477 for (const Expr *Arg : Args) {
12478 if (!Arg->getType()->isFunctionType())
12479 continue;
12480 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12481 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12482 if (FD &&
12483 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12484 Arg->getExprLoc()))
12485 return ExprError();
12486 }
12487 }
12488
12489 CandidateSet->NoteCandidates(
12490 PartialDiagnosticAt(
12491 Fn->getBeginLoc(),
12492 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12493 << ULE->getName() << Fn->getSourceRange()),
12494 SemaRef, OCD_AllCandidates, Args);
12495 break;
12496 }
12497
12498 case OR_Ambiguous:
12499 CandidateSet->NoteCandidates(
12500 PartialDiagnosticAt(Fn->getBeginLoc(),
12501 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12502 << ULE->getName() << Fn->getSourceRange()),
12503 SemaRef, OCD_AmbiguousCandidates, Args);
12504 break;
12505
12506 case OR_Deleted: {
12507 CandidateSet->NoteCandidates(
12508 PartialDiagnosticAt(Fn->getBeginLoc(),
12509 SemaRef.PDiag(diag::err_ovl_deleted_call)
12510 << ULE->getName() << Fn->getSourceRange()),
12511 SemaRef, OCD_AllCandidates, Args);
12512
12513 // We emitted an error for the unavailable/deleted function call but keep
12514 // the call in the AST.
12515 FunctionDecl *FDecl = (*Best)->Function;
12516 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12517 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12518 ExecConfig, /*IsExecConfig=*/false,
12519 (*Best)->IsADLCandidate);
12520 }
12521 }
12522
12523 // Overload resolution failed.
12524 return ExprError();
12525}
12526
12527static void markUnaddressableCandidatesUnviable(Sema &S,
12528 OverloadCandidateSet &CS) {
12529 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12530 if (I->Viable &&
12531 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12532 I->Viable = false;
12533 I->FailureKind = ovl_fail_addr_not_available;
12534 }
12535 }
12536}
12537
12538/// BuildOverloadedCallExpr - Given the call expression that calls Fn
12539/// (which eventually refers to the declaration Func) and the call
12540/// arguments Args/NumArgs, attempt to resolve the function call down
12541/// to a specific function. If overload resolution succeeds, returns
12542/// the call expression produced by overload resolution.
12543/// Otherwise, emits diagnostics and returns ExprError.
12544ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12545 UnresolvedLookupExpr *ULE,
12546 SourceLocation LParenLoc,
12547 MultiExprArg Args,
12548 SourceLocation RParenLoc,
12549 Expr *ExecConfig,
12550 bool AllowTypoCorrection,
12551 bool CalleesAddressIsTaken) {
12552 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12553 OverloadCandidateSet::CSK_Normal);
12554 ExprResult result;
12555
12556 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12557 &result))
12558 return result;
12559
12560 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12561 // functions that aren't addressible are considered unviable.
12562 if (CalleesAddressIsTaken)
12563 markUnaddressableCandidatesUnviable(*this, CandidateSet);
12564
12565 OverloadCandidateSet::iterator Best;
12566 OverloadingResult OverloadResult =
12567 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12568
12569 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12570 ExecConfig, &CandidateSet, &Best,
12571 OverloadResult, AllowTypoCorrection);
12572}
12573
12574static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12575 return Functions.size() > 1 ||
12576 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12577}
12578
12579/// Create a unary operation that may resolve to an overloaded
12580/// operator.
12581///
12582/// \param OpLoc The location of the operator itself (e.g., '*').
12583///
12584/// \param Opc The UnaryOperatorKind that describes this operator.
12585///
12586/// \param Fns The set of non-member functions that will be
12587/// considered by overload resolution. The caller needs to build this
12588/// set based on the context using, e.g.,
12589/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12590/// set should not contain any member functions; those will be added
12591/// by CreateOverloadedUnaryOp().
12592///
12593/// \param Input The input argument.
12594ExprResult
12595Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12596 const UnresolvedSetImpl &Fns,
12597 Expr *Input, bool PerformADL) {
12598 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12599 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? static_cast<void> (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12599, __PRETTY_FUNCTION__))
;
12600 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12601 // TODO: provide better source location info.
12602 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12603
12604 if (checkPlaceholderForOverload(*this, Input))
12605 return ExprError();
12606
12607 Expr *Args[2] = { Input, nullptr };
12608 unsigned NumArgs = 1;
12609
12610 // For post-increment and post-decrement, add the implicit '0' as
12611 // the second argument, so that we know this is a post-increment or
12612 // post-decrement.
12613 if (Opc == UO_PostInc || Opc == UO_PostDec) {
12614 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12615 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12616 SourceLocation());
12617 NumArgs = 2;
12618 }
12619
12620 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12621
12622 if (Input->isTypeDependent()) {
12623 if (Fns.empty())
12624 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12625 VK_RValue, OK_Ordinary, OpLoc, false);
12626
12627 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12628 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12629 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12630 /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12631 return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12632 Context.DependentTy, VK_RValue, OpLoc,
12633 FPOptions());
12634 }
12635
12636 // Build an empty overload set.
12637 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12638
12639 // Add the candidates from the given function set.
12640 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
12641
12642 // Add operator candidates that are member functions.
12643 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12644
12645 // Add candidates from ADL.
12646 if (PerformADL) {
12647 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12648 /*ExplicitTemplateArgs*/nullptr,
12649 CandidateSet);
12650 }
12651
12652 // Add builtin operator candidates.
12653 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12654
12655 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12656
12657 // Perform overload resolution.
12658 OverloadCandidateSet::iterator Best;
12659 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12660 case OR_Success: {
12661 // We found a built-in operator or an overloaded operator.
12662 FunctionDecl *FnDecl = Best->Function;
12663
12664 if (FnDecl) {
12665 Expr *Base = nullptr;
12666 // We matched an overloaded operator. Build a call to that
12667 // operator.
12668
12669 // Convert the arguments.
12670 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12671 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12672
12673 ExprResult InputRes =
12674 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12675 Best->FoundDecl, Method);
12676 if (InputRes.isInvalid())
12677 return ExprError();
12678 Base = Input = InputRes.get();
12679 } else {
12680 // Convert the arguments.
12681 ExprResult InputInit
12682 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12683 Context,
12684 FnDecl->getParamDecl(0)),
12685 SourceLocation(),
12686 Input);
12687 if (InputInit.isInvalid())
12688 return ExprError();
12689 Input = InputInit.get();
12690 }
12691
12692 // Build the actual expression node.
12693 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12694 Base, HadMultipleCandidates,
12695 OpLoc);
12696 if (FnExpr.isInvalid())
12697 return ExprError();
12698
12699 // Determine the result type.
12700 QualType ResultTy = FnDecl->getReturnType();
12701 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12702 ResultTy = ResultTy.getNonLValueExprType(Context);
12703
12704 Args[0] = Input;
12705 CallExpr *TheCall = CXXOperatorCallExpr::Create(
12706 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12707 FPOptions(), Best->IsADLCandidate);
12708
12709 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12710 return ExprError();
12711
12712 if (CheckFunctionCall(FnDecl, TheCall,
12713 FnDecl->getType()->castAs<FunctionProtoType>()))
12714 return ExprError();
12715
12716 return MaybeBindToTemporary(TheCall);
12717 } else {
12718 // We matched a built-in operator. Convert the arguments, then
12719 // break out so that we will build the appropriate built-in
12720 // operator node.
12721 ExprResult InputRes = PerformImplicitConversion(
12722 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12723 CCK_ForBuiltinOverloadedOp);
12724 if (InputRes.isInvalid())
12725 return ExprError();
12726 Input = InputRes.get();
12727 break;
12728 }
12729 }
12730
12731 case OR_No_Viable_Function:
12732 // This is an erroneous use of an operator which can be overloaded by
12733 // a non-member function. Check for non-member operators which were
12734 // defined too late to be candidates.
12735 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12736 // FIXME: Recover by calling the found function.
12737 return ExprError();
12738
12739 // No viable function; fall through to handling this as a
12740 // built-in operator, which will produce an error message for us.
12741 break;
12742
12743 case OR_Ambiguous:
12744 CandidateSet.NoteCandidates(
12745 PartialDiagnosticAt(OpLoc,
12746 PDiag(diag::err_ovl_ambiguous_oper_unary)
12747 << UnaryOperator::getOpcodeStr(Opc)
12748 << Input->getType() << Input->getSourceRange()),
12749 *this, OCD_AmbiguousCandidates, ArgsArray,
12750 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12751 return ExprError();
12752
12753 case OR_Deleted:
12754 CandidateSet.NoteCandidates(
12755 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12756 << UnaryOperator::getOpcodeStr(Opc)
12757 << Input->getSourceRange()),
12758 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12759 OpLoc);
12760 return ExprError();
12761 }
12762
12763 // Either we found no viable overloaded operator or we matched a
12764 // built-in operator. In either case, fall through to trying to
12765 // build a built-in operation.
12766 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12767}
12768
12769/// Perform lookup for an overloaded binary operator.
12770void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
12771 OverloadedOperatorKind Op,
12772 const UnresolvedSetImpl &Fns,
12773 ArrayRef<Expr *> Args, bool PerformADL) {
12774 SourceLocation OpLoc = CandidateSet.getLocation();
12775
12776 OverloadedOperatorKind ExtraOp =
12777 CandidateSet.getRewriteInfo().AllowRewrittenCandidates
12778 ? getRewrittenOverloadedOperator(Op)
12779 : OO_None;
12780
12781 // Add the candidates from the given function set. This also adds the
12782 // rewritten candidates using these functions if necessary.
12783 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
12784
12785 // Add operator candidates that are member functions.
12786 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12787 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
12788 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
12789 OverloadCandidateParamOrder::Reversed);
12790
12791 // In C++20, also add any rewritten member candidates.
12792 if (ExtraOp) {
12793 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
12794 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
12795 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
12796 CandidateSet,
12797 OverloadCandidateParamOrder::Reversed);
12798 }
12799
12800 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12801 // performed for an assignment operator (nor for operator[] nor operator->,
12802 // which don't get here).
12803 if (Op != OO_Equal && PerformADL) {
12804 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12805 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12806 /*ExplicitTemplateArgs*/ nullptr,
12807 CandidateSet);
12808 if (ExtraOp) {
12809 DeclarationName ExtraOpName =
12810 Context.DeclarationNames.getCXXOperatorName(ExtraOp);
12811 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
12812 /*ExplicitTemplateArgs*/ nullptr,
12813 CandidateSet);
12814 }
12815 }
12816
12817 // Add builtin operator candidates.
12818 //
12819 // FIXME: We don't add any rewritten candidates here. This is strictly
12820 // incorrect; a builtin candidate could be hidden by a non-viable candidate,
12821 // resulting in our selecting a rewritten builtin candidate. For example:
12822 //
12823 // enum class E { e };
12824 // bool operator!=(E, E) requires false;
12825 // bool k = E::e != E::e;
12826 //
12827 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
12828 // it seems unreasonable to consider rewritten builtin candidates. A core
12829 // issue has been filed proposing to removed this requirement.
12830 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12831}
12832
12833/// Create a binary operation that may resolve to an overloaded
12834/// operator.
12835///
12836/// \param OpLoc The location of the operator itself (e.g., '+').
12837///
12838/// \param Opc The BinaryOperatorKind that describes this operator.
12839///
12840/// \param Fns The set of non-member functions that will be
12841/// considered by overload resolution. The caller needs to build this
12842/// set based on the context using, e.g.,
12843/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12844/// set should not contain any member functions; those will be added
12845/// by CreateOverloadedBinOp().
12846///
12847/// \param LHS Left-hand argument.
12848/// \param RHS Right-hand argument.
12849/// \param PerformADL Whether to consider operator candidates found by ADL.
12850/// \param AllowRewrittenCandidates Whether to consider candidates found by
12851/// C++20 operator rewrites.
12852/// \param DefaultedFn If we are synthesizing a defaulted operator function,
12853/// the function in question. Such a function is never a candidate in
12854/// our overload resolution. This also enables synthesizing a three-way
12855/// comparison from < and == as described in C++20 [class.spaceship]p1.
12856ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12857 BinaryOperatorKind Opc,
12858 const UnresolvedSetImpl &Fns, Expr *LHS,
12859 Expr *RHS, bool PerformADL,
12860 bool AllowRewrittenCandidates,
12861 FunctionDecl *DefaultedFn) {
12862 Expr *Args[2] = { LHS, RHS };
12863 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12864
12865 if (!getLangOpts().CPlusPlus2a)
12866 AllowRewrittenCandidates = false;
12867
12868 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12869
12870 // If either side is type-dependent, create an appropriate dependent
12871 // expression.
12872 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12873 if (Fns.empty()) {
12874 // If there are no functions to store, just build a dependent
12875 // BinaryOperator or CompoundAssignment.
12876 if (Opc <= BO_Assign || Opc > BO_OrAssign)
12877 return new (Context) BinaryOperator(
12878 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12879 OpLoc, FPFeatures);
12880
12881 return new (Context) CompoundAssignOperator(
12882 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12883 Context.DependentTy, Context.DependentTy, OpLoc,
12884 FPFeatures);
12885 }
12886
12887 // FIXME: save results of ADL from here?
12888 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12889 // TODO: provide better source location info in DNLoc component.
12890 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12891 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12892 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12893 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12894 /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12895 return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12896 Context.DependentTy, VK_RValue, OpLoc,
12897 FPFeatures);
12898 }
12899
12900 // Always do placeholder-like conversions on the RHS.
12901 if (checkPlaceholderForOverload(*this, Args[1]))
12902 return ExprError();
12903
12904 // Do placeholder-like conversion on the LHS; note that we should
12905 // not get here with a PseudoObject LHS.
12906 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((Args[0]->getObjectKind() != OK_ObjCProperty) ? static_cast
<void> (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 12906, __PRETTY_FUNCTION__))
;
12907 if (checkPlaceholderForOverload(*this, Args[0]))
12908 return ExprError();
12909
12910 // If this is the assignment operator, we only perform overload resolution
12911 // if the left-hand side is a class or enumeration type. This is actually
12912 // a hack. The standard requires that we do overload resolution between the
12913 // various built-in candidates, but as DR507 points out, this can lead to
12914 // problems. So we do it this way, which pretty much follows what GCC does.
12915 // Note that we go the traditional code path for compound assignment forms.
12916 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12917 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12918
12919 // If this is the .* operator, which is not overloadable, just
12920 // create a built-in binary operator.
12921 if (Opc == BO_PtrMemD)
12922 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12923
12924 // Build the overload set.
12925 OverloadCandidateSet CandidateSet(
12926 OpLoc, OverloadCandidateSet::CSK_Operator,
12927 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
12928 if (DefaultedFn)
12929 CandidateSet.exclude(DefaultedFn);
12930 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
12931
12932 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12933
12934 // Perform overload resolution.
12935 OverloadCandidateSet::iterator Best;
12936 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12937 case OR_Success: {
12938 // We found a built-in operator or an overloaded operator.
12939 FunctionDecl *FnDecl = Best->Function;
12940
12941 bool IsReversed = (Best->RewriteKind & CRK_Reversed);
12942 if (IsReversed)
12943 std::swap(Args[0], Args[1]);
12944
12945 if (FnDecl) {
12946 Expr *Base = nullptr;
12947 // We matched an overloaded operator. Build a call to that
12948 // operator.
12949
12950 OverloadedOperatorKind ChosenOp =
12951 FnDecl->getDeclName().getCXXOverloadedOperator();
12952
12953 // C++2a [over.match.oper]p9:
12954 // If a rewritten operator== candidate is selected by overload
12955 // resolution for an operator@, its return type shall be cv bool
12956 if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
12957 !FnDecl->getReturnType()->isBooleanType()) {
12958 Diag(OpLoc, diag::err_ovl_rewrite_equalequal_not_bool)
12959 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
12960 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12961 Diag(FnDecl->getLocation(), diag::note_declared_at);
12962 return ExprError();
12963 }
12964
12965 if (AllowRewrittenCandidates && !IsReversed &&
12966 CandidateSet.getRewriteInfo().shouldAddReversed(ChosenOp)) {
12967 // We could have reversed this operator, but didn't. Check if the
12968 // reversed form was a viable candidate, and if so, if it had a
12969 // better conversion for either parameter. If so, this call is
12970 // formally ambiguous, and allowing it is an extension.
12971 for (OverloadCandidate &Cand : CandidateSet) {
12972 if (Cand.Viable && Cand.Function == FnDecl &&
12973 Cand.RewriteKind & CRK_Reversed) {
12974 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
12975 if (CompareImplicitConversionSequences(
12976 *this, OpLoc, Cand.Conversions[ArgIdx],
12977 Best->Conversions[ArgIdx]) ==
12978 ImplicitConversionSequence::Better) {
12979 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
12980 << BinaryOperator::getOpcodeStr(Opc)
12981 << Args[0]->getType() << Args[1]->getType()
12982 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12983 Diag(FnDecl->getLocation(),
12984 diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
12985 }
12986 }
12987 break;
12988 }
12989 }
12990 }
12991
12992 // Convert the arguments.
12993 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12994 // Best->Access is only meaningful for class members.
12995 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12996
12997 ExprResult Arg1 =
12998 PerformCopyInitialization(
12999 InitializedEntity::InitializeParameter(Context,
13000 FnDecl->getParamDecl(0)),
13001 SourceLocation(), Args[1]);
13002 if (Arg1.isInvalid())
13003 return ExprError();
13004
13005 ExprResult Arg0 =
13006 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13007 Best->FoundDecl, Method);
13008 if (Arg0.isInvalid())
13009 return ExprError();
13010 Base = Args[0] = Arg0.getAs<Expr>();
13011 Args[1] = RHS = Arg1.getAs<Expr>();
13012 } else {
13013 // Convert the arguments.
13014 ExprResult Arg0 = PerformCopyInitialization(
13015 InitializedEntity::InitializeParameter(Context,
13016 FnDecl->getParamDecl(0)),
13017 SourceLocation(), Args[0]);
13018 if (Arg0.isInvalid())
13019 return ExprError();
13020
13021 ExprResult Arg1 =
13022 PerformCopyInitialization(
13023 InitializedEntity::InitializeParameter(Context,
13024 FnDecl->getParamDecl(1)),
13025 SourceLocation(), Args[1]);
13026 if (Arg1.isInvalid())
13027 return ExprError();
13028 Args[0] = LHS = Arg0.getAs<Expr>();
13029 Args[1] = RHS = Arg1.getAs<Expr>();
13030 }
13031
13032 // Build the actual expression node.
13033 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13034 Best->FoundDecl, Base,
13035 HadMultipleCandidates, OpLoc);
13036 if (FnExpr.isInvalid())
13037 return ExprError();
13038
13039 // Determine the result type.
13040 QualType ResultTy = FnDecl->getReturnType();
13041 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13042 ResultTy = ResultTy.getNonLValueExprType(Context);
13043
13044 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13045 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13046 FPFeatures, Best->IsADLCandidate);
13047
13048 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13049 FnDecl))
13050 return ExprError();
13051
13052 ArrayRef<const Expr *> ArgsArray(Args, 2);
13053 const Expr *ImplicitThis = nullptr;
13054 // Cut off the implicit 'this'.
13055 if (isa<CXXMethodDecl>(FnDecl)) {
13056 ImplicitThis = ArgsArray[0];
13057 ArgsArray = ArgsArray.slice(1);
13058 }
13059
13060 // Check for a self move.
13061 if (Op == OO_Equal)
13062 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13063
13064 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13065 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13066 VariadicDoesNotApply);
13067
13068 ExprResult R = MaybeBindToTemporary(TheCall);
13069 if (R.isInvalid())
13070 return ExprError();
13071
13072 // For a rewritten candidate, we've already reversed the arguments
13073 // if needed. Perform the rest of the rewrite now.
13074 if ((Best->RewriteKind & CRK_DifferentOperator) ||
13075 (Op == OO_Spaceship && IsReversed)) {
13076 if (Op == OO_ExclaimEqual) {
13077 assert(ChosenOp == OO_EqualEqual && "unexpected operator name")((ChosenOp == OO_EqualEqual && "unexpected operator name"
) ? static_cast<void> (0) : __assert_fail ("ChosenOp == OO_EqualEqual && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13077, __PRETTY_FUNCTION__))
;
13078 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13079 } else {
13080 assert(ChosenOp == OO_Spaceship && "unexpected operator name")((ChosenOp == OO_Spaceship && "unexpected operator name"
) ? static_cast<void> (0) : __assert_fail ("ChosenOp == OO_Spaceship && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13080, __PRETTY_FUNCTION__))
;
13081 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13082 Expr *ZeroLiteral =
13083 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13084
13085 Sema::CodeSynthesisContext Ctx;
13086 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13087 Ctx.Entity = FnDecl;
13088 pushCodeSynthesisContext(Ctx);
13089
13090 R = CreateOverloadedBinOp(
13091 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13092 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13093 /*AllowRewrittenCandidates=*/false);
13094
13095 popCodeSynthesisContext();
13096 }
13097 if (R.isInvalid())
13098 return ExprError();
13099 } else {
13100 assert(ChosenOp == Op && "unexpected operator name")((ChosenOp == Op && "unexpected operator name") ? static_cast
<void> (0) : __assert_fail ("ChosenOp == Op && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13100, __PRETTY_FUNCTION__))
;
13101 }
13102
13103 // Make a note in the AST if we did any rewriting.
13104 if (Best->RewriteKind != CRK_None)
13105 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13106
13107 return R;
13108 } else {
13109 // We matched a built-in operator. Convert the arguments, then
13110 // break out so that we will build the appropriate built-in
13111 // operator node.
13112 ExprResult ArgsRes0 = PerformImplicitConversion(
13113 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13114 AA_Passing, CCK_ForBuiltinOverloadedOp);
13115 if (ArgsRes0.isInvalid())
13116 return ExprError();
13117 Args[0] = ArgsRes0.get();
13118
13119 ExprResult ArgsRes1 = PerformImplicitConversion(
13120 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13121 AA_Passing, CCK_ForBuiltinOverloadedOp);
13122 if (ArgsRes1.isInvalid())
13123 return ExprError();
13124 Args[1] = ArgsRes1.get();
13125 break;
13126 }
13127 }
13128
13129 case OR_No_Viable_Function: {
13130 // C++ [over.match.oper]p9:
13131 // If the operator is the operator , [...] and there are no
13132 // viable functions, then the operator is assumed to be the
13133 // built-in operator and interpreted according to clause 5.
13134 if (Opc == BO_Comma)
13135 break;
13136
13137 // When defaulting an 'operator<=>', we can try to synthesize a three-way
13138 // compare result using '==' and '<'.
13139 if (DefaultedFn && Opc == BO_Cmp) {
13140 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13141 Args[1], DefaultedFn);
13142 if (E.isInvalid() || E.isUsable())
13143 return E;
13144 }
13145
13146 // For class as left operand for assignment or compound assignment
13147 // operator do not fall through to handling in built-in, but report that
13148 // no overloaded assignment operator found
13149 ExprResult Result = ExprError();
13150 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13151 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13152 Args, OpLoc);
13153 if (Args[0]->getType()->isRecordType() &&
13154 Opc >= BO_Assign && Opc <= BO_OrAssign) {
13155 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13156 << BinaryOperator::getOpcodeStr(Opc)
13157 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13158 if (Args[0]->getType()->isIncompleteType()) {
13159 Diag(OpLoc, diag::note_assign_lhs_incomplete)
13160 << Args[0]->getType()
13161 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13162 }
13163 } else {
13164 // This is an erroneous use of an operator which can be overloaded by
13165 // a non-member function. Check for non-member operators which were
13166 // defined too late to be candidates.
13167 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13168 // FIXME: Recover by calling the found function.
13169 return ExprError();
13170
13171 // No viable function; try to create a built-in operation, which will
13172 // produce an error. Then, show the non-viable candidates.
13173 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13174 }
13175 assert(Result.isInvalid() &&((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13176, __PRETTY_FUNCTION__))
13176 "C++ binary operator overloading is missing candidates!")((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13176, __PRETTY_FUNCTION__))
;
13177 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13178 return Result;
13179 }
13180
13181 case OR_Ambiguous:
13182 CandidateSet.NoteCandidates(
13183 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13184 << BinaryOperator::getOpcodeStr(Opc)
13185 << Args[0]->getType()
13186 << Args[1]->getType()
13187 << Args[0]->getSourceRange()
13188 << Args[1]->getSourceRange()),
13189 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13190 OpLoc);
13191 return ExprError();
13192
13193 case OR_Deleted:
13194 if (isImplicitlyDeleted(Best->Function)) {
13195 FunctionDecl *DeletedFD = Best->Function;
13196 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13197 if (DFK.isSpecialMember()) {
13198 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13199 << Args[0]->getType() << DFK.asSpecialMember();
13200 } else {
13201 assert(DFK.isComparison())((DFK.isComparison()) ? static_cast<void> (0) : __assert_fail
("DFK.isComparison()", "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13201, __PRETTY_FUNCTION__))
;
13202 Diag(OpLoc, diag::err_ovl_deleted_comparison)
13203 << Args[0]->getType() << DeletedFD;
13204 }
13205
13206 // The user probably meant to call this special member. Just
13207 // explain why it's deleted.
13208 NoteDeletedFunction(DeletedFD);
13209 return ExprError();
13210 }
13211 CandidateSet.NoteCandidates(
13212 PartialDiagnosticAt(
13213 OpLoc, PDiag(diag::err_ovl_deleted_oper)
13214 << getOperatorSpelling(Best->Function->getDeclName()
13215 .getCXXOverloadedOperator())
13216 << Args[0]->getSourceRange()
13217 << Args[1]->getSourceRange()),
13218 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13219 OpLoc);
13220 return ExprError();
13221 }
13222
13223 // We matched a built-in operator; build it.
13224 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13225}
13226
13227ExprResult Sema::BuildSynthesizedThreeWayComparison(
13228 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13229 FunctionDecl *DefaultedFn) {
13230 const ComparisonCategoryInfo *Info =
13231 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13232 // If we're not producing a known comparison category type, we can't
13233 // synthesize a three-way comparison. Let the caller diagnose this.
13234 if (!Info)
13235 return ExprResult((Expr*)nullptr);
13236
13237 // If we ever want to perform this synthesis more generally, we will need to
13238 // apply the temporary materialization conversion to the operands.
13239 assert(LHS->isGLValue() && RHS->isGLValue() &&((LHS->isGLValue() && RHS->isGLValue() &&
"cannot use prvalue expressions more than once") ? static_cast
<void> (0) : __assert_fail ("LHS->isGLValue() && RHS->isGLValue() && \"cannot use prvalue expressions more than once\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13240, __PRETTY_FUNCTION__))
13240 "cannot use prvalue expressions more than once")((LHS->isGLValue() && RHS->isGLValue() &&
"cannot use prvalue expressions more than once") ? static_cast
<void> (0) : __assert_fail ("LHS->isGLValue() && RHS->isGLValue() && \"cannot use prvalue expressions more than once\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13240, __PRETTY_FUNCTION__))
;
13241 Expr *OrigLHS = LHS;
13242 Expr *OrigRHS = RHS;
13243
13244 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13245 // each of them multiple times below.
13246 LHS = new (Context)
13247 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13248 LHS->getObjectKind(), LHS);
13249 RHS = new (Context)
13250 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13251 RHS->getObjectKind(), RHS);
13252
13253 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13254 DefaultedFn);
13255 if (Eq.isInvalid())
13256 return ExprError();
13257
13258 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13259 true, DefaultedFn);
13260 if (Less.isInvalid())
13261 return ExprError();
13262
13263 ExprResult Greater;
13264 if (Info->isPartial()) {
13265 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
13266 DefaultedFn);
13267 if (Greater.isInvalid())
13268 return ExprError();
13269 }
13270
13271 // Form the list of comparisons we're going to perform.
13272 struct Comparison {
13273 ExprResult Cmp;
13274 ComparisonCategoryResult Result;
13275 } Comparisons[4] =
13276 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
13277 : ComparisonCategoryResult::Equivalent},
13278 {Less, ComparisonCategoryResult::Less},
13279 {Greater, ComparisonCategoryResult::Greater},
13280 {ExprResult(), ComparisonCategoryResult::Unordered},
13281 };
13282
13283 int I = Info->isPartial() ? 3 : 2;
13284
13285 // Combine the comparisons with suitable conditional expressions.
13286 ExprResult Result;
13287 for (; I >= 0; --I) {
13288 // Build a reference to the comparison category constant.
13289 auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
13290 // FIXME: Missing a constant for a comparison category. Diagnose this?
13291 if (!VI)
13292 return ExprResult((Expr*)nullptr);
13293 ExprResult ThisResult =
13294 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
13295 if (ThisResult.isInvalid())
13296 return ExprError();
13297
13298 // Build a conditional unless this is the final case.
13299 if (Result.get()) {
13300 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
13301 ThisResult.get(), Result.get());
13302 if (Result.isInvalid())
13303 return ExprError();
13304 } else {
13305 Result = ThisResult;
13306 }
13307 }
13308
13309 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
13310 // bind the OpaqueValueExprs before they're (repeatedly) used.
13311 Expr *SyntacticForm = new (Context)
13312 BinaryOperator(OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
13313 Result.get()->getValueKind(),
13314 Result.get()->getObjectKind(), OpLoc, FPFeatures);
13315 Expr *SemanticForm[] = {LHS, RHS, Result.get()};
13316 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
13317}
13318
13319ExprResult
13320Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13321 SourceLocation RLoc,
13322 Expr *Base, Expr *Idx) {
13323 Expr *Args[2] = { Base, Idx };
13324 DeclarationName OpName =
13325 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13326
13327 // If either side is type-dependent, create an appropriate dependent
13328 // expression.
13329 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13330
13331 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13332 // CHECKME: no 'operator' keyword?
13333 DeclarationNameInfo OpNameInfo(OpName, LLoc);
13334 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13335 UnresolvedLookupExpr *Fn
13336 = UnresolvedLookupExpr::Create(Context, NamingClass,
13337 NestedNameSpecifierLoc(), OpNameInfo,
13338 /*ADL*/ true, /*Overloaded*/ false,
13339 UnresolvedSetIterator(),
13340 UnresolvedSetIterator());
13341 // Can't add any actual overloads yet
13342
13343 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
13344 Context.DependentTy, VK_RValue, RLoc,
13345 FPOptions());
13346 }
13347
13348 // Handle placeholders on both operands.
13349 if (checkPlaceholderForOverload(*this, Args[0]))
13350 return ExprError();
13351 if (checkPlaceholderForOverload(*this, Args[1]))
13352 return ExprError();
13353
13354 // Build an empty overload set.
13355 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
13356
13357 // Subscript can only be overloaded as a member function.
13358
13359 // Add operator candidates that are member functions.
13360 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13361
13362 // Add builtin operator candidates.
13363 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13364
13365 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13366
13367 // Perform overload resolution.
13368 OverloadCandidateSet::iterator Best;
13369 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
13370 case OR_Success: {
13371 // We found a built-in operator or an overloaded operator.
13372 FunctionDecl *FnDecl = Best->Function;
13373
13374 if (FnDecl) {
13375 // We matched an overloaded operator. Build a call to that
13376 // operator.
13377
13378 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
13379
13380 // Convert the arguments.
13381 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
13382 ExprResult Arg0 =
13383 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13384 Best->FoundDecl, Method);
13385 if (Arg0.isInvalid())
13386 return ExprError();
13387 Args[0] = Arg0.get();
13388
13389 // Convert the arguments.
13390 ExprResult InputInit
13391 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13392 Context,
13393 FnDecl->getParamDecl(0)),
13394 SourceLocation(),
13395 Args[1]);
13396 if (InputInit.isInvalid())
13397 return ExprError();
13398
13399 Args[1] = InputInit.getAs<Expr>();
13400
13401 // Build the actual expression node.
13402 DeclarationNameInfo OpLocInfo(OpName, LLoc);
13403 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13404 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13405 Best->FoundDecl,
13406 Base,
13407 HadMultipleCandidates,
13408 OpLocInfo.getLoc(),
13409 OpLocInfo.getInfo());
13410 if (FnExpr.isInvalid())
13411 return ExprError();
13412
13413 // Determine the result type
13414 QualType ResultTy = FnDecl->getReturnType();
13415 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13416 ResultTy = ResultTy.getNonLValueExprType(Context);
13417
13418 CXXOperatorCallExpr *TheCall =
13419 CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
13420 Args, ResultTy, VK, RLoc, FPOptions());
13421
13422 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
13423 return ExprError();
13424
13425 if (CheckFunctionCall(Method, TheCall,
13426 Method->getType()->castAs<FunctionProtoType>()))
13427 return ExprError();
13428
13429 return MaybeBindToTemporary(TheCall);
13430 } else {
13431 // We matched a built-in operator. Convert the arguments, then
13432 // break out so that we will build the appropriate built-in
13433 // operator node.
13434 ExprResult ArgsRes0 = PerformImplicitConversion(
13435 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13436 AA_Passing, CCK_ForBuiltinOverloadedOp);
13437 if (ArgsRes0.isInvalid())
13438 return ExprError();
13439 Args[0] = ArgsRes0.get();
13440
13441 ExprResult ArgsRes1 = PerformImplicitConversion(
13442 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13443 AA_Passing, CCK_ForBuiltinOverloadedOp);
13444 if (ArgsRes1.isInvalid())
13445 return ExprError();
13446 Args[1] = ArgsRes1.get();
13447
13448 break;
13449 }
13450 }
13451
13452 case OR_No_Viable_Function: {
13453 PartialDiagnostic PD = CandidateSet.empty()
13454 ? (PDiag(diag::err_ovl_no_oper)
13455 << Args[0]->getType() << /*subscript*/ 0
13456 << Args[0]->getSourceRange() << Args[1]->getSourceRange())
13457 : (PDiag(diag::err_ovl_no_viable_subscript)
13458 << Args[0]->getType() << Args[0]->getSourceRange()
13459 << Args[1]->getSourceRange());
13460 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
13461 OCD_AllCandidates, Args, "[]", LLoc);
13462 return ExprError();
13463 }
13464
13465 case OR_Ambiguous:
13466 CandidateSet.NoteCandidates(
13467 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13468 << "[]" << Args[0]->getType()
13469 << Args[1]->getType()
13470 << Args[0]->getSourceRange()
13471 << Args[1]->getSourceRange()),
13472 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
13473 return ExprError();
13474
13475 case OR_Deleted:
13476 CandidateSet.NoteCandidates(
13477 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
13478 << "[]" << Args[0]->getSourceRange()
13479 << Args[1]->getSourceRange()),
13480 *this, OCD_AllCandidates, Args, "[]", LLoc);
13481 return ExprError();
13482 }
13483
13484 // We matched a built-in operator; build it.
13485 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
13486}
13487
13488/// BuildCallToMemberFunction - Build a call to a member
13489/// function. MemExpr is the expression that refers to the member
13490/// function (and includes the object parameter), Args/NumArgs are the
13491/// arguments to the function call (not including the object
13492/// parameter). The caller needs to validate that the member
13493/// expression refers to a non-static member function or an overloaded
13494/// member function.
13495ExprResult
13496Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
13497 SourceLocation LParenLoc,
13498 MultiExprArg Args,
13499 SourceLocation RParenLoc) {
13500 assert(MemExprE->getType() == Context.BoundMemberTy ||((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13501, __PRETTY_FUNCTION__))
13501 MemExprE->getType() == Context.OverloadTy)((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13501, __PRETTY_FUNCTION__))
;
13502
13503 // Dig out the member expression. This holds both the object
13504 // argument and the member function we're referring to.
13505 Expr *NakedMemExpr = MemExprE->IgnoreParens();
13506
13507 // Determine whether this is a call to a pointer-to-member function.
13508 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
13509 assert(op->getType() == Context.BoundMemberTy)((op->getType() == Context.BoundMemberTy) ? static_cast<
void> (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13509, __PRETTY_FUNCTION__))
;
13510 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13510, __PRETTY_FUNCTION__))
;
13511
13512 QualType fnType =
13513 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
13514
13515 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
13516 QualType resultType = proto->getCallResultType(Context);
13517 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
13518
13519 // Check that the object type isn't more qualified than the
13520 // member function we're calling.
13521 Qualifiers funcQuals = proto->getMethodQuals();
13522
13523 QualType objectType = op->getLHS()->getType();
13524 if (op->getOpcode() == BO_PtrMemI)
13525 objectType = objectType->castAs<PointerType>()->getPointeeType();
13526 Qualifiers objectQuals = objectType.getQualifiers();
13527
13528 Qualifiers difference = objectQuals - funcQuals;
13529 difference.removeObjCGCAttr();
13530 difference.removeAddressSpace();
13531 if (difference) {
13532 std::string qualsString = difference.getAsString();
13533 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
13534 << fnType.getUnqualifiedType()
13535 << qualsString
13536 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
13537 }
13538
13539 CXXMemberCallExpr *call =
13540 CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
13541 valueKind, RParenLoc, proto->getNumParams());
13542
13543 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
13544 call, nullptr))
13545 return ExprError();
13546
13547 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
13548 return ExprError();
13549
13550 if (CheckOtherCall(call, proto))
13551 return ExprError();
13552
13553 return MaybeBindToTemporary(call);
13554 }
13555
13556 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
13557 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
13558 RParenLoc);
13559
13560 UnbridgedCastsSet UnbridgedCasts;
13561 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13562 return ExprError();
13563
13564 MemberExpr *MemExpr;
13565 CXXMethodDecl *Method = nullptr;
13566 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
13567 NestedNameSpecifier *Qualifier = nullptr;
13568 if (isa<MemberExpr>(NakedMemExpr)) {
13569 MemExpr = cast<MemberExpr>(NakedMemExpr);
13570 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
13571 FoundDecl = MemExpr->getFoundDecl();
13572 Qualifier = MemExpr->getQualifier();
13573 UnbridgedCasts.restore();
13574 } else {
13575 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
13576 Qualifier = UnresExpr->getQualifier();
13577
13578 QualType ObjectType = UnresExpr->getBaseType();
13579 Expr::Classification ObjectClassification
13580 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13581 : UnresExpr->getBase()->Classify(Context);
13582
13583 // Add overload candidates
13584 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13585 OverloadCandidateSet::CSK_Normal);
13586
13587 // FIXME: avoid copy.
13588 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13589 if (UnresExpr->hasExplicitTemplateArgs()) {
13590 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13591 TemplateArgs = &TemplateArgsBuffer;
13592 }
13593
13594 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13595 E = UnresExpr->decls_end(); I != E; ++I) {
13596
13597 NamedDecl *Func = *I;
13598 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13599 if (isa<UsingShadowDecl>(Func))
13600 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13601
13602
13603 // Microsoft supports direct constructor calls.
13604 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13605 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13606 CandidateSet,
13607 /*SuppressUserConversions*/ false);
13608 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13609 // If explicit template arguments were provided, we can't call a
13610 // non-template member function.
13611 if (TemplateArgs)
13612 continue;
13613
13614 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13615 ObjectClassification, Args, CandidateSet,
13616 /*SuppressUserConversions=*/false);
13617 } else {
13618 AddMethodTemplateCandidate(
13619 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13620 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13621 /*SuppressUserConversions=*/false);
13622 }
13623 }
13624
13625 DeclarationName DeclName = UnresExpr->getMemberName();
13626
13627 UnbridgedCasts.restore();
13628
13629 OverloadCandidateSet::iterator Best;
13630 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13631 Best)) {
13632 case OR_Success:
13633 Method = cast<CXXMethodDecl>(Best->Function);
13634 FoundDecl = Best->FoundDecl;
13635 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13636 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13637 return ExprError();
13638 // If FoundDecl is different from Method (such as if one is a template
13639 // and the other a specialization), make sure DiagnoseUseOfDecl is
13640 // called on both.
13641 // FIXME: This would be more comprehensively addressed by modifying
13642 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13643 // being used.
13644 if (Method != FoundDecl.getDecl() &&
13645 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13646 return ExprError();
13647 break;
13648
13649 case OR_No_Viable_Function:
13650 CandidateSet.NoteCandidates(
13651 PartialDiagnosticAt(
13652 UnresExpr->getMemberLoc(),
13653 PDiag(diag::err_ovl_no_viable_member_function_in_call)
13654 << DeclName << MemExprE->getSourceRange()),
13655 *this, OCD_AllCandidates, Args);
13656 // FIXME: Leaking incoming expressions!
13657 return ExprError();
13658
13659 case OR_Ambiguous:
13660 CandidateSet.NoteCandidates(
13661 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13662 PDiag(diag::err_ovl_ambiguous_member_call)
13663 << DeclName << MemExprE->getSourceRange()),
13664 *this, OCD_AmbiguousCandidates, Args);
13665 // FIXME: Leaking incoming expressions!
13666 return ExprError();
13667
13668 case OR_Deleted:
13669 CandidateSet.NoteCandidates(
13670 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13671 PDiag(diag::err_ovl_deleted_member_call)
13672 << DeclName << MemExprE->getSourceRange()),
13673 *this, OCD_AllCandidates, Args);
13674 // FIXME: Leaking incoming expressions!
13675 return ExprError();
13676 }
13677
13678 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13679
13680 // If overload resolution picked a static member, build a
13681 // non-member call based on that function.
13682 if (Method->isStatic()) {
13683 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13684 RParenLoc);
13685 }
13686
13687 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13688 }
13689
13690 QualType ResultType = Method->getReturnType();
13691 ExprValueKind VK = Expr::getValueKindForType(ResultType);
13692 ResultType = ResultType.getNonLValueExprType(Context);
13693
13694 assert(Method && "Member call to something that isn't a method?")((Method && "Member call to something that isn't a method?"
) ? static_cast<void> (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13694, __PRETTY_FUNCTION__))
;
13695 const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13696 CXXMemberCallExpr *TheCall =
13697 CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13698 RParenLoc, Proto->getNumParams());
13699
13700 // Check for a valid return type.
13701 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13702 TheCall, Method))
13703 return ExprError();
13704
13705 // Convert the object argument (for a non-static member function call).
13706 // We only need to do this if there was actually an overload; otherwise
13707 // it was done at lookup.
13708 if (!Method->isStatic()) {
13709 ExprResult ObjectArg =
13710 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13711 FoundDecl, Method);
13712 if (ObjectArg.isInvalid())
13713 return ExprError();
13714 MemExpr->setBase(ObjectArg.get());
13715 }
13716
13717 // Convert the rest of the arguments
13718 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13719 RParenLoc))
13720 return ExprError();
13721
13722 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13723
13724 if (CheckFunctionCall(Method, TheCall, Proto))
13725 return ExprError();
13726
13727 // In the case the method to call was not selected by the overloading
13728 // resolution process, we still need to handle the enable_if attribute. Do
13729 // that here, so it will not hide previous -- and more relevant -- errors.
13730 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13731 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13732 Diag(MemE->getMemberLoc(),
13733 diag::err_ovl_no_viable_member_function_in_call)
13734 << Method << Method->getSourceRange();
13735 Diag(Method->getLocation(),
13736 diag::note_ovl_candidate_disabled_by_function_cond_attr)
13737 << Attr->getCond()->getSourceRange() << Attr->getMessage();
13738 return ExprError();
13739 }
13740 }
13741
13742 if ((isa<CXXConstructorDecl>(CurContext) ||
13743 isa<CXXDestructorDecl>(CurContext)) &&
13744 TheCall->getMethodDecl()->isPure()) {
13745 const CXXMethodDecl *MD = TheCall->getMethodDecl();
13746
13747 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13748 MemExpr->performsVirtualDispatch(getLangOpts())) {
13749 Diag(MemExpr->getBeginLoc(),
13750 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13751 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13752 << MD->getParent()->getDeclName();
13753
13754 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13755 if (getLangOpts().AppleKext)
13756 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13757 << MD->getParent()->getDeclName() << MD->getDeclName();
13758 }
13759 }
13760
13761 if (CXXDestructorDecl *DD =
13762 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13763 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13764 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13765 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13766 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13767 MemExpr->getMemberLoc());
13768 }
13769
13770 return MaybeBindToTemporary(TheCall);
13771}
13772
13773/// BuildCallToObjectOfClassType - Build a call to an object of class
13774/// type (C++ [over.call.object]), which can end up invoking an
13775/// overloaded function call operator (@c operator()) or performing a
13776/// user-defined conversion on the object argument.
13777ExprResult
13778Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13779 SourceLocation LParenLoc,
13780 MultiExprArg Args,
13781 SourceLocation RParenLoc) {
13782 if (checkPlaceholderForOverload(*this, Obj))
13783 return ExprError();
13784 ExprResult Object = Obj;
13785
13786 UnbridgedCastsSet UnbridgedCasts;
13787 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13788 return ExprError();
13789
13790 assert(Object.get()->getType()->isRecordType() &&((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13791, __PRETTY_FUNCTION__))
13791 "Requires object type argument")((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13791, __PRETTY_FUNCTION__))
;
13792 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13793
13794 // C++ [over.call.object]p1:
13795 // If the primary-expression E in the function call syntax
13796 // evaluates to a class object of type "cv T", then the set of
13797 // candidate functions includes at least the function call
13798 // operators of T. The function call operators of T are obtained by
13799 // ordinary lookup of the name operator() in the context of
13800 // (E).operator().
13801 OverloadCandidateSet CandidateSet(LParenLoc,
13802 OverloadCandidateSet::CSK_Operator);
13803 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13804
13805 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13806 diag::err_incomplete_object_call, Object.get()))
13807 return true;
13808
13809 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13810 LookupQualifiedName(R, Record->getDecl());
13811 R.suppressDiagnostics();
13812
13813 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13814 Oper != OperEnd; ++Oper) {
13815 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13816 Object.get()->Classify(Context), Args, CandidateSet,
13817 /*SuppressUserConversion=*/false);
13818 }
13819
13820 // C++ [over.call.object]p2:
13821 // In addition, for each (non-explicit in C++0x) conversion function
13822 // declared in T of the form
13823 //
13824 // operator conversion-type-id () cv-qualifier;
13825 //
13826 // where cv-qualifier is the same cv-qualification as, or a
13827 // greater cv-qualification than, cv, and where conversion-type-id
13828 // denotes the type "pointer to function of (P1,...,Pn) returning
13829 // R", or the type "reference to pointer to function of
13830 // (P1,...,Pn) returning R", or the type "reference to function
13831 // of (P1,...,Pn) returning R", a surrogate call function [...]
13832 // is also considered as a candidate function. Similarly,
13833 // surrogate call functions are added to the set of candidate
13834 // functions for each conversion function declared in an
13835 // accessible base class provided the function is not hidden
13836 // within T by another intervening declaration.
13837 const auto &Conversions =
13838 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13839 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13840 NamedDecl *D = *I;
13841 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13842 if (isa<UsingShadowDecl>(D))
13843 D = cast<UsingShadowDecl>(D)->getTargetDecl();
13844
13845 // Skip over templated conversion functions; they aren't
13846 // surrogates.
13847 if (isa<FunctionTemplateDecl>(D))
13848 continue;
13849
13850 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13851 if (!Conv->isExplicit()) {
13852 // Strip the reference type (if any) and then the pointer type (if
13853 // any) to get down to what might be a function type.
13854 QualType ConvType = Conv->getConversionType().getNonReferenceType();
13855 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13856 ConvType = ConvPtrType->getPointeeType();
13857
13858 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13859 {
13860 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13861 Object.get(), Args, CandidateSet);
13862 }
13863 }
13864 }
13865
13866 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13867
13868 // Perform overload resolution.
13869 OverloadCandidateSet::iterator Best;
13870 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13871 Best)) {
13872 case OR_Success:
13873 // Overload resolution succeeded; we'll build the appropriate call
13874 // below.
13875 break;
13876
13877 case OR_No_Viable_Function: {
13878 PartialDiagnostic PD =
13879 CandidateSet.empty()
13880 ? (PDiag(diag::err_ovl_no_oper)
13881 << Object.get()->getType() << /*call*/ 1
13882 << Object.get()->getSourceRange())
13883 : (PDiag(diag::err_ovl_no_viable_object_call)
13884 << Object.get()->getType() << Object.get()->getSourceRange());
13885 CandidateSet.NoteCandidates(
13886 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13887 OCD_AllCandidates, Args);
13888 break;
13889 }
13890 case OR_Ambiguous:
13891 CandidateSet.NoteCandidates(
13892 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13893 PDiag(diag::err_ovl_ambiguous_object_call)
13894 << Object.get()->getType()
13895 << Object.get()->getSourceRange()),
13896 *this, OCD_AmbiguousCandidates, Args);
13897 break;
13898
13899 case OR_Deleted:
13900 CandidateSet.NoteCandidates(
13901 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13902 PDiag(diag::err_ovl_deleted_object_call)
13903 << Object.get()->getType()
13904 << Object.get()->getSourceRange()),
13905 *this, OCD_AllCandidates, Args);
13906 break;
13907 }
13908
13909 if (Best == CandidateSet.end())
13910 return true;
13911
13912 UnbridgedCasts.restore();
13913
13914 if (Best->Function == nullptr) {
13915 // Since there is no function declaration, this is one of the
13916 // surrogate candidates. Dig out the conversion function.
13917 CXXConversionDecl *Conv
13918 = cast<CXXConversionDecl>(
13919 Best->Conversions[0].UserDefined.ConversionFunction);
13920
13921 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13922 Best->FoundDecl);
13923 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13924 return ExprError();
13925 assert(Conv == Best->FoundDecl.getDecl() &&((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13926, __PRETTY_FUNCTION__))
13926 "Found Decl & conversion-to-functionptr should be same, right?!")((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 13926, __PRETTY_FUNCTION__))
;
13927 // We selected one of the surrogate functions that converts the
13928 // object parameter to a function pointer. Perform the conversion
13929 // on the object argument, then let BuildCallExpr finish the job.
13930
13931 // Create an implicit member expr to refer to the conversion operator.
13932 // and then call it.
13933 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13934 Conv, HadMultipleCandidates);
13935 if (Call.isInvalid())
13936 return ExprError();
13937 // Record usage of conversion in an implicit cast.
13938 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13939 CK_UserDefinedConversion, Call.get(),
13940 nullptr, VK_RValue);
13941
13942 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13943 }
13944
13945 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13946
13947 // We found an overloaded operator(). Build a CXXOperatorCallExpr
13948 // that calls this method, using Object for the implicit object
13949 // parameter and passing along the remaining arguments.
13950 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13951
13952 // An error diagnostic has already been printed when parsing the declaration.
13953 if (Method->isInvalidDecl())
13954 return ExprError();
13955
13956 const FunctionProtoType *Proto =
13957 Method->getType()->getAs<FunctionProtoType>();
13958
13959 unsigned NumParams = Proto->getNumParams();
13960
13961 DeclarationNameInfo OpLocInfo(
13962 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13963 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13964 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13965 Obj, HadMultipleCandidates,
13966 OpLocInfo.getLoc(),
13967 OpLocInfo.getInfo());
13968 if (NewFn.isInvalid())
13969 return true;
13970
13971 // The number of argument slots to allocate in the call. If we have default
13972 // arguments we need to allocate space for them as well. We additionally
13973 // need one more slot for the object parameter.
13974 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13975
13976 // Build the full argument list for the method call (the implicit object
13977 // parameter is placed at the beginning of the list).
13978 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13979
13980 bool IsError = false;
13981
13982 // Initialize the implicit object parameter.
13983 ExprResult ObjRes =
13984 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13985 Best->FoundDecl, Method);
13986 if (ObjRes.isInvalid())
13987 IsError = true;
13988 else
13989 Object = ObjRes;
13990 MethodArgs[0] = Object.get();
13991
13992 // Check the argument types.
13993 for (unsigned i = 0; i != NumParams; i++) {
13994 Expr *Arg;
13995 if (i < Args.size()) {
13996 Arg = Args[i];
13997
13998 // Pass the argument.
13999
14000 ExprResult InputInit
14001 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14002 Context,
14003 Method->getParamDecl(i)),
14004 SourceLocation(), Arg);
14005
14006 IsError |= InputInit.isInvalid();
14007 Arg = InputInit.getAs<Expr>();
14008 } else {
14009 ExprResult DefArg
14010 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14011 if (DefArg.isInvalid()) {
14012 IsError = true;
14013 break;
14014 }
14015
14016 Arg = DefArg.getAs<Expr>();
14017 }
14018
14019 MethodArgs[i + 1] = Arg;
14020 }
14021
14022 // If this is a variadic call, handle args passed through "...".
14023 if (Proto->isVariadic()) {
14024 // Promote the arguments (C99 6.5.2.2p7).
14025 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14026 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14027 nullptr);
14028 IsError |= Arg.isInvalid();
14029 MethodArgs[i + 1] = Arg.get();
14030 }
14031 }
14032
14033 if (IsError)
14034 return true;
14035
14036 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14037
14038 // Once we've built TheCall, all of the expressions are properly owned.
14039 QualType ResultTy = Method->getReturnType();
14040 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14041 ResultTy = ResultTy.getNonLValueExprType(Context);
14042
14043 CXXOperatorCallExpr *TheCall =
14044 CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
14045 ResultTy, VK, RParenLoc, FPOptions());
14046
14047 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14048 return true;
14049
14050 if (CheckFunctionCall(Method, TheCall, Proto))
14051 return true;
14052
14053 return MaybeBindToTemporary(TheCall);
14054}
14055
14056/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14057/// (if one exists), where @c Base is an expression of class type and
14058/// @c Member is the name of the member we're trying to find.
14059ExprResult
14060Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14061 bool *NoArrowOperatorFound) {
14062 assert(Base->getType()->isRecordType() &&((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14063, __PRETTY_FUNCTION__))
14063 "left-hand side must have class type")((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14063, __PRETTY_FUNCTION__))
;
14064
14065 if (checkPlaceholderForOverload(*this, Base))
14066 return ExprError();
14067
14068 SourceLocation Loc = Base->getExprLoc();
14069
14070 // C++ [over.ref]p1:
14071 //
14072 // [...] An expression x->m is interpreted as (x.operator->())->m
14073 // for a class object x of type T if T::operator->() exists and if
14074 // the operator is selected as the best match function by the
14075 // overload resolution mechanism (13.3).
14076 DeclarationName OpName =
14077 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14078 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14079 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
14080
14081 if (RequireCompleteType(Loc, Base->getType(),
14082 diag::err_typecheck_incomplete_tag, Base))
14083 return ExprError();
14084
14085 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14086 LookupQualifiedName(R, BaseRecord->getDecl());
14087 R.suppressDiagnostics();
14088
14089 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14090 Oper != OperEnd; ++Oper) {
14091 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14092 None, CandidateSet, /*SuppressUserConversion=*/false);
14093 }
14094
14095 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14096
14097 // Perform overload resolution.
14098 OverloadCandidateSet::iterator Best;
14099 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14100 case OR_Success:
14101 // Overload resolution succeeded; we'll build the call below.
14102 break;
14103
14104 case OR_No_Viable_Function: {
14105 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14106 if (CandidateSet.empty()) {
14107 QualType BaseType = Base->getType();
14108 if (NoArrowOperatorFound) {
14109 // Report this specific error to the caller instead of emitting a
14110 // diagnostic, as requested.
14111 *NoArrowOperatorFound = true;
14112 return ExprError();
14113 }
14114 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14115 << BaseType << Base->getSourceRange();
14116 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14117 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14118 << FixItHint::CreateReplacement(OpLoc, ".");
14119 }
14120 } else
14121 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14122 << "operator->" << Base->getSourceRange();
14123 CandidateSet.NoteCandidates(*this, Base, Cands);
14124 return ExprError();
14125 }
14126 case OR_Ambiguous:
14127 CandidateSet.NoteCandidates(
14128 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14129 << "->" << Base->getType()
14130 << Base->getSourceRange()),
14131 *this, OCD_AmbiguousCandidates, Base);
14132 return ExprError();
14133
14134 case OR_Deleted:
14135 CandidateSet.NoteCandidates(
14136 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14137 << "->" << Base->getSourceRange()),
14138 *this, OCD_AllCandidates, Base);
14139 return ExprError();
14140 }
14141
14142 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14143
14144 // Convert the object parameter.
14145 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14146 ExprResult BaseResult =
14147 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14148 Best->FoundDecl, Method);
14149 if (BaseResult.isInvalid())
14150 return ExprError();
14151 Base = BaseResult.get();
14152
14153 // Build the operator call.
14154 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14155 Base, HadMultipleCandidates, OpLoc);
14156 if (FnExpr.isInvalid())
14157 return ExprError();
14158
14159 QualType ResultTy = Method->getReturnType();
14160 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14161 ResultTy = ResultTy.getNonLValueExprType(Context);
14162 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14163 Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
14164
14165 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14166 return ExprError();
14167
14168 if (CheckFunctionCall(Method, TheCall,
14169 Method->getType()->castAs<FunctionProtoType>()))
14170 return ExprError();
14171
14172 return MaybeBindToTemporary(TheCall);
14173}
14174
14175/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14176/// a literal operator described by the provided lookup results.
14177ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14178 DeclarationNameInfo &SuffixInfo,
14179 ArrayRef<Expr*> Args,
14180 SourceLocation LitEndLoc,
14181 TemplateArgumentListInfo *TemplateArgs) {
14182 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14183
14184 OverloadCandidateSet CandidateSet(UDSuffixLoc,
14185 OverloadCandidateSet::CSK_Normal);
14186 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14187 TemplateArgs);
14188
14189 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14190
14191 // Perform overload resolution. This will usually be trivial, but might need
14192 // to perform substitutions for a literal operator template.
14193 OverloadCandidateSet::iterator Best;
14194 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14195 case OR_Success:
14196 case OR_Deleted:
14197 break;
14198
14199 case OR_No_Viable_Function:
14200 CandidateSet.NoteCandidates(
14201 PartialDiagnosticAt(UDSuffixLoc,
14202 PDiag(diag::err_ovl_no_viable_function_in_call)
14203 << R.getLookupName()),
14204 *this, OCD_AllCandidates, Args);
14205 return ExprError();
14206
14207 case OR_Ambiguous:
14208 CandidateSet.NoteCandidates(
14209 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14210 << R.getLookupName()),
14211 *this, OCD_AmbiguousCandidates, Args);
14212 return ExprError();
14213 }
14214
14215 FunctionDecl *FD = Best->Function;
14216 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14217 nullptr, HadMultipleCandidates,
14218 SuffixInfo.getLoc(),
14219 SuffixInfo.getInfo());
14220 if (Fn.isInvalid())
14221 return true;
14222
14223 // Check the argument types. This should almost always be a no-op, except
14224 // that array-to-pointer decay is applied to string literals.
14225 Expr *ConvArgs[2];
14226 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14227 ExprResult InputInit = PerformCopyInitialization(
14228 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14229 SourceLocation(), Args[ArgIdx]);
14230 if (InputInit.isInvalid())
14231 return true;
14232 ConvArgs[ArgIdx] = InputInit.get();
14233 }
14234
14235 QualType ResultTy = FD->getReturnType();
14236 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14237 ResultTy = ResultTy.getNonLValueExprType(Context);
14238
14239 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14240 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14241 VK, LitEndLoc, UDSuffixLoc);
14242
14243 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14244 return ExprError();
14245
14246 if (CheckFunctionCall(FD, UDL, nullptr))
14247 return ExprError();
14248
14249 return MaybeBindToTemporary(UDL);
14250}
14251
14252/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14253/// given LookupResult is non-empty, it is assumed to describe a member which
14254/// will be invoked. Otherwise, the function will be found via argument
14255/// dependent lookup.
14256/// CallExpr is set to a valid expression and FRS_Success returned on success,
14257/// otherwise CallExpr is set to ExprError() and some non-success value
14258/// is returned.
14259Sema::ForRangeStatus
14260Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14261 SourceLocation RangeLoc,
14262 const DeclarationNameInfo &NameInfo,
14263 LookupResult &MemberLookup,
14264 OverloadCandidateSet *CandidateSet,
14265 Expr *Range, ExprResult *CallExpr) {
14266 Scope *S = nullptr;
14267
14268 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14269 if (!MemberLookup.empty()) {
1
Assuming the condition is false
2
Taking false branch
14270 ExprResult MemberRef =
14271 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14272 /*IsPtr=*/false, CXXScopeSpec(),
14273 /*TemplateKWLoc=*/SourceLocation(),
14274 /*FirstQualifierInScope=*/nullptr,
14275 MemberLookup,
14276 /*TemplateArgs=*/nullptr, S);
14277 if (MemberRef.isInvalid()) {
14278 *CallExpr = ExprError();
14279 return FRS_DiagnosticIssued;
14280 }
14281 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14282 if (CallExpr->isInvalid()) {
14283 *CallExpr = ExprError();
14284 return FRS_DiagnosticIssued;
14285 }
14286 } else {
14287 UnresolvedSet<0> FoundNames;
14288 UnresolvedLookupExpr *Fn =
14289 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
14290 NestedNameSpecifierLoc(), NameInfo,
14291 /*NeedsADL=*/true, /*Overloaded=*/false,
14292 FoundNames.begin(), FoundNames.end());
14293
14294 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
14295 CandidateSet, CallExpr);
14296 if (CandidateSet->empty() || CandidateSetError
3.1
'CandidateSetError' is false
) {
3
Assuming the condition is false
4
Taking false branch
14297 *CallExpr = ExprError();
14298 return FRS_NoViableFunction;
14299 }
14300 OverloadCandidateSet::iterator Best;
14301 OverloadingResult OverloadResult =
14302 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
5
Calling 'OverloadCandidateSet::BestViableFunction'
14303
14304 if (OverloadResult == OR_No_Viable_Function) {
14305 *CallExpr = ExprError();
14306 return FRS_NoViableFunction;
14307 }
14308 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14309 Loc, nullptr, CandidateSet, &Best,
14310 OverloadResult,
14311 /*AllowTypoCorrection=*/false);
14312 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14313 *CallExpr = ExprError();
14314 return FRS_DiagnosticIssued;
14315 }
14316 }
14317 return FRS_Success;
14318}
14319
14320
14321/// FixOverloadedFunctionReference - E is an expression that refers to
14322/// a C++ overloaded function (possibly with some parentheses and
14323/// perhaps a '&' around it). We have resolved the overloaded function
14324/// to the function declaration Fn, so patch up the expression E to
14325/// refer (possibly indirectly) to Fn. Returns the new expr.
14326Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
14327 FunctionDecl *Fn) {
14328 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
14329 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
14330 Found, Fn);
14331 if (SubExpr == PE->getSubExpr())
14332 return PE;
14333
14334 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
14335 }
14336
14337 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
14338 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
14339 Found, Fn);
14340 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14342, __PRETTY_FUNCTION__))
14341 SubExpr->getType()) &&((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14342, __PRETTY_FUNCTION__))
14342 "Implicit cast type cannot be determined from overload")((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14342, __PRETTY_FUNCTION__))
;
14343 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((ICE->path_empty() && "fixing up hierarchy conversion?"
) ? static_cast<void> (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14343, __PRETTY_FUNCTION__))
;
14344 if (SubExpr == ICE->getSubExpr())
14345 return ICE;
14346
14347 return ImplicitCastExpr::Create(Context, ICE->getType(),
14348 ICE->getCastKind(),
14349 SubExpr, nullptr,
14350 ICE->getValueKind());
14351 }
14352
14353 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
14354 if (!GSE->isResultDependent()) {
14355 Expr *SubExpr =
14356 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
14357 if (SubExpr == GSE->getResultExpr())
14358 return GSE;
14359
14360 // Replace the resulting type information before rebuilding the generic
14361 // selection expression.
14362 ArrayRef<Expr *> A = GSE->getAssocExprs();
14363 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
14364 unsigned ResultIdx = GSE->getResultIndex();
14365 AssocExprs[ResultIdx] = SubExpr;
14366
14367 return GenericSelectionExpr::Create(
14368 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
14369 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
14370 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
14371 ResultIdx);
14372 }
14373 // Rather than fall through to the unreachable, return the original generic
14374 // selection expression.
14375 return GSE;
14376 }
14377
14378 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
14379 assert(UnOp->getOpcode() == UO_AddrOf &&((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14380, __PRETTY_FUNCTION__))
14380 "Can only take the address of an overloaded function")((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14380, __PRETTY_FUNCTION__))
;
14381 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
14382 if (Method->isStatic()) {
14383 // Do nothing: static member functions aren't any different
14384 // from non-member functions.
14385 } else {
14386 // Fix the subexpression, which really has to be an
14387 // UnresolvedLookupExpr holding an overloaded member function
14388 // or template.
14389 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
14390 Found, Fn);
14391 if (SubExpr == UnOp->getSubExpr())
14392 return UnOp;
14393
14394 assert(isa<DeclRefExpr>(SubExpr)((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14395, __PRETTY_FUNCTION__))
14395 && "fixed to something other than a decl ref")((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14395, __PRETTY_FUNCTION__))
;
14396 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14397, __PRETTY_FUNCTION__))
14397 && "fixed to a member ref with no nested name qualifier")((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14397, __PRETTY_FUNCTION__))
;
14398
14399 // We have taken the address of a pointer to member
14400 // function. Perform the computation here so that we get the
14401 // appropriate pointer to member type.
14402 QualType ClassType
14403 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
14404 QualType MemPtrType
14405 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
14406 // Under the MS ABI, lock down the inheritance model now.
14407 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14408 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
14409
14410 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
14411 VK_RValue, OK_Ordinary,
14412 UnOp->getOperatorLoc(), false);
14413 }
14414 }
14415 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
14416 Found, Fn);
14417 if (SubExpr == UnOp->getSubExpr())
14418 return UnOp;
14419
14420 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
14421 Context.getPointerType(SubExpr->getType()),
14422 VK_RValue, OK_Ordinary,
14423 UnOp->getOperatorLoc(), false);
14424 }
14425
14426 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14427 // FIXME: avoid copy.
14428 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14429 if (ULE->hasExplicitTemplateArgs()) {
14430 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
14431 TemplateArgs = &TemplateArgsBuffer;
14432 }
14433
14434 DeclRefExpr *DRE =
14435 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
14436 ULE->getQualifierLoc(), Found.getDecl(),
14437 ULE->getTemplateKeywordLoc(), TemplateArgs);
14438 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
14439 return DRE;
14440 }
14441
14442 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
14443 // FIXME: avoid copy.
14444 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14445 if (MemExpr->hasExplicitTemplateArgs()) {
14446 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14447 TemplateArgs = &TemplateArgsBuffer;
14448 }
14449
14450 Expr *Base;
14451
14452 // If we're filling in a static method where we used to have an
14453 // implicit member access, rewrite to a simple decl ref.
14454 if (MemExpr->isImplicitAccess()) {
14455 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
14456 DeclRefExpr *DRE = BuildDeclRefExpr(
14457 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
14458 MemExpr->getQualifierLoc(), Found.getDecl(),
14459 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
14460 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
14461 return DRE;
14462 } else {
14463 SourceLocation Loc = MemExpr->getMemberLoc();
14464 if (MemExpr->getQualifier())
14465 Loc = MemExpr->getQualifierLoc().getBeginLoc();
14466 Base =
14467 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
14468 }
14469 } else
14470 Base = MemExpr->getBase();
14471
14472 ExprValueKind valueKind;
14473 QualType type;
14474 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
14475 valueKind = VK_LValue;
14476 type = Fn->getType();
14477 } else {
14478 valueKind = VK_RValue;
14479 type = Context.BoundMemberTy;
14480 }
14481
14482 return BuildMemberExpr(
14483 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
14484 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
14485 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
14486 type, valueKind, OK_Ordinary, TemplateArgs);
14487 }
14488
14489 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-10~++20200109111124+f0abe820eeb/clang/lib/Sema/SemaOverload.cpp"
, 14489)
;
14490}
14491
14492ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
14493 DeclAccessPair Found,
14494 FunctionDecl *Fn) {
14495 return FixOverloadedFunctionReference(E.get(), Found, Fn);
14496}